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Introduction

The Sun broadcasts its activity throughout the solar system in various ways. Its
photosphere, heated to thousands of Kelvin, emits a broad spectrum of electro-
magnetic radiation providing visible light and radiating heat into the vast solar
system. However, beyond the reach of the human eye lies a hidden realm of solar
activity. To investigate the dynamic phenomena within the solar wind, which
arise from the solar activity, we can use both scientific spacecraft and ground
observations to better our understanding of solar dynamics.

Solar radio emissions are often observed by spacecraft and ground based ob-
servatories indicating the Sun’s activity. These radio emissions are caused by en-
ergetic events at the Sun, which occur during brief periods. During such events,
an electron beam can be ejected from the Sun. This electron beam travels from
the solar corona into the solar wind, propagating along the magnetic field lines.

As the electron beam interacts with the solar wind plasma, kinetic instabilities
cause the growth of Langmuir waves, which in turn modifies the properties of the
beam. The Langmuir waves, generated locally along the beams path, cannot
propagate far due to the process known as Landau damping.

However, we can still detect this process from afar, because the Langmuir
waves undergo a mode conversion process. This generates free space mode elec-
tromagnetic waves at the local plasma frequency. This electromagnetic wave is
called a type III radio emission.

Several questions still remain to be answered regarding the type III radio
emissions. In this work we examine the current understanding of type III radio
emissions while focusing on the source regions where the electron beam causes
the growth of plasma waves. We will also analyze in situ observations performed
by the Solar Orbiter spacecraft in the source regions of type III radio emissions.
And show how experimental observations compare to our current understanding
of type III radio emissions.

In chapter 1 we introduce the solar wind environment and its typical plasma
parameters. We delve into the theory of the plasma dispersion relation, deriving
an approach to determining the stability of an electron distribution in velocity
space. In chapter 2 we provide a theoretical description of the mechanism growing
Langmuir waves and the analytical models that can be used to model the system.

In chapter 3 we introduce the scientific instruments onboard the Solar Orbiter
spacecraft and the data products they produce.

In chapter 4 we analyze the observational data of type III radio emissions. We
focus on determining the stability of an electron velocity distribution in the source
region of a type III emission. Our analysis of observational data is continued in
chapter 5, where we analyze the Langmuir waves generated by an electron beam
using observed electric waveform data.
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1. The solar wind environment

1.1 The discovery of the solar wind
The concept of the solar wind was first introduced by Biermann [1951], when
he proposed that a radial flow of charged particles could explain the observed
direction of the plasma tails of comets. Building on this idea, Parker [1958] then
demonstrated that the coronal pressure is high enough for particles to continu-
ously escape from the Sun. The escaping particles of both polarities (mainly
electrons and protons, with a small fraction of heavier positive ions) form a
quasineutral plasma medium. After an initial acceleration in the solar corona, the
expanding plasma flows radially outward at a large speed, which does not depend
on the distance from the Sun. These theoretical inferences earned Parker credit
for the solar wind’s discovery. However, at the time, his pioneering work was not
well-received, and the scientific community was skeptical about the solar wind’s
existence. It was only with the onset of the space age that conclusive evidence
became available, confirming Parker’s predictions.

By means of in situ spacecraft observations, much has been discovered about
the solar wind since. We now know that our solar system is filled with a turbulent
solar wind which carries the Sun’s magnetic field. Since that was also one of the
predictions of Parker [1958] we call the curved magnetic field lines the Parker
spiral. Furthermore, research has unveiled the existence of two types of the solar
wind: slow and fast. They differ in their source regions and by the observed solar
wind parameters (see table 1.1 adopted from Tsurutani et al. [2023]).

Parameter Slow Solar Wind Fast Solar Wind

Drift velocity ∼ 300− 400 km/s ∼ 750− 800 km/s
Electron density ∼ 5 cm−3 ∼ 3 cm−3

Proton Temperature ∼ 0.5× 105 K ∼ 2.8× 105 K
Electron Temperature ∼ 1.0× 105 K ∼ 1.3× 105 K
Magnetic Intensity ∼ 5 nT ∼ 5 nT

Table 1.1: Typical plasma parameters of the solar wind at 1 AU

1.2 Magnetohydrodynamic description of
the solar wind plasma

To describe plasmas such as the solar wind, we can employ two main approaches:
the collisionless kinetic approach and the magnetohydrodynamic (MHD) fluid
approach.

The MHD approach, pioneered by Hannes Alfvén, describes plasmas as an
electrically conducting fluid. This approach can be understood as an extension
of fluid dynamics which takes the electromagnetic forces into account. Despite
the apparent simplicity, this approach predicts a range of results, such as the
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existence of Alfvén waves by [Alfvén, 1942] or the frozen in magnetic field lines
in the solar wind (see section 1.3).

Let us first introduce a few concepts which are fundamental to this approach.
To describe the plasma, composed of several species of charged particles, we use
a phase space distribution function f(r, v, t) with units [f ] = s3/m−6. Using f
we can obtain measurable parameters of the plasma by averaging over the phase
space. In other words, we can take the moments of the phase space distribution.
The number density distribution of the s-th species can be obtained by integrating
over the velocities as

ns(r, t) =
∫︂
R3

fsd
3v, (1.1)

where fs is the distribution function for the s-th species. To obtain an intensive
scalar variable, we multiply f by the relevant microscopic variable. For example
we obtain the mass density of the s-th species ρs as

ρs(r, t) =
∫︂
R3

msfsd
3v. (1.2)

Vector variables, such as the bulk velocity of the s-th species Us are also
obtained by multiplying f :

nsUs =
∫︂
R3

vfsd
3v, (1.3)

and for tensors, such as the pressure tensor ←→Ps we have

←→P s =
∫︂
R3

ms(v−Us)(v−Us)fsd
3v, (1.4)

where the components of the pressure tensor describe the average rate at
which momentum is being transferred in a certain direction. If this tensor is
isotropic, meaning←→P s = ps

←→1 , we can later (in equation (1.6)) replace (∇ ·←→P s)
by (∇ps).

We can now obtain the equations of motion for a single species fluid. We
start with the Boltzmann kinetic equation

∂f

∂t
+ v · ∇f + F

m
· ∇vf = δcf

δt
, (1.5)

where F is a general force acting upon the plasma and the term on the right
hand side is an unspecified collision operator. This equation describes the time
evolution of the phase space distribution function f . We multiply this equation
for the s-th species by momentum msvs and integrate in velocity space. We get

∂

∂t
(msnsUs) + msns(Us · ∇)Us +∇ ·←→P s −

∫︂
R3

Ffsd
3v = ±δcps

δt
, (1.6)

where the right hand side describes the friction between fluids via collisions. For
a more detailed derivation see Gurnett and Bhattacharjee [2017]. If we rearrange
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the terms, assume an isotropic pressure tensor and plug in the Lorenz force for
F, we get the equation of motion for the s-th species:

msns
dUs

dt
= ±ens(E + Us ×B)−∇ps ±

δcps

δt
. (1.7)

For simplicity, we consider here only two species: positive ions and negative
electrons. By adding equation (1.7) for ions and electrons we get the combined
equation of motion of the plasma described as a single fluid

ρ
dv
dt

= j×B−∇p, (1.8)

where we define the density ρ, velocity v, current density j and the pressure p as:

ρ = nimi + neme, (1.9)

v = nimivi + nemeve

nimi + neme

, (1.10)

j = e(nivi − neve), (1.11)
p = pi + pe. (1.12)

(1.13)

Similarly we obtain the generalized Ohm’s law by subtracting renormalized
(1.7) or ions and electrons, and after introducing additional approximative sim-
plifications:

j = σ(E + v×B) + 1
en

[(∇pe)− j×B]. (1.14)

Note that in the anisotropic case the conductivity σ and pressure p become
tensors. In the MHD approximation the last term in equation (1.14) is often
omitted so that the generalized Ohm’s law for MHD becomes

j = σ(E + v×B). (1.15)

To fully describe the plasma, a complete set of equations is required. For a two
component plasma we have 16 independent variables: {ne, ni, pe, pi, ve, vi, E, B}
(vectors count as three independent components). Thus, we need more equations
to relate these variables. From fluid dynamics we get the continuity equations for
the plasma fluid

∂ρ

∂t
+∇ · (ρv) = 0, (1.16)

∂ρq

∂t
+∇ · (j) = 0. (1.17)

Thermodynamics provides us with an equation of state for the plasma
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p = Cργ, (1.18)
which we can use to relate the pressure to the density. And lastly the Maxwell’s
equations in the MHD approximation are

∇ · E = 0 (1.19)
∇ ·B = 0 (1.20)

∇× E = −∂B
∂t

(1.21)

∇×B = µ0j. (1.22)

In the MHD approximation we omit the charge density term in (1.19) due to
quasi-neutrality of the plasma. We also omit the Maxwell’s current from Ampere’s
law (1.22) using the MHD low frequency approximation.

Equations (1.8) and (1.15) through (1.22) now give a complete set. Although
there are more than 16 equations, only 16 of them are independent, as described
in [Chen, 1984, chapter 3.3.7].

1.3 Solar wind magnetic field
Using the MHD equations derived in the previous section, we can now show that
in a highly conductive plasma, magnetic field lines freeze and are carried by the
plasma. To describe the changes in the magnetic field, we will derive the induction
equation for a plasma.

Applying the curl operator on the generalized Ohm’s law in the MHD ap-
proximation (1.15), we obtain

∇× j = σ(∇× E +∇× (v×B)). (1.23)

Applying the Ampere’s law in the low frequency MHD approximation (1.22)
to the left hand side and the Maxwell-Faraday equation (1.21) to the (∇ × E)
term:

∇× (∇×B) = µ0σ(−∂B
∂t

+∇× (v×B)). (1.24)

After further simplification we get the induction equation

∂B
∂t

= ∇× (v×B) + 1
µ0σ
∇2B. (1.25)

Now we can investigate the phenomena of frozen magnetic field lines. For a
highly conductive plasma we can omit the last term in the induction equation
(1.25). Rearranging the terms we get

∂B
∂t
−∇× (v×B) = 0. (1.26)
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Figure 1.1: Magnetic flux flowing through a closed loop.

Now, using equation (1.26), we can study the change in the magnetic flux Φ
going through a closed loop L with the surface S shown in figure 1.1. The change
in magnetic flux is given by Faraday’s law as

dΦ
dt

=
∫︂

S

∂B
∂t
· dS +

∫︂
L
(B× v) · dL (1.27)

We can rewrite the second term in equation (1.27) using Stokes’ theorem as
a surface integral, obtaining (1.28) where the term inside the bracket is zero from
equation (1.26).

dΦ
dt

=
∫︂

S

(︄
∂B
∂t
−∇× (v×B)

)︄
· dS = 0 (1.28)

Figure 1.2: A visualization of the time evolution of two surfaces S1 and S2 being
carried by the expanding Solar wind.

To see how the magnetic field lines are shaped in the Solar wind we now
consider two surfaces as shown in figure 1.2. The surfaces S1 and S2 are being
carried by the Solar wind as it expands away from the Sun.
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Figure 1.3: Illustration of a vector field depicting the directional dependence of
the magnetic field in the solar wind, with the derived radial distance dependencies.

From equation (1.28), we know that the magnetic flux stays constant in the
surfaces S1 and S2 as they evolve into S ′

1 and S ′
2 respectively. Assuming a constant

solar wind speed as a function of the radial distance R, the area of the surfaces
can be related to R as S1 ∝ R2 and S2 ∝ R. And in order for the magnetic flux
to stay the same the magnetic field must be related to R as Br ∝ R−2 for the
radial component and Bt ∝ R−1 for the tangential component.

Figure 1.3 shows this derived radial distance dependence, visualizing the con-
figuration of magnetic field lines in the equatorial plane of the solar wind. As
mentioned earlier, this result was first predicted by Parker [1958].

1.4 Collisionless kinetic approach
The collisionless approach assumes that the plasma interacts primarily via long-
range electromagnetic forces and that the collisions play a minor role. For this
reason, this approach allows for analyzing single particle motions to study the
collective behavior.

1.4.1 Collisionless cold magnetized plasma
In the cold plasma approximation, we assume a plasma that is initially at rest and
has no temperature fluctuations (Te = Tp = 0). Using this simple assumption
one can obtain powerful results which hold approximately true even for finite
temperatures.

To obtain the dispersion relation for waves in cold magnetized plasma, we
need to solve the wave equation, which can be easily derived from the Faraday’s
Law of Induction (1.21)

∇× E = −∂B
∂t

9



and the Ampere’s Law with Maxwell’s curent

∇×B = µ0j + µ0ε0
∂E
∂t

(1.29)

To derive the wave equation, we take the curl of Faraday’s Law and plug in
equation (1.29) for B on the right hand side. After applying the standard vector
identities, we arrive at the wave equation

∇(∇ · E)−∇2E + 1
c2

∂2E
∂t2 + µ0

∂J
∂t

= 0. (1.30)

Now, we can use the relation j = ↔
σE to express the current in terms of E.

To solve this equation, we apply the Fourier transform and then use the identity
n = kc/ω. After simplifying our result, we get

n2k̂k̂ · E− n2E + ↔
ϵ E ≡ D · E = 0. (1.31)

To solve equation (1.31), we need to determine the relative permittivity tensor

↔
ϵ =

(︄
↔
1 + i

↔
σ

ωϵ0

)︄
= (

↔
1 + ↔

χ), (1.32)

Which can be done by expressing the current in terms of E:

j = ↔
σE =

∑︂
s

nsqs
↔
µsE. (1.33)

To obtain the mobility ↔
µs, we need to investigate the equation of motion for

a single particle
ms

dvs

dt
= qs(E + vs ×B). (1.34)

Performing the Fourier transform in time, we obtain

−iωvs = qs

ms

(E + vs ×B). (1.35)

From here, we can express the magnetic field amplitude using the cyclotron
frequency Ωs = qjB

ms
. Setting our coordinate system so that the z-axis is aligned

with the magnetic field, equation (1.35) can be rewritten as

vs = qsi

ms

⎡⎢⎣ ω iΩs 0
−iΩs ω 0

0 0 ω

⎤⎥⎦
−1

E = ↔
µsE. (1.36)

Now, we can obtain the cold plasma permittivity and solve the dispersion
relation (1.31). This equation is equivalent to finding the roots of the determinant
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of D. This can be done explicitly for cold plasma and allows for studying various
wave modes, such as the Z-mode, whistler waves or the free space modes. The
detailed derivation can be found in [Gurnett and Bhattacharjee, 2017, chapter 4].
And a summary of the results relevant to our analysis of type III radio emissions
can be found in section 2.2.

1.4.2 Hot plasma dispersion relation
The Langmuir instability is an electron beam driven instability. The thermal
effects of hot plasma play an important role in determining the conditions for in-
stability since it is driven by Landau resonant electrons. For that reason, the cold
plasma approach cannot be used to study the growth corresponding to Langmuir
waves.

Langmuir waves arise in the source regions of type III radio emissions. To
study this kinetic instability, we will derive the general approach to obtaining the
plasma dispersion relation. This will allow us to study the frequency and growth
rate of waves in hot plasma.

The generality of the following approach lies within the way we obtain the
plasma susceptibility ↔

χ. We will focus on obtaining the susceptibility tensor in
this chapter. Using the susceptibility one can then determine the dispersion tensor
D using equations (1.32) and (1.31). In order to determine the susceptibility we
will first study the time evolution of the distribution function. We follow the
derivation from [Stix, 1992, chapter 10] but we provide more detailed steps and
use SI units.

Time evolution of the system

We represent our system using the phase space distribution function f(r, p, t),
introduced in section 1.3 (we switched from velocity to momentum coordinates
for convenience). In the MHD approach, we only considered the moments of
the phase space function, which can be obtained from f by integration. In the
collisionless approach, we study the evolution of f in time.

In this chapter, we assume that f is the phase space distribution of one
species. We can separate the problem this way because the susceptibility is
additive over species, so at the end of our calculation we can simply sum over all
species.

To study the time evolution of f , we will use the Boltzmann kinetic equation
(1.5). We assume that the electromagnetic forces are the only long range forces
acting upon the ionized particles, causing collective behavior of the plasma. Since
we are dealing with weakly bound space plasma, we can neglect the collision term,
obtaining the Vlasov equation

∂f

∂t
+ v · ∂f

∂r
+ q(E + v×B) · ∂f

∂p
= 0, (1.37)

which provides the time evolution of f .
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We can now split the phase space distribution function

f(r, p, t) = f0(v) + f1(r, p, t), (1.38)

where f0 is the unperturbed zero order distribution function and f1 is the first-
order distribution function which can evolve with time. Similarly the electric field
E = 0 + E1 and the magnetic field B = B0 + B1.

If we now write the zero order Vlasov equation (plugging in the unperturbed
field), for the unperturbed distribution function we get

(︄
df0

dt

)︄
0
≡ ∂f0

∂t
+ v · ∂f0

∂r
+ q(v×B0) · ∂f0

∂p
= 0, (1.39)

where v = dr
dt

and r(t) is the trajectory of a particle traveling in the unperturbed
field. This allows us to express the full Vlasov equation as

(︄
df1

dt

)︄
0

= −q(E1 + v×B1) ·
∂f0

∂p
. (1.40)

We can then integrate equation (1.40) in time to obtain the first order distri-
bution

f1(r, v, t) = −q

t∫︂
−∞

(E1(r′, t′) + v′ ×B1(r′, t′)) · ∂f0

∂p′ dt′, (1.41)

where the prime denotes that we are integrating in time along the unperturbed
trajectory r′(t′).

In order simplify equation (1.40), we can assume an electric field decomposed
to Fourier components in time and space

E1(r′, t′) = E(ω) exp(ik · r′ − iωt). (1.42)

This assumption will also allow us to factor out the oscillatory term in the
resulting time evoution of f1 (obtained below in equation (1.59)), linearizing the
problem.

Additionally we can express the magnetic field as B1 = k
ω
× E1. This allows

us to simplify the term v′ ×B1 from equation (1.40) as

v′ ×B1 = v′ × (k× E) exp(ik · r′ − iωt)
ω

, (1.43)

omitting the oscillatory term exp(ik·r′−iωt)
ω

we have

v′ × (k× E) = ϵijkϵklmv′
jklEmêi (1.44)

= (δilδjm − δimδjl)v′
jklEm (1.45)

= Em(v′k)miêi − Em(
↔
1)miv

′
jkj (1.46)

= E · (v′k−
↔
1v′ · k). (1.47)

12



Substituting (1.47) to (1.41) we get

f1(r, v, t) = −q

t∫︂
−∞

exp(ik · r′− iωt′)E ·
(︄

↔
1
(︄

1− v′ · k
ω

)︄
+ v′k

ω

)︄
· ∂f0

∂p′ dt′. (1.48)

We will perform a substitution τ = t − t′. Additionally, the unperturbed
trajectory brings a few conditions which have to be met for the agreement of
position and momenta at time t′ = t:

vx = v⊥ cos(ϕ),
vy = v⊥ sin(ϕ),
vz = v∥,

v′
x = v⊥ cos(Ωτ + ϕ),

v′
y = v⊥ sin(Ωτ + ϕ),

v′
z = v∥,

kx = k⊥ cos(θ),
ky = k⊥ sin(θ),
kz = k∥,

x′ = x− v⊥

Ω (sin(Ωτ + ϕ)− sin(ϕ)),

y′ = y − v⊥

Ω (cos(Ωτ + ϕ)− cos(ϕ))

z′ = z − v∥τ,

where Ω = qB
m

is the cyclotron frequency of the studied species.

Using these identities, we will convert to Cartesian coordinates starting with
the term inside the exponential

k · r′ − ωt′ =k · r + v⊥

Ω k⊥[(− sin(Ωτ + ϕ)− sin(ϕ)) cos(θ)

+ (cos(Ωτ + ϕ)− cos(ϕ)) sin(θ)]− v∥k∥τ − ωt + ωτ
(1.49)

=k · r− ωt + β, (1.50)

where

β = (ω − v∥k∥)τ −
v⊥

Ω k⊥[sin(Ωτ + ϕ− θ) + sin(ϕ− θ)]. (1.51)

Next we rewrite the derivative of f0 in Cartesian coordinates as

∂f0

∂p′ =

⎡⎢⎢⎣
cos(Ωτ + ϕ) ∂f0

∂p⊥

sin(Ωτ + ϕ) ∂f0
∂p⊥

∂f0
∂p∥

⎤⎥⎥⎦ . (1.52)

And lastly, we evaluate the tensor in equation (1.48), which we denote as

↔
M =

(︄
↔
1
(︄

1− v′ · k
ω

)︄
+ v′k

ω

)︄
. (1.53)

On the diagonal we subtract

v′ · k = v⊥k⊥ cos(Ωτ + ϕ) cos θ + v⊥k⊥ sin(Ωτ + ϕ) sin θ + v∥k∥. (1.54)
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And the tensor product v′k is

v′k=

⎡⎢⎣v⊥k⊥ cos(Ωτ + ϕ) cos θ v⊥k⊥ cos(Ωτ + ϕ) sin θ v⊥k∥ cos(Ωτ + ϕ)
v⊥k⊥ sin(Ωτ + ϕ) cos θ v⊥k⊥ sin(Ωτ + ϕ) sin θ v⊥k∥ sin(Ωτ + ϕ)

v∥k⊥ cos θ v∥k⊥ sin θ v∥k∥

⎤⎥⎦,

(1.55)

allowing us to evaluate the entire matrix
↔
M. Using equations (1.54) and

(1.55), we get

↔
M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− v∥k∥

ω

−v⊥k⊥

ω
sin(Ωτ + τ) sin θ

v⊥k⊥

ω
cos(Ωτ + ϕ) sin θ

v⊥k∥

ω
cos(Ωτ + ϕ)

v⊥k⊥

ω
sin(Ωτ + ϕ) cos θ

1− v∥k∥

ω

−v⊥k⊥

ω
cos(Ωτ + τ) cos θ

v⊥k∥

ω
sin(Ωτ + ϕ)

v∥k⊥

ω
cos θ

v∥k⊥

ω
sin θ

1− v⊥k⊥

ω
cos(Ωτ + τ) cos θ

−v⊥k⊥

ω
sin(Ωτ + τ) sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can then we multiply
↔
M by ∂f0

∂p which we obtained in equation (1.52):

E ·
↔
M · ∂f0

∂p
=
[︂
Ex Ey Ez

]︂
⎡⎢⎢⎢⎢⎣

cos(Ωτ + ϕ)
(︂

∂f0
∂p⊥

k∥
ω

(︂
v⊥

∂f0
∂p∥
− v∥

∂f0
∂p⊥

))
sin(Ωτ + ϕ)

(︂
∂f0
∂p⊥

k∥
ω

(︂
v⊥

∂f0
∂p∥
− v∥

∂f0
∂p⊥

))
∂f0
∂p∥

+ cos(Ωτ + ϕ)k⊥
ω

(︃
v∥

∂f0
∂p⊥
− v⊥

∂f0
∂p∥

)︃
⎤⎥⎥⎥⎥⎦ . (1.56)

To simplify these terms, we define

U =
(︄

∂f0

∂p⊥

k∥

ω

(︄
v⊥

∂f0

∂p∥
− v∥

∂f0

∂p⊥

)︄)︄
(1.57)

V = k⊥

ω

(︄
v∥

∂f0

∂p⊥
− v⊥

∂f0

∂p∥

)︄
. (1.58)

Plugging these results into equation (1.48) and performing the substitution
τ = t− t′ (dt′ = −dτ), we obtain

f1(r, p, t) = −q exp(ik · r− iωt)
∫︂ ∞

0
exp(iβ)[Ex cos(Ωτ + ϕ)U

+Ey sin(Ωτ + ϕ)U + Ez

(︄
∂f0

∂p∥
+ cos(Ωτ + ϕ)V

)︄
]dτ.

(1.59)

We have thus derived a formula for the time dependent perturbed velocity
distribution function, providing us with the time evolution of the system.
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Hot plasma susceptibility

To determine the susceptibility ↔
χ, we need to determine the conductivity ↔

σ . From
equations (1.32) and (1.33), we can rewrite the problem as

j =
∑︂

s

qs

∫︂
vsfs1d

3p = −iωϵ0
∑︂

s

↔
χs · E1. (1.60)

Since the susceptibility is additive over particle species, we can obtain the
contributions for each species individually. For a single species, we can write

↔
χ · E1 = iq

ωϵ0m

∫︂∫︂∫︂
pf1(r, p, t)d3p, (1.61)

where p =

⎡⎢⎣p⊥ cos(ϕ)
p⊥ sin(ϕ)

p∥

⎤⎥⎦ , and d3p = p⊥dϕdp⊥dp∥.

Focusing on the first component (↔
χ · E1)x is now equivalent to replacing p

with p⊥ cos(ϕ) in equation (1.61). Furthermore, f1 was obtained by doing the
scalar product with E1, so by only considering the term multiplied by E1x we can
determine χxx.

Following this procedure analogously for all components of p and E1 would
provide us with the full susceptibility tensor. For the sake of brevity, we will only
focus on the first term.

Writing out f1 we split eiβ into two factors, one depending on ϕ and the other
one independent of ϕ. We also substitute z = k⊥v⊥

Ω to simplify the integral

χxx = −iq2

ωϵ0m

∫︂ ∞

−∞
p⊥

∫︂ ∞

−∞
U
∫︂ ∞

0

∫︂ 2π

0
cos(ϕ)e−iz(sin(Ωτ+ϕ)−sin(ϕ))

· cos(Ωτ + ϕ)dϕei(ω−v∥k∥)τ dτdp∥dp⊥.

(1.62)

We will start by performing the inner integral over the azimuthal angle ϕ.
We can use the Jacobi-Anger expansion

eiz sin(ϕ) =
∞∑︂

n=−∞
einϕJn(z) (1.63)

to evaluate the integral. Differentiating (1.63) with respect to ϕ gives us

cos(ϕ)eiz sin(ϕ) =
∞∑︂

n=−∞
ineinϕJn(z) (1.64)

Performing a substitution ϕ→ (Ωτ + ϕ) gives us

cos(Ωτ + ϕ)eiz sin(Ωτ+ϕ) =
∞∑︂

n=−∞
inein(Ωτ+ϕ)Jn(z). (1.65)
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Now we can multiply equations (1.64) and (1.65), obtaining

z2 cos(ϕ) cos(Ωτ + ϕ)e−iz(sin(Ωτ+ϕ)−sin(ϕ)) =

=
(︄ ∞∑︂

n=−∞
−ine−inϕJn(z)

)︄(︄ ∞∑︂
n=−∞

inein(Ωτ+ϕ)Jn(z)
)︄

=
∞∑︂

n=−∞
n2einΩτ J2

n(z),

(1.66)

where we could multiply the sums due to the orthogonality of Bessel functions.

After dividing by z2 we can perform the integration in ϕ. The left hand side of
equation (1.66) allows us to evaluate the inner most integral from equation (1.62).
We evaluate it by integrating the right hand side of equation (1.66). Since it is
independent of ϕ the integration is trivial, obtaining the inner most integral as
∫︂ 2π

0
cos(ϕ) cos(Ωτ + ϕ)e−iz(sin(Ωτ+ϕ)−sin(ϕ))dϕ = 2π

∞∑︂
n=−∞

n2

z2 J2
n(z)einΩτ . (1.67)

We can now plug in this result into equation (1.62) and integrate in time:

χxx = 2π
−iq2

ωϵ0m

∫︂ ∞

−∞
p⊥

∫︂ ∞

−∞
U

∞∑︂
n=−∞

n2

z2 J2
n(z)

∫︂ ∞

0
ei(nΩ+ω−v∥k∥)τ dτdp∥dp⊥ (1.68)

= 2π
−iq2

ωϵ0m

∞∑︂
n=−∞

∫︂ ∞

−∞
p⊥

n2

z2 J2
n(z)

∫︂ ∞

−∞

U

ω − v∥k∥ − nΩdp∥dp⊥. (1.69)

Now we have the susceptibility component χxx expressed using the unper-
turbed distribution f0 (which lies within the term U).

When performing the calculation for other components, similar tricks (differ-
entiation with respect to ϕ or τ) with the Jacobi-Anger expansion provide a way
to integrate over ϕ.

In the end we get an integral over the parallel and perpendicular momenta
which involves terms with first derivatives of f0 with respect to the momentum.
Provided we know the phase space distribution function for each species we can
calculate these derivatives and perform the integration. This can be done nu-
merically for each n in the sum until the contribution becomes sufficiently small.
Performing this calculation and summing over the species gives us the full sus-
ceptibility tensor.

This approach is used in numerical plasma dispersion relation solvers, such
as the Arbitrary Linear Plasma Solver (ALPS) by Klein et al. [2023].
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2. Type III radio emissions

This chapter offers a comprehensive review of type III radio emissions. These
radio bursts are generated by energetic electrons which are ejected from the Sun
and travel within the solar wind. These emissions are often associated with
powerful solar phenomena, such as coronal mass ejections (CMEs).

Following their origin from the Sun, energetic electron beams propagate away
from the Sun, traveling along the magnetic field lines. The electron beam interacts
with the solar wind along its path, causing Langmuir waves to grow.

Since Langmuir waves cannot propagate over large distances, they can only
be observed in situ. However, they can undergo mode conversion, transforming
the Langmuir waves into radio emissions at the plasma frequency or its first
harmonic.

This resulting radio emission, known as a Type III radio emission, propa-
gates in the free space mode and can thus be remotely observed by spacecraft or
partially through ground-based observations. However, the ground based obser-
vations are limited by the ionosphere cutoff frequency (5 − 8MHz [Gurnett and
Bhattacharjee, 2017, page 135]).

2.1 Beam driven instability
The collisionless approach can be used to investigate the interaction of an electron
beam with the background solar wind. As derived in chapter 1, given the velocity
distribution functions of all plasma species, one can determine the stability of the
system and the growth rate of plasma waves.

To execute the stability analysis of velocity distribution functions (VDFs), we
need to obtain a model of the system at hand. Direct instrumental observations
will then provide us the necessary data to fit the parameters of our model. In the
following section we introduce possible models of the background VDF.

2.1.1 Analytical models
Analytical models of velocity distribution functions play a key role in space par-
ticle physics. They allow us to characterize the velocity distribution function of
each species with a few parameters. The fit parameters also often have a clear
physical interpretation, such as the temperature (T ) or drift velocity (U).

Even non-physical models such as cubic splines and generalized additive mod-
els can be applied in modeling velocity distribution functions. These models can
sometimes be easier to use, but their parameters do not provide much insight to
the physics at hand.

We begin by reviewing analytical models, which can be derived from statis-
tical mechanics. In the simplest model of an electron VDF, we assume thermo-
dynamic equilibrium, leading to the Maxwell-Boltzmann distribution. We write
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our VDFs in field aligned momentum coordinates because this form is most con-
venient for evaluating the integral (1.68) (and other components of ↔

χ). We can
also assume that our drift velocity U is field aligned. For the Maxwellian VDF
we get

f(p∥, p⊥; w∥, w⊥, U) = 1
π3/2m3w∥v2

⊥
exp

⎛⎝− p2
⊥

m2w2
⊥
−

(p∥ −mU)2

m2w2
∥

⎞⎠ , (2.1)

where the thermal velocities w parallel and perpendicular to B are

w∥ =
√︄

2kBT∥

m
, (2.2)

w⊥ =
√︄

2kBT⊥

m
. (2.3)

We can use equation (2.1) to describe any species of particles. Using equation
(2.1) to fit experimental measurements allows us to determine the temperature
and bulk speed of the electron population.

However, space plasmas in the state of thermodynamic equilibrium are rarely
observed. The issue with our model is that the Gibbs-Boltzmann statistical
mechanics assumes a high number of collisions. That argument holds well for
gasses, but not generally for all space plasmas. In space plasmas, collisions often
have a negligible effect, meaning that the system does not reach thermodynamic
equilibrium.

Figure 2.1: A comparison of the Maxwellian and Kappa reduced distribution
functions for Te = 140000 K.

A different approach is required to account for the collective behavior. By
the means of non-extensive statistical mechanics, a generalized model of VDFs
in space plasmas can be derived, as shown by Livadiotis and McComas [2013].

18



This derivation yields a generalized Maxwellian distribution, commonly regarded
as the Kappa distribution. Again, we convert the result of this derivation to our
field aligned momentum coordinates, obtaining

f(p∥, p⊥; w∥, w⊥, U, κ) = 1
π3/2m3w∥w2

⊥

(︄
2

π(2κ− 3)

)︄3/2 Γ(κ + 1)
Γ(κ− 1/2)

·

⎛⎝1 + 2
2κ− 3

⎡⎣ p2
⊥

m2w2
⊥

+ (p∥ −mU)2

m2w2
∥

⎤⎦⎞⎠−(κ+1)

.

(2.4)

Where κ ∈ (3
2 ,∞) is the kappa parameter of the distribution. The value of κ

tells us how far we are from thermal equilibrium. In the limit κ→∞ the Kappa
distribution converges to the Maxwellian, as demonstrated in figure 2.1.

In figure 2.1 we are showing the reduced VDF, which can be obtained from
the full VDF by integrating along the perpendicular velocities. The reduced VDF
can be used to investigate the stability of the system, as shown in [Gurnett and
Bhattacharjee, 2017, chapter 9.5]. Notably, a positive slope in the reduced VDF
is a necessary but not sufficient condition for instability.

The Kappa distribution (2.4) allows us to describe stationary states outside
of thermodynamic equilibrium. As demonstrated by Maksimovic et al. [1997],
the Kappa distribution can be used to model the electron VDF in the fast solar
wind, capturing its characteristic high-velocity tails.

2.1.2 Multiple populations
So far, we have been describing the background VDF. However, in order to study
type III radio emissions, we must also include the electron beam population. The
electron beam propagation has been studied by the means of numerical simula-
tions by Kontar and Reid [2009]. They showed that the high energy electrons in
the beam lose their energy to the plasma waves and this energy is then reabsorbed
by the lower energetic electrons in the beam. Although this mechanism is not
yet well theoretically understood, it allows for the beam to propagate over large
distances.

Another way to study the electron VDF introduces multiple populations of
electrons:

• Thermal core - A Maxwellian VDF describing ∼ 95% of the number density.

• Halo - A suprathermal population of electrons exhibiting a power-law be-
havior at high energies. This tail of the electron VDF can be modelled by
the Kappa distribution.

• Strahl - An anisotropic field aligned population of electrons appearing as a
shoulder on the electron VDF.

• Electron beam - A separate population of electrons with a large bulk velocity
(∼ 10keV) directed anti-Sun-ward.
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This approach of using different electron populations has been used by Ver-
scharen et al. [2022] to describe the kinetic instabilities that can arise from the
electron VDF.

2.2 Wave modes
During in situ type III radio emissions, a passing electron beam causes the growth
of plasma waves. In this section we overview the available wave modes which are
relevant for studying the source regions of type III radio emissions.

2.2.1 Langmuir mode
Langmuir waves are longitudinal pressure waves at or above the local electron
plasma frequency. They cause rapid oscillations in the plasma electron density.

The dispersion relation of Langmuir waves is called the Bohm-Gross disper-
sion relation. The dispersion relation provides a formula for the frequency of the
Langmuir wave

ω2 = Π2
pe(1 + γeλ

2
Dek

2), (2.5)

where Πpe is the electron plasma frequency, γe is the power law index (γe = 3
for longitudinal waves one-dimensional compression), λDe is the Debye shielding
length and k is the magnitude of the wave vector. The Bohm-Gross dispersion
(derived in Gurnett and Bhattacharjee [2017]) holds true for kλDe ≪ 1. For
higher values of kλDe ≥ 1, Langmuir waves cannot propagate far due to Landau
damping.

An intuitive understanding of Landau damping can be obtained by consider-
ing the situation of a monotonously decreasing VDF. At any point there are more
particles that are slower than the phase velocity of the wave and interaction with
the wave causes the wave to lose energy to the acceleration of these particles.

An analogous process can be used to explain the Langmuir wave growth when
a bump in the VDF is present. At the bump, there is temporarily more particles
faster than the wave phase velocity, which causes the growth of the wave and
flattens the VDF, creating a plateau.

2.2.2 Z-Mode
The Z-mode is a continuously connected branch of the index of refraction which
can be derived in the cold plasma approach (see Gurnett and Bhattacharjee
[2017]). It is a perpendicularly polarized electromagnetic wave.

The solution for the allowed wave modes varies as we move above or below
the local plasma frequency. When we are above the plasma frequency and below
the upper hybrid frequency (ωUH > ω > Πp), only the X mode is accessible.
Thus we have a resonance at some angle between the k vector and the magnetic
field. This means that above the plasma frequency the Z-mode cannot propagate
directly along the magnetic field.
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Below the plasma frequency, the Z-mode can also exist up until the L-cutoff
frequency (Πp > ω > ωL). In this region both the L and X mode are accessible
for the Z-mode, meaning that the wave can propagate in any direction.

2.3 Previous studies
The first observations of type III radio emissions were presented by Wild [1950],
exhibiting a characteristic drift in frequency of the radio emission with time. The
proposed explanation for the frequency drift was a drifting source of the radio
emission.

With the increasing access to space, this explanation was tested by space-
craft observations. Using data from the IMP mission Gurnett and Frank [1975]
showed the observation of an in situ type III radio event at 1 AU. With obser-
vations performed closer to the Sun, Gurnett and Anderson [1976] presented the
association of Langmuir waves with type III radio emissions as observed by the
Helios 1 spacecraft. Type III radio emission can be observed at a wide range of
heliospheric distances, as shown by the Cassini’s observations at 10 AU [Boudjada
et al., 2020].

The effects of density inhomogenities on Langmuir wave generation were stud-
ied using ISEE 3 data by Robinson et al. [1992]. They show that Langmuir waves
often appear in clumps, which corresponds to density fluctuations in the solar
wind. The effect of density inhomogenities on the fundamental radio emission
was investigated by Krupar et al. [2018] using the STEREO spacecraft, showing
that the decay profile of type III bursts can be explained by the scattering of the
fundamental component between the source and the observer.

The mechanism behind the radio wave generation has been a subject of study
since the late 1950s. The conversion process from Langmuir waves to radio waves
at the plasma frequency and its second harmonic was studied by Zheleznyakov
and Zaitsev [1970], Melrose [1980] and more recently Jebaraj et al. [2023] (and
references therein). The generally accepted understanding is that the generated
Langmuir waves decay and due to nonlinear wave interaction produce the radio
emission.

Additionally, the type III radio emissions have been studied theoretically by
modeling the electron beam and its interaction with the solar wind. The evolution
of the electron beam population was studied by Kontar and Reid [2009], Reid and
Kontar [2012] and Lorfing et al. [2023], predicting a spectral break in the electron
velocity distribution. Furthermore Lorfing and Reid [2023] predicted the electron
beam velocities which allow for Langmuir wave growth.

For a more exhaustive overview of type III radio emissions see Reid et al.
[2014].
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3. The Solar Orbiter spacecraft

The Solar Orbiter spacecraft was developed by the European Space Agency. The
spacecraft launched in February 2020 from Cape Canaveral and is equipped with
scientific instruments dedicated to studying the Sun and the solar wind environ-
ment.

This section provides a brief overview of the onboard instruments, which are
used for observing in situ type III events. These instruments (highlighted on
figure 3.1) include the Radio and Plasma Waves (RPW) instrument for the wave
observations, the Solar Wind Analyzer (SWA) and the Energetic Particle Detector
(EPD) instruments for electron beam observations and the Magnetometer (MAG)
instrument for magnetic field observation.

Figure 3.1: A visualization of the Solar Orbiter spacecraft highlighting the on-
board instruments used for observing in situ type III events. Image source:
[ESA/ATG MediaLab, 2019]

3.1 The Spacecraft Reference Frame
Several instruments described in the next section have their own coordinate sys-
tem, typically aligned with the symmetries and orientation of the sensors. How-
ever, when analyzing data from multiple instruments, it is convenient to establish
a common reference frame. The Spacecraft Referece Frame (SRF) allows us to
directly compare measurements between the instruments.

The SRF axes are shown in figure 3.2. The SRF X-axis points towards the
Sun and the Y-Z plane is aligned with the electric antennas.

The data files from the particle instruments onboard usually contain a coor-
dinate transformation matrix which we use to convert the data to the SRF. For
the electric waveform data, we convert to the SRF by using the antenna effective
lengths.

22



3.2 Description of instruments

3.2.1 Radio and Plasma Waves
The Radio and Plasma Waves (RPW) instrument [Maksimovic et al., 2020] pro-
vides measurements of the electric and magnetic field waves. All of the RPW
subsystems are conencted to the three electric antennas. We will focus on the
Time Domain Sampler (TDS) subsystem since it provides the ability to observe
both the in-situ Langmuir waves and the type III radio emission.

Figure 3.2: A visualization of the Spacecraft Reference Frame (SRF) axes.

Time Domain Sampler (TDS)

The TDS receiver covers a frequency range from 200 Hz up to 200 kHz and has
four channels, which are connected to the three electric antennas and the search
coil magnetometer. In the usual configuration, the TDS measures two electric
components in dipole mode, one component in monopole and the magnetic field
waveform data in the fourth channel. The TDS produces several data products
which we can use to observe Langmuir waves.

The TDS measures one waveform snapshot each second, covering ∼62.5 ms
(6.25% of the time) of the second, typically at the sampling frequency of 262
kHz. All of the waveform snapshots are then labeled by the onboard algorithm
(wave emission, dust impact, and other triggers). The algorithm is also respon-
sible for choosing which waveforms are saved, producing the triggered waveform
data product (TSWF). These snapshots facilitate our Langmuir wave detection
capabilities.

Additionally, the regular waveform data (RSWF) consist of snapshots saved
regularly, typically at 5-minute intervals. This data product provides an overview
of entire type III events, showing the radio emissions and the Langmuir waves.

And lastly, the MAximum AMplitude data (MAMP) is a continuously sam-
pled data product at the rate of 2097.1 ksps, with the maximum amplitude values
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being stored every 7.8-250 ms. Despite potential spacecraft interferences, MAMP
data allows for tracking wave packets of Langmuir waves.

The TDS can be operated in multiple modes which determines parameters
such as the sampling frequency, how many snapshots get saved by the algorithm or
how often the regular snapshots are saved. For observing type III radio emissions,
there is a special mode called the SBM2 mode. This Selected Burst Mode can
be triggered by an onboard algorithm which performs a real time analysis of the
spacecraft observations. When triggered, this mode increases the number of saved
triggered waveforms, which allows for more Langmuir wave observations.

To improve the TDS’s performance, we have performed an analysis of the on-
board algorithm which triggers the SBM2 mode. This analysis resulted in better
performing set of parameters which are tuned so that more type III emissions are
detected. These parameters have been uploaded to the Solar Orbiter spacecraft
and in use since July 2021.

3.2.2 Solar Wind Analyser
The Solar Wind Analyser (SWA) instrument consists of several systems, each
dedicated to analyzing different populations of particles in the solar wind. These
systems and the science motivations behind the instrument are described in detail
by Owen et al. [2020]. For the purpose of our study of the electron VDF, we
describe the measurement principle of the Electron Analyser System (EAS) and
its associated data products.

The Electron Analyser System (EAS)

The EAS system consists of two top-hat electrostatic analyzers (EAS1 and EAS2).
They are mounted orthogonaly to each other on the end of the spacecraft boom,
as shown in figure 3.1.

First, the electrons arriving at either sensor head are deflected into the elec-
tron analyzer by applying a positive charge to the external deflector electrodes
(part of the Aperture Deflection System - ADS). Each head has two such elec-
trodes, to control the acceptance angle, providing 16 elevation bins.

Inside the electron analyzer, the electrons are guided using another pair of
deflector electrodes, which allows for the determination of the electron energy.
These deflectors allow for a resolution of 64 energy levels at each elevation.

Then the electrons arrive at the detector and readout element. For the detec-
tion a multichannel detector plate is used. The detector has 32 bins, providing
azimuthal resolution by splitting the 360◦ azimuth acceptance angle.

As a result, each analyzer head provides 16 elevation bins (±45◦), 32 az-
imuthal bins (360◦), and 64 energy level bins (from 1eV to 5keV) for each mea-
sured direction. The entire measurement process includes 16 sweeps in energy for
each elevation and takes ∼ 1s to complete. Combining the fields of view of both
instrument heads provides a full 4π steradian 3D VDF. Although it is important
to note that certain directions are obscured by the spacecraft, its solar panels and
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some structural elements of the instrument heads.

The 1s 3D VDF data from the EAS1 and EAS2 heads has a 10s cadence in
the normal mode and a 1s cadence in the triggered mode.

3.2.3 The Energetic Particle Detector
The Energetic Particle Detector (EPD) allows Solar Orbiter to observe electrons
at suptrathermal energies. These energies play a crutial role when growing Lang-
muir waves as investigated by Lorfing and Reid [2023]. We describe the electron
sensors of EPD which can be used to observe electron beams generating for type
III radio emissions.

The SupraThermal Electron Proton sensor (STEP)

The STEP sensor (detailed description in Rodŕıguez-Pacheco et al. [2020]) mea-
sures protons and electrons at suprathermal energies of 7 keV − 80 keV. This
detector consists of two sensor heads with an aligned field of view, where one
of the sensors contains a permanent magnet to deflect electrons. The sensor
head with the permanent magnet (magnet channel) thus only measures ions and
the other sensor head measures both electrons and ions (integral channel). We
can obtain the electron observations from the STEP detector by subtracting the
magnet channel from the integral channel data.

The two sensor heads of STEP have a field of view of 28◦ × 54◦ aligned
with the nominal Parker spiral. The wider angle being in the ecliptic plane.
The sensors use a pinhole design and a segmented solid state detector to achieve
spacial resolution.

The segmented solid state sensor is made from two identical silicon semicon-
ductor diode detectors. When a particle impacts the diode detector, it allows
current to flow. Each of the segmented sensors consists of 15 segments in a 3× 5
array and one segment1 for background noise correction.

The maximum time resolution of the STEP measurement is 1s, with the duty
cycle of the solid state detector being 100%.

The Electron Proton Telescope (EPT)

This sensor is designed to measure electrons with energies of 25 keV − 475 keV
and protons with energies of 25 keV − 6.4 MeV. The EPT consists of two units,
each unit having two double-ended telescopes with a 30◦ field of view in oppo-
site directions. The maximum time resolution of the EPT electron and proton
measurements is 1 s.

The two units give a total of four fields of view, one being in the Sun and
anti-Sun direction and the other looking northward and southward. The instru-
ment design, described in greater detail in Rodŕıguez-Pacheco et al. [2020], uses a
magnet/foil design derived from the STEREO/SEPT instrument (Müller-Mellin
et al. [2008]).

1Shielded by an aluminum lid to prevent particles from reaching this segment.
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Each double-ended telescope has two apertures in opposite directions. One
aperture contains a thin foil to stop ions (below ∼ 400 eV) and lets electrons
pass through. The other aperture contains a magnet which deflects the electrons
leaving only ions to reach the sensor. The sensor used in EPT is a back-to-back
mounted, segmented, silicon based solid state detector.

3.2.4 Magnetometer
The Solar Orbiter Magnetometer (MAG), described in detail by Horbury et al.
[2020], is a scientific instrument designed to measure the magnetic field around
the Sun with high precision. This magnetometer utilizes a dual fluxgate design,
meaning it has two separate sensors for redundancy and to differentiate between
the magnetic field of the spacecraft and the Sun itself.

The two sensors are located on the spacecraft boom, remaining in the shadow.
To maintain a stable sensor temperatures there are redundant thermistors and a
heating element, which keeps the sensors above the minimum operational tem-
perature of −100 ◦C.

The instrument then amplifies the signal, filters it, and converts it into digital
data. The instrument can operate in different ranges depending on the strength of
the magnetic field. The data is then sent to the spacecraft for further processing
and transmission to Earth.

We use the ambient magnetic field measurement by MAG to convert mea-
surements done by other instruments into field aligned coordinates. The MAG
data used in our analysis has a cadence of 8 vectors/s.
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Data Analysis Objectives

Having established a comprehensive theoretical foundation in the preceding chap-
ters, we outline the specific objectives of this thesis. The in situ observations by
the Solar Orbiter spacecraft allow us to analyze the source regions of type III
radio emissions.

Our focus lies on the interaction of the electron beam with the solar wind
and the generation and characteristics of Langmuir waves:

• Using the electron observations performed by the Solar Orbiter spacecraft,
we will develop a model of the electron velocity distribution.

• We will employ the Poisson maximum likelihood method to accurately de-
termine the model parameters, thereby extracting the key features that
define the electron velocity distribution function.

• For the modeled velocity distributions, we will determine its stability and
the possibility of Langmuir wave growth. This will be achieved by employing
numerical methods, specifically the ALPS plasma dispersion relation solver.
By obtaining the dispersion relation, we aim to gain a deeper understanding
of the plasma instabilities within the solar wind.

• We will also conduct a Hilbert transform analysis of observed electric wave-
forms from the Solar Orbiter. This analysis will allow us to determine
the characteristics of observed plasma waves, focusing on their frequency
distribution and polarization.

By addressing these objectives, the presented thesis aims to contribute to
the broader understanding of type III radio emission generation in the solar wind
environment and provide insights into the mechanisms driving the Langmuir wave
growth.
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4. Analysis of kinetic instabilities
caused by the electron beam

The hot plasma dispersion relation method described in chapter 1 allows us to
study the stability of electron VDFs in the solar wind. In this chapter we describe
how the electron VDF can be obtained from measurement data and how we can
use it to run the ALPS code to solve the dispersion relation.

4.1 Observed electron distributions
For our analysis, we use the data from both the SWA-EAS sensor and the EAS-
STEP data. Together, these data products cover the velocities which are relevant
for Langmuir wave growth.

Figure 4.1: A time averaged electron pitch angle distribution from SWA-EAS (600 s
average) below 5 keV and EPD-STEP (60 s average) above 7 keV. The blue lines high-
lights the energy threshold for photoelectrons induced by the spacecraft potential and
the orange line signifies the crossing between EAS and STEP energies.
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For our analysis, we need to obtain the VDF in the field aligned momentum
coordinates. To achieve this, we transform the EAS phase space density data
from the EAS coordinate system to SRF. Then, we can project each pixel onto
the magnetic field direction. Additionally, we remove all the pixel look directions
which are obscured by the spacecraft (solar panels, EAS support pillars).

After the transformation we have an irregular grid with coordinates (p∥, p⊥).
The phase space density is also accompanied by the raw count data. We then
transform the EAS data to a regular energy - pitch angle grid with an angular
resolution of 36 pitch angles covering the full range of (0◦, 180◦). We average the
phase space density values within the grid points and sum the raw counts.

For the STEP data an analogous approach is used to obtain a second regular
grid with the phase space density and counts at suprathermal energies. The result
of this transformation are shown in figure 4.1.

Having created a regular grid in the energy-pitch angle space, we still need
to convert the data to a regular grid in (p∥, p⊥) coordinates1.

4.2 Model of the velocity distribution
Using the Maxwellian (2.1) and Kappa (2.4) distributions, we can fit the pitch
angle distribution data and then use the fit parameters to generate a regular grid
in (p∥, p⊥) coordinates.

4.2.1 Maximum likelihood method
Our electron observations obey the Poisson distribution. This makes the least
squares minimization method inaccurate. In order to obtain the correct fit pa-
rameters for our model we perform a maximization of the Poisson probability
according to a method developed by Santolik [1995]

P = Πm
i=1p(Ni), (4.1)

where m is the number of observations, and p(Ni) is the probability of ob-
serving Ni counts for given parameters. This probability is given by the Poisson
distribution

p(Ni) = eninNi
i

Ni!
, (4.2)

where the parameter ni is the predicted count.

For convenience, we will be minimizing the function

µ(a) = − ln(P ) =
m∑︂

i=1
ln(p(Ni), (4.3)

1We note that it is convenient to first perform the pitch angle transformation as it allows
for simple data visualization and if we keep the count information we can still perform accurate
data analysis and fitting. However, it should be possible to perform the fitting directly on the
irregular (p∥, p⊥) grid.
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which is equvalent to maximizing the likelihood P . Plugging (4.1) into (4.3) we
obtain

µ(a) =
m∑︂

i=1
ln
(︄

e−ninNi
i

Ni!

)︄
(4.4)

=
m∑︂

i=1
ni −Ni ln(ni) + ln(Ni!). (4.5)

Since the term ln(Ni!) does not depend on the fit parameters a, the parameter
optimization can be performed using the function

µ∗(a) =
m∑︂

i=1
ni −Ni ln(ni). (4.6)

4.2.2 Determination of the model parameters
As shown in figure 4.1, we have both the phase space density and count data for
each pitch angle and energy. We can determine the count coefficients for each
data point, which allows us to convert the fit result to the predicted counts ni.
Performing this fit this way allows for the count uncertainty of each data point
to be considered.

For this investigation we chose the electron observations recorded on February
28th 2023 at 15:15, shown on figure 4.1. For our fit we chose a Maxwellian
distribution to describe the thermal core, a Kappa distribution corresponding to
the halo and strahl population and lastly a second Maxwellian distribution to
describe the electron beam:

ffit(
∼
p∥,

∼
p⊥; a, b, c, d, e) = a1 exp(−b1(

∼
p∥ − c1)2 − b1d1

∼
p⊥

2)

+a2(1 + [b2(
∼
p∥ − c2)2 + e2

∼
p⊥

2])d2 + a3 exp(−b3(
∼
p∥ − c3)2 − b3d3

∼
p⊥

2).
(4.7)

The resulting fit is shown in figure (4.2) and the fit parameters are listed in
table 4.1. In the fit, we excluded the measurements below 15 eV which correspond
to photoelectrons. This effect is caused by the presence of the spacecraft and
artificially increases the flux of low energy particles.

Core (1) Halo+Strahl (2) Beam (3)
a 0.0698 0.0152 6.13e-10
b 12.8 2.56 0.0971
c 0.0297 -0.212 -10.9
d 0.78 -3.56 30.6
e - 8.12 -

Table 4.1: Raw fit parameters of the normalized distribution.

Our model, described by equation (4.7), was chosen because superposing
Maxwellians and a Kappa distribution allows us to use the fit results to run
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ALPS. A more complex model of the electron VDF as used by Štverák et al.
[2009] could provide physical parameters which better describe the system. The
limitations of our model can be seen when we consider the relative densities nr

of the populations, listed in table 4.2.

Core Halo+Strahl Beam
nr 0.860 0.140 2.91 · 10−7

T∥ 11.1 eV 52.3 eV 1.46 keV
T⊥ 14.2 eV 16.5 eV 47.6 eV
U 0.125 eV 6.38 eV 16.7 keV
κ - 2.56 -

Table 4.2: Physical parameters of the fitted distribution.

From the physical parameters in table 4.2, we see that the electron beam en-
ergy is 16.7 eV. We also see the drift of the strahl population and the temperature
anisotropies caused by the presence of a magnetic field of B ≈ 18.5 nT.

Figure 4.2: ALPS interpolated SWA-EAS data and a fit of the distribution.
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4.2.3 Stability of the velocity distribution
Using out fit parameters, we can generate a regular (p∥, p⊥) grid. We call this
table an f0-table and it can be used for runnuing the ALPS dispersion relation
solver. For an introduction into working with ALPS, see appendix A.

Numerically solving the hot plasma dispersion relation reveals that the ob-
served VDF is stable. In figure 4.3, we show the growth rate γ as a function of kλD

for the observed VDF and for modified VDFs with lower parallel temperatures
of the beam.

Figure 4.3: The growth rate of Langmuir waves γ obtained by running the ALPS
dispersion relation solver on the model electron VDFs. The blue line corresponds
to the observed VDF parameters with a plateau. The other solutions correspond
to a modified VDF which has a lower parallel beam thermal velocity w.

Due to technical limitations the interaction occurs too quickly for the un-
modified population to be observed by the electron instruments. Additionally,
the interaction is occurring all the way along the beams path, so the deviations
from the observed plateau distributions are relatively small.

Decreasing the beam temperature allows us to estimate how the beam looked
like before an interaction with the background plasma occurred. The lower paral-
lel beam temperature causes a higher phase space density around the beam drift
velocity, while perserving the total number density of the beam population.

We show the reduced VDFs for observed and modified temperatures in figure
4.4. We see that for the unstable configuration w∥ = w0∥, there is a second hump
in the reduced VDF. The stability of the remaining single humped reduced VDFs
is in agreement with Gardners theorem [Gardner, 1963][Gurnett and Bhattachar-
jee, 2017, chapter 9.5].
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Figure 4.4: The reduced VDF for the fitted model parameters and for a modified
beam parallel temperature.

With a simple thought experiment we can show that plasma density inhomo-
geneities provide another possibility for an environment prone to the instability.
Let us consider an electron beam entering a region with a lower plasma density.
The core population provides a lower contribution to the total VDF, and the
same electron beam now has a higher chance at producing a positive gradient in
the reduced velocity distribution function.

This positive gradient in the reduced VDF can cause the growth of Langmuir
waves, analogously to the process of Landau damping which stops Langmuir
waves from propagating freely in space. However, if we consider an inverse sit-
uation where an electron beam enters a denser environment, the waves become
more dampened due to the Landau damping from the core population.
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5. Analysis of observed waves

5.1 Event overview
In this chapter we investigate the wave observations in the source regions of type
III solar radio emissions. We will focus on the observations from 28th February
2023 recorded by the Solar Orbiter spacecraft. The magnetic field orientation
during during these observations provide a unique opportunity to study the wave
polarization.

Figure 5.1: Overview of in situ observations from the Solar Orbiter spacecraft on
the 28th February 2023. Panels a) and b) show the RPW-TDS time-frequency
spectrogram of the SRF Y and Z components respectively, panel c) shows the
EPD-STEP electron data, panel d) shows the RPW-TDS continuously sampled
maximum amplitude data and panel e) shows the binary magnetic field alignment
with the EPD-STEP field of view and the angle between the magnetic field and
the edge of the EPD-STEP field when the magnetic field is outside the field of
view.

On this day, several in situ type III radio emissions were observed by the
Solar Orbiter. In figure 5.1 we show an overview of the in situ measurements,
showing the three radio emissions occurring at ∼04:20, ∼06:40 and ∼15:05 UTC.
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During the second event at ∼06:40 the SBM2 mode (described in section
3) was triggered, allowing for 192 snapshots of Langmuir waves to be recorded.
During this time, the magnetic field was nearly aligned with the Y-Z plane in the
SRF reference frame. For this reason the magnetic field is outside the EPD-STEP
field of view and the beam observation only shows the edge of the electron beam.

Although the magnetic field orientation limits our direct electron observation
capabilities during this event, we still see the edge of the electron beam, which is
dispersed in velocity space.

5.2 Waveform polarization
The magnetic field vector B orientation near the Y-Z plane provides an advantage
when analyzing the polarization of the recorded waveform signal. To perform
this analysis with 3D measurements we would convert the waveform data to field
aligned coordinates. Since the electric waveform signal EY Z is recorded only in
the 2D Y-Z plane, we must project the magnetic field on the Y-Z plane BY Z .
Then, we can estimate the parallel component of the electric field.

If we assumed purely longitudinal waves (E⊥ = 0), the parallel component
could be estimated as

E|| = EY Z · B̂Y Z

cos(θ) , (5.1)

where θ is the angle between the magnetic field vector B and the Y-Z plane. This
gives us a good estimate if there are purely electrostatic Langmuir waves present.

In order to account for the Z-mode waves, we will instead assume that EX = 0
and estimate the parallel component as

E∥ = EY Z · B̂Y Z . (5.2)

Under the same assumption, we estimate the perpendicular component as

E⊥ = EY Z ·
[︄

B̂Y Z,2

−B̂Y Z,1

]︄
. (5.3)

Having approximately estimated the transformation of the electric field data
into field aligned coordinates, we can focus on analyzing the individual compo-
nents. To analyze signals at one characteristic frequency a particularly useful tool
is the Hilbert transform. It allows us to get the instantaneous phase of the signal.
The result of performing the Hilbert transform on the estimates of parallel and
perpendicular components is shown in figure 5.2.

This analysis allows us to study the relative phase, of the two components.
From the first plot in figure 5.2, we can see that the relative phase is very noisy
when no waves are observed and when wave growth occurs the relative phase
between the two components is shifting. We can also see both linear and elliptical
polarization as demonstrated by the hodograms in figure 5.2.
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Figure 5.2: The field aligned electric field waveform data and their Hilbert trans-
form relative phase shift is shown on the left. The plots on the right show the
hodogram of the electric field using the snapshots between the dashed vertical
lines.

Figure 5.3: The instantaneous frequency distributions for the field aligned
components of the electric field waveforms.

The linearly polarized field aligned oscillations could be explained by Lang-
muir waves or beam mode waves. However there are certainly more wave modes
at play. This can be shown by further analyzing the signal. We can study the
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instantaneous frequency spectrum of the two components, as shown in figure
5.3. The width of the instantaneous frequency distribution for the parallel and
perpendicular components are different and shifted in frequency.

By analyzing all of the 192 snapshots recorded we have found that the parallel
frequency distribution is usually wider than for the perpendicular component.
These different widths of the frequency distribution could be explained by the
presence of multiple wave modes.
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Conclusion

In chapter 1, we introduced the fluid approach in order to explain the shape of
the Sun’s magnetic field. Then we delved into the kinetic plasma theory, briefly
expressing the cold plasma dispersion relation and deriving the dispersion relation
for hot plasma.

To provide an overview of the type III radio emissions, we summarized the
current theoretical understanding of these events in chapter (2). We discussed
the various shapes of velocity distribution functions (VDF)s and how they can
be modeled.

The multiple populations which the solar wind consists of were also intro-
duced, allowing us to discuss their contributions to the Langmuir instability. We
discussed the available wave modes in the solar wind and provided an intuitive
description of Landau damping.

An introduction to the Solar Orbiter spacecraft and its instruments was pro-
vided in chapter 3.

In chapter 4, we have described the principle of Langmuir wave generation
in the source regions of type III radio emissions by using observational electron
velocity distribution data. We were able to describe the studied system by a
model and determine the stability of the observed electron VDF.

We developed a fitting procedure which considers the Poisson distribution
of the observational data. This method was then used to obtain a model of
the velocity distribution. This allowed us to numerically solve the hot plasma
dispersion using the ALPS solver.

Since the instability process quickly causes the velocity distribution function
to become stable again, we cannot directly observe an unstable configuration.
This was confirmed by the dispersion relation obtained from ALPS. However, we
can model the unmodified beam population only by changing its temperature.
This is sufficient to cause the Langmuir instability at parameters close to the
actually observed electron distribution.

A detailed analysis of the generated Langmuir waves is presented in chapter 5.
By performing the Hilbert transform analysis of observed electric field waveforms,
we show the presence of multiple wave modes.

The frequency distributions of parallel and perpendicular electric field com-
ponents suggest the presence of multiple wave modes.

By performing a Hilbert transform analysis of the measured waveform signal
we show how the wave polarization drifts in time. This indicates that the signal
consists of a range of frequencies.
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M. Berthomier, K. Goetz, P. Hellinger, T. S. Horbury, K. Issautier, E. Kontar,
S. Krucker, O. Le Contel, P. Louarn, M. Martinović, C. J. Owen, A. Retino,
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V. Arciuli, K. L. Arnett, R. Ascolese, C. Bancroft, P. Bland, M. Brysch,
R. Calvanese, M. Castronuovo, I. Čermák, D. Chornay, S. Clemens, J. Coker,
G. Collinson, R. D’Amicis, I. Dandouras, R. Darnley, D. Davies, G. Davison,
A. De Los Santos, P. Devoto, G. Dirks, E. Edlund, A. Fazakerley, M. Ferris,
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S. Dalla, W. Dröge, O. Gevin, N. Gopalswamy, Y. Y. Kartavykh, K. Kudela,
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A. ALPS in electron mode

Numerical plasma dispersion relation solvers such as ALPS [Klein et al., 2023] or
WHAMP [Roennmark, 1982] use normalized physical quantities to simplify the
underlying calculations. The normalization converts physical parameters such as
temperature or velocity to dimensionless quantities and these converted parame-
ters can then be used to run the dispersion relation solver.

By default, ALPS uses the proton normalization. This normalization, de-
scribed by Verscharen et al. [2018], is used in the example test files available on
the ALPS github page. However, using the proton normalization for electron ki-
netic instabilities can result in lower numerical precision, since these instabilities
typically occur at high frequencies compared to the proton cyclotron frequency.

A.1 Normalization
For achieving better numerical precision and better usability, we use ALPS in
electron mode. This means using a non-standard normalization which we describe
here.

A.1.1 General description
For each species ALPS requires a well defined distribution function f0s. The re-
quired format is a regular rectangular momentum grid (parallel and perpendicular
momentum), stored in a distribution function table (.array file). When running
ALPS, the input file contains the name of the corresponding f0-tables, as well
as other parameters which describe the plasma. The normalization ALPS uses is
explained by table A.1, containing formulae for performing the normalization.

Variable symbol Physical units ALPS normalized
Electron mass me 9.109 · 10−31 kg 1

Electron charge qe −1.602 · 10−19 C +1
Proton charge qp 1.602 · 10−19 C −1

Electron gyrofrequency Ωe
qB
me

1
Modified Alfvén speed vA, vA B√

µ0nme
vA/c

Electron skin depth dp
vA

Ωe
1

Momentum of species ps, ps vsms
ps

vAme

Table A.1: Constants and formulas useful for determining the input parameters
for ALPS in electron mode.

Additionally, it is useful to list a few more parameters which are used to
describe the plasma in ALPS. The temperature of the plasma is determined by
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the plasma beta parameter
β = nkBT

B2/2µ0
. (A.1)

This parameter also depends on the magnetic field, however the magnetic
field is already fixed by setting the electron gyrofrequency (cyclotron frequency).

A.1.2 Example case
In this thesis we used the ALPS dispersion relation solver for modeling electron
kinetic instabilities caused by an electron beam. To test the validity of our results,
we will compare the results of the ALPS solver with the WHAMP solver.

In this exercise we focus on a simple case with three Maxwellian populations
consisting of the electron core, electron beam and proton background. The tem-
peratures of these three populations are equal and the number density ratio of
the electron beam to the background proton distribution is nb/np = 0.001. Two
cases are studied, where the electron beam velocity vb is set in multiples of the
thermal speed w =

√︂
2kBTe

me
. This problem was adapted from [Gary, 1993, sec.

3.2.2] who solves it for the 1D case.

We will study the cases vb = 5w and vb = 10w, which should produce the
Langmuir instability and the beam mode instability respectively. Our physical
parameters for both cases are listed in table A.2.

When determining the ALPS normalized parameters, it is convenient to re-
alize the equivalence of the three parameters B, n, T and Ωe, β, vA. It is an easy
exercise to show that from one set we can obtain the other using formulas from
table A.1 and equation (A.1).

B (nT) n (cm−3) T (K) Eb (eV) vA (km/s) vb (km/s) vp (km/s)
15 25 140000 302 2804 10300 10.3
15 25 140000 1206 2804 20600 20.6

Πe (kHz) Ωe (Hz) kres (m−1) dp (m) β λD (m)
44.9 420 1063 0.0274 0.540 5.16
44.9 420 1063 0.0137 0.540 5.16

Table A.2: Plasma parameters used for generating the ALPS inputs.

Note that to satisfy the zero-current condition, in table A.2, we calculated
the necessary drift velocity of the background protons vp. These drift velocities
are relative to the stationary electron core population. Having the background
electron distribution with zero drift velocity will be convenient for running ALPS,
since the first population is required to have a zero drift velocity.
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A.2 Generating f0-tables
To generate the velocity distributions, it is advised to start with a test file avail-
able at the ALPS github page and modify it as needed.

The electron mode requires a different approach for setting up the species.
(Different than the usual proton normalization.) The used configuration of the
species is described in table A.3.

Description Motion Charge Mass Density
1 Electron background stationary 1 1 1
2 Electron beam moving 1 1 nb/ne

3 Proton background moving (zero current) -1 1836 np/ne

Table A.3: List of the ALPS species for modeling an electron beam interacting
with the background electron VDF

Using the formulae from table A.1 we can calculate parameters, which are
required in the *_dist.in file. Running the generate_distribution script then
uses this file as input for producing the f0-tables. Some of the parameters (such
as the relative density) are not used during the f0-table generation. However,
they will be useful for creating the input files for running ALPS. We list all of
the ALPS normalized parameters for vb = 5w and vb = 10w in table A.4. We
note that the number densities are again normalized to species 1 (the electron
background distribution).

It is easy to verify that the parameters in table A.4 satisfy the zero current
condition ∑︂

s

nsqsvs = 0 (A.2)

as well as the quasineutrality condition

∑︂
s

nsqs = 0. (A.3)

If these conditions were not met, some current driven instabilities may appear
in our solution of the dispersion relation.

After we have determined all the necessary parameters we can modify the
example_dist.in file in the distribution directory and run the command
./generate_distribution example_dist.in to generate the f0-tables. This
command also outputs the ideal fit parameters for the distribution, which should
be copied to the ALPS input file before running it. This is because ALPS uses
the fit to perform hybrid analytic continuation, for more detail see [Verscharen
et al., 2018, section 3.2].
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ALPS variable name vb = 5w vb = 10w

Global params nspec 3 3
beta, bM_betas 0.53977 0.53977

vA (vA/c) 0.00935 0.00935
Species 1 ms_read, mm 1 1

ps 0 0
nn 1 1
qq 1 1

taus 1 1
Species 2 ms_read, mm 1 1

ps 3.673452 7.346903
nn 0.001001 0.001001
qq 1 1

taus 1 1
Species 3 ms_read, mm 1836.1527 1836.1527

ps 6.745018 13.490036
nn 1.001001 1.001001
qq -1 -1

taus 1 1

Table A.4: List of the resulting ALPS normalized parameters for a dense electron
beam example.

A.3 ALPS input files
To write the input files for ALPS we will use the parameters listed in table
A.4 as well as the ideal fit parameters obtained while generating the f0-tables.
There is of course the possibility of generating the f0-tables in some other way,
such as from observational data. In that case, it is recommended to fit the data
beforehand and generate an initial guess for the fit parameters.

The ALPS input files allow for several types of scans which are described in
the ALPS documentation. For analyzing the parallel propagating waves, it is
best to do a k|| scan (corresponding to scan type 4).

In order to find all the roots of the dispersion relation, it is useful to generate
a map of the determinant of the dispersion tensor D. This scan can allow us to
find all of the roots of the dispersion relation by following each minimum found
during the scan. However, one has to know where to look for the roots. An
overview of space plasma instabilities can be found in Gary [1993].
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A.4 Results
Just like the input files, the output files are normalized. We can use the electron
skin depth dp and the electron gyrofrequency Ωe to convert the results to physical
units.

For the example case introduced above, we present the dispersion relation for
vb = 5w and vb = 10w as shown in figure A.1.

Figure A.1: The hot plasma dispersion relation calculated using the ALPS and
WHAMP solvers. The dispersion relation roots corresponding to the Langmuir
and beam modes are shown.

We also reproduced the results in the WHAMP dispersion relation solver.
Both the frequency and growth rates coinside for both solvers as shown in figure
A.1.
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