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Two-dimensional integer trigonometry

Department of Algebra

Supervisor of the bachelor thesis: doc. Mgr. Vı́tězslav Kala, Ph.D.
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and patience during the whole process of writing this thesis.

ii



Title: Two-dimensional integer trigonometry

Author: Anna Růžičková
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Introduction
Integer geometry has historically been studying the relationship between integer
lattices and Euclidean geometry. By focusing on lattice invariants independently,
it reveals a complex combinatorial framework. Trigonometric functions, which
are crucial in Euclidean geometry, also manifest in integer geometry, as seen in
the developments of integer lattice analogues for simplical cones in R2 in 2008 by
Oleg Karpenkov. We are following the framework set up in [1].
Geometry is interpreted both in [1] and [2] as a set of objects related by congru-
ence relations. In integer trigonometry, the objects of study are mainly integer
points, rational angles, integer segments and integer triangles. The congruence
relation is given by the group of integer affine transformations. We can compare
it to the well known Euclidean geometry in R2, where the objects of study contain
points, angles, line segments, triangles and the congruence relation is given by
transformations on R2 that preserve Euclidean length.
The main source is [1], but only for the two-dimensional part. In this thesis, we
provide most of the proofs for the propositions in the article. Next important
source is [2], which has much more information about the subject.
We formally define and study the objects in integer trigonometry and prove their
properties. If possible, we provide geometric interpretations or more intuitive ap-
proaches, which are thoroughly proven and give the reader better understanding,
even amplified by visualization with concrete examples.

In Chapter 1, we will cover the necessary definitions and properties in Eu-
clidean trigonometry. In Sections 2.1, 2.2, we introduce lattices and integer ana-
logues to definitions from Chapter 1. In Sections 2.3, 2.4, we define integer length
and integer area. We provide their geometric interpretations and more of their
properties with proofs and examples. Next, in Section 2.5, we define integer
distance, its interpretation and use it to prove some necessary lemmata. In Sec-
tion 2.6, we introduce integer sines, sails and LLS sequences, their properties
and provide examples for better understanding. In this section we also prove an
important theorem (Theorem 2.38) about integer congruence of angles with the
same LLS sequence. Then, in Section 2.7, we extend the notation of continued
fractions and use it in Section 2.8, where we introduce the integer tangent using
LLS sequence and continued fractions. In Section 2.9, we define integer arctan-
gent and state its important properties in Lemma 2.48 and Lemma 2.49.
Then, in Chapter 3, in Section 3.1, we define adjacent and transpose angles in
integer trigonometry and prove their trigonometric identities in Theorem 3.2 and
Theorem 3.3. Then, in Sections 3.2, 3.3, we define right angles and summation
of angles in integer trigonometry. Finally, in Section 3.4, we state a property of
tangents of angles in triangles in Euclidean geometry and summarize a similar
condition for integer tangents in integer triangles. The proofs of Lemma 2.48 and
Theorem 3.9 require extra non-trivial notions and preliminary lemmata, so we
do not include them in the thesis, and just provide references to their proofs in [2].

The author’s input in this thesis is formally defining all the necessary tools in
Chapter 1 and Section 2.1, providing proof of the geometric interpretation of in-
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teger length in Lemma 2.20, which is written as a definition in [2], but also as a
geometric interpretation in [1]. Similarly, the author provides proof of the geo-
metric interpretation of integer distance in Lemma 2.31 which was only written
as an alternative definition of integer distance in [2]. The author also provides a
different proof than the one in [2] for the affine invariance of integer length and
integer area in Lemmata 2.21, 2.28, which are way more detailed and thorough.
The author further proves the relation of indices of lattices in Lemmata 2.22, 2.23,
which lead to proof of Lemma 2.34. This lemma was written as a definition in
[2], but in [1] was said to follow directly from definition, which coincides with the
definition in this thesis. We use these two lemmata to prove Lemma 2.30, which
was left as an exercise for the reader in [2]. The author only revises proofs of
Lemmata 2.25, 2.27 from [2] and explains them more thoroughly. The author also
revises and explains Theorem 2.38 from [2] in more detail. The proof was changed
to apply only for finite sails and some minor typing errors in [2] were corrected.
The author also adds different proofs to Lemmata 2.43, 2.46, which discuss the
value of the integer trigonometric functions. These lemmata were originally only
one line long in [2]. The author only revises the proofs of Theorems 3.2, 3.3 from
[2], all of the steps are now clearly explained and the proofs are longer, but not
significantly. Finally, the author provides a more detailed proof for Lemma 3.5
than the one in [2]. Further the author illustrates these definitions and theorems
with original examples and figures.
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1. Definitions and setup in
trigonometry
In this chapter, we create the setup for integer trigonometry, we first have to
define the objects we will work with in R2 and then use them to define their
integer analogues.

1.1 Angles, lines, triangles
Definition 1.1 (Point). We define points as the elements of the vector space R2

over the field R.

Definition 1.2 (Line). A line L passing through A, B ∈ R2 where A ̸= B, or
shortly line AB, is defined as L = {(t · A + (1 − t) · B | t ∈ R}.

Definition 1.3 (Line segment). Let A, B ∈ R2, where A ̸= B. We define line
segment AB as the set of linear combinations {t · A + (1 − t) · B | 0 ≤ t ≤ 1}.

Definition 1.4 (Angle). Let A, B, C ∈ R2, where A, B, C are non-collinear.
Then we define angle ∠ABC as the set of convex combinations {B + s(B − A) +
t(B − C) | s, t ∈ R s, t > 0}, where line BA is its first boundary line and line
BC is its second boundary line.

Remark. In the definition of angle, we specify its boundary lines and give them
order. We do this so that the angles have orientation thus the angles ∠ABC and
∠CBA are different.

Definition 1.5 (Measure of an angle). Let ∠ABC be an angle. We define its
measure as the number

a = arccos
(︄

⟨B − A, B − C⟩
∥B − A∥ · ∥B − C∥

)︄
,

where ⟨·, ·⟩ is the standard dot product and ∥ · ∥ is the corresponding norm on R2.
We then define: cosine of ∠ABC as

cos(∠ABC) = cos(a) = ⟨B − A, B − C⟩
∥B − A∥ · ∥B − C∥

,

sine of ∠ABC as
sin(∠ABC) = sin(a) = cos

(︃
π

2 − a
)︃

and tangent of ∠ABC as

tan(∠ABC) = tan(a) = sin(a)
cos(a) .

Definition 1.6 (Transpose angle). Let ∠ABC be an angle. The transpose angle
to the angle ∠ABC is the angle ∠CBA. We can see that if a denotes the measure
of ∠ABC and b denotes the measure of ∠CBA, then a = b.
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Definition 1.7 (Adjacent angle). Let ∠ABC be an angle. The adjacent angle to
the angle ∠ABC is an angle ∠CBA′, where A′ = B − (A − B). We can see that
if a denotes the measure of ∠ABC and b denotes the measure of ∠CBA′, then
a + b = π.

Definition 1.8 (Triangle). Let A, B, C ∈ R2 that do not lie on one line. Triangle
△ABC is the convex hull of three elements {A, B, C}, i.e. it is the set of all
combinations {t · A + s · B + u · C | 0 ≤ t, s, u ≤ 1, t + s + u = 1}.

We will use volume and measure and their relation as defined and proved in
[3], section 1.

Definition 1.9 (Volume). Let a = {a1, a2, . . . , an} ∈ Rn, b = {b1, b2, . . . , bn} ∈
Rn. Let us have a set W = {x = {x1, x2, . . . , xn} ∈ Rn | ai < xi < bi, ∀i =
1, . . . , n}. We define the volume of W as vol(W ) = Πn

i=1(bi − ai).

Definition 1.10 (Measure). Let (X, A) be a measurable space. Then we define
measure as a set function µ : A → [0, ∞] if it is not identically equal to ∞ and
is σ-additive, i.e. if Ak ∈ A, k ∈ N are pairwise disjoint, then µ(∪∞

k=1Ak) =∑︁∞
k=1 µ(Ak). The triplet (X, A, µ) is called a space with measure.

Theorem 1.11. There exists exactly one measure Ln on B(Rn) such that for
every W from the definition of volume it holds that Ln(W ) = vol(W ), where
B(Rn) denotes the Borel set, which is the smallest σ-algebra containing all open
sets of Rn.

We will use this definition of measure for Rn to compute Euclidean area in
trigonometry, i.e. for a measurable subset A ⊆ Rn, we define its Euclidean area
as S(A) = Ln(A).

To compute Euclidean length we will use the standard definition of the norm
on Rn, i.e. the Euclidean length of a line segment AB is defined as ℓ(AB) =
∥B − A∥.

Definition 1.12 (Congruence). Let U, V ⊆ Rn. They are congruent if one can
be transformed into the other using a sequence of translations, rotations and re-
flections.

For example, two line segments are congruent if and only if they have the
same length.

Definition 1.13 (Affine transformation). Let A be a matrix of type n × n with
elements from Rn, which represents linear mapping, let c ∈ Rn and let x ∈
Rn be arbitrary. Then, the transformation x ↦→ A · x + c is called an affine
transformation.
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2. Definitions in integer
trigonometry
In this chapter, we will define lattices and integer analogues to the definitions
presented in the previous chapter. We will prove their essential properties and
also try to develop intuitive approaches and connect these concepts with concepts
in Euclidean trigonometry with focus on affine transformations.

2.1 Lattices
Definition 2.1 (Lattice). A lattice is a discrete additive subgroup Γ of the vector
space Rn, i.e. it satisfies the following:

(subgroup) : it is closed under addition and subtraction,

(discrete) : there exists ε ∈ R, ε > 0 such that for every two elements x ̸= y in
Γ it holds that ∥x − y∥ ≥ ε.

Definition 2.2 (Integer lattice). A lattice is integer if it is a subgroup of Zn.

In the case of this thesis, we will work with the lattice Z2. This is a lattice
because it is closed under addition and subtraction, and the distance between
any two different points in Z2 is at least 1.

Definition 2.3 (Integer point). A point is called integer if it is an element of
Zn.

Definition 2.4 (Sublattice). Let Λ, Γ be lattices. We say that Λ is a sublattice
of Γ if it is a subgroup of Γ, i.e. Λ ⊆ Γ and for every A, B ∈ Λ holds A + B ∈
Λ, A − B ∈ Λ.

Definition 2.5 (Affine lattice). Let Λ be a lattice and let A ∈ Rn. Then

Γ = {A + t, t ∈ Λ}

is an affine lattice. We say that Λ is the underlying lattice of Γ, or that Γ is
associated to Λ.

Definition 2.6 (Index of an affine lattice in an affine lattice). Let Γ be an asso-
ciated affine lattice to lattice Λ. Then let Γ1 ⊆ Γ be an associated affine lattice
to lattice Λ1 ⊆ Λ. Then we define [Γ : Γ1] = [Λ : Λ1].

Definition 2.7 (Integer affine lattice). An affine lattice Γ = {A + t, t ∈ Λ} is
integer, if A ∈ Rn is an integer point and if Λ is an integer lattice.

The group Γ can be defined using any point A ∈ Γ. The underlying lattice Λ
will always be the same, regardless of the choice of the point.

Definition 2.8 (Generating a lattice). Let Λ be a lattice in Rn. We say that a
set M ⊆ Λ generates Λ if every a ∈ Λ can be written as a linear combination of
elements of M with integer coefficients.
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For example, if M is finite, then M = {m1, m2, . . . , mn} and it generates Λ if
and only if Λ = m1Z + m2Z + · · · + mnZ.

Definition 2.9 (Basis of a lattice). Let Λ be a lattice in Rn. We say that a set
M ⊆ Λ is a basis of Λ if M generates Λ and M is linearly independent in Rn.

Definition 2.10 (Generating an affine lattice). Let Γ be an affine lattice associ-
ated to a lattice Λ. We say that line segments A1B1, A2B2, . . . , AnBn generate Γ
if Ai, Bi ∈ Γ, ∀1 ≤ i ≤ n and {B1 − A1, B2 − A2, . . . , Bn − An} generates Λ.

Definition 2.11 (Basis of an affine lattice). Let Γ be an affine lattice associated
to a lattice Λ. We say that line segments A1B1, A2B2, . . . , AnBn are a basis of Γ
if Ai, Bi ∈ Γ, ∀1 ≤ i ≤ n and {B1 − A1, B2 − A2, . . . , Bn − An} is a basis of Λ.

Lemma 2.12. Let v ∈ Rn and let Γ ⊆ Span(v) be a lattice. Then there exists
α ∈ R, α > 0 such that α · v ∈ Γ and β · v /∈ Γ ∀β ∈ R, 0 < β < α. Moreover,
{α · v} is a basis of Γ.

Proof. Denote M = {β ∈ R | β > 0, β · v ∈ Γ}. M is bounded from below,
therefore there exists α = inf M . We know that α · v must be in Γ, otherwise
∀ε ∈ R, ε > 0 there would exist infinitely many elements of M in the interval
(α, α + ε), which would be a contradiction with Γ being discrete. If {α · v} did
not generate Γ, there would exist a β such that n · α < β < (n + 1) · α for some
n ∈ Z. But then also (β − n · α) · v ∈ Γ and 0 < (β − n · α) < α, which is in
contradiction with α being the infimum of M .

2.2 Integer trigonometry definitions
Definition 2.13 (Integer angle). An angle ∠ABC is integer, if its vertex B is
an integer point.

Definition 2.14 (Rational angle). Let ∠ABC be an integer angle and let L be
a line passing through points A, B and K be a line passing through points B, C.
The integer angle ∠ABC is rational if it has integer points distinct from B on
both lines L and K.

Definition 2.15 (Integer triangle). A triangle △ABC with vertices A, B, C is
integer if all its vertices are integer points.

Definition 2.16 (Integer segment). Let A, B ∈ R2. A line segment AB is called
an integer segment if A, B are integer points.

Definition 2.17 (Integer affine transformation). Let A ∈ GL(n,Z), let c ∈ Zn

and let x ∈ Rn be arbitrary. Then, the transformation x ↦→ A · x + c is called
an integer affine transformation. The group of integer affine transformations is
denoted as Aff(n,Z).

Remark. Clearly every transformation in Aff(n,Z) maps Zn to Zn.

Definition 2.18 (Integer congruent). Let U, V ⊆ Rn. They are integer congruent
if there exists an integer affine transformation M ∈ Aff(n,Z) such that V =
M(U).
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2.3 Integer length
Definition 2.19 (Integer length). Let L be a line that goes through integer points
A and B. We will denote the affine lattice of all integer points contained on L
as Γ. Let the integer segment AB generate a sublattice Γ1 of Γ. Then the integer
length lℓ(AB) is the index of Γ1 in Γ, i.e. lℓ(AB) = [Γ : Γ1].

The following lemma proves the geometric interpretation of this definition.

Lemma 2.20. The integer length of the integer segment AB can be computed as
the number of integer points on the integer segment AB minus one, where the
endpoints are included.

Proof. Let us denote v = B − A and let us define w ∈ Z2 with the use of
Lemma 2.12, such that {w} is the basis of lattice Λ, which is the lattice of all
integer points in Span(B −A). Then we define Γ as the affine lattice of all integer
points on the integer segment AB as follows:

Γ = {A + t | t ∈ Λ}.

Then we denote Γ0 as the affine lattice generated by the integer segment AB:

Γ0 = {A + o · v | o ∈ Z}.

Let Λ0 denote the underlying lattice of Γ0.
Now we find m ∈ Z such that B = A + m · w. Such m exists, because w is

the basis of the lattice Λ. Since B = A + m · w, we get that v = m · w, thus m
denotes the number of integer points on the integer segment AB minus one.

Clearly Λ0 ⊆ Λ. We proceed to find sublattices that are cosets of Λ0, denoted
as

Λi = {i · w + Λ0}, i ∈ {0, 1, 2, ..., m − 1}.

We want to prove that every two cosets Λi, Λj are different for i ̸= j, 0 ≤ i, j < m.
Let us prove this by contradiction, therefore, let Λi = Λj, thus i·w+Λ0 = j·w+Λ0.
That happens if and only if (j − i) · w + Λ0 = Λ0 ⇔ (j − i) · w ∈ Λ0. The basis of
Λ0 is {m · w} and because (j − i) · w ∈ Λ0, we get that j ≡ i (mod m) and that
can happen only if j = i. This way we found m different sublattices of Λ.
Now we need to prove that there are no other different sublattices of Λ, i.e.
that the m different cosets of Λ0 cover all of Λ. The cosets of Λ0 are exactly
Λn = {n · w + Λ0}, n ∈ Z. Let for example n = m + 1, then (m + 1) · w + Λ0 and
w+Λ0 denote the same coset, because m+1 ≡ 1 (mod m), therefore Λm+1 = Λ1.
Similarly for every other n ∈ Z.
Thus

[Λ : Λ0] = [Γ : Γ0] = m.

Which is equal to the number of integer points on the integer segment AB minus
one.

Example. Let AB be an integer segment with endpoints A = (0, 1) and B = (6, 4).
We compute the length of the segment using Lemma 2.20. There are 4 integer
points on the integer segment, including the endpoints, so the integer length is 3.
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Figure 2.1: Computing integer length.
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Lemma 2.21. Integer length is invariant under integer affine transformations
Aff(2,Z).

Proof. We will prove that an integer affine transformation T maps inner integer
points of an integer segment AB to inner integer points of an integer segment
A′B′, where A′B′ is the image of AB. Then, by Lemma 2.20 and because the
integer affine transformation is bijective, the statement will be proved.
Let T : x ↦→ M · x + g, where M ∈ GL(2,Z), g ∈ Z2 as in the definition of
an integer affine transformation. We will further assume g = (0, 0) because the
translation g cannot change the number of points. The matrix M ∈ GL(2,Z),
therefore it denotes a linear transformation. Let AB be an integer segment and
suppose C is its inner integer point. Then M(AB) is also an integer segment
because M sends integer points to integer points, since M ∈ GL(2,Z). Let us
denote M(A) = A′, M(B) = B′. Now, every inner point on the integer segment
AB can be written as C = t · A + (1 − t) · B, where 0 < t < 1. Then

M(C) = M(t · A + (1 − t) · B) = t · M(A) + (1 − t) · M(B) = t · A′ + (1 − t) · B′.

Since 0 < t < 1, we get that M(C) is an inner point on the integer segment
M(AB). Since M(C) must also be integer, it is an inner integer point of M(AB).
It is left to prove that every integer point X on integer segment M(AB) has
its pre-image Y , i.e. M · Y = X. But because the matrix M ∈ GL(2,Z), it is
invertible, therefore Y = M−1 · X and the transformation is surjective. Thus, we
proved that integer length is invariant under integer affine transformations.

Next, we introduce and prove two lemmata, which will be useful for proofs of
Lemmata 2.30, 2.34.

Lemma 2.22. Let A, B, C be integer points that do not lie on the same line. Let
Γ be a lattice generated by {A − B, C − B}. Then let Γ1 be a lattice generated by
{A1 − B, C1 − B}, where A1 ̸= B is the closest integer point to B on the integer
segment BA and C1 ̸= B is the closest integer point to B on the integer segment
BC. Then

[Γ1 : Γ] = [Z2 : Γ]
[Z2 : Γ1]

,
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where all three indices of the groups are finite.

Proof. We know that Γ ⊆ Γ1, because lℓ(BA1) = 1 = lℓ(BC1) and A − B =
(A1 − B) · lℓ(BA), C − B = (C1 − B) · lℓ(BC), therefore (A − B), (C − B) ∈ Γ1.
Also, Γ ⊴ Γ1 ⊴ Z2, because all the groups are abelian. Therefore, by the second
isomorphism theorem [4],

(Z2/Γ1) ∼= (Z2/Γ)/(Γ1/Γ).

From the definition of factorgroups, we get that

|Z2/Γ1| = [Z2 : Γ1], |Z2/Γ| = [Z2 : Γ], |Γ1/Γ| = [Γ1 : Γ].

From the second isomorphism theorem, we also get that

|Z2/Γ1| = |(Z2/Γ)/(Γ1/Γ)|,

and because isomorphism is a bijection and because we know that all the indices
are finite, then

(Z2/Γ), (Γ1/Γ), (Z2/Γ1)
are finite groups, therefore

[Z2 : Γ1] = |Z2/Γ1| = |(Z2/Γ)/(Γ1/Γ)| = |(Z2/Γ)|
|(Γ1/Γ)| = [Z2 : Γ]

[Γ1 : Γ]

and that concludes the proof.

Remark. This lemma can be also formulated for a lattice Γ2, such that it is
generated by {A1 − B, C − B}, where A1 ̸= B is the closest integer point to B

on the integer segment BA. Then [Γ2 : Γ] = [Z2:Γ]
[Z2:Γ2] . The steps of the proof are the

same as in the proof of 2.22.

Lemma 2.23. Let A, B, C be integer points that do not lie on the same line.
Let Γ be a lattice generated by {A − B, C − B}. Let Γ1 be a lattice generated by
{A1 − B, C1 − B}, where A1 ̸= B is the closest integer point to B on the integer
segment BA and C1 ̸= B is the closest integer point to B on the integer segment
BC. Then

[Γ1 : Γ] = lℓ(BA) · lℓ(BC).

Proof. We know that {A − B, C − B}, {A1 − B, C1 − B} form bases of the cor-
responding lattices. Since the elements of both bases are non-collinear, they
are linearly independent. Because A1, C1 are defined as the closest integer
points to B, we get that lℓ(BA1) = 1 = lℓ(BC1). We can therefore write
A − B = (A1 − B) · lℓ(BA), C − B = (C1 − B) · lℓ(BC). Let us denote
lℓ(BA) = n, lℓ(BC) = m.
Therefore Γ = {k · n · (A1 − B) + l · m · (C1 − B) | k, l ∈ Z}, Γ1 = {k · (A1 − B) +
l · (C1 − B) | k, l ∈ Z}. From that we also get Γ ⊆ Γ1.
The index [Γ1 : Γ] is equal to the number of different cosets a + Γ, a ∈ Γ1.
Let a = k1 · (A1 − B) + l1 · (C1 − B), b = k2 · (A1 − B) + l2 · (C1 − B), then
a + Γ = b + Γ ⇔ (a − b) ∈ Γ ⇔ k1 ≡ k2 (mod n), l1 ≡ l2 (mod m). This way we
proved that there exist n · m distinct cosets of Γ1.
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Now, there is left to prove that these cosets cover all of Γ1. The cosets are exactly
Γe,f = {e · (A1 − B) + f · (C1 − B) + Γ} for e, f ∈ Z. For every e, f ∈ Z, we will
find e′, f ′, such that e ≡ e′ (mod n), f ≡ f ′ (mod m), therefore Γe,f = Γe′,f ′ .
This way we have shown that there are n · m cosets of Γ in Γ1, therefore

[Γ1 : Γ] = n · m = lℓ(BA) · lℓ(BC).

Remark. This lemma can be also formulated for a lattice Γ2, such that it is
generated by {A1 − B, C − B}, where A1 ̸= B is the closest integer point to B
on the integer segment BA. Then [Γ2 : Γ] = lℓ(BA). The steps of the proof are
be the same as in the proof of 2.23.

2.4 Integer area
Definition 2.24 (Integer area). Let △ABC be an integer triangle, Γ1 be the
affine lattice generated by the integer segments AB and AC. Then the integer
area lS(△ABC) of △ABC is equal to the index of Γ1 in Z2, i.e. lS(△ABC) =
[Z2 : Γ1].

As a geometric approach to computing the integer area of a given integer trian-
gle △ABC, we can sum the number of all integer points inside the parallelogram
defined in Lemma 2.25.

Lemma 2.25. The integer area of an integer triangle △ABC can be computed
as the number of integer points P satisfying

P = α(B − A) + β(C − A), (2.1)

where 0 ≤ α, β < 1.

Proof. Let us first denote v = B − A, w = C − A. We want to prove that the
index of Γ0 = {mv + nw, m, n ∈ Z}, which is the lattice generated by v and w,
in Z2 is equal to the number of all integer points P satisfying 2.1. Let

Par = {αv + βw, 0 ≤ α, β < 1}

be a parallelogram denoted by v and w. We want to show that for every g ∈ Z2

denoting a coset g + Γ0 of Γ0 there exists integer point P ∈ Par such that
P ∈ g + Γ0 and thus P + Γ0 = g + Γ0.
Let

g = m1v + m2w, m1, m2 ∈ Q,

then
P = (m1 − ⌊m1⌋)v + (m2 − ⌊m2⌋)w

satisfies P + Γ0 = g + Γ0. And because

0 ≤ m1 − ⌊m1⌋ < 1, 0 ≤ m2 − ⌊m2⌋ < 1,

the point P is inside the parallelogram and P ∈ g + Γ0.
Then we have to prove the unambiguity of P , i.e. that for two different integer
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points P1, P2 ∈ Par, the corresponding cosets P1 + Γ0, P2 + Γ0 are also different.
Let us have P1, P2 ∈ Par, such that P1 ̸= P2. For contradiction let P2 ∈ P1 + Γ0.
From this, we get that p = P2 − P1 ∈ Γ0. We know that every P is of the type

αv + βw, 0 ≤ α, β < 1.

Therefore, p is of the type

αv + βw, −1 < α, β < 1.

The only p of this type in Γ0 is p = (0, 0). Thus,

p = (0, 0) =⇒ P1 = P2.

We proved that the integer points in Par are in one-to-one integer correspondence
to cosets of Γ0 in Z2.

Example. Let A = (0, 0), B = (3, 0), C = (1, 2) be three integer vertices of an
integer triangle △ABC. We will compute its area using Lemma 2.25. On the
graph below, we create a parallelogram ABDC, where D = (4, 2). The integer
points satisfying 2.1 are all integer points inside the parallelogram ABDC, all
integer points on the integer segment AB excluding B and all integer points on
the integer segment AC excluding C. These integer points are displayed as stars
on the graph below, and if we sum them all, we get 6, which is the integer area
of △ABC.

Figure 2.2: Computing integer area.
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Definition 2.26 (Empty integer triangle). An empty integer triangle is an integer
triangle which does not contain any other integer points apart from its vertices.

Let us have an integer triangle △ABC, denoted as S(△ABC), where A =
(a1, a2), B = (b1, b2), C = (c1, c2). Then the Euclidean area of △ABC can be
computed as

S(△ABC) = 1
2

⃓⃓⃓⃓
⃓det

(︄
b1 − a1 c1 − a1
b2 − a2 c2 − a2

)︄⃓⃓⃓⃓
⃓ = 1

2 | det(B − A, C − A)|.
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The geometric meaning of the determinant of a matrix A of type 2 × 2 is the
change of area during the linear transformation fA. Determinant of u and v, that
denote the two sides of the triangle, gives us the area of a parallelogram denoted
by u and v. Thus, 1

2 det |(u, v)| is an area of a triangle, which is the exact half of
the parallelogram.

Lemma 2.27. Let △ABC be an integer triangle. Then the following statements
are equivalent:

(a) △ABC is empty;

(b) lS(△ABC) = 1;

(c) S(△ABC) = 1
2 .

Proof. (a) ⇒ (b): Let △ABC be an empty triangle, and Par = {α(B − A) +
β(C − A) | 0 ≤ α, β ≤ 1} be a parallelogram denoted by the integer segments
AB and AC. This parallelogram is also empty (i.e. does not contain any integer
points apart from its vertices) because △ABC is empty. We can use Lemma 2.25.,
which states that there is only one coset of the subgroup of Z2 which is generated
by the integer segments AB and AC, from which follows that

lS(△ABC) = 1.

(b) ⇒ (c): Let lS(△ABC) = 1. From that, we know that the integer segments
AB and AC generate the integer lattice Z2. That means that any integer point is
an integer combination of (B −A) and (C −A), i.e. there exist λ1, λ2, µ1, µ2 ∈ Z2

such that
(1, 0) = λ1(B − A) + λ2(C − A)

and
(0, 1) = µ1(B − A) + µ2(C − A).

Let us denote (B − A) = (b1, b2) and (C − A) = (c1, c2). We can put

J =
(︄

b1 c1
b2 c2

)︄

and
K =

(︄
λ1 µ1
λ2 µ2

)︄
therefore

L = JK =
(︄

1 0
0 1

)︄
.

The determinant of this matrix is equal to one, and because J and K are integer
matrices, their determinants must be either 1 or -1 because det(J · K) = 1 and
det(J), det(K) are integers. So the Euclidean area of △ABC is equal to 1/2
because S(△ABC) = 1

2 | det(B − A, C − A)|.
(c) ⇒ (a): We will prove this by contradiction. Let us consider an integer triangle
△ABC such that S(△ABC) = 1/2. For contradiction, suppose it has an integer
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point D in the interior or on its sides. Without loss of generality, we can assume
that D will not lie on the integer segment AB. However then

S(△ADB) < S(△ABC)

and that cannot happen. Otherwise, there would exist a number a ∈ Z such
that 0 < a < 1, because S(△ABC) = 1

2 | det(B − A, C − A)| = 1/2 and the
(B − A, D − A) matrix has only integer values, so its determinant is an integer,
but it needs to be strictly smaller in absolute value than the determinant of the
matrix (B − A, C − A), which is equal to 1.

Example. We have an empty integer triangle △ABC with integer points A =
(0, 0), B = (1, 0), C = (2, 1). We create a parallelogram by adding a point D =
(3, 1) and compute the integer area. The integer area is 1, the only point is
marked as a star, as defined in Definition 2.24. The Euclidean area is

1
2

⃓⃓⃓⃓
⃓det

(︄
1 2
0 1

)︄⃓⃓⃓⃓
⃓ = 1/2.

Figure 2.3: Empty integer triangle and its integer area.
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Lemma 2.28. Integer area is invariant under integer affine transformations
Aff(2,Z).

Proof. We will use Lemma 2.25, therefore, we will prove that the inner parallel-
ogram integer points are mapped to inner parallelogram integer points. Because
the integer affine transformation is bijective, it will be sufficient to prove this.
Let T : x ↦→ M · x + g, where M ∈ GL(2,Z), g ∈ Z2 as in Definition 2.17. T
maps integer points to integer points, since M ∈ GL(2,Z), g ∈ Z2. The transfor-
mation also preserves the parallelism of lines because the matrix M ∈ GL(2,Z),
therefore, it is a linear transformation and g ∈ Z2 is a translation, so it cannot
interfere with the parallelism of lines. We will further assume g = (0, 0) be-
cause the translation g cannot change the number of integer points. Therefore,
the transformation T maps an integer parallelogram to an integer parallelogram.
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Now let E be an inner integer point of the parallelogram made from an integer
triangle △ABC. Then E = α(B − A) + β(C − A), 0 ≤ α, β < 1. Let

M(A) = A′, M(B) = B′, M(C) = C ′.

Then M(B − A) = B′ − A′, similarly M(C − A) = C ′ − A′, because M is linear.
Then by computation,

M(E) = M(α(B − A) + β(C − A)) = αM(B − A) + βM(C − A) =

= α(B′ − A′) + β(C ′ − A′).
Because 0 ≤ α, β < 1, M preserves the inner parallelogram integer points. Now
it is left to prove that every integer point X has its pre-image Y, i.e. M · X = Y.
But because M ∈ GL(2,Z), it is invertible, therefore X = M−1 · Y. Thus we
proved that integer area is invariant under T.

2.5 Integer distance
Definition 2.29 (Integer distance). Let A, B, C be three non-collinear integer
points. The integer distance from the integer point A to the integer segment/line
BC is the index of an affine lattice generated by the integer segments AB, BB1,
where B1 ̸= B is the closest integer point to B on the line segment BC, in the
integer lattice Z2. It is denoted by ld(A, BC).

If the points A, B, C lie on the same line, then we define ld(A, BC) = 0.

Lemma 2.30. For any integer triangle △ABC it holds that

lS(△ABC) = lℓ(AB) · ld(C, AB).

Proof. Let Γ be a lattice with basis {AB, AC}, then lS(△ABC) = [Z2 : Γ]. Let
Γ0 be a lattice with basis {AA1, AC}, where A1 ̸= A is the closest integer point
to A on the integer segment AB. Then ld(C, AB) = [Z2 : Γ0]. From Lemma 2.22,
we get that

[Γ0 : Γ] = [Z2 : Γ]
[Z2 : Γ0]

= lS(△ABC)
ld(C, AB) .

And from Lemma 2.23 and Definition 2.6, we get that

[Γ0 : Γ] = lℓ(AB).

This concludes the proof.

Remark. Because both integer length and integer area are invariant under integer
affine transformations, so is the integer distance.

The geometric interpretation of the definition of integer distance is as follows.

Lemma 2.31. Let A, B, C ∈ Z2 that are non-collinear. Let us draw all integer
parallel lines to the line BC and denote AA′ the integer parallel line to BC that
contains the point A. Let m denote the number of integer parallel lines to the
line BC in the region bounded by BC and AA′, excluding BC and AA′. Then
ld(A, BC) = m + 1.
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Proof. From Lemma 2.30, we know that lS(△ABC) = lℓ(BC) · ld(A, BC). Let
us have B1 ̸= B as the closest integer point to B on the line segment BC. Then
from Lemmata 2.22, 2.23, we know that

ld(A, BC) = lS(△ABC)
lℓ(BC) = lS(△ABB1).

From Lemma 2.25, the integer area of △ABB1 is equal to the number of integer
points inside a parallelogram ABB1A

′. We need to prove that there is one integer
point for every integer parallel line and that for every integer point there exists
an integer line parallel to BB1, such that it passes through the integer point. Let
us have a parallel line with two integer points X1, X2 inside the parallelogram.
Since the line X1X2 is parallel to the line BB1, WLOG X2 − X1 = α · (B1 − B),
for some 0 < α < 1. Because X2 − X1 is an integer point, it is a contradiction
with B1 being the closest integer point to B on the line segment BC. Therefore,
the number of integer parallel lines in the region plus one is equal to the number
of integer points inside the parallelogram.

Example. Let us have integer points A = (0, 0), B = (3, 0), C = (4, 2). From
Figure 2.4, we can see that there are five integer parallel lines in the region
bounded by BC, AA′. Therefore, the integer distance is ld(A, BC) = 5 + 1 = 6.

Figure 2.4: Computing integer distance.
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2.6 Integer sines, sails, LLS sequences
Definition 2.32 (Integer sine). Let ∠ABC be a non-trivial rational angle with
vertex B. Then let A1 ̸= B be the integer point on the line segment BA, which is
the closest to B. Let C1 ̸= B be the integer point on the line segment BC, which
is the closest to B. Then the integer sine of ∠ABC is equal to lS(△A1BC1) and
is denoted by l sin(∠ABC). If ∠ABC is a trivial angle, l sin(∠ABC) = 0.

Remark. Integer sine is invariant under integer affine transformations because the
integer area is invariant under integer affine transformations.
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The sine function sin α attains values from -1 to 1. For comparison, the value
of integer sine is an integer greater than 1, as proved in Lemma 2.33.

Lemma 2.33. For a non-trivial rational angle α = ∠ABC, let A1 ̸= B be the
closest integer point to B on the line segment AB and let C1 ̸= B be the closest
integer point to B on the line segment BC. Then l sin α ≥ 1 and equality holds
if and only if △A1BC1 is an empty triangle.

Proof. From the definition, integer sine is equal to the integer area of the integer
triangle △A1BC1. The non-trivial integer triangle with the smallest integer area
is an empty integer triangle, and its integer area is equal to 1, as proven in
Lemma 2.27. Other integer triangles have integer area greater than one. Thus,
if α is non-trivial, then the integer triangle △A1BC1 is either empty and then
l sin α = 1, or it is not empty, so its integer area is greater than one and then
l sin α > 1.

Lemma 2.34. The integer sine satisfies

l sin(∠ABC) = lS(△ABC)
lℓ(AB) · lℓ(BC) .

Proof. Let Γ be a lattice with basis {BA, BC}, then lS(△ABC) = [Z2 : Γ]. Let
Γ0 be a lattice with basis {BA1, BC1}, where A1 ̸= B is the closest integer point
to B on the integer segment BA and C1 ̸= B is the closest integer point to B on
the integer segment BC. Then l sin(∠ABC) = [Z2 : Γ0]. From Lemma 2.22, we
get that

[Γ0 : Γ] = [Z2 : Γ]
[Z2 : Γ0]

= lS(△ABC)
l sin(∠ABC) .

From Lemma 2.23 and Definition 2.6, we get that

[Γ0 : Γ] = lℓ(BA) · lℓ(BC).

This concludes the proof.

Next, we mention an analogy of the sine rule from Euclidean geometry in R2,
where the following holds for an angle ∠ABC:

sin(∠ABC)
ℓ(AC) = sin(∠BCA)

ℓ(AB) = sin(∠CAB)
ℓ(BC) = 2 · S(△ABC)

ℓ(AB) · ℓ(BC) · ℓ(AC) .

The last equality follows from the fact that the Euclidean area of a triangle can be
computed as S(△ABC) = ℓ(BC)·ℓ(AX)

2 , where AX is the altitude of the triangle.
Then, the sine function can be geometrically computed as sin(∠ABC) = ℓ(AX)

ℓ(AB) ,

and therefore, the last equality holds.
From this we also get an Euclidean analogy for Lemma 2.34, because

sin(∠ABC) = ℓ(AX)
ℓ(AB) = 2 · S(△ABC)

ℓ(BC) · ℓ(AB) .

Lemma 2.35. Let ∠ABC be a rational angle, then

l sin(∠ABC)
lℓ(AC) = l sin(∠BCA)

lℓ(AB) = l sin(∠CAB)
lℓ(BC) = lS(△ABC)

lℓ(AB) · lℓ(AC) · lℓ(BC) .
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Proof. From Lemma 2.34. we get that

l sin(∠ABC)
lℓ(AC) = lS(△ABC)

lℓ(AB) · lℓ(AC) · lℓ(BC) ,

l sin(∠BCA)
lℓ(AB) = lS(△BCA)

lℓ(AB) · lℓ(CA) · lℓ(BC) ,

l sin(∠CAB)
lℓ(BC) = lS(△CAB)

lℓ(AB) · lℓ(CA) · lℓ(BC) .

From definitions of integer length and integer area, we get that

lS(△ABC) = lS(△BCA) = lS(△CAB)

and
lℓ(BC) = lℓ(CB), lℓ(AB) = lℓ(BA), lℓ(AC) = lℓ(CA).

This concludes the proof.

Example. Let us have a rational angle ∠ABC, where A = (3, 0), B = (0, 0), C =
(2, 4). We search for the closest integer point C1 ̸= B to B on the integer segment
BC and we find that it is C1 = (1, 2). We search for the closest integer point
A1 ̸= B to B on the integer segment BA and we find that it is A1 = (1, 0).
Therefore the l sin∠ABC = lS(△A1BC1), which is 2.

Figure 2.5: Computing l sin∠ABC.
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Definition 2.36 (Sail). Let α = ∠ABC be an integer angle with a vertex B.
The sail of α is the boundary of the convex hull of all integer points inside the
angle without B.

If the angle α = ∠ABC is rational, then the main part of the sail will be
determined by a finite set of integer points A0, . . . , An, where both the endpoints
A0, An lie on the angle rays, namely A0 lies on line BA, An lies on line BC. We
choose points A0, . . . , An such that they are extremal, i.e. no three consecutive
points Ai−1AiAi+1 lie on one line. From these endpoints, the sail continues to
infinity on both sides of the angle but does not have any more extremal vertices.
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We will call this piecewise linear curve a broken line A0 . . . An of the sail of α.
If ∠ABC is not rational, then there will be infinitely many extremal vertices of
the sail (on one or both sides of the sail).
Further in this thesis, we will only work with rational angles.

Definition 2.37 (Lattice length sine sequence). Let α be a rational angle and let
A0A1...An be the broken line of the sail of α. Then the lattice length sine sequence
of α, also denoted as LLS sequence, is the sequence defined as follows:

a2k = lℓ(AkAk+1),

a2k−1 = l sin(∠Ak−1AkAk+1),
where 0 ≤ k ≤ n − 1 for a2k and 1 ≤ k ≤ n − 1 for a2k−1. We denote this LLS
sequence as LLS(α).

The LLS sequence can be defined for an angle that is not rational, then the
LLS sequence can be infinite on one or both sides, depending on whether the sail
consists of an infinite broken line on one or both sides. In the case of rational
angles, the LLS sequence is always finite because the sail consists of finite broken
line.
The LLS sequence of an angle is invariant under integer affine transformations of
the plane because integer length and integer sine are invariant under integer affine
transformations, and convex hulls are preserved by the elements of Aff(2,Z).
Example. Let us compute the sail and LLS sequence of an angle formed by two
lines {(x, 0) | x ≥ 0} and {(x, 10/7x) | x ≥ 0}. The sail consists of a broken line
A0A1A2, where A0 = (1, 0), A1 = (1, 1), A2 = (7, 10), the continuation from C
to infinity in the same direction as the ray of the angle and the continuation from
A to infinity in the same direction as the ray of the angle. The LLS sequence is
(1, 2, 3), because lℓ(A0A1) = 1, l sin(∠A0A1A2) = 2 and lℓ(A1A2) = 3.

Figure 2.6: Computing sail and LLS sequence.
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Theorem 2.38. Two rational angles are integer congruent if and only if their
LLS sequences are the same.
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Proof. We already know that the LLS sequence is invariant under integer affine
transformations. Thus, two integer congruent angles have the same LLS se-
quences. Therefore, we need to prove that if two LLS sequences of two angles
coincide, then these angles will be integer congruent. Let us have two integer
angles α, β with corresponding broken lines {Ai}, {Bi}, LLS sequences (ai), (bi)
and integer vertices Oα, Oβ. Now let us assume that the LLS sequence (bi) coin-
cides with the LLS sequence (ai).
From the definition of sail we know that lℓ(OβB0) = lℓ(OβB1) = lℓ(OαA0) =
lℓ(OαA1) = 1. Let B′ ̸= B0 be the closest integer point to B0 on the integer seg-
ment B0B1. Similarly, let A′ ̸= A0 be the closest integer point to A0 on the integer
segment A0A1. Since lℓ(A0A

′) = lℓ(B0B
′) = 1 and because the integer triangle

△OβB0B
′ is empty, we know that the integer segments OβB0, B0B

′ generate the
whole lattice Z2, thus they are the basis of Z2. Similarly the integer segments
OαA0, A0A

′ generate the whole lattice Z2 and form its basis. Because of that,
there exists an affine transformation ξ such that it maps OβB0 ↦→ OαA0, B0B

′ ↦→
A0A

′. It especially maps △OβB0B
′ ↦→ △OαA0A

′, which are both empty triangles.
The transformation ξ is an integer affine transformation because it is the change
of basis transformation, and both are the bases of Z2. Finally, we want to prove
that ξ maps B1 ↦→ A1. We know that lS(△OβB0B1) = a0 = lℓ(B0B1) = lℓ(A0A1).
We therefore know that A1 = (A′ − A0) · a0 + A0 and B1 = (B′ − B0) · a0 + B0.
Since ξ is an integer affine transformation, it will map B1 ↦→ A1, because both
A0, A′, A1 and B0, B′, B1 lie on one line and affine transformations preserve affine
combinations.

Now let β be transformed to an angle γ using the integer affine transformation
ξ. The angle γ has its integer vertex Oα, sail {Ci} and C0 = A0, C1 = A1.
We proceed to show that A0A1 . . . An and C0C1 . . . Cn coincide by induction. Let
A0A1 . . . Ak−1 coincide with C0C1 . . . Ck−1, we want to prove that Ak = Ck. Firstly
let

l sin(∠Ak−2Ak−1Ak) = l sin(Ck−2Ck−1Ck) = a2k−3,

lℓ(Ak−1Ak) = lℓ(Ck−1Ck) = a2k−2.

Then with the help of Lemma 2.30 and Lemma 2.34 we can compute

ld(Ak, Ak−2Ak−1) = lS(△AkAk−2Ak−1)
lℓ(Ak−2Ak−1)

= l sin(∠Ak−2Ak−1Ak) · lℓ(Ak−1Ak) =

= a2k−3 · a2k−2 = ld(Ck, Ck−2Ck−1).
Both ∠Ak−2Ak−1Ak and ∠Ck−2Ck−1Ck are parts of sails, since sail is defined as
the boundary of a convex hull, therefore Ak, Ck lie on a different halfspace than
Oα with respect to the line Ak−2Ak−1 = Ck−2Ck−1. Thus Ak, Ck lie on a line ℓ1
that is parallel to the line Ak−2Ak−1 and this line contains integer points that
are at integer distance of a2k−3 · a2k−2 from the line Ak−2Ak−1, because as shown
above, ld(Ak, Ak−2Ak−1) = a2k−3 · a2k−2.
Now we continue. Because of the definition of sail, we know that lℓ(OαAk−1) =
lℓ(OαCk−1) = 1 and that the only integer points of the integer triangle (apart from
its vertices) △AkOαAk−1 are the integer points on the integer segment Ak−1Ak.
Therefore, by Lemma 2.25, lS(△CkOαCk−1) = lS(△AkOαAk−1) = lℓ(Ak−1Ak) =
lℓ(Ck−1Ck) = ak−2. Thus,

ld(Ak, OαAk−1) = lS(△AkOαAk−1)
lℓ(OαAk−1)

= lS(△CkOαCk−1)
lℓ(OαCk−1)

= ld(Ck, OαCk−1)
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and
ld(Ak, OαAk−1) = a2k−2 = ld(Ck, OαCk−1).

We know that OαAk−1 = OαCk−1 and Ak, Ck lie on a different halfspace than
Ak−2 with respect to the line OαAk−1, because the construction of sail as a convex
hull implies that all points in the angle lie on one side of any line segment of the
sail. Therefore Ak, Ck lie on a line ℓ2, which is parallel to the line OαAk−1 and this
line contains points that are at integer distance of a2k−2 from the line OαAk−1.
Since the lines ℓ1, ℓ2 are parallel to Ak−2Ak−1 and OαAk−1 respectively, they are
not parallel and intersect at a unique point Ak = Ck. Thus, we proved that
A0A1 . . . An and C0C1 . . . Cn coincide.

2.7 Continued fractions
In this subchapter and further, we will use continued fractions, their notation
and properties as defined and proved in [5]. We extend the notation in [5] to also
allow finite continued fractions to contain negative integers if the corresponding
rational number is well defined.

Definition 2.39 (Continued fraction). Let a0, a1, . . . , an ∈ Z. We say that
[a0, a1, . . . , an] is a continued fraction of a number ξ ∈ Q, if the fraction

[a0, a1, . . . , an] = a0 + 1
a1 + 1

···+ 1
an

,

is well defined and equals ξ.

Definition 2.40 (Odd and even continued fractions). We define odd and even
continued fractions, continued fraction [a0, . . . , an] is odd (resp. even), when n is
even (resp. odd), i.e. the number of elements in the fraction is odd (resp. even).

Definition 2.41 (Regular continued fraction). A continued fraction is called
regular if the first element a0 is an integer and all of the other elements are
positive integers.

Remark. Every rational number has exactly two regular continued fractions, one
odd and one even:

[a0, . . . an] = [a0, . . . , an − 1, 1].
This leads us to an example of a non-regular continued fraction, which will

be used more in the next chapter.
Example. Let us have the rational number 11

8 . Then the regular continued fraction
is

11
8 = 1 + 1

2 + 1
1+ 1

2

= [1, 2, 1, 2] = [1, 2, 1, 1, 1].

The non-regular continued fraction is for example

11
8 = 1 + 1

2 + 1
3+ 1

−1+ 1
3

= [1, 2, 3, −1, 3].
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We can also write
11
8 = 1 + 1

2 + 1
4+ 1

−1+ 1
1+ 1

1+ 1
2

= [1, 2, 4, −1, 1, 1, 2]

and we can see that non-regular fractions of rational numbers can be written in
different ways.

2.8 Integer tangents, integer cosines
Definition 2.42 (Integer tangent). Let (a0, ..., a2n) be a LLS sequence of a ra-
tional angle α. The integer tangent l tan α of α is defined as follows:

l tan α = a0 + 1
a1 + 1

···+ 1
a2n

= [a0, a1, . . . , a2n].

If α is a trivial angle, then l tan α = 0.

The integer tangent can be also defined for all angles α = ∠ABC, such that
there is a distinct integer point C ̸= B on the line BA but not on the line BC.
Then α is not a rational angle and the LLS sequence is infinite. Therefore, we
will have an infinite continued fraction.
Remark. Integer tangent is invariant under integer affine transformations, as is
the LLS sequence.
Lemma 2.43. Let α = ∠ABC be a non-trivial rational angle. Then let A1 ̸= B
be the integer point on the line segment BA, which is the closest to B. Let
C1 ̸= B be the integer point on the line segment BC, which is the closest to B.
Then l tan α ≥ 1 and equality holds if and only if the integer segments BA1, BC1
generate the whole lattice Z2.
Proof. Because α is a non-trivial angle, the first element of its corresponding LLS
sequence is non-zero. That proves that l tan α ≥ 1. If l tan α = 1, then, from the
definition of integer tangent, the LLS sequence of α is equal to (1). That means
that the broken line of its sail consists of only two points with integer length 1,
therefore the corresponding triangle △A1BC1 is empty and therefore the index
of an affine lattice generated by BA1, BC1 in Z2 is 1, thus it generates the whole
lattice Z2.
Corollary 2.44. Two integer angles α, β are integer congruent if and only if
l tan α = l tan β.

Proof. Every number ξ has a unique odd regular continued fraction representa-
tion, as mentioned in Section 2.7. Then, from the definition of integer tangent,
we know that the LLS sequence is uniquely defined by integer tangent. Then the
statement holds because of Theorem 2.38.
Definition 2.45 (Integer cosine). Let α be a non-trivial rational angle. The
integer cosine l cos α of α is defined as follows

l cos α = l sin α

l tan α
.

For a trivial angle, the integer cosine is defined to be 1.
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Lemma 2.46. Let α = ∠ABC be a non-trivial rational angle. Then let A1 ̸= B
be the integer point on the line segment BA, which is the closest to B. Let
C1 ̸= B be the integer point on the line segment BC, which is the closest to
B. Then l cos α ≤ l sin α and equality holds if and only if the integer segments
BA1, BC1 generate the whole lattice Z2.

Proof. As shown in Lemma 2.33 and Lemma 2.43, l sin α ≥ 1 and l tan α ≥ 1. If
l tan α = 1, then l cos α = l sin α and from Lemma 2.43, if l tan α = 1, we know
that the integer segments BA1, BC1 generate the whole lattice Z2. If l tan α > 1,
then l cos α < l sin α, because l sin α > 1.

2.9 Integer arctangents
Definition 2.47 (Integer arctangent). Let q = m

n
≥ 1 be a rational number,

where m ≥ n > 0 are relatively prime integers. The integer arctangent l arctan q
of q is a rational angle α with a vertex in the origin and edges passing through
the points (1, 0) and (n, m).

Lemma 2.48. For every q ≥ 1 rational, it holds that l tan(l arctan q) = q.

We omit the proof of this Lemma, see [2], Proposition 5.4.

Lemma 2.49. For every rational angle α, it holds that l arctan(l tan α) ∼= α,
where ∼= denotes integer congruence.

Proof. From the definition of integer arctangent, both angles l arctan(l tan α) and
α have the same LLS sequences, because l tan(l arctan(l tan(a))) = l tan(a) by
Lemma 2.48. Therefore, they are integer congruent by Theorem 2.38.

Remark. For every non-trivial rational integer angle there exists a unique integer
arctangent that is integer congruent to this angle.

Lemma 2.50. The integer sine and integer cosine are relatively prime positive
integers for any rational angle.

Proof. Because of Lemma 2.49 and because the integer sine and integer cosine
are invariant under integer affine transformations, it is sufficient to prove this for
angles l arctan q, where q ≥ 1 is rational.
Now let q = m

n
≥ 1, where m, n are relatively prime integers. The integer

distance between the point (n, m) and the line y = 0 is clearly equal to m.
Therefore, by Lemma 2.30 and Lemma 2.34, l sin(l arctan m

n
) = m

1 = m. From
Lemma 2.48, we get that l tan(l arctan m

n
) = m

n
, therefore from Definition 2.45,

l cos(l arctan m
n

) = n.

Remark. If q ̸= 1, it is possible to rewrite the edges of integer arctangent as
columns in a matrix in a following way:(︄

1 l cos α
0 l sin α

)︄
,

where α is a non-trivial angle and 0 < l cos α < l sin α, because we are excluding
the case l sin α = 1. From Lemma 2.48 and Definition 2.47, l tan α = m

n
and from
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Definition 2.45, we can also rewrite integer tangent as l tan α = l sin α
l cos α

.
In the case of q = 1, the matrix above is defined as an identity matrix, but from
Lemma 2.48, l tan α = l tan(l arctan 1) = 1, therefore from Lemma 2.43, the rays
of the angle generate the whole lattice, thus from Lemma 2.33, l sin α = 1. Finally,
from Definition 2.45, we get that l cos α = 1. Hence l sin α = l cos α = l tan α = 1.
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3. Angles in integer trigonometry
In this chapter, we will study the relationships between different angles in integer
trigonometry. We will define right angles and the summation of angles in integer
trigonometry and compare the conclusions to properties of angles in Euclidean
geometry. Finally, we will show a property for integer angles inside triangles.

3.1 Adjacent and transpose angles
Recall the definition of transpose and adjacent angle.

Definition 3.1 (Transpose and adjacent angle). Let α = ∠BAC be a rational
angle. Then:

• the angle ∠CAB is the transpose angle, denoted as αt

• the angle ∠CAB′, where B′ = A − (B − A) is the adjacent angle, denoted
as π − α.

Theorem 3.2. For a non-trivial rational angle α:

l sin αt = l sin α,

l cos αt · l cos α ≡ 1 (mod l sin α).
Moreover, if l tan α = [a0, . . . , a2n] is the regular odd continued fraction, then
l tan αt = [a2n, . . . , a0].

Proof. Let α be an rational angle, then let l tan α = p
q
, where p, q are relatively

prime. From Lemma 2.49 we get that l arctan(p
q
) ∼= α.

If p
q

= 1, then l sin α = l cos α = 1 and the case is trivial.
Now let p

q
> 1. Let A = (1, 0), B = (q, p), O = (0, 0). Suppose an integer point

C = (q′, p′) on the sail of the angle l arctan p
q
, such that it is the closest integer

point to B with respect to Euclidean distance such that it lies inside the angle,
not on its sides. It is always possible to choose C such that p′, q′ > 0. The triangle
△BOC is empty because BO, CO form a basis of Z2, because of the choice of C.
From that, and since the orientation of the tuples of differences of integer points
(A − O, B − O) and (B − O, C − O) is different, we get that

det
(︄

q q′

p p′

)︄
= −1.

We can then define a linear transformation ξ1 as

ξ1 =
(︄

p − p′ −q + q′

p −q

)︄
.

The determinant of this matrix is equal to −q(p−p′)−p(−q+q′) = q·p′−p·q′ = −1,
therefore ξ1 is an integer affine transformation. Let us compute what ξ1 does to
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(l arctan p
q
)t. From definition, (l arctan p

q
)t is an angle with edges passing through

the points (q, p) and (1, 0):(︄
p − p′ −q + q′

p −q

)︄
·
(︄

q
p

)︄
=
(︄

1
0

)︄

and (︄
p − p′ −q + q′

p −q

)︄
·
(︄

1
0

)︄
=
(︄

p − p′

p

)︄
.

We can see that the transformation gave us an angle with edges passing through
the points (1, 0) and (p − p′, p), which is the angle l arctan p

p−p′ . Because (p, p′)
are relatively prime due to the determinant being −1 and p > p − p′, we can use
Lemma 2.48, so that

l tan
⎛⎝ξ1

⎛⎝(︄l arctan p

q

)︄t
⎞⎠⎞⎠ = l tan

(︄
l arctan p

p − p′

)︄
= p

p − p′ .

Because integer tangent is invariant under Aff(2,Z), we get that l tan αt = p
p−p′

and from the definition of l cos α, we get that l tan αt = l sin αt

l cos αt . In this case,

p

p − p′ = l sin αt

l cos αt

and it follows from Lemma 2.50 that l sin αt = p and l cos αt = p−p′. In the same
manner, it follows that l sin α = p and l cos α = q, because

l tan
(︄

l arctan p

q

)︄
= p

q
,

p

q
= l tan α = l sin α

l cos α
,

p, q are relatively prime and p > q.
Because q · p′ − p · q′ = −1, we get that q · p′ ≡ −1 (mod p). Thus,

l cos αt · l cos α = q · (p − p′) ≡ 1 (mod p).

Hence
l sin αt = l sin α

l cos αt · l cos α ≡ 1 (mod l sin α).
For the second part of the theorem, if we know that l tan α = [a0, . . . , a2n], then
the LLS sequence of α is (a0, . . . , a2n). The LLS sequence from definition just
alternates integer length and integer sine. Because the sail is the same for both
α, αt, the LLS sequence of αt will therefore be the same as for α, but just reversed.
Thus l tan αt = [a2n, . . . , a0].

Example. Let ∠ABC be a rational angle, where A = (7, −5), B = (0, 0), C =
(3, 5). The LLS sequence of ∠ABC is (1, 1, 2, 1, 1, 1, 2). The LLS sequence of the
transpose angle ∠CBA is the reversed one for the angle ∠ABC, (2, 1, 1, 1, 2, 1, 1).
The integer sines are

l sin(∠ABC) = 50 = l sin(∠CBA).
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And the integer cosines are

l cos(∠ABC) = 29, l cos(∠CBA) = 19,

because [1, 1, 2, 1, 1, 1, 2] = 50
29 , [2, 1, 1, 1, 2, 1, 1] = 50

19 and 19 · 29 = 551 ≡ 1
(mod 50).

Figure 3.1: Transpose angle.
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Theorem 3.3. Let α be a non-trivial rational angle. Then the following holds
for adjacent angles:

l sin(π − α) = l sin α,

l cos(π − α) · l cos α ≡ −1 (mod l sin α).

Proof. Let α be a non-trivial rational angle and let l tan α = p
q
, where p, q are

relatively prime. From Lemma 2.49 we get that l arctan(p
q
) ∼= α. If p

q
= 1, then

π − α ∼= π − l arctan(1) and α ∼= l arctan(1) and the case is trivial, because
l sin(π − α) = l sin α = 1.
Now let p

q
> 1. Let A = (1, 0), B = (q, p), O = (0, 0). Suppose an integer point

C = (q′, p′) on the sail of the angle π − l arctan(p
q
), such that it is the closest

integer point to B, with respect to Euclidean distance, such that it lies inside
the angle, not on its sides. It is always possible to choose C such that p′, q′ > 0.
Similarly as in the proof of Theorem 3.2, we get that the triangle △BOC is empty
and the orientation of the tuples of differences of integer points (A − O, B − O)
and (B − O, C − O) is the same, therefore we get that

det
(︄

q q′

p p′

)︄
= 1.

We can then define a linear transformation ξ2 as

ξ2 =
(︄

−p + p′ q − q′

−p q

)︄
.

The determinant of this matrix is equal to q(−p+p′)−(−p(q−q′)) = q·p′−p·q′ = 1,
therefore ξ2 is an integer affine transformation that preserves orientation. Let’s

27



compute what ξ2 does to π − l arctan(p
q
). From definition, π − l arctan(p

q
) is an

angle with edges passing through the points (q, p) and (−1, 0):(︄
−p + p′ q − q′

−p q

)︄
·
(︄

q
p

)︄
=
(︄

1
0

)︄

and (︄
−p + p′ q − q′

−p q

)︄
·
(︄

−1
0

)︄
=
(︄

p − p′

p

)︄
.

We can see that the transformation gave us an angle with edges passing through
the points (1, 0) and (p − p′, p), which is the angle l arctan p

p−p′ . Because (p, p′)
are relatively prime and p > p − p′, we can use Lemma 2.48, so that

l tan
(︄

ξ2

(︄
π − l arctan p

q

)︄)︄
= l tan

(︄
l arctan p

p − p′

)︄
= p

p − p′ .

Because integer tangent is invariant under Aff(2,Z), we get that l tan(π − α) =
p

p−p′ and from the definition of l cos α, we get that l tan(π − α) = l sin(π−α)
l cos(π−α) . In

this case,
p

p − p′ = l sin(π − α)
l cos(π − α)

and from Lemma 2.50 it follows that l sin(π − α) = p and l cos(π − α) = p − p′.
In the same manner, it follows that l sin α = p and l cos α = q, because

l tan
(︄

l arctan p

q

)︄
= p

q
,

p

q
= l tan α = l sin α

l cos α
,

p, q are relatively prime and p > q.
Because q · p′ − p · q′ = 1, we get that q · p′ ≡ 1 (mod p). Thus,

l cos α · l cos(π − α) = q · (p − p′) ≡ −1 (mod p).

Hence
l sin(π − α) = l sin α

l cos(π − α) · l cos α ≡ −1 (mod l sin α).

Example. Let us have an angle α formed by two lines {(x, 0) | x ≥ 0} and
{(x, 10

7 x) | x ≥ 0}, as in Figure 2.6. The LLS sequence of α is (1, 2, 3). The
adjacent angle π−α is formed by two lines {(x, 10

7 x) | x ≥ 0} and {(−x, 0) | x ≥ 0}
and the LLS sequence of π − α is (1, 2, 3) The integer sine functions are

l sin α = 10 = l sin(π − α),

the integer cosines are

l cos α = 7, l cos(π − α) = 7,

because [1, 2, 3] = 10
7 and 7 · 7 ≡ −1 (mod 10). It is just a coincidence that the

LLS sequences are the same, and it is not a general property of adjacent angles.
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Figure 3.2: Adjacent angle.

−2 −1 0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9

10

1
2

3

3

2

1

y = 10/7x

In Euclidean geometry in R2, the trigonometric identities posed in Theorems
3.2, 3.3 are as follows:

sin α = sin αt, cos α = cos αt

and
sin(π − α) = sin α,

cos(π − α) = − cos α.

3.2 Right angles
Definition 3.4 (Right angle). A rational angle ∠ABC is right if it is integer
congruent to both its adjacent angle and its transpose angle.

Lemma 3.5. Every right integer angle is integer congruent to either l arctan 1
or l arctan 2.

Proof. Let α be a rational right angle. Then from the definition of right angle
and from Theorem 3.2, we get that

l cos α2 ≡ l cos α · l cos αt ≡ 1 (mod l sin α).

Then from Theorem 3.3, we get that

l cos α2 ≡ l cos α · l cos(π − α) ≡ −1 (mod l sin α).

Therefore
−1 ≡ 1 (mod l sin α),

thus l sin α is equal to either 1 or 2.
If l sin α = 1, then l cos α = 1, therefore also l tan α = 1 and from Lemma 2.49,
l arctan(l tan α) = l arctan(1) ∼= α.
If l sin α = 2, then from Lemma 2.46 l cos α = 1, therefore l tan α = 2 and from
Lemma 2.49 l arctan(l tan α) = l arctan(2) ∼= α.
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Remark. Both l arctan 1 and l arctan 2 are right angles. In the example below, we
verify that l arctan 2 is a right integer angle, for l arctan 1 the steps are the same.
Example. Let us verify that l arctan 2 indeed is a right angle. From definition,
2 = m

n
and therefore l arctan 2 is an angle with edges passing through integer

points (1, 0), (1, 2). Denote ∠ABC = l arctan 2. The transpose angle to ∠ABC
is the angle ∠CBA with edges passing through integer points (1, 2), (1, 0). To
ensure that ∠ABC and ∠CBA are integer congruent, we are trying to find a

matrix A =
(︄

a b
c d

)︄
, such that its determinant is equal to either 1 or −1 and

which maps (1, 0) ↦→ (1, 2) and (1, 2) ↦→ (1, 0). From (1, 0) ↦→ (1, 2), we get that
a = 1, c = 2 and then (︄

1 b
2 d

)︄
·
(︄

1
2

)︄
=
(︄

1 + 2b
2 + 2d

)︄
=
(︄

1
0

)︄
,

thus b = 0, d = −1 and A =
(︄

1 0
2 −1

)︄
. The determinant of A is equal to −1,

therefore the angle ∠ABC is integer congruent to its transpose angle ∠CBA.

The adjacent angle to ∠ABC is the angle ∠CBA′, where A′ = (−1, 0). In

the same manner, we are searching for a matrix B =
(︄

a b
c d

)︄
, such that its

determinant is equal to either 1, −1 and which maps (1, 0) ↦→ (1, 2) and (1, 2) ↦→
(−1, 0). From (1, 0) ↦→ (1, 2), we get that a = 1, c = 2 and then(︄

1 b
2 d

)︄
·
(︄

1
2

)︄
=
(︄

1 + 2b
2 + 2d

)︄
=
(︄

−1
0

)︄
,

thus b = −1, d = −1 and B =
(︄

1 −1
2 −1

)︄
. The determinant of B is equal to 1,

therefore the angle ∠ABC is integer congruent to its adjacent angle ∠CBA′. We
have just verified that l arctan 2 is a right angle.

3.3 Summation of angles
Angle summation is not defined uniquely up to integer conjugacy classes. For
example, if we sum two angles integer congruent to l arctan 2, we can obtain a
straight line, but also a non-trivial angle.

Figure 3.3: Summation of angle integer congruent to l arctan 2, first option.
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Figure 3.4: Summation of angle integer congruent to l arctan 2, second option.
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Example. Let us use the angle defined in Figure 3.1 and divide it into two angles
∠ABD and ∠DBC, where D = (2, 1). The LLS sequence of the angle ∠ABD
is (1, 1, 2, 2, 1) and the LLS sequence of the angle ∠DBC is (1, 2, 2). The LLS
sequence of the combined angle ∠ABC is (1, 1, 2, 1, 1, 1, 2). Then

l tan(∠ABC) = 50
29 = [1, 1, 2, 1, 1, 1, 2] = [1, 1, 2, 2, 1, −1, 1, 2, 2].

We can see that the angle ∠ABC can have a LLS sequence composed of the LLS
sequences of the angles ∠ABD and ∠DBC and between them we see an inserted
integer. That is not a coincidence, in [2], there is defined angle summation up
to an integer parameter s. Here ∠ABC = ∠ABD +−1 ∠DBC. For more see [2],
Chapter 16.

Figure 3.5: LLS sequences of two angles ∠ABD and ∠DBC.
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Figure 3.6: LLS sequences of the summed angle ∠ABC = ∠ABD +−1 ∠DBC.
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3.4 Angles in triangles
In Euclidean geometry, it holds that all the inner angles α, β, γ in a triangle
sum up to π. Because angle summation is defined not uniquely up to integer
conjugacy classes, this rule from Euclidean geometry cannot be generalised to
integer trigonometry. In this subchapter, we summarize a similar condition but
for integer tangents. We present Theorem 3.9 without proof, see [2].

Definition 3.6 (Acute angle). Let ∠ABC be an angle and a its measure. The
angle is acute, if 0 < a < π

2 .

Theorem 3.7. Let α, β, γ be angles where α is acute. There exists a triangle
with inner angles (α, β, γ), if and only if the following conditions hold:

tan(α + β + γ) = 0,

tan(α + β) /∈ [0, tan α].

Proof. ⇒: The first condition follows from the fact that all inner angles in a
triangle sum up to π and tan π = 0.
For the proof of the second condition, let us assume for contradiction that 0 ≤
tan(α + β) ≤ tan α. Since α is an acute angle, tan α > 0. Now if α + β is acute,
then tan(α + β) > 0. Because the tangent function is increasing on the interval
(0, π

2 ), we know that (α + β) ≤ α cannot happen, because β > 0. If α + β is an
obtuse angle, then tan(α+β) < 0, therefore we have also come to a contradiction.
Finally, if α+β is a right angle, then tan(α+β) is not defined therefore it cannot
be in the interval [0, tan α].
⇐: We know that 0 < α, β, γ < π. Therefore 0 < α + β + γ < 3π. There
exists a triangle with angles α, β, γ if and only if α + β + γ = π. From the
first condition we get that α + β + γ = π or α + β + γ = 2π. Let us assume
that α + β + γ = 2π. Now we know that α is acute, therefore 0 < α < π

2 .
Then if α + β + γ = 2π, we get 0 < α + β < 3π

2 and π < 2π − γ < 2π,
thus π < α + β < 3π

2 and π
2 < β < π. Therefore β is obtuse. Let us assume
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tan(α + β) /∈ [0, tan α], therefore tan(α + β) < 0 or tan(α + β) > tan α. We know
that tan α < tan(α + β) if and only if β ∈

(︂
0, π

2 − α
)︂

or β ∈
(︂
π, 3π

2 − α
)︂

. Since
β ∈

(︂
π
2 , π

)︂
, this cannot happen and therefore tan(α + β) < 0. We know that

tan(α + β) = tan(2π − γ) = − tan γ < 0 and tan γ > 0 and γ is acute, therefore
0 < γ < π

2 . But then α + β + γ < π
2 + π + π

2 = 2π and that is a contradiction,
therefore α + β + γ = π.

This concludes the proof.

Definition 3.8 (Sequence of continued fractions). Let q1, . . . , qn be a sequence of
rational numbers with odd regular continued fractions such that

qi = [ai,0, ai,1, . . . , ai,2ki
]

for 1 ≤ i ≤ n. The we define the sequence of continued fractions as

]q1, q2, . . . , qk[= [a1,0, a1,1, . . . , a1,2k1 , a2,0, a2,1, . . . , a2,2k2 , . . . , an,0, an,1, . . . , an,2kn ].

Theorem 3.9. Let (α1, α2, α3) be an ordered triple of angles. There exists an
integer triangle with consecutive angles integer congruent to α1, α2, α3 if and only
if there exists i ∈ {1, 2, 3}, such that the angles α = αi, β = αi+1 (mod 3), γ =
αi+2 (mod 3) satisfy the following conditions:

]l tan α, −1, l tan β, −1, l tan γ[= 0,

]l tan α, −1, l tan β[ /∈ [0, l tan α].

For the proof of this theorem, see [2], the formulation in Theorem 6.9 and the
proof in Section 16.3.
Remark. Let us have an integer triangle △ABC. Consecutive angles are for exam-
ple α = ∠BAC, γ = ∠ACB, β = ∠CBA. The orientation of angles is important,
for example, angles α = ∠CAB, γ = ∠ACB, β = ∠CBA are not consecutive.
Example. We will provide an example of an integer triangle satisfying the con-
ditions from Theorem 3.9. Let us denote three integer points A = (0, 0), C =
(2, 4), B = (6, 2) and their corresponding angles α = ∠BAC, γ = ∠ACB, β =
∠CBA. Their LLS sequences are (2, 1, 1), (1, 1, 2), (1, 3, 1), respectively. We can
compute that

[2, 1, 1, −1, 1, 1, 2, −1, 1, 3, 1] = 0,

[2, 1, 1, −1, 1, 1, 2] = 5 /∈
[︃
0,

5
2

]︃
.

Thus, by Theorem 3.9 there exists an integer triangle △ABC with these given
angles, as displayed in Figure 3.7.
Now, we will show that the orientation of the angles is important, let us have,
for example, αt = ∠CAB and ordering as above, therefore αt, γ = ∠ACB, β =
∠CBA and their corresponding LLS sequences (1, 1, 2), (1, 1, 2), (1, 3, 1). Then

[1, 1, 2, −1, 1, 1, 2, −1, 1, 3, 1] = 5
4 ̸= 0

and
[1, 1, 2, −1, 1, 1, 2] = 0 ∈

[︃
0,

5
3

]︃
.
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These angles do not satisfy the conditions from the theorem.

Figure 3.7: Angles in triangle △ABC.
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Conclusion
In this thesis, we have presented the definitions of the most important objects
in integer trigonometry in Z2, we have proved their main properties and pro-
vided their geometric interpretations. We have proven an important Theorem
2.38 stating that two angles with the same LLS sequences are integer congruent.
We have also proven the geometric interpretations of definitions of integer length
in Lemma 2.20, integer area in Lemma 2.25 and integer distance in Lemma 2.31.

For further extension to this thesis, we could add the proof of Lemma 2.48,
which requires a few other theorems and more theory about continued fractions.
We could also prove Theorem 3.9, but its proof requires many more definitions
and helpful lemmata. Both of these proofs can be found in [2].
Naturally, integer trigonometry also exists in Zn for n > 2, which is thoroughly
described in [2].
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