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1. Introduction
Let X1, X2, ..., XT be observations taken over time T. Suppose we have a stochas-
tic process {Xt, t ∈ Z} representable also as

Xt = ft + εt, t ∈ Z,

where ft is a deterministic one-dimensional piece-wise constant function and ε
is a noise (also called error). It is of interest to find all locations of structural
changes in this time series, as well as the total number of such changes. This
approach is in literature usually called change-point detection, often as well as
multiple change-point detection, where by change-point we mean the moment in
time where a shift occurs.

Our goal is to estimate the number and locations of change-points in the
data, under assumptions on the minimum permitted magnitude of the jumps in
change-points, the distance of the points, or the total number N of these points,
etc.

To achieve our goal we introduce two methods, (standard) binary segmenta-
tion and wild binary segmentation, both widely used for change-point detection
problems.

Binary segmentation (BS) is a method, where we search the whole data set,
at first, for only one change point. After this change-point is found, we split the
interval (hence called segmentation) into two new intervals (hence called binary)
and recursively repeat this on both newly created segments defined by the split-
ting point until the recursion is stopped. This method is simple to implement,
even for a non-expert. One of the drawbacks of this method is that in each step it
is looking only for one change point at a time. This results in binary segmentation
being unsuitable for specific functions having unfavorable change-point configu-
rations. Additionally, it can be shown that minimum spacings between adjacent
change-points is of order greater than T 3/4 in the case of jump magnitudes being
bounded away from zero.

Using the benefits of standard binary segmentation we later describe a new
method called wild binary segmentation (WBS) introduced in Fryzlewicz [2014].
WBS tries to eliminate weaknesses of standard BS and further improve its per-
formance.

In what follows, we at first motivate the problem and both procedures. Then
we define both BS and WBS and describe their recursive behavior. Additionally,
we illustrate BS and WBS on simple examples to enhance the understanding of
both methods. At the end of the work, we show both method’s performance on
a real data example.
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2. Motivation
Throughout this work we consider a time series model with observations Xt:

Xt = ft + εt, t = 1, ..., T, (2.1)

where ft is a deterministic, one-dimensional, piecewise constant function and ε
is a variable describing some kind of a noise (error variable). We will denote
the number of change-points by N and their locations by η1, ..., ηN . Both N and
locations η1, ..., ηN are unknown. Additional assumptions and conditions for ft

and εt we will specify later. For simplicity, we often call Xt ’data’.

2.1 The CUSUM Statistic
The key to both, standard and wild binary segmentation, is the CUSUM statistic
defined by the inner product between the vector of observations (Xs, ..., Xe) and
particular vector:

X̃
b

s,e =
√︄

e − b

n(b − s + 1)

b∑︂
t=s

Xt −
√︄

b − s + 1
n(e − b)

e∑︂
t=b+1

Xt, (2.2)

where s ≤ b < e and n = e − s + 1. We will call the vector X̃
b

s,e the vector
of ’contrast’ weights. In this work, we consider this to hold for the whole time.
For simplicity, we do not investigate the origin of this statistic nor its theoretical
background any further.

2.2 Idea
The idea is simple. In the first step of binary segmentation, the algorithm com-
putes X̃

b

1,T and takes b1,1 = arg maxb:1≤b<T

⃓⃓⃓
X̃

b

1,T

⃓⃓⃓
to be the first change-point

candidate. If this candidate satisfies specific judging criterion, thus b1,1 becomes
our true change-point estimation, the whole interval [1, T ] is then split into two
sub-intervals [1, b1,1] and [b1,1 + 1, T ]. Because of such splits into two new inter-
vals, we call this procedure binary segmentation. The algorithm then continues
recursively by computing X̃

b

1,b1,1 and X̃
b

b1,1+1,T , possibly resulting in additional
splits.

Such algorithms are often called ’top-down’ algorithms (also divisive), splitting
large intervals into smaller ones. There exist completely different approaches to
this problem, for example, in Fryzlewicz [2018]. This procedure is often called
’bottom-up’ (or also agglomerative) because it ’connects small intervals’ that
possibly have the same ’attributes’. In the sense of change-point detection, instead
of splitting intervals in possible change-points, this method connects neighboring
intervals that with high probability correspond to locally constant ft.

Denote F b
s,e to be a set of all vectors on [s, e] that have only one change-point

being exactly in b. Having this we get

arg max
b:s≤b<e

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
= arg min

b:s≤b<e
min

f̄
b
s,e∈Fb

s,e

∥Xe
s − f̄

b

s,e∥2
2.
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This means, that if the true function ft has only one change-points on [s, e] then
b0̂ = arg maxb:s≤b<e

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
is a least squares estimator of b0 which is the same as

maximum likelihood estimator if εt are i.i.d and having normal distribution.
Altogether, if ft has only one change-point on its entire domain [1, T ], then

the estimation of this change-point is very likely to be correct. Unfortunately, if
the true function has more than one change-point, the algorithm trying to find
only change-point on such a function is trying so while having a wrong model.
This may cause binary segmentation to fail when analyzing data with unfavorable
change-point configuration.

It can be shown that ’narrowing’ the searching interval around a change-point
is very likely to overcome this instability. In practice, we, of course, don’t know
the locations of change-points, thus we cannot choose s and e this way (if we
knew that, we wouldn’t have to try to estimate change-point locations in the
first place). We also cannot try every combination of s and e possible due to
computational complexity.

Leading from the discussion above, our main goal will be using this ’narrow-
ing’ trick to locate change-points, but with some additional rules. We will not try
to search every possible interval [s, e] but we will randomly draw several inter-
vals [s, e] and find our arg maxb:s≤b<e

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
on each such sub-interval separately.

Having a relatively large number of such sub-intervals will give us a high proba-
bility that at least one of such intervals will be bounded by s and e the way we
described in the previous paragraph. In other words, drawing this interval ran-
domly will hopefully bound our true change-point ’close enough’ when also being
bounded ’far enough’ from other change-points. One can be surprised about this
randomness approach because the needed number of random draws is ’not that
large’.

This idea leads us to the new detection method called wild binary segmenta-
tion.
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3. Theory
In this chapter, we provide theoretical background for both methods, binary
and wild binary segmentation. The text will contain illustrative examples to
facilitate understanding and show a visual side of the problem. We first specify the
theoretical model, motivate both algorithms and formulate needed assumptions
for the consistency theorem to hold. In this work, we will not show proofs of any
theorem. All proofs and important discussion can be found in Fryzlewicz [2014].

3.1 Model definition
In this work, we consider one specific model. We assume that:

• the random error (noise) sequence {εt}T
t=1 ∼ N (0, 1) being i.i.d.,

• the function {ft}T
t=1 is bounded, which means that we assume |ft| < f̄ <

∞ for t ∈ [1, T ],

where ∼ N (·, ·) means ’having normal (Gaussian) distribution’ with specific pa-
rameters and by i.i.d. we mean independent identically distributed random vari-
ables.

(3.1)
The first assumption (normal distribution of the noise) is necessary to mention for
clarity and for technical convenience. It is very reasonable to extend this problem
to n.i.n.i.d (non-independent, not identically distributed) non-normal noise (and
vice versa), but in what follows, we do not consider any of those other cases. We
also assume that Varεt is known because in practice it is very often easy to be
estimated relatively well.

For additional convenience, we also assume that η0 = 0 and ηN+1 = T (this
means that we suppose we have change-point in time 0 and also T, being so at
the very start and very end of our time series).

3.2 Binary Segmentation
To fully understand the wild binary segmentation concept, we first discuss stan-
dard binary segmentation. Before we begin, we have to make some additional
assumptions.

In this section of the text, we assume that the minimum spacings between
change points are greater or equal than δT , where δT ≤ CT Θ. We want C to be
greater than zero and Θ ≤ 1.

For magnitudes of the jumps in change points we also need to assume them
to be greater or equal than f

T
where f

T
≥ CT −ω for ω ≥ 0. Mathematically

speaking we want the mini=1,...,N f ′
i ≥ f

T
where f ′

i = |fηi
− fηi−1|.

Those assumptions are linked together by equation Θ − ω
2 > 3

4 .

(3.2)
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It is important to say that we do not expect the total number of change
points N to be bounded. We allow N to be as large as the minimum spacings
between change points δT allow. Formally we have N = N(T ) and ηi = ηi(T ) for
i ∈ {0, 1, ..., N + 1}. For simplicity, we will use the notation N and ηi instead of
N(T ) and ηi(T ).

Both standard BS and WBS can be simply described by recursive algorithms.
Standard binary segmentation iteration steps can be illustrated as follows:

• choose values for parameters s, e and ζT ,

• on the interval [s, e] find the first change point estimation, denote it by b0,
where b0 := arg maxb:s≤b≤e−1

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
,

• If
⃓⃓⃓
X̃

b0
s,e

⃓⃓⃓
> ζT then add it to the set of estimated change points,

• recursively repeat 2 previous steps on segments [s, b0] and [b0 + 1, e].

For this algorithm, we have a few stopping criteria. One is quite obvious, that
is when s − e < 1. The other one is when

⃓⃓⃓
X̃

b0
s,e

⃓⃓⃓
< ζT . We call ζT a threshold

parameter.
The standard for the binary segmentation algorithm is that it takes s = 1 and

e = T , this means that in the first step of the algorithm, we are searching the
whole time series for one change point that maximizes our CUSUM statistic.

Theorem 1 (Consistency of BS). Let XT follow our model (2.1) and suppose our
assumptions (3.1) and (3.2) hold. Let N and η1, ..., ηN denote, respectively, the
number and locations of change-points. Let N̂ denote the number and η1̂, ..., ηN̂

the locations, sorted in increasing order, of the change points estimates obtained by
the standard binary segmentation algorithm. Let the threshold parameter satisfy
ζT = c1T

θ where θ ∈ (1−Θ, Θ−1/2−ω) if Θ ∈ (3
4 , 1), or ζT ≥ c2 logp T (p > 1/2)

and ζT ≤ c3T
θ (θ < 1/2 − ω) if Θ = 1, for any positive constants c1, c2, c3. Then

there exist positive constants C, C1 such that P (AT ) ≥ 1 − C1T
−1, where

AT = {N̂ = N ; max
i=1,...,N

|ηî − ηi| ≤ CϵT }

with ϵT = T 2δ−2
T (f

T
)−2 log T.

Proof of this theorem and interesting discussion can be found in the appendix
of Fryzlewicz [2014].

Examples
Example (1). In this example, our goal is to estimate locations, also the number,
of change-points in the data. To remark, we still consider our model (2.1), that
is, one dimensional, piecewise constant function ft with added noise εt such that
E(ε) = 0 and its variance is equal to 1. A detailed description of the data can be
found in the appendix (A). We try to visualize our data with a graph shown in
Figure (3.1) and corresponding true ft shown in Figure (3.2).

Our goal is to estimate, if possible, the locations of change-points in the data.
We can surely say that the number of true change-points N = 1, where the

6
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Figure 3.1: Time series for example 1

change-point occurs somewhere around t = 50. To verify this and to properly
analyze the time series, we will use the R package ’wbs’ created by Baranowski
and Fryzlewicz [2019].

Following the BS algorithm, at first, the algorithm chooses s, e, starting and
ending points for the searching interval. In the case of standard binary segmenta-
tion, we have s = 1, e = 300. On that interval we evaluate CUSUM statistic

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
for each b ∈ [s, e] while looking for b0 such that b0 := arg maxb:s≤b≤e−1

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
.

After calling function sbs() on our data, it returns us, for our specific example,
a table with many rows containing various values. For comparison, the function
sbs() can also show us its estimation ft̂ of the true ft shown in Figure (3.3).

We have here the first few rows of the table returned by sbs(). Again, a
detailed description of obtaining these values is described in the corresponding
section in appendix (A) of this work.

s e cpt CUSUM min.th scale
[1,] 1 2 1 -0.233556067 0.233556067 6
[2,] 1 7 2 -1.413027583 1.075023179 5
[3,] 3 7 3 0.862911140 0.862911140 6
[4,] 4 5 4 -0.041563273 0.041563273 8
[5,] 4 7 5 -0.988092533 0.862911140 7

The first and second columns of our table describe starting and ending points
s, e where the change-point candidate ’cpt’ was found. The fourth column, which
is called CUSUM, shows the maximal evaluated

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
for b ∈ [s, e] defined by

the first two columns. The fifth column called ’min.th’, shows us the minimal
value of the threshold parameter ζT for which our change point would not be

7
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Figure 3.3: Time series for example 1 (black line) with ft̂ (red line)
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considered significant, and thus ignored. The last column is not that simple to
describe. In some sense, it tells us ’how many times have binary segmentation
visited corresponding interval s, e’.

To find our ’best’ (in terms of CUSUM statistic magnitude) change-point
candidates more easily, we would like to have our CUSUM column sorted and
evaluated in absolute value. Take a look at the new column called ’abs cusum’.
It is a transformation of our yet known column ’CUSUM’ but transformed via R
function abs() resulting in having CUSUM statistics in absolute values.

s e cpt CUSUM min.th scale abs_cusum
[1,] 1 300 50 6.454678999 6.454678999 1 6.454678999
[2,] 164 173 164 2.997157068 0.942349367 10 2.997157068
[3,] 254 266 263 -2.496591469 1.043710975 11 2.496591469
[4,] 18 50 26 -2.467592950 1.189884295 3 2.467592950
[5,] 51 98 96 -2.428667577 1.374889043 4 2.428667577

Additionally, we have the table above sorted with respect to the new column
’abs cusum’ in decreasing order. As we can see, the maximal

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
occurs at

t = 50, while searching whole interval [1, 300], exactly as we expected.
It is important to say that in this example we completely ignored ζT parameter

choice and we also ignored the recursive behavior of the algorithm.
Example (2). In this example, we try to look at a slightly more complicated
situation. Again, any details concerning example recreation will be shown in
appendix (A). Our goal is to get change-point location estimates η1̂, ..., ηN̂ and
possibly N̂ denoting the estimated number of change points. We also take a look
at something new compared to the last example, that being threshold parameter
choice and its influence.

We suppose that our model (2.1) still holds. Let us take a look at graph (3.4)
below, which illustrates data for example 2.

The data consist of 300 values obtained in t = 1, ..., T , where T = 300.
We can visually see some suspicious behavior approximately in the middle of
the time interval. We use a standard binary segmentation algorithm using R
implementation. Before we do so, allow us a little bit of cheating, and take a look
at true ft, that being, let us visualize the true change point locations η1, ...ηN and
their number N in Figure (3.5).

In Figure (3.5) we can clearly see three change-points, one occurring some-
where around t = 120 other one being around t = 140 and the last one close to
t = 160. In the appendix we expose that those numbers are precise, which means
that our change-points are exactly at the locations mentioned before.

Following the standard binary segmentation algorithm, which we explained
in section (3.2), we again, similarly to the previous example, choose s, e starting
and ending points needed for algorithm initiation. The standard for classic binary
segmentation is setting s = 1 and e = T in this specific case, that being the whole
time interval [1, 300]. We again compute CUSUM statistic

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
for each b ∈ [s, e]

recursively continuing on possibly newly created intervals defined by previously
found change-point.

On contrary to example 1 in (3.2) we will now also talk about threshold
parameter ζt. The importance of this parameter was explained in the description
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of the recursive idea of both, binary segmentation and wild binary segmentation,
also its role illustration can be found in section (3.4). To sum up, the number
of change-points estimations N̂ and also possibly found change-point locations
estimations η1̂, ..., ηN̂ can be seen as a function of ζt. Thus, by choosing different
values of parameter ζt we obtain different results. The discussion of parameter
choice and its properties can be found in Fryzlewicz [2014], chapter 4 called
’parameter choice and simulation study’. From this section, we only extract the
formula for parameter ζt and values for the previously mentioned constant C
described in both sections about BS and WBS. For the remainder of the work,
we will consider

ζt = Cσ̂
√

2 log1/2 T,

where σ̂ is median absolute deviation estimation of σ denoting the variance of
standard normal noise. For this, we will use an R function called mad() which
computes respective estimation σ̂ needed for the evaluation of ζt, although it is
expected to be close to 1 due to artificial data construction shown in (A). In the
same part of the Fryzlewicz [2014], we can find the value for constant C, which
we will use in this work as well, that is, from now on we consider C = 1.3.

Now we have everything needed to proceed. We are able to use the function
sbs() on our data. We can take a look at the same table shown in example 1 in
(3.2) but with values from example 2 (3.2).

s e cpt CUSUM min.th scale abs_cusum
[1,] 121 300 161 8.698185335 3.568530761 2 8.698185335
[2,] 121 161 147 -4.449782798 3.568530761 3 4.449782798
[3,] 1 300 120 -3.568530761 3.568530761 1 3.568530761
[4,] 164 287 164 3.207762587 1.684802218 5 3.207762587
[5,] 264 287 266 2.801439505 0.985121451 7 2.801439505

From this table we can just by looking at the column called ’abs cusum’ imply
that we have very likely change-points candidates at t = 161, possibly at t = 147,
maybe also at t = 120 and at t = 164. Let us now compare our assumptions with
a graph that shows ft̂, that being an estimation of true ft illustrated in Figure
(3.6) made by R function sbs().

This figure shows no change-point estimations at all. Why did that happen?
Now the discussion about threshold parameter ζt comes in handy. Let us take
a look at the ’min.th’ column shown in the table above. If we sort the table by
’min.th’ in decreasing order, we get the same first 5 rows as shown above. That
being, the highest value is approximately 3.57. How did we get this number and
how does it influence our result? Before we answer this question, let us take a
closer look at ζt.

As we mentioned previously, we consider ζt = Cσ̂
√

2 log1/2 T . Proceed in or-
der, we have C = 1.3, R function mad() returned us σ̂ = 1.006067 approximately.
Now for ζt we get ζt = 1.3 ∗ 1.006067 ∗

√
2 ∗ log1/2 (300) .= 4.417399.

It might seem strange. Why do we have no change-point estimations, when
we clearly see at least one and maybe even two change points, which passed the
threshold ζt speaking of their CUSUM magnitude

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
. The problem here is the

recursive behavior of the BS procedure. In the first step of algorithm we search
the whole time interval, looking for change-points. In this case, we have
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Figure 3.6: Time series for example 2 (black line) with ft̂ (red line)

s e cpt CUSUM min.th scale abs_cusum
[1,] 1 300 120 -3.568530761 3.568530761 1 3.568530761

describing our first iteration of sbs() function algorithm. The algorithm, de-
scribed in section (3.2), compares the maximal

⃓⃓⃓
X̃

b

s,e

⃓⃓⃓
found on interval s, e with

ζt. In this case, it checks if
⃓⃓⃓
X̃

120
1,300

⃓⃓⃓
> ζt. Specifically, it verifies whether ap-

proximately 3.568 > 4.417. This clearly is not satisfied, even though we rounded
both numbers. That means, that the algorithm stops in the first iteration result-
ing in finding no change points due to ζt being too high even for the first step
change-point estimate.

The reason of the failure is the true change points were simply ’too difficult’
for standard binary segmentation to find. We could either make the interval
[s, e] more narrow or change the threshold parameter ζt to overcome this unfa-
vorable situation. We will skip the narrowing variant for the sake of wild binary
segmentation illustration.

If we lower the threshold parameter to ζ ′
t < 3.568530761, for example, ζ ′

t = 3.5
we get a completely different result. After choosing ζt = ζ ′

t we would get all the
first three points from the table as change-points estimations, that is, N̂ = 3,
η1̂ = 120, η2̂ = 147 and η3̂ = 161.

The influence of parameter ζt choice is essential to analyze the data correctly
and to get the needed result. It is important to choose this parameter cautiously.
In the last part of the example, where we introduced ζ ′

t, we used the knowledge of
the threshold value needed to get the result that we want. This approach can be
considered unfair because we should not choose our parameters after the analysis
is done but beforehand.
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3.3 Wild Binary Segmentation
This section tells us more about wild binary segmentation. We call it wild be-
cause, in what follows, we need a random draw of sub-intervals from [1, T ]. First,
we denote F T

M to be the set of random intervals. Those random intervals we
denote by [sm, em] where m = 1, ..., M whose, as we mentioned above, start and
end points are drawn independently and uniformly from the set 1, ..., T . What is
and how to choose parameter M we discuss later. Similarly, as we shown the BS
algorithm, we can illustrate the WBS algorithm as well:

• Select starting values for parameters s, e and ζT ,
(same as BS)

• create set Ms,e of those indices m for which [sm, em] ∈ F M
T is such that

[sm, em] ⊆ [s, e]
(new to WBS)

• (optional) expand Ms,e := Ms,e ∪ {0}, where [s0, e0] = [s, e]
(new to WBS)

• define (m0, b0) := arg maxm∈Ms,e,b∈{sm,...,em−1}

⃓⃓⃓
X̃

b

sm,em

⃓⃓⃓
,

(similar to BS)

• if
⃓⃓⃓
X̃

b0
sm0 ,em0

⃓⃓⃓
> ζT then add it to the set of estimated change points,

(same as BS)

• recursively repeat previous steps on segments [s, b0] and [b0 + 1, e].
(same as BS)

The optional step is there to make sure that our procedure also searches the
entire interval [s, e] and not only its randomly drawn sub-intervals. Especially
when [s, e] has only one change point, it is on point to examine this whole interval.

We can see a few stopping criteria for our algorithm. One is again being
s − e < 1. The other occurs when the

⃓⃓⃓
X̃

b0
sm0 ,em0

⃓⃓⃓
< ζT . We call ζT a threshold

parameter.
It is also interesting to say that, unlike BS, this procedure without the op-

tional step returns us estimated change points in decreasing order with respect to
maxima of

⃓⃓⃓
X̃

b0
sm0 ,em0

⃓⃓⃓
. This is due to maximization over m. Maxima of CUSUM

test statistics are not obliged in any way to come sorted for standard BS.

Now we might wonder, why do we use randomly drawn intervals instead of
fixed ones. In some cases change points require ’narrow’ intervals [s, e] to be
detectable. When we randomly draw sub-intervals on [s, e], we have always a
probability greater than zero that we will draw narrow enough intervals around
those ’difficult to find’ change points in the set F T

M .
On the other hand, let us consider fixed intervals. Let us also say that start

and end points [sm, em] can take all possible values from 1, ..., T . Additionally,
to be fair, say that the number of intervals will be the same as in the random
scenario. Then we can expect at least some of the fixed intervals to be longer
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enough than the corresponding random intervals that they will not be able to
detect those ’difficult to find’ change points.

Another advantage of the random approach for interval selection is that when
we find out that the number of such drawn intervals is insufficient. In the fixed
design, we should consider redrawing the whole set of sub-intervals. But in the
case of random choice, the only thing we need to do is simply draw an additional
number of intervals from the previously chosen distribution.

When we make sure that our number of sub-intervals M is large enough, the
difference between fixed and random approach can be expected to be minimal.
This idea of drawing random intervals from s, e to overcome unfavorable change-
point configuration was taken further in Baranowski et al. [2019]. Here, instead
of choosing (m0, b0) := arg maxm∈Ms,e,b∈{sm,...,em−1}

⃓⃓⃓
X̃

b

sm,em

⃓⃓⃓
as the ’best’ change

point candidate, this method chooses that (m0, b0) as change point candidate,
whose ’contrast’ exceeds specific threshold and has the smallest |sm − em|, where
[sm, em] ⊆ [s, e] in the sense we described above. The idea is that the smaller
interval sm, em is the higher the chance that it will contain only one ’feature’. In
our case, that is only one change-point.

Before we proceed further, similarly to standard BS, we need to formulate
some assumptions for WBS to be consistent.

Spacings between change point satisfies mini=1,...,N+1 |ηi − ηi−1| ≥ δT . For the
magnitudes we assume f ′

i = |fηi
− fηi−1| to satisfy mini=1,...,N f ′

i ≥ f
T
, where δT

and f
T

are linked by the equation δ
1/2
T f

T
≥ C log1/2 T for a constant C large

enough.
(3.3)

Theorem 2 (Consistency of WBS). Let XT follow model (2.1) and suppose our
assumptions (3.1) and (3.3) hold. Let N and η1, ..., ηN denote, respectively, the
number and locations of change-points. Let N̂ denote the number and η1̂, ..., ηN̂

the locations, sorted in increasing order, of the change point estimates obtained by
the wild binary segmentation algorithm. There exist two constants C, C such that
if C log1/2 T ≤ Cδ

1/2
T , then P (AT ) ≥ 1 − C1T

−1 − Tδ−1
T (1 − δ2

T T −2/9)M , where

AT = {N̂ = N ; max
i=1,...,N

|ηî − ηi| ≤ C log T (f
T
)−2}

for certain positive constants C, C1.

Proof of this theorem can be found in the appendix of Fryzlewicz [2014].

Now we discuss some properties of M being the (minimal) number of random
draws needed to the speed of convergence P (A) to 1 be suitably bounded. We
naturally expect the number M to rise with decreasing δT . Mathematically we
would like to

Tδ−1
T (1 − δ2

T T −2/9)M ≤ T −1

in order it to be the same rate as C1T
−1. After few steps we get

M ≥ 9T 2

δ2
T log T 2δ−1

T

,
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where we used the fact that log(1 − y) ≈ y for y being relatively close to 0.
Another question we might ask ourselves is why we even use the recursive al-

gorithm for WBS’s random draws. Why don’t we just take all change points esti-
mations sorted by CUSUM statistic magnitude that passed threshold parameter
ζt? In other words, why don’t we just take all those points found by maximizing⃓⃓⃓
X̃

b

sm,em

⃓⃓⃓
over all intervals [se, sm] ∈ F M

T . The answer is not that difficult. Doing
this we might get some true change points estimated more times and in more
positions. We avoid this problem by restricting us to one interval [se, sm] at a
time.

Examples
Similarly to standard BS, we now take a look at some examples that hopefully
help us better understand the new wild binary segmentation algorithm.
Example (3). In this example, we take a look at the case shown in Example 2,
where BS ’failed’. To remark, we have data illustrated in (3.4) and corresponding
true function ft shown in (3.5). Following the algorithm described in section
(3.3) we will use an R function called wbs() from the R package Baranowski and
Fryzlewicz [2019]. The difference we see here is the ’narrowing’ approach. As
mentioned in section (3.3) we draw M random intervals on [s, e]. In chapter 4
of Fryzlewicz [2014] the author emphasizes the importance and influence of M
being the number of (random) intervals used. He says that in the example with
T = 2000 he used M = 5000 resulting in low computational time. Note, that
the higher the number M the lower the influence of each random draw on the
result. Choosing M = 0 results in a standard binary segmentation algorithm not
benefiting from the random interval approach at all.

In what follows, we will consider M = 5000 even though it is a little bit of
’overkill’ for our example.

After calling wbs() on the data, we get a similar table to examples 1 and 2.

s e cpt CUSUM min.th scale abs_cusum
[1,] 138 286 160 9.57997242 9.57997242 1 9.57997242
[2,] 8 159 137 -9.12661371 9.12661371 2 9.12661371
[3,] 99 132 120 -4.04060025 4.04060025 3 4.04060025
[4,] 164 261 164 3.24375283 3.24375283 2 3.24375283
[5,] 214 266 263 -3.07509067 3.07509067 3 3.07509067

Important to say, that function wbs() has many useful information we can
look at, one being calculated threshold parameter ζt value for our specific case,
as shown in Appendix (A). After extracting this information from the wbs()
function, we obtain ζt

.= 4.0123.
In the first step, algorithm takes s = 1, e = 300 and draw random intervals on

[1, 300] calculating
⃓⃓⃓
X̃

b

sm,em

⃓⃓⃓
for each b and m possible. This results in

⃓⃓⃓
X̃

160
138,286

⃓⃓⃓
being highest of them all, passing ζt with ease. Mathematically, we are checking
if approximately

⃓⃓⃓
X̃

160
138,286

⃓⃓⃓
= 9.58 is greater than ζt. [1, 300] is thus split into

2 new intervals defined by previously found change-point estimate at t = 160.
The second and third iterations correspond with the second and fourth lines of
our table (’scale’ = 2). Now looking at [1, 160] we randomly draw an interval
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Figure 3.7: Time series for example 3 (black line) with ft̂ (red line) using WBS
with M = 5000

[8, 159] which again results in maximizing
⃓⃓⃓
X̃

b

sm,em

⃓⃓⃓
for randomly drawn [sm, em]

on [1, 160], that being the maximum occurs for
⃓⃓⃓
X̃

137
8,159

⃓⃓⃓
again passing threshold

check without any trouble (checking if approximately
⃓⃓⃓
X̃

137
8,159

⃓⃓⃓
= 9.13 is greater

than ζt). For the second part of the second integration of the WBS algorithm,
we now search [161, 300] for any possible change-points. Evaluating

⃓⃓⃓
X̃

b

sm,em

⃓⃓⃓
for every b and m on randomly drawn sub-intervals from [161, 300] results in
maximum at t = 164. This unfortunately results in stopping iteration on this
part of [1, 300] since even the maximum of all CUSUMs on this part of the time
series resulted only in

⃓⃓⃓
X̃

164
164,261

⃓⃓⃓ .= 3.24 being ’not good enough’ for threshold
parameter ζt. On the other hand, the previously found change point at t = 137
allows us to continue, resulting in another change-point estimation at t = 120
still, but very closely, passing the threshold check. Since all other CUSUMs are
lower than ζt we stop the algorithm here, having true ft estimation ft̂ shown in
Figure (3.7) being very close to true ft shown in Figure (3.5).
Example (4). Let us take a look at a little bit more complicated case. We still
want to estimate locations and the number of change-points in the data. To
achieve this, we will use the WBS algorithm with M = 5000 using the same
argumentation as in Example 3. Data are visualized in Figure (3.8) and cor-
responding true ft is shown in Figure (3.9). Detailed construction of the data
and whole example is shown in Appendix (A). This example considers a very
unfavorable change-point configuration which we try to overcome with WBS.

Following the steps used in Example 3, we use R function wbs() taken from
the R package called ’wbs’ made by Baranowski and Fryzlewicz [2019]. R console
printed the following table:
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Figure 3.8: Time series for example 4

s e cpt CUSUM min.th scale abs_cusum
[1,] 1 300 163 -7.778865287 7.778865287 1 7.778865287
[2,] 164 300 179 7.048670401 7.048670401 2 7.048670401
[3,] 180 300 184 -6.122027455 6.122027455 3 6.122027455
[4,] 185 300 259 5.793638369 5.793638369 4 5.793638369
[5,] 1 163 98 4.619866795 4.619866795 2 4.619866795
[6,] 164 179 169 -4.048986994 4.048986994 3 4.048986994
[7,] 185 259 249 -3.346755352 3.346755352 5 3.346755352

having still the same structure as described in previous examples. Extracting ζt

parameter value from wbs() function results in ζt being approximately equal to
4.2.

Extending the ’top-down binary-tree’ idea explained in example 3 we can say
that in step 1 (’scale’ = 1) the algorithm finds a change-point at t = 163, passing
the threshold, thus taken as valid. We split the interval into two new intervals
defined by previously found change-point. Both these change points (’scale’ = 2)
again passed threshold parameter magnitude in terms of corresponding CUSUM
statistic magnitude, thus also considered valid. In the third step, only one of four
sub-intervals contains an acceptable change-point candidate, that being candidate
at t = 184 found while searching interval [sm, em] = [180, 300]. This allows the
algorithm to find the last change-point available in terms of the thresholding
approach at t = 259 successfully passing the threshold check. Since there are no
other change points exceeding the threshold parameter value in terms of their
CUSUM statistic magnitude, the algorithm ends here resulting in finding exactly
5 change-points. The result of WBS trying to estimate true ft is shown in Figure
(3.10).
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Figure 3.9: True ft function for example 4
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Figure 3.10: Time series for example 4 (black line) with ft̂ (red line) using WBS
with M = 5000, thresholding approach with ζt

.= 4.2
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This example again shows that the result we get is a function of parameter
ζt. If we lower its value to be even a little bit less than 4, we would get different
(maybe better) ft̂. In some cases the resulting ft̂ might be too sensible to very
little changes in ζt magnitude, putting a person into a very difficult situation
of ’correct’ parameter value choice. It is important to say that as mentioned in
previous examples, the parameter choice should be done before the data analysis,
not vice-versa.

3.4 Strengthened Schwarz Information
In this section, we describe properties of the threshold parameter ζt. The text
above implies that the amount of estimated change points is dependent on our
selection of threshold parameter, that means, just for this section, we can denote
N̂ = N̂(ζt) and C(ζt) = {η1̂, ..., η̂N̂(ζT )}. N̂ being a function of ζT , we can see that
N̂ is a non decreasing function of ζT . For the ’collection’ set C holds that if ζ1

T < ζ2
T

then C(ζ1
T ) ⊆ C(ζ2

T ) almost surely. Consider a decreasing sequence {ζk
T }K

k=0 of
thresholds such that

⃓⃓⃓
C(ζk

T )
⃓⃓⃓

= k for a certain fixed constant K and also assume
N ≤ K. From this discussion, we can now choose the model in different ways.
The first one is the obvious, selection of ζT itself, thus finding appropriate model
C(ζT ). The new approach is choosing a sequence of candidates {C(ζk

T )}K
k=0 and

choosing one that satisfies certain conditions. Using the second method makes
us completely free from choosing the threshold parameter ourselves. Also instead
of evaluating the parameter on its own, now we can see it as a function of the
number of change points candidates k. This being said we, only for this section,
define Ck = Ck

T being a function of k. In what follows we do not try to select
the ideal value for the threshold parameter but we try to select a suitable model
out of all CK

k=0 by minimizing certain criterion, which we will call ’strengthened
Schwarz information criterion’ (sSIC).

For any candidate C we define ft̂

k the estimation of ft that satisfies ft̂

k =
(η̂i+1 − η̂i)−1 ∑︁η̂i+1

j=ηî+1 Xj for η̂i + 1 ≤ t ≤ η̂i+1. By standard we denote σ̂2
k =

1/T
∑︁T

t=1 (XT − ft̂

k)2 being the maximum likelihood estimator of residual vari-
ance. Further we define

sSCI(k) = T

2 log σ̂2 + k logα T

For α = 1 we get standard SIC penalty, used for example in Yao [1988] in the
context of full penalized least-squares minimization.

Theorem 3 (Strengthened Schwarz Information). Let XT follow model (2.1) and
suppose our assumptions (3.2) holds. Let N and η1, ..., ηN denote, respectively,
the number and locations of change-points. Let N ≤ K where K is a certain
constant independent of T. Let the constant α > 1 be such that logα T = o(δT f 2

T
).

Let the candidate model {Ck}K
k=0 be produced by the WBS algorithm, and let N̂ =

arg mink=0,1,...,K sSCI(k). Then P (AT ) ≥ 1 − C1T
−1(1 − δ2

T T −2/9)M , where

AT = {N̂ = N ; max
i=1,...,N

|ηî − ηi| ≤ C log T (f
T
)−2}

for certain positive constants C, C1.
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Proof of this theorem can be found in the appendix of Fryzlewicz [2014].

The only parameter in this approach is α. We require α > 1 to be stronger
penalty than in the case of α = 1, thus ’strengthened’ SIC.

It is important to say that in this approach, unlike thresholding, the minimiza-
tion of sSIC is independent of Var(εt) because of our logarithmic transformation
of σ̂2. This makes Var(εt) have an additive impact on sSIC, thus having no impact
on minimization.

The benefit of sSIC is that it is hopefully easier to find parameter of this
procedure rather then finding good threshold parameter. On the other hand, it
requires that N ≤ K for some finite K and the lowest admissible δtf

2
T

is larger
than in the threshold approach. The requirement on finite K is common among
penalized approaches in multiple change-point detection.

Example
Example (5). In this example, we will compare results obtained in Example 4 by
WBS (threshold approach) with WBS utilizing sSIC criterion. We consider the
same data as in example 4. Using sSIC penalty approach, we first choose k, the
upper bound on the number of change-points we wish to detect. Then we find
candidate models {Ck}K

k=0 using WBS algorithm. We then choose that model that
minimizes the sSIC(k). Since it would take so much time to display the algorithm
step by step, we use the R package ’wbs’ by Baranowski and Fryzlewicz [2019] to
do the work for us. Reconstruction of this example with additional information
can be found in the appendix of this work (A).

Remark when we use data from example 4 (shown in Figure (3.8) and (3.9)),
the classic WBS algorithm tries its best and finds 5 change-points as shown in the
example itself. We now try to get new change-point locations estimation using
sSIC criterion. This approach is in the R package called ’wbs’ done by using the
function wbs(), but with an additional argument that chooses the type of penalty
we want to use. After calling such a function on our data, we get the following
result. Note that the reconstruction and detailed guide to how to obtain all the
important information is shown in Appendix (A).

ssic.penalty
[1] 45.29585 41.20883 39.85395 32.34140 24.71272
[2] 21.46938 20.78864 20.93993 25.58146 29.33684

This table shows the evaluated sSIC criterion for each candidate model from
{Ck}K

k=0 starting on line [1] going from left to right, where the first line of the
code ends with value for a specific model, that being C4. Second line continues
with C5 and ends with C8.

Penalty magnitude decreases for increasing k to the point where k reaches
6 and then again starts to rise for increasing k. This results in having k = 6
minimizing the needed criterion. Recalling the table from example 4,

s e cpt CUSUM min.th scale abs_cusum
[1,] 1 300 163 -7.778865287 7.778865287 1 7.778865287
[2,] 164 300 179 7.048670401 7.048670401 2 7.048670401
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Figure 3.11: Time series (black line) for example 5 with ft̂ (red line) using WBS
with sSIC criterion

[3,] 180 300 184 -6.122027455 6.122027455 3 6.122027455
[4,] 185 300 259 5.793638369 5.793638369 4 5.793638369
[5,] 1 163 98 4.619866795 4.619866795 2 4.619866795
[6,] 164 179 169 -4.048986994 4.048986994 3 4.048986994
[7,] 185 259 249 -3.346755352 3.346755352 5 3.346755352

we now consider the first 6 change-points estimates to be ’good enough’ instead
of only 5 as in example 4. This gives us true ft estimation shown in Figure (3.11).
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4. Real Data Example
In this chapter we use both methods, BS and WBS, to analyze trends in daily
logarithmic returns of Zoom Video Communications (ZOOM) company stock.
We obtain the data with R package ’quantmod’ by Ulrich [2007]. The time series
consists of 1184 values starting on 18-04-2019 and ending on 31-12-2023. Data
are visualized via R command plot() in Figure (4.1). This chapter shows the
performance of standard BS and WBS with various parameter choices as well as
wild binary segmentation with sSIC. In what follows we consider parameter C to
have two possible values, that being C = 1.3 or C = 1.

4.1 Data Analysis
This section shows the performance of the following algorithms. At first, we
assume BS with C = 1 and BS with C = 1.3. Then we upgrade the method and
use WBS with the same constant C as for BS with a random interval approach
and M = 5000. In the end, we analyse the data using sSIC along with WBS.

Standard Binary Segmentation results
We start with the ’simplest’ method introduced in our text, that being standard
binary segmentation. We are still using the R package called ’wbs’ by Baranowski
and Fryzlewicz [2019].

For C = 1.3 the BS returns an empty table for change-point estimations as well
as constant ft̂. Figure (4.2) shows the result of the change-point analysis. After
further investigation, we can see that in the first step, the BS algorithm evaluates
all CUSUM statistic magnitudes

⃓⃓⃓
X̃

b

1,1184

⃓⃓⃓
. Its maximum occurs at T = 380 with

CUSUM statistic magnitude
⃓⃓⃓
X̃

380
1,1184

⃓⃓⃓ .= 0.1329. Unfortunately, for C = 1.3, we
get ζt

.= 0.1459 resulting in detecting no change-points in the first iteration of
the algorithm since

⃓⃓⃓
X̃

380
1,1184

⃓⃓⃓
< ζt. After decreasing the C parameter value to 1

we obtain different result.
For C = 1, we have ζt

.= 0.1122 allowing BS to detect change-point at T = 380,
although no additional change-points are detected. We narrowed the Figure (4.3)
to show the graph from T = 340 to T = 420 for better visualization of ft̂ made
by BS with C = 1. Note that time index T = 380 corresponds with 19-10-2020.
Detection of change-point at such a date could refer to the ongoing effects of
the COVID-19 pandemic, being very close to the beginning of the school year or
university semester.

Wild Binary Segmentation results
Moving on to WBS, we use the same constant C values as in the section with
standard BS. With C = 1.3 giving us ζt

.= 0.1459 we have 20 change-point esti-
mations. They occur at times 347, 346, 394, 396, 233, 234, 597, 844, 843, 36, 598,
409, 235, 34, 410, 656, 657, 901, 351, 899. We can see those change-point estima-
tions with corresponding ft̂ in Figure (4.4) The change-points estimated between
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Figure 4.1: Logarithmic daily returns of ZOOM stock (black line)

Time

x

0 200 400 600 800 1000 1200

−
0

.2
0

.0
0

.1
0

.2
0

.3

Fitted piecewise constant function

Figure 4.2: ft̂ (red line) made by standard BS with C = 1.3 for the logarithmic
daily returns (black line)
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Figure 4.3: ft̂ (red line) made by standard BS with C = 1 for the logarithmic
daily returns (black line) from T = 340 to T = 420

Time

x

0 200 400 600 800 1000 1200

−
0

.2
0

.0
0

.1
0

.2
0

.3

Fitted piecewise constant function

Figure 4.4: ft̂ (red line) made by WBS with C = 1.3 for the logarithmic daily
returns (black line)
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Figure 4.5: ft̂ (red line) made by WBS with C = 1 for the logarithmic daily
returns (black line)

T = 200 and T = 600 can be attributed to the ongoing effects of the COVID-19
pandemic, which prompted many companies to transfer their operations from of-
fices to virtual platforms such as Zoom. Important to say that the time of such
transfers was mainly influenced by government policies in each country, intro-
ducing new rules for example for schools, companies, shops, etc. Additionally,
the pandemic had a high impact on the economy, resulting also in stock market
price fluctuations. Change-points detected somewhere around T = 850 and be-
yond could be the result of overall improving COVID-19 situation, where many
companies and schools have already went ’back to normal’.

Very important to say, as mentioned in examples of this work, for different
instances of the R program, we might get different random draws for WBS with
M = 5000 resulting in slightly different change-point location estimations or
different N̂ .

Now for C = 1 we get ζt
.= 0.1122 we have 32 change-point estimations at

times 347, 346, 394, 396, 234, 233, 597, 598, 844, 34, 843, 409, 36, 235, 410,
901, 656, 657, 899, 282, 351, 199, 475, 280, 773, 470, 200, 732, 245, 239, 736,
250 shown in Figure (4.5). Additional change-point estimations, when compared
to WBS with C = 1.3, could be also explained by COVID-19, which had an
additional high impact on the economic situation in the world or with the schools
and companies trying to adapt current pandemic situation. Change-points found
after time index T = 600, that being 02-09-2021 and beyond, may align with
the overall improvement in the pandemic situation and the decreased reliance on
computers and online platforms as the only means of safe communication.

Now considering sSIC with K = 50, we get 6 change-points estimations at
times 347, 346, 396, 394, 233, 234.
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Method N̂

BS (C = 1.3) 0
BS (C = 1.0) 1
WBS (C = 1.3) 20
WBS (C = 1.0) 33
WBS (sSIC) 6

Table 4.1: Number of change-point estimations N̂ for each method used in real
data analysis

Change-point estimations found at time indices 34 and 36, corresponding with
06-06-2019 and 10-06-2019 cannot be explained with COVID-19, since it is too
early. Those change-points could be explained as a result of ZOOM becoming a
public company in April 2019 being very lucrative for investors. Other change-
point estimations can be explained as above.

When we compare all methods in a simple Table (4.1), we have that the
most change-point estimations we got by WBS with C = 1 and 0 change-point
estimations with BS for C = 1.3. Since there is no right or wrong answer, we
cannot choose the ’best’ method in the sense of accuracy. Although we can say
that WBS, being hopefully a more robust method than standard BS, could be
considered slightly more reliable because it is able to detect change-points that
are ’hidden’ behind unfavorable change-point configuration.
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A. Appendix

Example 1
We use the R package ’wbs’ made by Baranowski and Fryzlewicz [2019]. There we
can find all the important information and details concerning R implementation.

Data construction:

data <- rnorm(300) + c(rep(1,50),rep(0,250))

We generate our data by defining the step function with step in t=50 and
magnitude 1. Then we add standardized Gaussian noise, that is, with mean
µ = 0 and standard deviation σ = 1 resulting in the function shown in Figure
(3.1).

We then call a function ’sbs’ on our data set.

s <- sbs(data)

To variable ’s’ we save important information. To extract the table shown in
Example (3.2) we use a new variable called ’table’.

table <- s[[’res’]]

To create a visual image of our data and our true ft, we can use

plot(data, type = ’l’, xlab = ’Time’, ylab = ’x’,
main = "Time series for Example 1", ylim = c(-3, 4))

plot(c(rep(1,50),rep(0,250)), type = ’l’, xlab = ’time’,
ylab = ’x’, main = "True f_t function for Example 1",
ylim = c(-3, 4))

To sort the ’res’ table by the magnitude of CUSUM statistic value, but in
absolute value, can simply be achieved by

abs_cusum = abs(table[,4])
table2 = cbind(table, abs_cusum)
sorted_table <- table2[order(table2[, "abs_cusum"],

decreasing = TRUE), ]

We created a new column called ’abs cusum’ as a transformation of the fourth
column from the dataset called ’table’ and by using the function abs(), we get a
transformation of CUSUM values to the corresponding absolute values. Argument
’decreasing = TRUE’ sorts the table by the last column, that being ’abs cusum’,
in decreasing order.
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Example 2
Data for Example 2 are constructed like this:

set.seed(123)
segment1 <- rnorm(120, mean = 0, sd = 1)
segment2 <- rnorm(20, mean = 1, sd = 1)
segment3 <- rnorm(20, mean = 2.5, sd = 1)
segment4 <- rnorm(140, mean = 0, sd = 1)
time_series <- c(segment1, segment2, segment3, segment4)

This code results in step function ft being 0 on interval [1, 120], being 1 on
[121, 140], 2.5 on [141, 160] and again being 0 on [141, 300]. The step function
is later ’noised’ by random numbers taken from a normal distribution with the
mean equal to zero and variance equal to 1. The ’noised function’, that being our
data, we can illustrate via

plot(time_series, type = "l",
main = "Time Series for Example 2",
xlab = "Time", ylab = "x", ylim = c(-3, 5))

resulting in plot shown in (3.4). We are able to extract the true function ft with

plot(ts(c(rep(0,120),rep(1,20),rep(2.5,20),rep(0,140))),
ylim = c(-3,5), main = ’True f_t function for Example 2’,
ylab = ’x’)

shown in figure (3.5).
Similarly to example 1, we use function sbs() to get the table shown in example

2.

standard = sbs(time_series)
standardtable <- standard[["res"]]
abs_cusum = abs(standardtable[,4])
standard2 = cbind(standardtable, abs_cusum)
sorted_standard <- standard2[order(standard2[,

’abs_cusum’], decreasing = TRUE), ]

This code sequence gives us all the information needed, and with

plot(standard, ylim = c(-3, 5))

we get the true function estimation ft̂ shown in figure (3.6).
For the threshold value calculation, we need an absolute median estimation

of σ:

mad(time_series)

being

[1] 1.006067.
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Using the formula for ζt shown in example 2 results in

mad(time_series)*1.3*sqrt(2)*sqrt(log(300))

giving us the value for ζt

[1] 4.417399

Example 3
Here, identically to Example 2 (A) we reconstruct the data. The only difference
here is the method we use. To use wbs() we do as follows.

wild = wbs(time_series, integrated = FALSE, m = 5000)
wild2 = wild[[’res’]]
abs_cusum = abs(wild2[,4])
wild2 = cbind(wild2, abs_cusum)

This gives us the table with sorted CUSUM by its absolute value shown in example
3. To plot the resulting ft̂ we use:

plot(wild, ylim = c(-3, 5))

and to obtain automatically evaluated ζt we type

w.cpt <- changepoints(wild)
w.cpt$th

which gives us a large table where almost at the beginning we can find

$th
[1] 4.012313

being the ζt value used in the threshold approach of the WBS algorithm.

Example 4
To reconstruct the data from example 4 we use a little bit more complicated code
to be prepared for more sophisticated examples. To recreate Figure (3.8) we do
as follows.

epsilon <- rnorm(300, mean = 0, sd = 1)
change_points <- c(1, 75, 80, 85, 170, 180, 185, 250,

260, T)
magnitudes <- c(0, 1.5, 0.4, -0.3, 2.0, -1.8, 0.7, 1.5,

-0.5, 0)
f_t <- rep(0, T)
for (i in 2:length(change_points)) {

f_t[change_points[i - 1]:(change_points[i] - 1)]
<- magnitudes[i - 1]
}
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This together gives:

X_t <- f_t + epsilon

By this code:

plot(X_t, type = "l", main = "Time series for Example 4",
ylim = c(-3, 4), ylab = ’x’, xlab= ’Time’)

plot(f_t, type = "l", main = "True f_t function for example 4",
ylim = c(-3, 4), ylab = ’x’, xlab= ’Time’)

we recreate exactly the plots as shown in (3.8) and (3.9). We call wbs() on the
data.

wbs_result_threshold <- wbs(X_t, M = 5000, integrated = FALSE)

the argument ’integrated = FALSE’ is there to make sure we use WBS specifically
and not the augmented version of the WBS algorithm. Further information can
be found in Baranowski and Fryzlewicz [2019].

In what follows, we recreate the CUSUM table shown in example 4.

table1 = wbs_result_threshold[[’res’]]
abs_cusum = abs(table1[,4])
table2 = cbind(table1, abs_cusum)
sorted_table2 <- table2[order(table2[, ’abs_cusum’],

decreasing = TRUE), ]

Note that for different executions of this code, we might after restarting the
computer or restarting the program R obtain different configurations of random
intervals used for WBS, thus resulting in slightly different CUSUM statistic val-
ues. This might make some change-points being ignored or some change-points
might even be considered significant for constant ζt when executing the code
multiple times in a row.

To plot the ft̂ that WBS makes, we do as follows.

w.cpt <- changepoints(wbs_result_threshold)
cps = w.cpt$cpt.th

and visualize the resulting ft̂ with

plot(wbs_result_threshold, unlist(cps), ylim = c(-3, 4))

for the plot corresponding to the case with the thresholding approach.
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Example 5
Since in example 5 we use the same data as in example 4, we now only focus on the
sSIC data extraction. Note that there is still some parameter choice to be done,
that being the choice of parameter α. We choose α = 1.01 to be slightly more
strict than standard SIC but also close to the result obtainable by the standard
SIC approach.

ssic = wbs(X_t, penalty = "ssic.penalty")
ssic_result <- changepoints(ssic)

After everything is done as shown above, we can type

ssic_result

which returns us a lot of useful information. Although we only need some of
them.

ssic_result$cpt.ic$ssic.penalty
ssic_result$Kmax
ssic_result$ic.curve$ssic.penalty
ssic_result$no.cpt.ic

Since we did not set a specific value for the maximum number of estimated
change-points k, the table shows us that it was automatically set to k = 50.
Additionally, it shows us the ’curve’ of sSIC criterion values for various k going
from 0 to 50. And finally, in the bottom part, the table shows us locations of
estimated change-points and their total number N̂ .
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Conclusion
This work described two change-point detection methods called binary segmen-
tation and wild binary segmentation. Those methods are trying to estimate the
total number and the locations of structural changes in the data.

In the second chapter, we introduced our model and the theoretical problem.
The following chapter introduced both algorithms with simple examples. We il-
lustrated both algorithms using very easy-to-understand recursive steps as well as
theorems that talk about the consistency of corresponding estimations. We also
emphasized the importance of various parameter value choices and their influ-
ence on the result. Interesting approaches were introduced, that is, the threshold
approach and the penalized approach achieved via strengthened Schwarz infor-
mation criterion.

The last chapter showed the results of all methods with various constant value
choices on a real data example. We were trying to find the number and locations
of change-points in the logarithmic daily returns of the Zoom Video Commu-
nications stock. Binary segmentation showed up as a method that estimates
fewer change-points than its competitor WBS. Change-point estimations corre-
lated probably with the global political situation and economic situation, but
most importantly with the pandemic caused by COVID-19. All methods were
then compared with a simple table showing the number of estimated change-
points, since we could not choose a winner as far as we had no right or wrong
answer for this data analysis.

As shown in examples and real data analysis the wild binary segmentation
method could be taken as a more robust method than classic binary segmentation
since it can, unlike BS, detect change-points in more ’difficult configurations’
thanks to its ’narrowing’ feature.
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