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Introduction
We start by introducing some notation. We denote the multiplicative group of

complex numbers by C⋆, and the projectivisation of Cn by Pn.
We study a specific action of C⋆ on (P1)n. A point in (P1)n is given by

((a1 : b1), . . . , (an : bn)), where for all i, ai, bi ∈ C and ai, bi are not both zero.
The considered action is given by

t · ((a1 : b1), . . . , (an : bn)) = ((a1 : t · b1), . . . , (an : t · bn)).

Informally, our goal is to study the variety of orbits of this action. It turns out
that it is isomorphic to the so-called permutohedral variety. In the introduction
we briefly sum up the theory necessary to define “variety of orbits” and the
permutohedral variety. Then we apply the general theory to our case. In the
first chapter, we describe the isomorphism set-theoretically by decomposing our
objects of study into smaller pieces and constructing the bijection on them. We
do not show that it is an isomorphism of varieties. However, in the second chapter
we explicitly compute the isomorphism for (P1)2.

0.1 Permutohedral variety
Toric geometry studies varieties on which a group acts, more specifically, on

which a group called algebraic torus acts. In this section, we give a brief overview
of basic definitions and tools in toric geometry, following Cox, Little, Schenck
[1]. This enables us to define the projective toric variety we are interested in, the
permutohedral variety.

The strength of toric geometry is that varieties correspond to polytopes in
some lattice or so-called fans in a dual lattice. We first discuss in general those
two lattices and correspondence between varieties and polytopes. Then we define
a polytope called a permutohedron and use the general correspondence to define
the permutohedral variety.

A torus is a group isomorphic to (C⋆)n for some n. Every torus has two
important lattices associated with it, the lattice of characters and the lattice of
one-parameter subgroups, denoted by M and N . Here lattice is a free abelian
group of a finite rank, i.e. group isomorphic to Zn for some n ∈ N.

Characters, respectively one-parameter subgroups, of a torus T ≃ (C⋆)n are
morphisms of algebraic varieties T → C⋆, respectively C⋆ → T , which are also
group homomorphisms. It can be shown that all characters are of the form χm

for some m = (a1, . . . , an) ∈ Zn ([2], §16), where

χm : T → C⋆

(t1, . . . , tn) ↦→ ta1
1 . . . tan

n

Similarly, all one-parameter subgroups are of the form

λu : C⋆ → T

t ↦→
(︂
tb1 , . . . , tbn

)︂
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for some u = (b1, . . . , bn) ∈ Zn.
From this we can see that the characters and one-parameter subgroups indeed

form a lattice- addition in Zn translates to multiplication of characters and one-
parameter subgroups. Using the usual dot product, those two lattices are dual to
each other.

For a torus with a lattice of one-parameter subgroups N we usually write TN .
The reason is that the torus is determined by N , since there is an isomorphism
between N ⊗Z C⋆ and TN given by u⊗ t ↦→ λu(t) ([1],§1.1).

Now we can discuss how affine and projective toric varieties arise.
If we are given a set A = (m1, . . . ,mk) in M , we can define an affine toric

variety YA as the Zariski closure of the image of the map

ΦA : TN → Ck

t ↦→ (χm1(t), . . . , χmk(t))

To obtain projective toric varieties, we consider ΦA as a map to (C⋆)k, compose
it with π : (C⋆)k → Pk−1 and then take the Zariski closure.

We can consider two vector spaces over R, MR = M ⊗Z R and NR = N ⊗Z R.
We do this to use the concepts of polytopes and cones from combinatorial geometry.
Given a sufficiently nice polytope in MR, the projective variety associated with it
is obtained by taking A to be the lattice points of this polytope ([1], §2.3). This
gives us a variety with its embedding into some projective space. To get rid of this
embedding and to define an abstract toric variety, we consider a normal fan of
the given polytope. Normal fan is a collection of convex polyhedral cones, where
a convex polyhedral cone is a set of the form Cone(S) = {∑︁u∈S λuu | λu ∈ R+

0 }
for some finite set S ⊂ N . Given a polytope in MR, its normal fan is constructed
as follows:

For each facet F of the polytope (i.e., codimension one face), we denote by uF

the dual vector in NR. For every face τ we put Cone(uF | τ ⊂ F ) into our fan. So
for every face of the polytope, there is a cone in the normal fan and vice versa.
This correspondence reverses inclusion and dimension (to the face of dimension d
corresponds a cone of dimension n− d).

Each cone in NR is associated with an affine toric variety ([1], §1.2). A fan Σ is
associated with an abstract variety XΣ, obtained by gluing the varieties associated
with its cones ([1], §3.1).

There is one important theorem we will need:

Theorem 1 (Orbit-cone correspondence, Theorem 3.2.6 in [1]). Let XΣ be the
toric variety of the fan Σ in NR. Then there is a bijective correspondence

{cones in Σ} ←→ {TN -orbits in XΣ}

We proceed to define our main objects of study.

Definition 1. Let Sn+1 be the group of permutations of {0, 1, . . . n} and denote
by wσ the point (σ−1(0), . . . , σ−1(n)) ∈ Rn+1. The n-dimensional permutohedron
is the polytope in Rn+1 with vertices {wσ | σ ∈ Sn+1}.

Definition 2 ([3], Definition 3.3.). The permutohedral variety of dimension
n, denoted by Πn, is the toric variety associated with the normal fan of the
n-dimensional permutohedron with respect to the lattice Zn+1/⟨(1, 1, . . . , 1)⟩.



Figure 1 The 0-, 1- and 2-dimensional permutohedron

We study the permutohedral variety by the above mentioned correspondences
between its orbits and the cones of the normal fan and between the cones of
the normal fan and faces of the polytope. So, the key is to understand the
permutohedron. Notice that the n-dimensional permutohedron is contained in the
hyperplane with the sum of the coordinates n(n+1)

2 . For n ≤ 3, the permutohedron
can be obtained by intersecting this hyperplane with the (n + 1)-dimensional
hypercube with vertices (x1, . . . xn), where each xi is either 0 or n (Figure 1).

Two vertices wσ and wσ′ of the permutohedron are connected with an edge if
and only if σ = σ′ ◦ (i, i+ 1) for some i, where (i, i+ 1) is a transposition. This
is an instance of a correspondence between the faces of the permutohedron and
so-called flags, which we define later.

We conclude this section by finding the polytope of (P1)n. It can be checked
that the polytope of Pn is the n-dimensional simplex. So, the polytope of P1

is a segment. By Theorem 2.4.7 in Cox, Little, Schenck [1], taking products of
varieties translates to taking products of polytopes. Hence, the polytope of (P1)n

is the n-dimensional cube.
Note that the 1-dimensional permutohedron is the 1-dimensional simplex, so

Π1 is just P1. For higher dimensions, the straightforward analogue is obviously
not true. However, Πn can be obtained from Pn by consecutive blow-ups ([3], p.
19).

0.2 Background on Chow quotients
A Chow quotient is a variety for which general points correspond to general

orbits. To define it, we need to interpret curves of some fixed degree as points of
a variety. Then we take a correct subvariety of it.

The first step can be done even more generally. We will define a variety of
subvarieties of Pn of fixed dimension and fixed degree, the so-called Chow variety.
If we think of curves in an affine plane, we can see that if we take only irreducible
curves, our variety would not be compact. Therefore, we also need to consider
their limits, the algebraic cycles.

All this requires developing some technical tools. This is very well done in
Gelfand, Kapranov, Zelevinsky [4]. Following this book, we sum up the needed
definitions and results without proofs.

First, we establish what we mean by degree. The degree of a projective
variety X in Pn is usually defined via its Hilbert polynomial, that is the Hilbert
polynomial of its coordinate ring. The Hilbert polynomial of a finitely generated
graded C[x0, . . . , xn]-module is defined to be the unique polynomial PM such



that PM(s) = dimCMs for all s large enough. If the dimension of X is k, then
k is the degree of its Hilbert polynomial PX . The degree of X is defined as
the leading coefficient of PX divided by k!. The arithmetic genus is defined as
(−1)k(PX(0)− 1). (For details, see Hartshorne [5], §I.7.)

The degree can be computed without the Hilbert polynomial. Let k be the
dimension of X. Then a general (n− k)-dimensional projective subspace of Pn

intersects X in finitely many points. For a general subspace, the number of points
in the intersection equals the degree of X ([6], p. 26).

0.2.1 Grassmannians
We start by describing the situation in degree one, i.e. for linear subspaces.

Though it is a special case, it has the advantage that a general linear subspace is
easily parameterised. The developed theory is later used to study the higher-degree
subvarieties.

Definition 3. A Grassmannian is a space of k-dimensional linear subspaces of
Cn. We denote it by G(k, n).

There is more than one way to define coordinates on a Grassmannian. The
most useful for us is via the exterior algebra. Consider the Plücker embedding

G(k, n)→ P
(︄

k⋀︂
Cn

)︄

L ↦→
k⋀︂
L ⊂

k⋀︂
Cn

Fixing a basis x1, . . . , xn of Cn induces a basis of ⋀︁k Cn. If

k⋀︂
L =

∑︂
1≤i1<···<ik≤n

pi1,...,ik
(xi1 ∧ · · · ∧ xik

),

the Plücker coordinates of L are

(pi1,...,ik
)1≤i1<···<ik≤n ∈ P

(︄
k⋀︂
Cn

)︄
≃ P(n

k
)−1.

For the computations, we use the approach of Dalbec, Sturmfels [7], using the
Plücker coordinates dual to those already described. For L ∈ G(k, n), we consider
its orthogonal complement L⊥ ∈ G(n− k, n), take its basis, and write it out in
(n − k) × n matrix. For any 1 ≤ j1 < · · · < jn−k ≤ n, we denote by qj1,...,jn−k

the (n− k)-minor corresponding to columns j1, . . . , jn−k. The vector (qj1,...,jn−k
)

considered as an element of a projective space is independent of the choice of the
basis of L⊥. If we denote by s the sign of the permutation (i1, . . . , ik, j1, . . . , jn−k),
then qj1,...,jn−k

= (−1)spi1,...,ik
. For more details, see Gelfand, Kapranov, Zelevinsky

[4], page 94.
Though the Plücker embedding is injective, it is not surjective. Thus, the

Grassmannian G(k, n) is a subvariety of P(⋀︁k Cn). It is given by Plücker relations,
described in the following theorem.



Theorem 2 ([4], Chapter 3, Theorem 1.3.).

(a) For any two sequences 1 ≤ i1 < · · · < ik−1 ≤ n and 1 ≤ j1 < · · · < jk+1 ≤ n,
the Plücker coordinates on G(k, n) satisfy the Plücker relation

k+1∑︂
a=1

(−1)api1,...,ik−1,japj1,...,ĵa,...jk+1
= 0

(here the symbol ĵa means that the index ja is omitted). Any vector (pi1,...,ik
) ∈⋀︁k Cn satisfying all such relations is a vector of the Plücker coordinates of

some vector subspace L ∈ G(k, n)

(b) Moreover, the graded ideal of all polynomials in pi1,...,ik
vanishing on the image

of G(k, n) is generated by the left hand sides of the Plücker relations.

The Plücker coordinates and the Plücker embedding give us a description of
the coordinate ring of a Grassmannian, which we denote by B. By this description,
B is the coordinate ring of P(⋀︁k Cn) modulo the ideal generated by the Plücker
relations. It is generated by the

(︂
n
k

)︂
variables corresponding to the coordinates of

P(⋀︁k Cn), i.e. pi1,...,ik
above, modulo the ideal. We call those generators brackets.

The dual generators corresponding to qj1,...,jn−k
are dual brackets, and we denote

the one corresponding to j1 < · · · < jn−k by [j1 . . . jn−k].
We denote the d-th degree of B by Bd. The ring B has the following useful

properties.

Proposition 3. ([4], Chapter 3, Proposition 2.1.)

1. The ring B is factorial.

2. Let Z be an irreducible hypersurface in G(k, n) of degree d. Then there is
an element f ∈ Bd defined uniquely up to a constant factor such that Z is
given by the equation f = 0.

0.2.2 Higher degrees
Linear subspaces have the great advantage of being described easily by linear

algebra. This enables us to define coordinates on G(k, n). The higher-degree
subvarieties do not have such nice properties, so we do not even attempt to imitate
the definitions and properties given above. Instead, we make use of all the tools
for degree one. The key to doing it is a definition of the associated hypersurface.

Fix an irreducible subvariety X in Pn−1 of degree d and dimension k− 1. Note
that while a general (n− k)-dimensional projective subspace of Pn−1 intersects X,
this is not true for (n− k − 1)-dimensional projective subspaces. This leads us to
the following definition:

Definition 4. For an irreducible (k − 1)-dimensional subvariety X ⊂ Pn−1 we
define its associated hypersurface, denoted by Z(X), as a subvariety of G(n−k, n)
consisting of those (n− k − 1)-dimensional projective subspaces intersecting X.

The following theorem gives a justification for the term “associated hypersur-
face”.



Theorem 4 ([4], Chapter 3, Theorem 2.2). The subvariety Z(X) is an irreducible
hypersurface of degree d in G(n− k, n).

By Proposition 3, there is an irreducible polynomial RX ∈ Bd that defines
Z(X), where B is the coordinate ring of G(n− k, n). The polynomial RX is called
Chow form of X. Since Z(X) is of degree d, the degree of RX is d too. The
coordinates of RX in Bd are called Chow coordinates of X. We can reconstruct X
from its Chow coordinates ([4], Chapter 3, §2.C). The Chow coordinates induced
by the Plücker coordinates are those that we will work with.

So far, we have worked only with irreducible varieties and irreducible polyno-
mials. We now extend the theory of Chow forms and Chow coordinates to the
reducible ones, obtaining the Chow variety.
Definition 5. An algebraic cycle in Pn is a formal sum ∑︁r

i=1 miXi, where
mi ∈ N0, and Xi is an irreducible variety in Pn. The degree of this algebraic cycle
is ∑︁r

i=1 mi · deg(Xi).
The set of algebraic cycles of dimension k − 1 of degree d in Pn−1 is denoted

by G(k, d, n). For example, G(k, 1, n) is the usual Grassmannian G(k, n).
The Chow form of an algebraic cycle ∑︁r

i=1 miXi is ∏︁r
i=1 R

mi
Xi

, its Chow coordi-
nates are the coordinates of its Chow form. By the definition of a degree of an
algebraic cycle, the degree of an algebraic cycle is equal to the degree of its Chow
form. The theorem of Chow and van der Waerden says that considering Chow
forms makes G(k, d, n) in a variety, called a Chow variety.
Theorem 5 (Theorem 1.1 in the fourth chapter of [4]). The map X ↦→ RX defines
an embedding of G(k, d, n) into the projective space P(Bd) as a projective variety.

Consider a projective variety X and an algebraic group G acting on X. The
Chow quotient of X by the action of G is defined by choosing an open subset of
X, taking a family of closures of orbits of points in that subset, mapping this
family into a proper Chow variety, and taking its closure there (see [8] for details).
We need some conditions on the family of orbits, so that this process makes sense.
For example, their closures must have the same degree as varieties, else we can
not map them into one Chow variety. This is ensured by taking a flat family. A
family of projective varieties is a map ϕ : X → Y of projective varieties, where
individual varieties in the family are the fibers over points of Y ([9], p. 6). The
family is flat if ϕ is a flat morphism:
Definition 6 ([9], Definition A). A morphism of projective varieties f : X → Y
is flat if the induced map on stalks is a flat map of rings.

This definition is equivalent to the following one ([9], Theorem 4.1.), which we
use later:
Definition 7 ([9], Definition B). A morphism of projective varieties f : X → Y
is flat if the the fibers of f have the same Hilbert polynomial.

0.3 Orbits in (P1)n

In this section we study the orbits of the fixed action of C⋆ on (P1)n. To do
this, we need to embed (P1)n into some projective space. We do this using the
Segre embedding.



Definition 8. The Segre embedding of Pa × Pb into P(a+1)(b+1)−1 is the map
((x0 : · · · : xa), (y0 : · · · : yb)) ↦→ (x0y0 : x0y1 : · · · : xnyn),

where on the right-hand side appears xiyj for every pair (i, j) ∈ {0, . . . , a} ×
{0, . . . , b}.

Using the Segre embedding, we obtain an embedding of (P1)n into P2n−1. We
denote this map by E .

Recall that we consider the action of C⋆ on (P1)n, where t · ((a1 : b1), . . . (an :
bn)) = ((a1 : t · b1), . . . (an : t · bn)).
Notation. For a point x in (P1)n, we denote by O(x) the orbit of x.

We start by studying the action on a single coordinate. If (ai : bi) is (0 : 1)
or (1 : 0), (ai : t · bi) = (ai : bi) for all t ∈ C⋆ by the definition of projective
space. If both ai and bi are non-zero, we consider two limits, limt→0(ai : t · bi) and
limt→∞(ai : t · bi). Since ai and bi are fixed,

lim
t→0

(ai : t · bi) = (1 : 0),

lim
t→∞

(ai : t · bi) = lim
t→∞

(t−1 · ai : bi) = (0 : 1).

For S ⊂ {1, . . . , n}, we denote by vS the point ((ai : bi))n
i=1 ∈ (P1)n such that

(ai : bi) = (1 : 0) for i ̸∈ S and (ai : bi) = (0 : 1) for i ∈ S.
By the above, we see that a point is fixed point of our action if and only if it

is vS for some S ⊂ {1, . . . , n}. Moreover, we have the following lemma.
Lemma 6. Take a point ((ai : bi))n

i=1 ∈ (P1)n and define A ⊂ {1, . . . , n}, B ⊂
{1, . . . , n}, such that (ai : bi) = (1 : 0) if and only if i ∈ A and (ai : bi) = (0 : 1) if
and only if i ∈ B. Then

lim
t→0

((a1 : t · b1), . . . , (an : t · bn)) = vB,

lim
t→∞

((a1 : t · b1), . . . , (an : t · bn)) = v{1,...,n}\A,

We call vB and v{1,...,n}\A respectively the source and the sink of the orbit O(((ai :
bi))n

i=1).
Lemma 7. Consider S, T ⊂ {1, . . . , n}, and ((a1 : b1), . . . (an : bn)) ∈ (P1)n

such that its orbit has a source vS and a sink vT . Then the closure of E(O((a1 :
b1), . . . , (an : bn))) has degree n.
Proof. Labelling the coordinates of P2n−1 by the subset of {1, . . . , n}, we obtain

E(O((a1 : b1), . . . , (an : bn))) =

⎛⎜⎝
⎛⎝t|R| ·

∏︂
i ̸∈R

ai ·
∏︂
i∈R

bi

⎞⎠
R⊂{1,...,n}

, t ∈ C⋆

⎞⎟⎠ .
For i ∈ S, (ai : bi) = (0 : 1). For i ∈ {1, . . . , n} \ T , (ai : bi) = (1 : 0). So∏︁

i ̸∈R ai ·
∏︁

i∈R bi is non-zero if and only if S ⊂ R ⊂ T .
Denote the closure of E(O((a1 : b1), . . . , (an : bn))) by Q.
We denote the coordinates of P2n−1 by (xR)R⊂{1,...,n}. Consider a general

hyperplane H given by ∑︁R⊂{1,...,n} cRxR = 0, where cR ∈ C, such that the number
of points in H∩Q is equal to the degree of Q. We may assume that cS ̸= 0 ̸= cT . If
we plug into the equation of H the parameterisation of E(O((a1 : b1), . . . , (an : bn)))
and divide by t|S|, we obtain a polynomial of degree |T | − |S|, with a non-zero
constant term. Counting multiplicities, this polynomial has |S| − |T | solutions in
t over C, neither of them 0. Therefore, the degree of Q is indeed |S| − |T |.



0.4 Chow quotient of (P1)n

To see what the Chow quotient of (P1)n is, we need to identify the open subset
of (P1)n mentioned earlier, so that the closures of the orbits of those points form
a flat family. There is a very natural choice:
Notation. We denote by Un the set of those points (P1)n such that none of their
coordinates is zero, and by Qn the set of the closures of the orbits of points from
Un.

To prove that Qn indeed form a flat family, we use Definition 7.

Lemma 8. The elements of Qn form a flat family.

Proof. It is enough to prove that the Hilbert polynomial of elements of Qn after
the Segre embedding is the same.

Each of the orbits of points from Un has dimension 1, so Hilbert polynomial of
its closure is linear. By 6, an orbit of a point from Un has a source ((1 : 0), . . . , (1 :
0)) and a sink ((0 : 1), . . . , (0 : 1)). Thus, by 7, the degree of its closure is n. So
the leading coefficient of the Hilbert polynomial of the closure of all the orbits
agrees.

The closure of each of those orbits is isomorphic to P1, so they have the same
genus ([5], p. 230). By this we obtain the equality of the free term.

Now we are finally ready to say what is the other side of our isomorphism, the
Chow quotient of (P1)n by the fixed action of C⋆, which we denote by (P1)n

/C⋆.
Take the elements of Qn. They are of dimension 1 and degree n in P2n−1 after
the Segre embedding, so we can regard them as elements of G(2, n, 2n). Hence we
obtained a map from Un to G(2, n, 2n). The closure of its image is (P1)n

/C⋆.



1 The set-theoretical bijection
In this chapter, we construct a bijection between (P1)n

/C⋆ and Πn−1. First,
we decompose both of them into disjoint subsets, each subset corresponding to
one flag, which is defined below. Second, for each flag we construct a bijection
between the corresponding subset of the Chow quotient and the corresponding
subset of the permutohedral variety.

Definition 9. A flag is a strictly increasing chain of proper subsets ordered by
inclusion. We denote by Fn the system of flags on the set {1, . . . , n} and by ∅n

the empty flag in Fn.

Here we give an informal illustration for the case n = 3. As discussed in the
introduction, if we cut the cube, the polytope of (P1)3, by a plane with correct
constant sum of coordinates, we obtain a two dimensional permutohedron. A gen-
eral orbit intersects the permutohedron somewhere in the interior, corresponding
to the empty flag, while the broken cycles intersect it on the boundary. The most
broken one, consisting of degree one orbits, intersects the permutohedron in a
vertex, corresponding to the largest flag. This is very informal, but it might help
to not get lost in the computations.

Figure 1.1
(︁
P1)︁3 with permutohedron and some cycles.

1.1 Decomposing the permutohedral variety
As we have mentioned in the Introduction, by the orbit-cone correspondence

(Theorem 1), there is a bijection between the orbits of Πn−1 and the cones of the
(n− 1)-dimensional permutohedral fan, which in turn correspond to the faces of
the permutohedron.

The set of the faces of the (n− 1)-dimensional permutohedron is in bijection
with Fn ([3], p. 18). Take a flag F = (S1 ⊂ · · · ⊂ Sk) and recall that we
define the (n − 1)-dimensional permutohedron as a convex hull of points wσ =
(σ−1(0), . . . σ−1(n− 1)), where σ is a permutation of {0, 1, . . . , n− 1}. The face
corresponding to F is a convex hull of vertices wσ such that the permutation σ
satisfies the following: We denote ∅ by S0, and {1, . . . , n} by Sk+1. Then for each
i and a ∈ {|Si−1|, . . . , |Si| − 1}, σ(a) ∈ Si \ Si−1.
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Composing all those bijections, we denote by OF the orbit of Πn−1 corre-
sponding to F ∈ Fn. For F ̸= F ′, OF and OF ′ are disjoint open sets. Thus
set-theoretically is Πn−1 a disjoint union of OF for F ∈ Fn. It remains to
determine the structure of these orbits.

Lemma 9. For every F = (S1 ⊂ · · · ⊂ Sk) ∈ Fn, OF ⊂ Πn−1 is isomorphic to
(C⋆)n−k−1.

Proof. Denote by N the lattice of one-parameter subgroups associated with
Πn−1 and by σ the cone of the normal fan of the n-dimensional permutohedron
corresponding to F , by Nσ the lattice spanned by it in N . We know OF ≃ TN/Nσ

([1], Lemma 3.2.5), so it suffices to prove N/Nσ ≃ Zn−k−1.
Facets of the permutohedron correspond to flags consisting of only one subset.

If that subset is S, denote by uS dual vector in N of the corresponding facet.
Then uS = ∑︁

i∈S ui, where ui is the i-th vector of the canonical basis modulo
⟨(1, 1, . . . , 1)⟩ ([3], p. 18). We need to take the modulo because we defined the
(n − 1)-permutohedron as a polytope in Zn, contained in a hyperplane with a
constant sum of coordinates, so its character lattice is not Zn, but points in that
hyperplane. So N = Zn/⟨(1, 1, . . . , 1)⟩

By the construction of the normal fan, σ = Cone(uS1 , . . . , uSk
). Thus the

lattice spanned by σ is the lattice spanned by uS1 , . . . , uSk
.

We now find a basis of N/Nσ = Zn/⟨uS1 , . . . , uSk
, (1, 1, . . . 1)⟩. Let (ei)n

i=1 be
the canonical basis of Zn and denote ∅ by S0, and {1, . . . , n} by Sk+1. We claim
that to obtain a basis of N/Nσ, it suffices to remove some vectors from the canonical
basis. More specifically, for each j ∈ {1, . . . , k + 1} we choose one aj ∈ Sj \ Sj−1
and we remove eaj

. Since eaj
= −∑︁i∈Sj ,i ̸=aj

ei in N/Nσ, the remaining vectors are
generators of N/Nσ. It remains to prove their independence. We tensor with R
and consider a short exact sequence 0→ (Nσ)⊗Z R→ NR → (N/Nσ)⊗Z R→ 0
of vector spaces over R (we can do this because R is torsion-free, and hence
flat over Z). The set {uS1 ⊗ 1, . . . , uSk+1⊗} is the basis over R of (Nσ)⊗Z R, so
the dimension of (N/Nσ) ⊗Z R over R is equal to n − k − 1. Hence, the above
generators {ei | 1 ≤ i ≤ n,∀j : i ̸= aj} are independent over R, so they have to
be independent over Z. Thus, N/Nσ ≃ Zn−(k+1) as desired.

1.2 Decomposing the Chow quotient
In this section, we show the correspondence between subsets of the Chow

quotient of (P1)n and flags. This is done in Proposition 10. Before we state it, we
introduce some notation.
Notation. For S ⊂ T ⊂ {1, . . . , n}, denote by CS,T the set of closures of orbits of
(P1)n with a source vS and a sink vT .

Given F = (S1 ⊂ · · · ⊂ Sk) ∈ Fn, let CF ⊂ G(k, d, n) be the set of cycles of
the form ∑︁k+1

i=1 Xi, where Xi ∈ CSi−1,Si
, S0 = ∅ and Sk+1 = {1, . . . , n}.

Proposition 10. The Chow quotient of (P1)n is set-theoretically ⋃︁F ∈Fn
CF .

Since we are working over C, it does not matter whether we use the Zariski or
Euclidean closure. Thus, we want to prove that there exists a sequence of algebraic
cycles in G(k, d, n), (Xi)∞

i=1 → X in Chow coordinates, if and only if X ∈ CF for



some F ∈ Fn. Since we do not know anything about the Chow coordinates of
elements of CF , we first show an auxiliary lemma that translates the limits in the
Chow coordinates into the limits in (P1)n.

Definition 10. Consider a variety X and a sequence of varieties (Xi)∞
i=1 in Pn.

We say that X is a point-wise limit of (Xi)∞
i=1 if every point x ∈ Pn is in X if

and only if there is a sequence (xi)∞
i=1 such that xi ∈ Xji

for some subsequence
(Xji

)∞
i=1 and xi

i→∞−−−→ x.

Note that, due to multiplicities, point-wise limit is not uniquely defined.
Because of this issue, there is not an equivalence in the following lemma.

Lemma 11. Let X, X1, X2, . . . be algebraic cycles of degree d and dimension
k − 1 in Pn−1.

1. If RX is a limit of (RXi
)∞

i=1 as Chow coordinates, then X is a point-wise
limit of (Xi)∞

i=1.

2. If X is a point-wise limit of (Xi)∞
i=1 and (RXi

)∞
i=1 converges to RY as Chow

coordinates for some algebraic cycle Y , then Y is supported on X (i.e. if
x ∈ Y , then x ∈ X).

Proof. Let H, H1, H2, . . . be the associated collections of hypersurfaces in G(n−
k, n) of X, X1, X2, . . . First we show that H is a point-wise limit of (Hi)∞

i=1 if
and only if X is a point-wise limit of (Xi)∞

i=1.
We start by showing that if H is a point-wise limit of (Hi)∞

i=1, then X is a
point-wise limit of (Xi)∞

i=1. Consider x in the point-wise limit of (Xi)∞
i=1 and the

sequence xi
i→∞−−−→ x, where xi ∈ Xji

. By contradiction, we show that x is in X.
If not, there is an (n − k − 1)-dimensional projective subspace s that contains
x, which is not in H when considered as a point of G(n − k, n) (this follows
from the fact that a general (n− k − 1)-dimensional subspace does not intersect
X). We construct a sequence si ∈ Hji

such that si → s, obtaining the desired
contradiction. We can extend x to the basis of s. Replacing x by xi in this basis,
we obtain a sequence (si)∞

i=1, whose point-wise limit is s. The point-wise limit of
(si)∞

i=1 is s if and only if si
i→∞−−−→ s also in the Grassmannian, as desired.

To prove the opposite inclusion, take x ∈ X. Every element of G(n − k, n)
containing x is in H by the definition of an associated hypersurface. Moreover,
a general such element intersects X only in x. Choose one such element and
denote it by s0. Since it is in H and H is a point-wise limit of (Hi)∞

i=1, there is
a sequence of si ∈ Hji

, si
i→∞−−−→ s0 both in the Grassmanian and point-wise. Let

xi = si ∩Xji
. Since the projective space is compact, the sequence (xi)∞

i=1 has a
convergent subsequence with a limit x0. Necessarily x0 ∈ s0. We have already
proved that the point-wise limit of (Xi)∞

i=1 is a subset of X, so x0 ∈ s0 ∩X = {x}.
Hence we have found the sequence converging to x.

Assuming that X is a point-wise limit of (Xi)∞
i=1, we now prove that H is

a point-wise limit of (Hi)∞
i=1. There is some point-wise limit H ′ of (Hi)∞

i=1. We
denote its associated cycle by X ′. We already know that X ′ is a point-wise limit
of (Xi)∞

i=1. Hence, X and X ′ must have the same support. Therefore, H and H ′

have the same support too and H is a point-wise limit of (Hi)∞
i=1.



Now we prove that if RX is a limit of (RXi
)∞

i=1, then H is a point-wise limit
of (Hi)∞

i=1. We again denote the point-wise limit of (Hi)∞
i=1 by H ′. First, we

show H ′ ⊂ H. Take a sequence xi ∈ Hji
converging to some x ∈ H ′. Then

RXji
(xi) = 0. We prove that RX(xi) i→∞−−−→ 0. Take a real number ε > 0. Since

(RXji
)∞
i=1 converges to RX , for i large enough, we can bound the absolute value of

the sum of coefficients RXji
−RX by ε. Since xi → x, we can bound the absolute

value of the entries of xi by some constant K for i large enough. Also both RXji

for all i and RX are homogeneous polynomials of degree d. Altogether, for i large
enough,

|(RXji
−RX)(xi)| ≤ ε ·Kd ε→0−−→ 0.

Therefore, RX(xi) i→∞−−−→ 0. Polynomials are continuous, so RX(x) = 0, hence
x ∈ H.

Now we take x ∈ H and we want to show that x ∈ H ′, i.e. there is a sequence
xi ∈ Hji

such that xi
i→∞−−−→ x. Since H is a collection of hypersurfaces with sum

of degrees d, a general projective line intersects H in d points. We proceed by
contradiction, showing that if x ̸∈ H ′, a general line intersects H in infinitely
many points. Take a general projective line L ∈ G(n− k, n) that contains x. It is
isomorphic to P1, with restrictions of RXi

and RX being holomorphic functions
on it. Fix a real number ε0 > 0, such that the intersection of each Hi with the
ε0-neighbourhood of x in L is empty. Such an ε0 exists by our assumption that
x is not a limit point of (Hi)∞

i=1. Take any ε ∈ (0, ε0). We will show that there
is xε ∈ H ∩ L, such that |x, xε| = ε, obtaining a contradiction. We know that
Rxi

(y) ̸= 0 for every y ∈ L in the ε-neighbourhood of x. By the minimum modulus
principle, RXi

attains the minimal absolute value on the ε-neighbourhood of x
in some yi such that |x, yi| = ε. Since RXi

→ RX and RX(x) = 0, RXi
(x) → 0.

As RXi
(yi) ≤ RXi

(x), also RXi
(yi) → 0. Choose a converging subsequence of

yi, denote its limit by y. Since |x, yi| = ε, |x, y| = ε too. By RXi
→ RX and

RXi
(yi)→ 0, using similar arguments as above, we obtain RX(y) = 0. So, we can

set xε = y.
At last we finish the proof of the second statement. Let G be a zero locus of

RY , which is a hypersurface in G(n−k, n). We already know that G is a point-wise
limit of (Hi)∞

i=1. Hence, H and G have the same support, as desired.

When using this lemma for (P1)n, we first apply the Segre embedding to (P1)n.
Since the Segre embedding is continuous on P2n−1 and is an isomorphism on its
image, we can consider limits in (P1)n instead of in P2n−1.

Proof of Proposition 10. “⊂”:
Take X ∈ (P1)n

/C⋆. We will use following facts about X:

1. Since (P1)n
/C⋆ is defined to be a subset of G(2, n, 2n), X is an algebraic

cycle of degree n and dimension 1. So, in the following, we can use Lemma
11. For example, we know that there is a sequence (Xi)∞

i=1 of elements of
Qn, such that X is its point-wise limit.

2. The C⋆ action on (P1)n induces a C⋆ action on G(2, n, 2n). The torus fixed
points form a closed subvariety and O(x) is a torus fixed point in G(2, n, 2n)
for every x ∈ Un. So, the points in (P1)n

/C⋆ are also torus fixed. Hence X
is a formal sum of orbit closures.



3. One of the summands of X has a source v∅ and one has a sink v{1,...,n}. This
follows from Lemma 11 and the fact that v∅ and v{1,...,n} are in O(x) for
every x ∈ Un.

4. If there is a summand of X with a sink vS, where S is a proper subset of
{1, . . . , n}, there is a summand of X with a source vS. Vice versa, if there is
a summand of X with a source vS, where S is a proper subset of {1, . . . , n},
there is a summand of X with a sink vS. Here, we extend the notion of
a sink and a source of an orbit to its closure. To show this fact, we take
x = (aj : bj)n

j=1 in the orbit with a sink S. Hence (aj : bj) = (1 : 0) if and
only if j ̸∈ S according to Lemma 6. Since X is a point-wise limit of (Xi)∞

i=1,
there is a sequence (xi)∞

i=1 that converges to x, where xi ∈ Xji
. Since X is a

formal sum of orbits, it suffices to show that there is a point in it such that
is also in an orbit with source vS. For each i, let xi = (ai

j : bi
j)n

j=1 and denote

ti = maxj ̸∈S

⃓⃓⃓⃓
bi

j

ai
j

⃓⃓⃓⃓
. Since xi is in Un, ti is well-defined and non-zero. Hence, we

can consider a sequence
(︂

1
ti
· xi

)︂∞

i=1
. Because (P1)n is compact, we can take

its converging subsequence and denote its limit by y = (a′
j : b′

j)∞
j=1. Since X

is a point-wise limit of (Xi)∞
i=1 and 1

ti
· xi ∈ Xji

, y is in X. We claim that
O(y) has a source vS. Since we have chosen ti maximal, (a′

j : b′
j) ̸= (0 : 1) for

j ̸∈ S. Since | b
i
j

ai
j
| i→∞−−−→ 0 for j ̸∈ S, ti

i→∞−−−→ 0. Moreover, (aj : bj) ̸= (1 : 0)
for j ∈ S. Thus, (a′

j : b′
j) = (0 : 1) for j ∈ S. Therefore, the orbit of y has

source vS, as desired. The other direction can be proved analogously.

Denote the summand of X with the source v∅ by X1. Take the longest sequence
of summands of X, denoting it by (X1, X2, . . . , Xk), such that the source of Xi

is the sink of Xi−1. By (4), the sink of Xk cannot be vS for a proper subset S
of {1, . . . , n}, so is v{1,...,n}. By 7, ∑︁k

i=1 Xi has degree n, just as X. Since the
coefficients in an algebraic cycle are non-negative, there cannot be anything more
in X, as desired.

“⊃”:
We proceed by induction on the size of the flag F . If F is the empty flag, CF

is the flat family we used to define the Chow quotient, so it is contained in the
Chow quotient.

The inductive step is easily reduced to the case |F | = 1 in the following way.
Take F = (S1 ⊂ · · · ⊂ Sk), k ≥ 2. It is enough to show that CF is in the closure
of C(S2⊂···⊂Sk). Since C∅,S2 is isomorphic to CF ′ , where F ′ is the empty flag in F|S2|,
this indeed reduces to the case |F | = 1 in dimension |S2|.

It remains to show that every X ∈ CF , where F = (S), is a point-wise limit of
some (Xi)∞

i=1, where Xi ∈ C∅n . We know that X is of the form

X ′ +X ′′ = O((a′
1 : b′

1), . . . (a′
n : b′

n)) +O((a′′
1 : b′′

1), . . . , (a′′
n : b′′

n)),

where (a′
i : b′

i) = (1 : 0) if and only if i ̸∈ S and (a′′
i : b′′

i ) = (0 : 1) if and only if



i ∈ S. So, for every k ∈ N, the following points are well-defined:

x′
k = ((a1 : b1), . . . , (an : bn)), where

(ai : bi) = (a′
i : b′

i), if i ∈ S,

(ai : bi) =
(︃
a′′

i : 1
k
· b′′

i

)︃
, if i ̸∈ S,

x′′
k = ((c1 : d1), . . . , (cn : dn)), where

(ci : di) =
(︃1
k
· a′

i : b′
i

)︃
, if i ∈ S,

(ci : di) = (a′′
i : b′′

i ), if i ̸∈ S.

Moreover, O(x′
k) = O(x′′

k). This can be seen by acting by 1
k

on x′′
k. We denote

the closure of the common orbit of x′
k and x′′

k by Xk and we show that X is the
point-wise limit of (Xk)∞

k=1.
First, we note that

lim
k→∞

x′
k = ((a′

1 : b′
1), . . . , (a′

1 : b′
n)),

lim
k→∞

x′′
k = ((a′′

1 : b′′
1), . . . , (a′′

1 : b′′
n)).

We have used the fact that (a′′
i : b′′

i ) ̸= (0 : 1) for i ̸∈ S and (a′
i : b′

i) ̸= (1 : 0) for
i ∈ S.

As we have shown in the first part of the proof, limk→0 Xk has to be in CF ′ for
some flag F ′. Since x′

k ∈ limk→∞ Xk, the first summand of limk→∞ Xk has to be
X ′ and the smallest subset of F ′ has to be S. Similarly, since x′′

k ∈ limk→∞ Xk,
the last summand of limk→∞ Xk must be X ′′ and the largest subset of F ′ has to be
S. Thus, F ′ = F and limk→∞ Xk = X ′ +X ′′ = X. So X is in the Chow quotient.

1.3 Constructing the bijection
We have now the partition of both Πn−1 and (P1)n

/C⋆, so it remains to
construct the bijection of OF and CF for each flag F . We proceed by induction.
The crucial part is to construct the bijection between O∅n and C∅n . We then
finish the proof by passing to lower dimensions and putting the partial bijections
together.

Lemma 12. There is a bijection between O∅n and C∅n.

Proof. By 9, O∅n is isomorphic to (C⋆)n−1, which is in bijection with general
points of Pn (by general points we mean those points where no coordinate is zero).
By 6, C∅n = Qn. Consider a map

ϕ : Un → Pn

((a1 : b1), . . . , (an : bn)) ↦→
(︄
b1

a1
: b2

a2
: · · · : bn

an

)︄

This map is well-defined, its image are general points of Pn and it is constant on
orbits. Moreover, only points of the form ((1 : t · x1), . . . (1 : t · xn)) can map on



the point (x1 : · · · : xn). So, the map ϕ̄ : Qn → Pn induced by ϕ by mapping an
element of Qn to ϕ(x) for its general point x is well-defined, and injective. The
desired bijection is hence ϕ̄ composed with the bijection of O∅n and general points
of Pn.

Lemma 13. There is a bijection between OF and CF for every F ∈ Fn.

Proof. By 9, OF ≃ (C⋆)n−k−1 for F = (S1 ⊂ · · · ⊂ Sk) ∈ Fn.
Since CS,T ≃ C∅|S|−|T | is in bijection with (C⋆)|S|−|T |−1,

CF = C∅,S1 × CS1,S2 × · · · × CSk−1,Sk
× CSk,{1,...,n}

is in bijection with

(C⋆)|S1|−1 × (C⋆)|S2|−|S1|−1 × · · · × (C⋆)|Sk|−|Sk−1|−1 × (C⋆)n−|Sk|−1 = (C⋆)n−(k+1).

Proposition 14. There is a bijection between Πn−1 and the Chow quotient of
(P1)n.

Proof. We have seen that Πn−1 is a disjoint union of OF for F ∈ Fn. By 10,
the Chow quotient of (P1)n is a disjoint union of CF for F ∈ Fn. Thus, putting
together the bijections constructed in 13 for each F ∈ Fn separately, we obtain
the required bijection between Πn−1 and (P1)n.



2 Computations for (P1)2

Our goal is to show by direct computation that the bijection defined in the
previous chapter is a morphism for n = 2. We do this by explicitly writing down
the morphism and showing that it is locally a quotient of polynomials, thus a
morphism by definition.

To be able to write down the morphism, we first need to find the Chow
coordinates of any element of the flat family we used to define the Chow quotient.

Claim 15. Let X = O(x) for x = ((a1 : b1), (a2 : b2)) ∈ U2. Then

RX = a1b1a2b2 · [03]2 − (a1b2 · [01] + b1a2 · [02])(a1b2 · [13] + b1a2 · [23]).

Proof. Denote by F the polynomial on the right-hand side. We want to show that
the zero locus of F and RX is the same.

The Chow form is an element of a projective space, so F is defined indepen-
dently of the choice of x ∈ X and its representation.

We need to show that F vanishes at every point of Z(X) ⊂ G(2, 4), the
associated hypersurface of X. Points of G(2, 4) are given by a full-rank matrix

U =
(︄
u0,0 u0,1 u0,2 u0,3
u1,0 u1,1 u1,2 u1,3

)︄
.

A point u ∈ G(2, 4) is in Z(X) if and only if there is t ∈ C⋆ such that⎛⎜⎜⎜⎝
a1a2
t · a1b2
t · a2b1
t2 · b1b2

⎞⎟⎟⎟⎠
is in the kernel of the matrix that defines u. Hence if u ∈ Z(X), we have

a1a2 · u0,0 = −t · a1b2 · u0,1 − t · a2b1 · u0,2 − t2 · b1b2 · u0,3, (2.1)
a1a2 · u1,0 = −t · a1b2 · u1,1 − t · a2b1 · u1,2 − t2 · b1b2 · u1,3. (2.2)

We extend the notation of brackets by denoting [ij] be the minor corresponding
to columns i and j of U . Then [ii] = 0 and [ij] = −[ji]. Substituting for u0,0 from
(2.1) and for u1,0 from (2.2), we obtain

a1a2 · [01] = −(t · a1b2 · [11] + t · a2b1 · [21] + t2 · b1b2 · [31]) =
= t · a2b1 · [12] + t2 · b1b2 · [13],

a1a2 · [02] = −(t · a1b2 · [12] + t · a2b1 · [22] + t2 · b1b2 · [32]) =
= −t · a1b2 · [12] + t2 · b1b2 · [23]),

a1a2 · [03] = −(t · a1b2 · [13] + t · a2b1 · [23] + t2 · b1b2 · [33]) =
= −(t · a1b2 · [13] + t · a2b1 · [23]).

Putting this together, we get

a2
1b1a

2
2b2 · [03]2 = b1b2 · (t · (a1b2 · [13] + b1a2 · [23]))2,

a2
1b2a2 · [01] + a1b1a

2
2 · [02] = t2 · a1b1b

2
2 · [13] + t2 · b2

1a2b2 · [23].

21



Since a1 and a2 are non-zero, we can multiply F by a1a2 without changing its
zero locus. Using the computations above, we have

a1a2 · F =

b1b2 ·(t·(a1b2 ·[13]+b1a2 ·[23]))2−t2(·a1b1b
2
2 ·[13]+b2

1a2b2 ·[23])(a1b2 ·[13]+b1a2 ·[23]).
= 0

By Proposition 3, we know that RX is of degree 2 and is unique up to constant
factor. The polynomial F vanishes on Z(X), so it has to be divisible by RX .
Since both are of the same degree, F = RX as points of P(B2).
Claim 16. All the Chow forms R ∈ (P1)2

/C⋆ are of the form

uv · [03]2 − u2 · [01][13]− uv[01][23]− uv[02][13]− v2[02][23]

for some u, v ∈ C.

Proof. The Chow forms of elements of Qn are of this form, with the additional
condition that u and v are both non-zero. The other points in the Chow quotient
are limits of those, so we include exactly those where one of u and v is zero.

We used a representing point of the orbit to find the Chow form. However, the
map from the permutohedral variety to the Chow variety can be defined without
it. This is an essential step of the proof of the main result of this chapter.

Proposition 17. The Chow quotient of (P1)2 by the given action and Π1 are
isomorphic as varieties.

Proof. Since Π1 is isomorphic to P1, we can represent its point as (x : y). Then
we define the map

ψ : Π1 → G(2, 2, 4)
(x : y) ↦→ xy · [03]2 − (x · [01] + y · [02])(x · [13] + y · [23])

Multiplying both x and y by t ∈ C does not change the image, so it is a well-
defined map. By 16, it is clear that the image of ψ is in the Chow quotient of
(P1)2. Since it is defined by polynomials, it indeed is a morphism.

To show that ψ is an isomorphism, it suffices to find a well-defined inverse. We
denote respectively U1 and U2 the open subsets of (P1)2

/C⋆, where respectively
[01][13] and [02][23] has a non-zero coefficient. Then we have maps

ψ−1
1 : U1 → Π2

f · [03]2 − g · [01][13]− f [01][23]− f [02][13]− h[02][23] ↦→
(︄

1 : f
g

)︄

ψ−1
2 : U2 → Π2

f · [03]2 − g · [01][13]− f [01][23]− f [02][13]− h[02][23] ↦→
(︄
f

h
: 1
)︄

Multiplying the f , g and h by a common factor does not change the result, so
the map is well-defined. Taking into account that gh = f 2 and that we work with
projective spaces, it is easy to see that ψ and ψ−1

1 are inverse to on another on
the proper open subsets, similarly for ψ and ψ−1

2 .



Conclusion
We have examined some aspects of the isomorphism between the Chow quotient

of (P1)n and the (n− 1)-dimensional permutohedral variety. We have seen how
both of those objects decompose into subsets corresponding to flags and we
explicitly constructed the set-theoretical bijection on those subsets.

To show for (P1)2 that there is not only a set-theoretical bijection, but also an
isomorphism of varieties, we computed the Chow coordinates of a general orbit
closure. Since finding the Chow coordinates is computationally hard, extending
our approach to higher dimensions would require some guesswork. By induction,
we know what must be the Chow form of a degenerate element of the Chow
quotient. This might help to make a correct guess.
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