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Dominika Hájková, who devoted their time to discussing topics that must have
seemed elementary to them, but never gave any indication that this was the case.

ii



Title: Simulating flows past a mountain range using smoothed particle hydrody-
namics

Author: Kamil Belán

Institute: Mathematical Institute of Charles University

Supervisor: doc. RNDr. Michal Pavelka, Ph.D., Mathematical Institute of
Charles University

Abstract: The method of Smoothed Particle Hydrodynamics is applied to the
phenomenon of mountain waves - atmospheric internal gravity waves generated
by flows over topography. General aspects of the method and the alternative
derivations of the theory using Hamiltonian continuum mechanics are discussed.
The basic explanation of the physical mechanisms that generate the internal
gravity waves and the review of the current state of the numerical simulation of
the matter are provided. A code in the Julia programming language is written
to simulate the phenomenon of mountain waves using the symplecticity of the
SPH equations by utilizing a symplectic integrator. The results obtained are
compared to those from the literature, and the applicability of the SPH method
in meteorology is also discussed.

Keywords: smoothed particle hydrodynamics meteorology internal gravity waves

iii



Contents

Introduction 2

1 The SPH method 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Strategy of smoothed particle hydrodynamics . . . . . . . 3
1.2 Classical approach to SPH . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Continuous interpolation . . . . . . . . . . . . . . . . . . . 4
1.2.2 Discrete interpolation . . . . . . . . . . . . . . . . . . . . . 6

1.3 Discrete version of fluid equations . . . . . . . . . . . . . . . . . . 10
1.3.1 Discrete continuity equation . . . . . . . . . . . . . . . . . 10
1.3.2 Discrete Euler equations . . . . . . . . . . . . . . . . . . . 10
1.3.3 The complete WCSPH scheme . . . . . . . . . . . . . . . . 11

1.4 SPH equations as a Hamiltonian system . . . . . . . . . . . . . . 12
1.4.1 Lagrange and Euler picture . . . . . . . . . . . . . . . . . 13
1.4.2 Choice of the manifold . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Canonical Poisson bracket in the Lagrangian frame . . . . 13
1.4.4 The SPH Poisson bracket . . . . . . . . . . . . . . . . . . 15
1.4.5 Hamilton equations induced by the SPH Poisson bracket . 17

1.5 Summary of the SPH method . . . . . . . . . . . . . . . . . . . . 23

2 Mountain-Wave Simulations in general 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Current status of mountain-wave simulations . . . . . . . . 24
2.2 An introduction to the theory of internal gravity waves . . . . . . 25

2.2.1 Density and pressure stratification of the atmosphere . . . 25
2.2.2 Buoyancy oscillations . . . . . . . . . . . . . . . . . . . . . 27

3 Mountain-Wave Simulations using the SPH Method 30
3.1 Parameters of the simulation . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Computational domain and mountain profile . . . . . . . . 30
3.1.2 Initial and boundary conditions . . . . . . . . . . . . . . . 31

4 Results of the simulation 34
4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Hydrostatic balance . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Further procedure after unsatisfactory attempts to stabilize

the hydrostatic balance . . . . . . . . . . . . . . . . . . . . 38
4.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 38
4.1.4 Sound waves . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Conclusion 47

Bibliography 49

1



Introduction
This thesis serves as an attempt to combine:

• the method of Smoothed Particle Hydrodynamics (SPH)

• the phenomenon of mountain waves, i.e., atmospheric internal gravity waves
generated by a flow over topography

• numerical simulations with the use of symplectic integrators,

to provide possibly new results in the field of atmospheric dynamics, as, to
the best knowledge of the author, the SPH method has not been used in this par-
ticular context before. The ultimate goal of this thesis is to be able to perform a
numerical simulation within a controlled setting that would allow easy discussion
of the results and the applicability of the method in meteorology.

The text is divided into four logical chapters:

• Chapter 1 summarizes the foundations of Smoothed Particle Hydrodynam-
ics

• Chapter 2 provides a very brief insight into the theory of atmospheric in-
ternal gravity waves

• Chapter 3 connects the two previous chapters and explains some of the
aspect of the SPH method in meteorological applications

• Chapter 4 discusses the results obtained by numerical simulations
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1. The SPH method

1.1 Introduction
Smoothed Particle Hydrodynamics, SPH for short, is now the most popular par-
ticle method used in the scientific literature Violeau [2012]. Unlike grid methods
(mesh methods), such as the finite element method, particle methods are typically
easier to implement and offer a broader range of possible applications. Originally,
the authors of SPH, R.A. Gingold and J.J. Monaghan, used it to solve astrophys-
ical problems in which a considerable number of grid points ought to be used;
instead, they modeled the continuum as a set of particles, each possessing a set of
physical quantities (mass, momentum, energy, entropy) Gingold and Monaghan
[1977], Liu [2009]. In later years, the usage of the SPH method in modeling
incompressible and compressible flows has been developed. One of the main ben-
efits of the SPH method is its consistency with the formalism of Lagrangian and
Hamiltonian mechanics. We will examine this in more detail in Section 1.4. This
consequently implies that the SPH equations represent a Hamiltonian system,
and when the proper treatment of density is used, the system becomes symplec-
tic Kincl and Pavelka [2023]. Symplectic systems are preferable, as they allow
for symplectic integrators.

In the following sections, we present the foundation of the SPH method.

1.1.1 Strategy of smoothed particle hydrodynamics
Problems in hydrodynamics are usually formulated in the language of PDE’s for
some field variables (velocity, pressure, momentum, etc.) that ought to be solved
in some domain with boundary conditions. The standard technique for solving
such a system starts by discretizing the problem domain and then approximating
the field functions (and their derivatives). The procedure produces a set of ODE’s
for the approximated functions with respect to time. The strategy of the SPH
method follows this outline in the form Liu [2009]:

• represent the domain of the problem as a set of particles, i.e. represent the
continuum as a set of discrete particles

• develop continuous integral approximation, so-called continuous interpola-
tion, to simplify field functions

• even more simplify the interpolation using a different, discrete interpolation
( summing over the “particles” of the fluid instead of integrating over the
continuum)

• rewriting the governing PDE’s, i.e. the continuity equation and Euler equa-
tions, using the approximations and solving them for the approximated
functions

In the upcoming chapter, we follow these steps and obtain the discussed sys-
tem of ODE’s; for the purpose of this text, we refer to this approach as the
classical approach. Later on, we derive the same set of equations exploiting the
Hamiltonianity of the system.
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1.2 Classical approach to SPH

1.2.1 Continuous interpolation
Assume that the fluid occupies a set Ω ⊂ Rn. An arbitrary scalar field Φ(t, x)
describing a certain quantity of the fluid (e.g. density) can be expressed as a
spatial convolution with the δ distribution

Φ(t, x) = (Φ ⋆ δ)(t, x) =
∫︂

Ω
Φ(t, x′)δ(x − x′) dx′ (1.1)

The idea of interpolation originates from this identity1, as one wishes to replace
the δ distribution with a more regular function, called the interpolation kernel
and denoted by w(x). For a fixed kernel, we define the continuous interpolation
of the field Φ(t, x) as

[Φ]Cw(t, x) :=
∫︂

Ω
Φ(t, x′)w(x − x′) dx′ = (Φ ⋆ w)(t, x) (1.2)

The immediate question is under what conditions (what qualities should the
field Φ(t, x) or the interpolation kernel w(x) have?) is the interpolated field
[Φ]Cw(t, x) a good approximation of the field Φ(t, x).

Let us first consider some candidates for the interpolation kernel w(x). It is
natural to require w(x) to have a compact support, that is, supp w ⊂ Bh ⊂ Ω,
where h ∈ R+ is the smallest radius of a ball Bh such that the support is contained
in the ball. The δ distribution possesses this property, and, by the nature of
interpolation, we are not interested in regions far away from the desired point in
space. Monaghan and his use of B-splines present this approach; see Monaghan
[1985]. Another possibility is to require a sufficiently fast decrease of the kernel for
∥x∥ ≫ 1, take, for example, the function exp

(︂
−∥x∥2

)︂
. Naturally, functions such

as exp
(︂
−∥x∥2

)︂
χ[−h,h](∥x∥) can be constructed combining both the requirements

for sufficient decrease and a compact support.
It can be shown via Taylor expansion (see Violeau [2012]) that for an interpo-

lation kernel w(x) with a compact support supp w ⊂ Bh ⊂ Ω and a sufficiently
smooth field Φ(t, x) 2 that

[Φ]Cw(t, x) = Φ(t, x) + O
(︂
h2
)︂
, (1.3)

if conditions ∫︂
Ω

w(x′) dx′ = 1, (1.4)

∫︂
Ω

x′w(x′) dx′ = 0 (1.5)

hold. Condition (1.4) represents a normalisation condition, which can be easily
met by scaling the kernel, that is, w(x) ≡ Nw̃(x), N = 1/

∫︁
w̃ dx. The second

condition (1.5) can be met by the kernel being spherically symmetric, i.e. w(x) ≡
1The identity holds for Φ being at minimum Φ ∈ L1

loc(Ω). As usual in the case of regular
distributions, we identify the distribution with its representing function.

2For the Taylor expansion to be valid, we require the function x ↦→ Φ(t, x), ∀t ∈ R+ to be
C2(Ω).
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w(∥x∥) and the region Ω being invariant under central symmetry centered at the
origin. In what follows, we will suppose the conditions always hold.

Continuous interpolation of differential operators

In this section, Φ(t, x) denotes an arbitrary scalar field and F(t, x) denotes an
arbitrary vector field, both being sufficiently smooth (again, C2(Ω) for the spatial
derivatives). Our next goal is to interpolate the scalar field ∇ · F(t, x) and the
vector field ∇Φ(t, x) 3. Let us start with the gradient of a scalar field; deploying
the interpolation to the field ∇Φ(t, x) yields the following.

[∇Φ(t, x)]Cw =
∫︂

Ω
∇′Φ(t, x′)w(x − x′) dx′ =∫︂

Ω
∇′
[︂
Φ(t, x′)w(x − x′)

]︂
dx′ −

∫︂
Ω

Φ(t, x′)∇′w(x − x′) dx′ , (1.6)

where ∇′ stands for differentiation with respect to the dashed coordinates, i.e.
∇′ = ek

∂
∂x′k

4. Using the identity Gurtin and Drugan [1984] ∇Ψ = ∇ · (ΨI),
where I is the identity tensor of order n and the Gauss theorem, we can rewrite
the first integral:∫︂

Ω
∇′
[︂
Φ(t, x′)w(x − x′)

]︂
dx′ =

∫︂
∂Ω

Φ(t, x′)w(x − x′) dS (x′),

where dS (x′) = dS n(x′) stands for the (n-1) hypersurface element oriented in
the direction of an exterior normal vector n(x′) to the region Ω at the point
x′ ∈ Ω. The second integral can be rewritten using the trivial fact

∇′w(x − x′) = −∇w(x − x′) (1.7)
These identities allow us to write

[∇Φ(t, x)]Cw =
∫︂

∂Ω
Φ(t, x′)w(x − x′) dS (x′) +

∫︂
Ω

Φ(t, x′)∇w(x − x′) dx′

Supposing that dist(supp w, ∂Ω) ≫ 1 for a kernel w with compact support or
|x − x′| ≫ 1, x ∈ Ω, x′ ∈ ∂Ω for a kernel with non-compact support causes the
surface integral to vanish, which finally leads to

[∇Φ]Cw(t, x) =
∫︂

Ω
Φ(t, x′)∇w(x − x′) dx′ (1.8)

Deploying the estimate 1.3 (which remains valid also for a vector field, see
Violeau [2012]) under conditions similar to those 1.4 - 1.5, we obtain the following.

[∇Φ(t, x)]Cw = ∇Φ(t, x) + O
(︂
h2
)︂
, (1.9)

where h has the same meaning as in the previous section.
3In the previous section, only the interpolation of a scalar field has been discussed. The

matter is the same for vector fields; we define [F(t, x)]w := (F ⋆ w)(t, x)
4Einstein’s summation convention is used. Here, ek denote basis vectors and x′k denote

(possibly curvilinear) coordinates
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In the case of the divergence of a vector field, we write

[∇ · F]Cw(t, x) =
∫︂

Ω
∇′ · F(t, x′)w(x − x′) dx′

=
∫︂

Ω
∇′ ·

[︂
F(t, x′)w(x − x′)

]︂
dx′ −

∫︂
Ω

F(t, x′) · ∇′w(x − x′) dx′ (1.10)

Using the same reasoning as in the case of 1.6, the first integral vanishes, and the
second can be rewritten using the antisymmetry property 1.7, which ultimately
leads to

[∇ · F]Cw(t, x) =
∫︂

Ω
F(t, x′) · ∇w(x − x′) dx′ , (1.11)

again with an estimation

[∇ · F]Cw(t, x) = ∇ · F(t, x) + O
(︂
h2
)︂
, (1.12)

valid under circumstances similar to 1.4 - 1.5.

1.2.2 Discrete interpolation
As stated, the core of SPH lies in the particle-based description of a continuum.
The term ”particles” is used in the following sense: assume that the continuum
is a system consisting of Np (possibly macroscopic) bodies liable to a geometrical
description using three generalized coordinates. We call the bodies particles, and
we always suppose the coordinates coincide with the coordinates describing the
center of inertia of a particle. Moreover, we also neglect any rotational motion of
the particles. For a particle a, we denote by xa its (generalized) position, ua its
velocity vector. The density ρa, volume Va and mass ma of a particle a are linked
by the well-known equation5

ρa = ma

Va

(1.13)

The main idea behind the discrete interpolation of physical quantities is to
approximate integration by summation. Given an arbitrary field (scalar, vector)
Φ(t, x), we define its discrete interpolation through continuous interpolation as
defined in Section 1.2.1.

[Φ(t, x)]Cw =
∫︂

Ω
Φ(t, x′)w(x − x′) dx′ ≈

∑︂
xb

Φ(t, xb)w(x − xb)Vb

:= [Φ(t, x)]Dw , (1.14)

where the summation is over all material points (e.g. particles) xb. If the inter-
polation kernel w(x) has a compact support, the sum is reduced only to particles
in a certain region. In a less formal but more straightforward way, we have made
the following ”substitutions”:

5Here we implicitly work in the Lagrange frame, see 1.4.1. In later sections, we also define
density in the Euler frame.
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x′ [ ]D−−→ xb (1.15)∫︂
Ω

dx′ [ ]D−−→
∑︂
xb

Vb (1.16)

Discrete interpolation of differential operators

Using the definition of discrete interpolation 1.14, the differential operators take
the form

[∇Φ(t, x)]Dw =
∑︂
xb

Φ(t, xb)∇w(x − xb)Vb (1.17)

[∇ · F(t, x)]Dw =
∑︂
xb

F(t, xb) · ∇w(x − xb)Vb (1.18)

It is natural to define the discrete interpolation error in the following way:

Ed[Φ(t, x)] :=
∑︂
xb

Φ(t, xb)Vb −
∫︂

Ω
Φ(t, x′) dx′ (1.19)

As with every approximation technique, finding estimates for Ed[·] is essential.
This task is much more complicated than estimating the errors made with the
continuous interpolation 1.3 due to the explicit dependence on the position of
the particles. Some analysis can be made supposing that the particles occupy,
e.g. a regular Cartesian grid, or, by contrast, are distributed randomly. In the
case of a Cartesian grid, using the Fourier transform, it can be shown Violeau
[2012] that Ed[·] = O(h2). In the case of a random distribution of particles, Monte
Carlo methods are used and a result Ed[·] = O

(︂
N−1/2

p

)︂
can be obtained, where Np

stands for the number of particles occupying the region Ω of a continuum Vaughan
et al. [2007]. Unfortunately, the typical setting for SPH shows a more disordered
configuration than that of a Cartesian grid, but less than that is sufficient for
using Monte Carlo methods. Thus, the estimation of discrete interpolation error
remains an open question Violeau [2012]. For completeness, we recall that the
total error of the interpolation consists of the errors of continuous interpolation
1.3 and discrete interpolation 1.19

In order to obtain the discrete version of the fluid equations, we are interested
only in the points x that coincide with the material points xa = ea,kxk

a. That
is, the discrete interpolation of an arbitrary scalar field Φ(t, x) and an arbitrary
vector field F(t, x) taken at points x = xa can be written, using the standard
notation Φb := Φ(t, xb), rab := ∥xab∥ := ∥xa − xb∥, as 6

[Φ(t, xa)]Dw =
∑︂

b

Φbw(rab)Vb (1.20)

[F(t, xa)]Dw =
∑︂

b

Fbw(rab)Vb, (1.21)

where by summing over “b” we mean summing over all material points xb.
Rewriting equations 1.17 for x = xa while using ∇a = ek

∂
∂xk

a
gives

6We do not write the time dependence for the sake of simplicity of notation
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[∇Φ(t, xa)]Dw =
∑︂

b

Φb∇aw(rab)Vb (1.22)

[∇ · F(t, xa)]Dw =
∑︂

b

Fb · ∇aw(rab)Vb, (1.23)

It is common to rewrite the terms with the nabla operator using the following
identity and the notation eab := 1

rab
xab, w(rab) := wab

∇aw(rab) = ek
∂w(rab)

∂xk
a

= −ek
∂w(rab)

∂xk
b

= −∇bw(rab) = w′(rab)eab = w′
abeab,

(1.24)
which follows from the antisymmetry property of the kernel 1.7 and the chain
rule for differentiation. In conclusion, we have arrived at the following results
(recall Φ(t, ra) = Φa)

Φa ≈
∑︂

b

ΦbwabVb := J(Φa) (1.25)

Fa ≈
∑︂

b

FbwabVb := J(Fa) (1.26)

∇Φa ≈
∑︂

b

Φbw
′
abeabVb := G(Φa) (1.27)

∇ · Fa ≈
∑︂

b

Fb · w′
abeabVb := D(Φa), (1.28)

which yields ∀a, i.e. for all material points xa. From the construction it follows
that the operators J, J approximate the (scalar and tensor) identity operators and
G, D approximate the gradient and divergence operators. In the SPH literature,
it is common to adopt a more ”lightweight” notation, which, on the other hand,
obscures the meaning of the terms Violeau [2012]. It is common to write

Ja(Φb) :=
∑︂

b

ΦbwabVb (1.29)

Ja(Fb) :=
∑︂

b

FbwabVb (1.30)

Ga(Φb) :=
∑︂

b

Φbw
′
abeabVb (1.31)

Da(Φb) :=
∑︂

b

Fb · w′
abeabVb, (1.32)

in the sense that Ja(Φb) = [Φ(t, xa)]Dw , meaning Ja(Φb) is the value of the inter-
polated field at the material point xa etc.

It might seem that we are ready to deploy this formalism to the fundamental
equations, which is unfortunately not true. Notice that generally

Ja(1) ̸= 0 (1.33)
Ja(I) ̸= 0 (1.34)
Ga(1) ̸= 0 (1.35)
Da(I) ̸= 0, (1.36)
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and also for any constant fields. This problem has various solutions, such as the
renormalization process explained in Violeau [2012]. However, that approach is
rather tedious, and thus we present a different approach, introduced by Monaghan
in Monaghan [2005]. Calculus yields the following identities

∇Φ = 1
ρk

∇
(︂
ρkΦ

)︂
− Φ

ρk
∇
(︂
ρk
)︂

(1.37)

∇ · F = 1
ρk

∇ ·
(︂
ρkF

)︂
− F

ρk
· ∇

(︂
ρk
)︂
, (1.38)

which we interpolate using the operators Ga, Da to obtain

(∇Φ)a ≈ 1
ρk

a

Ga(ρkΦ)b − Φa

ρk
a

Ga(ρk)b (1.39)

(∇ · F)a ≈ 1
ρk

a

Da(ρkF)b − Fa

ρk
a

· Ga(ρk)b (1.40)

From the definition of the operators (1.29), it follows

(∇Φ)k
a ≈ 1

ρk
a

∑︂
b

ρk
aΦbw

′
abeabVb − Φa

ρk
a

∑︂
b

ρk
b w′

abeabVb

= 1
ρ2k

a

∑︂
b

(ρbρa)kΦbw
′
abeab−

1
ρ2k

a

∑︂
b

(ρbρa)kΦaw′
abeabVb = − 1

ρ2k
a

∑︂
b

(ρbρa)kΦabw
′
abeabVb := Gk

a,

while introducing the notation Φab := Φa − Φb. Using the same procedure, the
formula for divergence becomes

(∇ · F)k
a ≈ − 1

ρ2k
a

∑︂
b

(ρaρb)kFabw
′
abeabVb := Dk

a,

where again Fab := Fa−Fb. The relations above define two sets of discretized gra-
dient and divergence operators Gk

a, Dk
a. Later, we will make use of the operators

for k = 1, i.e.

G1
a(Φb) = − 1

ρa

∑︂
b

mbΦabw
′
abeab (1.41)

D1
a(Fb) = − 1

ρa

∑︂
b

mbFab · w′
abeab, (1.42)

where we substituted the volume for mass using (1.13). Due to the differences in
the above equations (i.e. Φab, Fab) we have

Gk
a(1) = 0

Dk
a(I) = 0
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1.3 Discrete version of fluid equations
The formalism adopted in the previous sections allows us to derive discretized
versions of fluid equations. As they are fundamental and the goal of this work
lies elsewhere, we do not provide a derivation of them. If interested, see any book
on continuum mechanics, e.g. Gurtin and Drugan [1984].

1.3.1 Discrete continuity equation
We begin with the continuity equation (conservation of mass) in differential form:

Dρ

Dt
+ ρ ∇ · u = 0, (1.43)

the material derivative operator being

Dt

Dt
=
⎧⎨⎩

∂
∂t

+ ∇ · u, in the Euler picture
∂
∂t

, in the Lagrange picture
(1.44)

Clearly, SPH is an Lagrangian method, that is, the particles represent material
points in a co-moving reference frame. For more discussion on the differences
between the Euler and the Lagrange frame, see 1.4.1. Discretising the divergence
operator using the operator D1

a defined in eq. (1.41) gives7

d
dt

ρa =
∑︂

b

mbuab · w′
abeab, ∀a (1.45)

The equation above is not the only possible way to discretise the continuity
equation. For instance, we could have used the Dk

a as defined in eq (1.39) for any
other k. Nevertheless, the form of the equation (1.45) is the commonly used form
Monaghan [2005] and also is the version which we will come across once again in
the section 1.4.5.

1.3.2 Discrete Euler equations
Recall the Navier-Stokes equations for viscous incompressible Newtonian fluids
in a homogeneous gravitational field Gurtin and Drugan [1984]

ρ
Du
Dt

= −∇p + µ∇ · ∇u + ρg, (1.46)

where p denotes the pressure, µ is the (dynamic) viscosity and g is the gravi-
tational acceleration. When the viscous forces may be neglected, N-S equations
take the form

Du
Dt

= −1
ρ

∇p + g (1.47)

7Note that we write d
dt instead of ∂

∂t . While it is true that in the Lagrangian frame the
material derivative equals the standard partial derivative, in the “particle notation” of SPH we
specify by using the lower index a a particular particle, so technically the function ρa is only a
function of time.
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Equations (1.47) are called Euler equations and are traditionally used in me-
teorology. Using the G1

a operator (1.41) to discretize the grad operator in the
Euler equations reads as

d
dt

ua = −
∑︂

b

mb

(︃
pa

ρ2
a

+ pb

ρ2
b

)︃
w′

abeab + ga, ∀a (1.48)

1.3.3 The complete WCSPH scheme
Barotropic equation of state for the pressure

To close the equations presented in the previous sections, an equation of state
must be specified. Since the only intensive thermodynamic quantity presented so
far is the pressure, a state equation for pressure (the thermal state equation) is
sought. The standard choice of the thermal state equation in modeling weakly
compressible flows (see, e.g., Violeau [2012]) was derived by Murnaghan in 1944
in Murnaghan [1944]. For the sake of completness, we cover the derivation also
here, but in later sections, we will predominantly use a different thermal state
equation (of an ideal gas).

Define the fluid incompressibility modulus

K := −ρ
∂p

∂ρ
,

which is a response coefficient that measures the effect of density on pressure. For
fluids with relatively small density variations 8 the previous term can be expanded
via its Taylor series

K = −K0 − γp + O
(︂
p2
)︂
,

K0 :=
(︂
ρ

∂p

∂ρ

)︂⃓⃓⃓⃓⃓
p=0

γ := ∂K

∂p

⃓⃓⃓⃓
⃓
p=0

Neglecting all the nonlinear terms in p leads to a differential equation for p = p(ρ)

ρ
dp

dρ
− γp − K0 = 0,

with a solution

p(ρ) = Cργ − K0

Cγ,

where C is an integration constant. Solving for the root of the previous function
gives

ρ0 :=
(︂K0

γ

)︂ 1
γ (1.49)

8The formula holds well for the relative volume variations lesser than ≈ 10% Violeau [2012]
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which we define as a reference density ρ0. Introducing c :=
√︂

K0/ρ0 as the speed
of sound in the fluid leads to the following equation of state

p(ρ) = ρ0c
2

γ

[︃(︂ ρ

ρ0

)︂γ
− 1

]︃
, (1.50)

as derived in Murnaghan [1944].

Complete equations

Finally, combining equations (1.45), (1.48), (1.50) gives the equations for mod-
elling weakly compressible flows using the SPH method as follows

d
dt

ρa =
∑︂

b

mbuab · w′
abeab, (1.51a)

d
dt

ua = −
∑︂

b

mb

(︃
pa

ρ2
a

+ pb

ρ2
b

)︃
w′

abeab + ga, ∀a (1.51b)

p(ρ) = ρ0c
2

γ

[︃(︂ ρ

ρ0

)︂γ
− 1

]︃
, (1.51c)

1.4 SPH equations as a Hamiltonian system
To conclude this chapter, we present a different approach to deriving the SPH
equations (1.51a) using the elegant framework of Hamiltonian systems. The main
reason for this approach is to discover the Hamiltonianity of the previously derived
system of equations. It will also be shown that a slightly different system of
equations is even symplectic; we are interested in such systems as they possess
advantageous numerical properties.

Another reason to exploit Hamiltonian mechanics roots in thermodynamics
(remember how the fundamental equations in statistical physics are obtained us-
ing Hamiltonian mechanics). Within this framework, including quantities such as
entropy and dissipation in the SPH equations is not difficult. Those thermody-
namical considerations are indispensable when dealing with dissipative systems
(e.g. viscous flows). Even though we aim to use the standard Euler equations, we
will later on face a need for a more thermodynamically-sophisticated formalism.
Notice how for example we have not included temperature in our considerations;
this will prove insufficient when dealing with atmospheric systems.

Unfortunately, precise formulation of such a theory requires deeper knowledge
of continuum and non-equilibrium thermodynamics; the topic of this text lies
elswhere. Thus, when the need arises, we kindly draw from the work done in
Kincl et al. [2023a]. We stress that the goal of this section is not to provide a
comprehensive analysis of the topic. Only facts important to our research goal
are presented here.
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1.4.1 Lagrange and Euler picture
Continuum mechanics, a vast field of classical physics, can be described from
different frames of reference. In all physics, inertial frames possess a significant
role. In continuum mechanics, an inertial frame is called the Euler frame (also
called the Euler picture, the spatial frame). It is common to use the Euler picture
especially in fluid mechanics: imagine a flow of fluid described by a velocity
field u(t, x), that is, a function that assigns the vector u(t, x) to time t and the
Eulerian coordinates x. The Eulerian coordinates x represent a fixed point in
space, through which, for example, the fluid might flow.

Another means of description are possible. Suppose that we fix the origin
of the frame of reference so that it coincides with some material point X of the
continuum at some reference time. Then, throughout time evolution (deforma-
tion, etc.), the point X does not change with respect to this special (non-inertial)
frame. This frame is called the Lagrangian frame (also the Lagrangian picture,
material frame, and reference frame), and the coordinate X is the Lagrangian
coordinate. The Lagrange picture is often used in solid mechanics: imagine a
deformation of a body. The Lagrangian coordinates X represent a material point
(i.e., a part of the body) that, for example, undergoes deformation.

It is good practice to denote all Lagrangian variables (defined in the La-
grangian frame) with uppercase letters and to denote all Eulerian variables (de-
fined in the Euler frame) with lowercase letters; we will stick to this convention
in what follows. The fundamental question arises: How do we describe the re-
lationship of both pictures? We imagine that a material point in the current
configuration at a particular time t, as described by the Eulerian variables x, is
some material point X from the reference configuration. Thus, there must exist
a mapping x(t, X) from the Lagrange frame to the Euler frame.

1.4.2 Choice of the manifold
As in classical theoretical mechanics, the mechanical state of a material point X at
a time t can be described by its position x(t, X) and velocity ẋ(t, X) (Lagrangian
mechanics) or by its position x(t, X) and its momentum density M(t, X) (i.e., the
momentum of the material point per volume (Lagrangian) dX). Pavelka et al.
[2020]. We are looking for a Hamiltonian description and thus choose the position
x(t, X) and the momentum density M(t, X) to be the state variables.

The Eulerian positions form the configuration manifold, whereas the momen-
tum densities form a cotangent bundle (dual space to the tangent bundle) of that
manifold Pavelka et al. [2020]. Such a structure naturally provides a Poisson
bracket.

1.4.3 Canonical Poisson bracket in the Lagrangian frame
Seeking time evolution, we are interested in finding a Poisson bracket and an
energy functional. Given two arbitrary functionals F (x(t, X), M(t, X)) of the
Lagrangian variables, we define its Poisson bracket (see Pavelka et al. [2020])

{F, G}(L) :=
∫︂ (︃

δF

δxi(X)
δG

δMi(X) − δF

δMi(X)
δG

δxi(X)

)︃
dX , (1.52)
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where the superscript stands for Lagrangian frame and for brevity, we have also
omitted the explicit time dependency for the rest of this section. The derivatives
under the integral sign are functional derivatives. Since the aim of the thesis does
not lie in this topic, we kindly advise the reader to see the appendix Pavelka et al.
[2018]; for our use, it suffices that the functional derivative yields

⟨︄
δF

δf
, ϕ

⟩︄
= dF (f, ϕ), ∀ϕ ∈ D, i.e. (1.53a)

d
ds

⃓⃓⃓⃓
⃓
s=0

F (f + sh) =
⟨︄

δF

δf
, h

⟩︄
, ∀h ∈ D, (1.53b)

where ⟨,⟩ is the duality in the sense of distributions, dF (f, ϕ) represents the
Frechet differential of the functional F with respect to the function f at the point
ϕ, D is the space of infinitely smooth functions with a compact support (in some
region based on context). The first line can be interpreted as that the functional
derivative is a distribution corresponding to the Frechet differential.

It should be checked that the relation (1.52) indeed defines a Poisson bracket,
an antilinear bivector satisfying the Jacobi identity and the Leibniz rule. How-
ever, since these proofs require a more profound knowledge of the functional
derivatives, we refer again to Pavelka et al. [2020]. As in classical mechanics, the
Hamiltonian evolution of an arbitrary functional of the Lagrangian variables can
then be expressed as follows.

d
dt

F = {F, E}(L), (1.54)

where E is the functional of total energy. For example, we can examine the
evolution of the Lagrangian state variables.

Hamiltonian equations for Lagrangian state variables

Let F (x(X), M(X)) be any functional of the state variables and use the relation
above

d
dt

F (x(X), M(X)) = {F, E}(L) =
∫︂ (︃

δF

δxi(X)
δE

δMi(X) − δF

δMi(X)
δE

δxi(X)

)︃
dX ,

by using the chain differentiation rule for function(al) derivatives Pavelka et al.
[2020], we on the other hand obtain

d
dt

F (x(X), M(X)) =
∫︂ (︃

δF

δxi(X)
∂xi

∂t
+ δF

δMi(X)
∂Mi

∂t

)︃
dX

The equations above must be equal for an arbitrary functional F so we can
conclude

∂

∂t
xi(X) = δE

δMi(X) , (1.55)

∂

∂t
Mi(X) = − δE

δxi(X) (1.56)

14



The equations (1.55) represent the Hamilton equations of continuum mechanics.
However, we still need to prescribe the energy functional.

Assume that the total energy consists of kinetic energy and internal energy.
It is most convenient to obtain the density of the internal energy in the Eulerian
variables, that is, ϵ = ϵ(ρ(x)), where ϵ is the internal energy density in the Euler
frame and ρ is the mass density, also in the Euler frame. We seek the evolution
of Lagrangian variables, so we have to transform the Eulerian variables using the
Jacobian

dx = det ∂x
∂X

dX

and so

E(L) =
∫︂ (︃ M2

2ρ(L) + det ∂x
∂X

ϵ
(︂
ρ(x(X))

)︂)︃
dX , (1.57)

where ρ(L) is the Lagrangian mass density. We still need to transform the Eulerian
mass density ρ to the Lagrangian frame, but we will not make the transformation
now for simplicity.

1.4.4 The SPH Poisson bracket
Let Ω be a region of the continuum (for example, a body). Define {Ωa} to be a
partition of Ω such that Ω = ∪aΩa, Ωa ∪ Ωb = ∅ if a ̸= b and Va =

∫︁
Ωa

dX to be
the volume of each Ωa. Later, we will call Ωa a (SPH) particle. Next, define the
normalized characteristic function of Ωa, that is, χa(X) = 1/Va, if X ∈ Ωa, and
χa(X) = 0 if X /∈ Ωa. Finally, define the position and momentum of the particle
using the relations 9

xa =
∫︂

x(X)χa(X) dX (1.58a)

Ma =
∫︂

M(X)χa(X)Va dX , (1.58b)

Aiming to obtain the “SPH Poisson bracket”, i.e., a Poisson bracket generating
the SPH equations, we define the equations (1.58a) to be the SPH state variables.
Now consider two arbitrary functionals of these state variables F (xa, Mb), G(xa, Mb)
and insert them into the continuum Poisson bracket (1.52). Once again, deploying
the chain rule (for functional derivatives)yields

{F, G}(L) =
∫︂ (︃

δF

δxi(X)
δG

δMi(X) − δF

δMi(X)
δG

δxi(X)

)︃
=

=
∑︂

a

∑︂
b

∫︂ ⎛⎝[︃ ∂F

∂xj
a

δxj
a

δxi(X) + ∂F

∂Mb,j

δMb,j

δxi(X)

]︃[︃
∂G

∂Mb,j

δMb,j

δMi(X) + ∂G

∂xj
a

δxj
a

δMi(X)

]︃
−

[︃
∂F

∂Mb,j

δMb,j

δMi(X) + ∂F

∂xj
a

δxj
a

δMi(X)

]︃[︃
∂G

∂xj
a

δxj
a

δxi(X) + ∂G

∂Mb,j

δMb,j

δxi(X)

]︃⎞⎠ dX (1.59)

9Notice the multiplication by Va, since M(X) is the (Eulerian) momentum density per
Lagrangian volume.
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Where the summation over a, b means a summation over all particles 10 To eval-
uate the functional derivatives, we use (1.53a) in the form

⟨︄
δxj

a

δxi(X) , h

⟩︄
=
∫︂ δxj

a

δxi(X)h dX = d
ds

⃓⃓⃓⃓
⃓
s=0

xj
a(xi + sh) =

d
ds

⃓⃓⃓⃓
⃓
s=0

∫︂
δj

i (xi(X) + sh)χa(X) dX =
∫︂

δj
i χa(X)h dX ,

where the δj
i appears because of the fact that due to (1.58a) the coordinate xj

a

is only a function of xj(X) (not other coordinates). Since this equality holds
∀h ∈ D, we deduce that

δxj
a

δxi(X) = δj
i χa(X),

and since xj
a is by its definition (1.58a) only a function of x, all the functional

derivatives with respect to Mi(X) are identically zero. The same analysis can be
performed by changing xj

a ↔ Mb,j to obtain the following.

δMb,j

δMi(X) = δj
i χb(X)Vb

Using these facts to simplify the equation (1.59) gives the following result.

{F (xa, Mb), G(xa, Mb)}(L) =

=
∑︂

a

∑︂
b

∫︂ (︃
∂F

∂xi
a

∂G

∂Mb,i

χa(X)χb(X)Vb − ∂F

∂Mb,i

∂G

∂xi
a

χa(X)χb(X)Vb

)︃
dX =

=
∑︂

a

∑︂
b

(︃
∂F

∂xi
a

∂G

∂Mb,i

− ∂F

∂Mb,i

∂G

∂xi
a

)︃ ∫︂
χa(X)χb(X)Vb dX ,

using the definition of a normalised characteristic function and the fact that the
partition of Ω is (pairwise) disjoint, one can simplify the integral

∫︂
χa(X)χb(X)Vb dX =

∫︂
χ2

a(X)Va dX =
∫︂

Ωa

1
V 2

a

Va dX = 1
Va

∫︂
Ωa

dX = 1,

which leads to

∑︂
a

∑︂
b

(︃
∂F

∂xi
a

∂G

∂Mb,i

− ∂F

∂Mb,i

∂G

∂xi
a

)︃ ∫︂
χa(X)χb(X)Vb dX =

∑︂
a

(︃
∂F

∂xi
a

∂G

∂Ma,i

− ∂F

∂Ma,i

∂G

∂xi
a

)︃

This is exactly the definition of the SPH Poisson bracket 11; that is, for arbi-
trary functionals F, G of the SPH state variables, we set

10If the functionals do not depend on some of the variables, then the partial derivatives are
zero, and we have added only zeros to the result

11In the Lagrangian frame
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{F, G}(SP H) :=
∑︂

a

(︃
∂F

∂xi
a

∂G

∂Ma,i

− ∂F

∂Ma,i

∂G

∂xi
a

)︃
(1.60)

There are several interesting facts to be aware about the SPH Poisson bracket.
Mainly, it is identical to that of classical mechanics (of particles). This agrees
well with the “particle interpretation” and checks that the relations truly define a
Poisson bracket (antilinear bivector satisfying the Jacobi identity and the Leibniz
rule). Also, compare the derivation with the process of interpolation described
in section 1.2.

• The functions (state variables) x(X), M(X) have been simplified through
an integration (1.58a) over a subregion of the continuum. This is similar to
the continuous interpolation (1.2).

• Integration over a “continuous” region (i.e., over a continuous variable)
in the Poisson bracket (1.52) has been simplified to a summation over the
particles (i.e. a “discrete region”) (1.60). Again, compare this to the discrete
interpolation (1.14) or (1.15) schematically

1.4.5 Hamilton equations induced by the SPH Poisson
bracket

The SPH energy functional

In the previous sections, we have concluded that to write down the evolution
equations, we need some state variables, a Poisson bracket, and an energy func-
tional. Only the last ingredient is missing: the energy functional. The relation
(1.57) defines the energy of the continuum. Let us try to recreate such a relation
using the SPH variables. No difficulty poses the mass of a particle

ma =
∫︂

ρ(L)(X)χa(X) dX , (1.61)

and using the definition of the particle volume Va one can also define the SPH
density in the Lagrange frame

ρ(L)
a = ma

Va

(1.62)

However, the relation (1.57) also calls for the density in the Euler frame (as
well as for the mapping X ↦→ x(t, X)). In the material configuration, the SPH
density is easy to define, as it is the density of the particle with which the frame
moves. In the current configuration, the SPH density at a point in space, with
respect to the fixed frame, needs to take into account that the particles around
are moving. Thus, the density must be determined by the attributes of the
particles at a certain neighborhood of that point, ergo, we require the idea of an
interpolation kernel. With enough knowledge of the matter, let us immediately
define the SPH density in the Euler frame.

ρa =
∑︂

b

mbwab (1.63)
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This quantity is indeed a mass density, as the dimension of wab is meter−n, where
n is the dimension of the Euclidean space. Using the discrete interpolation scheme
(1.15) (we need to sum over the particles) and the rule for volume transformation,
that is

ρ dx = ρ det ∂x
∂X

dX = ρ(L) dX ⇒ det ∂x
∂X

= ρ(L)

ρ
,

the SPH energy becomes

E(SP H) =
∑︂

a

(︃ M2
a

2ρ
(L)
a

+ ρ(L)
a

ρa

ϵ(ρa)
)︃

Va =
∑︂

a

(︃ M2
a

2ma

+ ma

ρa

ϵ(ρa)
)︃

(1.64)

Evolution equations

We are ready to construct the SPH version of the Hamilton equations. That is,

d
dt

xi
a = {xi

a, E(SP H)}(SP H) =
∑︂

b

(︃
∂xi

a

∂xj
b

∂E

∂Mb,j

− ∂xi
a

∂Mb,j

∂E

∂xj
b

)︃
(1.65a)

d
dt

Ma,i = {Ma,i, E(SP H)}(SP H) =
∑︂

b

(︃
∂Ma,i

∂xj
b

∂E

∂Mb,j

− ∂Ma,i

∂Mb,j

∂E

∂xj
b

)︃
, (1.65b)

(1.65c)

where we write E ≡ E(SP H) for brevity. Partial derivatives of the state variables
with respect to one another are

∂xi
a

∂xj
b

= ∂Ma,i

∂Mb,j

= δi
jδ

a
b ,

whereas the mixed derivatives of the state variables are identically zero. For the
derivatives of the energy, we write

∂

∂xj
b

E = ∂

∂xj
b

∑︂
c

(︃M2
c

2mc

+ mc

ρc

ϵ(ρc)
)︃

=
∑︂

c

mcϵ(ρc)
∂

∂xj
b

(︂ 1
ρc

)︂
+
∑︂

c

mc

ρc

∂

∂xj
b

ϵ(ρc) =

=
∑︂

c

mcϵ(ρc)
∂

∂xj
b

(︃ 1∑︁
d mdw(∥xc − xd∥)

)︃
+
∑︂

c

mc

ρc

ϵ′(ρc)
∂

∂xj
b

∑︂
d

mdw(∥xc − xd∥) =

=
∑︂

c

mcϵ(ρc)
−1(︂∑︁

d mdw(∥xc − xd∥)
)︂2
∑︂

d

mdw′(∥xc − xd∥) ∂

∂xj
b

√︄∑︂
k

(xk
c − xk

d)2+

+
∑︂

c

mc

ρc

ϵ′(ρc)
∑︂

d

mdw′(∥xc − xd∥) ∂

∂xj
b

√︄∑︂
k

(xk
c − xk

d)2 =

= −
∑︂

c

mcϵ(ρc)
1
ρ2

c

∑︂
d

mdw′(∥xc − xd∥)
∑︂

k

xk
c − xk

d

∥xc − xd∥
δjk(δbc − δbd)+

+
∑︂

c

mc

ρc

ϵ′(ρc)
∑︂

d

mdw′(∥xc − xd∥)
∑︂

k

xk
c − xk

d

∥xc − xd∥
δjk(δbc − δbd)

=
⎡⎣∑︂

c

(︃
mc

ρc

ϵ′(ρc) − mcϵ(ρc)
1
ρ2

c

)︃⎤⎦⎡⎣∑︂
d

mdw′(∥xc − xd∥) xj
c − xj

d

∥xc − xd∥
(δbc − δbd)

⎤⎦,
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using the notation from section 1.2.2 and splitting the sum in two parts corre-
sponding to b=c and b=d respectively reads as

=
⎡⎣∑︂

c

(︃
mc

ρc

ϵ′(ρc) − mcϵ(ρc)
1
ρ2

c

)︃⎤⎦⎡⎣∑︂
d

mdw′
cdej

cd(δbc − δbd)
⎤⎦ =

=
(︃

mb

ρb

ϵ′(ρb) − mb

ρ2
b

ϵ(ρb)
)︃∑︂

d

mdw′
bdej

bd −
∑︂

c

(︃
mc

ρc

ϵ′(ρc) − mc

ρ2
c

ϵ(ρc)
)︃

mbw
′
cbe

j
cb =

=
∑︂

d

(︃
mb

ρb

ϵ′(ρb) − mb

ρ2
b

ϵ(ρb)
)︃

mdw′
bdej

bd +
∑︂

c

(︃
mc

ρc

ϵ′(ρc) − mc

ρ2
c

ϵ(ρc)
)︃

mbw
′
bce

j
bc =

=
∑︂

c

(︃
mb

ρb

ϵ′(ρb) − mb

ρ2
b

ϵ(ρb)
)︃

mcw
′
bce

j
bc +

∑︂
c

(︃
mc

ρc

ϵ′(ρc) − mc

ρ2
c

ϵ(ρc)
)︃

mbw
′
bce

j
bc =

=
∑︂

c

⎡⎣mc
mb

ρ2
b

(︃
− ϵ(ρb) + ρbϵ

′(ρb)
)︃

+ mb
mc

ρ2
c

(︃
− ϵ(ρc) + ρcϵ

′(ρc)
)︃⎤⎦w′

bce
j
bc

where we exploited ej
cb = −ej

bc, w′
ab = w′

ba. Defining the pressure of a particle
d by the relation Kincl et al. [2023a]

pd = −ϵ(ρd) + ρdϵ′(ρd) = −ϵ(ρd) + ρd
∂ϵ

∂ρd

, (1.66)

further simplifies the equalities above to obtain finally

∂E

∂xj
b

=
∑︂

c

⎛⎝mcmb

ρ2
b

pb + mcmb

ρ2
c

pc

⎞⎠w′
bce

j
bc

For the derivatives with respect to momentum, we write

∂

∂Mb,j

E = ∂

∂Mb,j

∑︂
c

(︃M2
c

2mc

+ mc

ρc

ϵ(ρc)
)︃

=
∑︂

c

1
2mc

∂

∂Mb,j

2Mc,kδjkδbc = Mb,j

mb

Combining all the above relations yields

d
dt

xi
a =

∑︂
b

(︃
δi

jδ
a
b

Mb,j

mb

− 0
)︃

= Ma,i

ma

,

d
dt

M i
a =

∑︂
b

⎛⎝0−δi
jδ

a
b

∑︂
c

[︃
mcmb

ρ2
b

pb+
mcmb

ρ2
c

pc

]︃
w′

bce
j
bc

⎞⎠ = −
∑︂

c

(︃
mcma

ρ2
a

pa+mcma

ρ2
c

pc

)︃
w′

ace
i
ac

These evolution equations represent the Hamilton canonical equations of the SPH
state variables, together with the density relation (1.63) they define a system of
ordinary differential equations analogous to the WCSPH scheme (1.51a).

d
dt

xa = Ma

ma

, (1.67a)

d
dt

Ma = −
∑︂

b

(︃
mamb

ρ2
a

pa + mamb

ρ2
b

pb

)︃
w′

abeab, (1.67b)

ρa =
∑︂

b

mbwab (1.67c)
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This system is Hamiltonian, as it is generated by a Poisson bracket (1.60).
It must be noted that this is not a unique way to express the SPH equations
as a Hamiltonian system. In the section 1.2.2, we have seen numerous ways to
discretize the operators, thus leading to multiple formulations of the system. Such
an ambiguity remains even when opting for this alternative derivation.

Mainly, the above set of equations is not the same as (1.51a). The real dif-
ference lies in the treatment of density: whereas the “classical” SPH prescribes
an evolution equation for density, the Hamilton canonical equations above only
evolve positions and momenta and set the density as a function of these state
variables 12. Inspired by the classical SPH, let us find an evolution equation for
the density, using a generic Hamiltonian evolution (1.54)

d
dt

ρa = {ρa, E}(SP H) =
∑︂

b

(︃
∂ρa

∂xj
b

∂E

∂Mb,j

− ∂ρa

∂Mb,j

∂E

∂xj
b

)︃
=
∑︂

b

(︃
Mb,j

mb

∂

∂xj
b

∑︂
c

mcwac−0
)︃

=

=
∑︂

b

(︃
Mb,j

mb

∑︂
c

mcw
′
ace

k
acδ

k
j (δba − δbc)

)︃
=
∑︂

b

∑︂
c

(︃
Mb,j

mb

mcw
′
ace

j
ac(δba − δbc)

)︃
=

=
∑︂

c

(︃
Ma,j

ma

mcw
′
ace

j
ac

)︃
−
∑︂

c

(︃
Mc,j

mc

mcw
′
ace

j
ac

)︃
=
∑︂

c

(︃
Ma,j

ma

− Mc,j

mc

)︃
mcw

′
ace

j
ac,

where we just used the definition (1.63) and sped up the calculation using the
previously derived derivatives.

This expression for density allows one to define another formulation of the
SPH

d
dt

xa = Ma

ma

, (1.68a)

d
dt

Ma = −
∑︂

b

(︃
mamb

ρ2
a

pa + mamb

ρ2
b

pb

)︃
w′

abeab, (1.68b)

d
dt

ρa =
∑︂

b

(︃Ma

ma

− Mb

mb

)︃
· eabw

′
abmb (1.68c)

It must be stressed that we do not have any proofs of the Hamiltonianity of
the above equations; for them to be Hamiltonian, they must be generated by a
Poisson bracket of the state variables xa, Ma, ρa. Our SPH Poisson bracket (1.60)
happens to not be the one.

Fortunately, there exists such a Poisson bracket, but we will not provide a
derivation of it. The reason is that we preferably aim to use the system (1.67a)
instead (for which we have done justice when deriving it), as it is symplectic (for
details, see Section 1.4.5), and also the calculation being tedious. In Kincl et al.
[2023a], the authors have shown that the Poisson bracket

12Note that explicit position dependency is present through the interpolation kernel: wab =
w(∥xa − xb∥).
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{F, G}(SP H),ρ =
∑︂

a

(︃
∂F

∂xi
a

∂G

∂Ma,i

− ∂F

∂Ma,i

∂G

∂xi
a

)︃
+

+
∑︂

a

∑︂
b

mbw
′
abe

i
ab

⎡⎣ ∂F

∂ρa

(︃
∂G

∂Ma,i

− ∂G

∂Mb,i

)︃
− ∂G

∂ρa

(︃
∂F

∂Ma,i

− ∂F

∂Mb,i

)︃⎤⎦, (1.69)

generate the system of equations (1.65a) above.
At first sight, not even the latter equations seem to be the same as in the

scheme (1.51a). Let us try to rewrite them in terms of velocity d
dt

xa = u:

d
dt

xa = ua = Ma

ma

, (1.70a)

dua

dt
= − 1

ma

∑︂
b

(︃
mamb

ρ2
a

pa + mamb

ρ2
b

pb

)︃
w′

abeab = −
∑︂

b

mb

(︃
pa

ρ2
a

+ pb

ρ2
b

)︃
w′

abeab,

(1.70b)
dρa

dt
=
∑︂

b

(︃
ua − ub

)︃
⏞ ⏟⏟ ⏞

uab

·eabmbw
′
ab, (1.70c)

which is equivalent to the system (1.51a) 13.
We discuss the qualitative differences of equations (1.67a) and (1.68a) in the

next section.

Hamiltonian vs symplectic systems

The major difference between the systems (1.67a) and (1.68a) is that the first
one is symplectic (and thus Hamiltonian) and the latter one is only Hamiltonian
(non-symplectic). Kincl and Pavelka [2023]. We briefly introduce the differences
and relationships while keeping the focus on our usage, which is not differential
geometry but numerical solutions of ODE’s. For details, see any book about
differential geometry and symmetries in physics, e.g. Oliva [2002].

A symplectic manifold is a pair (M, ω), where M is a manifold and a ω is a
symplectic 2-form on it, that is, a mapping ω : M × M ↦→ Rn satisfying

dω = 0, (1.71a)
iXω = ω(·, X) = 0 ⇔ X = 0, (1.71b)

(1.71c)
meaning the form is closed and non-degenerate Oliva [2002]. In classical mechan-
ics, the “canonical” symplectic manifold is the pair (T∗Q, dθ0), where Podolsky
[2019]

T∗Q is the cotangent bundle of the configuration manifold Q (1.72a)
ω = dθ0 = dpj ∧ dqj is the outter derivative of the Cartan one-form θ0 = pjdqj

(1.72b)
13With the exception of the absenting gravity ga, which we have not included in our energy

functional (1.57)
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The cotangent bundle is the ”space of momenta pj”, and the configuration mani-
fold is the ”space of positions qj”. It is convenient to define universal coordinates
as (z1, z2, . . . , zn, zn+1, . . . , z2n) ≡ (q1, q2, . . . , qn, p1, p2, . . . , pn).On every symplec-
tic manifold, a canonical Poisson bracket is given using the symplectic 2-form;
given functions f, g of the state variables pj, qj, their canonical Poisson bracket
always is

{f, g} = ∂f

∂zβ
ωβα ∂g

∂zα
, (1.73)

where ωβα is the inverse symplectic two form expressed in the coordinate basis 14

ωβα =
[︄
0 −I
I 0

]︄
, (1.74)

and I stands for the (n × n) identity matrix. However, there are many physical
systems governed by the Hamilton canonical equations, but there does not exist
a symplectic 2-form such that (1.73) describes its dynamics - they are governed
by a more general Poisson bracket:

d
dt

zβ =
{︂
zβ, H

}︂
= Lβα ∂H

∂zα
, (1.75)

meaning

d
dt

qj = ∂H

∂pj

(1.76)

d
dt

pj = −∂H

∂qj
(1.77)

The object Lβα is the coordinate representation of the Poisson bivector. So far,
we have seen there exist various Poisson brackets. All of them are generated
by some Poisson bivector Lβα, while some are generated by a symplectic 2-form
(more precisely, its inverse). This leads us to the following definitions:

A system whose dynamics is described by a Poisson bracket (i.e. by the Hamil-
ton canonical equations induced by it) that is generated by a symplectic 2-form
ω is referred to as a symplectic system. For symplectic systems, the coordinate
representations of the Poisson bivector and the inverse of the symplectic 2-form
coincide, Lβα ≡ ωβα

On the other hand, many systems are governed by Hamilton canonical equa-
tions induced by a general Poisson bracket (such as the rigid body) - an anti-
symmetric bivector satisfying the Jacobi identity and the Leibniz rule, and at the
same time, there does not exist a symplectic 2-form generating the bracket in the
fashion of (1.73). These systems are referred to as Hamiltonian systems.

We are interested in symplectic systems mainly because of the ability to deploy
symplectic integrators (more generally, structure-preserving integrators) when
solving their governing equations. For a particular class of problems, symplectic
integrators guarantee an upper bound in total energy error and other valuable
qualities Hairer et al. [2004]. An example of such a symplectic integrator is

14Inverse in the sense that ωβαωγσ = δβ
γ δα

σ . The inverse must exist since the form is nonde-
generate
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the Störmer-Verlet method Hairer et al. [2003]; it has been shown in Kincl and
Pavelka [2023] that the symplectic system (1.67a) is globally time reversible when
using the Störmer-Verlet method. Therefore, it is preferable to use system (1.67a)
instead of system (1.68a) ((1.51a) respectively). On the contrary, the symplectic
system’s density treatment creates questionable behavior at the boundaries. This
issue, however, was again resolved in Kincl and Pavelka [2023] using fixed-point
arithmetic and a correction of the initial conditions.

1.5 Summary of the SPH method
In the previous sections, we have introduced the main results of the SPH method
theory. This paragraph aims to summarize them briefly.

The “classical” approach to smoothed particle hydrodynamics starts with the
idea of abstract particles, which represent (discretize) a (sub)region of a contin-
uous medium. The governing partial differential equations of the field functions
(density, velocity) are rewritten in a simplified form using interpolated (contin-
uously and later discretely) fields and differential operators, yielding a set of or-
dinary differential equations. Namely, the discretized continuity equation (1.45)
and the discretised Euler equations (1.48) should be solved while providing a
state equation for the pressure, for example, the expression (1.50).

Another approach to the SPH springs from the consistency of the theory with
Hamiltonian mechanics. A very similar system of equations (1.67a) (which agrees
well with the particle nature of the method) can be straightforwardly derived
from a “discretized” (canonical) Poisson bracket of the continuum mechanics
(meaning the equations represent the Hamilton canonical equations generated by
the bracket). This origin immediately proves the system’s symplecticity, allowing
the use of symplectic integrators. Using a different non-canonical Poisson bracket,
another system of ODE’s (1.68a), identical to the “classical” equations of SPH,
can be derived, showing consistency with the previous results.
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2. Mountain-Wave Simulations
in general

2.1 Introduction
The atmosphere is a complex dynamical system. It ranges from the surface of
Earth up to about 10 000 km above, is made up of various chemical elements, and
exhibits complicated phenomena, such as the weather. An interesting property
of the atmosphere is its ability to support the existence of waves of many types,
such as the ubiquitous internal gravity waves including orographic generated ones
(e.g. lee waves).

It is well known (and will also be discussed in what follows) that the den-
sity, pressure, and temperature of air generally change with height. When air
ascends to a region of lower density (e.g. upward), the buoyancy force acting
on it decreases and is consequently accelerated downwards due to gravity. If the
density change is sufficient, on its way back it then overshoots its initial position,
reaches a region of higher density, and is again propelled upwards. This oscilla-
tory, “spring-like” motion is a prototype of an internal gravity wave. Sutherland
[2010]

Orographic gravity waves can be triggered by flows near the surface. Air
traveling along the surface is rapidly lifted upwards when it hits a mountain
barrier and because of stratification, buoyancy, and gravity, internal gravity waves
can emerge. Orographic gravity waves that are triggered by flow over a mountain
barrier (or some other topography) are also called mountain waves.Durran [2003]

2.1.1 Current status of mountain-wave simulations
Why are we interested in mountain waves? Mountain waves play an important
role in atmospheric dynamics. They can trigger or amplify downslope windstorms
Durran [2003] (extremely strong winds on the slopes of some topographic barri-
ers), generate regions of clear air turbulence (i.e., turbulent flows that lack visual
clues such as clouds) and have an impact on dynamics and transport, for exam-
ple, by mixing of the chemical constituents in the regions of their dissipation.
Doyle et al. [2011]. Their multiscale nature prevents the global models from fully
representing them. Hence, it is of great interest to be able to accurately simulate
mountain waves at least in regional domains.

In the article “An Intercomparison of T-REX Mountain-Wave Simulations
and Implications for Mesoscale Predictability” by J. Doyle et al. (Doyle et al.
[2011]), flow over mountain terrain has been simulated using 11 different numer-
ical models. The terrain has been modeled using five idealized mountain profiles
(given as analytical curves by some function) and one real mountain profile, a
section of the Sierra Nevada. All models showed consistency in the baseline ex-
periment with a linear wave theory (parameters of which will be given in later
sections). Surprisingly, the results of the other five experiments, where nonlin-
ear effects emerge, vary greatly - in the number and amplitude of the emerging
mountain waves, in wind speeds, or in the triggering of downslope windstorms.
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Doyle et al. [2011]. The goal of this thesis is to conduct the baseline experiment
using the Smoothed Particle Hydrodynamics method, a method mainly used in
solid and fluid mechanics.

2.2 An introduction to the theory of internal
gravity waves

In this section, we derive a few very basic results of the theory of internal gravity
waves, considering the context of this text. For a more thorough description, see,
e.g. Nappo [2013] or Sutherland [2010].

We start with the concept of stratification, as it is an essential aspect of the
whole theory.

2.2.1 Density and pressure stratification of the atmosphere
Under the assumption that the viscosity of the atmosphere can be neglected, the
dynamics of the gas is governed by the Euler equations (the law of conservation
of momentum) (1.47)

ρ
Du
Dt

= −∇p + ρg − 2Ω × ρu, (2.1)

where we have also included the Coriolis force. Choosing an (inertial) frame of
reference and setting g = −gez while assuming the gas does not accelerate in the
vertical axis, the corresponding derivative vanishes and the Euler equation for
the vertical direction reads as

dp

dz
= −ρg (2.2)

This is the hydrostatic balance equation Sutherland [2010]. In fact, it is a (partial)
differential equation that connects the vertical pressure gradient to the distribu-
tion of the density (recall that the density is a field variable); note particularly
that the remaining Euler equations can remain general even with the condition
of hydrostatic balance. To solve for pressure and density, one has to specify
the equation of state, that is, the relation p = p(ρ). In the formulation of the
SPH method (see section 1.3.3) we have introduced the barotropic formula (1.50).
However, in our context, it is essential to incorporate the temperature also into
our model. Thus, we opt for the thermal equation of the ideal gas:

p(T, V, N) = NRT

V
, (2.3)

where p stands for the pressure, T for the absolute temperature, N for the number
of particles (atoms or molecules) of the gas and R = 8.314 JK−1mol−1 is the molar
gas constant. With some manipulation, we obtain the following

p = RT

V
N = RT

V

m

Mm

= m

V

R

Mm

T = ρRT, (2.4)
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where Mm is the molar mass and R = R/M is the specific molar gas constant
which for dry air equals R = 287, 053 JK−1kg−1. Using this equation, the condi-
tion of hydrostatic balance becomes

R
d(ρT )

dz
= −gρ (2.5)

Under the assumption of an isothermal atmosphere we can write

dρ

dz
= − g

RT
ρ, (2.6)

and this differential equation has an unique solution

ρ(z) = ρ0 exp
(︃

− g

RT
z
)︃

, (2.7)

where ρ0 = ρ(z = 0). Using the equation (2.4) gives us the pressure dependency

p(z) = RTρ0 exp
(︃

− g

RT
z
)︃

= p0 exp
(︃

− g

RT
z
)︃

, (2.8)

where naturally p0 = p(z = 0) = RTρ0. As the altitude increases, both the
pressure and density decrease exponentially, but for an fixed altitude, the xy
plane forms an isosurface of both the density and pressure. In the case the
quantities of state are functions of the vertical coordinate, we say the atmosphere
is stratified.

Potential temperature

Briefly, we discuss a general atmospheric state with a non-constant temperature.
However, we will only assume adiabatic processes (expansions and compressions).
The first law of thermodynamics in molar form for an adiabatic process reads as
follows

du = δW = −p dv , (2.9)
using the caloric state equation for an ideal gas U = cV RT, dU = cV R dT and
differentiating the thermal equation pv = RT gives p dv + v dp = R dT , so
−p dV = v dp − R dT . Using these relations, the first law takes the form

cv dT = v dp − R dT (2.10)
Next, we deploy the Mayer equation for an ideal gas in the form cp − cv = R and
use the thermal equation once more to eliminate the volume:

cp dT = RT

p
dp , (2.11)

rearranging gives the differential equation

dp

p
= cp

R

dT

T
(2.12)

Integrating both sides then yields
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log p

p0
= cp

R
log T

T0
= log

(︃
T

T0

)︃ cp
R

(2.13)

Solving for T0 finally gives

θ := T0 = T
(︃

p0

p

)︃ R
cp (2.14)

The last relation gives a definition of the potential temperature θ Sutherland
[2010]. It is the temperature (dry) air would have when adiabatically moved from
pressure p to the pressure p0. Potential temperature is especially useful for its
conservative nature. It follows from the definition that the potential temperature
remains constant under adiabatic flows. We have also obtained the solution for
the thermodynamic temperature

T = T0

(︃
p

p0

)︃ R
cp

, (2.15)

and the thermal state equation also gives us the density solution

ρ = p

RT
= 1

RT0
p
(︃

p

p0

)︃−R
cp = p0

RT0

p

p0

(︃
p

p0

)︃−R
cp = ρ0

(︃
p

p0

)︃ 1
γ

, (2.16)

where we have denoted ρ0 = p0
RT0

, γ = cp/cv and used the Mayer equation cp−cv =
R.

2.2.2 Buoyancy oscillations
In the Introduction, we have mentioned the emergence of oscillations in the at-
mosphere due to the buoyancy force. Using the tools from the previous section,
we are now ready to derive the differential equations governing these motions.

Assume a small idealized air parcel with density ρp and volume Vp, so that
mp = ρpVp is its mass. Further, assume that the parcel is in a state of thermo-
dynamic equilibrium with its environment, a non-rotating (meaning there is no
Coriolis force) atmosphere. The total force acting on the particle consists of the
gravity force and the buoyancy force:

F = g(mp − ma), (2.17)
where we have used Archimedes principle and denoted ma to be the mass of
the surrounding air displaced by the air particle. Suppose that the particle is
displaced from its equilibrium height z0 by a small perturbation δz - such as
the ascending motion caused by hitting a mountain profile. Choosing a frame of
reference whose vertical axis is oriented in the opposite direction of gravity and
deploying Newton’s second law yields

mp
d2

dt2 (δz) = −g(mp − ma), (2.18)

we further assume that the volume of the displaced air Va is the same as the
volume of the particle Va = Vp and that the pressure relaxes instantaneously
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- meaning that the pressure in the air particle is the same as the background
pressure. With these assumptions, we can write the following

d2

dt2 (δz) = −g
mp − ma

mp

= −g
ρpVp − ρaVp

ρpVp

= −g
ρp − ρa

ρp

= −g
T − Tp

T
, (2.19)

and for the last equality we have used the thermal state equation. If the dis-
placement δz is small enough, the temperature of the air particle Tp and the
temperature of the atmosphere T do not differ much from the temperature at
height z0, denoted T0. In other words, we can use the Taylor expansion and drop
any terms higher than the linear one

ppTp(z0 + δz) ≈ T0 + ∂Tp

∂z
(z0)δz (2.20)

T (z0 + δz) ≈ T0 + ∂T
∂z

(z0)δz, (2.21)

substituting into the equation above yields

d2

dt2 (δz) = −g
T − Tp

T
= −g

∂T
∂z

− ∂Tp

∂z

T
δz (2.22)

Since we have supposed the motion of the air particle is adiabatic, we can express
its temperature gradient in terms of the adiabatic lapse rate Γ = −∂Tp

∂z
= g

cp

1

Nappo [2013] and write

d2

dt2 (δz) = − g

T

(︃
g

cp

− ∂T

∂z

)︃
δz (2.23)

It is convenient to express the former relation using the potential temperature, as
it is conserved under adiabatic flows, rather than thermodynamic temperature.
Taking the logarithmic derivative of the expression (2.14) reads as

1
θ

∂θ

∂z
= 1

T

∂T

∂z
− R

cp

1
p

∂p

∂z
, (2.24)

which under hydrostatic balance and per unit mass reads as (again using the
thermal state equation)

1
θ

∂θ

∂z
= 1

T

∂T

∂z
− 1

T

g

cp

(2.25)

Substituting this term into the equation of motion finally gives

d2

dt2 (δz) = −g

θ

∂θ

∂z
δz (2.26)

We see that if

∂θ

∂z
> 0 (2.27)

1As when discussing the potential temperature, the first law of thermodynamics takes the
form cp dT = RT

p dp, so per unit volume we have cp dT = dp, invoking hydrostatic balance
dp = −gρ dz yields cp dT = −gρ dz, from which it is convenient to set Γ = − dT

dz = g
cp
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the equation (2.26) is the equation of a harmonic oscillator with the “stiffness of
the spring” ∂θ

∂z
. The condition that the potential temperature rises with altitude

(2.27) is often referred to as the atmosphere is stably stratified Nappo [2013].
In the case of a stably stratified atmosphere, the frequency of the oscillations

is given by

N =
√︄

g

θ

∂θ

∂z
(2.28)

This frequency is referred to as the Brunt–Väisälä frequency Nappo [2013].
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3. Mountain-Wave Simulations
using the SPH Method
In the sections 1 and 2 we have introduced Smoothed Particle Hydrodynamics and
the theory of mountain waves. The goal of this section is to produce a synthesis of
the previous parts - an attempt to simulate mountain waves using the formalism
of SPH. Concretely, our aim is to reproduce the baseline experiment posed in
Doyle et al. [2011], whose details are discussed in the following.

At this point, it should be noted that SPH has not been used in meteorology
before, at least to the best of our knowledge. There exist applications of the SPH
method in oceanology to simulate oceanic internal gravity waves. However, ocean
salt water has different qualities than air; mainly, it is described by the barotropic
state equation (1.50). As it has been discussed in 2.2.1, in the (simplifed models)
of atmosphere, the density and pressure decrease exponentially, which proves to
be a challenge for SPH and its numerical stability; this will be discussed in the
section 4.1. With no previous references, we endeavor to utilize the formalism in
this rather exotic setting.

The simulations have been conducted using the package SmoothedParticles.jl
Kincl and Pavelka (Kincl and Pavelka [2023] Kincl et al. [2023c] Kincl et al.
[2023b]). The code used to achieve our results is available at SPH Mountain-Waves
and is also given as an attachement to this text.

3.1 Parameters of the simulation
The authors of Doyle et al. [2011] have set the parameters of their baseline exper-
iment to allow easy reproduction. Here, we present those parameters and discuss
their implementation in the formalism of SPH.

3.1.1 Computational domain and mountain profile
The computational domain is a rectangular region, the height of which is 26 km
and the length of which is 400 km. Any particles that would leave the domain
during the simulation are automatically removed.

A mountain obstacle is placed in the center of the domain. The baseline
experiment considers an idealized profile, known as the Witch of Agnesi profile.
The elevation of the topography is given by the function

h(x) = hma2

x2 + a2 , (3.1)

where hm is the height of the mountain and a is its “half-width”1. We take hm

= 100 m, a = 10 km. The profile is plotted below 3.1
1In the sense that h(a) = hm

2
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Figure 3.1: The Witch of Agnesi mountain profile

3.1.2 Initial and boundary conditions
Recall that we are solving (a discretized) system of partial differential equations,
and thus we have to prescribe some initial and boundary conditions. Setting the
initial conditions in the SPH formalism is simple - just prescribe the values of
velocity, density, pressure, and temperature at the initial time. However, unlike
grid methods, correctly prescribing boundary conditions poses a greater challenge
Vacondio et al. [2020]. We cover the conditions one by one.

Initial conditions

To solve the SPH equations, we prescribe initial conditions for the field variables
and close the equations by providing an equation of state - the thermal state
equation of an ideal gas (2.4). The initial conditions are listed in the table 3.1
below

velocity u u(0, x) = U0ex, U0 = 20 m/s
pressure p p(0, x) = p0 exp

(︂
−y g

RT0

)︂
, p0 = ρ0RT0

density ρ ρ(0, x) = ρ0 exp
(︂
−y g

RT0

)︂
, ρ0 = 1.393 kg/m3

temperature T T (0, x) = T0, T0 = 250 K

Table 3.1: Initial conditions for the baseline experiment from the article Doyle
et al. [2011]

The initial condition represent an isothermal atmosphere in hydrostatic bal-
ance, which has been discussed in 2.2.1. Unfortunately, issues with the stability
of the hydrostatic balance (the initial state) have arisen, supposedly due to the
massive density differences: ρ(y = 0) = 1.393 kg m3(density of dry air at 250 K
and atmospheric pressure) and at the top ρ(y = 26 km) = 0.0398 kg m3. More
discussion of this issue is presented in 4.1.1.
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Boundary conditions

The computational domain has 4 boundaries: 2 lateral, top and bottom + moun-
tain. The baseline simulation in Doyle et al. [2011] prescribes the free slip bound-
ary condition at the bottom and open lateral boundaries. The top boundary
condition depends on the numerical model; however, the majority uses Rayleigh
damping. Let us discuss the implementation of all these boundary conditions.

Lateral conditions seem straightforward. In the west 2, there is a constant
inflow of particles with the initial conditions given by the table 3.1. In the east,
the domain is open and all particles that escape it are removed. Realize, however,
that this technically means vacuum - the particles pushed from the domain do
not feel any resistance from the particle outside the domain as there are none. In
other words, there exists a pressure gradient that drives the particles. We discuss
this problem in the following section 4.1.3.

The bottom boundary condition is the no-slip condition. In recent years, great
progress has been made in field boundary value problems in the SPH formalism
Macia et al. [2011]. The simplest way to ensure no slip is to create “dummy”
particles outside the domain. Those particles are treated as the standard fluid
particles, i.e., they are included in the calculation of the velocities, pressure,
etc., but their positions remain constant and their velocities and accelerations
are kept as zero. Notice that this rather complicated way of treating boundary
conditions is inherent to the SPH method and is a considerable downside of the
formalism.Macia et al. [2011]

At the top boundary, Rayleigh damping has been chosen to impose the bound-
ary condition. The Rayleigh damping technique consists of creating a layer from
height yb to height yt, in which the v velocity component (i.e., the vertical com-
ponent, u = (u, v)) is damped Durran and Klemp [1983]. The structure of the
damping layer is determined by the function introduced in Durran and Klemp
[1983]

γ(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γr sin2

⎛⎝π
2

(︃
1 − yt−yb

yb

)︃⎞⎠, for y ∈ [yb, yt]

0, elsewhere
(3.2)

The value γr is the strength of the damping, the typical values being γr ≈ 10N
(a guide on how to find an appropriate value can be found in Klemp and Lilly
[1978]), where N2 = 0.0196 s−1 is the Brunt–Väisälä frequency, which we take the
same as the authors of Doyle et al. [2011]. 3

Our implementation of Rayleigh damping consists of subtracting the term
(3.2) at each integration time step. Note that in e.g. Klemp and Lilly [1978]
the numerical method used for the simulation was the finite difference method
(i.e., a grid method) and that SPH requires principially a different approach. It
should be determined by experiment whether our implementation is suitable or
not. Ideally, no other top boundary condition needs to be prescribed; also, no

2“In the west” and “in the east” just means “on the left side” and “on the right side”, but
said by a meteorologist.

3It can be shown that for a dry isothermal atmosphere the B-V frequency is N2 = g2

CpT0

Nappo [2013], so by setting the same temperature T0 in our simulation, we are certain to obtain
the same (at least analytically) B-V frequency.
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solid boundary is needed at the top, as free surface is natural to the atmosphere4.
However, due to the instability of the hydrostatic balance, a solid boundary had
to be introduced at the top of the domain; see section 4.1.1.

4Notice that modeling free surfaces in the SPH method is very simple.
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4. Results of the simulation
The last chapter deals with the results of the simulations. In truth, it deals pri-
marily with the problems encountered in obtaining the results and then attempts
to determine a course of action for the future. The topic turned out to be much
more complex, and some of the challenges could not be solved with the given
resources.

4.1 Challenges
Alltogether, total of four different simulations have been carried out to simulate
the emergence of mountain waves.

1. A static isothermal state of the atmosphere without any inflow or outflow

2. A flow over a mountain range within an isothermal atmosphere

3. A static state of the atmosphere without any inflow or outflow, supposing
all (potential 1) proccesses are adiabatic

4. An adiabatic flow over the mountain range

The simulations grow in complexity from 1. to 4. Basically, when assuming
the atmosphere remains isothermal throughout the whole evolution (cases 1.,2.),
the simple set of equations (1.65a) together with the thermal state equation of an
ideal gas (2.4) is sufficient. Clearly, this is a primitive attempt to simulate physical
reality, and there is little hope to simulate a phenomenon such as an internal
gravity wave. In the more general cases 3. and 4., when the temperature evolves
only with adiabatic constraints, a more thermodynamically rich description is
required. The easiest approach to calculate the temperature of a SPH particle
in the SPH formalism is by introducing entropy as a state variable. The theory
has been developed, for example, in Kincl et al. [2023a].2The temperature of an
ideal gas expressed in terms of variables appropriate for the SPH method can be
written as:

T = ργ−1

cV (γ − 1) exp
(︄

s

cV ρ

)︄
, (4.1)

where ρ is the (mass) density, γ = cP

cV
is the Poisson constant, cV is the specific

heat capacity at a constant volume and s is the entropy density. For more details,
see the article Kincl et al. [2023a].

However, serious issues even with the idealized simulations 1. and 2. have
been faced. We discuss them in the following sections.

1Ideally, the atmosphere should be completely static.
2As we have discussed in the introduction to section 1.4, due to the required deeper knowl-

edge of continuum thermodynamics, we do not provide a derivation of the governing equations
of the “entropic SPH”.
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4.1.1 Hydrostatic balance
The baseline experiment in Doyle et al. [2011] suggests that the initial state of the
ambient atmosphere is isothermal and in hydrostatic balance (2.2). Naturally, the
first simulation that has been conducted is exactly the simulation of this special
state. Ideally, air should not exhibit any motion throughout the simulation and
also all field variables, such as the pressure, density, or potential temperature
should remain constant.

That was not the case. In the beginning of the simulation, a spurious wave
began to propagate upward, resulting in total loss of stability of the initial con-
dition; see figure 4.1.

Similarly, a simulation of a hydrostatic balance with the adiabatic constraints
has been run with qualitatively the same results; see figure 4.2.

To stabilize the hydrostatic balance, three different precautions were made:

1. Replace the free surface at the top of the domain with a solid wall

2. Deploy a packing algorithm

3. Dissipate the spurious energy of the initial state by introducing extreme
viscosity

We discuss these attempts in the upcoming sections.

Top boundary condition

Originally, free surface was prescribed at the top boundary (together with the
Rayleigh damping). This showed to be impractical. As can be seen from the
figures 4.1 and 4.2, due to the vertically propagating wave and the absence of a
solid boundary, a large amount of gas was rapidly ejected upwards. When the gas
dropped back to the surface, the impact caused the whole atmosphere to totally
lose its stability. So, a solid boundary was added at the top together with a no
slip boundary condition 3

The introduction of the top boundary wall was heplful in eliminating the
instability caused by the impact of the gas, however, did not (and possibly could
not from the beginning) resolve the issue with the propagating wave.

Packing algorithm

It has been discussed many times in the SPH literature, that the stability of
the initial condition remains as an unpleasant numerical artifact of the method
Violeau [2012] Monaghan [2005]. A simple and robust way to deal with this
issue has been presented in the article Colagrossi et al. [2012]. It consists of a
preprocessing procedure, that is run before the actual simulation starts. Simply
said, one of the causes of the instability is the unregularity of the initial particle
distribution. The procedure in a clever way minimizes this “uneveness”of the
distribution. For details, see the article Colagrossi et al. [2012].

3A free slip condition would seem more natural here, as we only aim to eliminate the normal
component of velocity. Truth is, no slip is easier to implement in the SPH method and there
showed to be no difference between the two conditions whatsoever.
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(a) The magnitude of velocity at t=50 s

(b) The magnitude of velocity at t=100 s

(c) The magnitude of velocity at t=150 s

(d) The magnitude of velocity at t=200 s

Figure 4.1: The magnitude of velocity in a isothermal static atmospheric state,
central part of the domain 36



(a) The magnitude of velocity at t=50 s

(b) The magnitude of velocity at t=100 s

(c) The magnitude of velocity at t=150 s

(d) The magnitude of velocity at t=200 s

Figure 4.2: The magnitude of velocity in an adiabatic static atmospheric state,
central part of the domain 37



The packing algorithm has been implemented and can be found in the attached
files. Experiments with it showed, that after the packing procedure, the particles
seemed to be aligned in a hexagonal grid (at first, a square grid to initialize them
has been used). Observing this, in the later simulations, the particles have been
initialized in a hexagonal grid.

The hexagonal alignment showed to be somewhat heplful in stabilizing the
hydrostatic balance, although it only reduced the effect of the propagating wave;
it did not eliminate it completely.

Stabilization through dissipation

The final attempt to stabilize the initial condition was inspired by the procedure
introduced by J. Monaghan Monaghan [2005]. The simulation is initialized with
a very high dynamic viscosity (e.g., ν = 1.0 Pa s, whereas the dynamical viscosity
of dry air at 250 K is ν = 16 · 10−6 Pa s). This leads to massive dissipation of
energy that the initial state possesses and should result in a state with lower
energy that is hopefully more stable. This state is then used as an initial state of
the actual simulation.

With all the precautions combined, the first and third simulations from the
list 4.1 (the static cases) have been conducted again; this time, to better capture
long-time stability, the model simulated 4 hours of evolution. The results for the
adiabatic simulation after each hour are shown in the figure 4.3.

4.1.2 Further procedure after unsatisfactory attempts to
stabilize the hydrostatic balance

It is clear that only after the first hour of the simulation, the hydrostatic balance
is far from static. At this point, it became evident that simulating the 4 h
evolution of a flow (as those are the parameters of the baseline experiments from
Doyle et al. [2011]) would prove impossible. Internal gravity waves are subtle
buyoancy oscillations and our model showed significant oscillations even when
none should be present.

At that moment a decision was made as to how to proceed when pursuing
the goal of the thesis. Instead of trying to simulate internal gravity waves and
compare our results to the experiments conducted in Doyle et al. [2011], due to
the reasons above, it has been chosen to rather invest our resources into develop-
ing the methodology of the SPH method in meteorology, without strictly using
the same setting as in Doyle et al. [2011]. That is why we in the upcoming sec-
tions use different parameters of the simulation - mainly the dimensions of the
computational domain and the parameters of the Witch of Agnesi profile (3.1).

4.1.3 Boundary conditions
Treating boundary conditions is considered as a great challenge in the SPH for-
malism Vacondio et al. [2020]. We faced a challenge in implementing an open
boundary condition at the east part of the domain, i.e., at the outflow.
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(a) The magnitude of velocity at t = 1 h

(b) The magnitude of velocity at t = 2 h

(c) The magnitude of velocity at t = 3 h

(d) The magnitude of velocity at t = 4 h

Figure 4.3: The magnitude of velocity in a adiab. atmo. state after improvements,
central part of the domain 39



Outflow

The naive attempt to only remove the boundary wall particles at the east side of
the domain and let the outflowing particles simply vanish 4 proved unsuitable. As
obviously no particles are present outside of the domain, the particles close to the
boundary do not feel any resistance when leaving the domain. Technically, this
means that the outflow is into vacuum and a tumultuous decompression occurs.
This effect is visible in the figure 4.4

To fix this phenomenon, a different arrangement of the computational domain
has been designed; it is depicted in the figure 4.5. The outflow region is at the
top boundary wall so that the gravity force acting on the leaving particles slows
them and prevents the decompression. But mainly, the pressure at the top part
of the domain has been subtracted from the pressure of each individual particle,
resulting in zero pressure at the outflow. Using this modification, there is no
pressure gradient at the interface. The simulations have been conducted again
with these modifications, the results can be seen in the figure 4.6 and the state
of the whole atmosphere can be seen in the figure 4.7.

The attempts showed to have no significant improvement. What is more, as
it is evident from the figure 4.7, the modification resulted in vacancies in the
particle distribution throghout the whole computational domain.

4.1.4 Sound waves
In the presentation above, we have come across important stability issues when
trying to simulate the atmospheric dynamic using the Euler equations and a sim-
ple ideal gas thermal state equation. The choice of the Euler equations is standard
in the WCSPH scheme (weakly compressible smoothed particle hydrodynamics)
Violeau [2012]. In this work, we have also chose the WCSPH scheme, as it is
rather simple and no previous attempts known to the author to simulate the
atmosphere using any SPH formalism have been made. However, it is not cus-
tomary in simulating internal gravity waves in meteorology to use the unmodified
version of the Euler equations. One of the reason being that the Euler equations
capture also the dynamics of sound waves, not only internal gravity waves. Sound
waves typically possess much faster dynamics than internal gravity waves and as
such they mean a threat to the stability of numerical models. Sutherland [2010].
To account for the instabilities caused by sound waves, meteorolgists use a vari-
ety of techniques, such as the anelastic approximation. By assuming certain facts
about the variatons of the background density and pressure, it can be shown that
a different set of equations that does not support the emergence of sound waves
can be derived; for details, see Sutherland [2010] or Nappo [2013].

It is not clear what effects on stability do sound waves have in our simu-
lations. However, implementing the anelastic approximation in the SPH for-
mulation should be considered in further attempts to use the SPH method in
meteorology.

4The SmoothedParticles.jl package we used to run the simulations automatically removes
all the particles that exit the computational domain.
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(a) The magnitude of velocity at t = 100 s

(b) The magnitude of velocity at t = 200 s

(c) The magnitude of velocity at t = 300 s

(d) The magnitude of velocity at t = 400 s

Figure 4.4: The rapid decompression at the outflow due to vacuum outside the
domain 41



Figure 4.5: The computational domain adopted to counter the decompression
effect

4.2 Results
In this last section, we show some results from the simulation experiments. The
code (a mildly modified version of it) used to obtain these results can be found
in the attached files to this text. As the issues addressed in previous sections
could not be resolved, the relevance of the results presented here is discutable. It
must be noted that the attempt to recreate the baseline experiment from Doyle
et al. [2011] and to capture mountain waves cannot be succesful under the current
condition of the used model.

As in the many times discussed article, we evaluate the profile of potential
temperature and the vertical component of velocity. We only do so for the adia-
batic flow (case 4. from 4.1), as the previous 3 cases were just simplified versions
of the simulation. The results can be found in the figures 4.8 and 4.9. The verti-
cal velocity component seems to be distributed chaotically with respect to both
orientation and magnitude. The potential temperature remains somewhat static
in the lower parts of the domain and is influenced heavily by the vacancies at the
top part of the domain.

42



(a) The magnitude of velocity at t = 100 s

(b) The magnitude of velocity at t = 200 s

(c) The magnitude of velocity at t = 300 s

(d) The magnitude of velocity at t = 400 s

Figure 4.6: An attempt to fix the rapid decompression at the outflow due to
vacuum outside the domain 43



Figure 4.7: The vacancies in the domain due to the decompression at the outflow

44



(a) The vertical velocity component at t = 1 h

(b) The vertical velocity component at t = 2 h

(c) The vertical velocity component at t = 3 h

(d) The vertical velocity component at t = 4 h

Figure 4.8: The vertical component of velocity at different times
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(a) Potential temperature at t = 1 h

(b) Potential temperature at t = 2 h

(c) Potential temperature at t = 3 h

(d) Potential temperature at t = 4 h

Figure 4.9: The profile of the potential temperature at different times
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Conclusion
There are four goals of this thesis

• provide an introduction to the SPH method (chapter 1)

• briefly summarize mountain-wave simulations (chapter 2)

• address some aspects of those simulations in the SPH formalism (chapter
3)

• conduct numerical experiments (chapter 4)

When working on the first goal, we have introduced the key points of the SPH
method: particle discretization of the domain, continuous and discrete interpola-
tion of field functions and later differential operators. These approaches were used
to discretize the continuity equation and the Euler equations; together with an
equation of state, these relations are the foundation of the (weakly compressible)
smoothed particle hydrodynamics.

We have mentioned that one of the benefits of the SPH method is its consis-
tency with the formalism of Hamiltonian mechanics. Following this approach, we
have come again to the same (and also some others) formulation of the governing
equations, but this time with the proof of their symplecticity/Hamiltonianity. Be-
cause of this, we were allowed to deploy the symplectic Störmer-Verlet integration
scheme when solving the governing equations.

In the second chapter, we have provided the foundations of the theory of inter-
nal gravity waves and mountain waves. Of essential importance showed to be the
concept of stratification, which on the other hand later proved to be the biggest
challenge in our numerical simulations. We have introduced the Brunt–Väisälä
frequency of the oscillations, a function of the potential temperature governing
the frequency of the oscillations (at least in the linearized case). Potential tem-
perature, being a versatile variable in meteorology, has been evaluated later in
our simulations.

The third chapter discusses the implementation of the setting of our numeri-
cal experiment in the SPH formalism. It deals mainly with initial and bounday
conditions, which are generally uneasy to implement in the SPH formalism. For
example, we had to come up with an implementation of the top boundary condi-
tion.

With all of the ingredients, we have made a great effort to capture the emer-
gence of mountain waves in our numerical experiments. Consequently, we have
faced problems with the model: the instability of the hydrostatic balance and
the decompression at the outflow. To stabilize the hydrostatic balance, we have
implemented a packing algorithm, a pre-processing procedure that tries to im-
prove the initial particle distribution. We have combined this algorithm with
an attempt to stabilize the initial state by introducing a very large dissipation
(viscosity) with the intention of lowering the energy of the initial state. Both of
our attempts proved to be inadequate and the hydrostatic balance could not be
stabilized. We have also faced an issue when implementing the open boundary
condition. Initially, as we have simply removed the solid wall, an artifical vacuum
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was essentially created. That resulted in rapid decompression. To solve this, we
changed the geometry of the domain and made the outflow region in the top
boundary and also subtracted a constant pressure term, hoping that gravity and
the absence of a pressure gradient would solve our decompression problem. It did
not.

Finally, with all the flaws still being present, we have run a 4 hour simulation
of an adiabatic atmospheric flow over a mountain obstacle on a computer cluster.
Unfortunately, we were unable to simulate any internal gravity waves.

The task of simulating such a subtle phenomenon as an orographic gravity
wave, without any existing references or software, proved to be much more difficult
than expected. Before trying to run a complex simulation, more work needs to
be done to stabilize the hydrostatic balance, and a more sophisticated treatment
of the outflow needs to be deployed. The author of this text hopes that the work
presented in the thesis might be of use as a starting point to future development
of the SPH formalism in the context of orographic gravity waves.
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