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Introduction

Electron photodetachment is a process in which a molecular anion decays
into a neutral molecule and an electron after absorbing a photon. In resonance
photodetachment, the amplitude of this process can be amplified or reduced
by the presence of a meta-stable anion state.

This thesis aims to develop numerical methods for calculating the am-
plitude of the resonance photodetachment process. We utilize the non-local
discrete-state-in-continuum model and projection-operator formalism, ap-
proaches that have proven very successful in describing low-energy inelastic
electron-molecule collisions leading to vibrational excitation, as discussed in
sources such as [1]. In this thesis, we also address the vibrational excitation
to draw comparisons with the photodetachment process.

In our study, we focus exclusively on diatomic molecules. We simplify the
model by assuming only one excited meta-stable anion state and only one
energetically accessible electronic state of the neutral molecule. Moreover,
we consider only the first partial wave of the outgoing electron and photon
absorption is treated in the dipole approximation. Although our description is
simplified, it could potentially be extended to more complex systems in future
work. The molecular models used in this study are significantly simplified and
are intended to provide qualitative insights into molecular dynamics rather
than a precise quantitative description of specific molecules.

In the first chapter, we describe the photodetachment process, explain the
fundamental concepts used to theoretically address the inelastic resonance
photodetachment, and derive the equations that this thesis aims to solve.
Additionally, we introduce the fixed-nuclei approximation, which simplifies
the resonance photodetachment process by neglecting the nuclear dynamics.

The second chapter is divided into three parts. The first part details
how to reformulate the integro-differential equation for the photodetachment
amplitude into a system of linear equations. The second part describes the
numerical methods and procedures used in our computations. In the last
part, we delve into the numerical properties of our approach, discussing its
limitations as well as the convergence properties of our numerical methods.
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In the final chapter, we apply our numerical methods to two molecular
models. The first model, inspired by the LiH molecule, serves as a test
model on which the numerical methods were developed. We use this model
to explain several physical phenomena and to analyze the accuracy of the
fixed-nuclei approximation. The model inspired by the N2 molecule is used
to test the developed numerical methods in a different regime. Additionally,
we investigate this model to determine whether the boomerang oscillations
phenomenon, observed in vibrational excitation by electron scattering cross-
sections, as described for example in [2], has its analog in the photodetachment
process.
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Chapter 1

Theory

In this chapter, we initially provide a fundamental description of the
photodetachment process. We then outline the derivation of specific equations,
with the primary goal of this thesis being the numerical solution of these
equations. The derivations are largely taken from the article written by my
supervisor [3].

1.1 Resonance photodetachment
Electron photodetachment is a process in which a photon γ is absorbed

by a molecular anion M−, resulting in the decay of the anion into a neutral
molecule M and an electron e−. Resonant photodetachment describes a more
specific process, in which the absorption of a photon γ leads to the electronic
excitation of the anion into a meta-stable state (M−)∗, which undergoes
vibronic dynamics and decays into the electron-molecule scattering continuum
e− + M(νf ) [3]:

γ + M− → (M−)∗ → e− + M(νf ). (1.1)
In this thesis we use the non-local discrete-state-in-continuum model

to calculate the electron spectrum for the photodetachment. This method
is very successful approach in the description of the low-energy inelastic
electron-molecule collisions leading to vibrational excitation [1, 3]

e− + M(νi) → (M−)∗ → e− + M(νf ), (1.2)

which we also address here to compere the dynamics with the photodetachment
process.
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1.2 Dipole approximation
The initial state |Ψ0⟩ for the photodetachment process is assumed to

be the ground state of the molecular anion M−, treated within the Born-
Oppenheimer approximation [3]. The ground state wavefunction is a product
of the vibrational and electronic part |Ψ0⟩ = |χ0⟩|ϕ0⟩, where |ϕ0⟩ is the
ground electronic state of the anion and the vibrational wavefunction χ0(R)
solves the stationary Schrödinger equation[︂

T̂N + V0(R)
]︂
χ0(R) = E0χ0(R), (1.3)

where T̂N is the vibrational kinetic energy operator, V0(R) is the potential
energy function depending on the nuclear geometry R and E0 is the energy
of the initial vibrational state |χ0⟩ [3].

In this thesis, the photon absorption is approached through the dipole
approximation with the goal of calculating the photodetachment amplitude

A = ⟨Ψ(−) | D̂ | Ψ0⟩ = ⟨Ψ(−) | D̂ |χ0⟩|ϕ0⟩, (1.4)

where D̂ denotes the electrostatic dipole operator and |Ψ(−)⟩ represents the
scattering wavefunction subjected to outgoing boundary condition fixing the
final vibrational state of the neutral molecule |νf⟩ and the outgoing electron
state |ϵf⟩ [3]. During this process, the total energy E is conserved according
to the following relation

E = εγ + E0 = ϵf + Eνf
, (1.5)

where εγ represents the photon energy and Eνf
the vibrational energy of the

final state of the neutral molecule [3].

1.3 Discrete-state-in-continuum model
To calculate the scattering wavefunction |Ψ(−)⟩, the discrete-state-in-

continuum model and the projection-operator formalism is used. We assume
that there exists a diabatic basis in the Hilbert space of electrons with the fixed
nuclei of the molecule which consists of discrete states and electron scattering
continuum states [3]. In this thesis, two discrete states are considered: the
ground state of the anion |ϕ0⟩ and the excited meta-stable anion state |ϕ1⟩,
however, more discrete states could be in principle included.

We can define projector to the discrete state part of the electronic Hilbert
space

Q̂ :=
∑︂
d

|ϕd⟩⟨ϕd| (1.6)
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and the complementary operator projecting on the background electron
continuum e− + M [3]

P̂ := Î − Q̂. (1.7)
In this subspace, it is convenient to use a basis consisting of the solutions to the
background scattering problem with the fixed nuclei electronic Hamiltonian
Ĥel. This is done while considering that the neutral molecule has only one
energetically accessible electronic state. Simultaneously, we assume only the

Figure 1.1 Schematic of the photodetachment process in the LiH model, as
described in Appendix A. The diagram showcases potential curves for the neutral
molecule W (R), the ground state of the anion V0(R), and the electronically excited
anion V1(R), which includes a depiction of the resonance width. Also depicted are
the incoming photon energy εγ , the total conserving energy E, and the outgoing
electron energy ϵf , illustrating the energy transitions and interactions within the
photodetachment process.
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first partial wave of the outgoing electron [3]

P̂ĤelP̂|ϵ⟩ = [W (R) + ϵ] |ϵ⟩, (1.8)

where W (R) represents the energy of the ground electronic state of the neutral
molecule and ϵ identifies the energy of the outgoing electron. Using this basis,
we can express the projector onto the continuum part of the Hilbert space at
a fixed R

P̂ =
∫︂

|ϵ⟩⟨ϵ| dϵ. (1.9)

The fixed nuclei Hamiltonian Ĥel can be expanded in the aforementioned
basis

⟨ϕd | Ĥel |ϕd′⟩ = Vd(R)δdd′ , (1.10)
⟨ϕd | Ĥel | ϵ⟩ = Vdϵ(R)δd1, (1.11)
⟨ϵ | Ĥel | ϵ′⟩ = [W (R) + ϵ] δ(ϵ− ϵ′). (1.12)

We assume that the bound state |ϕ0⟩ is well isolated with non-crossing
potentials V0(R) and V1(R), and therefore we neglect the coupling between
the two discrete electronic states [3]. We also ignore the coupling between
the ground state and the continuum, while the non-zero amplitude V1ϵ(R) is
responsible for electron autodetachment from the state |ϕ1⟩ [3].

1.4 Vibrational excitation amplitude
The scattering wavefunction |Ψ(−)⟩ can also be expanded in the basis

constructed in section 1.3

|Ψ(−)⟩ = |ψ1⟩|ϕ1⟩ +
∫︂

|ψϵ⟩|ϵ⟩ dϵ, (1.13)

where the expansion into the ground state was omitted due to the previously
mentioned decoupling [3]. In the case of the vibrational excitation process
the T-matrix elements can be expressed as

TVE = ⟨Ψ(−) | V̂ | νi⟩|ϵi⟩ = ⟨ψ1 |V1ϵi | νi⟩, (1.14)

where V̂ = P̂ĤelQ̂ + Q̂ĤelP̂ [3].
Components of the scattering wavefunction (1.13) can be determined by

solving the stationary Schrödinger equation with Hamiltonian Ĥ = T̂N + Ĥel,
subject to appropriate boundary condition [3]

|ψ1⟩ = 0 + [E − Ĥ1]−1
∫︂
V1ϵ|ψϵ⟩ dϵ, (1.15)
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|ψϵ⟩ = |νf⟩δ(ϵ− ϵf ) + [E − ĥ0 − ϵ]−1V1ϵ|ψ1⟩, (1.16)

where

Ĥ1 = T̂N + V1(R), (1.17)
ĥ0 = T̂N +W (R) (1.18)

and the final vibrational states of the neutral molecule are solution to the
stationary Schrödinger equation

ĥ0|νf⟩ = Eνf
|νf⟩. (1.19)

Substituting the equation (1.16) into (1.15) yields after formal rearrangement
of terms

|ψ1⟩ = [E − Ĥ1 − F̂ †(E − ĥ0)]−1V1ϵf |νf⟩, (1.20)

with F̂ (ε) defined as

F̂ (ε) :=
∫︂ ∞

0
V1ϵ(R)[ε− ϵ+ iη]−1V1ϵ(R′) dϵ. (1.21)

Using the equation (1.20), expression (1.14) can be rewritten as

TVE = ⟨νf |V1ϵf [E − Ĥ1 − F̂ (E − ĥ0)]−1V1ϵi | νi⟩. (1.22)

From this formula, the cross-section of the vibrational excitation process can
be also calculated

σi→f = 2π3

ϵi
|TVE|2. (1.23)

1.5 Photodetachment amplitude
Analogously to equation (1.22), we aim to derive the expression for the

photodetachment amplitude (1.4). However, in this case, it will be necessary
also to consider the continuum component which we obtain by substituting
equation (1.20) back into equation (1.16)

|ψϵ⟩ = |νf⟩δ(ϵ− ϵf ) +
+ [E − ĥ0 − ϵ]−1V1ϵ[E − Ĥ1 − F̂ †(E − ĥ0)]−1V1ϵf |νf⟩.

(1.24)

We start by defining the fixed-R transition dipole moments for the discrete
state |ϕ1⟩ and the background continuum |ϵ⟩

µ1(R) := ⟨ϕ1 | D̂ |ϕ0⟩, (1.25)
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µϵ(R) := ⟨ϵ | D̂ |ϕ0⟩. (1.26)

Using these definitions, we can rewrite equation (1.4) as follows

A = ⟨ψ1 |µ1 |χ0⟩ +
∫︂

⟨ψϵ |µϵ |χ0⟩ dϵ. (1.27)

By substituting equations (1.15), (1.24) into equation (1.27), we obtain the
following expression for the components of the photodetachment amplitude,
which are labeled separately for their physical interpretation. The total
amplitude is then given by their sum A = Adir + Ares + Aatt

Adir = ⟨νf |µϵ |χ0⟩, (1.28)
Ares = ⟨νf |V1ϵf [E − Ĥ1 − F̂ (E − ĥ0)]−1µ1 |χ0⟩, (1.29)
Aatt = ⟨νf |V1ϵf [E − Ĥ1 − F̂ (E − ĥ0)]−1M̂(E − ĥ0) |χ0⟩, (1.30)

where we have defined, similarly to F̂ (ε),

M̂(ε) :=
∫︂ ∞

0
V1ϵ(R)[ε− ϵ+ iη]−1µe(R′) dϵ, (1.31)

which can be interpreted as the transition amplitude through dipole transi-
tion to the continuum state |ϵ⟩ from which the electron is captured to the
metastable anion state |ϕ1⟩ [3].

The components of the photodetachment amplitude can be explained as
follows: The direct amplitude Adir (1.28) corresponds to the direct dipole
photodetachment from the ground state to the background continuum [3]

γ + M− → M(νf ) + e−. (1.32)

The resonant amplitude Ares (1.28) represents the dipole transition to the
discrete state |ϕ1⟩ followed by an autodetachment to the neutral molecule
and the background continuum [3]

γ + M− → (M−)∗ → M(νf ) + e−. (1.33)

Finally, the attachment amplitude Aatt (1.30) describes a more complicated
process in which the direct dipole photodetachment to intermediate continuum
state is followed by electron capture to |ϕ1⟩ and subsequently succeeded by
an autodetachment [3]

γ + M− → M(ν) + e− → (M−)∗ → M(νf ) + e−. (1.34)

Assessing the relative importance of the aforementioned mechanisms is not
straightforward.
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1.6 Fixed-nuclei approximation
This section introduces the fixed-nuclei approximation, which simplifies

the dynamics of molecular systems by assuming static nuclear positions R.
We will examine its impact on photodetachment amplitudes and aim to
draw comparisons with the full dynamical approach described in the previous
section. In the fixed-nuclei approximation, we can rewrite the conservation of
energy relation (1.5) as follows

E(R) = εγ + V0(R) = ϵf +W (R). (1.35)

Similarly to (1.13), we can expand the scattering wavefunction at fixed R [3]

|Ψ(−)(E)⟩ = ψ1(R)|ϕ1⟩ +
∫︂
ψϵ(R)|ϵ⟩ dϵ, (1.36)

where ψ1(R) and ψϵ(R) are now R-dependent numbers, not wavefunctions
in vibrational space [3]. Using the following parametrization of electronic
Hamiltonian

Ĥel = |ϕ1⟩V1⟨ϕ1| +
∫︂

|ϵ⟩[W + ϵ]⟨ϵ| dϵ+
∫︂

[|ϕ1⟩V1ϵ⟨ϵ| + |ϵ⟩V1ϵ⟨ϕ1|] dϵ, (1.37)

the fixed-R scattering problem with Ĥel can be solved to find the components
[3]

ψ1(R) = [E − V1(R) − F (E −W (R))]−1V1ϵi(R), (1.38)
ψϵ(R) = δ(ϵ− ϵi) + [E − ϵ−W (R)]−1V1ϵ(R)ψ1(R). (1.39)

It is noteworthy that in the fixed-nuclei approximation, the argument of the
non-local level-shift operator F has shifted from E − ĥ0 to E −W (R), which
corresponds to the electron energy relative to the scattering threshold [3].

To calculate the fixed-R moment function

µ := ⟨Ψ(−)(E) | D̂ |ϕ0⟩, (1.40)

we substitute equations (1.38) and (1.39) into (1.36). Using the definitions of
µ1 (1.25) and µϵ (1.26), we obtain the expression [3]

µ = µϵf +
µ1V1ϵf

ϵf − V1 − F (E −W ) +
M(E −W )V1ϵf

ϵf − V1 − F (E −W ) . (1.41)

It is important to note that µ is inherently R-dependent. For clarity, the
notation indicating dependence on R has been omitted in the above formula.
Moreover, the individual terms in the expression for the moment function µ
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can be directly linked to the respective components of the photodetachment
amplitude as outlined in equations (1.28), (1.29) and (1.30), specifically in
the order: direct, resonant and attachment [3].

To compare the results of the fixed-nuclei approximation with the photode-
tachment amplitude that includes full dynamics, it is necessary to incorporate
the distribution of the molecule across different internuclear separations R.
This is accomplished by averaging the moment function µ(R) over all R with
a weighting function given by the wave functions of the initial vibrational
state of the anion χ0(R) and the final vibrational state of the neutral molecule
νf (R)

AFN(νf ) := ⟨νf |µ |χ0⟩ =
∫︂
ν∗
f (R)µ(R)χ0(R) dR. (1.42)

Furthermore, we can define the integral fixed-nuclei approximation amplitude
for photodetachment (or its square) by summing over all final states. This
process, after applying the resolution of the identity, yields the following
simple formula

|A(int)
FN |2 :=

∑︂
νf

⟨χ0 |µ∗ | νf⟩⟨νf |µ |χ0⟩ =
∫︂

|χ0(R)|2|µ(R)|2 dR. (1.43)
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Chapter 2

Numerical solution

This chapter addresses the numerical solution of equations for photode-
tachment and vibrational excitation amplitudes, formulated in the theoretical
part 1. To make these equations suitable for numerical methods, we first
need to reformulate them, which is the focus of the first section. The second
section details the implementation of numerical methods used for solving
them. The third examines their convergence and the accuracy of the results.

2.1 Reformulation of the problem
The equations for the resonant (1.29) and attachment (1.30) photodetach-

ment amplitudes, as well as for the vibrational excitation amplitude (1.22),
are all formulated in the general form

⟨νf |V1ϵf [E − Ĥ1 − F̂ (E − ĥ0)]−1 |φ⟩, (2.1)

where |φ⟩ represents a distinct right-hand side specific to each amplitude type.
In contrast, the direct photodetachment amplitude is more straightforward to
compute. The formula (1.28) can be directly applied using standard methods
discussed in Section 2.2, and no additional procedures are needed for its
computation.

Firstly, we will focus on computing the operator inversion component
[E − Ĥ1 − F̂ (E − ĥ0)]−1 applied to |φ⟩ from the expression (2.1). This is
equivalent to solving the following equation for |ψ⟩

[E − Ĥ1 − F̂ (E − ĥ0)]|ψ⟩ = |φ⟩. (2.2)

We rearrange this equation as

[E − Ĥ1]|ψ⟩ = |φ⟩ + F̂ (E − ĥ0)|ψ⟩ (2.3)
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We can now formally define the retarded Green’s operator Ĝ(+) as the solution
|ζ⟩ = Ĝ(+)|ξ⟩ to the equation [E−Ĥ1]|ζ⟩ = |ξ⟩, with the appropriate boundary
condition for an outgoing wave. Using this definition, we reformulate the
integro-differential Schrödinger-type equation (2.3) into the purely integral
form of a distorted wave Lippmann-Schwinger equation

|ψ⟩ = Ĝ(+)|φ⟩ + Ĝ(+)F̂ (E − ĥ0)|ψ⟩. (2.4)

Now it is time to tackle the non-local level-shift operator F̂ . To begin with,
we assume that the fixed-R discrete-state-continuum coupling, as described
in (1.11), can be written in a separable form [3]

V1ϵ(R) = g(R)f(ϵ). (2.5)

Thanks to this, we can rewrite the relationship given in (1.21) into the form

F̂ (ε) = g(R)
∫︂ ∞

0

f 2(ϵ)
ε− ϵ+ iη

dϵ g(R′) =: g(R) F̂(ε) g(R′). (2.6)

Secondly, due to the argument of F̂ being E− ĥ0, we can express this operator
in its spectral form using the spectrum of ĥ0

F̂(E − ĥ0) =
∑︂
ν′

|ν ′⟩F(E − Eν′)⟨ν ′|, (2.7)

where F is just a number given by the integral transform. Overall, can we
represent the action of the operator F̂ as

F̂ (E − ĥ0) =
∑︂
ν′
ĝ|ν ′⟩F(E − Eν′)⟨ν ′|ĝ. (2.8)

Using the relation for F̂ given in (2.8), we can rewrite the equation (2.4)
into the following form

|ψ⟩ −
∑︂
ν′
Ĝ(+)ĝ|ν ′⟩F(E − Eν′)⟨ν ′ | ĝ |ψ⟩ = Ĝ(+)|φ⟩. (2.9)

Finally, we take the projection of this equation onto ⟨ν|ĝ

⟨ν | ĝ |ψ⟩ −
∑︂
ν′

⟨ν | ĝ Ĝ(+) ĝ | ν ′⟩F(E − Eν′)⟨ν ′ | ĝ |ψ⟩ = ⟨ν | ĝ Ĝ(+) |φ⟩. (2.10)

Now we see that the equation we obtained is a system of linear equations,
which can be written in matrix form

[I − GF]p = r, (2.11)
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where we have defined:

G : Gkl := ⟨νk | ĝ Ĝ(+) ĝ | νl⟩ (2.12)
F : Fkl := δklF(E − Eνk

), (2.13)
p : pk := ⟨νk | ĝ |ψ⟩, (2.14)
r : rk := ⟨νk | ĝ Ĝ(+) |φ⟩, (2.15)

and I is the identity matrix.
Given the definition of |ψ⟩ in (2.4) and p in (2.14), it is now straightforward

to see that the amplitudes satisfy

A•(νf ) = ⟨νf |V1ϵf |ψ•⟩ = f(ϵf )⟨νf | ĝ |ψ•⟩ = f(ϵf )pf , (2.16)

where A• stands for Ares, Aatt, or TVE, and |ψ•⟩ respectively. Considering the
form of the equation (2.11), the computation of individual amplitudes can be
streamlined by solving the system of linear equations for any given right-hand
side. This can be efficiently accomplished using LU decomposition and then
applying the solution to different right-hand side vectors r•. This process
yields amplitudes for all final states simultaneously.

As for the right-hand side vectors, we derive respective expressions from
the definitions of each amplitude (1.29), (1.30), (1.22). For the resonant and
vibrational excitation amplitudes, their expressions are simple to evaluate

r
(res)
k = ⟨νk | ĝ Ĝ(+)µ1 |χ0⟩, (2.17)
r

(VE)
k = ⟨νk | ĝ Ĝ(+)V1ϵi | νi⟩ = f(ϵi)⟨νk | ĝ Ĝ(+)ĝ | νi⟩ = (GqVE)k, (2.18)

where we have used the definition of G (2.12) and have defined

qVE : q
(VE)
k := δikf(ϵi). (2.19)

Here, |νi⟩ corresponds to the initial vibrational state and ϵi to the initial
electron energy during the vibrational excitation process. Finding the right-
hand side vector for the attachment amplitude is a bit more complicated
given the presence of the M̂ operator. This can be addressed in the same
manner as F̂ , by applying the procedure outlined between equations (2.5) and
(2.8), assuming that the fixed-R transition dipole moment to the background
continuum can be written in a separable form

µϵ(R) = gµ(R)fµ(ϵ). (2.20)

Consequently, we derive an expression for the operator M̂

M̂(E − ĥ0) =
∑︂
ν′
ĝ|ν ′⟩M(E − Eν′)⟨ν ′|ĝµ, (2.21)
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where, analogously to F̂ (ϵ), we have defined

M̂(ε) = g(R)
∫︂ ∞

0

f(ϵ)fµ(ϵ)
ε− ϵ+ iη

dϵ gµ(R′) := g(R)M̂(ε)gµ(R′). (2.22)

Overall, this allows us to derive the expression for the right-hand side vector
for the attachment amplitude

r
(att)
k =

∑︂
ν′

⟨νk | ĝ Ĝ(+) ĝ | ν ′⟩M(E − Eν′)⟨ν ′ | ĝµ |χ0⟩ = (Gqatt)k, (2.23)

where we have again used the definition of G (2.12) and have defined

qatt : q
(att)
k := M(E − Eνk

)⟨ν ′ | ĝµ |χ0⟩. (2.24)

2.2 Methods of numerical solution
For the purpose of numerical solution, we represent states |φ⟩ in the

vibrational Hilbert space as wavefunctions φ(R) = ⟨R |φ⟩ on a finite grid

R := (R1, R1 + ∆R, · · · , RN − ∆R,RN), (2.25)

where N is the number of grid points and ∆R = (RN −R1)/(N − 1). Unless
stated otherwise, we assume R1 = 0. The choice of RN will be discussed later.

The inner product of two states in the vibrational Hilbert space, repre-
sented as the integral of the corresponding wavefunctions over R, is given
by

⟨ψ |ϕ⟩ =
∫︂ RN

R1
ψ∗(R′)ϕ(R′) dR′, (2.26)

where the integration over R is evaluated using the trapezoidal rule

∫︂ RN

R1
f(R′) dR′ ≈ ∆R

2

⎡⎣f(R1) + 2
N−2∑︂
j=1

f(R1 + j∆R) + f(RN)
⎤⎦ . (2.27)

Integrations over other intervals are treated analogously.
The main system of linear equations (2.11) can be solved using any suitable

software. Specifically, we have used the DGESV and ZGESV procedures
from the LAPACK library [4] to solve it. To construct the system of linear
equations’ matrix and right-hand side vector, the following procedures must
be implemented and will be discussed in the subsequent subsections:

• Finding eigen wavefunctions and energies in individual potentials.
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• Determining the retarded Green’s operator Ĝ(+) with the appropriate
boundary condition.

• Calculating the integral transforms F(ε) and M(ε).

Once these procedures have been established, we will have all the necessary
ingredients to obtain the amplitudes for photodetachment and vibrational
excitation.

2.2.1 Computation of eigenstates
For our calculations, we need to numerically find the vibrational wave-

functions ν(R) of the neutral molecule, which is described by the potential
W , and the ground vibrational wavefunction χ0(R) of the anion, described
by the potential V0. To solve this, we have implemented two procedures: grid
discretization and the Four-DVR method. Both methods are expected to
yield qualitatively similar results, yet they differ in their numerical properties.

We generally solve the stationary Schrödinger equation[︄
− ℏ2

2m
d2

dR2 + V (R)
]︄
ψ(R) = Eψ(R), (2.28)

where m is the reduced mass of the system. Due to the grid being finite,
we impose artificial boundary conditions of the zero wavefunction outside
the grid. The zero boundary condition at the origin R1, can be understood
as addressing only the s-wave component of the whole 3D problem. In this
context, ψ(R)/R is interpreted as the radial function for the s-wave, where a
zero boundary condition at R = 0 is necessary. For bound states, we desire the
wavefunction to decay exponentially as R → ∞, hence the boundary condition
at sufficiently large RN is also natural. This fact is one of the limitations
we impose on RN , but this will be discussed later. For unbound states,
this condition causes an artificial discretization of an otherwise continuous
spectrum. The density of this discretization again relates to the choice of RN

and will be discussed later.

Grid discretisation The first method is based on the discretization of the
second derivative in the kinetic energy operator. This is commonly done using
a finite difference approach, where the second derivative is approximated by
a difference formula. In our case, the central difference formula was used,
which can be expressed as [5]

d2ψ

dR2 (R) ≈ ψ(R + ∆R) − 2ψ(R) + ψ(R − ∆R)
(∆R)2 , (2.29)
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where ∆R is the grid spacing. If we denote ψ(R1 + (j − 1)∆R) as ψj, then
the Schrödinger equation (2.28) translates into an eigenvalue equation for the
eigenvalue E and the eigenvector ψ := (ψ1, · · · , ψN) of the matrix H

Hψ = Eψ, (2.30)

where H is an (N ×N)-dimensional tridiagonal matrix of the Hamiltonian
with elements

Hij = ℏ2

m

1
(∆R)2 + V (Rj) for i = j, (2.31)

Hij = − ℏ2

2m
1

(∆R)2 for |i− j| = 1 (2.32)

and all other elements are zero. In this procedure, the previously mentioned
artificial boundary conditions are implemented by essentially setting ψ0 and
ψN+1 equal to zero.

To solve the eigenvalue problem (2.30), any suitable software can be used.
In our implementation, the DSTEDC procedure from the LAPACK library
[4], which is intended for the diagonalization of tridiagonal matrices, was
utilized. As a result, we obtained the first N eigenenergies and eigenvectors,
which correspond to the first N wavefunctions evaluated at the grid points R.
To ensure proper normalization, eigenvectors were multiplied by the factor
1/

√
∆R.

The Fourier Discrete Variable Representation (Four-DVR) method
is used to solve the Schrödinger equation (2.28) using the basis of particle-
in-a-box wavefunctions [6]. The basis functions and corresponding energies,
given by the following equations, are taken from [7]:

φn(R) =
√︄

2
L

sin
[︃
nπ

L
(R −R1)

]︃
, En = n2π2ℏ2

2mL2 , (2.33)

where L := RN − R1 represents the length of the box. In this method, the
artificial boundary conditions are inherently incorporated by the choice of
this basis.

In this method, we introduce a new numerical parameter NDVR, which
corresponds to the number of particle-in-a-box wavefunctions considered
in the expansions; therefore, all the following matrices are (NDVR ×NDVR)-
dimensional. The implementation of this method consists of two steps. Firstly,
we compute the matrix elements of the R̂ operator on a grid shifted by −C,
where C := (R1 +RN )/2. If R1 = 0, then C = L/2. This adjustment ensures
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that the diagonal matrix elements are zero. For the matrix elements of the
operator R̂, the following relations hold:

R : Rmn = 2
L

∫︂ RN −C

R1−C
sin

[︃
mπ

L
(R −R1 + C)

]︃
R sin

[︃
nπ

L
(R −R1 + C)

]︃
dR

= −8Lmn
π2(m2 − n2)2 for m+ n = 1 mod 2 (2.34)

After diagonalizing this matrix, we obtain matrix A, whose columns are the
eigenvectors of the operator R̂. The diagonal matrix D of its eigenvalues is
represented as R = ADAT . The eigenvalues in D are then shifted back by
+C.

The second step involves the construction of the Hamiltonian matrix
H = T+V. Here, the matrix T, which represents the kinetic energy operator,
is diagonal with the energy values of the corresponding particle-in-a-box
energies on its diagonal, (T)n = En (2.33). The matrix V, which accounts for
the potential energy, is expressed as

V = AV (D)AT , (2.35)

where V (D) is the potential energy evaluated at the eigenvalues of the operator
R̂. From (2.28) we again derive an eigenvalue equation

Hψ̃ = Eψ̃, (2.36)

where E corresponds to the eigenenergies of the system. However, this time the
eigenvectors ψ̃ are NDVR-dimensional, and their elements are the coefficients
for the sought vibrational wavefunctions in the φn basis. Consequently, we
can calculate the k-th vibrational wavefunction at any R ∈ (R1, RN) using
the relation

ψ(k)(R) =
√︄

2
L

NDVR∑︂
n=1

ψ̃(k)
n sin

[︃
nπ

L
(R −R1)

]︃
, (2.37)

where ψ̃(k)
n are the components of the k-th eigenvector ψ̃(k). The received

eigenenergies E(k) require no further transformation. The number of vi-
brational wavefunctions calculated is NDVR. In our implementation of the
Four-DVR method, both diagonalizations were carried out using the DSYEV
procedure from the LAPACK library [4].

2.2.2 Construction of the Green’s operator
The next crucial step involves calculating the retarded Green’s operator

Ĝ(+) with the appropriate boundary conditions, as outlined between equations
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(2.3) and (2.4). It turns out to be more computationally efficient not to
calculate the full Green’s operator; but rather to implement a procedure
that solves the non-homogeneous Schrödinger equation with the appropriate
boundary conditions for its solution ψ(R):[︂

E − Ĥ1
]︂
ψ(R) = φ(R), (2.38)

where Ĥ1 = T̂N + V1(R), T̂N represents the vibrational kinetic operator, and
the right-hand side is given by φ(R).

The appropriate boundary conditions for this equation are specified as
follows

ψ(0) = 0, ψ′(R)
ψ(R) ∝ ik. (2.39)

These conditions ensure that the solution describes an outgoing wave, char-
acterized by the wavenumber k defined by the relation k :=

√
2mE/ℏ. For

negative energies, k is redefined as k := i
√︂

2m|E|/ℏ, leading to an exponen-
tially decaying wavefunction, which conforms to physical expectations.

To solve the equation (2.38), we begin by solving for the Green’s function
G(R,R′) [︂

E − T̂N − V1(R)
]︂
G(R,R′) = δ(R −R′), (2.40)

where δ is the Dirac delta distribution. This equation, along with the required
boundary conditions, can be addressed by first tackling the homogeneous
equation [︂

E − T̂N − V1(R)
]︂
ψR/I(R) = 0, (2.41)

where the regular solution ψR(R) satisfies the condition ψR(0) = 0, and the
irregular solution ψI(R) meets the criteria for an outgoing wave at R →
∞. It can be easily verified that the following combination of these two
solutions satisfies equation (2.40) while simultaneously meeting both boundary
conditions (2.39)

G(R,R′) =
⎧⎨⎩

2m
ℏ2

ψI(R′)
W (R′)ψR(R) for R < R′

2m
ℏ2

ψR(R′)
W (R′) ψI(R) for R > R′,

(2.42)

where W (R′) is the Wronskian determinant defined as

W (R′) = ψR(R′)ψ′
I(R′) − ψ′

R(R′)ψI(R′), (2.43)

and due to the nature of the differential equation (2.41), W (R′) is constant
across all R′ (as derived from [8]), allowing its computation at just one specific
R′.
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To calculate the regular and irregular solutions ψR/I of the equation (2.41)
on the grid R (see (2.25)), we can use the Numerov method which utilizes
the discretization of the second derivative in (2.41). Using [9], we can derive
the following relationship between the values of ψR/I at adjacent points on R[︂

1 + (∆R)2

12 Ej+1
]︂
ψj+1 − 2

[︂
1 − 5(∆R)2

12 Ej
]︂
ψj +

[︂
1 + (∆R)2

12 Ej−1
]︂
ψj−1 ≈ 0 (2.44)

where ψk = ψR/I(Rk) and Ek := 2m
ℏ2 [E − V1(Rk)]. We can then calculate the

regular solution ψR by setting the boundary condition at R1 and R2, and then
propagate ψR(Rk) for k ∈ {3, 4, · · · , N} using (2.44). Similarly, the irregular
solution ψI is obtained by applying the boundary condition at RN and RN−1,
and subsequently propagating ψI(Rk) backwards for k ∈ {N−2, N−3, · · · , 1}.
The corresponding boundary condition for the regular solution is

ψR(R1) = 0 and ψR(R2) = ∆R, (2.45)
where the condition ψR(R2) is actually arbitrary, as it merely sets the normal-
ization of ψR, which does not affect the Green’s function G(R,R′) (2.42). For
numerical safety and to prevent excessively large function values, we choose
∆R. In a similar manner, the boundary condition for ψI is arbitrary and
using any two values whose discretized derivative corresponds to an outgoing
wave (2.39) is possible. For simplicity, we choose

ψI(RN) = eikRN and ψI(RN−1) = eikRN−1 . (2.46)
After obtaining the regular and irregular solutions ψR/I, we need to

compute the Wronskian determinant W (R′) (2.43). This is achieved by using
a discretization formula for the necessary derivatives of both solutions. In our
case, we utilized a discretization formula with the same order of error as the
Numerov method [9]. However, a higher-order formula could be used without
significantly increasing computational demand, as the Wronskian needs to
be calculated at just one specific R′, as previously discussed. The utilized
higher-order central difference formula for the derivatives is [5]

ψ′
j ≈ −ψj+3 + 9ψj+2 − 45ψj+1 + 45ψj−1 − 9ψj−2 + ψj−3

60∆R , (2.47)

where j ∈ {4, · · · , N − 3} is chosen to avoid edge effects and ensure accurate
derivative estimates across the domain.

Now we have all the elements necessary to derive the final solution of
(2.38) with the boundary condition (2.39) using the formula:

ψ(R) =
∫︂
G(R,R′)φ(R′) dR′ = 2m

ℏ2W

[︄
ψI(R)

∫︂ R

R1
ψR(R′)φ(R′) dR′

+ψR(R)
∫︂ RN

R
ψI(R′)φ(R′) dR′

]︄
,

(2.48)
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where we have used the constancy of the Wronskian determinant W (R′) ≡ W .
The calculation for ψ(R) can be optimized by first computing the ‘primitive
functions’ ΨR/I(R) at all R in R:

ΨR(R) :=
∫︂ R

R1
ψR(R′)φ(R′) dR′, ΨI(R) :=

∫︂ RN

R
ψI(R′)φ(R′) dR′ (2.49)

This can be achieved by successively applying the trapezoidal rule (2.27) on
each interval (Rk, Rk+1) for all points in R, which results in the recursive
formulae:

ΨR(Rk+1) = ΨR(Rk) + ∆R
2 [ψR(Rk)φ(Rk) + ψR(Rk+1)φ(Rk+1)] , (2.50)

ΨI(Rk−1) = ΨI(Rk) + ∆R
2 [ψI(Rk)φ(Rk) + ψI(Rk−1)φ(Rk−1)] , (2.51)

where ΨR(R1) = ΨI(RN) = 0. Ultimately, using the computed ‘primitive
functions’ ΨR/I(R), we obtain the final formula for the sought solution ψ on
the grid R:

ψ(Rj) = 2m
ℏ2W

[ψI(Rj)ΨR(Rj) + ψR(Rj)ΨI(Rj)] (2.52)

2.2.3 F and M operators
The final step involves calculating the integral transforms F(ε) (2.6) for

the non-local level-shift operator F̂ and M(ε) (2.22) for the M̂ operator.
Utilizing the identity for the integral transform, derived in [10], we express

F(ε) =
∫︂ ∞

0

f 2(ϵ)
ε− ϵ+ iη

dϵ = p.v.
∫︂ ∞

0

f 2(ϵ)
ε− ϵ

dϵ− iπf 2(ε). (2.53)

This identity, formulated for F(ε), similarly applies to M(ε).
The formula (2.53) can be, in principle, used to calculate the integral

transforms F(ε) and M(ε) for general functions f(ϵ) and fµ(ϵ). However, the
presence of the principal value integral requires careful numerical treatment,
and the trapezoidal rule (2.27) cannot simply be used, as, for example, for each
different ε, a unique grid in ϵ would have to be chosen which is symmetrical
around ε. The fact that this integral has an unbounded upper limit poses
another, yet more easily solvable problem. In this thesis, however, we assume
a special form of functions f(ϵ) and fµ(ϵ)

γ(ϵ) := 2πf 2(ϵ) = Aγ
[︂
ϵ
Bγ

]︂α
exp

[︂
− ϵ
Bγ

]︂
, (2.54)

γµ(ϵ) := 2πf 2
µ(ϵ) = Aµ

[︂
ϵ
Bµ

]︂α
exp

[︂
− ϵ
Bµ

]︂
, (2.55)
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where Aγ, Bγ, Aµ, Bµ, and α are constants specific to the chosen molecular
model, as detailed in Appendix A. This allows us to compute the principal
value integral in (2.53) analytically using a formula derived from [11]

p.v.
∫︂ ∞

0

xαe−βx

ε− x
dx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Γ(1 + α)|ε|αΓ(−α; β|ε|)e−βε ε < 0,

εαe−βε
[︂
π cot(απ) − Γ(α)(βε)−α

−1F1(−α, 1 − α; βε)]
ε > 0,

(2.56)

where Γ(a) is the gamma function, Γ(a;x) is the upper incomplete gamma
function, and 1F1(a, b;x) is the confluent hypergeometric function.

The gamma function Γ(a) is directly implemented in FORTRAN 90.
The upper incomplete gamma function Γ(a;x) can be calculated using the
following continued fraction approach, detailed in [11]

Γ(a;x) = xαe−x
[︃ 1
x+

1 − α

1+
1
x+

2 − α

1+
2
x+ · · ·

]︃
. (2.57)

To evaluate the confluent hypergeometric function, a series expansion method
can be utilized, also discussed in [11]

1F1(a, b;x) = 1 + a

b
x+ a(a+ 1)

b(b+ 1)
x2

2! + a(a+ 1)(a+ 2)
b(b+ 1)(b+ 2)

x3

3! + · · · . (2.58)

Figure 2.1 Energetic profiles of the integral transforms F(ε) (left) and M(ε)
(right) for the LiH model, as detailed in Appendix A.
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2.2.4 Fixed-nuclei approximation
The numerical implementation of the fixed-nuclei approximation is now

straightforward. With the integral transforms M(ε) and F(ε) at hand (see
2.2.3), we can evaluate the moment function µ(R; εγ) (1.41) for all nuclear
separations R and any energy εγ of the incoming photon using the conservation
of energy relation (1.35).

To further calculate the fixed-nuclei amplitudes, we first determine the
eigenstates in the potentials W (R) and V0(R) (as discussed in 2.2.1). Sub-
sequently, we integrate the moment function µ(R; εγ) over all R using the
derived eigenstate wavefunctions as a weighting function. This integration is
performed utilizing the trapezoidal rule (2.27).

2.3 Testing of convergence
In the previous section, several numerical parameters were introduced for

our calculations, namely:

• RN – the length of the grid (2.25),

• N – the number of grid points (2.25),

• NDVR – the number of particle-in-a-box wavefunctions used in the
Four-DVR method (2.37),

• nκ – this parameter, which has not been explicitly mentioned before,
represents the number of states ⟨ν|ĝ onto which the equation (2.9) was
projected, and also the number of eigenstates |ν⟩ of ĥ0 used in the
expansion of the operators F̂ and M̂ (2.7). Therefore, it also determines
the dimension of matrices G, F and vectors p, r in the main equation
(2.11).

The precise numerical values of these parameters must be carefully selected
to ensure that the results remain stable under small perturbations of these
parameters, while allowing for more substantial adjustments, such as increas-
ing the number of grid points, which should ideally lead to improved accuracy
without disproportionately affecting the final results. This confirms that the
results are numerically converged. Testing these parameters is intricate due
to their interdependencies.
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2.3.1 Bound eigenstates
In Section 2.2.1, we outlined two methods for calculating eigenstates

within a given potential: grid discretization and the Four-DVR method.
The accuracy of these methods depends on the parameters N and NDVR
respectively. To ensure accurate energy calculations for bound states, it is
crucial that the potential becomes constant near RN .

(a) Four-DVR method – W (R) (b) Grid discretization – W (R)

(c) Four-DVR method – V0(R) (d) Grid discretization – V0(R)

Figure 2.2 Convergence tests for the ground state energy calculations for different
potentials corresponding to the LiH model (see Appendix A).
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Our molecular models (see Appendix A) utilize Morse potentials. Typically,
the convergence of bound state calculations can be assessed by comparing
numerically obtained energies Ei with the analytically computed energies
for the bound states in the Morse potential (derived in [12]). However,
our boundary condition for a zero wave function at R = 0 differs from the
analytical solution, which assumes R ∈ (−∞,∞). Therefore, the analytical
energies only approximate our problem. For convergence analysis, we compare
with the energy Efin

i obtained for the largest N or NDVR and the largest RN .
While this value might be considered in some respects as the most precise
due to maximizing computational parameters, it may not truly be the most
accurate due to potential cumulative rounding errors. Thus, this comparison
should be approached with caution. Here, we present a convergence test for
the ground state energy, as illustrated in Fig. 2.2.

From Fig. 2.2, it is evident that the Four-DVR method achieves better
precision than the grid discretization method with a significantly lower number
of elements, making it computationally more efficient. Additionally, the Four-
DVR method allows for the computation of corresponding eigenfunctions on
any desired grid with any required accuracy, which is not feasible using the
grid discretization method. Therefore, we exclusively utilize the Four-DVR
method for subsequent calculations.

Furthermore, Fig. 2.2 demonstrates that the ground state energy, when
sufficiently converged with respect to N or NDVR, does not depend on the
choice of RN for RN > 12 a0. Thus, RN = 12 a0 is considered sufficient for
achieving convergence in bound state calculations of the LiH model. We
also observe that convergence is fastest for the smallest RN . This can be
explained by the higher oscillations in the basis functions for smaller RN

in the Four-DVR method, which are better at describing a wavefunction
localized at the bottom of the potential. A similar explanation applies to the
grid discretization method, where higher resolution is achieved with a smaller
RN for the same number of grid points N .

2.3.2 Discretized continuum
In the previous subsection, we primarily discussed the convergence and

accuracy of the bound spectrum of ĥ0. However, the unbound part, mentioned
briefly in Section 2.2, is equally important. Our numerical methods artificially
discretize this continuous spectrum due to inherent computational limitations.
This discretization directly ties to the choice of nκ, the number of states
considered in our computations.

Due to computational limits, we can only consider a finite number of
states |ν⟩. Fortunately, the contribution of higher states |ν⟩ diminishes as
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the arguments of integral transforms F(E − Eν) and M(E − Eν) approach
large negative values for Eν ≫ E. As illustrated in Fig. 2.1, the real part
of integral transforms significantly decreases for large negative arguments
and their imaginary part is trivially equal to zero, justifying the neglect of
contributions from states |νj⟩ for j > nκ within the studied energy range
corresponding to the total conserving energy E.

Moreover, the described energy range is not the only important factor, as
the density of the discretization is also crucial. As observed from Fig. 2.1,
the integral transforms F(ε) and M(ε) contribute significantly when their
argument approaches zero. If the discretization is too sparse, the final results
show noticeable artifacts of this discretization, characterized by a non-smooth
behavior with sharp spikes. A denser grid helps mitigate these artifacts.

For energies large enough such that Eνn ≫ W , the energies of the dis-
cretized continuum behave similarly to the particle-in-a-box spectrum, follow-
ing the relation [7]

Eνn ≈ n2π2ℏ2

2mL2 . (2.59)

From this equation, we observe that the choice of RN plays a role in another
aspect of the numerical convergence of our results. Firstly, a higher value
of RN leads to a denser discretization. Furthermore, with a constant nκ, a
higher RN leads to lower maximal energy. Therefore, if we increase RN we
need to proportionally increase nκ to keep the maximal described energy
constant.

Figure 2.3 Dependency of energy Eνj on the state |νj⟩ in the potential W (R) of
the LiH model (see Appendix A) for different NDVR and RN settings.
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Another non-trivial relation exists between nκ and NDVR. To obtain
at least nκ states |ν⟩, we need NDVR ≥ nκ. As illustrated in Fig. 2.3, for
j ≪ NDVR the unbound energies Ej follow the relation (2.59); however, as j
approaches NDVR, the energy difference between consecutive states suddenly
increases rapidly. This phenomenon is caused by the cut-off in the calculated
eigenstates. From this, we deduce that nκ can be safely varied within ranges
that are sufficiently distant from NDVR. The difference in energy density for
different RN values can also be observed by comparing the images in Fig. 2.3.

2.3.3 ‘Tail’ implementation for the Green’s operator
Previously, we have demonstrated the advantages of selecting a smaller

RN , where the boundary condition for the zero wavefunction of bound states
is adequately satisfied. However, it is possible to encounter a case where
the bound states in potentials V0 and W are converged with respect to RN ,
while simultaneously, the potential V1(R) is not close enough to zero at RN .
Therefore, the enforced boundary condition for the outgoing wave (2.46) on
the irregular solution ψI during the construction of the Green’s operator Ĝ(+)

will not be accurate. The resulting behavior of the wavefunction will resemble
an instance where the wavefunction reflects off a sharp potential edge. This
can be demonstrated using the simplest application of the Green’s operator
Ĝ(+), namely the scattered wavefunction for the vibrational excitation process
in the First Born approximation

|ψ1⟩ = Ĝ(+)V1ϵi |νi⟩ = f(ϵi)Ĝ(+)ĝ|νi⟩. (2.60)

This phenomenon is illustrated in Fig. 2.4a. Here, we clearly see that the
absolute value of the wavefunction oscillates, which corresponds to a situation
where the wavefunction is not perfectly outgoing but has been partially
reflected at the sharp edge of the potential.

Luckily, we can easily correct the inaccurate boundary condition by imple-
menting a ‘tail’ described by a numerical parameter t during the construction
of the Green’s operator Ĝ(+). Essentially, this means that we create a new,
longer grid R′ with tN number of points and final point R′

tN = tRN , thereby
extending the original grid to t-times its length while maintaining the step
size. Now, we can set the boundary condition for the irregular solution ψI at
the end of this grid

ψI(R′
tN) = eikR

′
tN and ψI(R′

tN−1) = eikR
′
tN−1 , (2.61)

where the potential V1 is safely close enough to zero. Afterward, we propagate
the irregular solution backwards using the same procedure as in Section 2.2.2.
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(a) No tail implemented (b) Tail implemented with t = 3

Figure 2.4 Comparison of scattered wavefunctions for vibrational excitation in
the first Born approximation, illustrating the effects of tail implementation.

Because we assume that the wavefunctions we apply the Green’s operator
on are zero outside the original grid R, it suffices to consider only the part
of the irregular solution on the grid R, where this segment has already
undergone propagation with the adjusted boundary condition. The fact that
the final wavefunction has the correct boundary condition, corresponding to
an outgoing wave, can be seen in Fig. 2.4b.

2.3.4 Convergence of the results
In the final stages of our analysis, we need to ensure that the results for

the photodetachment amplitudes and vibrational excitation amplitudes are
converged with respect to the numerical parameters previously discussed,
over the studied energy range. This convergence testing involves initially
identifying a set of numerical parameters assumed to yield converged results.
Subsequently, we increase these parameters as their elevation corresponds to
a reduction in the neglect of certain aspects of the problem. While doing
so, we respect the interdependencies between these parameters mentioned
in earlier sections. Then, all amplitudes are recalculated and compared
with the previous calculations to derive the following metrics: the average
relative deviation η and the maximum relative deviation ηmax, defined for an

29



amplitude A• by the relation

η(ε) = |A(j)
• (ε) − A(j+1)

• (ε)|
A

(j)
• (ε)

(2.62)

where the average and maximum are taken over the studied energy interval
ε. If these relative deviations reach values within the desired accuracy, we
consider the results to be converged.

Tables describing the convergence of individual results are provided in
Appendix B for different molecular models (see Appendix A). It is important
to note that the convergence parameters may vary significantly across models,
necessitating separate convergence analyses for each model.
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Chapter 3

Discussion of results

In this chapter, we present our findings on the numerically calculated
amplitudes for photodetachment, specifically focusing on the LiH model. We
explore the physical interpretation of each component within the photode-
tachment amplitude and draw comparisons with the vibrational excitation
process, for which amplitudes were also computed. We continue our analysis
by examining the photodetachment amplitudes obtained using the fixed-nuclei
approximation and compare their accuracy and precision with those calcu-
lated using full dynamics for the LiH model. Additionally, we will introduce
the N2 model and discuss the phenomenon known as Boomerang oscillations
associated with it.

3.1 Photodetachment amplitude
In this section, we discuss the results shown in Fig. 3.1, which illustrates

the dependence of the numerically calculated photodetachment amplitude,
with the final vibrational state being the ground state |ν0⟩ of the neutral
molecule, on the energy of the incoming photon εγ. Alongside the total
amplitude A, we also present individual components of the photodetachment
amplitude, namely: the direct amplitude Adir, the resonant amplitude Ares,
and the attachment amplitude Aatt. These components correspond to different
physical processes, detailed in Section 1.5 through equations (1.32), (1.33),
and (1.34). For clarity, it should be noted that the square of the total
amplitude |A|2 is not simply the sum of the squares of these contributing
amplitudes due to their non-trivial phase relationships.

From Fig. 3.1, we observe that the contributions from the resonant and
the attachment processes are similar. They are particularly significant around
an incoming photon energy of εγ ≈ 4 eV. This energy corresponds to the
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resonance energy, which is effectively the energy difference between the anion
ground state Eχ0 and the energy of the discrete-state-in-continuum described
by the potential curve V1(R), specifically at a value of R near where the
anion ground state is primarily localized. This can be seen in Fig. A.1, which
illustrates the LiH molecular model.

Figure 3.1 Energy dependence of the squared photodetachment amplitude |A|2
for the LiH model, where the final vibrational state is the ground state |ν0⟩ of the
neutral molecule. The graph illustrates contributions from different components
of the photodetachment process: direct (Adir), resonant (Ares), and attachment
(Aatt), alongside the full amplitude.

3.2 Decline for higher vibrational states
We now turn our attention to the decline in amplitude for higher vibrational

states within the photodetachment process. This section examines how the
amplitude of photodetachment transitions decreases when the final states

32



Figure 3.2 Dependence of the photodetachment amplitude for the LiH model
on the final vibrational state of the neutral molecule |νf ⟩, shown for two different
incoming electron energies εγ . For comparison, the amplitudes of the direct
component of photodetachment and the vibrational excitation cross-sections by
electron scattering, using the same energy as the incoming photon, are also plotted.

are higher vibrational states of the neutral molecule. Fig. 3.2 illustrates
the dependence of the square of the full photodetachment amplitude |A|2
on the final vibrational state. For comparative purposes, we also include
values of the direct photodetachment amplitude and the vibrational excitation
cross-sections of the neutral molecule by electron scattering.

From the graphs in Fig. 3.2, calculated for two distinct incoming photon
energies; or incoming electron energies for vibrational excitation; it is observed
that for the energy εγ = 3 eV, which is well below the resonance maximum, the
full photodetachment amplitude rapidly decreases with higher final vibrational
states. However, this decrease is significantly mitigated at the incoming
electron energy of εγ = 4 eV, corresponding to the resonance energy. The
direct component diminishes similarly at both energies, reflecting that in our
model, the direct component is largely influenced by the overlap between the
ground vibrational state of the anion |χ0⟩ and the final vibrational states of
the neutral molecule |νf⟩, which declines rapidly for higher vibrational states.

Furthermore, Fig. 3.2 reveals that at the resonance energy, the full pho-
todetachment amplitude is comparable in magnitude to the cross-section
of vibrational excitation by electron scattering at the same energy as the
incoming electron. Additionally, from both graphs in Fig. 3.2 and those in Fig.
3.3, it can be concluded that for higher final vibrational states, the resonant
and attachment processes dominate over the direct component.
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Figure 3.3 Energy dependence of the squared photodetachment amplitude |A|2
for the LiH model, shown for the fourth |ν4⟩ (left) and eighth |ν8⟩ (right) vibra-
tional states of the neutral molecule as final states. The graphs also illustrates
contributions from different components of the photodetachment process

3.3 Fixed-nuclei approximation
This section is dedicated to the discussion of the fixed-nuclei approxima-

tion, which was extensively described in Section 1.6. In Figure 3.4, we present
the full photodetachment amplitude calculated using the fixed-nuclei approxi-
mation, denoted as AFN and governed by Equation (1.42). Additionally, the
integral fixed-nuclei approximation amplitude for photodetachment, A(int)

FN ,
defined by Equation (1.43), is also depicted. To evaluate the precision of this
approximation, the full photodetachment amplitude A, computed using the
complete dynamics, is included for comparison. The comparative analysis al-
lows us to determine that the fixed-nuclei approximation provides qualitatively
similar results for the LiH model, although its limitations are evident. For a
detailed and precise comparison, the resonant and attachment components of
the amplitude for both the complete dynamics and fixed-nuclei calculations
are separately illustrated in Figure 3.5. The direct component is omitted from
this comparison as it remains invariant across both computational approaches,
reflecting no dynamic influence.

Additionally, both Fig. 3.4 and 3.5 include plots of the fixed-R moment
function µ(R), along with its components, for various values of R. Compared
to the photodetachment amplitudes, the peaks of the moment function are
significantly narrower. The incoming electron energy εγ, corresponding to
these peaks, i. e. the resonance energy, precisely matches the energy difference
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Figure 3.4 Energy dependence of the squared photodetachment amplitude |A|2
for the LiH model, comparing amplitude computed with full dynamics with fixed-
nuclei approximation and integral fixed-nuclei approximation amplitude. Addition-
ally, the graph includes values of the fixed-R moment function µ for various R
values, provided in Bohrs.

between the potential curves V0(R) and V1(R) at the respective R values.
Figures 3.4 and 3.5 suggest that the final photodetachment amplitude results
from the broadening of the fixed-R moment functions across the distribution
of nuclei at different R values, as determined by the initial vibrational wave-
function χ0(R) and the final vibrational wavefunction ν0(R). This is further
evidenced by the fact that the resonance peak of the full photodetachment
amplitude is closest to the peak of the fixed-R moment function µ(R) at
R = 3.0 a0, approximately the bottom of the potentials V0 and W , where the
vibrational wavefunctions are most localized.
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(a) resonant (b) attachment

Figure 3.5 Energy dependence of the resonant and attachment components
of the photodetachment amplitude for the LiH model, comparing full-dynamics
calculations with the fixed-nuclei approximation. The graphs also display values of
the fixed-R moment function µ for various R values, provided in Bohrs.

3.4 Boomerang oscillations
In this section, we extend the application of our developed numerical

methods to a new molecular model inspired by the N2 molecule. This model,
detailed in Appendix A, features significantly narrower and deeper potential
wells compared to the LiH model previously discussed, presenting a new
regime for testing our numerical approaches. Additionally, the energy range
studied here is substantially below the dissociative attachment threshold,
which differs from the conditions explored with the LiH model.

It should be noted that the N2 molecule, in reality, does not possess a
suitable low-lying anion state described by the potential V0. Consequently,
the N2-inspired model utilizes realistic potentials W (R) and V1(R), while the
potential V0(R) is entirely fabricated. We have also devised the transition
dipole elements, borrowing them from the LiH model. This approach is
motivated by the desire to study mechanisms in the photodetachment physics
rather than specific molecular characteristics.

The motivation for exploring the N2-inspired model is to investigate
whether the phenomenon known as Boomerang oscillations; observed in
vibrational excitation by electron scattering cross-sections; has its analog in
the photodetachment process. Boomerang oscillations refer to the energy
variations in the energy phase of the nuclear wave function, reflecting within
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Figure 3.6 Energy dependence of the vibrational excitation of the neutral
molecule by electron scattering cross-section for the N2 model depicting the
boomerang oscillations for two different final vibrational states.

the potential well of the molecular anion, a process documented in studies
such as [2]. Additionally, having developed numerical methods to calculate

Figure 3.7 Energy dependence of the squared photodetachment amplitude |A|2
for the N2 model, where the final vibrational state is the ground state |ν0⟩ of the
neutral molecule. The graph illustrates contributions from different components
of the photodetachment process: direct (Adir), resonant (Ares), and attachment
(Aatt), alongside the full amplitude. The data is presented in both standard (left)
and logarithmic (right) scales.
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vibrational excitation cross-sections, we present our findings for the N2 model
in Fig. 3.6. Our results qualitatively match those described in [2] for the N2
model.

On Fig. 3.7, we present the numerically calculated photodetachment am-
plitudes for the N2 model, with the ground vibrational state of the neutral
molecule as the final state. The individual components of the photodetach-
ment amplitude are also depicted. From this figure, it becomes apparent that
a phenomenon analogous to boomerang oscillations exists in the photode-
tachment process. This is particularly evident in the energy dependencies
of the attachment and resonant components, which are more apparent in
the logarithmic scale and display qualitative similarities to the vibrational
excitation cross-sections.

Furthermore, the attachment and resonant components exhibit similar pat-
terns but differ in magnitude, similar to observations made for the LiH model.
These boomerang-like oscillations in the photodetachment process manifest
within the full amplitude by modulating the dominant direct component.

Similarly to the LiH model, Fig. 3.7 shows that the first significant spike
in photodetachment amplitude occurs at an incoming electron energy of
approximately εγ ≈ 3 eV. This resonance energy, which corresponds to the
energy difference between the bottoms of the potential wells V0(R) and V1(R),
can be visually confirmed in Fig. A.2, illustrating the N2 molecular model.

In addition, Fig. 3.8 shows a comparison between the full photodetachment

Figure 3.8 Energy dependence of the squared photodetachment amplitude |A|2
for the N2 model, comparing the amplitude computed with full dynamics against
the fixed-nuclei approximation. The right graph additionally includes the fixed-R
moment function µ for various R values.
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amplitude calculated using complete dynamics and the fixed-nuclei approxima-
tion. Here, it is evident that the fixed-nuclei approximation fails to describe
the boomerang oscillations in the photodetachment process, as expected, be-
cause these oscillations are inherently linked to the nuclear dynamics, which is
ignored in the fixed-nuclei approximation. This figure illustrates that although
the fixed-nuclei approximation accurately captures the resonance energy peak,
it smooths over the boomerang oscillations, averaging out their effects instead
of displaying them.

On the second graph in Fig. 3.8, we additionally plot the fixed-R moment
function µ for three different values of R. Compared to the LiH model, here
the moment function µ exhibits much more erratic behavior even for closely
spaced values of R.
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Conclusion

In this thesis, we successfully developed numerical methods to compute
the amplitudes of the resonant photodetachment process. We utilized the
discrete-state-in-continuum model and projection operator formalism, gener-
ally used to describe low-energy inelastic electron collisions with molecules
leading to vibrational excitation. Additionally, we introduced the fixed-nuclei
approximation, which simplifies the resonance photodetachment process by
neglecting the nuclear dynamics.

We thoroughly described the implementation of each numerical procedure
for general applicability. Our computations were specifically implemented in
FORTRAN 90, utilizing the LAPACK library for commonly used numerical
procedures. The developed numerical methods were rigorously tested for each
studied model.

In our study, we focused only on diatomic molecules and implemented
several simplifications. We assumed only one energetically accessible elec-
tronic state of the neutral molecule and only one discrete metastable state.
Additionally, only the first partial wave of the outgoing electron was accounted
for. However, we see no obstacles in releasing these assumptions to study
more complex systems in future work.

Firstly, we applied the numerical methods to a model inspired by the
LiH molecule, which was the primary model on which the methods were
developed. We examined the amplitude of the photodetachment process while
providing a physical explanation of different components contributing to the
full amplitude. We observed a peak in the amplitude corresponding to the
resonance energy directly linked to the energy difference between the potential
wells of the stable and metastable anion states. In this model, we also studied
how the resonance mitigates the decline in photodetachment amplitude for
higher final vibrational states of the neutral molecule. Near this resonance
energy, the decline in amplitude for higher vibrational states was found to be
comparable to vibrational excitation by electron scattering, whereas outside
of this resonance region, the process was dominated by the rapidly decreasing
direct term.
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Secondly, we investigated the N2-inspired model in search of a process
similar to the boomerang oscillations, a phenomenon observed in vibrational
excitation by electron scattering cross-sections of the N2 molecule. In the
numerical calculations for this model, which tested the developed methods in
another regime, we indeed observed similar oscillations, proving the existence
of this analog, at least in our simplified models. Additionally, for the same N2-
inspired model, we calculated the vibrational excitations using our numerical
methods and found that the results qualitatively agreed with those reported
in the scientific literature.

The fixed-nuclei approximation was quite successful in describing the
amplitudes of the photodetachment process for our LiH-inspired model. It
also provided us with a unique insight that the final energy dependence
curve of the photodetachment amplitude results from broadening the fixed-
nuclei moment functions across the distribution of nuclei determined by their
vibrational wavefunction. However, we also observed the limitations of this
approximation. The fixed-nuclei approach completely failed to describe the
boomerang oscillations, a phenomenon fully governed by nuclear dynamics,
in the photodetachment process for our N2 model.

In the future, we aim to use the developed numerical methods on other
molecular models. We would like to find analogs in the resonance photodetach-
ment of other phenomena observed in inelastic electron-molecule collisions,
such as threshold peaks and Wigner cusps.
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Appendix A

Molecular models

In this appendix, we describe the molecular models used in this thesis.
It is important to note that these models are significantly simplified and
are intended to provide qualitative insights into molecular dynamics rather
than precise quantitative predictions. These models are largely adapted from
existing literature, particularly from the work of my supervisor [3]. The
thesis focuses solely on describing the photodetachment process in diatomic
molecules. The models for different molecules are largely described by the
same functions, although their parameters vary across different models.

As outlined in previous chapters, our calculations of the photodetachment
process require knowledge of the following potential curves: the potential of
the neutral molecule W (R), the potential of the ground anionic state V0(R),
and the potential of the electronically excited state V1(R). Additionally, we
need information on the discrete-state-in-continuum coupling function V1ϵ(R)
and the fixed-R transition dipole moments for the discrete state µ1(R) and
for the background continuum µϵ(R).

To model the potential curves W (R) and V0(R), we use a Morse potential.
For the discrete-state-in-continuum V1(R), we have opted to describe it using
a more general function. These functions are defined as follows:

W (R) = dW e
−2aW (R−RW ) − 2dW e−aW (R−RW ) + bW , (A.1)

V0(R) = d0e
−2a0(R−R0) − 2d0e

−a0(R−R0) + b0, (A.2)
V1(R) = d1e

−a1(R−R1) + δ1e
−α1(R−ρ1). (A.3)

The discrete-state potential V1(R) and its coupling function V1ϵ(R) are
usually selected to correspond with the fixed-nuclei scattering phase-shift, as
detailed in [3]. As discussed in Sections 2.1 and 2.2.3, it is crucial for our
numerical methods that the discrete-state-in-continuum V1ϵ(R) assumes a
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separable form and its energy dependence is in a special form as follows:

V1ϵ(R) = g(R)f(ϵ), (A.4)
γ(ϵ) := 2πf 2(ϵ) = Aγ

[︂
ϵ
Bγ

]︂α
exp

[︂
− ϵ
Bγ

]︂
. (A.5)

The function g(R), which describes the radial-coordinate dependence, is
uniquely defined for each model.

Lastly, the fixed-R transition dipole moments are also inspired by fixed-
nuclei scattering calculations for each model [3]. As mentioned in Section
2.1, the transition dipole moment to the background continuum must assume
a separable form. However, in our simplified models, we entirely omit its
radial dependence. From Section 2.2.3, it is again necessary that its energy
dependence follows a specified functional form

γµ(ϵ) := 2πf 2
µ(ϵ) ≡ 2πµ2

ϵ = Aµ
[︂
ϵ
Bµ

]︂α
exp

[︂
− ϵ
Bµ

]︂
. (A.6)

Furthermore, for the transition dipole moment to the discrete state, the
radial dependence is also omitted, and we choose a complex number with a
non-trivial phase [3]

µ1 = 0.1 + 0.1i. (A.7)
Here, we define the radial-coordinate dependence of the discrete-state-in-

continuum coupling function V1ϵ(R) for the various models, where R is always
given in Bohrs (a0).

LiH model:
gLiH(R) =

[︂
1 + e0.75(R−6)

]︂−1
(A.8)

N2 model:
gN2(R) = e−1.5(R−2.0787) (A.9)
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LiH model N2 model
W (R) potential curve

dW (eV) 2.5 12.2
aW (1/a0) 0.6 1.16419
RW (a0) 3.0 2.0787
bW (eV) 0.57 -1.07

V0(R) potential curve
d0 (eV) 2.1 8.0
a0 (1/a0) 0.45 0.914033
R0 (a0) 3.1 2.2
b0 (eV) -0.13 -6.17

V1(R) potential curve
d1 (eV) 1.9 11.1
δ1 (eV) 0.0 -22.2
a1 (1/a0) 0.6 1.9339
α1 (1/a0) – 0.96695
R1 (a0) 3.0 2.24877
ρ1 (a0) – 2.24877

f(ϵ) and µϵ

Aγ (eV) 1.0 0.25
Bγ (eV) 2.0 2.0
Aµ (a.u.) 150 150
Bµ (eV) 0.8 0.8
α 0.2 2.5

Table A.1 Parameters of the molecular models for different diatomic molecules,
specifically LiH and N2. The table lists values for various parameters defining
the potential curves W (R), V0(R), and V1(R), and also energy dependence of
discrete-state-in-continuum coupling function f(ϵ) and fixed-R transition dipole
moment to the background continuum µϵ
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Figure A.1 Schematic of the model inspired by the LiH molecule. This graph
displays the potential curves for the neutral molecule W (R), the ground state of the
anion V0(R), and the electronically excited anion V1(R), which includes a depiction
of the resonance width, as functions of the internuclear distance R in atomic units
(a0).

47



Figure A.2 Schematic of the model inspired by the N2 molecule. This graph
displays the potential curves for the neutral molecule W (R), the ground state of the
anion V0(R), and the electronically excited anion V1(R), which includes a depiction
of the resonance width, as functions of the internuclear distance R in atomic units
(a0).
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Appendix B

Convergence analysis data

This appendix provides detailed tables related to the convergence analysis
described in Section 2.3.4. The convergence of numerical results for pho-
todetachment amplitudes and vibrational excitation amplitudes was assessed
across a range of computational parameters. As outlined, the stability and
accuracy of the results were verified by systematic variations in key numerical
parameters, ensuring the reliability of our findings within the studied energy
range. For clarity, we present data only for the ground final state |ν0⟩, which
corresponds to η0, and the last discussed final state |νj⟩ for each model, which
corresponds to ηj . The index j represents the last vibrational state discussed
in Section 3, and may vary across different models. Deviations for states
between these extremes were generally within the range established by these
endpoints. Therefore, for clarity, we only present the first and last state,
showcasing the spread of precision across the spectrum. The following sections
provide a clear presentation of the data, documenting the convergence tests
for different models detailed in Appendix A.

In the tables provided, the symbol # denotes the run number, and the
values of RN are specified in atomic units (Bohrs). The relative deviations
η are presented as percentages to facilitate a clear understanding of the
variations in precision across different computational runs. This format helps
in directly comparing the impact of parameter adjustments on the convergence
of our results.
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LiH model

# RN N nκ NDVR t η0 ηmax
0 η20 ηmax

20

1 11.0 1 100 80 110 2 – – – –
2 12.0 1 400 95 130 3 0.021 0.149 0.304 2.651
3 13.0 1 700 110 150 3 0.014 0.107 0.232 2.584
4 14.0 2 000 125 170 3 0.010 0.084 0.186 1.957
5 15.0 2 300 140 190 3 0.007 0.067 0.158 2.440
6 16.0 2 600 155 210 3 0.006 0.063 0.137 2.628
7 17.0 2 900 170 230 3 0.005 0.045 0.115 1.287
8 18.0 3 200 185 250 3 0.004 0.056 0.103 1.093

Table B.1 Convergence Data for Photodetachment Amplitudes (A) for the LiH
Model. Relative deviations η are shown as percentages, with RN values provided
in Bohrs.

# RN N nκ NDVR t η0 ηmax
0 η20 ηmax

20

1 11.0 1 100 80 110 2 – – – –
2 12.0 1 400 95 130 3 0.070 0.206 0.367 2.938
3 13.0 1 700 110 150 3 0.042 0.181 0.275 2.967
4 14.0 2 000 125 170 3 0.028 0.112 0.225 2.174
5 15.0 2 300 140 190 3 0.020 0.106 0.191 2.394
6 16.0 2 600 155 210 3 0.015 0.096 0.163 2.568
7 17.0 2 900 170 230 3 0.012 0.089 0.139 1.302
8 18.0 3 200 185 250 3 0.010 0.077 0.122 1.277

Table B.2 Convergence Data for Vibrational Excitation Amplitudes (TVE) for
the LiH Model. Relative deviations η are shown as percentages, with RN values
provided in Bohrs.
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N2 model

# RN N nκ NDVR t η0 ηmax
0 η2 ηmax

2

1 10.0 1 000 80 110 1 – – – –
2 10.5 1 300 95 130 2 1.395 6.117 62.564 77.667
3 11.0 1 600 110 150 2 0.223 4.242 17.715 27.556
4 11.5 1 900 125 170 2 0.073 1.601 4.566 5.817
5 12.0 2 200 145 195 2 0.025 0.793 0.614 2.252
6 12.5 2 500 165 220 2 0.014 0.444 0.125 1.038
7 13.0 2 800 185 245 2 0.009 0.268 0.018 0.537

Table B.3 Convergence Data for Photodetachment Amplitudes (A) for the N2
Model. Relative deviations η are shown as percentages, with RN values provided
in Bohrs.

# RN N nκ NDVR t η0 ηmax
0 η2 ηmax

2

1 10.0 1 000 80 110 1 – – – –
2 10.5 1 300 95 130 2 5.949 154.665 53.919 9894.866
3 11.0 1 600 110 150 2 2.134 31.191 18.183 554.448
4 11.5 1 900 125 170 2 1.001 10.347 9.766 168.704
5 12.0 2 200 145 195 2 0.526 3.916 3.584 140.576
6 12.5 2 500 165 220 2 0.266 0.874 1.250 29.334
7 13.0 2 800 185 245 2 0.144 0.606 0.642 3.396

Table B.4 Convergence Data for Vibrational Excitation Amplitudes (TVE) for
the N2 Model. Relative deviations η are shown as percentages, with RN values
provided in Bohrs.
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