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Introduction
The arithmetic geometric mean sequence (AGM) is a sequence of ordered pairs

where the first element of the pair is the arithmetic mean of previous pair and
the second element of the pair is the geometric mean of previous pair. AGM
over positive real numbers was firstly discovered by Lagrange and rediscovered by
Gauss a few years later. There were also discovered some algorithms based on
AGM to count digits of π. AGM sequences can be considered over finite fields
too. For example, Michael J. Griffin, Ken Ono, Neelam Saikia and Wei-Lun
Tsai [Gri+23] introduced AGM over finite fields with q elements such that q ≡ 3
(mod 4). In this case they made a natural definition of infinite AGM for q > 3. In
this thesis we recall their results and extend the definition over finite fields with q
elements such that q ≥ 29 and q ≡ 5 (mod 8).

One can also show the connection between AGM and elliptic curves. Elliptic
curves and its properties has been studied for long since the second or third century.
Elliptic curves are important as they appear in lots of areas of mathematics and
its applications, for example, they are used in cryptography. One can look at
[BM14] for more information about the history of elliptic curves.

In the thesis in Chapter 1 we start with the arithmetic and geometric means
over positive real numbers. We define the sequences and show some basic properties
as well as the use of AGM for counting digits of π. Namely, we prove the AM-GM
inequality for two positive real numbers and prove that both components of AGM
have the same limit.

Chapter 2 begins with some definitions and theorems about finite fields. We
define quadratic residues and quadratic residue symbol and show that it is a
homomorphism. Then we count the number of quadratic residues and show how
to compute the quadratic residue symbol. In Section 2.1 we add some graph
terminology and finally start with specification of AGM over finite fields. We
consider it as a directed graph where there is an edge between two vertices if and
only if they are two consecutive elements of AGM sequence. Then we explain
some properties of these graphs, see Theorems 26 and 27 and Corollary 28.

In Chapter 3 we describe the case of finite fields with q elements such that
q ≡ 3 (mod 4) giving more details than in [Gri+23, Section 1]. We define AGM
in this case, define a corresponding directed graph, and describe how it looks
like and its components. We also add some examples for better understanding of
the results and in the end we count the number of vertices of the graph and the
number of components.

Then in Chapter 4 we give some original results for finite fields with q elements
such that q ≡ 5 (mod 8). We state that for q ≥ 29 there is always a component
with the cycle hence we can define some infinite AGM for these fields too, see
Theorem 44. However, the graph is more complicated in this case and we describe
it in detail concluding with Theorem 41 where we describe its components.

Chapter 5 is just a brief and informal chapter about the connection between
AGM over finite fields such that q ≡ 3 (mod 4) and elliptic curves. The connection
is described in Theorem 51. Finally, we state in Theorem 52 a lower bound of the
number of components of the directed graphs of AGM.
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Now, we state the contribution of the author in the thesis.
In Chapter 1 we define AGM (Definition 1) more formally than in the article

[Gri+23]. We also add a proof of Theorem 4 and mention the sequence 1.1 based
on AGM, which converges to π. There was a mistake in this sequence in the older
version of article [Gri+23], which we independently fixed. The mistake was fixed
in the current version of the article.

In Section 2.1 we generalise the definitions and lemmas with its proofs which
were originally formulated only for finite fields Fq such that q ≡ 3 (mod 4). In
Lemma 23, Lemma 24 and Theorem 26 we give more details and slightly generalise
results from [Gri+23]. Theorem 27 and Corollary 28 are author’s own results.

In Chapter 3 we add the proof of Lemma 29 and formalise the definition of
AGM in Definition 31. We also add some details in the proof of Lemma 32 and
bring an illustrative example.

The main contribution of the thesis is Chapter 4 where author gives own
results for AGM over finite fields with q elements such that q ≡ 5 (mod 8). The
intention is to submit these results to some mathematical journal.

In Chapter 5 we briefly introduce elliptic curves and add the definition of an
isogeny (Definition 49). We also add one more example of the connection between
elliptic curves and AGM. However, we recall that this chapter is informal.

For the purpose of the thesis, namely to count number of components and
draw graphs for Fq where q ≡ 3 (mod 4) or q ≡ 5 (mod 8), a code in Python was
written.
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1 Arithmetic and geometric
means over R

We firstly look at sequences and some properties of arithmetic and geometric
means over real numbers.
Definition 1. Let a, b be positive real numbers, then we define the sequence
AGMR(a, b) = ((an, bn))∞

n=0, consisting of arithmetic and geometric means induc-
tively, where a0 = a, b0 = b and then

an := an−1 + bn−1

2 , bn : =
√︂

an−1bn−1.

Lemma 2. The sequence AGM(a, b) from Definition 1 is well-defined and

∀(an, bn) ∈ AGM(a, b) : an > 0, bn > 0.

Proof. We need to show that ∀(an, bn) ∈ AGM(a, b) : anbn ≥ 0, so
√

anbn ∈ R.
This holds if an, bn are positive real numbers, which we will show by induction
induction by n. From the definition it holds that a0 and b0 are positive real
numbers. For the inductive step, suppose an−1, bn−1 are positive real numbers, then
an = an−1+bn−1

2 > 0 as the numerator is a positive real number. As an−1bn−1 > 0,
bn is defined and it is a positive real number.

Now we prove the arithmetic-geometric inequality for two numbers,
see [Cve12, p. 9].
Lemma 3. Let (an, bn) ∈ AGM(a, b), then an ≥ bn for all n natural numbers.
This inequality is called arithmetic-geometric mean inequality (AM-GM inequality).
Proof. Let us take some (an, bn) ∈ AGM(a, b), n ∈ N. From Lemma 2 we know,
that an−1, bn−1 are positive real numbers, so

(an−1 − bn−1)2 ≥ 0
a2

n−1 − 2an−1bn−1 + b2
n−1 ≥ 0

a2
n−1 + 2an−1bn−1 + b2

n−1 ≥ 4an−1bn−1

(an−1 + bn−1)2 ≥ 4an−1bn−1.

an−1 + bn−1 ≥ 2
√︂

an−1bn−1

an−1 + bn−1

2 ≥
√︂

an−1bn−1

an ≥ bn.

In general, one can show by induction that for any n − tuple of positive real
numbers it holds that the arithmetic mean is greater than the geometric mean,

a1 + a2 + · · · + an

n
≥ n

√
a1a2 · · · an.

The proof of the general AM-GM inequality is not hard and can be made by
mathematical induction[Cve12, p.49]. We will not prove it as for our purpose we
will use the inequality only for ordered pairs.
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Theorem 4. Let AGM(a, b) = ((an, bn))∞
n=0, then the sequences (an)∞

n=0 and
(bn)∞

n=0 converge. Moreover, they have the same limit.

Proof. For n ∈ N, we have the AM-GM inequality an ≥ bn from Lemma 3. As
an, bn are positive real numbers from Lemma 2, it holds that bn+1 =

√
anbn ≥√

bnbn = bn and an+1 = an+bn

2 ≤ an+an

2 = an . This means that bn is non-decreasing
sequence and an is non-increasing sequence. Then we have

a1 ≥ a2 ≥ · · · ≥ an ≥ bn ≥ bn−1 · · · ≥ b1,

so both sequences are bounded by b1 and a1. As they are monotonous sequences,
they have a limit. Let limn→∞ an = A, then for given ε ∈ R such that ε > 0 we
will find n0 ∈ N : ∀n ∈ N, n ≥ n0 : |an − A| < ε

3 . Then also

|bn − A| = |2 · an+1 − an − A| = |2 · an+1 − 2A + A − an|
≤ |2 · an+1 − 2A| + |A − an|

<
2ε

3 + ε

3 = ε,

so limn→∞ bn = A = limn→∞ an.

One can use AGMR for rapidly computing digits of π. The following algorithm
was based on Gauss work and was discovered by Brent and Salamin independently.

Let ã0 = 1 and b̃0 = 1√
2 . Define

πn := 2ã2
n+1

1 −∑︁n
i=0 2i(ã2

i − b̃
2
i )

, (1.1)

where añ, bñ are computed by the AGM. Then πn increases monotonically to π.
We won’t prove it as the proof needs some non-trivial results from mathematical
analysis. One can find the proof in [BBB87, p.48] with the theory needed on
previous pages.

If we start with (a0, b0) = (
√

2ã0,
√

2b̃0) = (
√

2, 1), we can show by induction
by n, that for all non-negative integers n, an =

√
2ãn, bn =

√
2b̃n. It holds for

n = 0 from the definition. Then suppose that it holds for some n − 1 such that
n ∈ N. We have

an = an−1 + bn−1

2 =
√

2 · ãn−1 +
√

2 · b̃n−1

2 =
√

2 · ãn

bn =
√︂

an−1bn−1 =
√︂√

2 · ãn−1 ·
√

2 · b̃n−1 =
√

2 · b̃n.

Therefore we can rewrite the sequence πn as following:

πn = 2ã2
n+1

1 −∑︁n
i=0 2i(ã2

i − b̃
2
i )

= a2
n+1

1 −∑︁n
i=0 2i−1(a2

i − b2
i )

.

That is the formula stated in [Gri+23, p. 1]
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2 Finite fields and
arithmetic-geometric means

We recall some facts about finite fields. We will follow [Lan05, Section V.5]
and [Sta22, p.49-51]. We will denote Fq the finite field with q elements.

• There exists a finite field Fq with q elements if and only if q = pn, where p
is a prime number and n ∈ N.

• We have Fp ≃ Z/pZ. We will use this to represent elements of Fp as elements
from the set {0, ±1, ±2, · · · , ±p−1

2 }.

• The finite field Fpn , n > 1, is constructed in the following way Fpn ≃ Fp[x]/fn,
where fn ∈ Fp[x] is an irreducible polynomial of degree n.

• The multiplicative group of Fq - F×
q is cyclic and |F×

q | = q − 1.

In the whole chapter we will consider a prime p ̸= 2. For this fields we know,
that 0 ̸= 2 ∈ Z/pZ, so 2 ∈ Fq hence 2−1 ∈ Fq too.
Definition 5. Let x ∈ F×

q , then x is a quadratic residue if there exists y ∈ Fq

such that
y2 = z.

If there is not such y, x is a quadratic non-residue. We will also call quadratic
residues squares and non-residues non-squares.
Definition 6. Let ϕq : F×

q → F×
q such that for every a ∈ Fq the following holds:

ϕq(a) =
⎧⎨⎩1 if a is a quadratic residue;

−1 if a is a quadratic non-residue.

Lemma 7. Let a ∈ F×
q and let g be the generator of F×

q . Let d ∈ N such that
d | q − 1.

• Then a = bd where b ∈ F×
q if and only if a = gn, such that d | n.

• Let D = {a ∈ F×
q : a = bd, b ∈ F×

q }, then |D| = q−1
d

.
Proof. If a = bd, then as b ∈ F×

q we can write b = gm, m ∈ N and

a = bd = (gm)d = gmd.

If n = md, let b = gm, then b ∈ F×
q and then

a = gn = gmd = (gm)d = bd.

Hence,
D = {gmd | m ∈ N} = {gmd | md ≤ q − 1}

as F×
q is a cyclic group and

gm1d ̸= gm2d where m1 < m2 ≤ q − 1
d

.

If gm1d = gm2d, then gd(m2−m1) = 1. As d(m2 − m1) < q − 1, it is a contradiction
as the order of g must be q − 1. Hence, |D| = q−1

d
.
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Corollary 8. Let a ∈ F×
q and let g be the generator of F×

q .

(a) If a = gn, then ϕq(a) = (−1)n.

(b) ϕq is a homomorphism.

Proof. To prove (a), we note that ϕq(a) = 1 if and only if a is a square which by
Lemma 7 happens if and only if n is even. For (b), let a, b ∈ F×

q . Then we can
write a = gn and b = gm for some natural numbers m, n. Then

ϕq(a)ϕq(b) = (−1)n(−1)m = (−1)m+n = ϕq(ab).

Corollary 9. Let a ∈ F×
q , then a−1 is quadratic residue if and only if a is quadratic

residue.

Proof. We can write 1 = 12 and compute

1 = ϕq(1) = ϕq(a · (a−1)) = ϕq(a) · ϕq(a−1),

which is equivalent to a−1 is quadratic residue if and only if a is quadratic
residue.

Corollary 10. In F×
q , the number of squares and non-squares is the same.

Proof. Let D = {a ∈ F×
q | a = b2, b ∈ F×

q }, then the number of squares is
|D| = q−1

2 by Lemma 7. Hence, the number of non-squares if q−1− q−1
2 = q−1

2 .

Theorem 11. (Lagrange) Let a ∈ F×
q . Then a|F×

q | = 1.

This theorem is a consequence of the Lagrange theorem about groups. For the
proof one can see [Lan05, Proposition 2.2, Proposition 4.1].

Corollary 12. Let a ∈ F×
q . Then a

|Fq |
2 is equal to 1 or −1.

Proof. a
|Fq |

2 is a root of the polynomial x2 − 1, which has roots ±1.

Theorem 13. Let a ∈ F×
q . Then

ϕq(a) = a
|Fq |

2 = a
q−1

2 .

Proof. Let g be a generator of F×
q and write a = gn. Then ϕq(a) = (−1)n by

Corollary 8(a). Also, a
q−1

2 = gn q−1
2 = (−1)n because g

q−1
2 is equal to ±1 by

Corollary 12, and since g is a generator of F×
q and q−1

2 < q − 1, we have that
g

q−1
2 = −1. Thus, ϕq(a) = (−1)n = a

q−1
2 .
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2.1 AGM as a directed graph over finite fields
Recall that in the whole section we will consider finite fields Fq such that

q = pn for a prime p ̸= 2 and a natural number n. Also, recall that 0 ̸= 2 ∈ Fq, so
2−1 ∈ Fq. We recall some facts about graph theory from [MNK09, p. 111 - 118].

Definition 14. A graph G is an ordered pair G = (V, E) such that V is a non-
empty set and E is a set of 2 - element sets {u, v} such that u ̸= v and u, v ∈ V .
When E is a set of ordered pairs (u, v), we call G a directed graph. We will call
elements of the set V vertices and elements of the set E edges.

Definition 15. An isomorphism f between graphs G = (V, E) and G′ = (V ′, E ′)
is the mapping

f : V → V ′,

such that f is a bijection and

{x, y} ∈ E if and only if {f(x), f(y)} ∈ E ′.

If G = G′ we call f an automorphism.

Definition 16. Let H = (VH , EH) and G = (VG, EG) be graphs. Then H is a
subgraph of G if VH ⊂ VG and EH ⊂ EG.

Definition 17. A path in the graph is a subgraph such that V = {v1, . . . , vn} and
E = {{vi−1, vi}; i ∈ N} or E = {(vi−1, vi); i ∈ N} if G is directed.

Definition 18. Consider a directed graph G = (V, E). We will construct an
undirected graph G′ = (V ′, E ′) such that

V ′ = V and {u, v} ∈ E ′ ⇐⇒ (u, v) ∈ E or (v, u) ∈ E.

We call the graph G weakly connected if G′ is connected, so for all u, v ∈ V ′ there
exists a path connecting u and v.

Definition 19. A component of directed graph is every maximal weakly connected
subgraph.

Definition 20. A directed cycle of directed graph G is a subgraph such that
V = {v1, v2, . . . , vn} and E = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.

Definition 21. Let u, v be vertices in an oriented graph. Then we will call u a
parent of v if there is an edge u → v. We will call u a son of v if there is an edge
v → u.

Now we are able to define a directed graph which will represent the AGM
sequences in finite fields.

Definition 22. Let us have a directed graph JFq = (V, E) where V = {(a, b) ∈
F×

q
2 | ϕq(ab) = 1, a ̸= ±b} and (a, b) → (c, d) is an edge if and only if

c = a + b

2 d2 = ab.

We will denote the components of JFq as Ji and the number of components d(Fq).
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Lemma 23. Let (a, b) be a vertex of JFq . Then (a, b) has a parent if and only
if a2 − b2 is a square. Furthermore, if (a, b) has a parent (A, B) then the other
parent is (B, A) and these are the only parents of (a, b). Namely, the parents of
(a, b) are (a + S, a − S) and (a − S, a + S), such that S2 = a2 − b2.

Proof. Suppose (a, b) has some parent (A, B). We have A + B = 2a and AB = b2.
Suppose the polynomial x2 − 2ax + b2 = (x − A)(x − B). Then A and B are roots
of x2 − 2ax + b2 and as it has exactly two roots, there are exactly two parents,
(A, B) and (B, A). Furthermore, (A − B)2 = 4a2 − 4b2, and so ϕq(a2 − b2) = 1.

On the other hand, if ϕq(a2 − b2) = 1, then there exist S ∈ Fq such that

S2 = a2 − b2 ̸= 0.

Hence S ̸= 0 and we can consider the vertex (a + S, a − S) as a + S ̸= ±(a − S)
and

ϕq ((a + S)(a − S)) = ϕq(a2 − S2) = ϕq(a2 − (a2 − b2)) = ϕq(b2) = 1.

Consider a son of this vertex, then we have

(a + S) + (a − S)
2 = a

and
(a + S)(a − S) = b2,

hence (a + S, a − S) is a parent of (a, b).

Lemma 24. Every α ∈ F×
q induces a distinct graph automorphism

φα : JFq → JFq

(a, b) ↦→ (αa, αb).

Proof. Consider the edge (a, b) → (c, d) and the mapping φα. Then

• ϕq(αaαb) = ϕq(ab) = 1

• αa ± αb = α(a ± b) ̸= 0 as α ̸= 0 and a ± b ̸= 0. So, αa ̸= ±αb,

so it maps vertices of the graph to vertices. What’s more, αa+αb
2 = c · α and

αaαb = α2d2, so there is an edge (αa, αb) → (αc, αd), so it preserves edges. φα is
injective as αa = αb means a = b. Number of vertices (and edges) is finite hence
φα is surjective and it is an automorphism.

Finally we will show the distinction of automorphisms. If φα = φβ then e.g.
φα(1, ·) = φβ(1, ·) which implies α · 1 = β · 1, so α = β.

Lemma 25. G = {φα | α ∈ F×
q } ≃ F×

q is a group.

This lemma can be proved in the same way as Lemma 24.

Theorem 26. Let Nn denote the number of components of JFq with n vertices.
Then (q − 1)|nNn. Moreover, if in the component is an oriented cycle of the length
c and Nc denotes the number of components with an oriented cycle of the length c,
then (q − 1)|cNc

13



Proof. Consider G, the group of graph automorphisms φα such that α ∈ F×
q . This

group acts on the JFq , it permutes the vertices of components which have the same
number of vertices and in the graph JFq there is nNn these vertices. Every orbit
of a vertex has size q − 1 as this automorphisms are distinct. Hence, (q − 1)|nNn.
Furthermore, the vertex from the cycle has to be mapped to the vertex from the
cycle. It implies that q − 1 divides the number of all vertices which are in the
cycles of the same length. Hence, q − 1 | cNc.

We can make one more observation. We will call the vertex (a, b) a square
vertex if a and b are both squares. The other vertices are non-square.

Theorem 27.

• If the edge in the component connects two square vertices, then all the
vertices in the component are square nodes.

• If the edge in the component connects two non-square vertices, then all the
vertices in the component are non-square.

• If the edge in the component connects square vertex and non-square vertex,
then in the component the square and non-square vertices alternate, so there
is no edge in this component connecting two square vertices or two non-square
vertices.

Proof. Consider the path (a, b) → (c, d) → (e, f) and suppose (a, b) is a square
vertex, so a = A2 and b = B2. Then

c = A2 + B2

2 d2 = A2B2,

which means that either d = AB or d = −AB which gives

e = c + d

2 =⇒ e = A2 + B2 + 2AB

4 =
(︃

A + B

2

)︃2

or

e = A2 + B2 − 2AB

4 =
(︃

A − B

2

)︃2
.

Then by Definition 22, f is a square. Hence (e, f) is a square vertex and we see,
that every second vertex is also a square vertex. Now suppose (a, b) is non-square
vertex, then let us take α ∈ F×

q a non-square and consider the graph automorphism
φα. Then

(a, b) → (c, d) → (e, f) ↦→ φα((a, b)) → φα((c, d)) → φα((e, f))

and as φα((a, b)) = (αa, αb), ϕq(αa) = (−1)(−1) = 1, so φα((a, b)) is a square
vertex. Then φα((e, f)) is a square vertex and as φα((e, f)) = (αe, αf), ϕq(e) = −1.
So, the theorem holds.

Corollary 28. Let us consider a component of graph JFq with the directed cycle.
Let c be the number of nodes in the cycle of the component. If c is odd, then
there is a component made of non-square vertices and another component made
of square vertices, so Nc is even.

14



3 AGM over Fq, where
q ≡ 3 (mod 4)

In the whole chapter we will work with finite fields Fq, with q ≡ 3 (mod 4).

Lemma 29. When q ≡ 3 (mod 4), -1 is a quadratic non-residue in Fq.

Proof. We count ϕq(−1) = (−1) q−1
2 = −1 as q ≡ 3 (mod 4), so q−1

2 ≡ 1 (mod 2).

Lemma 30. Let ε ∈ {±1}, x ∈ F×
q . If ϕq(x) = 1, then ∃!y ∈ F×

q such that y2 = x
and ϕq(y) = ε. We will denote ε

√
x = y.

Proof. Suppose ϕq(x) = 1. Then the polynomial p(t) = t2 − x has solution
±y. As −1 is not a square, exactly one from {y, −y} is square so the other is
non-square.

Definition 31. Let a, b ∈ F×
q such that ϕq(ab) = 1 and a ̸= ±b. We define a

sequence AGMFq(a, b) = ((an, bn))∞
n=0 such that a0 = a, b0 = b and

an = an−1 + bn−1

2 ε = ϕq(an) bn = ε

√︂
an−1bn−1.

Lemma 32. AGMFq(·, ·) is an infinite sequence consisting of (an, bn) ∈ F×
q

2, such
that an ̸= ±bn.

Proof. We need to show, that for all non-negative integers n it holds that
ϕq(anbn) = 1, so the sequence can continue, hence to be infinite and that an ̸= ±bn

and (an, bn) ∈ F×
q

2.
We will show it by induction. From the definition of a0, b0 we know that it

holds. Suppose it holds for n − 1, we want to show, that it also holds for n. From
the definition of an and bn we have

an = an−1 + bn−1

2

bn = ε

√︂
an−1bn−1

and as an−1 ≠ bn−1, an, bn ∈ F×
q . If an = ±bn then 0 = a2

n − b2
n = (an−1+bn−1)2

4 −
an−1bn−1 = (an−1−bn−1)2

4 which is a contradiction as an−1 ̸= bn−1.
Finally, ϕq(anbn) = ϕq(an) · ϕq(bn) = ε · ϕq(ε

√
an−1bn−1) = ε2 = 1.

Example. Let us have a look at q = 3. We have F×
q = {1, −1} so there is no (a, b)

such that a ̸= ±b.
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Example. Consider q = 11. Then,

AGMF11(4, 1) = ((4, 1), (8, 2), (5, 4), (10, 8), (9, 5), (7, 10), (3, 9),
(6, 7), (1, 3), (2, 6))

AGMF11(1, 4) = ((1, 4), (8, 2), (5, 4), (10, 8), (9, 5), (7, 10), (3, 9),
(6, 7), (1, 3), (2, 6), (4, 1))

AGMF11(9, 1) = ((9, 1), (5, 3), (4, 9), (1, 5), (3, 4))

AGMF11(1, 9) = ((1, 9), (5, 3), (4, 9), (1, 5), (3, 4), (9, 1)),

where the line above a sequence means it is a repeating period.
Now, let us have a look on the graph of JFq . We will see, that the components

have a special shape, which is not a coincidence.
Example. For q = 11, JFq consists of 3 connected components:

Figure 3.1 Components of JF11
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Theorem 33. (1) JFq has (q − 1)(q − 3)/2 vertices.

(2) Every component of JFq consists of the directed cycle and there lead an oriented
path of the length 1 to every vertex of that cycle. There are no other cycles
(even undirected).

Proof. (1) We compute the number of vertices. Consider a vertex (a, b). There
are q − 1 choices for a, as a ∈ F×

q . We need b ̸= ±a and b ∈ F×
q which is

q − 3 choices. Let B = {b ∈ F×
q | b ̸= ±a} and let us take b ∈ B. We

need ϕq(b) = ϕq(a) and as we know from Lemma 30 either ϕq(b) = ϕq(a) or
ϕq(−b) = ϕq(a). So we have q−3

2 choices for b. All in all, there is (q−1)(q−3)
2

vertices.

(2) Let (a, b) be a vertex of some component J of JFq . As we have shown in
Lemma 32, the sequence AGMFq(a, b) is infinite, but we have only finitely
many vertices, so there is a directed cycle in J . Now, suppose (a, b) is in the
directed cycle. Let us consider (A, B) as the parent of (a, b), which is in the
cycle too. Then from Lemma 23 (a, b) has another parent (B, A). As (A, B)
is in the cycle, it has some parent, so A2 − B2 = −(B2 − A2) is a square which
implies (B2 − A2) is not a square hence (B, A) doesn’t have parents.

When we draw the component of JFq in the plane, it looks like bell head with
tentacles. Hence the components of JFq are playfully called jellyfishes and the
graph JFq is jellyfish swarm in [Gri+23].
Example. Recall the notation d(Fq) from Definition 22. Here is a table of some
numbers of components for q ≡ 3 (mod 4) prime numbers.

q 3 7 11 19 23 31 43 47 59 67 71 79
d(Fq) 0 1 3 8 5 10 7 4 7 30 25 18
q 83 103 107 127 131 139 151 163 167 179 191 199
d(Fq) 6 41 9 54 46 33 45 38 11 14 14 101
q 211 223 227 239 251 263 271 283 307 311 331 347
d(Fq) 120 18 12 40 31 17 34 35 32 33 117 19

Table 3.1 Table of numbers of components d(Fq) for some q ≡ 3 (mod 4)

17



4 AGM over Fq, where
q ≡ 5 (mod 8)

In the whole chapter we suppose q = pn for a prime p and natural number n
and q ≡ 5 (mod 8).
Lemma 34. When q ≡ 5 (mod 8), then

• the number −1 is a quadratic residue. Suppose i ∈ Fq such that i2 = −1.
Then i is a quadratic non-residue.

• the number 2 is a quadratic non-residue.

Proof. We compute ϕq(−1) = (−1) q−1
2 = 1 as q ≡ 1 (mod 4) so q−1

2 ≡ 0 (mod 2).
Now we can compute ϕq(i) = i

q−1
2 = (i2) q−1

4 = (−1) q−1
4 = −1 as q ≡ 5 (mod 8) so

q−1
4 ≡ 1 (mod 2).

It remains to compute ϕq(2). We can write (i + 1)2 = 2i, hence

1 = ϕq(2i) = ϕq(2)ϕq(i) = −ϕq(2),

so ϕq(2) = −1.
Lemma 35. Let (a, b) be a vertex of JFq such that ϕ(ab) = 1. Then (a, b) has
either 2 or 0 sons.

Proof. Suppose (a, b) has some son (A, B), so ϕ(AB) = 1 which implies that
ϕ(A · (−B)) = 1, because −1 is a square. Therefore (A, −B) is the other son. The
equation x2 − ab = 0 has only this two solutions (B and −B).

Recall that (a, b) has either 2 or 0 parents from Lemma 23.
Theorem 36. Let E be the set of edges of JFq . If E ̸= ∅, then there is a cycle in
JFq .

Proof. Consider the edge (a, b) → (A, B) from JFq . Then the next son of (a, b) is
(A, −B). Consider the pairs (c, d) and (e, f) (which do not have to be vertices of
JFq) such that

c = A + B

2 d2 = AB

e = A − B

2 f 2 = −AB.

Then either d = if or d = −if , i ∈ Fq : i2 = −1. Suppose d = if and let us
compute

ϕq(cdef) = ϕq(ce)ϕq(if 2) = ϕq

(︄
A2 − B2

4

)︄
· (−1) = ϕq

⎛⎝(︄a − b

4

)︄2
⎞⎠ · (−1) = −1.

We obtain the same if d = −if . As cdef is a quadratic non-residue, exactly one of
cd and ef is a quadratic residue, so exactly one of (c, d), (e, f) is a vertex. So, we
can make the path longer and continue analogously for either (A, B) or (A, −B),
not both. As we can continue like this in every step and the number of vertices is
finite, there must be a cycle.
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Theorem 37. Let C be the cycle in JFq , then there are more than two vertices in
C.

Proof. Consider that in JFq there is a cycle with only two vertices, so there are
edges (a, b) → (c, d) and (c, d) → (a, b). Then, it must hold that

c = a + b

2 , d2 = ab,

a = c + d

2 , b2 = cd.

Then we get

a + c = a + b + c + d

2 =⇒ a + c = b + d,

b2d2 = abcd =⇒ ac = bd.

Let us denote A = a + c = b + d and B = ac = bd and consider a polynomial
p(x) ∈ Fq[x], such that p(x) = x2 − Ax + B. Then p(x) = (x − a)(x − c) =
(x − b)(x − d) and as we work with a finite field, it must have at most 2 roots.
Hence, either a = b, c = d or a = d, b = c.

Recall Definition 22, then a = b is a contradiction, hence suppose a = d, b = c.
So, we have an edge (a, b) → (b, a) which gives us b = a+b

2 , hence b = a which is
again a contradiction.

Corollary 38. Let C ⊂ V be the set of vertices in a cycle. Then every c ∈ C has
exactly 2 sons, one is a part of the cycle and the other does not have any son.

Proof. Suppose c1 ∈ C, it has exactly two sons, c2 and d2. Suppose c2 is in the
cycle, so it has exactly two sons, c3 = (ac, bc) and c′

3. If d2 had a son d3 = (ad, bd),
then

ϕq(acbcadbd) = ϕq(acbc)ϕ(adbd) = 1 · 1 = 1,

which would be a contradiction as we know from the proof of Theorem 36 that
ϕq(acbcadbd) = −1.

Theorem 39. Consider the path (a, b) → (c, d) → (e, f), then there is another
path (g, h) → (d, c) → (e, f) and exactly one of the vertices (a, b), (g, h) has some
parents.

Proof. From Lemma 23 we know, that

a = c − x b = c + x where x2 = c2 − d2

g = d − y h = d + y where y2 = d2 − c2,

which means x2 = −y2, so x = iy or x = −iy and ϕq(xy) = −1. We can compute

ϕq((a2 − b2)(g2 − h2)) = ϕq

(︂(︂
(c − x)2 − (c + x)2

)︂ (︂
(d − y)2 − (d + y)2

)︂)︂
= ϕq(4cx · 4dy) = ϕq(16)ϕq(cd)ϕq(xy) = ϕq(xy)
= −1,

which implies that either (a2 − b2) or (g2 − h2) is a quadratic residue, so either
(a, b) or (g, h) has parents and the other does not have.
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Corollary 40. Let C ⊂ V be the set of vertices in a cycle. Then every c ∈ C has
exactly 2 parents, one is the part of the cycle C and the other is not part of any
cycle.

Proof. Suppose c ∈ C and recall Theorem 37 the length of cycle is at least 3, so
we can consider the path c1 → c2 → c of vertices from the cycle. As c has another
parent c3

′, by Theorem 39 we know there is another pathc1
′ → c2

′ → c, hence
exactly one of the vertices c1 and c′

1 has parents. As c1 ∈ C, it has parents, hence
c′

2 does not have parents.

When we join all the previous claimings about JFq together, we obtain the
following theorem.

Theorem 41. Every component of JFq is made either of single vertex or of the
cycle c1 → c2 → · · · → cn, vertices ui such that ci → ui+1, vertices vi such that
vi → ci and vi → ui and vertices wi such that wi → vi, wn+i → vi and vertices xi

such that wi → xi, wn+i → xi. These are all edges and vertices of the component
of JFq .

Figure 4.1 A general nontrivial component of JFq such that q ≡ 5 (mod 8)

Definition 42. Let q ≡ 5 (mod 8) and (a, b) ∈ F×
q

2 such that ϕq(ab) = 1 and
there exist c, d ∈ F×

q such that

c = a + b

2 , d2 = ab, ϕq(cd) = 1.

Let C be the component of JFq which contains the vertex (a, b) and suppose it
contains a cycle of the length n. Then, using the notation from Theorem 41,
without loss of generality, (a, b) ∈ {c1, v1, w1, w1+n}. Hence we define an infinite
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arithmetic-geometric mean sequence

AGMFq(a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(c1, c2, . . . , cn) if (a, b) = c1,

(v1, c1, c2, . . . , cn) if (a, b) = v1,

(w1, v1, c1, c2, . . . , cn) if (a, b) = w1,

(w1+n, v1, c1, c2, . . . , cn) if (a, b) = w1+n.

Recall that we denote the repeating period by line over elements of sequence.
Theorem 43. If q > 13 and q ≡ 5 (mod 8), then there is at least one nontrivial
component (component with some edges).
Proof. Recall Theorem 36, it suffices to prove that the set of edges is non-empty.
This holds if and only if in JFq there is a vertex (a, b) which has parents, hence
ϕq(a2 − b2) = 1 by Lemma 23. Also notice, that if (a, b) is a vertex, then
a2 − b2 = (a − b)(a + b) ̸= 0.

Suppose g is the generator of the group F×
q . Then g is not a square and order

of g is q − 1. Then g
q−1

2 = −1 by Theorem 13.
As q > 13, g2, g4, g6 /∈ {1, −1} hence we can consider vertices (g2, 1), (g4, 1),

(g6, 1). If any of
(g2)2 − 12 = g4 − 1, (g4)2 − 12 = g8 − 1, (g6)2 − 12 = g12 − 1

is a square, we found the vertex with parents, so we finished. Suppose none of
them is a square, then

−1 = ϕq(g8 − 1) = ϕq((g4 − 1)(g4 + 1)) = ϕq(g4 − 1)ϕq(g4 + 1)
= −ϕ(g4 + 1) =⇒ ϕ(g4 + 1) = 1

−1 = ϕq(g12 − 1) = ϕq((g4 − 1)(g8 + g4 + 1)) = ϕq(g4 − 1)ϕq(g8 + g4 + 1)
= −ϕq(g8 + g4 + 1) =⇒ ϕq(g8 + g4 + 1) = 1,

so we can write a2 = g4 + 1 ̸= 0 and b2 = g8 + g4 + 1 ̸= 0. Then
a4 − b2 = g8 + 2g4 + 1 − (g8 + g4 + 1) = g4

a4 − g4 = b2.

We can see that ϕq(a2g2) = 1 as they are both squares. Furthermore, a2 ̸= ±g2 as
0 ̸= b2 = a4 − g4 = (a2 − b2)(a2 + b2). Hence, (a2, g2) is the vertex of JFq which
has parents.

We can show that for any less q there are not any nontrivial components.
Theorem 44. There is (q−1)(q−5)

2 vertices.
Proof. There are q−1

2 squares which we can pair with q−1
2 − 2 = q−5

2 squares. The
same is for non-squares, so together we have (q−1)(q−5)

2 vertices.

Example. Now, we can see that for q = 5 we do not have any vertices.
Example. Suppose q = 13, then the vertices which contain 1 are

(1, 4), (4, 1), (1, 9), (9, 1), (1, 3), (3, 1)(1, 10), (10, 1)
but none of them is part of any edge. When we use the homomorphism φα, we
can obtain that there are no edges.
Corollary 45. The smallest q with nontrivial graph components is 29.
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Example. Consider q = 29. Then there is one cycle of length 28 and 4 cycles of
length 7.

Figure 4.2 The components of JF29
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5 Elliptic curves and AGMFq

This is an informal chapter which gives a brief view of the connection between
elliptic curves and arithmetic-geometric mean sequences. One can use this con-
nection to give a lower bound on the number of components in the graph JFq . In
the whole chapter we follow [Gri+23, p. 4-9] Fq such that q ≡ 3 (mod 4).

Definition 46. Let E be a curve over field F given by the equation

y2 = f(x) = x3 + ax2 + bx + c,

where a, b, c ∈ F and f(x) has distinct roots in the algebraic closure F̄. Then E;
seen as a projective curve is an elliptic curve.

As we informally introduce elliptic curves, let us briefly explain that E as a
projective curve means that E contains of an affine part given by the equation
y2 = f(x) and of one point, which we call the point at infinity. We denote this
point O. Then, if we want to be more precise, the curve E together with the point
O is called an elliptic curve. For more details, see [Was03, Chapter 2 and 4].

Definition 47. Let

E(F) = {(x, y) ∈ F2 : y2 = f(x)} ∪ {O},

then E(F) is the set of F-rational points on E.

Lemma 48. There is a way to define an abelian group law on the set E(F).

One can find more details about the group law in [ST15, Chapter 1].

Definition 49. [Was03, p. 236] An isogeny is a homomorphism between groups
E1(F) and E2(F) given by rational functions.

Recall JFq is a directed graph with the components of special shape.

Definition 50. Let Fq such that q = pn where n ∈ N and p ̸= 2. We define
Legendre curves Eλ, such that λ ∈ Fq \ {0, 1} and

Eλ : y2 = x(x − 1)(x − λ).

Theorem 51. [Gri+23, p.6] Let Fq such that q ≡ 3 (mod 4) q = pn where n ∈ N
and p ≥ 7. Let EFq be the set of Legendre curves over Fq and Ji be the components
of JFq . We define the map ΨFq : JFq → EFq such that

ΨFq((a, b)) := Eλ(a,b),

where λ(a, b) := b2

a2 . Then the following are true:

• We have that
ΨFq(JFq) = {Eλ2 : λ ∈ Fq \ {0, ±1}}

and each Eλ2 ∈ EFq(JFq) has q − 1 preimages.
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• For each 1 ≤ i ≤ d(Fq), we have that ΨFq(Ji) is a connected graph, where an
edge (an, bn) → (an+1, bn+1) ∈ Ji transforms to the isogeny Φn : Eλ(an,bn) →
Eλ(an+1,bn+1) defined by

Φn(x, y) :=
(︄

(anx + bn)2

x(an + bn)2 , −any(anx − bn)(anx + bn)
x2(an + bn)3

)︄
.

Moreover, we have that ker(Φn) = ⟨(0, 0)⟩.

Example. Consider q = 11, than we obtain

Figure 5.1 AGM and Legendre curves in F11
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Example. Consider q = 19, then d(F19) = 8 and we obtain

Figure 5.2 AGM and Legendre curves in F19

Theorem 51 gives the connection between elliptic curves and AGM. One can
use the connection between elliptic curves and arithmetic geometric means to give
the lower bound of d(Fq).

Theorem 52. [Gri+23, Theorem 5] Let ε > 0, then for sufficiently large q ≡ 3
(mod 4) we have

d(Fq) ≥ (1
2 − ε) · √

q.
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One can ask if this lower bound is close to the truth values. When we view
some examples

d(F47) = 4 >

√
47
2 ≈ 3.4278,

d(F383) = 14 >

√
383
2 ≈ 9.7851,

d(F983) = 25 >

√
983
2 ≈ 15.6764,

d(F1907) = 38 >

√
1907
2 ≈ 21.8346,

d(F7703) = 87 >

√
7703
2 ≈ 43.8833,

it looks as if this lower bound was not much smaller than an optimal bound,
which perhaps might be of the form √

q log log(q) by [Gri+23, p. 9].
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