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Introduction
Spintronics is a currently expanding field that promises faster and denser information
technology devices, especially memory disks [1]. It uses the electron spin in addition to
its charge, leading to the concept of a spin current, which may exist independently of a
charge current.

Spintronics is already used in read heads of magnetic hard drives and in MRAM (magne-
toresistive random-access memory), a nonvolatile, energy-saving memory device [2].

One of the possible eventual benefits of spintronics over conventional electronics is a
greatly increased operating speed reached when combined with antiferromagnets, thanks
to the faster spin manipulation possible in them compared to ferromagnets [3, 4]. This
requires understanding spintronic processes at the corresponding terahertz frequencies
and picosecond timescales. This task is approachable with the help of terahertz (THz)
spectroscopy in the time domain. This technique can also help understand spin current
dynamics on a fundamental level, for example, explaining spin current transfer across
various types of interfaces.

The ultimate goal of this thesis is to measure the dynamics of a spin current in a spintronic
terahertz emitter (STE), as detailed in chapter 1. Our method is measuring the THz pulse
emitted by the STE, finding the transfer function of the detection setup, and performing a
numerical deconvolution. To find the transfer function, we need a theoretical understanding
of THz emission from nonlinear crystals through difference-frequency generation, including
factors affecting the emission such as phase-matching, reflections, and Fresnel losses at
interfaces (chapter 2). We then implement the analytical models into a numeric script
and generate the theoretical emission pulses from the crystals used (chapter 3). We then
measure the actual emission signals (chapter 4), apply the numeric method to extract the
transfer function, and use it to reconstruct spin current dynamics in multiple samples
(chapter 5). We conclude by discussing the optimal experimental procedure for using this
method and avenues for further work (chapter 6).

Our goals are to:

• Measure the signals from several nonlinear crystals under multiple experimental
conditions.

• Find the transfer function for each setup, verifying that different emitters provide
consistent results.

• Compare the experimentally determined transfer function with theoretical expecta-
tions.

• Reconstruct the temporal dynamics of a spintronic emitter. Determine the level of
detail the present experimental equipment can reach.

• Automate the process of spin current reconstruction for the purposes of future
experiments.
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1 Motivation

1.1 Terahertz spectroscopy
Spectroscopy is the study of material properties and processes through their interaction
with light [5]. Different light must be used for different processes depending on their
energy and/or time scales. THz radiation is particularly well suited to processes on time
scales of approximately picoseconds, as 1 ps = (1 THz)−1 [6, 7]. Ref. [8] provides an
introduction into the experimental techniques and fundamental concepts.

THz radiation lies in the so-called “terahertz gap” between infrared optical spectroscopy
and high-frequency electronic measurements, see figure 1.1. This spectral range was
inaccessible to experiments for a long time because of a lack of usable sources and
detectors [7]. This was a problem as many solid-state excitation phenomena (such as
phonons, magnons, or charge carrier scattering on impurities) lie in this frequency range.
The development of femtosecond lasers has opened this area to experimental study. Among
the applications are noninvasive imaging for medical, security, or quality control purposes
[7] or studying the vibrational modes of biomolecules [6].

Figure 1.1 THz radiation in the light spectrum. Image reproduced from [9].

Time-domain terahertz spectroscopy is a spectroscopic technique that can, unlike conven-
tional spectroscopy, record not only the intensity of light, but also its phase; i.e., it allows
us to reconstruct the temporal dependence of the electric field, the THz waveform [7].
This allows us in principle to reconstruct the time profile of the underlying charge and
spin currents.

1.2 Ultrafast spin currents
Our work was done in the context of the research projects of the Laboratory of THz
Spintronics1. A recent motivating overview of the laboratory’s research area and its
applications is [9].

One important application of time-domain THz spectroscopy is the study of the dynamics
of ultrafast (picosecond-scale and faster) processes, such as ultrafast spin currents in
spintronics. This is the application this work approaches.

1https://www.mff.cuni.cz/en/kchfo/ooe/laboratories/thz
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By spintronics we mean the use of spin degrees of freedom of electrons in information
processing technology [10]. This allows, among other things, storing information in
antiferromagnetic materials, rather than the traditionally used ferromagnetic ones [4, 11].
That has advantages in both access and switching speed (which could thus move from the
gigahertz range to the terahertz range) and in memory density, as antiferromagnetic bits
don’t affect neighboring bits nearly as much as ferromagnetic ones. Ref. [3] provides a
review of the use of THz radiation for reading and writing data in antiferromagnetically
oriented materials.

Figure 1.2 An illustration of the mechanism of spintronic emitters for the case of a bilayer.
Reproduced from [12]. The bilayer consists of a ferromagnetic layer (FM) with a magnetization
M⃗ induced by a permanent magnet on top of the emitter and a non-ferromagnetic metal (NM),
typically a heavy metal such as platinum. An optical femtosecond pulse arrives from the left. It
excites electrons in the FM layer and creates a current js from the FM into the NM. Since it
originates in a magnetized material, this current is spin-polarized in the direction of M⃗ . This
process is called spin current injection. Within the NM layer, the spin current is converted
through the inverse Spin Hall effect into a perpendicular charge current jc. This transient
current emits THz dipole radiation.

An ultrafast spin current is a current of charged particles (typically electrons) whose
spin points in a common direction [13]. It can be, for example, very efficiently generated
in a spintronic THz emitter (STE). A simple case to explain the principle is a bilayer
spintronic emitter, illustrated in figure 1.2. It consists of two nanometer-scale metallic
layers, the first a ferromagnet, the second a heavy metal, placed in an external magnetic
field from a permanent magnet [12, 14, 15]. An incoming optical pulse creates a charge
current from the ferromagnet into the heavy metal. The current is spin-polarized, because
all its electrons started out with their spins oriented parallel to the magnetization of the
ferromagnet. Within the heavy metal, the inverse spin Hall effect converts the out-of-plane
spin current to an in-plane charge-current [16]. This current emits dipole radiation, with
the electric field at the exit face of the bilayer related to the charge current density j
through the metal conductivity σ:

E = j

σ
(1.1)

A common case for metals for Ω < 3 THz is that σ(Ω) is frequency-independent [17], so
knowing the temporal dynamics of E(t) would also tell us about the dynamics j(t) of the
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current itself. This would let us study the dynamics of j(t) originated in STE samples
with more complex interfaces as well.

1.3 Spin current reconstruction
In time-domain THz spectroscopy, we measure the dependence of the electric field ampli-
tude of a THz pulse on time [6, 7]. However, the signal S(t) we measure is not directly
the electric field E(t) that was produced in the emitter (so called “near field”). It is
affected by propagation through the setup (forming the “far field”) and the sensitivity
of the detection method. Reconstructing the original signal requires a combination of
experiment and modeling [18, 19, 20, 21].

Fortunately, the experiment is linear in that the electric field does not interact with
itself. This mathematically means that the relationship between the electric field E(t)
just behind the sample and the measured signal S(t) in the detector is captured by a
convolution:

S(t) = E(t) ∗ h(t) (1.2)

The function h(t), called the transfer function, is determined by the experimental setup.
It represents the detection response to a hypothetical Dirac δ-pulse; the convolution
represents the adding up of such responses for a general shape of E(t). If we know h(t),
we can invert equation 1.2 and find the electric-field shape E(t) from the measured signal
S(t).

We may attempt to calculate h(t) from theory [6, 7, 22], but that would require a complete
characterization of the setup, which is a complicated procedure that has to be repeated
for any change in the setup. It is simpler to avoid documenting the experimental setup
explicitly and instead do it implicitly, by performing a reference measurement with an
emitter whose true E(t) we know.

For inverting (1.2), it is more convenient to work in the frequency domain, that is, to
perform a Fourier transform [23], which we define (for any temporal waveform f(t)) as:

f(ω) =
∫︂ ∞

−∞
f(t)e−iωt dt (1.3)

Its inverse is:

f(t) =
∫︂ ∞

−∞
f(ω)eiωt dω (1.4)

The Fourier transform turns the convolution into a multiplication:

S(ω) = E(ω)h(ω) (1.5)

From (1.5), it is obvious that on knowing two out of S, E, and h, we can find the
third. The process used in this thesis is this: we measure a reference signal Sref from a
well-known emitter and the signal S out of an unknown (specifically, spintronic) emitter,
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under conditions that differ as little as possible2. We calculate Eref based on theoretical
considerations, then use Eref and Sref to calculate h, then use h to go from S to E. All
together this is represented by equations (1.6) and (1.7):

h(ω) = Sref (ω)
Eref (ω) (1.6)

E(ω) = S(ω)Eref (ω)
Sref (ω) (1.7)

In this thesis, we use ZnTe (zinc telluride) and GaP (gallium phosphide) nonlinear crystals
as reference emitters to reconstruct the current dynamics in spintronic emitters (STE).

2Ideally, the only change between the measurements is exchanging one emitter for the other, though
in the case of measurements in dry air, it is necessary to wait for the air to re-dry.
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2 Modeling generation of THz
radiation
In this chapter we describe how to calculate the modeled E(t) emitted from a nonlinear
crystal after an excitation by an ultrafast laser pulse.

First, we describe laser pulses and note the two separate orders of magnitude of frequencies
used: near infrared and THz.

Second, we describe the process of difference-frequency generation (DFG) for a pair of
monochromatic waves. We work step by step: first we find electric polarization produced
by DFG, then we find the electric field produced by that polarization in an infinitesimal
crystal slice, then we integrate over the crystal length.

Third, we find the effects of interface transmission and reflection on incoming and out-
coming radiation.

Finally, we integrate the formula for monochromatic waves from the second step over the
spectrum obtained in the third step.

2.1 Laser pulses
A pulse laser outputs light over a frequency range that depends on the pulse duration.
This is crucial for a quantitative understanding of THz radiation generation.

We may equivalently describe the output of a pulse laser through its electric field amplitude
in time E(t) or in angular frequency E(ω). The relationship between these two descriptions
is the Fourier transform, as described in equations (1.3) and (1.4).

We can use this formalism to describe a Gaussian wave packet. Its spectrum is defined in
[6]1 to be:

E(ω) = E0

2
√
π

√
Γ

exp
(︄

−(ω − ω0)2

4Γ

)︄
(2.1)

The inverse Fourier transform of this spectrum yields the time domain description:

E(t) = E0

2
√
π

√
Γ
eiω0te−Γt2 (2.2)

E0 can be interpreted as the peak electric intensity (thanks to the normalization factors).
Γ is a parameter describing the frequency bandwidth.

In both descriptions, there is a Gaussian pulse with a characteristic size at which E drops
to 1

e
E0. We denote these sizes by ∆ω = 2

√
Γ and ∆t = 1√

Γ . These relations hold for
transform-limited laser pulses.

1We have added the normalization factors that E0 is divided by to give E0 a meaning: the peak field
amplitude.
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∆t is related to τ , the FWHM2 duration of the pulse, through a factor of 2
√

ln 2:

∆t = τ

2
√

ln 2
(2.3)

There is an analogical relation between the spot FWHM radius ρ and w0, the beam waist
parameter.

We can find E0 from the pulse energy W , which follows from the excitation power Pexc

and the laser repetition rate frep:

W = Pexc

frep

(2.4)

Assuming a Gaussian beam in both space and time, we find peak intensity I0 as:

I0 = W

π
3
2 ∆tw2

0
(2.5)

Peak field amplitude is then (see for example [24]):

E0 =
√︄

2
ncε0

I0 (2.6)

Our laser parameters are λ0 = 1030 nm (central wavelength), τ = 170 fs, ρ = 575 µm,
frep = 10 kHz. From this, we obtain ω0 = 2π c

λ0
, Γ = 1

(∆t)2 , w0 = ρ

2
√

ln 2 . The resulting
spectrum is shown in figure 2.1.

2Full width at half maximum
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Figure 2.1 The spectrum of our laser with example frequencies taking part in the DFG. ω0 is
the central frequency, ω1 the higher frequency, ω2 the lower one, and Ω = ω1 − ω2 is produced
by DFG.

We see that the spectrum is centered in the optical range, while its bandwidth is in the
THz range. Throughout this entire thesis, ω is used for frequencies in the optical range
(or for generic frequencies) and Ω for frequencies in the THz range.

2.2 Nonlinear crystals and difference-frequency gen-
eration

Nonlinear crystals are used both for the generation and the detection of THz radiation. The
underlying principle that makes them useful for these purposes is a nonlinear relationship
between the electric field E and electric polarization P . We define the electric susceptibility
χ using the vacuum permittivity ε0 as:

P (E) = ε0χ(E)E (2.7)

The nonlinear dependence of P on E becomes significant only at strong fields, so we can
expand it into a Taylor series:

P (E) = ε0

∞∑︂
i=1

χ(i)E
i (2.8)

The generation of THz radiation uses difference-frequency generation3 (DFG), while its
3The term optical rectification is also sometimes used.
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detection uses the Pockels effect [6, 7]. Both of these are consequences of a nonzero χ(2)
term present in noncentrosymmetric materials, so we neglect higher-order terms and only
consider the term P2:

P2 = ε0χ(2)E
2 (2.9)

Now, let’s illustrate the principle on a toy model: Let us have two monochromatic
electromagnetic waves with different frequencies, E1(t) = E1 cosω1t and E2(t) = E2 cosω2t.
The second-order term in polarization gives us:

P2(t) = ε0χ(2)[E1(t) + E2(t)]2 = ε0χ(2)[E2
1(t) + E2

2(t) + 2E1(t)E2(t)] (2.10)

The squared terms can be rewritten thanks to the identity cos2 x = 1+cos 2x
2 as the

generation of the second harmonic and the production of a constant polarization, which
are effects irrelevant for our purposes. We only consider the term mixing E1 and E2:

Pmix(t) = 2ε0χ(2)E1(t)E2(t) = 2ε0χ(2)E1E2 cosω1t cosω2t (2.11)

Using a trigonometric identity, we find:

Pmix(t) = ε0χ(2)E1E2 [cos(ω1 + ω2)t+ cos(ω1 − ω2)t] (2.12)

Thus we get terms in the polarization that oscillate at the sum and difference frequencies.
The sum-frequency term is again irrelevant for our purposes.

PDF G(t) = ε0χ(2)E1E2 cos(ω1 − ω2)t (2.13)

The difference-frequency term is what allows us to generate THz radiation. For ω1 and
ω2 with a difference on the order of the pulse bandwidth, i.e., ω1 − ω2 = Ω, PDF G has a
component oscillating at frequency Ω (see figure 2.1). Thus, THz frequency generation
is possible given a laser with a bandwidth of at least a few THz, i.e., a pulse laser with
sufficiently short pulses.

2.2.1 Complex-wave formalism
As we use the Fourier transform, which is built on the complex exponential, it is convenient
to find the analogous result in the complex-wave formalism [25]. That is, we consider a
sinusoidal wave with amplitude E0 the real part of a complex wave with complex amplitude˜︁E0:

E0 sin(ωt) = 1
2( ˜︁E0e

iωt + ˜︁E∗
0e

−iωt) (2.14)

We then identify E0 and ˜︁E0, implicitly taking the real part when interpreting quanti-
ties as physically meaningful. We begin with equation (2.11). Inserting the complex
representation from equation (2.14), we get:
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Pmix(t) = 1
2ε0χ(2)[ ˜︁E1

˜︁E2e
i(ω1+ω2)t + ˜︁E1

˜︁E∗
2e

i(ω1−ω2)t + ˜︁E∗
1
˜︁E2e

i(ω2−ω1)t + ˜︁E∗
1
˜︁E∗

2e
−i(ω1+ω2)t]

(2.15)

The terms with frequency ±(ω1 + ω2) are again irrelevant for our purposes, leaving:

PDF G(t) = 1
2ε0χ(2)[ ˜︁E1

˜︁E∗
2e

i(ω1−ω2)t + ˜︁E∗
1
˜︁E2e

i(ω2−ω1)t] (2.16)

We find that this is the representation of a complex polarization wave:

˜︁PDF G(t) = ε0χ(2)
˜︁E1
˜︁E∗

2e
i(ω1−ω2)t (2.17)

2.3 Reflection and transmission on interfaces
Both incoming optical radiation and outgoing THz radiation are affected by reflection
and transmission at the interfaces between the crystal and air. [26] This is captured by
Fresnel’s formulae (tAB being the amplitude transmission coefficient for light going from
material A to material B):

tAB = 2nA

nA + nB

(2.18)

rAB = nB − nA

nA + nB

(2.19)

We define tin by setting nA = 1 (air) and nB = n(ω) (crystal), tout by setting nA = n(ω)
(crystal) and nB = 1 (air), and rin and rout analogously.

There is also the possibility of multiple reflections. They are represented by a factor
M(ω):

M(ω) =
∞∑︂

n=0
[r2

out(ω)e2iLkB(ω)]n = 1
1 − r2

out(ω)e2iLkB(ω) (2.20)

The effect of multiple reflections is optional, since the reflections produce pulses delayed
by the time it takes the optical pulse to travel 2L. Even for the thinnest crystal we use,
which is ZnTe with L = 100 µm, this delay is n2L

c
≈ 2 ps, which is longer than the pulse

itself, so we can cut the reflections off (see section 3.5 for illustrations). Thus, we set
M = 1.

To get the field actually in the crystal, we need tin(ω) and M(ω). We denote by Ec(ω)
the electric field in the crystal at frequency ω.

Ec(ω) = Einc(ω)tin(ω)M(ω) (2.21)

Einc is given by formula (2.1).
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2.4 Dipole radiation

2.4.1 Green’s function
To get from PDF G to EDF G at the end of the crystal4, we apply the formula for dipole
radiation from [18] to an infinitesimal slice of the crystal at coordinate z:

dE = −2π 1
ε0c2

exp[ik(L− z)]
k

∂2

∂t2
dP (2.22)

L is the crystal thickness, z the coordinate within the crystal, k is the spatial frequency
of the THz radiation in the crystal (k = Ω

c
n(Ω)).

In the frequency domain, the second derivative in time simply yields a factor of Ω2.

dE(Ω) = −2π Ω2

ε0c2
exp[ik(L− z)]

k
dP (2.23)

We insert PDF G from (2.17), assume that χ(2)(ω − Ω) ≈ χ(2)(ω) (see formula (3.4) in
section 3.2), and get:

dE(Ω) = −2πχ(2)E(ω)E∗(ω − Ω) Ω
nc

exp[ik(L− z)]dz (2.24)

2.4.2 Phase mismatch
THz radiation is generated throughout the crystal along its length L. This is important
because of dispersion: the refractive index of the crystal depends strongly on frequency,
which means that THz radiation generated at different z coordinates will reach the end of
the crystal with a different phase. [26]

To describe this effect quantitatively, we use the spatial frequency k. The phase of the
outgoing THz radiation depends on the coordinate z where its conversion took place. Let
us have two optical frequencies ω and ω − Ω that travel together for a length z, then
convert through DFG into radiation at frequency Ω, then travel the remaining length
L− z as THz radiation.

This is represented by a contribution to the integral (2.24). The complex phase of
this dE also depends on the phases of the two incoming pulses: ϕ(ω, z) = k(ω)z and
ϕ(ω − Ω, z) = k(ω − Ω)z. Because of the complex conjugation, the polarization phase is:

ϕP (z) = ϕ(ω, z) − ϕ(ω − Ω, z) (2.25)

The resulting THz dipole radiation is emitted in both directions: forwards along the crystal
and backwards. Since a part of the backwards-emitted radiation reflects off the crystal
end, we must also consider its contribution. [26] The phase of the outgoing radiation is
then:

4Still within the crystal, i.e., before transmission through the interface.
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ϕ(z) = [k(ω) − k(ω − Ω)]z ± (L− z)k(Ω) (2.26)

with the ± depending on whether the radiation is emitted forwards (+) or backwards (-).
We can introduce the phase mismatch spatial frequency ∆k±:

∆k± = k(ω) − k(ω − Ω) ± k(Ω) (2.27)

Because of the negative sign in equation (2.26), ∆k− corresponds to forward emission,
while ∆k+ corresponds to backward emission.

To find only the phase mismatch factor, we integrate the phase component of (2.24),
replacing k with ∆k±, over the crystal thickness L. We thus get the phase mismatch
factor ψ(Ω, ω):

ψ(Ω, ω) = eik(Ω)L
∫︂ L

0
eiz∆k− + rout(Ω)eiz∆k+ dz (2.28)

This integral has an analytic solution:

ψ(Ω, ω) = eik(Ω)L
(︄
eiL∆k− − 1

∆k−
+ rout(Ω)e

iL∆k+ − 1
∆k+

)︄
(2.29)

Combined with the prefactors in formula (2.24), we get the total outgoing E(Ω):

E(Ω, ω) = −2πχ(2)
Ω

cn(Ω)ψ(Ω, ω)E(ω)E∗(ω − Ω) (2.30)

2.5 THz reference emission formula
DFG converts a part of an optical pulse into radiation at frequencies comparable to the
pulse bandwidth. A near-infrared laser beam is thus converted into the much longer-wave
THz radiation, as anticipated in section 2.2 and equation (2.13).

In this section, we combine results from previous sections into a formula describing
emission from the nonlinear crystals used in our experiments. We do this by integrating
formula (2.30) over the field in the crystal from formula (2.21). We assume that χ(2)(Ω)
is independent of ω (see section 3.2 for details).

We add together Ec(ω) from formula (2.21), ψ(Ω, ω) from formula (2.29), tout(Ω) from
formula (2.18) and M(Ω) from formula (2.20). The emitted THz radiation is then:

E(Ω) =
∫︂ ∞

0
Ec(ω)E∗

c (ω − Ω)ψ(Ω, ω)tout(Ω)M(Ω) dω (2.31)

We note that if we neglect ψ(Ω, ω) and interface effects, this is the autocorrelation function
A(Ω):

A(Ω) =
∫︂ ∞

0
Ec(ω)E∗

c (ω − Ω) dω (2.32)
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2.6 Effects affecting the transfer function
In this section, we outline effects of the propagation of the THz radiation through the
setup and its detection on the spectrum of the resulting transfer function.

2.6.1 Absorption on water vapor
Water molecules have absorption lines in the THz spectrum caused by transitions between
rotational and vibrational states [6]. If the THz radiation passes through water vapor,
parts of it get absorbed and, consequently, reemitted, leading to a jagged spectrum, as
seen in figure 2.2, or delayed replicas of the pulse in the temporal domain. The same
jagged spectrum and delayed replicas are thus to be expected in the transfer function.

Figure 2.2 The transmission spectrum of water vapor. Image taken from [6].

2.6.2 Beam cutting at component apertures
THz radiation propagates as a Gaussian beam [7]. The divergence θ of such a beam
depends on its wavelength as tan(θ) = λ

πw0
= c

2Ωw0
(w0 being the Gaussian radius). Thus,

lower frequencies have a greater θ and are more divergent. For very low Ω, θ is so large
that the beam doesn’t fit inside optical components (such as parabolic mirrors) and part
of it is consequently lost. The effect of this is a high-pass filter in the transfer function.
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2.6.3 Detection in a nonlinear crystal

Figure 2.3 An illustration of electrooptic sampling. The THz (red curve) and optical (green
area) pulses copropagate through a detection crystal (EOX). The optical pulse then passes
through a quarter waveplate (λ/4) and a Wollaston prism (WP). A difference signal is read off
two balanced photodiodes. Image taken from [27].

The detection of THz radiation is done through the process of electrooptic (EO) sampling
[6, 7], illustrated on figure 2.3. Electrooptic sampling works thanks to the Pockels effect,
which means that the crystal behaves as a general waveplate (i.e., it induces a phase shift
between orthogonal polarization modes) in the presence of an external electric field. The
role of the external field is played by the THz pulse, which is focused together with a
detection optical pulse on the detection crystal. The THz wavelength is about 50 times
the optical wavelength, so the THz field is nearly constant in the pulse area (td ≫ tp in
figure 2.3). Thus, it may be treated as a static field.

At the exit of the detection crystal, the linearly polarized optical pulse has acquired a
certain degree of ellipticity. The quarter waveplate turns this polarization state into an
almost circularly polarized state. The Wollaston prism separates two linear projections in
the x and y directions. Due to the imperfect circular mode, their difference is nonzero,
easy to measure, and directly proportional to the THz field amplitude. The part of the
THz pulse that is being measured is selected through a time delay between the optical
and THz pulse, controlled by a delay line in the setup.

THz detection and emission have the same underlying principle through the nonlinear
susceptibility χ(2) and a copropagation of THz and optical beams through a nonlinear
crystal. The same phase-matching, autocorrelation and transmission and reflection terms
apply in both emission and detection [28]. The sensitivity spectrum of a given crystal as
a detector is thus comparable with its theoretical emission as an emitter.
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3 Spin current reconstruction
method
In this chapter, we show how the analytical model described in the previous chapter is
implemented in a numeric script.

3.1 The numerics of the Fourier transform
We use the Discrete Fourier Transform (DFT) implemented in the NumPy package. DFT
converts an array of N values, xn, into another array of N values, Xn. We use the unitary
definition with equal scaling in the forward and backward direction, as documented in the
NumPy FFT (Fast Fourier Transform) module manual1:

Xn = 1√
N

N−1∑︂
k=0

exp
(︃

±2πik n
N

)︃
(3.1)

The + sign is used in the forward transform, the − sign in the inverse transform.

DFT is a map between complex-valued functions. In general, it transforms real-valued
functions into complex-valued ones. However, both E(t) and S(t) are related to physical
values that are fundamentally real. We thus want h(t) to also be a real-valued function.

The DFT of a real-valued function is Hermitian: Xk = X∗
N−k. When finding h for a given

reference measurement, we select a frequency range where the measurement is reliable,
calculate the theoretical emission, and find their ratio (1.6). This creates an array Xk

that is not Hermitian, so we append its complex conjugate, getting an array of length
2N − 1 (as the zero-frequency term is not duplicated):

XN+k = X∗
N−k (3.2)

This is equivalent to continuing the reconstruction into the negative frequencies.

3.2 Material parameters
The calculations in section 2.5 depend on the values of n and χ(2) for GaP and ZnTe.
These values are frequency-dependent; this dependency is expressed through empirical or
theoretically motivated formulae.

Refractive indices in the THz range are modeled as Lorentzian oscillators [29]:

n(Ω) =

⌜⃓⃓⎷ε∞

(︄
1 + Ω2

LO − Ω2
T O

Ω2
T O − Ω2 − iγΩ

)︄
(3.3)

1https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft
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Here, ε∞ is the high-frequency dielectric constant, γ is the phonon damping rate, and
ΩLO and ΩT O are the longitudinal and transverse optical phonon frequencies. The values
of these constants are summed up in table 3.1 and the resulting function n(Ω) is shown in
figure 3.1.

(a) GaP (b) ZnTe

Figure 3.1 Refractive indices in the THz range for (a) GaP and (b) ZnTe crystals. Panel (b)
shows the overall frequency dependence with a divergence caused by absorption by phonons.
However, our experimental bandwidth is limited to 0 − 4 THz.

Using figure 3.1, we can show the effect of the various constants. ε∞ is a multiplicative
factor, ΩT O specifies the location of the resonance where n diverges (see panel 3.1b),
γ affects the width of this resonance, and ΩLO affects the variability of n through
kT O = Ω2

LO − Ω2
T O.

The divergence causes absorption of THz radiation generated around the frequency ΩT O,
causing problems when using nonlinear crystals for high THz frequency generation. Since
our experimental bandwidth is limited to 0 − 4 THz, we never reach this divergence and
our results aren’t affected by it very strongly. In particular, they are practically unaffected
by changes in γ.

The dependence of χ(2)(Ω) is captured by equation (3.4):

χ(2)(Ω) = n4
V ISr41

2(1 + CF H)

(︄
1 + CF H

ω2
T O

ω2
T O − Ω2 + iγΩ

)︄
(3.4)

The term on the left is the pure electronic coefficient given by [30], the term on the right
comes from [29]. The formula as a whole comes from [18].

r41 is the electrooptic coefficient, nV IS is the material refractive index at 632 nm, and
CF H is the Faust-Henry coefficient. The result is plotted in figure 3.2.
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(a) GaP (b) ZnTe

Figure 3.2 The dependence of nonlinear susceptibility on the THz frequency for (a) GaP and
(b) ZnTe crystals. Note the divergence in the same frequency range as the divergence of n, as
seen in figure 3.1.

Material ZnTe GaP
ε∞ 6.7 [29] 9.65 [31]

ΩT O2π 5.31 THz [32] 11.01 THz [31]
ΩLO

2π
6.17 THz [32] 12.082 THz [31]

γ
2π

90.3 GHz [29] 129 GHz [29]
CF H -0.07 [29] -0.47 [29]
r41 4.45 × 10−12 m

V [33] −0.88 × 10−12 m
V [30]

Table 3.1 Material constants

There is disagreement between sources over the value of γ. Gallot et al. [32] provides
only an upper limit on γ

2π
for ZnTe of 25 GHz, which contradicts Leitenstorfer et al. [29],

which puts the value at around 90 GHz. We use the latter value. As we cannot reach the
divergence situated at ΩT O with the laser bandwidth used, our results are not sensitive to
the value of γ.

In the optical range, we use empirical formulae taken from [31] (GaP) and [34] (ZnTe)
(λ = 2πc

Ω being the wavelength in micrometers):

nZnT e(ω) =
√︄

4.27 + 3.01 λ2

λ2 − 0.142 (3.5)

nGaP (ω) =
√︄

4.1705 + 4.9113 λ2

λ2 − 0.1174 + 1.9928 λ2

λ2 − 756.46 (3.6)

The frequency dependence n(ω) in the optical range for both crystals is plotted in figure
3.3.

19



(a) GaP (b) ZnTe

Figure 3.3 Refractive indices of nonlinear crystals in the optical range.

3.3 Algorithmic implementation
For all data processing in this thesis, we have created an overarching Python script. The
program builds upon multiple scripts in Matlab by prof. Tobias Kampfrath from Freie
Universität Berlin implementing formula (2.31) for use in [18]. We have modified the
scripts, adapting them to the different system parameters2 and translating them from
Matlab to Python. In addition to this theoretical core, we added a script for processing of
our measured data through formula (1.7).

Our program accepts input in the form of a folder containing at least one subfolder. Each
subfolder contains measurements made in a single setup. Measurements may be reference
or unknown (in our case spintronic) emitter measurements. Each reference measurement
file is named in a format that contains the crystal material, thickness, and excitation
power used, which is enough to construct the reference emission spectrum using formula
(2.31).

The script works in the following steps:

• For each reference, the raw data in the form of Sref(t) from the corresponding
measurement file is Fourier-transformed into Sref (Ω) through the FFT.

• Eref(Ω) is calculated using the emission model (2.31) for the set of Ω values from
the measured data. This is done for frequencies between 0 and 4 THz, as for higher
frequencies, Sref (Ω) is zero.

• h(Ω) is calculated using (1.6). This process is documented in a graph showing
Eref (Ω), Sref (Ω), h(Ω) together for user convenience. The transfer functions calcu-
lated using different reference measurements in the same setup are plotted together
as well.

• The transfer functions are transformed into the time domain h(t) through the inverse
FFT, aligned with the first pulse processed, then transformed back into h(Ω). This
removes any shifts caused by different time windows between measurements.

2The main difference between the setups is in the optical laser parameters and crystal substrates. In
addition, we have explicitly listed the parameters in table 3.1 and created procedures for their fitting,
used in section 5.1.
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• An average h(Ω) is calculated for each setup. Details of averaging are treated in
section 3.4.2, complex numbers are treated by averaging the real and imaginary
parts separately.

• The transfer functions are plotted in the time domain using the inverse FFT. Their
average is plotted as well.

• For every measurement from an unknown (spintronic) emitter, S(Ω) is processed
from the corresponding measurement file. The corresponding E(Ω) is calculated
using the averaged h(Ω) from the previous step in formula (1.5). E is then plotted
in the frequency and time domain.

• The average h(Ω) from different setups are plotted together for their comparison.

The integral in (2.31) is calculated numerically as a Riemann integral with 1000 bins. The
integration domain of ω is ω0 ± 5∆ω (as defined in section 2.1).

3.4 Handling uncertainties

3.4.1 Error sources
The data that we measure contains random noise. Thus, we perform every measurement
with a time window containing data points before the THz waveform we want to measure,
where we expect no signal. We take the standard deviation of the first 15 data points of
each measurement to be the noise level. We assume that the error level is equal for all
points in our data.

3.4.2 Averaging data with error bars
Let us have two measurements of a single value, A and B. Assuming both measurements
are represented as normal distributions with expectation values µA and µB and standard
deviations σA and σB, what can we say about the value from both measurements combined?

The product of the individual normal distributions is another normal distribution with a
new µ and σ given by formulae [35]:

µ = µAσ
2
B + µBσ

2
A

σ2
A + σ2

B

(3.7)

σ = σAσB√︂
σ2

A + σ2
B

(3.8)

We will use this result to combine the transfer functions from different emitters into a
single average for a given setup. When averaging multiple values, we can combine them
in any order, as this operation is commutative and associative.

3.4.3 Error propagation through DFT
DFT is defined by the sum in equation (3.1). For normally distributed data, multiplication
by a complex number of magnitude 1 doesn’t affect the error, while the variance σ2 of
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a sum is the sum of the variances σ2
i . Multiplication by the scalar 1√

N
multiplies the

variance by 1
N

, meaning that the variance of every point in the DFT output is the average
variance of the transformed function [36]:

σ2 = 1
N

N∑︂
i=1

σ2
i (3.9)

For the special case where the transformed function already has identical error at every
data point, DFT has no effect on error size at all.

We note that even single points with great uncertainty, such as those where there is no
emission expected, create a large uncertainty over the entire transform result. We avoid
this effect by using multiple emitters. The weighted average (3.7) from the previous
section then automatically discards data points with very large error bars.

3.5 Results: Reference emission data
Figure 3.4 shows both the reference emission data for various crystals we used and its
sensitive dependency on the refractive index of the crystal for thick crystals. This is
caused by the phase mismatch factor (2.26), which creates interference-caused minima
whose position depends on n.

(a) ZnTe, L = 100 µm (b) ZnTe, L = 500 µm

(c) ZnTe, L = 1000 µm (d) GaP, L = 2000 µm

Figure 3.4 The reference emission spectrum from various crystals used in this work and its
sensitivity to a change in n by 0.5%. For thick crystals, the uncertainty in n may cause major
changes in the position of the minima, which may complicate the determination of the transfer
function.
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Because of the large sensitivity of the method to the crystal refractive index, small
deviations between the theoretical values from table 3.1 and actual value have a significant
impact on the accuracy of the method.

We also plot the reference waveforms (obtained through DFT of the theoretical spectrum
for n = n0) in figure 3.5. As the echoes are clearly distinguishable from the main pulse,
we have not simulated them in further work.

(a) ZnTe, L = 100 µm (b) ZnTe, L = 200 µm

(c) ZnTe, L = 500 µm (d) GaP, L = 2 mm

Figure 3.5 Theoretical emission in the time domain for various crystals. Note that even in
the thinnest crystal in (a), the first echo is clearly distinct from the main pulse. Note also the
increasing delay of both the main pulse and its echoes with increasing crystal thickness.
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4 Experiments

4.1 Experimental setup

Figure 4.1 Our experimental setup. A PHAROS femtosecond laser (1) produces an optical
pulse (shown in red). The pulse is divided (2) into an excitation and detection (also called
gating) beam. The excitation beam passes through a mechanical chopper (3), a delay line (4)
and is focused on the emitter (crystal or STE) (5), which emits pulses of divergent THz radiation
(shown in blue). This radiation is first collimated by a parabolic mirror in the area (6), then
focused into a sample area (7) by another parabolic mirror. After passing through the sample
area, the beam diverges onto another parabolic mirror that collimates it again, then a final
mirror that focuses it on the detection crystal (9). Here, it overlaps with the detection beam,
which is incoupled using a pellicle beamsplitter (8). In the detection crystal, the optical beam
gains a slight ellipticity. After passing through a quarter waveplate (10), the beam is split in a
Wollaston prism (11), and the difference signal is measured on a pair of balanced photodiodes
(12). The part of the setup where the THz radiation propagates can be optionally enclosed in a
flowbox (13) connected to an air dryer and flooded with dry air. A hygrometer is used to verify
that there are no leaks and humidity remains at 0%.

Our setup is illustrated on figure 4.1. The PHAROS laser (1) has central wavelength
λ0 = 1030 nm, pulse FWHM duration τ = 170 fs, and set repetition rate frep = 10 kHz.
The power of the detection beam is 0.7 mW. The excitation beam’s power depends on
the emitter used, as described below in table 4.4. The chopper (3) rotates at a frequency
around 1500 Hz (this occasionally requires modification to find a frequency that suppresses
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the background setup noise well). The spot at (5) has FWHM diameter ρ = 575 µm. The
sample area (7) is used in transmission experiments; we left it empty.

Measurements that used the iris shutter (as explained below) were performed by adding
the iris to the area (6) where THz radiation is collimated.

4.2 List of measurements
We have measured signals from a range of emitters using a range of detectors under various
experimental conditions.

As detectors, we have used the following ⟨110⟩-oriented crystals of thickness L (and setup
modifications):

• ZnTe, L = 500 µm

• ZnTe, L = 1 mm

• ZnTe, L = 2 mm

• GaP, L = 2 mm

• GaP, L = 2 mm, in dry air

• GaP, L = 2 mm, iris shutter in the collimated area at various diameters.

We have measured combinations of detectors and emitters. They are listed in table
4.1 with the measurement amplitudes1. Additionally, we have measured signals from 8
experimental emitters produced by Dr. Jakub Zázvorka (Institute of Physics, Charles
University) with the GaP detector (without dry air), as described in table 4.2.

Finally, we measured the signal from the ZnTe 1 mm emitter using the GaP 2 mm detector,
with the iris shutter set at various diameters. These measurements are summarized in
table 4.3.

Emitter/Detector GaP, dry air GaP ZnTe 500 µm ZnTe 1 mm ZnTe 2 mm
3-layer STE 34.3 2.93 9.4 5.2
2-layer STE 26.9 18.3 2
ZnTe 100 µm 26.1 13.6 1.4
ZnTe 200 µm 11.1 5.9 0.79
ZnTe 500 µm 11.1 5.9 —
ZnTe 1 mm 8 6.1 0.79 —
ZnTe 2 mm 5 3.2 0.34 —
GaP 2 mm — — 16.7 61.2

Table 4.1 Amplitudes (Smax − Smin) in mV. Each column corresponds to one setup.

1By amplitude, in this section, we mean the difference between the maximal and minimal value of S(t).
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Sample number L (nm) Amplitude (mV)
1 0 0.63
2 0.5 0.68
3 1 0.64
4 1.5 0.52
5 2 0.46
6 3 0.31
7 7 0.25
8 10 0.14

ZnTe 1 mm reference — 6.10

Table 4.2 Amplitudes (Smax − Smin), experimental emitters

Iris diameter Amplitude (mV)
1 cm 0.83
2 cm 2.2
3 cm 4.8
4 cm 5.9

5 cm (fully open) 6.0
No iris 6.1

Table 4.3 Amplitudes (Smax − Smin), the iris shutter at various diameters

4.3 Samples used
The regular spintronic emitters used were a bilayer CoFeB(2)/Pt(2) (2-layer STE from
now on) and a trilayer W(2)/CoFeB(1.8)/Pt(2) (3-layer STE from now on) grown on a
sapphire (Al2O3) substrate. The numbers in brackets are layer thicknesses in nm.

The experimental emitters we used were grown by sputtering. They consist of several
layers on a silicon substrate: SiO2(3)/Au(L)/Pt(5)/Co(2)/Au(5). The thickness L of
the bottom Au layer is variable. As gold grows porously, it affects the roughness of the
interface between the Pt/Co layers, which form a bilayer STE. The top layer of gold
prevents oxidation.

The nonlinear crystals were bought from Eksma Optics (ZnTe)2 and Swiss THz (GaP)3.
2The data sheet is available at https://eksmaoptics.com/out/media/EKSMA_Optics_GaSe-ZnTE_

Crystal.pdf
3https://www.swissterahertz.com/thz-detectivecrystals
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(a) (b) (c)

Figure 4.2 Illustrations of the spintronic emitters used. (a) A bilayer consisting of a ferromag-
net and a heavy metal. (b) A trilayer. The ferromagnet is in the middle. Upon excitation by an
optical pulse, spin-polarized currents enter two non-ferromagnetic metal layers. Thanks to the
different signs of the spin Hall angle γ (a material parameter describing the strength of the spin
Hall effect) in each metal, the induced charge currents are deflected in parallel directions and
the emission is stronger. [14] (c) The experimental emitters. The gold layer on the left creates a
rough interface between the different layers. The gold layer on the right is there only to prevent
corrosion.

4.4 Experimental procedure
We performed measurements in batches, each batch with a single setup. Within each
batch, we periodically exchanged various emitters. Between batches, we exchanged the
detector and possibly changed the experimental conditions (adding or removing dry air
and/or the iris shutter). With each emitter, we started at a low excitation power (around
2 mW), gradually increased it and observed the amplitude. When the amplitude started
to reach saturation (that is, it no longer rose linearly with the excitation power), we noted
the excitation power and performed the measurement itself at this maximal allowed power.
Figure 4.3 shows a representative saturation curve. The excitation powers used for each
emitter are listed in table 4.4.

Figure 4.3 Example saturation curve for the ZnTe 100 µm emitter, measured with the GaP
detector without dry air. The dashed line extrapolates the linear regime. The value of Pexc used
for this emitter is 30 mW, at which point the saturation losses are 36%.
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Emitter Pexc (mW)
3-layer spintronic emitter 16
2-layer spintronic emitter 18

ZnTe, L = 100 µm 30
ZnTe, L = 200 µm 12
ZnTe, L = 500 µm 10
ZnTe, L = 1 mm 6
ZnTe, L = 2 mm 7
GaP, L = 2 mm 40

Experimental emitters 16

Table 4.4 Emitters and excitation power

To install a new emitter or detector, we rotated it around the optical axis to find the
orientation where the polarization of the emitted pulses aligned with the correct direction
of the detection crystal, i.e., when the amplitude of the electrooptic signal was maximal.

We used the standard spintronic emitters with a single permanent magnet on top and the
emitters of varying roughness with three permanent magnets, as we found that adding
them improved our signal by saturating the magnetization of the ferromagnetic layer.

4.5 Raw measured data
We show representative THz waveforms and spectra in figures 4.4 (spintronic emitters,
GaP detector in dry air), 4.5 (nonlinear crystal emitters, GaP detector in dry air), 4.6
(measurements with the GaP detector without dry air). All measurements are plotted as
waveforms and spectra in appendix A.
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(a) 3-layer STE waveform. (b) 3-layer STE spectrum.

(c) 2-layer STE waveform. (d) 2-layer STE spectrum.

Figure 4.4 Measurements using spintronic emitters in dry air with the GaP detector. Wave-
forms and corresponding spectra. Note that the trilayer’s spectrum continues into high frequencies,
while the bilayer’s spectrum is practically zero above 2.5 THz.
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(a) ZnTe, L = 100 µm, waveform. (b) ZnTe, L = 100 µm, spectrum.

(c) ZnTe, L = 1 mm, waveform. (d) ZnTe, L = 1 mm, spectrum.

Figure 4.5 Reference measurements in dry air with the GaP detector. Waveforms and
corresponding spectra. Note the narrower spectrum of the thick crystal with the local minimum
caused by the phase mismatch.
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(a) 2-layer STE waveform. (b) 2-layer STE spectrum.

(c) ZnTe, L = 100 µm, waveform. (d) ZnTe, L = 100 µm, spectrum.

Figure 4.6 Measurements in air with water vapor with the GaP detector. Waveforms and
corresponding spectra. Note the jagged shape of the spectra and the echoes visible in the
waveforms.

Figure 4.7 shows data from the iris at different diameters, with d = 5 cm being a fully
open iris. High-pass behavior is clearly visible, as anticipated in section 2.6.2. Figure
4.8 shows the spectra of the experimental emitters. The samples with thick gold layers
absorb more radiation, so the signal from them is weaker.

(a) The absolute value of S(Ω) for various di-
ameters of the iris.

(b) Measured signal strength relative to the
measurement with no iris.

Figure 4.7 Iris spectrum depending on diameter d. Note that with decreasing d, low frequencies
are suppressed more than high ones. This is most clearly seen in panel (b), which shows the
relative effect of closing the iris on different frequencies. Measurements were performed using
the ZnTe 1 mm emitter and the GaP detector without dry air.
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(a) The absolute value of S(Ω) for the experi-
mental emitters.

(b) Measured signal strength relative to the
sample with no porous gold layer.

Figure 4.8 Spectra of experimental emitters. The thicker layers absorb more, so the signal
from them is weaker.
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5 Analysis and discussion

5.1 Transfer function reconstruction
For an example of the reconstruction process, see figure 5.1. This is the thinnest ZnTe
reference emitter available and thus the widest unproblematic spectral range: only around
4 THz do we encounter a higher uncertainty. The setup is the GaP detector in dry air; its
transfer function has a parabola-like shape terminating around 2.5 THz.

Figure 5.1 Transfer function calculation for a reference 100 µm ZnTe emitter with the GaP
detector in dry air.

We use reconstructions with different emitters to illustrate possible difficulties and ways
to overcome them. In this section, all reconstructions correspond to the GaP detector in
dry air, and transfer functions should thus come out identical.

As anticipated in section 3.5, for thick crystals, the procedure is sensitive to the refractive
index. We illustrate this for the 1 mm ZnTe emitter in figure 5.2. With the constants
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from table 3.1, the first minimum of the reference does not align with the first minimum
of our measurement, leading to a double peak that fails to match data from figure 5.1.

(a) Without the correction, ε∞ = 6.70. The
double peak of |h(Ω)| and the divergence are
undesirable.

(b) With the correction, ε∞ = 7.42. Away from
divergences, the shape of the transfer function
more closely corresponds to figure 5.1.

Figure 5.2 Transfer function calculation for a reference 1 mm ZnTe emitter with the GaP
detector in dry air. The transfer function |h(Ω)| is drawn normalized to unity.

Our conclusion is that our ZnTe samples don’t exactly match those described by our
sources, so the values of some constants from table 3.1 may have to be modified. We
have decided on a minimal intervention and only changed ε∞. We scanned possible values
between 6.30 and 7.60 and found a value where the minima of the measured signal align
with the minima of the reference. The optimal value is ε∞ = 7.42.

We checked the literature to find whether our changes can be explained by sample variation.
The authors of Ref. [37] compare several measurements at room temperature that report
values of ε∞ between 6.0 and 6.7. This suggests that variations between samples of our
order of magnitude are plausible.

Most interestingly, we note that refs. [29] and [32] disagree on ε∞ of ZnTe by over 10%:
Ref. [29] reports ε∞ = 6.7, while ref. [32] reports ε∞ = 7.44. Our fit almost exactly
matches the latter value. However, for the L = 500 µm crystal, the situation is exactly the
opposite, and only the value from [29] is usable, as seen in figure 5.3. For thin crystals,
the procedure is less sensitive to n(Ω) and either value produces acceptable results, as
seen in figure 5.4.

We also note that wherever reference emission approaches zero, |h(Ω)| has a narrow peak
artifact caused by noise (as seen in figure 5.3a). We can remove these division-by-zero
artifacts by averaging multiple transfer functions for the same setup.
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(a) Without the correction, ε∞ = 6.70. The
data more closely corresponds to figure 5.1.

(b) With the correction, ε∞ = 7.42. The diver-
gence is unphysical.

Figure 5.3 Transfer function calculation for a reference 500 µm ZnTe emitter with the GaP
detector in dry air.

As a possible explanation, we note that the refractive index is sensitive to impurities in
the sample and defects caused by the manufacturing process [37]. The 500 µm and 1 mm
ZnTe crystals were bought separately and thus come from different batches, or possibly
even different producers.

Additionally, we note that for the 1 mm ZnTe emitter, the minimum fails to reach zero
as theoretically predicted (see figure 5.2b). This means that the divergence cannot be
removed entirely. One possible explanation is that the emitter is not entirely homogeneous
in its refractive index, meaning that its spectrum resembles that of a sum of the two
spectra in figure 3.4c. Attempts to model this would introduce additional degrees of
freedom to the process, making the results harder to interpret, so we have decided to
discard this reference.
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(a) Without the correction, ε∞ = 6.70. ZnTe
200 µm emitter.

(b) With the correction, ε∞ = 7.42. ZnTe
200 µm emitter.

(c) Without the correction, ε∞ = 6.70. ZnTe
100 µm emitter.

(d) With the correction, ε∞ = 7.42. ZnTe
100 µm emitter.

Figure 5.4 Transfer function calculation for a reference 200 µm (panels (a), (b)) or 100 µm
(panels (c), (d)) ZnTe emitter with the GaP detector in dry air. Note that even the large change
in ε∞ barely makes a visible difference.

For the GaP emitter, we have used the setup with the ZnTe 500 µm detector to find the
best alignment of transfer functions with the reliable thin emitters, again using ε∞ as the
sole degree of freedom. The result is shown in figure 5.5. The resulting corrected value
lies between the values in [31] and [29].
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(a) Without the correction, ε∞ = 9.65.

(b) With the correction, ε∞ = 9.40. The trans-
fer function found using the GaP emitter lies
within the range created by the two reliable thin
emitters.

Figure 5.5 Transfer function calculation for a reference 2 mm GaP emitter with a 500 µm
ZnTe detector.

We note that the problems occur only for emitters with large L. For further processing,
we thus use the two thinnest references: ZnTe with L = 100 µm and L = 200 µm. For
finding the theoretical emission, we use the value ε∞ = 6.70, as reported in table 3.1. We
use the lower value because it contains fewer artifacts and for consistency with the 500 µm
ZnTe crystal, preferring it over the 1 mm crystal, which suffers from the shallow minimum
anomaly.

5.2 Agreement between references
Having committed to our values of material parameters, we compare different reference
emitters for the same setup (i.e., the same detection crystal, setup of mirrors, and
experimental conditions). This serves as a verification that our method works correctly.
In figure 5.6a, this is done for the measurement with the GaP detector in dry air. The
references agree up to a multiplicative factor.

37



(a) The comparison obtained from raw data.
The functions disagree by a multiplicative fac-
tor.

(b) The multiplicative factor has been removed.
The functions have a good overlap, permitting
us to use their average. Note that the average
avoids the division-by-zero artifacts of the indi-
vidual emitters.

Figure 5.6 The absolute value of transfer functions in the frequency domain for various
reference emitters with the GaP detector in dry air.

One explanation of the discrepancy is saturation: While theoretically, the THz amplitude
should scale linearly with the excitation power1, in practice, at high powers, the conversion
efficiency starts to decrease. This effect is not captured by formula (2.31), so it incorrectly
appears as a part of the transfer function. However, the effect of saturation would not be
this strong, as we have stopped at a point close to a 30% efficiency loss, as seen in figure
4.3.

Another possibility is that this is an effect of not finding the optimal location or orientation
of the emitter. This can be verified by comparing data measured on different days with
different setups. As is shown in section 5.3 below, the data in GaP measured with
and without dry air has transfer functions of a comparable scale. These measurements
were performed on separate days, each time requiring optimization of the setup, so any
experimental mismatch would be visible. Therefore, we reject this explanation.

We note that the multiplicative factor is not random: The ratio of amplitude to excitation
power is similar between emitters of different thickness (see table 4.1), while formula
(2.31) says E should roughly scale with L. This leads to a multiplicative factor of roughly
5 between the 500 µm and 100 µm emitters.

Fortunately, this discrepancy does not affect our main goal, which is finding the spectral
response of the detectors, and we can easily overcome it by adding a multiplicative factor
to the different emitters. All further analysis is thus done with the scale of the transfer
functions modified for best overlap, with the data from the 200 µm ZnTe emitter used as
the reference.

The result of this change is plotted in figure 5.6b. Apart from divergences at frequencies
1The reason is that DFG is a second-order nonlinear process.

38



where the emitter does not emit, we note that the results align well. The divergences
are resolved by the average: because of their correspondingly large uncertainty, they are
neglected.

The frequency domain of figure 5.6b only plots the absolute value of the spectrum. We
can compare the transfer functions more precisely in the time domain, which also shows
information hidden in the complex phase. This is shown in figure 5.7.

We can see that the transfer functions are comparable. Their offset in the time domain is
not a physical effect; it originates from the different time windows used to measure the
different pulses. For further processing, we choose a reference pulse and shift the others
in time for maximum overlap o with the reference, measured by the dot product:

o(h1, h2) =
∫︂ tmax

tmin

|h1(t)h2(t)| dt (5.1)

Figure 5.7 Transfer functions in the time domain for various reference emitters with the GaP
detector in dry air. The offset in time is for visual clarity only.
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5.3 Interpreting transfer functions
We have theoretical expectations from chapter 2.6 about how the transfer functions should
be affected by well-defined changes to the setup. Our first comparison is for the GaP
detector with and without dry air in figure 5.8. We compare the transfer function obtained
by averaging the results using ZnTe 100, 200, and 500 µm crystals as reference emitters.
In the frequency domain, water vapor absorbs certain frequencies, as anticipated in figure
2.2. We note that the same scale is used for both transfer functions and the agreement
in their size is exactly as would be expected. In the time domain, the transfer function
contains echoes, which are then visible in time-domain waveforms such as figure 4.6.

(a) Transfer functions for GaP with and without
dry air in the frequency domain.

(b) Transfer functions for GaP with and without
dry air in the time domain.

Figure 5.8 The effect of water vapor on the transfer function. (a) In the frequency domain,
certain frequencies are lost due to absorption. (b) In the time domain, water vapor creates
echoes.

The second comparison we can make with our data is between ZnTe detectors of different
thickness, shown on figure 5.9. The divergence at 2.8 THz is an artifact caused by an
emission minimum; we cannot remove it by averaging because we only have one reference
measurement.

We see that the 500 µm emitter is sensitive over a broader frequency range, which
corresponds to its broader emission. As seen theoretically in figure 3.4, the 500 µm
detector has its first emission/detection around 3 THz, while for the 1 mm crystal, with
the correction, the first minimum lies around 1.3 THz (see the theoretical emission spectrum
in figure 5.2b).
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(a) Transfer functions for ZnTe detectors of
different thickness. The wider detector has a
narrower spectral range, but higher sensitivity
within it. The data for ZnTe 500 µm is drawn
at 5× magnification.

(b) The sole reconstruction for the 1 mm detec-
tor. The origin of the divergence at 2.8 THz is
clearly noise.

Figure 5.9 (a) The effect of detector thickness on the transfer function. (b) The explanation
of the peak at 2.8 THz.

The effect of adding an iris shutter has already been shown in part 4.5. Since we measured
it using the ZnTe 1 mm reference emitter, we cannot find the transfer function for the
entire setup, but we note that figure 4.7b shows the component of the transfer function
due to the iris.

5.4 Spin current reconstruction
In this section, we show the results of using the transfer function to find the spectrum
and pulse shape of a spin current.

5.4.1 Expectations given existing results
First, we show the results of previous work by [38], where a spin current in a 3-layer STE
was reconstructed using a wider THz bandwidth. We expect our true signal to be similar
to what they measure, so it is reasonable to try applying a low-pass filter to their data at
the bandwidth accessible to our method to see the shape we can expect to obtain.

The results are shown in figure 5.10. Four stages can be identified in the pulse: a steep
rise, determined mainly by the duration of the excitation pulse, a slower decline, a dip
into the negative numbers, and a relaxation back to zero. We see that the usable spectral
range makes a big difference, with 4 THz being enough to see the broad dynamics and
2.5 THz causing a significant distortion, making the pulse appear wide and symmetric.

We thus expect to see a large rise followed by a small dip, with their durations and
steepness dependent of the spectral range used.
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(a) The pulse as reconstructed using the full
spectrum up to tens of THz. (b) The full reconstructed spectrum.

(c) The pulse with a low-pass filter cutoff at
4 THz.

(d) The spectrum with a low-pass filter at
4 THz.

(e) The pulse with a low-pass filter cutoff at
2.5 THz.

(f) The spectrum with a low-pass filter at
2.5 THz.

Figure 5.10 (a) The “true” shape of the pulse as measured using a spectrum up to tens of
THz [38]. Note the asymmetry. (c) The pulse approximately as it would be seen by our method
with the thinnest detector available, which might detect up to 4 THz. The pulse’s broad shape
is reconstructed well. (e) The pulse approximately as it may be detected with the GaP 2 mm
detector, which is sensitive up to 2.5 THz. The asymmetrical shape has been washed out and
the descent appears steeper than the rise. (b), (d), (f) The corresponding spectra.

5.4.2 Our reconstruction
Now we present our results. As mentioned at the end of section 5.1, we have used the
average of data from the L = 100 µm and L = 200 µm ZnTe emitters, which are the most
reliable ones.

We have reconstructed the currents in the 2-layer and 3-layer STE using the GaP detector
with dry air (see figure 5.11) and without dry air (see figure 5.12). We can see the rapid
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rise and slow return dynamics in both. The data from the bilayer appears to be almost
complete, with the spectrum approaching zero for high frequencies. The trilayer, on the
other hand, appears to continue into the high-frequency region where we lack sensitivity.
This is consistent with the data in figure 5.10, where we see the spectrum continue being
significantly nonzero in frequencies up to at least 8 THz. It is also consistent with data in
figure 4.4, where we see that the measured spectrum for the 3-layer STE continues into
high frequencies, while the bilayer’s spectrum is practically zero above 2.5 THz.

The opposite sign of the bilayer and trilayer emission is caused by the layer order, as seen
in section 4.3. The opposite sign is already visible in the waveforms in figure 4.4.

In the low-frequency region, our data is consistent with the data in figure 5.10 both in
terms of the spectrum and the overall pulse shape. The beating before the first rise in the
pulse is likely a numerical artifact caused by a frequency cutoff.

(a) Spin current in the 2-layer STE. The dy-
namics correspond well to our expectations.

(b) Spectrum of the spin current in the 2-layer
STE. Note that it dives into noise at relatively
low amplitudes.

(c) Spin current in the 3-layer STE. The incom-
plete spectrum causes a beating artifact.

(d) Spectrum of the spin current in the 3-layer
STE. Note that it appears to continue into the
region where the reconstruction is less reliable.

Figure 5.11 Pulses reconstructed using the GaP detector in dry air.

The measurement without dry air shows a similar broad dynamics, but its spectrum (shown
on panel 5.12a) contains peaks at frequencies where water vapor absorbs particularly
well. This may be a consequence of noise, but also of the changes in humidity between
measuring the reference and the STE. We conclude that spin current reconstruction is
possible on data measured without dry air, as the main features are still discernible, but
the resulting noise level is much higher.
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(a) Spin current in the 2-layer STE, measured
with the GaP detector without dry air.

(b) Spectrum of the spin current in the 2-layer
STE, measured with the GaP detector without
dry air. The losses at water vapor lead to in-
creased noise at the corresponding frequencies.

Figure 5.12 The spin current in the 2-layer STE reconstructed using the GaP detector without
dry air.

5.4.3 Comparison of our data and expected data
To compare our data and the data from [38] more explicitly, we show the pulses recon-
structed by either method in a single graph. We show our data (obtained with dry air)
together with the unmodified pulse in figure 5.13. As can be seen, our data suggests a
longer pulse duration, but otherwise agrees with existing results.

(a) (b)

Figure 5.13 The comparison of a previously reconstructed pulse in a trilayer and our results.
(a) Our 3-layer STE reconstruction compared with the exact 3-layer measurement. (b) Our
2-layer STE reconstruction compared with the exact 3-layer measurement. Our data in (b) has
been multiplied by −1 for easier comparison of the shape.

To separate the effect of the different frequency bandwidths from other differences, we
compare our reconstructed pulse with the pulse from [38] modified by a lowpass filter at
3.5 THz. The result is shown in figure 5.14. The results, in particular for the less noisy
2-layer STE reconstruction, now overlap satisfactorily, considering that the measurements
were performed independently on different samples.
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(a) Our 3-layer STE reconstruction compared
with the low-pass-filtered measurement.

(b) Our 2-layer STE reconstruction compared
with the low-pass-filtered measurement. Our
data has been multiplied by −1 for easier com-
parison of the shape.

Figure 5.14 The comparison of a previously reconstructed pulse in a trilayer and our results.
The previous-work results have been modified by a low-pass filter simulating our bandwidth
limitations.
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6 Outputs and further work

6.1 Achievements
We have researched the theory of emission from nonlinear crystals. Based on it, we have
built a Python script through the modification of Matlab scripts used by a different team
under different experimental conditions. We have added functionality for the automatic
reconstruction of multiple currents measured in one setup using one or more references; we
have implemented an averaging procedure that can effectively combine data from multiple
references.

We have measured data from multiple emitter/detector combinations and used the script to
reconstruct the transfer functions of the corresponding setups, which we then theoretically
explained. We have verified that the method gives consistent results for three separate
emitters (the three thinnest ZnTe crystals).

We have reconstructed the electric field emitted by spintronic emitters, proving that
current experimental equipment can be used for this task, comparing our results with
existing work and replicating its findings.

6.2 Conclusions
We have found the measurement procedure most useful for spin current reconstruction.
The key is having complete transfer function information over as wide a bandwidth as
possible. Thus, the best reference emitters are ZnTe, L = 100 µm and L = 200 µm. Dry
air significantly reduces noise.

The current setup is sufficient for seeing the broad characteristics of spin currents, but
much more detailed information could be obtained with data from higher frequencies if
the laser pulse were shortened. Widening the spectral bandwidth in the Laboratory of
Optospintronics is planned for the next year.

The script developed in this thesis will become a part of the laboratory know-how,
remaining applicable for any emitters studied in the future. In particular, our choice of
a thick reference for the experimental emitters has precluded finding the dynamics of
spin currents in them, but it is straightforward to repeat the experiment under better
conditions (described above).

6.3 Possible improvements
As the data is sensitive to the refractive index n(Ω) (see figure 3.4 for a theoretical
illustration and section 5.1 for the practical observation of this phenomenon), the method
would be more robust if we could measure n(Ω) directly, which can be done through a
simple transmission measurement [7]. The scripts could be modified to obtain n(Ω) from
experimental data if desired. This would eliminate the dependence on material parameters
from the literature which may not apply exactly to a particular emitter.
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The behavior of thick emitters could be studied in detail using thin detection crystals
with wider frequency ranges. This would let us see whether the shallow minima of
figure 5.2 are a consistent phenomenon. If that were the case, it would suggest further
study to determine whether they are caused by sample defects (such as refractive index
inhomogeneity) or whether there are other physical phenomena at play.

We have found that thin emitters are better suited as detectors because of their wide
bandwidth. We have not used the thinnest ZnTe crystals as detectors because thin crystals
are less sensitive and thus require longer measurement periods, but our findings suggest
that using them would improve the frequency range where we have good data. Using
them in dry air can improve both overall sensitivity and coverage of the spectral range,
increasing our maximal reliable frequency from around 2.5 THz to around 4 THz, which
makes a difference in the characteristics of spin currents we can capture.

Some of the instabilities related to the Fourier transform can be resolved by doing the
deconvolution in the time domain, as described in [18].

Achieving a high signal-to-noise ratio is helped by using a high excitation power, but this
is only possible up to a certain saturation power. The saturation powers listed in table
4.4 do not follow an obvious pattern. Studying the underlying mechanisms of saturation
may lead to finding ways to improve signal strength. It would also be useful to verify that
saturation does not affect the emission spectrum, to make sure that this method works
robustly.
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A All measured data
In this appendix, we list all measurements made.

A.1 GaP detector, dry air

(a) THz waveform (b) Spectrum

Figure A.1 GaP detector in dry air. 3-layer STE.

(a) THz waveform (b) Spectrum

Figure A.2 GaP detector in dry air. 2-layer STE.

(a) THz waveform (b) Spectrum

Figure A.3 GaP detector in dry air. ZnTe 100 µm emitter.
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(a) THz waveform (b) Spectrum

Figure A.4 GaP detector in dry air. ZnTe 200 µm emitter.

(a) THz waveform (b) Spectrum

Figure A.5 GaP detector in dry air. ZnTe 500 µm emitter.

(a) THz waveform (b) Spectrum

Figure A.6 GaP detector in dry air. ZnTe 1 mm emitter.
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(a) THz waveform (b) Spectrum

Figure A.7 GaP detector in dry air. ZnTe 2 mm emitter.

A.2 GaP detector, regular atmosphere

(a) THz waveform (b) Spectrum

Figure A.8 GaP detector. 2-layer STE.

(a) THz waveform (b) Spectrum

Figure A.9 GaP detector. ZnTe 100 µm emitter.
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(a) THz waveform (b) Spectrum

Figure A.10 GaP detector. ZnTe 200 µm emitter.

(a) THz waveform (b) Spectrum

Figure A.11 GaP detector. ZnTe 500 µm emitter.

(a) THz waveform (b) Spectrum

Figure A.12 GaP detector. ZnTe 1 mm emitter.
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(a) THz waveform (b) Spectrum

Figure A.13 GaP detector. ZnTe 2 mm emitter.

A.3 ZnTe 0.5 mm detector, regular atmosphere

(a) THz waveform (b) Spectrum

Figure A.14 ZnTe 500 µm detector. 3-layer STE.

(a) THz waveform (b) Spectrum

Figure A.15 ZnTe 500 µm detector. 2-layer STE.
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(a) THz waveform (b) Spectrum

Figure A.16 ZnTe 500 µm detector. ZnTe 100 µm emitter.

(a) THz waveform (b) Spectrum

Figure A.17 ZnTe 500 µm detector. ZnTe 200 µm emitter.

(a) THz waveform (b) Spectrum

Figure A.18 ZnTe 500 µm detector. ZnTe 1 mm emitter.
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(a) THz waveform (b) Spectrum

Figure A.19 ZnTe 500 µm detector. ZnTe 2 mm emitter.

(a) THz waveform (b) Spectrum

Figure A.20 ZnTe 500 µm detector. GaP 2 mm emitter.

A.4 ZnTe 1 mm detector, regular atmosphere

(a) THz waveform (b) Spectrum

Figure A.21 ZnTe 1 mm detector. 3-layer STE.
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(a) THz waveform (b) Spectrum

Figure A.22 ZnTe 1 mm detector. GaP 2 mm emitter.

A.5 ZnTe 2 mm detector, regular atmosphere

(a) THz waveform (b) Spectrum

Figure A.23 ZnTe 2 mm detector. 3-layer STE.

A.6 Iris shutter

(a) THz waveforms (b) Spectra

Figure A.24 GaP 2 mm detector. ZnTe 1 mm emitter. Iris shutter at various diameters.
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A.7 Experimental emitters

(a) THz waveforms (b) Spectra

Figure A.25 GaP 2 mm detector in regular atmosphere. Experimental emitters grown by Dr.
Jakub Zázvorka.

(a) THz waveforms (b) Spectra

Figure A.26 GaP 2 mm detector in regular atmosphere. Reference measurement with the
ZnTe 1 mm emitter.
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