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1. Introduction
In this thesis we will look into the problem of congruent numbers. A natural
number n is called congruent if it is an area of a right triangle with all three
sides rational. A congruent number problem asks whether a given number n
is congruent or not. So far this problem has not been fully solved. Congruent
numbers are closely related to elliptic curves which will also be looked into in
this thesis. Tools which will be defined here are not specific just for congruent
numbers, but also make appearance in many famous open problems like the Birch
and Swinnerton-Dyer conjecture – one of the Millennium Problems.

Chapter 2 shows the definition and a simple characterization for congruent
numbers from [Kob93] and it then presents few examples of such congruent num-
bers. We can also see Proposition 2.2 proving that the number 1 is not congruent
which is later seen in Chapter 7 to imply Fermat’s Last theorem for n = 4.

In Chapter 3 we define a binary operation on points lying on arbitrary elliptic
curve E, which forms an abelian group structure on said points. We are then
presented with two formulae which give us concrete ways to calculate coordinates
of point resulting by doubling a point or adding two points on this curve E.

Chapter 4 has the same goal as Chapter 1 in [Kob93], that is to prove the
Theorem 4.7 which states that n is congruent if and only if the corresponding
elliptic curve En over Q has a positive rank. The thesis goes by a different, more
computationally oriented, path than in the mentioned book.

In Chapter 5 we are presented with Hasse’s theorem without proof which is
then later used in Chapter 6, in Proposition 6.2 to show convergence of Zeta-
functions and in Proposition 6.8 for convergence of L-functions. We are then
shown in Proposition 5.3 formula for the number of points on elliptic curves over
finite fields and with example formulae for the number of F3r and F5r -points on
elliptic curves of the form y2 = x3 − n2x.

Zeta-functions are defined in Chapter 6 with detailed proof of how they can
be expressed for primes of good reduction in Proposition 6.3 and bad reduction
in Proposition 6.4. Following this we are shown the definition of L-functions and
their expression as an Euler product in Proposition 6.6. The L-functions are
then used to make one final theorem connecting congruent numbers and elliptic
curves in Theorem 6.10 which states that if n is congruent then the L-function
of corresponding elliptic curve En evaluated at 1 is zero.

The whole thesis ends with Chapter 7 which classifies the congruent and non-
congruent numbers up to 20 using the tools introduced in this thesis.

The thesis serves mainly as a summarization of ideas from two books: In-
troduction to elliptic curves and modular forms by Koblitz [Kob93] which looks
directly on the congruent number problem and Rational points on elliptic curves
by Silverman and Tate [ST92] which introduces with elliptic curves in general.

In Chapter 2 the author gives his proof of Proposition 2.2 stating that the
number 1 is not congruent. He then proceeds to prove a characterization of con-
gruent numbers from [Kob93] in Proposition 2.3 in more detail than was given in
the cited book as one part of the proposition was left as an exercise. In Chap-
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ter 3 the author proves some of the properties of elliptic curves in Propositions
3.4 and 3.5. He then presents two formulae for point addition on elliptic curves
from [Sil09] which were in this book proven for general cases of curves, so the
author gives more computationally oriented proof. Chapter 4 has the same goal
as [Kob93], but the author approaches the final Theorem 4.7 in a new and unique
way than the cited book. His work includes stating and subsequently proving
Lemmas 4.4, 4.5 and Proposition 4.6 as well as own proof of the second implica-
tion of the mentioned Theorem 4.7. It is worth noting that in the book [Kob93]
they prove the theorem via different methods using lemmas revolving around
group homomorphisms, but in the final proof they unintentionally leave out one
non-trivial detail, so the proof is incomplete. Chapter 5 does not contain many
new ideas, as its purpose is just to give an insight into elliptic curves over finite
fields, with the exceptions of worked-out Examples 6 and 7 given at the end.
In [Kob93] the statements regarding Zeta-functions and L-functions are often
given without proof, given as exercises or proven via other methods using charac-
ter functions. Therefore for the propositions in Chapter 6, which are taken from
the book, author provides his own proofs of which can be seen in Propositions
6.2, 6.4, 6.6 and 6.8 as well as Lemmas 6.7, 6.13 and 6.14. The book [Kob93]
uses these lemmas in one example of determining if 1 is or is not a congruent
number, which was an inspiration for Chapter 7. Using this inspiration, the au-
thor independently worked out the full classification of which natural numbers
up to twenty are congruent, in Propositions 7.1 up to 7.9. At the end, the author
shows how non-congruence of 1 implies Fermat’s Last theorem for n = 4. The
author also implements two algorithms in SageMath which he used for validation
of before mentioned classification results.
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2. Congruent numbers
We begin with the definition of a congruent number and show a simple charac-
terization for such numbers which will slowly lead us into the world of elliptic
curves.

Definition 2.1. A natural number n is called a congruent number if there exists
a right triangle with rational sides and area n.

In other words, there exist rational numbers a, b, c ∈ Q+ such that a2 +b2 = c2

and 1
2ab = n. In this text we will note right triangles with sides a, b, c as (a, b, c).

Example 1. The number 6 is a congruent number as the well-known (3,4,5) right
triangle has area equal to 6. The number 5 is also a congruent number with a bit
more complicated triangle whose sides are as follows: (40

6 , 9
6 , 41

6 ).

3

5
4

Figure 2.1: Triangle with area 6

40
6

9
6

41
6

Figure 2.2: Triangle with area 5

If n is a congruent number, it does not necessarily mean that there exists only
one such triangle as for example the triangles (3, 4, 5) and (1200

70 , 49
70 , 1201

70 ) both
have area of 6 but are not similar.

Let n be a congruent number with corresponding right triangle (a, b, c). It is
easy to see that we can always find t ∈ Q∗ such that t2n is a square-free natural
number. On the other hand, rescaling the triangle by t we obtain a right triangle
(ta, tb, tc) which has area precisely t2n and therefore this new number is also
congruent. Due to this fact we can without loss of generality often assume that
n is square-free natural number.

Example 2. 24, 54 and 150 are congruent numbers since they are equivalent to
6 modulo (Q∗)2 – by this we mean that if x is one of the numbers, there exist
some t ∈ Q∗2 such that xt2 = 6.

Proposition 2.2. The number 1 is not a congruent number.

Proof. Suppose 1 was a congruent number, then there would exist a right triangle
(A, B, C) ∈ N3 with area D2 ∈ N and without loss of generality we can also
suppose that A, B, C are pairwise coprime. The area of our triangle is given by
the expression 1

2AB = D2 which is equivalent to AB = 2D2. Since (A, B) = 1
we can see, that one of the numbers is an odd square and the other one is two
times a square, let us say A = 2k2, B = l2 with l odd. Plugging the expression
for A into the right triangle identity we get

4k4 + C2 = B2 ⇐⇒ k4 = C − B

2
C + B

2 .
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Using (B, C) = 1 we can conclude that C−B
2 = m4 and C+B

2 = n4 for some
m, n ∈ N and so we get m4 − n4 = B = l2, therefore we just need to show that
the equation x4 = y4 + l2 where l is odd has no solutions. Suppose it had at least
one solution (x, y, l) and take one with x being smallest possible. We could write

x2 = p2 + q2, y2 = 2pq, l = p2 − q2

with p, q coprime since (y2, l, x2) is a primitive Pythagorean triple (there are many
sources, for example see [ST92, Section 1.1]). We have got another primitive
Pythagorean triple (p, q, x) and so we could again write the following

x = r2 + s2, p = 2rs, q = r2 − s2

with r, s ∈ N coprime. But y2 = 2pq = 4rs(r2 − s2) ̸= 0 so r, s, (r2 − s2) are
all squares. If we write r = x̃2, s = ỹ2, r2 − s2 = z̃2 then we arrive again at the
equation x̃4 − ỹ4 = z̃2 with 0 < x̃ =

√
r ≤ r < x and so we have found a smaller

solution to the original equation in N which is a contradiction since we assumed
x to be smallest possible.
Proposition 2.3. A natural number n is congruent if and only if there exists
x ∈ Q such that x − n, x and x + n are all squares of some rational numbers.
Proof. We will follow a proof given in [Kob93, Chapter 1, Proposition 1].

” =⇒ ” Suppose n is a congruent number and (A, B, C) is a right triangle
with area n. We have the following two equations: A2 + B2 = C2 and 1

2AB =
n. Adding or subtracting four-times the second equation to the first we get
(A ± B)2 = C2 ± 4n. Dividing by four and substituting x = (C/2)2 we get
(A±B

2 )2 = x ± n from which we see that all three numbers x − n, x, x + n are
squares of some rational numbers.

” ⇐= ” Working backwards we can easily check that the map

x ↦→ (
√

x + n −
√

x − n,
√

x + n +
√

x − n,
√

4x)

gives a right triangle with rational sides and area n. Indeed:(︂√
x + n −

√
x − n

)︂2
+
(︂√

x + n +
√

x − n
)︂2

= 4x =
(︂√

4x
)︂2

and
1
2
(︂√

x + n −
√

x − n
)︂ (︂√

x + n +
√

x − n
)︂

= 1
2(x + n − x + n) = 1

2(2n) = n.

In the proof we stumbled upon two equations (A ± B)2 = C2 ± 4n. We can
multiply them together to get (A2 − B2)2 = C4 − 16n2 and by setting the values
α = (A2 − B2)/4, β = C/2 we obtain

α2 = β4 − n2.

Now multiply by β2 both sides, so we have (αβ)2 = β6 − n2β2. Substituting
x = β2, y = αβ we arrive at

y2 = x3 − n2x.

This means that if we get a rational right triangle (A, B, C) with area n, we can
use it to find a rational solution to the equation y2 = x3 − n2x with y ̸= 0.

This gives us a motivation to look into the structure of a family of curves
known as elliptic curves which we will rigorously define in the next chapter.
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3. Elliptic curves, point addition
Elliptic curves are special objects in that they are algebraic curves on one hand,
but also one can define a group structure on them which is often regarded as the
main reason to research such curves. The study of elliptic curves takes place over
projective plane rather than affine plane (= K2 for K a field).

Let K be a field and consider the monomial ai,jx
iyj with ai,j ∈ K. By the total

degree of such monomial we mean the value i + j. If F (x, y) is a polynomial over
K, then by its total degree we understand the maximum degrees of all monomials
which occur in F .

If we are given a polynomial F (x, y) of total degree n, we may create a cor-
responding homogeneous polynomial F̃ (x, y, z) by multiplying each monomial
ai,jx

iyj of F by the value zn−i−j. For example, the total degree of the polynomial
F (x, y) = y2 − x3 − n2x is 3 and the corresponding homogeneous polynomial is
F̃ (x, y, z) = y2z − x3 − n2xz2.

Notice that for any homogeneous polynomial F̃ and any scalar k ∈ K we
have knF̃ (x, y, z) = F̃ (kx, ky, kz) and znF (x

z
, y

z
) = F̃ (x, y, z). This gives us

a motivation into the definition of projective plane.
To define a projective plane, we begin with a 2-dimensional affine plane defined

over a field K: {(x, y) | x, y ∈ K}. We then introduce a third coordinate z to
create a set {(x, y, z) ̸= (0, 0, 0) | x, y, z ∈ K} and define an equivalence relation
∼ on this set which says that two points (x, y, z) and (x′, y′, z′) are equivalent if
there exists a nonzero k ∈ K such that (x, y, z) = (kx′, ky′, kz′). With this we
define a projective plane as the following object:

P2
K = {(x, y, z) ̸= (0, 0, 0) | x, y, z ∈ K}/ ∼ .

This is a generalization of classical xy-plane as each point (x, y) embeds into P2
K

as [(x, y, 1)]∼. These points due to our equivalence relation make up for all points
with non-zero z-coordinate. The other equivalence classes, namely [(x, y, 0)]∼,
form what we call a line at infinity.

One point of interest from this set is the point (0, 1, 0). If we have a cubic
polynomial f(x) = x3 + ax2 + bx + c then the homogeneous polynomial corre-
sponding to F (x, y) = y2 − f(x) is g(x, y, z) = y2z − x3 − ax2z − bxz2 − cz3. If
a point (x, y, z) lies on this polynomial and z = 0 then we automatically get that
x is also 0 therefore this point must be (0,1,0). We call this point the point at
infinity and denote it by O.

Definition 3.1. Let K be a field of characteristic not equal to 2 and f(x) ∈ K[x]
be a cubic polynomial with distinct roots in K. We call the locus of all points
(x, y) satisfying the equation y2 = f(x), together with the point at infinity O, an
elliptic curve defined over the field K.

If we have defined E over some field K we sometimes write it simply as E/K.

Definition 3.2. Let E/K be an elliptic curve defined by y2 = f(x) = x3 + ax2 +
bx + c. The set of K-rational points on E is the set

E(K) := {(x, y, z) ∈ P2
K | y2z = x3 + ax2z + bxz2 + cz3}.

When K = Q we call the set E(Q) rational points.
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Since there is only point at infinity all other points lying on E belong to the
affine plane K2, so we can identify

E(K) = {O} ∪ {(x, y) ∈ K2 | y2 = f(x)}.

Due to this identification, we can simply work with elliptic curves as affine
curves with one added point at infinity, so we do not forget that they are projective
curves.

Definition 3.3. Let E be an elliptic curve over a field K given by an equation
y2 = f(x) and define F (x, y) := y2 − f(x). Let P = (x0, y0) ∈ E(K) \ O then
we say that the elliptic curve E is smooth at point P if the partial derivatives
∂F/∂x, ∂F/∂y are not simultaneously zero at P . Furthermore if E is smooth at
all points from E(K) we say that E is non-singular (otherwise we call it singular).

Remark 3. Since O is given in projective coordinates the definition of smooth-
ness at O is slightly different, but it can be checked that O is always smooth on
E. For this reason we only check the smoothness at points of affine plane.

Proposition 3.4. Let E/K be an elliptic curve. Then E is smooth.

Proof. Assume that (x, y) is a point at which E is not smooth. Since 0 = ∂F/∂y =
2y and K is not a field of characteristic 2 then y = 0. Thus f(x) = 0 and
by assumption ∂F/∂x = −f ′(x) = 0 which implies that f(x) has double root,
therefore it does not satisfy the definition of an elliptic curve.

Example 4. Consider a curve E defined by F (x, y) := y2 − x3 − 1 over Q. The
partial derivatives are ∂F/∂x = 3x2 and ∂F/∂y = 2y which are simultaneously
zero if and only if x = y = 0. Since the point (0, 0) does not lie on E then this
curve is smooth at every point and therefore it is an elliptic curve.

On the other hand, if we defined it over the field F3 then the equation is
y2 = (x + 1)3, so it is singular and it is not an elliptic curve (f(x) has triple root
at x = −1).

Remark 5. There exist elliptic curves over fields of characteristic 2. However,
the curves in the form y2 = f(x) are always singular.

We are interested in the special kind of elliptic curves given by the equation
y2 = x3 − n2x. We denote these elliptic curves by En. So far we have defined
them over the rational numbers Q, but we can easily extend the definition to any
field K.

Proposition 3.5. Let K be a field of characteristic p. The equation y2 = x3−n2x
defines an elliptic curve over K if and only if p does not divide 2n.

Proof. Let p be the characteristic of K. By Remark 5 we may assume that p ̸= 2.
By the definition of an elliptic curve the polynomial x3 −n2x must have 3 distinct
roots. This expression factors into (x+n)x(x−n) and so the roots are ±n and 0.
For them to be distinct in characteristic p, they must not be pairwise congruent
modulo p, in other words −n ̸≡ n ̸≡ 0 (mod p). This happens if and only if
p ∤ 2n.

7



Let us also quickly remind of Bézout’s Theorem (see [ST92, Appendix A])
which tells us about intersecting points of two projective curves.

Theorem 3.6 (Bézout’s Theorem). Let A, B ∈ K[x, y, z] be homogeneous poly-
nomials of degrees a and b respectively with no common factors. Then A and B
intersect in K at exactly ab points.

As stated earlier if we are given any elliptic curve E over Q we can define
a group structure on its set of points E(Q) which we call Mordell-Weil group and
denote the same way. The group addition on its elements is defined as follows:

• Given points P, Q ∈ E(Q) \ {O} such that their x-coordinates are not the
same, we take a line going through P and Q. By Bézout’s theorem this
line must intersect E at some third point (which can be equal to P or Q,
should the line be tangent at such point). Bézout’s theorem does not right
away say that this point belongs to K, but since elliptic curves are given
by cubic polynomials and we already have two points in K, then this third
one must also belong to K and not just K (see the proof of Proposition
3.9). If we now take this intersecting point and mirror it over the x-axis
(effectively flipping the sign in y-coordinate) we obtain new point which we
call P + Q.

• If the line through P and Q is vertical we define P + Q as O.

• If we want to double one of the points, say the point P , we take a tangent
line to E at the point P and proceed as before – take the intersecting point
and mirror it over x-axis. Such a point will be denoted by 2P (see Figure
3.2).

• For P ∈ E(Q) \ O and Q = O we take the line going through P and Q as
the vertical line through P . Therefore result of P + O is again P as the
third point of intersection is P flipped over the x-axis.

• Finally for P = Q = O we define O + O = O.

-4 -2 0 2 4 6

-10

-5

0

5

10

P

Q

P*Q

P+Q

Figure 3.1: Point addition

-4 -2 0 2 4 6

-10

-5

0

5

10

P

P*P

P+P=2P

Figure 3.2: Point doubling

We have to remember, that we view E as a projective curve and therefore
we must not omit the point at infinity. For example if we take P and Q such
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that they both lie on a line which is parallel to y-axis then, if viewed as affine
curve, E would not intersect this line in any third point, but since we take E as
projective curve, P + Q is the point at infinity O (as O flipped is again O).

To see that this operation indeed defines a group we have to check the basic
axioms of group:

• The identity element of this group is the point at infinity O as seen by how
we defined point addition.

• It can also be easily seen that the inverse to any point P = (x0, y0) is simply
(x0, −y0) since line going through such points will intersect E at O which
we have established as the identity element. By −P we will mean the point
which is inverse to P ∈ E(Q).

• Associativity is the only hard thing to show and if one wants to see proof
of this fact, we recommend reading it in [ST92, Pages 14-16].

What is more interesting is the fact, that this operation is commutative – a line
going though P and Q is the same as the line going though Q and P therefore
P + Q = Q + P .

Definition 3.7. Let E be an elliptic curve and P ∈ E(Q) \ {O}. By order of P
we mean the smallest n ∈ N such that nP = O. If no such number exists, we say
that P has order ∞.

Proposition 3.8. Let E be an elliptic curve defined over Q by the equation
y2 = f(x) where f(x) is cubic polynomial. The value x0 is root of f(x) if and
only if the order of P = (x0, 0) is 2.

Proof. ” =⇒ ” To obtain the order of P we at first have to double the point P
which requires us to take a tangent line to E through P . This line is perpendicular
to the x-axis because the partial derivative with respect to y at this point is zero.
It therefore intersects E twice at P and once at O. The result of such operation
is therefore O which is the identity element and so P must have order of 2.

” ⇐= ” For a point P ̸= O to satisfy the identity 2P = O is equivalent to
satisfying P = −P and so (x0, y0) = (x0, −y0) =⇒ y0 = −y0 =⇒ y0 = 0 and
so x0 is root of f(x).

The following two propositions give us concrete formulae which tell us how
to calculate coordinates of P + Q for P, Q ∈ E(Q) \ {O}, P ̸= ±Q. In the book
[Sil09, Chapter 3, 2.3.] one can see an algorithm for more general types of curves,
which we fortunately do not discus in this work.

Proposition 3.9. Let E be an elliptic curve given by y2 = x3 + ax2 + bx + c
and P = (x1, y1), Q = (x2, y2) ∈ E(Q) \ {O} such that P ̸= ±Q. Then the point
P + Q = (x3, y3) ∈ E(Q) has coordinates

x3 = λ2 − a − x1 − x2

y3 = −(λx3 + ν)
where λ = y2−y1

x2−x1
and ν = y1 − λx1

9



Proof. The line going through points P and Q is given by the equation
y2 − y1

x2 − x1
(x − x1) = y − y1

and so by setting λ = y2−y1
x2−x1

, ν = y1 − λx1 we get y = λx + ν. Plugging this value
into the expression for E and putting all terms to the right-side yields

0 = x3 + (a − λ2)x2 + (b − 2λν)x + c − ν2.

We also know that this cubic equation has three roots x1, x2, x3 and so using
the Vieta’s formulae for coefficient of x2 we get

a − λ2 = −x1 − x2 − x3 =⇒ x3 = λ2 − a − x1 − x2.

Thus, from the equation of the line we get the value for y3̃ as y3̃ = λx3 − ν.
Finally we need to flip the sign of y3̃ to obtain the value of y3 due to how we
defined addition on this group.

Proposition 3.10 (Duplication formula). Let E be an elliptic curve as above
and P = (x0, y0) ∈ E(Q) \ {O} a point not of order 2. Then the x-coordinate
of 2P are given by the following formula:

x[2P ] = x4
0 − 2bx2

0 − 8cx0 + b2 − 4ac

4x3
0 + 4ax2

0 + 4bx0 + 4c
. (3.1)

Proof. The proof is essentially the same as in Proposition 3.9 with the difference
that λ the slope of tangent line at the point P . We calculate λ as following:

y2 = f(x)

d

dx
(y2) = d

dx
(f(x))

2y
dy

dx
= f ′(x)

dy

dx
= f ′(x)

2y
=⇒ λ = dy

dx

⃓⃓⃓
P

= f ′(x0)
2y0

Now the tangent line at P is given by the equation

λ(x − x0) = y − y0.

Set ν = y0 − λx0 to obtain y = λx + ν. Now the proof is essentially the same
as in the previous proposition with the difference that x1 = x2, so the expression
for x[2P ] looks like

x[2P ] = λ2 − a − 2x0 = (f ′(x0))2

4y2
0

− a − 2x0 = (f ′(x0))2 − 4y2
0a − 8y2

0x0

4y2
0

.

Since y2
0 = x3

0+ax2
0+bx0+c we can replace by it the expression in the denominator

at arrive at
x[2P ] = x4

0 − 2bx2
0 − 8cx0 + b2 − 4ac

4x3
0 + 4ax2

0 + 4bx0 + 4c
.
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4. Rank and congruent numbers
In this section we will define and use the concept of a rank of an elliptic curve
and how it is connected to congruent numbers. To do so we will use a well-known
theorem by Mordell whose proof we will not present – we recommend looking
into [ST92, Section 3] for a proof. We will also use a rather strong theorem given
by Mazur which will likewise now be proven here.

Theorem 4.1 (Mordell’s Theorem). Let E be an elliptic curve defined over Q.
Then the group E(Q) is finitely generated.

Proof. See [ST92, Theorem 3.10].

The fundamental theorem of finitely generated abelian groups says that any
abelian group A can be decomposed as a direct product of a torsion subgroup
Tor(A) and Zr for some non-negative integer r. This leads us into definition of
an object we call rank of elliptic curve.

Definition 4.2. Let E be an elliptic curve defined over Q. The rank of E is
a non-negative integer r such that

E(Q) ∼= Tor(E(Q)) ⊕ Zr.

The rank is an important object in studies of elliptic curves. In the context
of congruent number problem, it can be used to create new characterization for
congruent numbers.

To make such characterization we will use the following highly non-trivial but
important theorem of Mazur.

Theorem 4.3 (Mazur’s Theorem, [Maz78, Theorem 2]). Let ϕ be the torsion
subgroup of Mordell-Weil group of an elliptic curve over Q. Then ϕ is isomorphic
to

(A) Z/mZ 1 ≤ m ≤ 10 or m = 12;
(B) Z/2mZ × Z/2Z 1 ≤ m ≤ 4.

Lemma 4.4. In En(Q) the only points of order dividing 2 are (±n, 0), (0, 0)
and O.

Proof. By Proposition 3.8 we know that points of order 2 are only the points
with x-coordinate being the root of x3 − n2x, those are precisely (±n, 0), (0, 0).
For the point O the statement holds trivially.

Lemma 4.5. En(Q) has no points of orders 3 and 4.

Proof. Case 1. First, we will look at the points of order 3. Let P = (x, y) be such
point. Then P has to satisfy the identity 2P = −P ̸= O. Using duplication
formula (3.1) to calculate the x-coordinate of 2P we get

x[2P ] = (x2 + n2)2

4x(x2 − n2) .
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On the other hand, x[2P ] = x[−P ] = x and so we get the following equation:

x = (x2 + n2)2

4x(x2 − n2) ⇐⇒ 4x2(x2 − n2) = (x2 + n2)2 ⇐⇒ 3x4 − 6x2n2 − n4 = 0,

which after a substitution t = x2 simplifies into:

3t2 − 6tn2 − n4 = 0.

Since x ∈ Q then t ∈ Q2 and so the discriminant of the quadratic equation above
must be a rational square, but that is not the case because

∆ = (−6n2)2 − 4(3)(−n4) = 36n4 + 12n4 = 48n4 /∈ Q2

and therefore such point P cannot exist, so there are no points of order 3.
Case 2. Now suppose P has order 4. Using duplication formula (3.1) we get

an expression for the x-coordinate and thanks to the equation of a line y = λx+ν
we obtain the y-coordinate:

y[2P ] = n6 − 5n4x2 − 5n2x4 + x6

8y3 .

P being a point of order 4 implies that 2P is point of order 2, but those are
only the 3 points (±n, 0), (0, 0) by Lemma 4.4. All of them lie on the x-axis
so y[2P ] = 0. This holds if and only if the numerator is equal to zero and after
factoring out (x2+n2) (which is always non-zero for x ∈ Q), we get x4−6x2n2+n4.
Again substitute t = x2 and we arrive at

t2 − 6tn2 + n4 = 0.

(As in Case 1.) The discriminant being equal to 32n4 is not a rational square
thus there are no points of order 4.

Proposition 4.6. # Tor(En(Q)) = 4.

Proof. Mazur’s Theorem implies that Tor(En(Q)) is isomorphic to one of the
groups

(A) Z/mZ, m ∈ {1, · · · , 10} ∪ {12}

(B) Z/2mZ × Z/2Z, m ∈ {1, 2, 3, 4}.

Lemma 4.4 implies Tor(En(Q)) must have subgroup isomorphic to Z/2Z×Z/2Z
which immediately removes case (A). From the 4 other possibilities, Lemma 4.5
removes Z/4Z×Z/2Z, Z/6Z×Z/2Z and Z/8Z×Z/2Z. We are left with only one
possibility: Z/2Z × Z/2Z and so Tor(En(Q)) is isomorphic to Klein four-group
which has precisely 4 elements.

Theorem 4.7. A natural number n is congruent if and only if En has positive
rank r over Q.

Proof. ” =⇒ ” At the end of Chapter 2 we have seen that if we have a rational
right triangle (A, B, C) we can then obtain a point (x, y) on En via the map
(A, B, C) → (C2/4, (A2 −B2)·C/8). The values A2 −B2 and C can never be zero,
therefore the y-coordinate of this point is non-zero. From Proposition 4.6 we know

12



that the only points of finite order are either O or points with zero y-coordinate.
Since our newly obtained point has neither property it must necessarily be a point
of infinite order and therefore the rank of E over Q is positive.

” ⇐= ” Suppose now that En over Q has positive rank. Then we can find
some point P̃ ∈ En(Q), P̃ = (x̃, ỹ) ̸= O of infinite order and set P = 2P̃ . The
reason for this doubling of point is to utilize the duplication formula (3.1) in the
following: let P = (x, y), then we have

x = (x̃2 + n2)2

4ỹ2 ,

y =
√

x3 − n2x.

Now if we can make these simple observations:
1) x is a square of a rational number
2) x + n is a square of a rational number as it is equal to

(x̃2 + n2)2 + 4ỹ2n

4ỹ2 = n4 − 4n3x̃ + 2n2x̃2 + 4nx̃3 + x̃4

4ỹ2 =
(︄

−n2 + 2nx̃ + x̃2

2ỹ

)︄2

.

3) x − n is also a square of a rational number, similarly as in previous case we
have

(x̃2 + n2)2 − 4ỹ2n

4ỹ2 = n4 + 4n3x̃ + 2n2x̃2 − 4nx̃3 + x̃4

4ỹ2 =
(︄

n2 + 2nx̃ − x̃2

2ỹ

)︄2

.

Finally, we can use the Proposition 2.3 which tells us that n must be congruent.

Back in Chapter 2 we have seen that we can have multiple triangles which
show the congruence property of a number. One interesting consequence of this
theorem is the fact, that we actually have infinitely many of such triangles – we
have infinitely many points in En(Q) therefore we have infinitely many values
of x ∈ Q which, thanks again to Proposition 2.3, generate non-congruent right
triangles with area n.

We end this chapter with a note that this exact theorem is also proven in
[Kob93] in Chapter 1 Proposition 18, although in a completely different way
using group homomorphisms and in the last part one small non-trivial detail is
missing (more specifically: in their proof they need the value n to be coprime
with the numerator of x[2P ], which they do not show).
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5. Elliptic curves over finite fields
So far, we have been looking at elliptic curves over Q, but our definition allows
us to look at any field. In this chapter we will look into elliptic curves defined
over finite fields Fq, q is a power of prime. We will later use these results to define
two new types of functions which will be used for another ways of determining if
a number is congruent.

Definition 5.1. Let p be a prime and E be an elliptic curve defined over Q by
an equation y2 = f(x). The equation of E considered over a finite field Fp defines
new curve which we call a reduction modulo p.

If this new curve is an elliptic curve, we call the prime p a prime of good
reduction, otherwise we call p a prime of bad reduction.

For our elliptic curves of interest, En, it follows by Proposition 3.5 that p is
a prime of good reduction if and only if p ∤ 2n.

Similarly to looking over fields Fp, we can also look over fields Fq for q being
a power of p. We are mainly interested in the number of points of E(Fq).

Since Fq is finite, then E(Fq) is also finite and we can make a crude estimate
for the number of points which is q2 + 1 (q2 combinations of (x, y) plus one point
at infinity). Much better estimate is using the fact that for every value of x we
get at most 2 values for y, giving us an upper bound of 2q + 1. Statistically,
a randomly chosen quadratic equation from Fq has generally 50% chance of being
solvable over Fq, therefore we should expect the number of points to be more
likely around the value q + 1. This is actually the case which is shown by the
following theorem of Hasse.

Theorem 5.2 (Hasse’s theorem, [Has36, Page 206]). Let E be an elliptic curve
defined over a finite field Fq where q is a power of a prime. Then

|#E(Fq) − q − 1| ≤ 2√
q.

The ”error” value q + 1 − #E(Fq) is a very useful object which comes up very
often when dealing with elliptic curves over finite fields and so we label it by aE,q.
Some of properties of aE,q are captured in the following proposition taken from
[Sil09, Chapter 5, 2.3.1].

Proposition 5.3. Let α, β ∈ C be roots of the quadratic equation x2 − aE,qx + q,
then

(A) either α = β ∈ R or α, β are complex conjugates
(B) |α| = |β| = √

q
(C) #E(Fqr) = qr + 1 − αr − βr

Proof. (A) Consider the discriminant of x2 − aE,qx + q:

∆ = a2
E,q − 4q ≤ (2√

q)2 − 4q = 4q − 4q = 0.

This means, that either α and β are the same real number or they are both
complex. In both cases we have α = β̄ since the quadratic polynomial has
coefficients in Z.
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(B) Comparing constant terms of the polynomial x2−aE,qx+q = (x−α)(x−β)
we get: q = αβ =⇒ |q| = |αβ| = |α| |β| = |α| |ᾱ| = |α|2 =⇒ √

q = |α| = |β|.
(C) This part is hard to prove and can be seen in [Sil09, Chapter 5, 2.3.1].

This proposition says that the number of points of E(Fpr) for fixed prime p
has in a sense one degree of freedom, meaning that we just need to calculate the
number of Fpr -points for one choice of r and then we can easily find the number
of Fpr -points for any value of r. This will become handy in the next chapter.

Example 6. Consider an elliptic curve En such that 3 ∤ n and take the prime
p = 3. Over the field F3 the equation defining En simplifies into

y2 = x3 − x = x(x + 1)(x − 1)

as n2 ≡ 1 (mod 3). Every choice of x gives us 0 and therefore we have En(F3) =
{(0, 0), (1, 0), (2, 0), O}, =⇒ #En(F3) = 4. Let us continue by calculating the
number of F3r -points. We begin with aEn,3 = 3 + 1 − #E(F3) = 0, now we find
the two roots of the polynomial x2 − aEn,3x + 3 = x2 + 3 = (x + i

√
3)(x − i

√
3).

By Proposition 5.3 (C) we obtain formula for the number of points over F3r :
#E(F3r) = 3r + 1 − (ir + (−i)r)

√
3r. We can simplify this formula a bit by

considering the parity of r:

• If r = 2s + 1 is odd then (ir + (−i)r) = 0 and so #E(F3r) = 3r + 1.

• If r = 2s is even then (ir + (−i)r) = 2(−1)s so #E(F3r) = 9s + 1 − 2(−3)s.

Example 7. Let us go through the same calculations but with p = 5 and 5 ∤ n.
We have to consider 2 cases: n ≡ ±1 (mod 5) and n ≡ ±2 (mod 5).

If n ≡ ±1 (mod 5) then the equation for En similarly simplifies into x3 − x =
x(x + 1)(x + 4). The values x = 0, 1, 4 force the value of y to be only 0, while
plugging x = 2 gives 1 with y2 = 1 having 2 solutions (y = 1, y = 4) and
x = 3 gives the number 4 with also two values for y (y = 2, y = 3). We have
#E(F5) = 8, aEn,5 = −2 and the roots of corresponding quadratic polynomial
x2 + 2x + 5 are −1 ± 2i. Putting this to the expression for number of points over
general field F5r we get:

#E(F5r) = 5r + 1 − ((−1 − 2i)r + (−1 + 2i)r) .

If n ≡ ±2 (mod 5) then the equation simplifies into

y2 = x3 + x = x(x + 2)(x + 3).

All of the values x = 0, 2, 3 again create one possibility for y, namely 0, while
x = 1 gives y2 = 2 which is not a square and so from this number we do not get
any points, same with x = 4 as we get y2 = 3. We get #E(F5) = 4, aEn,5 = 2
and so the roots of the quadratic polynomial x2 − 2x + 5 are 1 ± 2i. This gives
us similarly looking expression for the number of points over F5r :

#E(F5r) = 5r + 1 − ((1 − 2i)r + (1 + 2i)r) .
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6. L-functions
With a bit of insight to finite fields from last chapter, we will here define L-
functions and mention a theorem by Coates and Wiles. This theorem combined
with the result from the end of Chapter 4 will give us new characterization for
congruent numbers.

To define these L-functions we firstly need to define a helpful function we call
Congruence Zeta-function. Later we will see that these Zeta-functions of elliptic
curves of our form of interest are actually really easy to calculate since we will
only need to find the number of Fp-points on En.

Definition 6.1. Let C be a curve defined over Fp for p a prime number and let
Nr = #C(Fpr). We define a Congruence Zeta-function of C over Fp as:

Z(C/Fp, T ) = exp
(︄ ∞∑︂

r=1
Nr

T r

r

)︄
.

The word Congruence is often omitted from the name, so we also not use it
from now on.

Proposition 6.2. Let E be an elliptic curve defined over Fp. Its corresponding
Zeta-function Z(E/Fp, T ) converges on the open disc |T | < 1

p
.

Proof. From the Hasse’s theorem (Theorem 5.2) we have an upper bound on
#E(Fpr), that is #E(Fpr) ≤ pr + 1 + 2√

pr. Since the terms of the sum in
exp

(︂∑︁∞
r=1 Nr

T r

r

)︂
are all positive, it converges if the sum inside of the exponential

(namely ∑︁∞
r=1 Nr

T r

r
) converges. We can then deduce the convergence from the

following:
∞∑︂

r=1
Nr

T r

r
≤

∞∑︂
r=1

(pr + 1 + 2
√

pr)T r

r
=

∞∑︂
r=1

(pT )r

r
+

∞∑︂
r=1

T r

r
+ 2

∞∑︂
r=1

(Tp1/2)r

r

where the radii of convergence are 1
p
, 1 and 1√

p
respectively. From these three

numbers the value 1
p

is smallest and so the original series also converges on the
disc |T | < 1

p
.

For primes of good reduction we have an alternative expression of Zeta-
functions as presented for example in [Sil09, Chapter 5, Theorem 2.4].

Theorem 6.3. Let En be an elliptic curve defined over Fp such that p is a prime
of good reduction of En(Q), then

Z(En/Fp, T ) = 1 − aEn,pT + pT 2

(1 − T )(1 − pT ) .

Proof. Let α, β be roots of the polynomial x2 − aEn,px + p, then
∞∑︂

r=1
Nr

T r

r
=

∞∑︂
r=1

(pr + 1 − αr − βr)T r

r
=

= − log(1 − pT ) − log(1 − T ) + log(1 − αT ) + log(1 − βT ) =

= log
(︄

(1 − αT )(1 − βT )
(1 − pT )(1 − T )

)︄
= log

(︄
1 − aEn,pT + pT 2

(1 − T )(1 − pT )

)︄
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and therefore

Z(En/Fp, T ) = exp
(︄ ∞∑︂

r=1
Nr

T r

r

)︄
= 1 − aEn,pT + pT 2

(1 − T )(1 − pT ) .

Defining the Zeta-function for y2 = x3 − n2x still makes sense over fields
with characteristic dividing 2n. The following proposition shows that the Zeta-
function for these curves over such field can also be expressed as a quotient of
two polynomials with the difference of how the numerator looks like.

Proposition 6.4. Let En be a curve defined by the equation y2 = x3 − n2x over
Fp such that p is a prime of bad reduction of En(Q), then

Z(En/Fp, T ) = 1
(1 − T )(1 − pT ) .

Proof. We discern two cases, when p = 2 and when p | n.
Case p = 2. Now we have to calculate the number of solutions over the

fields F2r . These fields have characteristic equal to 2 and therefore we can rewrite
the equation x3 − n2x as x(x + n)2. Left hand side y2 is a square so x on its
own must also be a square, which means that we need to calculate the number
of squares in F2r . First of 0 is trivially a square. The set F̃ := F2r\{0} forms
a multiplicative group. On this group consider an endomorphism

f : F̃ → F̃
x ↦→ x2.

Looking at the kernel: ker(f) = {x ∈ F̃|x2 = 1} = {1} as x2 − 1 = (x − 1)2 = 0.
This implies that f is actually an automorphism, thus every element is a square.

If we go back to the original equation, we see that we have exactly 2r possible
values for x and each one of them corresponds to exactly one value of y – this
is because y = −y and (±y)2 = y2). Adding one other solution for the point at
infinity we finally have Nr = 2r + 1.

What remains is to calculate the corresponding Zeta-function:
∞∑︂

r=1
Nr

T r

r
=

∞∑︂
r=1

(2r + 1)T r

r
=

∞∑︂
r=1

(2T )r

r
+

∞∑︂
r=1

T r

r
=

= − log(1 − 2T ) − log(1 − T ) = − log((1 − 2T )(1 − T ))

and therefore

Z(En/F2, T ) = exp
(︄ ∞∑︂

r=1
Nr

T r

r

)︄
=

= exp(− log((1 − 2T )(1 − T ))) = 1
(1 − 2T )(1 − T ) .

Case p | n. We can also assume that p ̸= 2 since then we can use the previous
case. Considering such a field Fpr will reduce the equation of En : y2 = x3 − n2x
into y2 = x3, so we have to calculate the number of solutions to this equation
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over Fpr . Again (0,0) is a solution and we can look at F̃ := Fpr\{0}. We now
need to consider two cases: when 3 divides the order of F̃ and when it does not.

If 3 ∤ pr − 1 we consider an endomorphism

f : F̃ → F̃
x ↦→ x3.

Then the kernel of f if trivial (by the same argumentation as in the case when
p = 2) so every element from F̃ is a cube. This means, that the number of
solutions to y2 = x3 is the same as to y2 = x which is pr − 1 because for every
y ∈ F̃ there exists only one x ∈ F̃ for which the second equation holds.

If 3 | pr −1 then since p is odd, we actually have that 6 | pr −1. If we consider
an endomorphism

f : F̃ → F̃
x ↦→ x6.

then the kernel of f is a subgroup {1, a, a2, a3, a4, a5} for some a ∈ F̃. This implies
that |im(f)| = pr−1

6 . Therefore, we have pr−1
6 sixth powers and each one of them

is created by exactly 6 different elements in F̃. Putting all of this together means
that in this case we also have pr − 1 solutions to y2 = x3.

In both cases we have pr − 1 solutions from F̃, then one solution for (0,0) and
finally one solution for the point at infinity. Overall, we have pr +1 total solutions
and the corresponding Zeta-function is in the form of:

∞∑︂
r=1

Nr
T r

r
=

∞∑︂
r=1

(pr + 1)T r

r
=

∞∑︂
r=1

(pT )r

r
+

∞∑︂
r=1

T r

r
=

= − log(1 − pT ) − log(1 − T ) = − log((1 − pT )(1 − T ))

=⇒ Z(En/Fp, T ) = exp(− log((1 − pT )(1 − T ))) = 1
(1 − pT )(1 − T ) .

Definition 6.5. Let s ∈ C and E/Q an elliptic curve. We define the Hasse–Weil
L-function L(E, s) as:

L(E, s) = ζ(s)ζ(s − 1)∏︁
p∈P Z(E/Fp, p−s)

where P stands for the set of primes.

As for Zeta-functions, the L-functions can also be rewritten in a bit easier to
work with equivalent form which is given by the following proposition.

Proposition 6.6. Let s ∈ C and En/Q an elliptic curve. Then the Hasse–Weil
L-function of this special type of elliptic curves can be written in the form:

L(En, s) =
∏︂
p∤2n

1
1 − aEn,pp−s + p1−2s

.
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Proof.

L(En, s) = ζ(s)ζ(s − 1)∏︁
p∈P Z(En/Fp, p−s) =

= ζ(s)ζ(s − 1) 1∏︁
p|2n Z(En/Fp, p−s)

1∏︁
p∤2n Z(En/Fp, p−s)

The denominator of Zeta-function Z(En/Fp, T ) is always (1 − T )(1 − pT )
no matter the value of p, thus from the expression above we can factor out the
product ∏︁p∈P ((1 − p−s) (1 − p−s+1)). The Proposition 6.4 states that the Zeta-
functions in the first product all have numerators equal to 1 therefore after we
have factored out the denominators, we are left with 1. The Proposition 6.3 on
the other hand tells us that what is left of the second product are terms of the
form (1 − aEn,pp−s + p1−2s)−1. Putting it all together we have

L(En, s) = ζ(s)ζ(s − 1) 1∏︁
p|2n Z(En/Fp, p−s)

1∏︁
p∤2n Z(En/Fp, p−s) =

= ζ(s)ζ(s − 1)
∏︂
p∈P

(︄(︄
1 − 1

ps

)︄(︄
1 − 1

ps−1

)︄)︄ ∏︂
p∤2n

1
(1 − aEn,pp−s + p1−2s) =

=
∏︂
p∤2n

1
(1 − aEn,pp−s + p1−2s)

since the Riemann Zeta-function is defined as:

ζ(s) =
∏︂
p∈P

1
1 − p−s

=
∏︂
p∈P

(︄
1 − 1

ps

)︄−1

.

Lemma 6.7. Let {ai}∞
i=1 be a sequence of positive real numbers. If the sum∑︁

i∈N log(ai) converges, then the product ∏︁i∈N ai converges to non-zero real num-
ber.

Proof. Suppose that the sum ∑︁
i∈N log(ai) converges. Then the value of the ex-

pression exp (∑︁i∈N log(ai)) also converges, this time to a non-zero real number.
Since exp is continuous we can quick manipulation this expression to get:

exp
⎛⎝∑︂

i∈N
log(ai)

⎞⎠ =
∏︂
i∈N

elog(ai) =
∏︂
i∈N

ai.

The left-hand side is a non-zero real number and therefore so is the right-hand
side.

Proposition 6.8. Let En/Fp be an elliptic curve. Its corresponding L-function
L(En, s) converges for Re(s) > 3

2 .

Proof. From Proposition 6.6 we have that L(En, s) = ∏︁
p∤2n

1
1−aEn,pp−s+p1−2s . By

the convergence criterion from Lemma 6.7 we know that this product converges to
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a non-zero real number if the sum ∑︁
p∤2n log

(︂
1

1−aEn,pp−s+p1−2s

)︂
converges. We can

manipulate this sum as such:
∑︂
p∤2n

log
(︄

1
1 − aEn,pp−s + p1−2s

)︄
= −

∑︂
p∤2n

log
(︂
1 − aEn,pp−s + p1−2s

)︂
=

= −
∑︂
p∤2n

log
(︂
1 +

(︂
−aEn,pp−s + p1−2s

)︂)︂
which converges if and only if the sum ∑︁

p∤2n −aEn,pp−s+p1−2s converges. We have
an upper bound on aEn,p from Hasse’s theorem (Theorem 5.2) so we have

∑︂
p∤2n

⃓⃓⃓⃓
⃓p1−s − aEn,p

ps

⃓⃓⃓⃓
⃓ ≤

∑︂
p∤2n

pRe(1−s) + |aEn,p|
pRe(s) ≤

≤
∑︂
p∤2n

p1−Re(s) + 2√
p

pRe(s) =
∑︂
p∤2n

p
1
2 −Re(s) + 2
pRe(s)− 1

2

which converges absolutely if and only if Re(s) − 1
2 > 1, equivalently saying

Re(s) > 3
2 .

Luckily, these L-functions can be analytically extended to whole complex
plane C, which can be seen, for example, in [Kob93, Chapter 2, page 84]. This
will be essential for us later since we will need to get the value of L-functions at
s = 1.

The L-function admits the Euler product and so after a bit of manipulation
terms corresponding to individual primes, we can rewrite the product as:

L(En, s) =
∞∑︂

m=1
bm,nm−s.

This form of L-function is called Dirichlet series and we will use the terms bm,n

later in the text to estimate some values of L-functions for some examples of
elliptic curves.

Theorem 6.9 ([CW77, Theorem 1]). Let E be any elliptic curve defined over Q.
If E has infinitely many Q-points, then L(E, 1) = 0.

Corollary 6.10. Let n be a natural number. If n is congruent then L(En, 1) = 0.

Proof. Immediate consequence of Theorem 6.9 and Theorem 4.7.

This is rather powerful consequence which can be used (with the help of a few
calculations) to show if a number is not congruent simply by bounding the value
of corresponding L-function away from zero.

There is exists slightly better form of the sum for specific values of n. We will
show an upper bound on the error term made after summing the first M entries.

Proposition 6.11. The value of Hasse–Weil L-function at s = 1 of the elliptic
curve En for square-free n ≡ 1, 2, 3 (mod 8) is given by:

L(En, 1) = 2
∞∑︂

m=1

bm,n

m
e− πm

γ where γ =
⎧⎨⎩2n

√
2 n odd

2n n even

Moreover |bm,n| ≤ σ0(m)
√

m, where σ0(m) denotes the number of divisors of m.
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Proof. See [Kob93, Chapter 2, Proposition 13].

Definition 6.12. Let RM,n = 2∑︁m≥M
bm,n

m
e−m π

γ .

We will use this notion of RM,n to calculate approximate values of L-functions.
To do so, we will in the rest of this chapter derive the upper bound of RM,n.

Lemma 6.13. For all natural numbers m the value σ0(m) is bounded from above
by σ0(m) ≤ 2

√
m.

Proof. Given m ∈ N we know that its divisors come in pairs: if x is divisor of m
then so is m/x. The number of such pairs is at most

√
m since if x ≥

√
m then

m/x ≤
√

m. Therefore, we have at most 2
√

m divisors (2 for each pair) which is
an upper bound for σ0(m).

Lemma 6.14.
|RM,n| ≤ 4

1 − e− π
γ

e−M π
γ

Proof.

|RM,n| =
⃓⃓⃓⃓
⃓2

∞∑︂
m=M

bm,n

m
e−m π

γ

⃓⃓⃓⃓
⃓ ≤ 2

∞∑︂
m=M

⃓⃓⃓⃓
⃓bm,n

m
e−m π

γ

⃓⃓⃓⃓
⃓ =

= 2
∞∑︂

m=1

⃓⃓⃓⃓
⃓ bm+M−1,n

m + M − 1e−m π
γ e(1−M) π

γ

⃓⃓⃓⃓
⃓ <

< 2e(1−M) π
γ

∞∑︂
m=1

σ0(m + M − 1)
√

m + M − 1
m + M − 1 e−m π

γ ≤

≤ 2e(1−M) π
γ

∞∑︂
m=1

2(m + M − 1)
m + M − 1 e−m π

γ = 4e(1−M) π
γ

∞∑︂
m=1

(e− π
γ )m =

= 4eM π
γ

∞∑︂
m=0

(e− π
γ )m = 4

1 − e− π
γ

eM π
γ

where we used bounds for bm,n from Proposition 6.11, σ0(m) from Lemma 6.13
and in the last step we used the sum formula for geometrical series.

Before diving into some concrete examples let us to the end of this chapter
mention one of the most famous open problems surrounding elliptic curves and
L-functions.

Conjecture (Birch and Swinnerton-Dyer (BSD)). Let E be an elliptic curve
of rank r defined over Q. Then the order of zero at s = 1 of the Hasse–Weil
L-function L(E, s) is precisely equal to r.

Only a little bit of progress has been made so far. One notable result is due
to Gross – Zagier ([GZ85, Theorem 7.3]) who showed in 1986 that if the zero at
s = 1 of L(E, s) is of order 1 then E(Q) has a point of infinite order. Another
notable result is by Kolyvagin ([KL89, Theorem 0.1]) which came 3 years later
shows that if L(E, 1) ̸= 0 then E has rank 0 over Q and if L(E, 1) = 0 is a zero
of order equal to 1, then E has rank 1 over Q.

There are some other very interesting results which give some insight into this
conjecture, but only these two specifically call out the rank and order of zeros.
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We therefore only know that the BSD conjecture holds for r = 0, 1 and only in
one implication.

One last interesting fact to mention is that if n ≡ 5, 6, 7 (mod 8) and one
assumes that the BSD conjecture is true for En, then n is congruent (see [Kob93,
Chapter 2 Proposition 2] for proof).
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7. Examples/Calculations
In this chapter we will present computations of some L-functions and subse-
quently determine which numbers up to 20 are congruent and which are not.
At the end we will also show a simple algorithm which generates congruent num-
bers.

Proposition 7.1. 1 is not a congruent number.

Proof. With the help of newly obtained tools, the L-functions, we may approach
the problem as following. The b1,n term is always 1 no matter the curve we focus
on. Therefore, using the Proposition 6.11 we compute that

L(E1, 1) = 2e
− π

2
√

2 + R2,1 ≈ 0.65864 + R2,1.

We have an upper bound for R2,1 from Lemma 6.14 which in this case is |R2,1| <
0.65, therefore even if all of the other bm,1, m ≥ 2 terms were with negative sign,
the value of L(E1, 1) cannot reach zero. This means that the value L(E1, 1) ̸= 0
and so Corollary 6.10 implies that 1 is not a congruent number.

Recall that we have seen an alternative proof of this proposition back in
Chapter 2 in Proposition 2.2. A consequence of that proof is special case of
Fermat’s Last Theorem, namely for n = 4: if there existed a triple (X, Y, Z)
such that X4 + Y 4 = Z4, then we would also have a solution to the equation in
the form of Z4 − Y 4 = (X2)2 which contradicts second part of mentioned proof.
One small detail which has to be noted is that in the proposition we proved that
no such triple (X, Y, Z) exists if X is odd, but fortunately can without loss of
generality assume that X is indeed odd, otherwise we would switch it with Y
(should both X and Y be even then so must be Z and therefore we could divide
all of the numbers by 2 to get smaller triple).

Overall, there may be other methods to show (non)-congruence of numbers
like with the case of 1, but using L-functions is a much faster way.

One useful observation while computing L-functions is that if we look at the
structure of the L-function in Proposition 6.6 we see that since the number 2
divides 2n it is not included in the product. This means that for every even
k ∈ N the term b2k,n is zero. In the same spirit if p divides 2n then for every
m ∈ N : bpm,n = 0.

Proposition 7.2. 2 is not a congruent number.

Proof. Let us proceed in the same way as in previous case.

L(E2, 1) = 2e− π
4 + R2,2 ≈ 0.91187 + R2,2.

but now |R2,2| > 1.5 so we cannot conclude anything so far. Luckily b2,n = 0 so
we can replace R2,2 with R3,2 since the next term adds zero to the sum. Now
|R3,2| < 0.7 and so as before the value of this L-function cannot be zero so 2 is
not congruent.

Proposition 7.3. 3 is not a congruent number.
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Proof. As before if we calculate the first term of the sum and get

L(E3, 1) = 2e
− π

6
√

2 + R2,3 ≈ 1, 38114 + R2,3.

Unfortunately, the bound on |R2,3| from the Lemma 6.14 is too high (numeri-
cally 4

1−e
− π

6
√

2
e

− π

3
√

2 ≈ 6.16465 > 6) so we cannot conclude anything and have to
continue with next terms. The values b2,3, b3,3 and b4,3 are all zero since 2 and 3
divide 2n = 6, but upgrading the error term to R5,3 is still not sufficient since
its bound is greater than 2. Let us calculate the value of b5,3 for which we need
to know the value aE3,5. We can utilize the Example 7 from the end of Chapter 5
where we have already calculated the number of F5-points and its corresponding
value aEn,5, which in this case with n = 3 gives aE3,5 = 2. To obtain the next
terms we expand the product L(E3, 1) as

L(E3, 1) = 1
1 − 2 · 5−s + 51−2s

1
1 + 71−2s

1
1 + 111−2s

1
1 + 6 · 13−s + 131−2s

· · · =

= 1 + 2 · 5−s − 6 · 13−s − 2 · 17−s − 5 · 25−s + · · · .

From this expansion we get that b5,3 = 2. The value is now:

L(E3, 1) = 2e
− π

6
√

2 + 4
5e

− 5π

6
√

2 + R7,3 ≈ 1.50678 + R7,3

and because
|R7,3| < 0.97

we again conclude that 3 is not congruent because L(E3, 1) cannot be equal to
zero.

Proposition 7.4. 4 is not a congruent number.

Proof. We cannot use the Theorem 6.11 since n ̸≡ 1, 2 nor 3 (mod 8). For-
tunately, n is not a square-free number since 4 is a square number itself. It is
therefore equivalent to 1 modulo (Q∗)2 and so is also not a congruent number.

In fact, no square number is congruent since it is always equivalent to 1 modulo
(Q∗)2.

Proposition 7.5. 5, 6 and 7 are congruent numbers.

Proof. We have already seen a proof of this proposition for 5 and 6 back in
Chapter 2 at the beginning with triangles (40

6 , 9
6 , 41

6 ) for 5 and (3, 4, 5) for 6. For
the number 7 one can find the triangle (175

60 , 288
60 , 337

60 ).

Proposition 7.6. 8, 9, 12, 16 and 18 are not congruent numbers.

Proof. We have

16 ≡ 9 ≡ 1 (mod (Q∗)2)
18 ≡ 8 ≡ 2 (mod (Q∗)2)

12 ≡ 3 (mod (Q∗)2)

therefore, none of the numbers are congruent.
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Proposition 7.7. 10, 11, 17 and 19 are not congruent numbers.

Proof. Number 10. The following is a table of Fp-points and corresponding values
of aE10,p for primes p ≤ 17, p ∤ 20:

p 3 7 11 13 17
#E10(Fp) 4 8 12 8 20

aE10,p 0 0 0 6 -2
From this we obtain the values of bm,10:

m 1 3 5 7 9 11 13 15 17
bm,10 1 0 0 0 -3 0 6 0 -2

and after summation of the first 17 terms:

L(E10, 1) = 2
17∑︂

m=1

bm,10

m
e− πm

20 + R19,10 ≈ 1.65061 + R19,10

with |R19,10| < 1.4. Thus L(E10, 1) cannot be zero and again due to Corol-
lary 6.10, 10 is not congruent.

Number 11. Similar tables can be constructed for the number 11:
p 3 5 7 13 17 19 23 29 31 37

#E11(Fp) 4 8 8 20 20 20 24 20 32 40
aE11,p 0 -2 0 -6 -2 0 0 10 0 -2

m 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
bm,11 1 0 -2 0 -3 0 -6 0 -2 0 0 0 -5 0 10 0 0 0 -2 0

For the summation:

L(E11, 1) = 2
37∑︂

m=1

bm,11

m
e

− πm

22
√

2 + R40,11 ≈ 0.76795 + R40,11

and |R40,11| < 0.74 which implies that 11 is not congruent.

Number 17. In this case we will have to sum up the first 49 terms until |RM,n|
will be sufficiently small. We have:

p 3 5 7 11 13 19 23 29 31 37 41 43 47
#E17(Fp) 4 4 8 12 8 20 24 20 32 36 32 44 48

aE17,p 0 2 0 0 6 0 0 10 0 2 -10 0 0
and the table for bm,17:

m 1 5 9 13 25 29 37 41 45 49
bm,17 1 2 -3 6 -5 10 2 -10 6 -7

(where we show only non-zero terms to conserve space)
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Approximating L(E17, 1) in this case goes as follows:

L(E17, 1) = 2
49∑︂

m=1

bm,17

m
e

− πm

34
√

2 + R50,17 ≈ 2.47926 + R50,17

and |R50,17| < 2.42 =⇒ 17 is not congruent.

Number 19. The number of terms we need to sum grows quite fast where
now we have to sum up the first 85 terms to obtain a sufficiently small bound
on |RM,n|:

p 3 5 7 11 13 17 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83
#E19(Fp) 4 8 8 12 20 16 24 20 32 36 52 44 48 68 60 72 68 72 80 80 84

aE19,p 0 -2 0 0 -6 2 0 10 0 2 -10 0 0 -14 0 -10 0 0 -6 0 0
and the table for bm,19:

m 1 5 9 13 17 25 29 37 41 45 49 53 61 65 73 85
bm,19 1 -2 -3 -6 2 -5 10 2 -10 -6 -7 -14 -10 -12 -6 4

L(E19, 1) = 2
85∑︂

m=1

bm,19

m
e

− πm

38
√

2 + R87,19 ≈ 0.474 + R87,19

with |R87,19| < 0.44 =⇒ 19 is not congruent.

Proposition 7.8. 13, 14 and 15 are congruent numbers.

Proof. Triangles which show the congruence property for these numbers are:
(323

30 , 780
323 , 106921

9690 ) for number 13, (21
2 , 8

3 , 65
6 ) for number 14 and (15

2 , 4, 17
2 ) for number

15. All of these we found thanks to the already mentioned algorithm shown after
the next proposition.

Proposition 7.9. 20 is a congruent number.

Proof. Similarly to previous numbers like 12 or 18 we have equivalence

20 ≡ 5 (mod (Q∗)2)

and since 5 is a congruent number 20 is also.

Example 8. Except for numbers 5 and 6, all of the triangles from previous
propositions, which show the congruence property, were generated by an algo-
rithm. Pseudo-code goes as following:

congruent_numbers = set()

x = 1
while True:

for y in range(1,x):
if (gcd(x,y) == 1) and (x mod 2 != y mod 2):

n = remove_squares(x*y*(x**2-y**2))
congruent_numbers.add(n)
#a, b = x**2-y**2, 2*x*y

x += 1
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The algorithm lists through all primitive Pythagorean triples (A, B, C) which we
know can be generated by pair of coprime numbers x, y via the map (x, y) →
(x2 − y2, 2xy, x2 + y2). This triangle then has area equal to 1

2(x2 − y2) · 2xy =
xy(x2 − y2). If we then divide xy(x2 − y2) by the largest possible square of
an integer which divides it (in other words calculating remainder mod (Q∗)2)
with the remove squares() function we are left with a square-free representative
of one of the equivalence classes of congruent numbers.

Until a number shows up, one cannot know if some specific number is indeed
congruent. For example, the right triangle (8897

360 , 720
287 , 2566561

103320 ) of area 31 first shows
up in the iteration when x = 1600 so some numbers really take time.

At last, we will show a program which runs in SageMath that either out-
puts user that inputted N is not congruent or prints an example of Pythagorean
triangle with are N :

n = N
E = EllipticCurve([-nˆ2,0])
if E.rank() > 0:

P = E.gens()
Q = P[0]*2
x = Q[0]
print(sqrt(x+n)-sqrt(x-n),sqrt(x+n)+sqrt(x-n),2*sqrt(x))

else:
print(f"{n} is not congruent")

Unfortunately, this code also has disadvantages. Those are computer impres-
sions as for example SageMath struggles with the input as low as n = 155 and
throws an error.
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