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Abstract:

The aim of the thesis is to give complete and thorough proofs of some well-
known results from the measure theory. Oftentimes, arguments from functional
analysis will be used to prove these results. For example, we will use an enhanced
version of Schur’s theorem to prove the Nikodym theorem and the Vitali-Hahn-
Saks theorem. Then we will focus on the weak compactness in L; and we will
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Abstrakt:

Hlavnim cilem této prace je predstavit kompletni a detailné zpracované dukazy
nékterych znamych tvrzeni z teorie miry. K tomuto tcelu budeme castokrat
vyuzivat poznatky z oblasti funkciondlni analyzy. Napriklad pouzijeme silnéjsi
verzi Schurovy véty, abychom dokazali Nikodymovu vétu a Vitali-Hahn-Saksovu
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Biting lemmatu. Nakonec dokazeme Rosenthalovo lemma o rozkladu posloup-
nosti v Ly, coz bude disledek jiz zminéného Biting lemmatu.
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Introduction

The Nikodym theorem, the Vitali-Hahn-Saks theorem, the Biting Lemma and
Rosenthal’s subsequence splitting lemma are all classical yet not trivial results
from the measure theory. However, their proofs are sometimes very brief and for
an untrained eye it might not be clear what is going on. The aim of this thesis is
to present thorough and more detailed proofs of those results.

Now we would like to present the content of the thesis.

The first chapter contains some preliminary results that we will need later.

In the second chapter we will prove two theorems concerning setwise conver-
gent, sequences of measures: the Nikodym and the Vitali-Hahn-Saks theorems.
The proof of the Nikodym theorem will be non-standard. Usually it uses the
Baire theorem. However, we would like to present a more recent version of the
proof using an enhanced version of Schur’s theorem.

In the third chapter, we will show a proof of the Biting Lemma and Rosen-
thal’s subsequence splitting lemma. Both of these theorems are about extracting
a convergent subsequence from a bounded sequence of functions in L; (the sense
of convergence will be precisely defined in the third chapter; roughly speaking, it
will be even weaker convergence then the weak convergence).

At first, it might seem that the second and the third chapter are completely
unrelated: one is about measures, the other is about functions. However, there
is a connection between them, given by the Radon-Nikodym theorem. As we will
see, the Vitali-Hahn-Saks theorem states, loosely speaking, that for every setwise
convergent sequence of bounded measures, all of which are absolutely continuous
with respect to one common measure, the limit set function is also an absolutely
continuous measure (with respect to the same measure) and moreover, the original
sequence is uniformly absolutely continuous. Now, what happens if we replace
the assumption of the setwise convergence by the assumption of boundedness
of that sequence of absolutely continuous measures (in a proper Banach space)?
Sure the theorem will no longer hold (for example because the limit set function
might not exist at all), but the question we might ask ourselves is if there exists at
least a setwise convergent subsequence. We have thus arrived to a new problem:
when does a bounded sequence of absolutely continuous finite measures admit
a setwise convergent subsequence?

This is the point when we will use the Radon-Nikodym theorem. Since all the
measures are finite, they can be represented by functions from L; in a standard
manner. This way, we will translate the problem of convergence of measures into
a problem of convergence of functions from L;. And in the third chapter we
will see how and when we can extract a convergent subsequence from a bounded
sequence in L.

We will come back to this connection between the absolutely continuous mea-
sures and functions from L; at the very end of the third chapter, when we will
talk about it in more detail by using the theorems from this thesis. For now, the
main takeaway is that the two main parts of the thesis (Chapter [2land Chapter [3))
are connected by the Radon-Nikodym theorem.

Finally, let us mention that our contribution is the collection of more recent
proofs of the above theorems and their detailed presentation.



1. Preliminaries

In this chapter we will introduce basic definitions, notation and theorems that
will be used throughout the thesis.

Let us start with the definition of measure. In some articles, measure may be
only finitely additive. However, that will not be our case.

Definition 1 (signed measure and measure). Let (X,.A) be a measurable space
and let A1 A — [—00,00]. Then X is said to be a signed measure if

(i) A(0) =0,

(ii) for every sequence (Ay)nen C A of pairwise disjoint sets A (U2, An) =
Z;.ZO:O /\<An)7

(iii) A assumes at most one of the values —o0, 0.

If a set function A: A — [0,00] satisfies (i) and (ii), then X is called a (positive)
measure.

In the thesis, we will use the following notation:
o R* denotes the extended number line, i.e. R* = [—00,00],

e ca(A), for (X, A) a measurable space, denotes the vector space of real-
valued signed measures on A4 (under the usual addition and scalar multipli-
cation),

e cat(A), for (X, A) a measurable space, denotes the space of real-valued
positive measures on A,

 for (X,]|-]|) a normed vector space, z € X, r > 0, let us denote B(z,r) =
{ye X :|Jly—=z| <r}and Bx = B(0,1),

o for a set X and for A C X, y4: X — {0,1} denotes the characteristic
function of the set A.

Now for a measure space (X, A, u) with a signed measure p we would like to
find a partition of X into subsets P and NV, satisfying that p is non-negative on
every measurable subset of P and non-positive on every measurable subset of N.
First, let us introduce the following terminology.

Definition 2 (A-positive set, A-negative set). Let A: A — R* be a signed measure
and A € A. Then A is said to be

o A-positive if, for every B € A, A\(ANB) >0,
» A-negative if, for every B € A, (AN B) <0 and
o A-null if, for every B € A, \(AN B) =0.

Definition 3 (Hahn decomposition). Let A be a signed measure on a measurable
space (X, A) and let PN € A. Then the pair (P,N) is said to be a Hahn
decomposition of X relatively to A if



« PUN=X,
e« PNN =1,

o P is A-positive and N is A-negative.

Now let us present the Hahn decomposition theorem, which states that we
can always find the desired partition from above. Let us recall that if A and B
are sets, their symmetric difference is defined to be AAB = (A\ B)U (B \ A).

Theorem 1 (Hahn decomposition theorem). Let (X,.A) be a measurable space
and let A\: A — R* be a signed measure. Then there exists (P, N) a Hahn decom-
position of X relatively to X\. For any other (P1, N1) a Hahn decomposition of X
relatively to A\, PAP, and NAN; are A-null sets.

Proof.  See Florescu and Godet-Thobie [2012, Theorem 1.6] for a proof.

O
From Theorem [1| we obtain the following corollary.
Corollary 2. Fvery signed measure A € ca(A) is bounded.
Proof. See Florescu and Godet-Thobie [2012, Corollary 1.14] for a proof.
O

From Theorem [I| we also get that the following definition is correct.

Definition 4 (Jordan decomposition). Let X be a signed measure on a measurable
space (X, A) and let (P, N) be a Hahn decomposition of X relatively to X. Then
we define

e NT(A)=XANP), for every A € A,
e M (A)==XANN), for every A € A, and

o [A[(A) = AT(A) + A (A), for every A € A.

The pair (AT, A7) is called the Jordan decomposition of X\. The set function |\|
is called the total variation of .

Note that, by definition, A* and A\~ are measures and A = A\™ — A\~ since we
can write

MA) =AMAN(PUN)) =XANP)+AANN) =X (A) -1 (A), Ae A

Also |A] is a measure on A, because it is a sum of two measures on A. Notice
that if A € ca(A), then (by Corollary [2) A is bounded and since A = At — A~
both measures At and A~ must be bounded, and therefore |A| is also bounded,
which means that [A| € ca(A).

Sometimes |A| is defined in this manner:

M) = s0p {3 AN iy Ay Ay A
=1

A; are pairwise disjoint, A = U A, n € N} )

=1

However, the following lemma shows that these definitions are equivalent.
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Lemma 3. Let A be a signed measure on a measurable space (X, A). Then
Al (A —sup{2|/\ DAy, Ay, ..., A, €A,

A; are pairwise disjoint, A = U A, n e N} )

=1

Proof. Let Ae A, neN, (A)", CAbe a sequence of pairwise disjoint sets
such that A = U, A;. Then

> IAGAY) =§\A+<A> z +r(a

(VA A (4)) - S (U A) AL (A),

Conversely, let A € A and let (P, N) be a Hahn decomposition of X relatively
to A. Then for A; = AN P and A, = AN N we have that A; N Ay = () (because
PﬂNzw), A:A1UAQ, and

D IAMAD] = IMAD] + [M(A2)] = [MAN P)| + [MANN)| =

i=1

= [AFA)] + [-A(A)] = A(A) + A (4) = A (4),

which completes the proof.
O

Now we want to assert that the set ca(A) with a correct norm is a Banach
space. For that, we will need to define a mapping that will be our norm.

Definition 5. Let (X, .A) be a measurable space. Then we define the mappings
-1l 1l lloo: ca(A) — [0,00) as follows:

A= 1M1, Mo = sup(ACA)])-

Theorem 4 (Florescu and Godet-Thobie, 2012, Theorem 1.23). Let (X,.A) be
a measurable space. Then the mappings |||, || |lco: ca(A) — [0,00) from the
definition above are two equivalent norms on ca(A).

The spaces (ca(A), || -1]) and (ca(A),| - ||l) are Banach spaces.

Proof.  In [Florescu and Godet-Thobie [2012, Theorem 1.23], the theorem is
proved for spaces ba(A) of real-valued bounded additive (i.e. not necessar-
ily o-additive) measures on A. However, in the same theorem it is proved
that the spaces (ca(A), || - ), respectively (ca(A), | -||«) are closed subspaces of
(ba(A), | - |), respectively (ba(A), | |ls) (the fact that ca(A) C ba(A) is stated
in Florescu and Godet-Thobie| [2012, corollary 1.14]). And since a closed sub-
space of a Banach space is also a Banach space, our weaker form of the theorem

is proved.
O

Finally, let us recall the definition of an absolutely continuous measure.
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Definition 6. Let (X,.A) be a measurable space, let \: A — [0,00] be a positive
measure and p: A — R* be a signed measure. Then u is said to be absolutely
continuous with respect to A if

VAe A: MA)=0= pu(4)=0.
We denote this by p < .
By |Florescu and Godet-Thobie| [2012, Remark 1.29], we have

pLAE jul < e (pm < and p= < N).

Therefore p is absolutely continuous with respect to A if and only if |u| is ab-
solutely continuous with respect to A. The following proposition shows that for
p € ca(A) we could use an -0 definition to define the absolute continuity of u
(and thus |u|) with respect to A.

Proposition 5 (Florescu and Godet-Thobie, 2012, Proposition 1.30). Let (X, .A)
be a measurable space, \ be a positive measure on A and let u € ca(A). Then the
following properties are equivalent:

(i) w is absolutely continuous with respect to A,

(ii) for every e > 0 there exists 6 > 0 such that for every A € A satisfying
A(A) < 6§ we have |u| (A) < e.

Proof. See Florescu and Godet-Thobie, [2012, Proposition 1.30] for a proof.
O

Remark 1. Notice that, by Florescu and Godet-Thobie [2012, Theorem 1.17 i)],
in (ii) we can use |u(A)| instead of |u| (A).

Finally, let us mention that the equivalence does not hold if i is not bounded.
For example, let A be the o-algebra of Lebesgue measurable sets on R and let
pu(A) = [, ]z| d\, A € A. Then p < A, but for arbitrarily small § > 0 we have

11 |
(55 +9)) = /<3;7§+6> 2] dA > /((%’H)ddx ~1,

therefore (ii) does not hold.



2. Vitali-Hahn-Saks and
Nikodym Theorems

Let us have (X, .A) a measurable space and (i, )nen C ca(A) a setwise convergent
sequence of bounded signed measures. Let p: A — R* be a set function such that
limy, 00 ttn(A) = p(A) for every A € A. Then the Nikodym theorem states that
p € ca(A) and that the family {u, : n € N} “is nice”. If in addition there exists
a positive measure A such that u, << A for every n € N, then the Vitali-Hahn-
Saks theorem states that also y < A and that the family {u, : n € N} “is even
better”. We will need to define what we mean by “being nice” and “being even
better” before stating and proving the theorems. Both of these refer to some sort
of uniformity in n. The precise definitions are stated in the following section.

2.1 Uniformity

Definition 7 (uniform o-additivity). Let (X,.A) be a measurable space and let
K C ca(A). Then K is said to be uniformly o-additive if for every (A;)ien C A,
A; pairwise disjoint and for every € > 0 there exists ng € N such that for every
n €N, n>ngy and for every p € K it holds that |p (U2, Ai) — >0, u(Ai)| < e.

Definition 8 (uniform absolute continuity). Let (X,.A) be a measurable space,
A be a positive measure on A and let K C ca(A) be a family of signed measures
on A. Then I is said to be uniformly absolutely continuous with respect to A if
for every € > 0 there exists § > 0 such that for every A € A with \(A) < 0 and
for every pu € K we have |pu(A)| < e.

Notice that if we used (ii) of Proposition [5| to define the absolute continuity
of the family {u, : n € N} C ca(A) with respect to (a positive measure) A, then
we would get that the family {u, : n € N} C ca(A) is absolutely continuous with
respect to A if and only if

VneNVe>030>0VAe A ANA) <6: |un|(A) <e. (2.1)
According to Remark (1, we can equivalently rewrite as

VneNVe>030 >0VAe A ANA) <d: |u(4)] <e. (2.2)
Now we see that we can obtain Definition |8 from only by shuffling a few

quantifiers.

2.2 Nikodym and Vitali-Hahn-Saks Theorems

In this section we will want to prove two theorems about sequences of measures:
the Nikodym theorem and the Vitali-Hahn-Saks theorem. Note that, in |Brooks
[1969], the theorems are proved simultaneously.

We will need the following lemmata to prove the Nikodym theorem.



Lemma 6 (Walter Rudin, (1987, Lemma 6.3). If 21, 29, ..., 2y are complex num-
bers, then there exists a subset S of {1,2,...,N} for which

hE

1
= > |zl
T

D 2%

kesS

>

k=1

Proof.  See Walter Rudin| [1987, Lemma 6.3| for a proof.
]

Let us recall Schur’s theorem, which will be needed in the following lemma.

Theorem 7 (Schur’s theorem). Let (x,)nen be a weakly convergent sequence
in (01, ] |I). Then (x,)nen is a (strongly) convergent sequence in (€1, ] - ||).

The following lemma asserts that we can enhance the above theorem. To
prove the Nikodym theorem, we will need this enhanced version. The proof of
the lemma follows the one in Michal Johanis and Jit{ Spurny [2022, Lemma 101,
pages 359-361].

Lemma 8. Let A = {xy : N C N} be considered as a set in ly, and let f, € (¢1)*
denote the functional represented by a € A. Let (zp)nen € €1 be a sequence
in €1 such that (f,(z,))nen converges for every a € A. Then there exists x € {y
satisfying lim,, o x, = .

Proof. Let || - || denote the standard norm on ¢; and for y € ¢; and a set N C N
let yxn denote the vector y(i)xn(i), ¢ € N.

Step 1. We will show that the sequence (z,)neny C ¢; is bounded in (¢4, || - |)-

By way of contradiction, let us suppose that (x,)nen is unbounded in (¢4, || - ||).
Then without loss of generality we can suppose that lim, ||z, | = 0o (because
otherwise there exists at least a subsequence (x,, )ken extracted from (z,)nen such
that limy_,|| 2, || = 00 and we could make an analogical proof for it). Let us set
ny; = 1 and let us inductively construct a strictly increasing sequence (ny)rey € N
satisfying || @, , || > k =+ || 2y, || for every k € N (the induction step is trivial and
follows from the definition of the limit). Let us set yx = x,,,, — 75, k € N.
Then the sequence (yx)ren satisfies

il = s = @y 1= [ s | = g I >k, k€N,

Furthermore, if for a € A we denote L, = lim,_,o fo(x,) the limit from the
assumption, we obtain

klglgo falyr) = klggo fa(xnk+1_xnk) = klglgo fa(xnkﬂ)_fa(xnk) =L,—L,=0. (2.3)

Thus (yx)ren satisfies limy oo || yx || = 00 and limy_,o fo(yx) = 0 for every a € A.
Let us notice that for every finite N C N it holds sup,cy|| yxxn || < 0o. That
is because we can choose (for arbitrary ¢ € N) a = x{;; and obtain from ([2.3)

Jim . (2) = lim fo(yi) =0, (24)

which implies that every sequence (yx(i))ren € F is bounded. In particular, if
we denote N = {iy,is,...,%,}, we obtain that there exist K, Ky, ..., K, such
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that for every j € {1,2,...,p} and for every k € N it holds that |y.(i;)| < K;.
Therefore by setting M = max{K;, K, ..., K,} < oo we obtain

supl| yrxw || = sup Y |ye ()| < M [N,
keN keN iEN

where | N| denotes the number of elements of N.

Now let us inductively construct a sequence of finite sets (N;);en € P(N) and
two sequences of natural numbers (k;);en, (m;) en such that for every j € N we
have:

(1) max Nj <m; < min Nj+1 and k’j < kj+1,
(ii) ‘ZieNj Yk, (Z)‘ > 7,
(111) H Yk ;1 X{1,2,...,max N, } H < ]'7

(IV) H yij{mj,mj+1,...} H < 1

To start the induction, let us find k; € Nsuch that >7°, |yg, (i) = || vk, || > 17
(note that such ky exists since limg_,o0|| yx || = 00). Then there exists M; C N
finite such that || yk, Xar, || = Xiean Yk (1)| > 7. From Lemma [6| we obtain that
there exists N; C M, for which

1EN7

< ”yk1XM1 H = Z ’y/ﬂ(z)’ <m
1€My

Let my > max Ny satisfy || yx, X(m,..} | = Ziem, [Uk (¢)] < 1. Then Ny, ky and my
satisfy (i), (ii) and (iv) by construction and (iii) is satisfied trivially.

Now let us assume that 7 € N and that we have Ny, Ny, ..., N;, ki, ko, ..., k;
and mq, mo, ..., m; satisfying (i)-(iv). Then for every i € M = {1,2,...,m;} we
have limy s [yx(i)] = 0 by (2.4). Therefore there exists kj,, > k; such that for
every k > kj,, it holds that || yexar | = Xenr [yx(i)] < 1. On the other hand, we
have limy,_,o | Y& || = 00, hence there exists k3, > k; such that for every k > k7,
it holds that ||y || > (j 4+ 1) - 7 + 2. If we take kj;1 = max{kj,,, k7, } > kj,
we obtain the vector yy, , satisfying || yr,., X{1.2,..maxn;} || < || %k, xar || < 1 and
G+1) 7+ 2 < [igun 1| = Nty |+ 910 xear | < 1+ 19 st [, thus
(j+1) -7 < | gk xmar || Let us find a finite set M;,1 € N\ M satisfying
19k, 2 Xty || > (7 + 1) - 7. By Lemma [6] there exists Nj 1 C My, such that

Z Ykj1 (Z> :

1€N 11

GAHD -7 < lumxan, = D |oa @) <7

’iGMj+1

Finally, let us take m;;, > max Ny satisfying || yr;,, Xqmor..y || < 1. Then
i)-(iv) are clearly satisfied and the construction is complete.
(i)-(iv) learly satisfied and th truction i plet

Let us define N = U;2; N; and @ = xy. Then the corresponding element



fa € (£1)* satisfies (for every j € N, j > 2) the following inequality:

- iykj@x]v(z) -

fa(ykj)

= > @O+ @O+ > w()] >

1€N1U--UN; 1 €N iEUZj+1 N¢

> Z Yk, (1) —

1EN,

Z Yk, (4)

iENlU"~UNj,1

- > Y, (1)] >

ieUZjH Ni
2 .] - H yij{l,Q,...,maxNjfﬂ || - || ykJX{m]7} || > ] - 2

Thus limg o0 fo(yx) # 0, which contradicts (2.3). Therefore (z,),en has to be
bounded.

Step 2. We want to show that for every a € ¢ it holds that the sequence
(fa(zn))nen € F converges.

Let a € £ be given. Let € > 0 be given. Note that without loss of generality,
we can assume that a € By (if a = 0, the statement is obvious. Otherwise, let
us assume the vector b = a/||allooc € Be,. If (fp(xy))nen converges to L € T,
then (f,(2,))nen converges to || a ||« - L and the statement holds). That means
that for every i € N we have a(i) € Bp. Since By is totally bounded, there
exists a finite $-net for Bp that consists of nonzero z1,29,...,2, € Bp. Set

={i e N:a(i) € B(zj,e/Q)}, j € {1,2,...,m}. Let us define Ny = M;
and N; = M; \ (N7 U---UN,_4), j € {2 .,m}. By construction, N; are
pairwise dlSJOlIlt and furthermore N =UjL (because By = UjL, B(zj,¢/2)).
Therefore we can define b = >0, z;xn;- Then la = bl < e, because for
every ¢ € N there exists j € {1,2,...,m} such that i € N; C M;, which means
|a(i) = b(i)] = la(i) — 2| <e/2 <e.

Let M = sup, eyl @n ||. By Step 1, M < co. By the assumption applied on the
sets N1, Na, ..., N,, we have that the sequences (fXNj (Zn))nen, § € {1,2,...,m}
are all convergent, and thus they are Cauchy. Therefore there exist indices
N1, M2, ..., Ny € N such that for every j € {1,2,...,m} and for every n,n’ > n;

it holds | fyy, (a) = fr, (Tw)
and let n,n’ > ng. Then we have

| fa(zn) = fa(zn)| = | fal@n — 2n)| < |(fa — fo) (@0 — 20)| + [ fo(20 — 200)| <

< st B Let us set ng = max{ni,ng,...,ny}
=117

<1 fum follisll 2 — [+ Em:f — )| =
— = blloolllza ll+ Il 2 ) + ilzjfoj<xn—xnf> <
< 2Me 3 1 [, (30) = i, ()] <
2
< 2Me + | ’Z\ZJ| e(2M +1).
1 J

Hence (fo(xn))nen C F is a Cauchy sequence, and thus it is convergent.
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Step 3. Finally, let us show that (z,),en is a Cauchy sequence (in (€1, -||))-

By way of contradiction, if (x,),en is not Cauchy, there exists € > 0 and two
strictly increasing sequences (ny)ken, (Mi)ren € N such that ||z, — xm, || > €
for every k € N. Let us set y, = z,,, — Tp,,,. Let a € { be given. By Step 2 there
exists L, = lim, 00 fo(x,), and thus

klgglo fa(yk) = ]{li)rgo(fa(xnk) - fa(l‘mk)) =L,— L, =0.

Since a € ly = (¢1)* was arbitrary, we can apply Schur’s theorem (Theorem [7)
and obtain that limy .|| vk || = 0, which contradicts ||y || = || Zn, — Tm,, || > €
for every k € N. Since (¢4, -]|) is complete, there exists x € ¢; such that
lim,, .o, x, = x, which completes the proof.

[

Now we are ready to prove the Nikodym theorem (see Brooks [1969]).

Theorem 9 (Nikodym). Let (X,.A) be a measurable space, let (y)nen C ca(A)
be a sequence of measures on A such that there exists a set function u: A — R
satisfying lim, o0 pin(A) = p(A) for every A € A. Then p is a measure on A
and the family {p, : n € N} is uniformly o-additive.

Proof. Let u(A) = lim, oo pn(A) for every A € A and let (A,)peny € A
a sequence of pairwise disjoint sets be given.
First of all, p is (finitely) additive. Indeed, for every k£ € N we have

k k k
p (U Ai> = lim s, (U Ai) = lim > pn(A;) =
i=1 1=1

i=1

K K
= lim g (A) = Y p(Ay).
=1 =1

(2

Set A=U2, A, Ag=0and E, = A\ Uf;ll A; for every k € N. We want to
show that limy_,. u(Ey) = 0, because then we would also have

> w(A) = Jim 3" () = i g (U AZ-> =

k—o00 im1
~ i ((U AZ) \ E) ~ i (U Ai) — (Eesr) = pl(A) — 0
i=1 i=1

where the fifth equality follows from lim,, . p(E,,) = 0.
Note that A; = E; \ E;11, ¢ € N, because the sets A; are pairwise disjoint.
Let us denote x,(i) = u,(A;). Then z, € ¢ for every n € N. Indeed, let
n € N. Then

oo

S [ali)] = i (A < iw (A) = [l (4) < o0,

i=1
which means z,, € /1. Furthermore, let N C N, then obviously a = yy € {+ and
for the functional f, € (¢1)* represented by a we have

lim fo(z,) = lm > ,(i) = lim Y p,(4;) =

n—oo n—oo n—oo

iEN iEN
= lim u, (U Ai> :,u<U Ai> e R.
neo iEN iEN
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Therefore by Lemma [8| there exists x € ¢; such that lim,, .., z, = x. Then for
every ¢ € N we have

(i) = lim 2, (i) = Hm g (A;) = p(As).

n—oo n—oo

Hence
0= i |z — 2 = Jim 3 fo(i) — 2] = Jim 3 JualA) — u(AD]. (25)
i=1 i=1
Note that since x € ¢4, it holds

0= hm Z|x )| = hm Zm

which implies
0= l}ggogu(fli)- (2.6)

Let us set sp, = fin(Ex) — 222, 1(A;). Then

hm Snk = hm (pn(Ey) — Z,u = 0 for every n € N. (2.7)

—00

That follows from (2.6) and from the fact that £y D Ey O ..., N2, By, = () and
|ttn| (E1) < 00, n € N (measures 4, are bounded by Corollary [2). By assumption,
we also have

n—00

lm s, = lim ju, (Ey) Zu w(Ey) = > p(A). (2.8)
i=k

Let € > 0 be given. By , there exists ng € N such that for every n € N,
n > ng it holds >-7° |un(A;) — u(A;)| < e. Since z, 1, z9, - -+ € {4, there exists
ko € N such that for every n € {1,2,...,n0} and for every k > ko we have
e > XX va(i) —2(@)] = X2k lun(A:) — u(A;)|. Therefore for every k € N,
k > ko and for every n € N we have

fin(Ex) — Zu

= |ftn (H Ai) - iM(A

il = (11U ) - Suta

i=1

[e.9]

)| = Z(Mn(Az) _N(Az'))

i=k

< (2.9)

i=k

<Z’Mn i) — (A <e.

That means, by definition, that the functions g;: N — R defined by gx(n) = s,k
converge uniformly to 0 on N. Therefore we can interchange the limits and ({2.7))

and ([2.8) yield

lim (M(Ek) — Zu(Al)) = lim lim s, = hm lim gg(n) =

k—o0 k—o00 —00 k—o00 n—00

= lim lim gx(n) = lim 0 = 0.

n—00 k—s00 n— 00

12



Then the previous equation and equation (2.6) imply that

lim p(Ex) = Tim (u(Bx) — 3 p(A) + 3 (A)) = 040 = 0,
k—o0 k—o00 ik =
which is the desired conclusion.

The uniform c-additivity is now easy to verify since we know that u itself
is o-additive. In fact, A; € A pairwise disjoint and ¢ > 0 were given and we
have already found ky € N such that the equation holds. Since we know
limy oo pt(Ex) = 0, we can find k; > kg such that for every k > k; the inequality
|n(Ex)| < € is satisfied. Then for every k € N, k > ky and for every n € N we
have

) SERES SHER

=130 A = | D0 (palA) = p(Ai) + p(A)) | <
i=k+1 i=k+1
<Y (n(As) = p(A)) |+ Do (A <
i=k+1 i=k+1
< 3 a(A) = p(A) + | U p(A)| =
i=k+1 i=k+1
= > bn(A) = p(A)| + [1(Brir)| < 2,
i=k+1
which completes the proof.
O

In the Vitali-Hahn-Saks theorem we put an extra assumption on the sequence
(t4n)nen from the previous theorem: the absolute continuity with respect to one
universal measure A\. Then we will mainly want to obtain the uniform absolute
continuity with respect to A. This result is proved as the second part of the
theorem in |Brooks| [1969]. The result 2. is stated in [Florescu and Godet-Thobie
[2012] as Theorem 1.36 iii).

Theorem 10 (Vitali-Hahn-Saks). Let (X,.A) be a measurable space and suppose
that (pun)nen C ca(A) is a sequence of measures on A such that there exists a set
function p: A — R satisfying lim, oo pn(A) = p(A) for every A € A. Let
A A — [0,00] be a measure such that for every n € N it holds i, < \. Then

1. p is a measure on A,
2. p<<\and

3. (n)nen is uniformly absolutely continuous with respect to \.

Proof. 1. Follows from the Nikodym theorem (Theorem E[)

2. This is a simple observation. Let A € A such that A(A) = 0 be given. By
definition, yu,(A) = 0 for every n € N, thus p(A) = lim, o ptn(A) = 0. Therefore
<L A

13



3. By way of contradiction, let us assume that (i, )en is not uniformly ab-
solutely continuous with respect to A\. Then, by Definition [8 there exist ¢ > 0,
a strictly increasing sequence (n,,)men € N of indices and a sequence of measur-
able sets (A, )men € A such that for every m € N it holds A(4,,) < 1/2™ and
| (Am)| = €.

Without loss of generality we can assume that p,,, = p, (otherwise we set
Um = [, and we prove the theorem for the sequence (v, )men). Therefore we

have
AA,) < 1/2™ (2.10)

and
|bn (Am)| = € (2.11)

for every m € N.
Now we assert that for every £ € N there exists a subsequence of natural
numbers (nz(-k))ieN such that, if we set (nEO))ieN = (1)jen, it holds

(i) (n¥F™),cy is a subsequence of (n\);cy for every k € NU {0},

(2

(i) 2%

I, ) <An(k+1)> < ¢/2 for every k € NU {0},
1 7

(iii) n{® < nF ke NU{o}.

The sequences (ngk))ieN will be constructed inductively.
To start the induction, let us notice that lim, . |u1| (4,) = 0. That follows
from the assumption p; < A and Proposition [} Therefore, by definition, there
exists a subsequence (n§”)i€N of natural numbers (or in other words, (ngl))ieN
is a subsequence of (ngo))ieN) such that [u] (A o)) < g/2F! for every i € N.
(1) (1)

Furthermore, by definition of the limit, we can assume that ny’ satisfies ny’ >
n§°> = 1. Consequently,
Z ,ungo) (An(_1)) = Z |,u1| (An(_n) < Z&/QHI = 8/2.
i=1 ' i=1 ' i=1
Therefore, by construction, (i)-(iii) are satisfied.
Now let us assume that we have (ngl))ieN, c (ngk))ieN satisfying (i)-(iii). By

assumption, ) < A and thus by Proposition |5 we have lim,, ,un(@‘ (A,) =0,
1 1

which implies lim;_, .

H 09 (Angk)) = 0. Therefore there exists a subsequence

(ngkﬂ))ieN extracted from (ngk))ieN satisfying |p | (A, a+n) < /2" for every
1

t € N. Furthermore, by definition of the limit, we can assume that ngkﬂ) satisfies

ngkﬂ) > ngk). It holds that

Z (k) (An(_k+1)) < Z&/QHI = 5/2.
=1 " ‘ i=1

Then, by construction, (i)-(iii) are satisfied and the construction is complete.
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Let v; = p o and B; = A ). Then from (2.10) and from (iii) we obtain
ABy) = MA ) < 172" < 1/21, (2.12)
1
We also have that for every £k € N

Z |Vk|<B]) = Z |Vk‘|(An(J) Z|Vk| A (k+1)
=1

j=k+1 j k+1 (2'13>
Z ) (A (k+1)) <e/2,

where the equalities follow from definitions, the first inequality follows from (i)
and (iii) and the second inequality follows from (ii).

Let @ = limsup B; = N2, U2, B; andC’ =U2,, Bi, n € N. Then C,, \, Q.
Let T,, = C, \ Q. Then T, \, 0. By (2.12) and by the assumption that \ is
a positive measure, it holds for every n € N that

AMQ) < ACy) < i’\wi) < i 12 = 1/27,

which implies A\(Q) = 0. By assumption, v, = p_a < A, k € N, hence 4,(Q) =0
1
for every k € N. Therefore, for every k,n € N, we have

(1) = vk (Cr \ Q) = k(Cr) — vk(Q) = v (C). (2.14)

Let us define ¢,,: N — R, g,(k) = vx(T,,). We claim that g, = 0 on N. To
prove this, let n > 0 be given. By assumption,

VA€ A: lim p,(A) = p(A),

thus
VAe A: klim vi(A) = u(A).

Since v are also real-valued, we can apply the Nikodym theorem (Theorem @
and obtain that the family {v; : &k € N} is uniformly c-additive. Let us set
Sy =T, \ Thy1. Since T, N\, 0, we obtain that U}, S; / T;. Moreover, S, are
pairwise disjoint. Therefore, by Definition [7] there exists ng € N such that for
every n € N, n > ng and for every k € N it holds that |vg(T1) — >0 ve(S:)| < n.
Then for every n € N, n > ngy and for every k € N it holds that

n

= [u(Th) = D w(Si)| <,

=1

v (T \ (U S3))

i=1

|90 (K] = [ (T =

n ’

which establishes the claim. (Note that the third equality follows from Corol-

lary [2])
Since g, = 0 on N, we can find N € N such that for every n € N, n > N it
holds

VE e N: |g. (k)| <e/2.
Then ([2.14)) yields

[ (Cn)l = [ (T)| = lgn(K)] < /2 (2.15)
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for every n > N and for every k € N.
For every k € N it holds that

vi(Br) = v (GBz\( G Bz’\Bk)) =

i=k i=k+1

[ (0
- ([0 ) o)

Ve ((G BZ-) N (X\Bk)) | (2.16)

It also holds that
§|1/k\(<U B) X\Bk>)_
i=k+1 (217)

(7))
< v (':Qle') .

Therefore, if we set n = k > N, we obtain by (2.11)), (2.16)), (2.15)) and (2.17)),
by o-subadditivity and by (2.13)) the following inequality:

e < ‘Mngm (An<1m> Vk ((l LkJ+1 B) (X\ Bk))

<5/2+|Vk|( U Bi> <2+ S |nl (B

i=k+1 i=k+1

Therefore

[V (Bg)| < v (Cr)| +

(v (Br)| < |ve(Cr)| +

which yields the desired contradiction.
O

Finally, we would like to show that if we have (X,.4) a measurable space and
a sequence of measures (pn)neny C ca(A) such that for each set A € A the set
{pn(A) : n € N}is bounded, then the set {1, : n € N} is bounded in (ca(A), || - ||).
The proof of this theorem follows the one in [Florescu and Godet-Thobie, [2012,
Theorem 1.38].

Theorem 11 (Uniform boundedness Nikodym’s theorem). Let (p,)nen C ca(A)
be a sequence of measures such that

sup |pn(A)| < oo for every A € A.
neN

Then {p, : n € N} is bounded in the space (ca(A),||-])-
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Proof. We suppose that {p, : n € N} is unbounded in (ca(A), | -||). By Theo-

rem {4} the norms || - || and || - || are equivalent in ca(A), which means that
sup(sup |, (A)]) = 0. (2.18)
neN AeA

By hypothesis
sup | pn (X)] < oo. (2.19)
neN

Let us construct a strictly increasing sequence (ng)rey € N and two sequences
(Ak)ken C A, (Bg)ren C A such that

(i) SUP,cx (S ac.s (A 1) Ay)[) = 00 for every & € N,

(i) (gt (Ai)| = 25 i (Bo)] + b + 1 and |, (Bi)| 2 555 |y (Br)] +k + 1
for every k € N,

(111) Al 2 A2 2 ... and
(iv) Br = Ak_1 \ Ay, for every k € N,

where we shall define Ay = X, By = 0 and 30, |, (B;)| = 0.
All objects will be constructed inductively.

From (2.19)) it follows that sup,,cy |pn(X)|+2 € R. Therefore, by (2.18)), there
exists ny € N and M; € A such that |u,, (M1)| > sup,ey |#n(X)| +2 > 2. Then,

since fu,,, is bounded by hypothesis and by Corollary [2, we have that

|Mn1(X \ M1)| = |:un1(X) - Mm(M1>| > |Mn1(M1>| - |MN1(X)| >
> |tny (M1)] = sup |2, (X)] > sup [, (X)| + 2 — sup [ n (X)| = 2.
neN neN neN

Therefore we have
pny (M1)| > 2 and [, (X \ My)| > 2. (2.20)

According to (2.18), one of the following equalities must be satisfied:

sup(sup |p, (AN M)|) = o0 (2.21)
neN AecA
or
sup(sup |, (AN (X \ My))|) = oo. (2.22)
neN AcA

If (2.21)) is satisfied, let us denote A; = M; and By = X \ M;. Otherwise, we
denote By = M; and A; = X \ M;. Then, by (2.20]) and by (2.21)) (or by (2.22))),

we have that (i) and (ii) are satisfied and, by construction, (iii) and (iv) are
satisfied as well.

Now let us assume that k£ > 2 and that we have Ay, As, ..., Ay, B1, Ba, ..., By
and fin,, finy, - - - bn, satisfying (i)-(iv). By hypothesis

sup |pn (Ag)| < o0,
neN
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thus sup,,cy |1n (Ax)| + S0, |tn, (B1)] + &k +2 < co. From (i) it follows that there
exist niy1 € Nand My, € A, M1 C Ay, such that

‘Iunk+1 Mk—i-l)‘ >Sup|lu’n Ak |+Z|/“L7Lk Bl)|+k+2 > Z|/’Lnk Bl)|+k+2
=1

We may choose ny1 > ni because, if no such nyy; exists, we have that
k

sup  (sup |, (AN A)|) < sup|un (A + D e (B + k + 2 < o0.
neN, n>n;, AcA =1

Then, since p, is bounded for every n € N by Corollary [2, we obtain that there
exist Ky, Ky, ..., K,, € (0,00) satisfying sup g4 |ttn; (A)| < K; for each i < ny.
This implies

sup(sup |pn (A N Ag)]) <
neN AcA

< maX{Kl,Kg,... K,,, sup|,un (Ar) |+Z]unk B)| +k+2} 00,

=1

which contradicts (i).
It holds that

s (A \ Mic1)| = [ty (Ar) = bty (Mici1)| 2
> ’“’ﬂkﬂ (Mk-i‘l)’ - ‘Mnk+1(Ak> >
2 [t (Min)| = 5D lan(Ay)| 2

> Suplun (Ag) |+Z iy (Bi)| + & +2 — Suplun(Ak)l
=1

= Z|:U'nk(Bl)| +k+2.

=1

Therefore we have

k
ey (Mi)| = 3 |, (BO| + K + 2 (2.23)
=1
and )

According to (i), one of the following equahtles must be satisfied:

sup(sup |pn (AN Mgy1)]) = 00 (2.25)
neN AeA
or
sup(sup |pn (AN (Ag \ Mi11))|) = o0. (2.26)
neN AeA

If (2.25)) is satisfied, let us denote Ag 1 = Mgy and By = Ax\ Mgi1. Otherwise,
we denote By = Mgy and Agy = A \ Mgi1. Then, by (2.23), (2.24) and
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by (2.25)) (or by (2.26))), we have that (i) and (ii) are satisfied and, by construction,
(iii) and (iv) are satisfied as well. That completes the inductive construction.

Notice that from (iii) and (iv) it follows that the sets By, k € N, are pairwise
disjoint.

Let £ = {ny : k € N}. Notice that E is infinite since (ny)ren is strictly in-
creasing. We assert that there exist (k;);en € N a strictly increasing sequence of
natural numbers, (N;)jeny € P(E) and (C})jen C A such that

(a) (N;)jen consists of infinite subsets of £ and N; O N;y4 for every j € N,
(b) k; is the smallest element of N; and k;_; < k; for every j € N,

(c) Cj = By, for every j € N and

(d) [ptn,

where we shall define kg = 1.

The objects will be constructed inductively with respect to j. For j =1, let
{M}, : m € N} be an infinite countable partition into infinite sets of the set F.
Since

(UleNj Bl) < 1 for every j € N,

Z |Mn1| ( U Bl) = |:un1| (U Bl) < |:un1|(X) < 00,
m=1 leM} leE

there exists mo € N such that |u,, | <UZEMT1HO Bl) < 1. Set Ny = M, . let k; be

the smallest element of Ny and let €} = By,. Then indeed k; > kg = 1, because

if not, we have k; = 1, thus

1> |:un1| ( U Bl) > ’Mm’ (Bk1) = |:um| (Bl>7

leN,

which contradicts (ii). Therefore ky > ko = 1 and (a)-(d) are satisfied.
Now let us assume that j > 2 and that we have ki, ko, ..., k;, N1, Na, ..., N;
and Cy, Cs, . .., C; satistying (a)-(d). Let {Mf,f“) im € N} be an infinite count-

able partition into infinite sets (of the infinite set) N;. Since

(X) < oo,

Z ’,unkj U Bl = ‘,U/nk] ( U Bl) < ‘Nnk]
m=1 leM{E+Y IEN;

there exists my € N such that ‘/vcnk‘
J

mg

<Ul€M(k+1) Bz) < 1. Set Njy; = M(kf1)7

let kj.1 be the smallest element of Ny an((i let Cjy1 = By,,,. Then indeed
kjy1 > kj;, because if not, we have k;;1 = k; (since k; is the smallest element of
Nj and Nj+1 Q Nj, we know kj—l—l Z k}j), thus

leEN; 1

which contradicts (ii). Therefore k; 1 > k; and (a)-(d) are satisfied, which com-
pletes the inductive construction.

1> ‘,unk] (Bk’j+1) = ‘/Lnkj (Bk'j)7
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Notice that, because the sets By, k € N, are pairwise disjoint, (b) and (c)
immediately imply that C},j € N, are pairwise disjoint.
Let us denote C' = U,y Cj. Then from (a), (b), (c) and (d) we have, for every

jeN,
(U Ch) < |t (U Bl) <1, (2.27)
h=j IEN;

and by (ii) and the obvious inequality j —1 < k;_; < k; — 1, holding for every
j € N, we have

"u”’“jfl

my, (C)| = |ttny, ()

kj—1 i—1
> 5 [, (B0 + £ 412 3 [y (C)] 41,
=1 h=1

from where

i—1
i ()] = o (O] 2 b 412 41 229
=1

Therefore, by (2.27)) and (2.28)), for every j € NU {0},
e, (O] = [t (U C'h)
h=1

j—1
:UJnkj(Oj) - :unkj (U Oh) -
h=1

>

v

>

,unkj ( U Ch

h=j+1
[o¢]
U G| >
h=j+1
>

Ch,
h=j41

(where we define Uj_; Cj, = 0), which implies that sup;cy ‘ [iny, (C’)‘ = 00, hence
SUp,en |tn(C)| = 0o, which contradicts the hypothesis of the theorem.

v

j—1
:U“nkj (OJ) - ,unkj (U Ch) - ‘,unkj
h=1

> Mnkj (C]

~—

j—1
- Z ‘,unkj (Oh)’ - ‘:unkj
h=1

>j41—1=]

]
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3. Biting Lemma, Rosenthal’s
Subsequence Splitting Lemma

In this chapter we will look at the following problem. From topology we know
that a topological space X is compact if and only if for every net in X there exists
its convergent subnet. Sometimes, for example in metric spaces, it is sufficient to
work with sequences instead of nets. In particular, from real analysis we know
that every closed and bounded subset of R is compact. The question is whether
a similar statement holds in L, spaces, p € [1,00]; i.e. is every bounded closed
subset of L,, p € [1,00], compact? The answer is no, however, since for p € (1,00)
the spaces L, are reflexive, we get at least the weak compactness. In L;, the
situation is much more complicated since we do not have the reflexivity nor
weak compactness. However, we would still want to extract somehow convergent
subsequence from any bounded sequence. And the way to do it is described in the
Biting Lemma - essentially we need to consider even weaker form of convergence.

3.1 Uniform Integrability

In this chapter, our object of interest will be sequences of functions in L;. Some
of them “behave nicely” with respect to integral in the following way.

Definition 9 (Uniform integrability). Let (X, A, u) be a measure space with
a positive measure p and let F C Li(X, A,pn). Then F is called uniformly
integrable if

lim sup/ fl du=0.
C=o0 feF {If\>C}‘ |

It should be clear that every finite set {fi,..., fn} € L; is uniformly inte-
grable. This follows from the continuity of finitely many finite measures v;(A) =
fAlfk| d/”% Ae -’47 ke {Lvn}

We will also need to work with the following types of compactness.

Definition 10. Let (X, 7) be a topological space and let A C X. Then A is said
to be

« relatively compact if A is compact,

« sequentially compact if for every (x,)nen € A there ezists a convergent
subsequence (T, )reny C A (with the limit in A),

o relatively sequentially compact if for every (x,)nen C A there exists a sub-
sequence (Tn, )ren convergent in X and

« countably compact if every countable open cover of A has a finite subcover.

The following theorem uses the uniform integrability to characterize the weak
compactness in L;. You can find it in |Vladimir I. Bogachev| [2007, page 285,
Theorem 4.7.18] with its proof.

21



Theorem 12 (Dunford-Pettis theorem). Let (X, A, 1) be a measure space with
a finite positive measure p. Let F C Ly(X, A, ). Then the set F is relatively
compact in the weak topology of L1(X, A, 1) if and only if it is uniformly inte-
grable.

Notice that if p is a finite positive measure and F is a uniformly integrable
set, then F is automatically bounded. Indeed, by definition, there exists C' > 0
such that supser [(s>cy [f| du < 1. Then for every f € F we have

dp = dp + dp < Cp(X) +1 < oo.
JMldu= [ Afldu [ i< On(X)

From Theorem it follows that if (f;);cs is a net in Ly and the set {f; : 7 € I}
is uniformly integrable, then there exists a subnet (f;);c; weakly convergent
in L;. However, we would like that property to hold even for sequences and
subsequences. The following theorem, proved for example in Whitley| [1967,
pages 116-118], asserts that it works.

Theorem 13 (Eberlain-Smulian). Let A be a subset of a Banach space X. Then,
for the weak topology of X the following assertions are equivalent:

1. A is relatively compact,
2. A is relatively sequentially compact and

3. A is relatively countably compact.

3.2 Modulus of Uniform Integrability

From the previous section it follows that if we have a uniformly integrable se-
quence (fn)nen € L1(X, A, 1) and if p is a finite positive measure, then there
exists a weakly convergent subsequence of (f,)nen (Theorems [12] and [13). How-
ever, not every bounded sequence in L; is uniformly integrable. In this section, we
will work with a number that tells us “how much a family in L; is not uniformly
integrable”. Then we will want to show that for every bounded sequence (f,)nen
in L1 (X, A, u) with a finite measure u there exists a subsequence (g, )nen that we
can split into 2 parts: one part will be uniformly integrable (i.e. its “measure of
non-uniform integrability” is 0) and the other part will tend to this “measure of
non-uniform integrability”.

Definition 11 (Modulus of uniform integrability). Let (X, A, \) be a measure
space with a positive measure A and let F C L1(X, A, X). Then we define

1(F) = inf [Sup {/A Fldh: Ac ANA) <6, f € J-"H € [0,00].

We say that n(F) is the modulus of uniform integrability of F.

Let us notice that
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(i) it holds

n(F) = lim [Sup{/ F] dX: A€ A N\(A) <6,f€FH .
6—)04,_ A
This is because the function
5r—>sup{/A]f| A\ A€ A NA) <5,fe]—“}, 5 € (0,00),

is nonincreasing.

(ii) n(F) = 0 if and only if the family {u; : f € F} is uniformly absolutely
continuous with respect to A, where ps(A) = [, fd\, A € A. That is
because from (i) we have

n(F)=0&Ve>030 >0Vt e (0,0):
sup{/A]f]dA:AeA,A(A)<t,f€J-"}<5<:>
SVe>030>0VAE A, )\(A)<5Vf€]-":/A|f|d)\<e.

(3.1)

From [Florescu and Godet-Thobie [2012, Remark 1.53 ii)] it follows that the
right-hand side holds if and only if the family {u; : f € F} is uniformly
absolutely continuous with respect to .

The following proposition describes the modulus of uniform integrability via
the limit used in Definition |§] For a proof see Florescu and Godet-Thobie, [2012,
Proposition 1.83].

Proposition 14. Let (X, A, \) be a measure space with a finite positive measure \
and let F C Li(X, A, \) be a bounded set. Then

F) = lim |su / d\| = lim |su / dA
n(F) t—o0 Lve;pr {\f|>t}|f| ] =00 Leg {\flzt}|f| ]

Remark 2. From Propositionwe have that every bounded set F C L1(X, A, \),
where \ is a finite positive measure, is uniformly integrable if and only if n(F) = 0.

For the following theorems, we will need to define another type of convergence
in L1 .

Definition 12. Let (X, A, u) be a measure space with a positive and o-finite
measure p. Then a sequence (fy)nen € L1(X, A, ) is said to be w?-convergent
to [ € Li(X, A, p) if the following two conditions are satisfied:

(a) there exists a decreasing sequence (By)pen C A such that lim,_, u(B,) =0,

(b) for every fived p € N, the sequence (f, [x\B,)nen converges weakly to the
function f [x\p, in Li(X \ By, it).

We say that the sequence (By)pen satisfying the above conditions (a) and (b)
localizes the concentration of mass of the w?-convergent sequence ( f,)nen-
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According to Florescu and Godet-Thobie [2012, Remark 1.96 i)], if a sequence
(fa)nen C L1(X, A, 1) is w?-convergent, then the limit function f € L (X, A, p)
is uniquely determined (modulo almost everywhere). Furthermore, according
to|[Florescu and Godet-Thobie| [2012, Remark 1.96 vi)], a w?-convergent sequence
(fa)nen C Ly(X, A, 1) does not have to be bounded in L;(X, A, u).

The following theorem is technical and we will need it in the next proof. It can
be found in [Florescu and Godet-Thobie [2012, Proposition 1.93] with its proof.

Theorem 15. Let (X, A, \) be a measure space with a finite positive measure \.
Let (fn)nen C L1(X, A, \) be a w?-convergent sequence and let (By)pen € A be
a sequence which localizes the concentration of mass of (fu)nen. Then

n({f.:neN}) = pli_)rglolifln_}s;}p/B | ful dA.

The following theorem (Theorem 1.100 in |[Florescu and Godet-Thobie [2012])
asserts that if we have a w?-convergent and bounded sequence in L;, we can
find its subsequence that we can split into a weakly convergent part and “an
unpleasant part”. Later we would like to show that this theorem holds even if
(fa)nen is not w?-convergent (see Corollary [19).

Theorem 16. Let (X, A, \) be a measure space with a finite positive measure \.
Let (fn)nen € L1(X, A, X) be a bounded (in Li(X,A,\)) and w*-convergent se-
quence in L1(X, A, X). Then there exists a subsequence (gn)nen Of (fn)nen and
a sequence of pairwise disjoint sets (A,)nen € A such that:

() 0({fu 1 € N}) =l [, lg] A and

(71) (Xx\A, = 9n)nen is weakly convergent in Li(X, A, \).

Proof. Let (B,)pen € A be a decreasing sequence which localizes the concentra-
tion of mass of (fy,)nen. By Theorem [15] we have

n=n({fu:n €N}) = lim limsup | fal d

Notice that 7 is finite since the sequence (f,)nen is bounded in L;(X,.A,\).
Therefore, by the definition of n, for every n € N there exists p, € N and k, € N
such that

(I) for every n € N,
1 1
7]——</ | frn] X <+ =, (3.2)
n JB n

Pn

(II) pps1 > pn for every n € N,
(III) kpqq > kK, for every n € N.

Indeed, for n = 1 there exists p; € N such that for all p > p; we have

lim sup g |ful dX € (n—1n+1).

n—o0

In particular, for p = p; there exists ki € Nsuch that n—1 < [ | frr] AN < n+1.
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Now let us assume that n > 2 and that py,po,...,p, and ki, ke, ..., k, sat-
isfy (I)-(III). Since there exists p.,; € N such that for all p > p; ; we have

limsup,,_,o [5, [fal A € (n— n%rl,n—i- n%rl), we can set p,+1 = max{p, +1,p, ., }.
Then (II) holds and for p = p,41 we can find k1 > k, such that

1
— <
g n+1 /Bpn+1 ‘fk”“

Hence (I) and (III) hold as well.
Now we assert that there exists a strictly increasing sequence (i,)nen € N

such that, for every n € NU {0},
1 1 1
n— = — </ fi| AN <+~ (3.3)
i nA1 By \By T in
where we define ig = 1. Notice that, by (3.2)), we have

n—1</B \fkioldA<n+1. (3.4)
Pig

1
dX\ < _
77—i_n—i—l

The sequence (i,) will be constructed inductively. To demonstrate the base
case, we will use the fact that the measure vy, (A) = [4|fr| dX, A € A, is
absolutely continuous with respect to A. Since f, € L1(X, A, A), vy, is bounded.
Hence we can use Proposition [5| and obtain that for e; = 1 there exists d; > 0
such that

Ve (A) = /A fi| dX < 1 = 1 for every A € A with A(4) < 4. (3.5)

Since lim, .o A(B,) = 0, we can find i; > iy such that )\(Bpil) < 0;. Then
by (3.5) we have [5 |fx,| dX < 1, which together with (3.4]) implies
pll

77—1—1</ | e,
By,

A= [ | A< [ [f dr <1,
Byp;, By,

therefore
n—1—1</ [fry| AN <+ 1
Bpio \szl 0
Thus (3.3) holds for our ;.
Now let us assume that n > 2 and that we have iqg < i1 < --- < i, satisfy-
ing (3.3). By (3.2), there exists p;, such that
1 1
n—f</ [fi| AN <+ —. (3.6)
In By, in
As above, for €,,1 = n%rl there exists d,,,1 > 0 such that
1
/ i | A < eupn = for every A € A with A(A) < dny1. (3.7)
AT n+1

Since lim, o A(B,) = 0, we can find 4,41 > i, such that A(Bpinﬂ) < Opg1-
Then by (3.7) we have [ By, ‘ fro, | dX < n%rl, which together with ({3.6]) implies
aa< [ |,
By,

aa=[ |,
By, .,

25

1 1

1
d)\<7]+,*,
ln



therefore

1
., A<t —

Diy, \Bp¢n+1 n

1 1 - /
" i, n-+1 B
This completes the construction.
For every n € N, let us define A, = B, \BpinJrl and h, = fi, . Then (hy)nen
is a subsequence of (f,)nen, (An)nen C A is a sequence of pairwise disjoint sets
and, by (3.3),
lim/ Bl d) =1 = n({f, : n € N}). (3.8)

n—o0 An

Let us set
no = n({xx\4, - bn :n € N}) =
= inf {sup {/ XX\A, ° |hn| N E € ANE) < d0,n € NH =
6>0 E

= al_i)r& {sup {/EXX\A" Nhn| AN E e ALNE) < d,n € NH :

We want to show that 7y = 0.
By way of contradiction, let 79 > 0 and let a € (0,9). Then for every p € N
we have

1
Oé<SUp{/EXX\An'\hn’ d\: E € A \NE) <p,n€N},

thus there exists E, € A with A\(E,) < % and n, € N such that

/Ep\Anp o

Moreover, the indices n, can be chosen in such a way that for every p € N we
have n,.1 > n,. Because if not, then there exists p € N such that for every
E € Awith \(E) < ]ﬁ and for every [ > n, we have [\ 4, |[hi| dA < a. We also
have that the set {hi,...,hy,} is uniformly integrable (it is finite), and thus by
Proposition [14 we have 5({h1,...,hy,}) = 0. Thus by i) after Definition [J| we
can find §; > 0 such that for every 6 € (0,d;) we have

d\ > a. (3.9)

sup{/A\m d\: A e ANA) <6k e {1,...,np}} <a.
By setting dp = min{dy, ﬁ}, we obtain that for each ¢ € (0,dp) it holds
sup {/ Xx\4, * |Pn] AN E € A NE) < d,n € N} <a.
E
As a result,
Ny = lim [sup{/ Xx\4, * |Pn] AN E € A, NE) < 0,n € NH < a.
6—04 E
This is a contradiction since 7y > «.

Notice that £, \ A, = (E,UA, )\ A,,, p € N and since ’hnp’ € L1(X, AN,
we obtain from ((3.9)

o, o
EpUAn,

d\ > «.

A= [ b ar= [ |n,
Anp Ep\Anp
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Then for every p € N, we obtain from (3.3 that

2 < 1 1 </ ‘h
T, =" in, mp+1 " Ja, "

d\—a.  (3.10)

X\ < i,

EpUAn,

Since (hy,)pen is a subsequence of (f,)nen, it holds n({h,, : p € N}) < <
n + % - . Therefore by Definition [11] there exists 6 > 0 such that

1
VE € A, A(E)<d6VpeN: /\hn A<n+s-a (3.11)
E
By definition, lim,_,o A(A,,) = 0, and for every p € N we have A\(E,UA,, ) <
5+ A(A,). That implies lim, 0 A(E, U A,,) = 0. Therefore there exists p € N
such that for every p > py it holds A\(E, U 4, ) < 4.
Therefore, for all p > py, we obtain from (3.10)) and (3.11]) that

2 1 1
77——</ ‘hnp dA\<n+--a—a=n1—-"q
Ny Any, 2

2

thus n — n%, <n-— %-oz for every p > py. Then we have n < n — %-oz, because

1

5 + @, which yields the desired

limpﬁoon—i = 0. However, a« > 0 and n < n —
contradiction.

Therefore 7o = 0 and the family {xx\a, - hn} is bounded. By (3.1), the
corresponding family of measures is uniformly absolutely continuous with respect
to A. Therefore from Theorem 1.65 or Theorem 1.84 in [Florescu and Godet-
Thobie [2012] it follows that the set {xx\a, - hn} is weakly relatively compact in
Ly(X, A, X\). By Theorem 13} the set {xx\a, -} is relatively weakly sequentially
compact. Therefore there exists a subsequence x x\ An, P, of xx\4, - hn weakly
convergent in Ly(X, A, \). Thus, if we set gy = h,, and A, = A,,, we obtain
that Ay, is a sequence of pairwise disjoint sets and that (gx)ren is a subsequence
of (fn)nen such that (XX\Zkgk) is weakly convergent in L;(X, A, \). Furthermore,

since ([, [gk| d)) is a subsequence of (fy, [hn| dA), (3.8) yields

lim [ g dx=n=n({f,:n € N)).

which completes the proof.

3.3 Main Results

Before we get to the Biting Lemma, we will need the following definition and
theorem.

Definition 13. Let f: R — R and xqg € R. Then f is said to be upper semicon-
tinuous at the point xq if

Vy e R*, y > f(xg) 30> 0: |z —xo| <= flx) <.

Let M C R be an open set. Then the function f is said to be upper semicon-
tinuous on M if it is upper semicontinuous at each point xy € M.
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Note that f is upper semicontinuous at z¢ if and only if limsup, ., f(z) <
f(xg). Indeed, if f is upper semicontinuous at xg, then for every ¢ > 0 there
exists 0 > 0 such that for every x € (xy — 0,29+ ) it holds f(z) < f(xo) +¢. On
the other hand, if limsup,_,,, f(z) < f(z0), then the upper semicontinuity at xq
follows from the definition.

For the following theorem, see [Walter Rudin| [1976], page 167].

Theorem 17 (Helly’s Selection Theorem). Let (f,)nen be a sequence of non-
increasing functions from R to R and let us assume that (f,)nen @s uniformly
bounded, i.e., there exist a,b € R such that a < f,, < b for every n € N. Then
there exists a function f from R to R and a subsequence (fn, )ken of (fn)nen such
that

Ve e R: kh_)nolo fon () = f(2).

Now we are ready to prove the Biting Lemma, which is really important when-
ever we need to extract a (w?-)convergent subsequence from a bounded sequence
in L. In particular it is used in the theory of partial differential equations. This
proof follows the one in |John M. Ball and Frangois Murat [1989]. The “besides”
part is proved in [Florescu and Godet-Thobie| [2012, Theorem 1.103].

Lemma 18 (Biting Lemma). Let (X, A, 1) be a measure space with a finite pos-
itive measure p and let f,: X — R, n € N be a bounded sequence in L1(X, A, ),
i.e.

supl| fu ||z, = sup/ | ful dpp = Co < 0. (3.12)
neN neN JX

Then there exists a function f: X — R, f € Li(X, A, u), a subsequence
(fn;)jen of (fa)nen and a mnonincreasing sequence of sets (Ei)ren € A with
limy 00 pt(Ex) = 0, such that

fo; = [ weakly in Li(X \ Ex, )

as j — oo for every fized k € N.
Besides, for every subsequence (fn, )pen of (fn;)jen it holds

n({fn,, :p € N}) =n({fn :n € N}).
Proof. Let f,: X — R, n € N be a bounded sequence in L;(X, A, u), i.e.

sup [ |ful dp = Cy < 0.
neN /X

Let us denote n = n({f, : n € N}). Notice that by the definition of 7 it
follows that n € [0,00).
For every [ > 0, let us define

(1 :/ 1 dy,
on(l) {Ifn|2l}|f| I
Then

(1) ©n(0) =1 fullz, < Co by (3.12)),
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(ii) for each n € N, the function ¢,, is nonincreasing (because if m > [, then
on(l) = a1 ol = [y smy [ fal dp= on(m)),

(iii) for each n € N, the function ¢, is upper semicontinuous on (0,00) (right
upper semicontinuous at 0). Indeed, fix n € N and let [y € [0,00) be
given. Let (I,,)men C [0,00) satisfy lim,, oo lm = lop. We want to show that
lim sup,,, o ¥n(lm) < @n(ly). If [y = 0, we are done since ¢,, is nonincreas-
ing. Now let [y > 0. By way of contradiction, let

lim sup ¢y, (1) > a > @, (ly).

m—o0

By definition, we have

‘Pn(lo) :/ |fn| dpand @n(lm) :/ |fn| dp, m € N.
{lfn|2l0} {‘fn‘zlm}

Let (mp)pen € N be a strictly increasing sequence of indices such that
¢n(lm,) > a for every p € N. Then for every p € N we have [,,, < [y because
©n(lm,) > a > ,(lo) and ¢, is nonincreasing. Then lim,, . l,,,, = lp and

a < @n(lm,) :/

nl d anda>nl:/ Wl dp.
{\fn\zlmp}’f‘ u n(lo) [fnl dpe

{Ifn|Zlo}

Furthermore, for every p € N, we have

/X|f | X{1 2y} At < X|f| w=Co

thus Lebesgue’s Dominated Convergence Theorem gives us

lim Son(lm ) = lim |fn’ dp =

p—0 Pl P00 S| ful 2y

= lim /X |l X414l 2ty it = /X [ ol X{1 51210y At = pn(lo).

p—00

However, that is not possible since

& < lim @n(lm,) = ¢allo) < .

pP—o0

(iv) Finally, for each fixed n € N, lim;_, ¢n(I) = 0. That is because for any
given n € N, the set function v(A) = [, |fa| du, A € A, is a measure on
A and since f,, € Li(X, A, ), v is finite. Now since ¢, is nonincreasing,
limy_, o ¢n (1) exists and it holds

i ) = Jimn () = Jimn ((15o] > 1) = ( (1512 1) =0

k—o0 kel

Now we will find a subsequence (f,,)gen of (fn)nen such that for every subse-
quence (fp,.)sen of (fn,)qen it holds n({fn,, : s € N}) =n.

For each n € N, let us define the functions F),: [0,00) — [0,00) by F,(t) =
SUp;s, ¢i(t). Then, for every n € N, F, is nonincreasing by (ii). Furthermore, by
Proposition [T4] lim,_,« F,(t) = n({f; : i > n}) for every fixed n € N. By Proposi-
tion [T4and by (iv), n({fi : i < n}) = lim; e Sup;<,, @i(t) = 0. Then for all n € N
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and for all ¢ € [0,00) we have sup,cy ;i(t) > sup;,, ¢:(t) and conversely, since the
functions ; are nonnegative, sup;cy ;(t) < sup;,, @i(t) + sup;s,, ¢;(t) for every
n € N. Therefore for all n € N we have lim;_,, F,;(t) < limy_,o [gupieN wi(t)] =n,
and on the other hand, lim; o F},(t) > limy oo (sup;ey @i(t) — sup;<, wi(t)) =
n—0=mn. Thus -

Vn € N: tlggo F.(t) =n. (3.13)

Then, if we fix n = 1, we obtain from (3.13) that there exists (¢,) C [0,00)
a strictly increasing sequence such that lim, .. t, = 0o and

1 1

From the definition of the functions F,, it follows that for every fixed ¢ € [0,00)
we have F,(t) < F,,(t) whenever n > m. Then, for every ¢ € N, we obtain

from (3.13)) and from (3.14))

1
n——<n=lim F,(t) = inf F,(t) <
q

t—o0 t€[0,00)

< Fy(ty) = sup pi(t, i dp = 3.15
a(tq) @5¢(> p{wwﬁv|u (3.15)

1
= Fy(ty) < Fi(ty) <n+ a
In particular, from (3.15)) it follows that

1
quN:n—7<&m/m |fil du,
q {1f:1=tq}

1>q

and thus for each ¢ € N there exists n, > ¢ such that

1
--</ | d
1= 0= gy el

Without loss of generality we can assume that (f,, )sen is a subsequence of
(fn)nen, i.e. ng is strictly increasing (otherwise we find a strictly increasing sub-
sequence (n,,)sen, which is possible since n, > ¢ for each ¢ € N. Then the rest
of the proof will be the same, there will only be an extra subscript).

Now let (fn,.)sen be an arbitrary subsequence of (f,,)qen. Then by Proposi-
tion [14] we have

nN({fn, :s€N}) = hm lsup/ﬂfn . ‘fn%
ghm[prmEQMAmJ:nqh:neNp

t—o00 neN

(3.16)

On the other hand, from Proposition and from (3.16) we have

S$—00 s - s%oo/{lfnq |>tQS

< lim sup / I
500 . {‘f”lq ’> ‘ ar
lim su / | d

meg{mﬂnﬂf“ a
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hence n({ f,,, : s € N}) = 1.
Therefore it now suffices to find a w*-convergent subsequence of (f,,)gen (and

thus a w?-convergent subsequence of (f,,)nen). That is because by Definition
such subsequence satisfies the desired conclusion of the lemma and by the above
it also satisfies the “besides” part.

Therefore, we are finding a w*-convergent subsequence of (f,, )qen. By (i) and
by (ii), (¢n, )qen is a uniformly bounded sequence of nonincreasing functions, thus
by Theorem [17] there exists (gonqj) jen a subsequence of (¢, )qen and a function
a: [0,00) — R such that

Vi € [0,00) : a(l) = lim oy, (I). (3.17)
J—00 J
Since for every I > 0 we have ¢, (1) > Pny, (t) for each t > [ and for all j € N,
the function « is nonincreasing. Hence we can set lim; o, a(l) = L € [0,00).

Case 1. L = 0. We want to show that the set { fnqj : j € N} is sequentially
weakly relatively compact in Ly (X, A, u). Let € > 0 be given. Since L = 0, we
can find lp > 0 such that for every [ > Iy, we have a(l) < ¢. By there
exists jo such that for every j > jo it holds Pny, (lp) < e. Then we can find [; > [
such that ¢, (I1) < € for all j < jo. Thus, by (ii), ¢y, (1) < € for all j € N.
Thus for evergf [ > 1y and for every j € N we have ’

0< /{ Frg, >l} ‘fnqj dp < /{ g >l1} ‘fnqj dp = (anj (ll) <&,
which implies
lliglo ?gg {fnqj >l} ’fnqj dp = 0.

Thus the set { fnqj : j € N} is uniformly integrable. Then Theorem yields
that the set { fog, 7 € N} is weakly relatively compact. From Theorem
we obtain that the set { Jog 7 € N} is sequentially weakly relatively compact
in L (X, A, 1), which is what we wanted.

Therefore, by Definition [10] there exists a subsequence ( f”‘ln )ien of ( fnqj) jeN

which converges weakly in Ly (X, A, 1) to some f € Li(X,.A, ), hence the con-
clusion of the lemma holds with all the sets Fj empty.

Case 2. L > 0.
Step 1. We claim that there exists a sequence (I;);en € R such that

jli_glo l; =00 and }i_}r(r)lo Pn,, (1;) = L.
To prove this, let us define I; = sup{l > 0 : ¢, (I) = L —1/l}. Then [; € R
for every j € N, because for all j € N, the set {{ > 0 : ¢, (I) > L —1/l} is
nonempty (because by (ii) and (iii), the functions ¢, ,; are all n(;nnegative whereas
lim;_,o, L — 1/l = —o0) and bounded from above (by (iv) and because L > 0).
Moreover, the supremum is attained, because if not, we have ¢, (l;) < L —1/l;
and by (iii) and by Definition |13| there exists 6 > 0 such that gon:j (l) < L—-1/l;
for all [ € (I; —0,l; +0), which contradicts the definition of [;. Notice that ({;);en
cannot contain a bounded subsequence (I}, )en, because if (I;, ) ey is a bounded
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subsequence of (I;)jen, then any I > sup,cyl;, satisfies o, (') < L —1/I for
Jy
every v € N. Then

n o1 N 1s / N /
oll') = lim o, (1) = lim ¢n,, () < L—1/7,
which is not possible since the function « is nonincreasing and L is its limit
as | — oo. Hence lim;_,o, [; = o0o. Therefore, given any m > 0, we can find
Jo € N such that for every j > jo it holds [; > m. Then for every j > j, we
have L —1/l; < ¢, (I;) < ¢, (m), where the first inequality follows from the
fact that the supremum /; is attained and the second inequality follows from (ii).
Hence
L= lijrgioglf(L —1/l;) < lijrgioglf Pny, (1) <
< limsup ¢y, (I;) < limsup g, (m) = a(m),
j—o0 J j—o0 J
therefore by letting m — oo we get lim,_,, Pry, (I;) = L, which proves our claim.
Step 2. We claim that

lim su n | dp=0.
m— 00 ]Gg {’mf fnqj <lj} ‘f 5 /“L
To prove this, let us define
S(m) = sup fro. | dpe.
(m) eN {mg Frg <1J} ‘ aj| O

Notice that S is nonicreasing and also, by definition of Py, » WE have that

S(m) = sup (@n, (m) = on,, (1))

jEN, I;>m

Let € > 0 be given. Then there exists m; € (0,00) such that for every m > m,

it holds a(m) € (L —¢,L + ¢). Then, by and by Step 1, there exists j

such that for every j > jo it holds both ¢y, (m1) € (a(mi) — &,a(m1) + ) and
Pry, (l;) > L — e. Therefore for every j > j, we have

Pny, (my) — Py, (l;) <a(my)+e—L+¢e < 3e.

Notice that for every m > my and for every j € N we have ¢, (m) < ¢n, (m1).
That is because the functions Pn,, are nonincreasing by (ii). Therefore, if we set
M = max{m,y,...,l; }, then for any given m > M and for any j > jo it holds

Pny, (M) = @0, (1) < oy, (M1) — o, (1) < 3e (3.18)
Let us notice that if m > M and [; > m, then l; > m > Iy, 15, ... ,1;,, thus j > jo.
Hence for every m > M, inequality (3.18]) yields

0<S(m)=sup (pn, (m)—¢n, (1) < 3e,

JeN, [;>m

which proves the claim.

Step 3. Now we assert that for every k € N there exist sets Fp € A and
Ni, My, € N (for the rest of the proof we denote Fy = X and My, = Ny = N)
satisfying
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(d) w(Ey) < ¢ for every k € N,

(e) Ek jGMk {‘fnq

(f) for every k € N, there exists g, € L1(X \ Ej,p) such that the sequence
(S, )jen, converges weakly to gy, in Ly (X \ Ey, p).

} for every k € N and

The objects will be constructed inductively.
To start the induction, let us find an infinite set M; C N satisfying min M; > 1
and (de M T ) Cy < 1 (that can be done since lim;_,, [; = 0o, hence it suffices

to choose M; such that [; > 27.Cy for all j € My). Let B, = Ujerr {’fnqj > lj}.
Then Chebyshev’s inequality implies

21} < 3 nl{ln,20) <

u<z( )<1

JjEM1

M(El) ( 2 {’fn%

_z/

JjEM1

‘ fnq]

fnq

By Step 2 we also have

fon

lim sup { dp = 0.

m—00 i

dp < lim sup
{m<

m—=00 ;e ng _fnq], <l

) [ Fa,

fnq]-

>m p\Ey

Therefore by Deﬁmtlon@the set { Jog; 27 € M} is uniformly integrable, and thus
weakly relatively compact in Ll(X \ Ey, i) by Theorem (12| Then Theorem (13} .
implies that the set { fnqj : j € M} is sequentially Weakly relatively compact,
hence there exists Ny C M, inﬁnite such that the sequence ( g, )jen, converges
weakly to a function g; € Ly (X \ Ey, ) in Ly (X \ Ey, p). Then (a)-(f) are satisfied.

Now let us assume that £ > 2 and that we have the sets Fy, ..., Eg, Ny,..., N
and My, ..., My satisfying (a)-(f). Let us find an infinite set My C Ny, satisfying
min Mj.,; > min Ny as well as (deMk+1 L ) Co < . Let us define By =

k1
UjeMy.s {‘ fnqj > lj}. Then Chebyshev’s inequality implies

zlj}) < 3 w({|fu,

JEM 41

> 1;}) <

p(Epi1) = p ( ]\L/_[J {’fnqj

1 1 1
<> bz ¥ (Fa)<
et i K[ |20} 2 jerr \b k+1
By Step 2 we also have
i / ' ldu < 1 / N du=o.
mg{l)ojesjl\}ﬁ&-l {fnqj Em}\EkH f q; 'LL ml—r>r(l>o‘]es}ép+1 {mg f”qj <lj} ‘f q; /’l’
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Therefore by Definition |§| the set {f, 0 Jj € My} is uniformly integrable, and
thus weakly relatively compact in Ly (X \ Ej.1, ) by Theorem [12] Then Theo-
remﬁimplies that the set { fnqj : J € My} is sequentially weakly relatively com-
pact, hence there exists Nyy1 C My, infinite such that the sequence (f;, y )jeN, "
converges weakly to a function ggy1 € Li(X \ Exi1, 1) in Li(X \ Egt1, 1t). Then
(a)-(f) are satisfied and the inductive construction is complete.

Step 4. We want to show that everything works.

First of all, the sequence (Ej)reny C A is nonincreasing by (b) and (e) and
also limy_,oo u(Ex) = 0 by (d).

For every k € N, let us set

() = {gk(:c), re X\ Ey,
0, x € b,

where the functions g come from (f). Then the functions g, are measurable,
because the sets Ej are measurable and g, € L1 (X \ Eg, p) for every k € N. Let
us set f(x) = limg_,o0 gr(x) for those x € X for which the limit exists. Notice
that the limit exists for p-almost every x € X, because it holds

Vne NVkeN, k>n:g(z) =gu(z) for almost every z € X \ E,. (3.19)

That follows from (e), (f) and uniqueness of the weak limit. Therefore the limit
exists for p-almost every x € Ur? (X \ E,) = X \ N2, E,. Then from the
assumption that the measure p is finite and from (d) we obtain that the limit
exists for p-almost every z € X. Therefore f is measurable as a pointwise (for
p-almost every = € X)) limit of measurable functions.

Let us denote p; = min N;. We want to show that

(Fa,) = £ weakly in Ly(X \ By, 1)

as i — oo for every fixed k € N. However, this follows immediately from (b), (c),

(f) and (3.19).

Finally we need to show that f € Li(X, A, u). Let k& € N. Let us consider
a function h(z) = 2x>0(x) — 1, v € X \ Ex. Then h € Loo(X \ Ei, ), and
thus h represents a functional ¢ € Lij(X \ Ej,p). By definition of the weak
convergence, lim; .. ¢( fn‘lpi) = ¢(f). That implies

i [ o ) it = i 0(F, ) = 60 = [ (h)du= [ 1] dp

=00 J X\ Ey,

Since h(X) C [-1,1], we obtain

/X\Ek ‘ fnqpi

for every ¢ € N, which implies

d >/ ' n)d
o= X\Ek<f i ) H

/ |f| dpe < liminf dp < Cy.
X\Ej,

i—oo  JX\E, ‘fnqm
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Then Levi’s theorem yields

Jo = [ gim [ flxes, dp = Jim [ 1f e, do=

= lim |f| du < lim Cy = Cy,
k—oo JX\E}, k—o00
which means f € L;(X, A, 1). This completes the proof.
O

As promised above, for any bounded sequence in L; we would like to find
a subsequence, which we can split into a weakly convergent part and an “unpleas-
ant” part. Or, more precisely, if we use the modulus of uniform integrability, we
would like to find a subsequence, which we can split into 2 parts: one with the
modulus of uniform integrability equal to 0 and the other with the same modulus
of uniform integrability as the original sequence. However, that is a corollary
of Theorem and Lemma The proof of this corollary follows the one in
Florescu and Godet-Thobie [2012) Corollary 1.106].

Corollary 19 (Rosenthal’s subsequence splitting lemma). Let (X, A, \) be a mea-
surable space with a finite positive measure \. Let (fu)nen € L1(X, A, N) be
a bounded sequence (in Li(X, A,\)). Then there exist a subsequence (hy)nen of
(fn)nen and a sequence of pairwise disjoint sets (Ap)nen € A such that

(i) n({fn :n € N}) =lim, o0 [y |ha| dX and

(71) (Xx\A, = Pn)nen is weakly convergent in Li(X, A, N).

Proof. According to Theorem there exists a w2-convergent subsequence
(gn)nen Of (frn)nen such that for every subsequence (h,)nen Of (gn)nen it holds
n({hn :n € N}) =n({f, :n € N}).
According to Theorem (16| there exists a subsequence (hy,)nen Of (gn)nen and
a sequence of pairwise disjoint sets (A, )nen € A such that lim, o [ |ha| dA =
n{gn : m € N}) = n({fn : n € N}) and (xx\4, - hn)nen is weakly convergent
in Ly(X, A, \).
]

Now we would like to finish what we have started in the introduction, where
we were trying to extract a convergent subsequence from a bounded sequence
of finite absolutely continuous measures. Let us consider a bounded sequence of
finite measures (,)nen C ca(A) such that for each n € N it holds p,, < A for
a finite positive measure A\. By the Radon-Nikodym theorem, we can find for
every n € N a function f,, € L1(X, A, \) such that for all A € A it holds u,(A) =
[4 fndX. Then, because the sequence (fi,)nen is bounded in (ca(A), | -||), we
get that the sequence (fy)nen is bounded in Li(X, A, A). That is because the
subspace cay(A) = {p € ca(A) : p < A} of (ca(A),| -]|) is linearly isomet-
ric to L1(X, A, \), where the linear isometry is p +— f, where f = fl—’; is the
Radon-Nikodym derivative (the fact that it is a bijection follows from the Radon-
Nikodym theorem). To see that it is an isometry, let u € cay(.A) be given and let
f= g—’;. Then we have

liell =l () = [ 1fTax =11 £
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which is what we wanted. We are thus in a situation when we have a bounded
sequence (fn)nen € L1(X, A, \). Then if (f,)nen converges weakly to a function
f € Li(X, A, \), we can see that in particular

VAe A: lim pn(A) = lim / XA-fnd)\:/ XA-fdA:/fd)\.
Or in other words, the sequence (fi,,)nen converges setwise to an absolutely contin-
uous measure p with respect to A where p(A) = [, f dX for all A € A. Therefore,
finding a convergent subsequence of (p,)nen is easy, because we just take the
original sequence. Note that this satisfies the last assumption of Theorem
(Vitali-Hahn-Saks theorem), and thus the measures pu, are automatically uni-
formly absolutely continuous with respect to .

For the sake of completeness, let us note that the converse is also true: i.e. if
the sequence (f,)nen converges to p1 € cay(A) setwise, then if we denote f = %,
we obtain that the functions f, converge to f weakly in L;(X, A, A). That is
because

vA€A: lim [ fodh= lim pa(4) = p(A) = [ fax,

which is according to [Florescu and Godet-Thobie [2012, Theorem 1.57] equivalent
to a statement that the sequence (f,)nen converges weakly to f in Li(X,.A,\).
Notice that this is very similar to what we have proved in Lemma |8 except there
we could improve it to a strong convergence by using Theorem [7]

Similarly, if the sequence (f,)neny admits a weakly convergent subsequence,
then the sequence (p,)nen admits a setwise convergent subsequence. And con-
versely, if the sequence (i, )neny admits a setwise convergent subsequence, then
the sequence (f,)nen admits a weakly convergent subsequence.

Now the more interesting situation is when the sequence (f,)nen does not
admit a weakly convergent subsequence in L;(X, .4, \), which is by Theorem ,
Theorem 12| and by Remark 2] equivalent to n = n({f, : n € N}) > 0. Since the
sequence (f,,)nen is bounded and A is a finite positive measure, we can apply the
Biting Lemma (Theorem D and extract a w?-convergent subsequence ( fn;)jen-
Or in other words, we can find a nonincreasing sequence (Fj)reny C A such that
limy_,o0 A(E)) = 0, a subsequence (fy,,)jen and a function f € L(X, A, A) such
that f,,, — f weakly in Li(X \ Ej, A, \) for every fixed k& € N. Therefore, for
every fixed k € N, we obtain that

(i) by the above, the sequence (in,)jen converges setwise (to the measure p
which has f as its Radon-Nikodym derivative) on X \ Ej and

(ii) n({fn, - xx\£, }) = 0 by Theorem

Now, from (ii) we obtain the following:
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:th:neND::h%[&m{/’ﬁAdAu4E/LMA)<&jEN}]:
= lim [sup { ‘f nj

—>0+

d)\+/ fu] dr: A€ ANA )<5,jeN}

lm1F { ﬁ d) : AeAA()<&j€N}%
5~>O+ ANE g

+sup{ ‘fnj dA:Ae A NA )<5,j€NH:
:61_1551+ sup{/AmEk‘fnj‘d)\:AGA,)\(A)<5,jGNH =

=n({fn; - X5, : n € N}),
(3.20)

where the second equality follows from the “besides” part of the Biting Lemma
(Theorem. By Deﬁnitionwe have n({f. : n € N}) > n({fn, x5, : n € N}),
and thus from (3.20)) it follows

n=n{fn, - x&, 7 €N}). (3.21)

Now by Definition [11] and by the correspondence between the measures ji,; and
the functions f,;, we can rewrite (3.21)) as follows:

n= 61_i>r51+ {sup{‘,unj‘ (A): Aec AL AC ER, MA) <§,j € NH .

Now we can see that in a sense, the measures p,,; concentrate their masses on the
sets F,.

This gets very interesting if X in our setup is a compact Hausdorff topological
space. For instance, let us suppose that X = [0,1], A is the o-algebra of Borel sets
(with respect to the standard Euclidean topology) and A is the Lebesgue measure.
Then M(X), the space of all regular Borel measures on X, is linearly isometric
to the dual space of C(X) (the space of all continuous functions on X). Now let
us consider the sequence f,, = nX[0,1]- This is a bounded sequence in Ly (X, A, \);

for each n € N we have || f,, || = 1. Now, for all n € N, let p,, denote the measure
such that f, = ‘Z‘—/\". Then for every n € N it holds p, € M(X): obviously

the measures p, are all Borel and by |Donald L. Cohn| [2013, Proposition 7.2.3]
they are also regular. Moreover, it also holds pu, < A for each n € N. Now let
us observe that the sequence (f,)neny does not converge weakly in Ly (X, A, A).
Indeed, for each C' € R there exists ngo € N satisfying ne > C', and therefore

1
sup/’ | fl dA > \ﬁw\dA::/’ncxmgﬁdA::L
{fa>C} {fae>C 0 "

neN

which implies limco0 SUP,en [if, 50y [fnl dA > 1. Furthermore, since for each
n € N we have || f, || = 1, we have limc o0 SUp,en fi4,>cy [fal dA = 1. This by
Deﬁnltlon@ means that the family { f, : n € N} is not uniformly integrable. Thus
by Theorem [12] the sequence (f,)nen does not converge weakly in Ly (X, A, ).
However, it is easy to see that the sequence (f,,)nen is w?-convergent to 0. Indeed,
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the sets Ej, = [0,%] localize the concentration of mass of (f,). So again, we have
that for each k& € N the sequence (f,)nen converges weakly on X \ Ej, but this
time we can say something more about what happens on the whole set X.

We already know that the sequence (f,),en does not converge weakly on the
whole X, and thus by the above, the sequence (p,)nen does not converge setwise
on X. However, since we already know that for each n € N it holds u,, € M(X),
we could at least try for the weak™ convergence. Let f € C(X), then

1 1
JHEO/O fdpn = JEBO/O f X,y dh =

1 1
= limn- ["pax=f0) = [ s,
where dy denotes the Dirac measure at 0. Therefore the sequence (i, )nen con-
verges to 0y weakly* in M(X) (note that 69 € M(X): obviously it is a Borel
measure, by definition it is outer regular and since {0} is a closed set, it is also
inner regular). So, each set Fj splits our sequence (f,,) into two sequences. One
of them is (f, - Xx\&, )nen, Which converges weakly in L;(X, A, \) and the cor-
responding sequence of measures (on X \ Ej) converges setwise to an absolutely
continuous measure with respect to A. The other sequence is ( f,, - X g, Jnen, Which
does not converge weakly and the corresponding sequence of measures (on Fj)
does not converge setwise (the example of this is the set {0}). However, we have
at least the weak™® convergence of the corresponding measures to g, which is not
absolutely continuous with respect to .

Therefore, to summarize, we can see that the two parts of this thesis — one
about measures, the other about functions — are indeed deeply connected by the
Radon-Nikodym theorem.
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Conclusion

In Chapter 2, we have proved two theorems concerning sequences of bounded
measures and their limits. We have used a stronger version of Schur’s theorem to
prove that the setwise limit of a sequence of bounded measure is a measure and
moreover, such a sequence is uniformly o-additive (Nikodym theorem). Then we
have shown that the setwise limit of a sequence of bounded measures that are
absolutely continuous with respect to one universal measure \ is an absolutely
continuous measure with respect to A (Vitali-Hahn-Saks theorem).

In Chapter |3, we have shown that even in L;, a non-reflexive space, it is
possible to extract a (w?-)convergent subsequence from any bounded sequence
(Biting Lemma). Then we used this fact to prove that every bounded sequence
in L, contains a subsequence, which we can split into two parts in such a way that
the modulus of uniform integrability of one part is equal to 0 and the modulus
of uniform integrability of the other part is the same as the modulus of uniform
integrability of the original sequence (Rosenthal’s subsequence splitting lemma).

Finally, at the end of the third chapter, we have discussed how the Radon-
Nikodym theorem connects these two parts of the thesis together.
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