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využ́ıvat poznatky z oblasti funkcionálńı analýzy. Např́ıklad použijeme silněǰśı
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Introduction
The Nikodym theorem, the Vitali-Hahn-Saks theorem, the Biting Lemma and
Rosenthal’s subsequence splitting lemma are all classical yet not trivial results
from the measure theory. However, their proofs are sometimes very brief and for
an untrained eye it might not be clear what is going on. The aim of this thesis is
to present thorough and more detailed proofs of those results.

Now we would like to present the content of the thesis.
The first chapter contains some preliminary results that we will need later.
In the second chapter we will prove two theorems concerning setwise conver-

gent sequences of measures: the Nikodym and the Vitali-Hahn-Saks theorems.
The proof of the Nikodym theorem will be non-standard. Usually it uses the
Baire theorem. However, we would like to present a more recent version of the
proof using an enhanced version of Schur’s theorem.

In the third chapter, we will show a proof of the Biting Lemma and Rosen-
thal’s subsequence splitting lemma. Both of these theorems are about extracting
a convergent subsequence from a bounded sequence of functions in L1 (the sense
of convergence will be precisely defined in the third chapter; roughly speaking, it
will be even weaker convergence then the weak convergence).

At first, it might seem that the second and the third chapter are completely
unrelated: one is about measures, the other is about functions. However, there
is a connection between them, given by the Radon-Nikodym theorem. As we will
see, the Vitali-Hahn-Saks theorem states, loosely speaking, that for every setwise
convergent sequence of bounded measures, all of which are absolutely continuous
with respect to one common measure, the limit set function is also an absolutely
continuous measure (with respect to the same measure) and moreover, the original
sequence is uniformly absolutely continuous. Now, what happens if we replace
the assumption of the setwise convergence by the assumption of boundedness
of that sequence of absolutely continuous measures (in a proper Banach space)?
Sure the theorem will no longer hold (for example because the limit set function
might not exist at all), but the question we might ask ourselves is if there exists at
least a setwise convergent subsequence. We have thus arrived to a new problem:
when does a bounded sequence of absolutely continuous finite measures admit
a setwise convergent subsequence?

This is the point when we will use the Radon-Nikodym theorem. Since all the
measures are finite, they can be represented by functions from L1 in a standard
manner. This way, we will translate the problem of convergence of measures into
a problem of convergence of functions from L1. And in the third chapter we
will see how and when we can extract a convergent subsequence from a bounded
sequence in L1.

We will come back to this connection between the absolutely continuous mea-
sures and functions from L1 at the very end of the third chapter, when we will
talk about it in more detail by using the theorems from this thesis. For now, the
main takeaway is that the two main parts of the thesis (Chapter 2 and Chapter 3)
are connected by the Radon-Nikodym theorem.

Finally, let us mention that our contribution is the collection of more recent
proofs of the above theorems and their detailed presentation.
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1. Preliminaries
In this chapter we will introduce basic definitions, notation and theorems that
will be used throughout the thesis.

Let us start with the definition of measure. In some articles, measure may be
only finitely additive. However, that will not be our case.

Definition 1 (signed measure and measure). Let (X, A) be a measurable space
and let λ : A → [−∞,∞]. Then λ is said to be a signed measure if

(i) λ(∅) = 0,

(ii) for every sequence (An)n∈N ⊆ A of pairwise disjoint sets λ (⋃︁∞
n=1 An) =∑︁∞

n=0 λ(An),

(iii) λ assumes at most one of the values −∞, ∞.

If a set function λ : A → [0,∞] satisfies (i) and (ii), then λ is called a (positive)
measure.

In the thesis, we will use the following notation:

• R∗ denotes the extended number line, i.e. R∗ = [−∞,∞],

• ca(A), for (X, A) a measurable space, denotes the vector space of real-
valued signed measures on A (under the usual addition and scalar multipli-
cation),

• ca+(A), for (X, A) a measurable space, denotes the space of real-valued
positive measures on A,

• for (X, ∥ · ∥) a normed vector space, x ∈ X, r > 0, let us denote B(x, r) =
{y ∈ X : ∥ y − x ∥ ≤ r} and BX = B(0, 1),

• for a set X and for A ⊆ X, χA : X → {0, 1} denotes the characteristic
function of the set A.

Now for a measure space (X, A, µ) with a signed measure µ we would like to
find a partition of X into subsets P and N , satisfying that µ is non-negative on
every measurable subset of P and non-positive on every measurable subset of N .
First, let us introduce the following terminology.

Definition 2 (λ-positive set, λ-negative set). Let λ : A → R∗ be a signed measure
and A ∈ A. Then A is said to be

• λ-positive if, for every B ∈ A, λ(A ∩ B) ≥ 0,

• λ-negative if, for every B ∈ A, λ(A ∩ B) ≤ 0 and

• λ-null if, for every B ∈ A, λ(A ∩ B) = 0.

Definition 3 (Hahn decomposition). Let λ be a signed measure on a measurable
space (X, A) and let P, N ∈ A. Then the pair (P, N) is said to be a Hahn
decomposition of X relatively to λ if
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• P ∪ N = X,

• P ∩ N = ∅,

• P is λ-positive and N is λ-negative.
Now let us present the Hahn decomposition theorem, which states that we

can always find the desired partition from above. Let us recall that if A and B
are sets, their symmetric difference is defined to be A△B = (A \ B) ∪ (B \ A).
Theorem 1 (Hahn decomposition theorem). Let (X, A) be a measurable space
and let λ : A → R∗ be a signed measure. Then there exists (P, N) a Hahn decom-
position of X relatively to λ. For any other (P1, N1) a Hahn decomposition of X
relatively to λ, P△P1 and N△N1 are λ-null sets.

Proof. See Florescu and Godet-Thobie [2012, Theorem 1.6] for a proof.

From Theorem 1 we obtain the following corollary.
Corollary 2. Every signed measure λ ∈ ca(A) is bounded.

Proof. See Florescu and Godet-Thobie [2012, Corollary 1.14] for a proof.

From Theorem 1 we also get that the following definition is correct.
Definition 4 (Jordan decomposition). Let λ be a signed measure on a measurable
space (X, A) and let (P, N) be a Hahn decomposition of X relatively to λ. Then
we define

• λ+(A) = λ(A ∩ P ), for every A ∈ A,

• λ−(A) = −λ(A ∩ N), for every A ∈ A, and

• |λ| (A) = λ+(A) + λ−(A), for every A ∈ A.
The pair (λ+, λ−) is called the Jordan decomposition of λ. The set function |λ|
is called the total variation of λ.

Note that, by definition, λ+ and λ− are measures and λ = λ+ − λ− since we
can write

λ(A) = λ(A ∩ (P ∪ N)) = λ(A ∩ P ) + λ(A ∩ N) = λ+(A) − λ−(A), A ∈ A.

Also |λ| is a measure on A, because it is a sum of two measures on A. Notice
that if λ ∈ ca(A), then (by Corollary 2) λ is bounded and since λ = λ+ − λ−,
both measures λ+ and λ− must be bounded, and therefore |λ| is also bounded,
which means that |λ| ∈ ca(A).

Sometimes |λ| is defined in this manner:

|λ| (A) = sup
{︄

n∑︂
i=1

|λ(Ai)| : A1, A2, . . . , An ∈ A,

Ai are pairwise disjoint, A =
n⋃︂

i=1
Ai, n ∈ N

}︄
.

However, the following lemma shows that these definitions are equivalent.
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Lemma 3. Let λ be a signed measure on a measurable space (X, A). Then

|λ| (A) = sup
{︄

n∑︂
i=1

|λ(Ai)| : A1, A2, . . . , An ∈ A ,

Ai are pairwise disjoint, A =
n⋃︂

i=1
Ai, n ∈ N

}︄
.

Proof. Let A ∈ A, n ∈ N, (Ai)n
i=1 ⊆ A be a sequence of pairwise disjoint sets

such that A = ⋃︁n
i=1 Ai. Then

n∑︂
i=1

|λ(Ai)| =
n∑︂

i=1

⃓⃓⃓
λ+(Ai) − λ−(Ai)

⃓⃓⃓
≤

n∑︂
i=1

⃓⃓⃓
λ+(Ai)

⃓⃓⃓
+
⃓⃓⃓
λ−(Ai)

⃓⃓⃓
=

=
n∑︂

i=1

(︂
λ+(Ai) + λ−(Ai)

)︂
=

n∑︂
i=1

|λ| (Ai) = |λ|
(︄

n⋃︂
i=1

Ai

)︄
= |λ| (A).

Conversely, let A ∈ A and let (P, N) be a Hahn decomposition of X relatively
to λ. Then for A1 = A ∩ P and A2 = A ∩ N we have that A1 ∩ A2 = ∅ (because
P ∩ N = ∅), A = A1 ∪ A2, and

2∑︂
i=1

|λ(Ai)| = |λ(A1)| + |λ(A2)| = |λ(A ∩ P )| + |λ(A ∩ N)| =

=
⃓⃓⃓
λ+(A)

⃓⃓⃓
+
⃓⃓⃓
−λ−(A)

⃓⃓⃓
= λ+(A) + λ−(A) = |λ| (A),

which completes the proof.

Now we want to assert that the set ca(A) with a correct norm is a Banach
space. For that, we will need to define a mapping that will be our norm.

Definition 5. Let (X, A) be a measurable space. Then we define the mappings
∥ · ∥, ∥ · ∥∞ : ca(A) → [0,∞) as follows:

∥λ∥ = |λ| (X), ∥λ∥∞ = sup
A∈A

(|λ(A)|).

Theorem 4 (Florescu and Godet-Thobie, 2012, Theorem 1.23). Let (X, A) be
a measurable space. Then the mappings ∥ · ∥, ∥ · ∥∞ : ca(A) → [0,∞) from the
definition above are two equivalent norms on ca(A).

The spaces (ca(A), ∥ · ∥) and (ca(A), ∥ · ∥∞) are Banach spaces.

Proof. In Florescu and Godet-Thobie [2012, Theorem 1.23], the theorem is
proved for spaces ba(A) of real-valued bounded additive (i.e. not necessar-
ily σ-additive) measures on A. However, in the same theorem it is proved
that the spaces (ca(A), ∥ · ∥), respectively (ca(A), ∥ · ∥∞) are closed subspaces of
(ba(A), ∥ · ∥), respectively (ba(A), ∥ · ∥∞) (the fact that ca(A) ⊆ ba(A) is stated
in Florescu and Godet-Thobie [2012, corollary 1.14]). And since a closed sub-
space of a Banach space is also a Banach space, our weaker form of the theorem
is proved.

Finally, let us recall the definition of an absolutely continuous measure.
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Definition 6. Let (X, A) be a measurable space, let λ : A → [0,∞] be a positive
measure and µ : A → R∗ be a signed measure. Then µ is said to be absolutely
continuous with respect to λ if

∀A ∈ A : λ(A) = 0 ⇒ µ(A) = 0.

We denote this by µ ≪ λ.

By Florescu and Godet-Thobie [2012, Remark 1.29], we have

µ ≪ λ ⇔ |µ| ≪ λ ⇔ (µ+ ≪ λ and µ− ≪ λ).

Therefore µ is absolutely continuous with respect to λ if and only if |µ| is ab-
solutely continuous with respect to λ. The following proposition shows that for
µ ∈ ca(A) we could use an ε-δ definition to define the absolute continuity of µ
(and thus |µ|) with respect to λ.

Proposition 5 (Florescu and Godet-Thobie, 2012, Proposition 1.30). Let (X, A)
be a measurable space, λ be a positive measure on A and let µ ∈ ca(A). Then the
following properties are equivalent:

(i) µ is absolutely continuous with respect to λ,

(ii) for every ε > 0 there exists δ > 0 such that for every A ∈ A satisfying
λ(A) < δ we have |µ| (A) < ε.

Proof. See Florescu and Godet-Thobie [2012, Proposition 1.30] for a proof.

Remark 1. Notice that, by Florescu and Godet-Thobie [2012, Theorem 1.17 i)],
in (ii) we can use |µ(A)| instead of |µ| (A).

Finally, let us mention that the equivalence does not hold if µ is not bounded.
For example, let A be the σ-algebra of Lebesgue measurable sets on R and let
µ(A) =

∫︁
A |x| dλ, A ∈ A. Then µ ≪ λ, but for arbitrarily small δ > 0 we have

µ
(︂(︂1

δ
,
1
δ

+ δ
)︂)︂

=
∫︂

( 1
δ

, 1
δ

+δ )
|x| dλ ≥

∫︂
( 1

δ
, 1

δ
+δ )

1
δ

dλ = 1,

therefore (ii) does not hold.
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2. Vitali-Hahn-Saks and
Nikodym Theorems
Let us have (X, A) a measurable space and (µn)n∈N ⊆ ca(A) a setwise convergent
sequence of bounded signed measures. Let µ : A → R∗ be a set function such that
limn→∞ µn(A) = µ(A) for every A ∈ A. Then the Nikodym theorem states that
µ ∈ ca(A) and that the family {µn : n ∈ N} “is nice”. If in addition there exists
a positive measure λ such that µn ≪ λ for every n ∈ N, then the Vitali-Hahn-
Saks theorem states that also µ ≪ λ and that the family {µn : n ∈ N} “is even
better”. We will need to define what we mean by “being nice” and “being even
better” before stating and proving the theorems. Both of these refer to some sort
of uniformity in n. The precise definitions are stated in the following section.

2.1 Uniformity
Definition 7 (uniform σ-additivity). Let (X, A) be a measurable space and let
K ⊆ ca(A). Then K is said to be uniformly σ-additive if for every (Ai)i∈N ⊆ A,
Ai pairwise disjoint and for every ε > 0 there exists n0 ∈ N such that for every
n ∈ N, n ≥ n0 and for every µ ∈ K it holds that |µ (⋃︁∞

i=1 Ai) −∑︁n
i=1 µ(Ai)| < ε.

Definition 8 (uniform absolute continuity). Let (X, A) be a measurable space,
λ be a positive measure on A and let K ⊆ ca(A) be a family of signed measures
on A. Then K is said to be uniformly absolutely continuous with respect to λ if
for every ε > 0 there exists δ > 0 such that for every A ∈ A with λ(A) < δ and
for every µ ∈ K we have |µ(A)| < ε.

Notice that if we used (ii) of Proposition 5 to define the absolute continuity
of the family {µn : n ∈ N} ⊆ ca(A) with respect to (a positive measure) λ, then
we would get that the family {µn : n ∈ N} ⊆ ca(A) is absolutely continuous with
respect to λ if and only if

∀n ∈ N ∀ε > 0 ∃δ > 0 ∀A ∈ A, λ(A) < δ : |µn| (A) < ε. (2.1)

According to Remark 1, we can equivalently rewrite (2.1) as

∀n ∈ N ∀ε > 0 ∃δ > 0 ∀A ∈ A, λ(A) < δ : |µn(A)| < ε. (2.2)

Now we see that we can obtain Definition 8 from (2.2) only by shuffling a few
quantifiers.

2.2 Nikodym and Vitali-Hahn-Saks Theorems
In this section we will want to prove two theorems about sequences of measures:
the Nikodym theorem and the Vitali-Hahn-Saks theorem. Note that, in Brooks
[1969], the theorems are proved simultaneously.

We will need the following lemmata to prove the Nikodym theorem.
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Lemma 6 (Walter Rudin, 1987, Lemma 6.3). If z1, z2, . . . , zN are complex num-
bers, then there exists a subset S of {1, 2, . . . , N} for which⃓⃓⃓⃓

⃓⃓∑︂
k∈S

zk

⃓⃓⃓⃓
⃓⃓ ≥ 1

π

N∑︂
k=1

|zk| .

Proof. See Walter Rudin [1987, Lemma 6.3] for a proof.

Let us recall Schur’s theorem, which will be needed in the following lemma.

Theorem 7 (Schur’s theorem). Let (xn)n∈N be a weakly convergent sequence
in (ℓ1, ∥ · ∥). Then (xn)n∈N is a (strongly) convergent sequence in (ℓ1, ∥ · ∥).

The following lemma asserts that we can enhance the above theorem. To
prove the Nikodym theorem, we will need this enhanced version. The proof of
the lemma follows the one in Michal Johanis and Jǐŕı Spurný [2022, Lemma 101,
pages 359-361].

Lemma 8. Let A = {χN : N ⊆ N} be considered as a set in ℓ∞ and let fa ∈ (ℓ1)∗

denote the functional represented by a ∈ A. Let (xn)n∈N ⊆ ℓ1 be a sequence
in ℓ1 such that (fa(xn))n∈N converges for every a ∈ A. Then there exists x ∈ ℓ1
satisfying limn→∞ xn = x.

Proof. Let ∥ · ∥ denote the standard norm on ℓ1 and for y ∈ ℓ1 and a set N ⊆ N
let yχN denote the vector y(i)χN(i), i ∈ N.

Step 1. We will show that the sequence (xn)n∈N ⊆ ℓ1 is bounded in (ℓ1, ∥ · ∥).
By way of contradiction, let us suppose that (xn)n∈N is unbounded in (ℓ1, ∥ · ∥).

Then without loss of generality we can suppose that limn→∞∥ xn ∥ = ∞ (because
otherwise there exists at least a subsequence (xnk

)k∈N extracted from (xn)n∈N such
that limk→∞∥ xnk

∥ = ∞ and we could make an analogical proof for it). Let us set
n1 = 1 and let us inductively construct a strictly increasing sequence (nk)k∈N ⊆ N
satisfying ∥ xnk+1 ∥ > k + ∥ xnk

∥ for every k ∈ N (the induction step is trivial and
follows from the definition of the limit). Let us set yk = xnk+1 − xnk

, k ∈ N.
Then the sequence (yk)k∈N satisfies

∥ yk ∥ = ∥ xnk+1 − xnk
∥ ≥

⃓⃓⃓
∥ xnk+1 ∥ − ∥ xnk

∥
⃓⃓⃓
> k, k ∈ N.

Furthermore, if for a ∈ A we denote La = limn→∞ fa(xn) the limit from the
assumption, we obtain

lim
k→∞

fa(yk) = lim
k→∞

fa(xnk+1 −xnk
) = lim

k→∞
fa(xnk+1)−fa(xnk

) = La−La = 0. (2.3)

Thus (yk)k∈N satisfies limk→∞∥ yk ∥ = ∞ and limk→∞ fa(yk) = 0 for every a ∈ A.
Let us notice that for every finite N ⊆ N it holds supk∈N∥ ykχN ∥ < ∞. That

is because we can choose (for arbitrary i ∈ N) a = χ{i} and obtain from (2.3)

lim
k→∞

yk(i) = lim
k→∞

fa(yk) = 0, (2.4)

which implies that every sequence (yk(i))k∈N ⊆ F is bounded. In particular, if
we denote N = {i1, i2, . . . , ip}, we obtain that there exist K1, K2, . . . , Kp such

8



that for every j ∈ {1, 2, . . . , p} and for every k ∈ N it holds that |yk(ij)| < Kj.
Therefore by setting M = max{K1, K2, . . . , Kp} < ∞ we obtain

sup
k∈N

∥ ykχN ∥ = sup
k∈N

∑︂
i∈N

|yk(i)| ≤ M |N | ,

where |N | denotes the number of elements of N .
Now let us inductively construct a sequence of finite sets (Nj)j∈N ⊆ P(N) and

two sequences of natural numbers (kj)j∈N, (mj)j∈N such that for every j ∈ N we
have:

(i) max Nj < mj < min Nj+1 and kj < kj+1,

(ii)
⃓⃓⃓∑︁

i∈Nj
ykj

(i)
⃓⃓⃓
> j,

(iii) ∥ ykj+1χ{1,2,...,max Nj} ∥ < 1,

(iv) ∥ ykj
χ{mj ,mj+1,... } ∥ < 1.

To start the induction, let us find k1 ∈ N such that∑︁∞
i=1 |yk1(i)| = ∥ yk1 ∥ > 1·π

(note that such k1 exists since limk→∞∥ yk ∥ = ∞). Then there exists M1 ⊆ N
finite such that ∥ yk1χM1 ∥ = ∑︁

i∈M1 |yk1(i)| > π. From Lemma 6 we obtain that
there exists N1 ⊆ M1 for which

π < ∥ yk1χM1 ∥ =
∑︂

i∈M1

|yk1(i)| ≤ π

⃓⃓⃓⃓
⃓⃓ ∑︂
i∈N1

yk1(i)
⃓⃓⃓⃓
⃓⃓ .

Let m1 > max N1 satisfy ∥ yk1χ{m1,... } ∥ = ∑︁∞
i=m1 |yk1(i)| < 1. Then N1, k1 and m1

satisfy (i), (ii) and (iv) by construction and (iii) is satisfied trivially.
Now let us assume that j ∈ N and that we have N1, N2, . . . , Nj, k1, k2, . . . , kj

and m1, m2, . . . , mj satisfying (i)-(iv). Then for every i ∈ M = {1, 2, . . . , mj} we
have limk→∞ |yk(i)| = 0 by (2.4). Therefore there exists k1

j+1 > kj such that for
every k ≥ k1

j+1 it holds that ∥ ykχM ∥ = ∑︁
i∈M |yk(i)| < 1. On the other hand, we

have limk→∞∥ yk ∥ = ∞, hence there exists k2
j+1 > kj such that for every k ≥ k2

j+1
it holds that ∥ yk ∥ > (j + 1) · π + 2. If we take kj+1 = max{k1

j+1, k2
j+1} > kj,

we obtain the vector ykj+1 satisfying ∥ ykj+1χ{1,2,...,max Nj} ∥ ≤ ∥ ykj+1χM ∥ < 1 and
(j + 1) · π + 2 < ∥ ykj+1 ∥ = ∥ ykj+1χM ∥ + ∥ ykj+1χN\M ∥ < 1 + ∥ ykj+1χN\M ∥, thus
(j + 1) · π < ∥ ykj+1χN\M ∥. Let us find a finite set Mj+1 ⊆ N \ M satisfying
∥ ykj+1χMj+1 ∥ > (j + 1) · π. By Lemma 6 there exists Nj+1 ⊆ Mj+1 such that

(j + 1) · π < ∥ ykj+1χMj+1 ∥ =
∑︂

i∈Mj+1

⃓⃓⃓
ykj+1(i)

⃓⃓⃓
≤ π

⃓⃓⃓⃓
⃓⃓ ∑︂
i∈Nj+1

ykj+1(i)
⃓⃓⃓⃓
⃓⃓ .

Finally, let us take mj+1 > max Nj+1 satisfying ∥ ykj+1χ{mj+1,... } ∥ < 1. Then
(i)-(iv) are clearly satisfied and the construction is complete.

Let us define N = ⋃︁∞
j=1 Nj and a = χN . Then the corresponding element

9



fa ∈ (ℓ1)∗ satisfies (for every j ∈ N, j ≥ 2) the following inequality:
⃓⃓⃓
fa(ykj

)
⃓⃓⃓
=
⃓⃓⃓⃓
⃓

∞∑︂
i=1

ykj
(i)χN(i)

⃓⃓⃓⃓
⃓ =

=

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
i∈N1∪···∪Nj−1

ykj
(i) +

∑︂
i∈Nj

ykj
(i) +

∑︂
i∈
⋃︁∞

t=j+1 Nt

ykj
(i)

⃓⃓⃓⃓
⃓⃓⃓ ≥

≥

⃓⃓⃓⃓
⃓⃓ ∑︂
i∈Nj

ykj
(i)
⃓⃓⃓⃓
⃓⃓−

⃓⃓⃓⃓
⃓⃓ ∑︂
i∈N1∪···∪Nj−1

ykj
(i)
⃓⃓⃓⃓
⃓⃓−

⃓⃓⃓⃓
⃓⃓⃓ ∑︂
i∈
⋃︁∞

t=j+1 Nt

ykj
(i)

⃓⃓⃓⃓
⃓⃓⃓ ≥

≥ j − ∥ ykj
χ{1,2,...,max Nj−1} ∥ − ∥ ykj

χ{mj ,... } ∥ > j − 2.

Thus limk→∞ fa(yk) ̸= 0, which contradicts (2.3). Therefore (xn)n∈N has to be
bounded.

Step 2. We want to show that for every a ∈ ℓ∞ it holds that the sequence
(fa(xn))n∈N ⊆ F converges.

Let a ∈ ℓ∞ be given. Let ε > 0 be given. Note that without loss of generality,
we can assume that a ∈ Bℓ∞ (if a = 0, the statement is obvious. Otherwise, let
us assume the vector b = a/∥ a ∥∞ ∈ Bℓ∞ . If (fb(xn))n∈N converges to L ∈ F,
then (fa(xn))n∈N converges to ∥ a ∥∞ · L and the statement holds). That means
that for every i ∈ N we have a(i) ∈ BF. Since BF is totally bounded, there
exists a finite ε

2 -net for BF that consists of nonzero z1, z2, . . . , zm ∈ BF. Set
Mj = {i ∈ N : a(i) ∈ B(zj, ε/2)}, j ∈ {1, 2, . . . , m}. Let us define N1 = M1
and Nj = Mj \ (N1 ∪ · · · ∪ Nj−1), j ∈ {2, . . . , m}. By construction, Nj are
pairwise disjoint and furthermore N = ⋃︁m

j=1 Nj (because BF = ⋃︁m
j=1 B(zj, ε/2)).

Therefore we can define b = ∑︁m
j=1 zjχNj

. Then ∥ a − b ∥∞ ≤ ε, because for
every i ∈ N there exists j ∈ {1, 2, . . . , m} such that i ∈ Nj ⊆ Mj, which means
|a(i) − b(i)| = |a(i) − zj| ≤ ε/2 < ε.

Let M = supn∈N∥ xn ∥. By Step 1, M < ∞. By the assumption applied on the
sets N1, N2, . . . , Nm we have that the sequences (fχNj

(xn))n∈N, j ∈ {1, 2, . . . , m}
are all convergent, and thus they are Cauchy. Therefore there exist indices
n1, n2, . . . , nm ∈ N such that for every j ∈ {1, 2, . . . , m} and for every n, n′ ≥ nj

it holds
⃓⃓⃓
fχNj

(xn) − fχNj
(xn′)

⃓⃓⃓
< ε∑︁m

j=1|zj | . Let us set n0 = max{n1, n2, . . . , nm}
and let n, n′ ≥ n0. Then we have

|fa(xn) − fa(xn′)| = |fa(xn − xn′)| ≤ |(fa − fb)(xn − xn′)| + |fb(xn − xn′)| ≤

≤ ∥ fa − fb ∥ℓ∗
1
∥ xn − xn′ ∥ +

⃓⃓⃓⃓
⃓⃓ m∑︂
j=1

zjfχNj
(xn − xn′)

⃓⃓⃓⃓
⃓⃓ =

= ∥ a − b ∥∞(∥ xn ∥ + ∥ xn′ ∥) +
⃓⃓⃓⃓
⃓⃓ m∑︂
j=1

zjfχNj
(xn − xn′)

⃓⃓⃓⃓
⃓⃓ ≤

≤ 2Mε +
m∑︂

j=1
|zj|

⃓⃓⃓
fχNj

(xn) − fχNj
(xn′)

⃓⃓⃓
≤

≤ 2Mε + ε∑︁m
j=1 |zj|

m∑︂
j=1

|zj| = ε(2M + 1).

Hence (fa(xn))n∈N ⊆ F is a Cauchy sequence, and thus it is convergent.
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Step 3. Finally, let us show that (xn)n∈N is a Cauchy sequence (in (ℓ1, ∥ · ∥)).
By way of contradiction, if (xn)n∈N is not Cauchy, there exists ε > 0 and two

strictly increasing sequences (nk)k∈N, (mk)k∈N ⊆ N such that ∥ xnk
− xmk

∥ ≥ ε
for every k ∈ N. Let us set yk = xnk

−xmk
. Let a ∈ ℓ∞ be given. By Step 2 there

exists La = limn→∞ fa(xn), and thus
lim

k→∞
fa(yk) = lim

k→∞
(fa(xnk

) − fa(xmk
)) = La − La = 0.

Since a ∈ ℓ∞ ∼= (ℓ1)∗ was arbitrary, we can apply Schur’s theorem (Theorem 7)
and obtain that limk→∞∥ yk ∥ = 0, which contradicts ∥ yk ∥ = ∥ xnk

− xmk
∥ ≥ ε

for every k ∈ N. Since (ℓ1, ∥ · ∥) is complete, there exists x ∈ ℓ1 such that
limn→∞ xn = x, which completes the proof.

Now we are ready to prove the Nikodym theorem (see Brooks [1969]).
Theorem 9 (Nikodym). Let (X, A) be a measurable space, let (µn)n∈N ⊆ ca(A)
be a sequence of measures on A such that there exists a set function µ : A → R
satisfying limn→∞ µn(A) = µ(A) for every A ∈ A. Then µ is a measure on A
and the family {µn : n ∈ N} is uniformly σ-additive.

Proof. Let µ(A) = limn→∞ µn(A) for every A ∈ A and let (An)n∈N ⊆ A
a sequence of pairwise disjoint sets be given.

First of all, µ is (finitely) additive. Indeed, for every k ∈ N we have

µ

(︄
k⋃︂

i=1
Ai

)︄
= lim

n→∞
µn

(︄
k⋃︂

i=1
Ai

)︄
= lim

n→∞

k∑︂
i=1

µn(Ai) =

=
k∑︂

i=1
lim

n→∞
µn(Ai) =

k∑︂
i=1

µ(Ai).

Set A = ⋃︁∞
i=1 Ai, A0 = ∅ and Ek = A \ ⋃︁k−1

i=1 Ai for every k ∈ N. We want to
show that limk→∞ µ(Ek) = 0, because then we would also have

∞∑︂
i=1

µ(Ai) = lim
k→∞

k∑︂
i=1

µ(Ai) = lim
k→∞

µ

(︄
k⋃︂

i=1
Ai

)︄
=

= lim
k→∞

µ

(︄(︄ ∞⋃︂
i=1

Ai

)︄
\ Ek+1

)︄
= lim

k→∞
µ

(︄ ∞⋃︂
i=1

Ai

)︄
− µ(Ek+1) = µ(A) − 0,

where the fifth equality follows from limm→∞ µ(Em) = 0.
Note that Ai = Ei \ Ei+1, i ∈ N, because the sets Ai are pairwise disjoint.
Let us denote xn(i) = µn(Ai). Then xn ∈ ℓ1 for every n ∈ N. Indeed, let

n ∈ N. Then
∞∑︂

i=1
|xn(i)| =

∞∑︂
i=1

|µn(Ai)| ≤
∞∑︂

i=1
|µn| (Ai) = |µn| (A) < ∞,

which means xn ∈ ℓ1. Furthermore, let N ⊆ N, then obviously a = χN ∈ ℓ∞ and
for the functional fa ∈ (ℓ1)∗ represented by a we have

lim
n→∞

fa(xn) = lim
n→∞

∑︂
i∈N

xn(i) = lim
n→∞

∑︂
i∈N

µn(Ai) =

= lim
n→∞

µn

(︄⋃︂
i∈N

Ai

)︄
= µ

(︄⋃︂
i∈N

Ai

)︄
∈ R.
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Therefore by Lemma 8 there exists x ∈ ℓ1 such that limn→∞ xn = x. Then for
every i ∈ N we have

x(i) = lim
n→∞

xn(i) = lim
n→∞

µn(Ai) = µ(Ai).

Hence

0 = lim
n→∞

∥ xn − x ∥ = lim
n→∞

∞∑︂
i=1

|xn(i) − x(i)| = lim
n→∞

∞∑︂
i=1

|µn(Ai) − µ(Ai)| . (2.5)

Note that since x ∈ ℓ1, it holds

0 = lim
k→∞

∞∑︂
i=k

|x(i)| = lim
k→∞

∞∑︂
i=k

|µ(Ai)| ,

which implies
0 = lim

k→∞

∞∑︂
i=k

µ(Ai). (2.6)

Let us set sn,k = µn(Ek) −∑︁∞
i=k µ(Ai). Then

lim
k→∞

sn,k = lim
k→∞

(µn(Ek) −
∞∑︂

i=k

µ(Ai)) = 0 for every n ∈ N. (2.7)

That follows from (2.6) and from the fact that E1 ⊇ E2 ⊇ . . . , ⋂︁∞
k=1 Ek = ∅ and

|µn| (E1) < ∞, n ∈ N (measures µn are bounded by Corollary 2). By assumption,
we also have

lim
n→∞

sn,k = lim
n→∞

µn(Ek) −
∞∑︂

i=k

µ(Ai) = µ(Ek) −
∞∑︂

i=k

µ(Ai). (2.8)

Let ε > 0 be given. By (2.5), there exists n0 ∈ N such that for every n ∈ N,
n ≥ n0 it holds ∑︁∞

i=1 |µn(Ai) − µ(Ai)| < ε. Since x, x1, x2, · · · ∈ ℓ1, there exists
k0 ∈ N such that for every n ∈ {1, 2, . . . , n0} and for every k ≥ k0 we have
ε >

∑︁∞
i=k |xn(i) − x(i)| = ∑︁∞

i=k |µn(Ai) − µ(Ai)|. Therefore for every k ∈ N,
k ≥ k0 and for every n ∈ N we have

|sn,k| =
⃓⃓⃓⃓
⃓µn(Ek) −

∞∑︂
i=k

µ(Ai)
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓µn

(︄
A \

k−1⋃︂
i=1

Ai

)︄
−

∞∑︂
i=k

µ(Ai)
⃓⃓⃓⃓
⃓ =

=
⃓⃓⃓⃓
⃓µn

(︄ ∞⋃︂
i=k

Ai

)︄
−

∞∑︂
i=k

µ(Ai)
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓

∞∑︂
i=k

(︂
µn(Ai) − µ(Ai)

)︂⃓⃓⃓⃓⃓ ≤

≤
∞∑︂

i=k

|µn(Ai) − µ(Ai)| < ε.

(2.9)

That means, by definition, that the functions gk : N → R defined by gk(n) = sn,k

converge uniformly to 0 on N. Therefore we can interchange the limits and (2.7)
and (2.8) yield

lim
k→∞

(︂
µ(Ek) −

∞∑︂
i=k

µ(Ai)
)︂

= lim
k→∞

lim
n→∞

sn,k = lim
k→∞

lim
n→∞

gk(n) =

= lim
n→∞

lim
k→∞

gk(n) = lim
n→∞

0 = 0.
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Then the previous equation and equation (2.6) imply that

lim
k→∞

µ(Ek) = lim
k→∞

(µ(Ek) −
∞∑︂

i=k

µ(Ai) +
∞∑︂

i=k

µ(Ai)) = 0 + 0 = 0,

which is the desired conclusion.
The uniform σ-additivity is now easy to verify since we know that µ itself

is σ-additive. In fact, Ai ∈ A pairwise disjoint and ε > 0 were given and we
have already found k0 ∈ N such that the equation (2.9) holds. Since we know
limk→∞ µ(Ek) = 0, we can find k1 ≥ k0 such that for every k ≥ k1 the inequality
|µ(Ek)| < ε is satisfied. Then for every k ∈ N, k ≥ k1 and for every n ∈ N we
have⃓⃓⃓⃓
⃓µn

(︄ ∞⋃︂
i=1

Ai

)︄
−

k∑︂
i=1

µn(Ai)
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓

∞∑︂
i=1

µn(Ai) −
k∑︂

i=1
µn(Ai)

⃓⃓⃓⃓
⃓ =

=
⃓⃓⃓⃓
⃓⃓ ∞∑︂
i=k+1

µn(Ai)
⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓ ∞∑︂
i=k+1

(︂
µn(Ai) − µ(Ai) + µ(Ai)

)︂⃓⃓⃓⃓⃓⃓ ≤

≤

⃓⃓⃓⃓
⃓⃓ ∞∑︂
i=k+1

(µn(Ai) − µ(Ai))
⃓⃓⃓⃓
⃓⃓+

⃓⃓⃓⃓
⃓⃓ ∞∑︂
i=k+1

µ(Ai)
⃓⃓⃓⃓
⃓⃓ ≤

≤
∞∑︂

i=k+1
|µn(Ai) − µ(Ai)| +

⃓⃓⃓⃓
⃓⃓ ∞⋃︂
i=k+1

µ(Ai)
⃓⃓⃓⃓
⃓⃓ =

=
∞∑︂

i=k+1
|µn(Ai) − µ(Ai)| + |µ(Ek+1)| < 2ε,

which completes the proof.

In the Vitali-Hahn-Saks theorem we put an extra assumption on the sequence
(µn)n∈N from the previous theorem: the absolute continuity with respect to one
universal measure λ. Then we will mainly want to obtain the uniform absolute
continuity with respect to λ. This result is proved as the second part of the
theorem in Brooks [1969]. The result 2. is stated in Florescu and Godet-Thobie
[2012] as Theorem 1.36 iii).

Theorem 10 (Vitali-Hahn-Saks). Let (X, A) be a measurable space and suppose
that (µn)n∈N ⊆ ca(A) is a sequence of measures on A such that there exists a set
function µ : A → R satisfying limn→∞ µn(A) = µ(A) for every A ∈ A. Let
λ : A → [0,∞] be a measure such that for every n ∈ N it holds µn ≪ λ. Then

1. µ is a measure on A,

2. µ ≪ λ and

3. (µn)n∈N is uniformly absolutely continuous with respect to λ.

Proof. 1. Follows from the Nikodym theorem (Theorem 9).
2. This is a simple observation. Let A ∈ A such that λ(A) = 0 be given. By

definition, µn(A) = 0 for every n ∈ N, thus µ(A) = limn→∞ µn(A) = 0. Therefore
µ ≪ λ.
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3. By way of contradiction, let us assume that (µn)n∈N is not uniformly ab-
solutely continuous with respect to λ. Then, by Definition 8, there exist ε > 0,
a strictly increasing sequence (nm)m∈N ⊆ N of indices and a sequence of measur-
able sets (Am)m∈N ⊆ A such that for every m ∈ N it holds λ(Am) < 1/2m and
|µnm(Am)| ≥ ε.

Without loss of generality we can assume that µnm = µm (otherwise we set
νm = µnm and we prove the theorem for the sequence (νm)m∈N). Therefore we
have

λ(Am) < 1/2m (2.10)
and

|µm(Am)| ≥ ε (2.11)
for every m ∈ N.

Now we assert that for every k ∈ N there exists a subsequence of natural
numbers (n(k)

i )i∈N such that, if we set (n(0)
i )i∈N = (i)i∈N, it holds

(i) (n(k+1)
i )i∈N is a subsequence of (n(k)

i )i∈N for every k ∈ N ∪ {0},

(ii) ∑︁∞
i=1

⃓⃓⃓⃓
µ

n
(k)
1

⃓⃓⃓⃓ (︃
A

n
(k+1)
i

)︃
< ε/2 for every k ∈ N ∪ {0},

(iii) n
(k)
1 < n

(k+1)
1 , k ∈ N ∪ {0}.

The sequences (n(k)
i )i∈N will be constructed inductively.

To start the induction, let us notice that limn→∞ |µ1| (An) = 0. That follows
from the assumption µ1 ≪ λ and Proposition 5. Therefore, by definition, there
exists a subsequence (n(1)

i )i∈N of natural numbers (or in other words, (n(1)
i )i∈N

is a subsequence of (n(0)
i )i∈N) such that |µ1| (A

n
(1)
i

) < ε/2i+1 for every i ∈ N.
Furthermore, by definition of the limit, we can assume that n

(1)
1 satisfies n

(1)
1 >

n
(0)
1 = 1. Consequently,

∞∑︂
i=1

⃓⃓⃓⃓
µ

n
(0)
1

⃓⃓⃓⃓
(A

n
(1)
i

) =
∞∑︂

i=1
|µ1| (A

n
(1)
i

) <
∞∑︂

i=1
ε/2i+1 = ε/2.

Therefore, by construction, (i)-(iii) are satisfied.
Now let us assume that we have (n(1)

i )i∈N, . . . , (n(k)
i )i∈N satisfying (i)-(iii). By

assumption, µ
n

(k)
1

≪ λ and thus by Proposition 5 we have limn→∞

⃓⃓⃓⃓
µ

n
(k)
1

⃓⃓⃓⃓
(An) = 0,

which implies limi→∞

⃓⃓⃓⃓
µ

n
(k)
1

⃓⃓⃓⃓
(A

n
(k)
i

) = 0. Therefore there exists a subsequence

(n(k+1)
i )i∈N extracted from (n(k)

i )i∈N satisfying
⃓⃓⃓⃓
µ

n
(k)
1

⃓⃓⃓⃓
(A

n
(k+1)
i

) < ε/2i+1 for every

i ∈ N. Furthermore, by definition of the limit, we can assume that n
(k+1)
1 satisfies

n
(k+1)
1 > n

(k)
1 . It holds that

∞∑︂
i=1

⃓⃓⃓⃓
µ

n
(k)
1

⃓⃓⃓⃓
(A

n
(k+1)
i

) <
∞∑︂

i=1
ε/2i+1 = ε/2.

Then, by construction, (i)-(iii) are satisfied and the construction is complete.
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Let νi = µ
n

(i)
1

and Bi = A
n

(i)
1

. Then from (2.10) and from (iii) we obtain

λ(Bi) = λ(A
n

(i)
1

) < 1/2n
(i)
1 ≤ 1/2i. (2.12)

We also have that for every k ∈ N
∞∑︂

j=k+1
|νk| (Bj) =

∞∑︂
j=k+1

|νk| (A
n

(j)
1

) ≤
∞∑︂

i=1
|νk| (A

n
(k+1)
i

) =

=
∞∑︂

i=1

⃓⃓⃓⃓
µ

n
(k)
1

⃓⃓⃓⃓
(A

n
(k+1)
i

) < ε/2,

(2.13)

where the equalities follow from definitions, the first inequality follows from (i)
and (iii) and the second inequality follows from (ii).

Let Q = lim sup Bi = ⋂︁∞
n=1

⋃︁∞
i=n Bi and Cn = ⋃︁∞

i=n Bi, n ∈ N. Then Cn ↘ Q.
Let Tn = Cn \ Q. Then Tn ↘ ∅. By (2.12) and by the assumption that λ is
a positive measure, it holds for every n ∈ N that

λ(Q) ≤ λ(Cn) ≤
∞∑︂

i=n

λ(Bi) ≤
∞∑︂

i=n

1/2i = 1/2n−1,

which implies λ(Q) = 0. By assumption, νk = µ
n

(k)
1

≪ λ, k ∈ N, hence νk(Q) = 0
for every k ∈ N. Therefore, for every k, n ∈ N, we have

νk(Tn) = νk(Cn \ Q) = νk(Cn) − νk(Q) = νk(Cn). (2.14)

Let us define gn : N → R, gn(k) = νk(Tn). We claim that gn ⇒ 0 on N. To
prove this, let η > 0 be given. By assumption,

∀A ∈ A : lim
n→∞

µn(A) = µ(A),

thus
∀A ∈ A : lim

k→∞
νk(A) = µ(A).

Since νk are also real-valued, we can apply the Nikodym theorem (Theorem 9)
and obtain that the family {νk : k ∈ N} is uniformly σ-additive. Let us set
Sn = Tn \ Tn+1. Since Tn ↘ ∅, we obtain that ⋃︁n

i=1 Si ↗ T1. Moreover, Sn are
pairwise disjoint. Therefore, by Definition 7, there exists n0 ∈ N such that for
every n ∈ N, n ≥ n0 and for every k ∈ N it holds that |νk(T1) −∑︁n

i=1 νk(Si)| < η.
Then for every n ∈ N, n ≥ n0 and for every k ∈ N it holds that

|gn(k)| = |νk(Tn+1)| =
⃓⃓⃓⃓
⃓νk(T1 \ (

n⋃︂
i=1

Si))
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓νk(T1) −

n∑︂
i=1

νk(Si)
⃓⃓⃓⃓
⃓ < η,

which establishes the claim. (Note that the third equality follows from Corol-
lary 2.)

Since gn ⇒ 0 on N, we can find N ∈ N such that for every n ∈ N, n ≥ N it
holds

∀k ∈ N : |gn(k)| < ε/2.

Then (2.14) yields

|νk(Cn)| = |νk(Tn)| = |gn(k)| < ε/2 (2.15)
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for every n ≥ N and for every k ∈ N.
For every k ∈ N it holds that

νk(Bk) = νk

⎛⎝ ∞⋃︂
i=k

Bi \

⎛⎝ ∞⋃︂
i=k+1

Bi \ Bk

⎞⎠⎞⎠ =

= νk

⎛⎝Ck \

⎛⎝⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ∩ (X \ Bk)
⎞⎠⎞⎠ =

= νk(Ck) − νk

⎛⎝⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ∩ (X \ Bk)
⎞⎠ .

Therefore

|νk(Bk)| ≤ |νk(Ck)| +
⃓⃓⃓⃓
⃓⃓νk

⎛⎝⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ∩ (X \ Bk)
⎞⎠⃓⃓⃓⃓⃓⃓ . (2.16)

It also holds that⃓⃓⃓⃓
⃓⃓νk

⎛⎝⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ∩ (X \ Bk)
⎞⎠⃓⃓⃓⃓⃓⃓ ≤ |νk|

⎛⎝⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ∩ (X \ Bk)
⎞⎠ ≤

≤ |νk|

⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ .

(2.17)

Therefore, if we set n = k > N , we obtain by (2.11), (2.16), (2.15) and (2.17),
by σ-subadditivity and by (2.13) the following inequality:

ε ≤
⃓⃓⃓⃓
µ

n
(k)
1

(︃
A

n
(k)
1

)︃⃓⃓⃓⃓
= |νk(Bk)| ≤ |νk(Ck)| +

⃓⃓⃓⃓
⃓⃓νk

⎛⎝⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ∩ (X \ Bk)
⎞⎠⃓⃓⃓⃓⃓⃓ <

< ε/2 + |νk|

⎛⎝ ∞⋃︂
i=k+1

Bi

⎞⎠ ≤ ε/2 +
∞∑︂

i=k+1
|νk| (Bi) < ε,

which yields the desired contradiction.

Finally, we would like to show that if we have (X, A) a measurable space and
a sequence of measures (µn)n∈N ⊆ ca(A) such that for each set A ∈ A the set
{µn(A) : n ∈ N} is bounded, then the set {µn : n ∈ N} is bounded in (ca(A), ∥ · ∥).
The proof of this theorem follows the one in Florescu and Godet-Thobie [2012,
Theorem 1.38].

Theorem 11 (Uniform boundedness Nikodym’s theorem). Let (µn)n∈N ⊆ ca(A)
be a sequence of measures such that

sup
n∈N

|µn(A)| < ∞ for every A ∈ A.

Then {µn : n ∈ N} is bounded in the space (ca(A), ∥ · ∥).

16



Proof. We suppose that {µn : n ∈ N} is unbounded in (ca(A), ∥ · ∥). By Theo-
rem 4, the norms ∥ · ∥ and ∥ · ∥∞ are equivalent in ca(A), which means that

sup
n∈N

(sup
A∈A

|µn(A)|) = ∞. (2.18)

By hypothesis
sup
n∈N

|µn(X)| < ∞. (2.19)

Let us construct a strictly increasing sequence (nk)k∈N ⊆ N and two sequences
(Ak)k∈N ⊆ A, (Bk)k∈N ⊆ A such that

(i) supn∈N(supA∈A |µn(A ∩ Ak)|) = ∞ for every k ∈ N,

(ii) |µnk
(Ak)| ≥ ∑︁k−1

l=1 |µnk
(Bl)| + k + 1 and |µnk

(Bk)| ≥ ∑︁k−1
l=1 |µnk

(Bl)| + k + 1
for every k ∈ N,

(iii) A1 ⊇ A2 ⊇ . . . and

(iv) Bk = Ak−1 \ Ak for every k ∈ N,

where we shall define A0 = X, B0 = ∅ and ∑︁0
l=1 |µnk

(Bl)| = 0.
All objects will be constructed inductively.
From (2.19) it follows that supn∈N |µn(X)|+2 ∈ R. Therefore, by (2.18), there

exists n1 ∈ N and M1 ∈ A such that |µn1(M1)| > supn∈N |µn(X)| + 2 ≥ 2. Then,
since µn1 is bounded by hypothesis and by Corollary 2, we have that

|µn1(X \ M1)| = |µn1(X) − µn1(M1)| ≥ |µn1(M1)| − |µn1(X)| ≥
≥ |µn1(M1)| − sup

n∈N
|µn(X)| ≥ sup

n∈N
|µn(X)| + 2 − sup

n∈N
|µn(X)| = 2.

Therefore we have

|µn1(M1)| ≥ 2 and |µn1(X \ M1)| ≥ 2. (2.20)

According to (2.18), one of the following equalities must be satisfied:

sup
n∈N

(sup
A∈A

|µn(A ∩ M1)|) = ∞ (2.21)

or
sup
n∈N

(sup
A∈A

|µn(A ∩ (X \ M1))|) = ∞. (2.22)

If (2.21) is satisfied, let us denote A1 = M1 and B1 = X \ M1. Otherwise, we
denote B1 = M1 and A1 = X \ M1. Then, by (2.20) and by (2.21) (or by (2.22)),
we have that (i) and (ii) are satisfied and, by construction, (iii) and (iv) are
satisfied as well.

Now let us assume that k ≥ 2 and that we have A1, A2, . . . , Ak, B1, B2, . . . , Bk

and µn1 , µn2 , . . . , µnk
satisfying (i)-(iv). By hypothesis

sup
n∈N

|µn(Ak)| < ∞,
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thus supn∈N |µn(Ak)| +∑︁k
l=1 |µnk

(Bl)| + k + 2 < ∞. From (i) it follows that there
exist nk+1 ∈ N and Mk+1 ∈ A, Mk+1 ⊆ Ak, such that

⃓⃓⃓
µnk+1(Mk+1)

⃓⃓⃓
> sup

n∈N
|µn(Ak)| +

k∑︂
l=1

|µnk
(Bl)| + k + 2 ≥

k∑︂
l=1

|µnk
(Bl)| + k + 2.

We may choose nk+1 > nk because, if no such nk+1 exists, we have that

sup
n∈N, n≥nk

(sup
A∈A

|µn(A ∩ Ak)|) ≤ sup
n∈N

|µn(Ak)| +
k∑︂

l=1
|µnk

(Bl)| + k + 2 < ∞.

Then, since µn is bounded for every n ∈ N by Corollary 2, we obtain that there
exist K1, K2, . . . , Knk

∈ (0,∞) satisfying supA∈A |µni
(A)| ≤ Ki for each i ≤ nk.

This implies

sup
n∈N

(sup
A∈A

|µn(A ∩ Ak)|) ≤

≤ max
{︄

K1, K2, . . . , Knk
, sup

n∈N
|µn(Ak)| +

k∑︂
l=1

|µnk
(Bl)| + k + 2

}︄
< ∞,

which contradicts (i).
It holds that⃓⃓⃓
µnk+1(Ak \ Mk+1)

⃓⃓⃓
=
⃓⃓⃓
µnk+1(Ak) − µnk+1(Mk+1)

⃓⃓⃓
≥

≥
⃓⃓⃓
µnk+1(Mk+1)

⃓⃓⃓
−
⃓⃓⃓
µnk+1(Ak)

⃓⃓⃓
≥

≥
⃓⃓⃓
µnk+1(Mk+1)

⃓⃓⃓
− sup

n∈N
|µn(Ak)| ≥

≥ sup
n∈N

|µn(Ak)| +
k∑︂

l=1
|µnk

(Bl)| + k + 2 − sup
n∈N

|µn(Ak)| =

=
k∑︂

l=1
|µnk

(Bl)| + k + 2.

Therefore we have
⃓⃓⃓
µnk+1(Mk+1)

⃓⃓⃓
≥

k∑︂
l=1

|µnk
(Bl)| + k + 2 (2.23)

and ⃓⃓⃓
µnk+1(Ak \ Mk+1)

⃓⃓⃓
≥

k∑︂
l=1

|µnk
(Bl)| + k + 2. (2.24)

According to (i), one of the following equalities must be satisfied:

sup
n∈N

(sup
A∈A

|µn(A ∩ Mk+1)|) = ∞ (2.25)

or
sup
n∈N

(sup
A∈A

|µn(A ∩ (Ak \ Mk+1))|) = ∞. (2.26)

If (2.25) is satisfied, let us denote Ak+1 = Mk+1 and Bk+1 = Ak\Mk+1. Otherwise,
we denote Bk+1 = Mk+1 and Ak+1 = Ak \ Mk+1. Then, by (2.23), (2.24) and
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by (2.25) (or by (2.26)), we have that (i) and (ii) are satisfied and, by construction,
(iii) and (iv) are satisfied as well. That completes the inductive construction.

Notice that from (iii) and (iv) it follows that the sets Bk, k ∈ N, are pairwise
disjoint.

Let E = {nk : k ∈ N}. Notice that E is infinite since (nk)k∈N is strictly in-
creasing. We assert that there exist (kj)j∈N ⊆ N a strictly increasing sequence of
natural numbers, (Nj)j∈N ⊆ P(E) and (Cj)j∈N ⊆ A such that

(a) (Nj)j∈N consists of infinite subsets of E and Nj ⊇ Nj+1 for every j ∈ N,

(b) kj is the smallest element of Nj and kj−1 < kj for every j ∈ N,

(c) Cj = Bkj
for every j ∈ N and

(d)
⃓⃓⃓
µnkj−1

⃓⃓⃓ (︂⋃︁
l∈Nj

Bl

)︂
< 1 for every j ∈ N,

where we shall define k0 = 1.
The objects will be constructed inductively with respect to j. For j = 1, let

{M1
m : m ∈ N} be an infinite countable partition into infinite sets of the set E.

Since
∞∑︂

m=1
|µn1|

⎛⎝ ⋃︂
l∈M1

m

Bl

⎞⎠ = |µn1|

⎛⎝⋃︂
l∈E

Bl

⎞⎠ ≤ |µn1| (X) < ∞,

there exists m0 ∈ N such that |µn1 |
(︂⋃︁

l∈M1
m0

Bl

)︂
< 1. Set N1 = M1

m0 , let k1 be
the smallest element of N1 and let C1 = Bk1 . Then indeed k1 > k0 = 1, because
if not, we have k1 = 1, thus

1 > |µn1|

⎛⎝ ⋃︂
l∈N1

Bl

⎞⎠ ≥ |µn1 | (Bk1) = |µn1| (B1),

which contradicts (ii). Therefore k1 > k0 = 1 and (a)-(d) are satisfied.
Now let us assume that j ≥ 2 and that we have k1, k2, . . . , kj, N1, N2, . . . , Nj

and C1, C2, . . . , Cj satisfying (a)-(d). Let
{︂
M (k+1)

m : m ∈ N
}︂

be an infinite count-
able partition into infinite sets (of the infinite set) Nj. Since

∞∑︂
m=1

⃓⃓⃓
µnkj

⃓⃓⃓ ⎛⎜⎝ ⋃︂
l∈M

(k+1)
m

Bl

⎞⎟⎠ =
⃓⃓⃓
µnkj

⃓⃓⃓ ⎛⎝ ⋃︂
l∈Nj

Bl

⎞⎠ ≤
⃓⃓⃓
µnkj

⃓⃓⃓
(X) < ∞,

there exists m∗
0 ∈ N such that

⃓⃓⃓
µnkj

⃓⃓⃓ (︄⋃︁
l∈M

(k+1)
m∗

0

Bl

)︄
< 1. Set Nj+1 = M

(k+1)
m∗

0
,

let kj+1 be the smallest element of Nj+1 and let Cj+1 = Bkj+1 . Then indeed
kj+1 > kj, because if not, we have kj+1 = kj (since kj is the smallest element of
Nj and Nj+1 ⊆ Nj, we know kj+1 ≥ kj), thus

1 >
⃓⃓⃓
µnkj

⃓⃓⃓ ⎛⎝ ⋃︂
l∈Nj+1

Bl

⎞⎠ ≥
⃓⃓⃓
µnkj

⃓⃓⃓
(Bkj+1) =

⃓⃓⃓
µnkj

⃓⃓⃓
(Bkj

),

which contradicts (ii). Therefore kj+1 > kj and (a)-(d) are satisfied, which com-
pletes the inductive construction.
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Notice that, because the sets Bk, k ∈ N, are pairwise disjoint, (b) and (c)
immediately imply that Cj, j ∈ N, are pairwise disjoint.

Let us denote C = ⋃︁
j∈N Cj. Then from (a), (b), (c) and (d) we have, for every

j ∈ N, ⃓⃓⃓
µnkj−1

⃓⃓⃓ ⎛⎝ ∞⋃︂
h=j

Ch

⎞⎠ ≤
⃓⃓⃓
µnkj−1

⃓⃓⃓ ⎛⎝ ⋃︂
l∈Nj

Bl

⎞⎠ < 1, (2.27)

and by (ii) and the obvious inequality j − 1 ≤ kj−1 ≤ kj − 1, holding for every
j ∈ N, we have

⃓⃓⃓
µnkj

(Cj)
⃓⃓⃓
=
⃓⃓⃓
µnkj

(Bkj
)
⃓⃓⃓
≥

kj−1∑︂
l=1

⃓⃓⃓
µnkj

(Bl)
⃓⃓⃓
+ kj + 1 ≥

j−1∑︂
h=1

⃓⃓⃓
µnkj

(Ch)
⃓⃓⃓
+ kj + 1,

from where ⃓⃓⃓
µnkj

(Cj)
⃓⃓⃓
−

j−1∑︂
h=1

⃓⃓⃓
µnkj

(Ch)
⃓⃓⃓
≥ kj + 1 ≥ j + 1. (2.28)

Therefore, by (2.27) and (2.28), for every j ∈ N ∪ {0},

⃓⃓⃓
µnkj

(C)
⃓⃓⃓
=
⃓⃓⃓⃓
⃓µnkj

(︄ ∞⋃︂
h=1

Ch

)︄⃓⃓⃓⃓
⃓ ≥

≥
⃓⃓⃓
µnkj

(Cj)
⃓⃓⃓
−

⃓⃓⃓⃓
⃓⃓µnkj

⎛⎝j−1⋃︂
h=1

Ch

⎞⎠⃓⃓⃓⃓⃓⃓−
⃓⃓⃓⃓
⃓⃓µnkj

⎛⎝ ∞⋃︂
h=j+1

Ch

⎞⎠⃓⃓⃓⃓⃓⃓ ≥

≥
⃓⃓⃓
µnkj

(Cj)
⃓⃓⃓
−

⃓⃓⃓⃓
⃓⃓µnkj

⎛⎝j−1⋃︂
h=1

Ch

⎞⎠⃓⃓⃓⃓⃓⃓− ⃓⃓⃓
µnkj

⃓⃓⃓ ⎛⎝ ∞⋃︂
h=j+1

Ch

⎞⎠ ≥

≥
⃓⃓⃓
µnkj

(Cj)
⃓⃓⃓
−

j−1∑︂
h=1

⃓⃓⃓
µnkj

(Ch)
⃓⃓⃓
−
⃓⃓⃓
µnkj

⃓⃓⃓ ⎛⎝ ∞⋃︂
h=j+1

Ch

⎞⎠ ≥

≥ j + 1 − 1 = j

(where we define ⋃︁0
h=1 Ch = ∅), which implies that supj∈N

⃓⃓⃓
µnkj

(C)
⃓⃓⃓

= ∞, hence
supn∈N |µn(C)| = ∞, which contradicts the hypothesis of the theorem.
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3. Biting Lemma, Rosenthal’s
Subsequence Splitting Lemma
In this chapter we will look at the following problem. From topology we know
that a topological space X is compact if and only if for every net in X there exists
its convergent subnet. Sometimes, for example in metric spaces, it is sufficient to
work with sequences instead of nets. In particular, from real analysis we know
that every closed and bounded subset of R is compact. The question is whether
a similar statement holds in Lp spaces, p ∈ [1,∞]; i.e. is every bounded closed
subset of Lp, p ∈ [1,∞], compact? The answer is no, however, since for p ∈ (1,∞)
the spaces Lp are reflexive, we get at least the weak compactness. In L1, the
situation is much more complicated since we do not have the reflexivity nor
weak compactness. However, we would still want to extract somehow convergent
subsequence from any bounded sequence. And the way to do it is described in the
Biting Lemma - essentially we need to consider even weaker form of convergence.

3.1 Uniform Integrability
In this chapter, our object of interest will be sequences of functions in L1. Some
of them “behave nicely” with respect to integral in the following way.

Definition 9 (Uniform integrability). Let (X, A, µ) be a measure space with
a positive measure µ and let F ⊆ L1(X, A, µ). Then F is called uniformly
integrable if

lim
C→∞

sup
f∈F

∫︂
{|f |>C}

|f | dµ = 0.

It should be clear that every finite set {f1, . . . , fn} ⊆ L1 is uniformly inte-
grable. This follows from the continuity of finitely many finite measures νk(A) =∫︁

A |fk| dµ, A ∈ A, k ∈ {1, . . . , n}.
We will also need to work with the following types of compactness.

Definition 10. Let (X, τ) be a topological space and let A ⊆ X. Then A is said
to be

• relatively compact if A is compact,

• sequentially compact if for every (xn)n∈N ⊆ A there exists a convergent
subsequence (xnk

)k∈N ⊆ A (with the limit in A),

• relatively sequentially compact if for every (xn)n∈N ⊆ A there exists a sub-
sequence (xnk

)k∈N convergent in X and

• countably compact if every countable open cover of A has a finite subcover.

The following theorem uses the uniform integrability to characterize the weak
compactness in L1. You can find it in Vladimir I. Bogachev [2007, page 285,
Theorem 4.7.18] with its proof.
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Theorem 12 (Dunford-Pettis theorem). Let (X, A, µ) be a measure space with
a finite positive measure µ. Let F ⊆ L1(X, A, µ). Then the set F is relatively
compact in the weak topology of L1(X, A, µ) if and only if it is uniformly inte-
grable.

Notice that if µ is a finite positive measure and F is a uniformly integrable
set, then F is automatically bounded. Indeed, by definition, there exists C > 0
such that supf∈F

∫︁
{|f |>C} |f | dµ < 1. Then for every f ∈ F we have∫︂

X
|f | dµ =

∫︂
{|f |≤C}

|f | dµ +
∫︂

{|f |>C}
|f | dµ ≤ Cµ(X) + 1 < ∞.

From Theorem 12 it follows that if (fi)i∈I is a net in L1 and the set {fi : i ∈ I}
is uniformly integrable, then there exists a subnet (fj)j∈J weakly convergent
in L1. However, we would like that property to hold even for sequences and
subsequences. The following theorem, proved for example in Whitley [1967,
pages 116-118], asserts that it works.

Theorem 13 (Eberlain-Šmulian). Let A be a subset of a Banach space X. Then
for the weak topology of X the following assertions are equivalent:

1. A is relatively compact,

2. A is relatively sequentially compact and

3. A is relatively countably compact.

3.2 Modulus of Uniform Integrability
From the previous section it follows that if we have a uniformly integrable se-
quence (fn)n∈N ⊆ L1(X, A, µ) and if µ is a finite positive measure, then there
exists a weakly convergent subsequence of (fn)n∈N (Theorems 12 and 13). How-
ever, not every bounded sequence in L1 is uniformly integrable. In this section, we
will work with a number that tells us “how much a family in L1 is not uniformly
integrable”. Then we will want to show that for every bounded sequence (fn)n∈N
in L1(X, A, µ) with a finite measure µ there exists a subsequence (gn)n∈N that we
can split into 2 parts: one part will be uniformly integrable (i.e. its “measure of
non-uniform integrability” is 0) and the other part will tend to this “measure of
non-uniform integrability”.

Definition 11 (Modulus of uniform integrability). Let (X, A, λ) be a measure
space with a positive measure λ and let F ⊆ L1(X, A, λ). Then we define

η(F) = inf
δ>0

[︃
sup

{︃∫︂
A

|f | dλ : A ∈ A, λ(A) < δ, f ∈ F
}︃]︃

∈ [0,∞].

We say that η(F) is the modulus of uniform integrability of F .

Let us notice that
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(i) it holds

η(F) = lim
δ→0+

[︃
sup

{︃∫︂
A

|f | dλ : A ∈ A, λ(A) < δ, f ∈ F
}︃]︃

.

This is because the function

δ ↦→ sup
{︃∫︂

A
|f | dλ : A ∈ A, λ(A) < δ, f ∈ F

}︃
, δ ∈ (0,∞),

is nonincreasing.

(ii) η(F) = 0 if and only if the family {µf : f ∈ F} is uniformly absolutely
continuous with respect to λ, where µf (A) =

∫︁
A f dλ, A ∈ A. That is

because from (i) we have

η(F) = 0 ⇔ ∀ε > 0 ∃δ > 0 ∀t ∈ (0,δ) :

sup
{︃∫︂

A
|f | dλ : A ∈ A, λ(A) < t, f ∈ F

}︃
< ε ⇔

⇔ ∀ε > 0 ∃δ > 0 ∀A ∈ A, λ(A) < δ ∀f ∈ F :
∫︂

A
|f | dλ < ε.

(3.1)

From Florescu and Godet-Thobie [2012, Remark 1.53 ii)] it follows that the
right-hand side holds if and only if the family {µf : f ∈ F} is uniformly
absolutely continuous with respect to λ.

The following proposition describes the modulus of uniform integrability via
the limit used in Definition 9. For a proof see Florescu and Godet-Thobie [2012,
Proposition 1.83].

Proposition 14. Let (X, A, λ) be a measure space with a finite positive measure λ
and let F ⊆ L1(X, A, λ) be a bounded set. Then

η(F) = lim
t→∞

[︄
sup
f∈F

∫︂
{|f |>t}

|f | dλ

]︄
= lim

t→∞

[︄
sup
f∈F

∫︂
{|f |≥t}

|f | dλ

]︄
.

Remark 2. From Proposition 14 we have that every bounded set F ⊆ L1(X, A, λ),
where λ is a finite positive measure, is uniformly integrable if and only if η(F) = 0.

For the following theorems, we will need to define another type of convergence
in L1.

Definition 12. Let (X, A, µ) be a measure space with a positive and σ-finite
measure µ. Then a sequence (fn)n∈N ⊆ L1(X, A, µ) is said to be w2-convergent
to f ∈ L1(X, A, µ) if the following two conditions are satisfied:

(a) there exists a decreasing sequence (Bp)p∈N ⊆ A such that limp→∞ µ(Bp) = 0,

(b) for every fixed p ∈ N, the sequence (fn ↾X\Bp)n∈N converges weakly to the
function f ↾X\Bp in L1(X \ Bp, µ).

We say that the sequence (Bp)p∈N satisfying the above conditions (a) and (b)
localizes the concentration of mass of the w2-convergent sequence (fn)n∈N.
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According to Florescu and Godet-Thobie [2012, Remark 1.96 i)], if a sequence
(fn)n∈N ⊆ L1(X, A, µ) is w2-convergent, then the limit function f ∈ L1(X, A, µ)
is uniquely determined (modulo almost everywhere). Furthermore, according
to Florescu and Godet-Thobie [2012, Remark 1.96 vi)], a w2-convergent sequence
(fn)n∈N ⊆ L1(X, A, µ) does not have to be bounded in L1(X, A, µ).

The following theorem is technical and we will need it in the next proof. It can
be found in Florescu and Godet-Thobie [2012, Proposition 1.93] with its proof.

Theorem 15. Let (X, A, λ) be a measure space with a finite positive measure λ.
Let (fn)n∈N ⊆ L1(X, A, λ) be a w2-convergent sequence and let (Bp)p∈N ⊆ A be
a sequence which localizes the concentration of mass of (fn)n∈N. Then

η({fn : n ∈ N}) = lim
p→∞

lim sup
n→∞

∫︂
Bp

|fn| dλ.

The following theorem (Theorem 1.100 in Florescu and Godet-Thobie [2012])
asserts that if we have a w2-convergent and bounded sequence in L1, we can
find its subsequence that we can split into a weakly convergent part and “an
unpleasant part”. Later we would like to show that this theorem holds even if
(fn)n∈N is not w2-convergent (see Corollary 19).

Theorem 16. Let (X, A, λ) be a measure space with a finite positive measure λ.
Let (fn)n∈N ⊆ L1(X, A, λ) be a bounded (in L1(X, A, λ)) and w2-convergent se-
quence in L1(X, A, λ). Then there exists a subsequence (gn)n∈N of (fn)n∈N and
a sequence of pairwise disjoint sets (An)n∈N ⊆ A such that:

(i) η({fn : n ∈ N}) = limn→∞
∫︁

An
|gn| dλ and

(ii) (χX\An · gn)n∈N is weakly convergent in L1(X, A, λ).

Proof. Let (Bp)p∈N ⊆ A be a decreasing sequence which localizes the concentra-
tion of mass of (fn)n∈N. By Theorem 15 we have

η = η({fn : n ∈ N}) = lim
p→∞

lim sup
n→∞

∫︂
Bp

|fn| dλ.

Notice that η is finite since the sequence (fn)n∈N is bounded in L1(X, A, λ).
Therefore, by the definition of η, for every n ∈ N there exists pn ∈ N and kn ∈ N
such that

(I) for every n ∈ N,
η − 1

n
<
∫︂

Bpn

|fkn| dλ < η + 1
n

, (3.2)

(II) pn+1 > pn for every n ∈ N,

(III) kn+1 > kn for every n ∈ N.

Indeed, for n = 1 there exists p1 ∈ N such that for all p ≥ p1 we have

lim sup
n→∞

∫︂
Bp

|fn| dλ ∈ (η − 1,η + 1).

In particular, for p = p1 there exists k1 ∈ N such that η−1 <
∫︁

Bp1
|fk1 | dλ < η+1.
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Now let us assume that n ≥ 2 and that p1, p2, . . . , pn and k1, k2, . . . , kn sat-
isfy (I)-(III). Since there exists p1

n+1 ∈ N such that for all p ≥ p1
n+1 we have

lim supn→∞
∫︁

Bp
|fn| dλ ∈ (η − 1

n+1 ,η + 1
n+1), we can set pn+1 = max{pn + 1, p1

n+1}.
Then (II) holds and for p = pn+1 we can find kn+1 > kn such that

η − 1
n + 1 <

∫︂
Bpn+1

⃓⃓⃓
fkn+1

⃓⃓⃓
dλ < η + 1

n + 1 .

Hence (I) and (III) hold as well.
Now we assert that there exists a strictly increasing sequence (in)n∈N ⊆ N

such that, for every n ∈ N ∪ {0},

η − 1
in

− 1
n + 1 <

∫︂
Bpin

\Bpin+1

⃓⃓⃓
fkin

⃓⃓⃓
dλ < η + 1

in

, (3.3)

where we define i0 = 1. Notice that, by (3.2), we have

η − 1 <
∫︂

Bpi0

⃓⃓⃓
fki0

⃓⃓⃓
dλ < η + 1. (3.4)

The sequence (in) will be constructed inductively. To demonstrate the base
case, we will use the fact that the measure νk1(A) =

∫︁
A |fk1| dλ, A ∈ A, is

absolutely continuous with respect to λ. Since fk1 ∈ L1(X, A, λ), νk1 is bounded.
Hence we can use Proposition 5 and obtain that for ε1 = 1 there exists δ1 > 0
such that

νk1(A) =
∫︂

A
|fk1| dλ < ε1 = 1 for every A ∈ A with λ(A) < δ1. (3.5)

Since limp→∞ λ(Bp) = 0, we can find i1 > i0 such that λ(Bpi1
) < δ1. Then

by (3.5) we have
∫︁

Bpi1
|fk1 | dλ < 1, which together with (3.4) implies

η − 1 − 1 <
∫︂

Bpi0

⃓⃓⃓
fki0

⃓⃓⃓
dλ −

∫︂
Bpi1

⃓⃓⃓
fki0

⃓⃓⃓
dλ ≤

∫︂
Bpi0

⃓⃓⃓
fki0

⃓⃓⃓
dλ < η + 1,

therefore
η − 1 − 1 <

∫︂
Bpi0

\Bpi1

⃓⃓⃓
fki0

⃓⃓⃓
dλ < η + 1.

Thus (3.3) holds for our i1.
Now let us assume that n ≥ 2 and that we have i0 < i1 < · · · < in satisfy-

ing (3.3). By (3.2), there exists pin such that

η − 1
in

<
∫︂

Bpin

⃓⃓⃓
fkin

⃓⃓⃓
dλ < η + 1

in

. (3.6)

As above, for εn+1 = 1
n+1 there exists δn+1 > 0 such that∫︂

A

⃓⃓⃓
fkin

⃓⃓⃓
dλ < εn+1 = 1

n + 1 for every A ∈ A with λ(A) < δn+1. (3.7)

Since limp→∞ λ(Bp) = 0, we can find in+1 > in such that λ(Bpin+1
) < δn+1.

Then by (3.7) we have
∫︁

Bpin+1

⃓⃓⃓
fkin

⃓⃓⃓
dλ < 1

n+1 , which together with (3.6) implies

η − 1
in

− 1
n + 1 <

∫︂
Bpin

⃓⃓⃓
fkin

⃓⃓⃓
dλ −

∫︂
Bpin+1

⃓⃓⃓
fkin

⃓⃓⃓
dλ ≤

∫︂
Bpin

⃓⃓⃓
fkin

⃓⃓⃓
dλ < η + 1

in

,
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therefore
η − 1

in

− 1
n + 1 <

∫︂
Bpin

\Bpin+1

⃓⃓⃓
fkin

⃓⃓⃓
dλ < η + 1

in

.

This completes the construction.
For every n ∈ N, let us define An = Bpin

\Bpin+1
and hn = fkin

. Then (hn)n∈N

is a subsequence of (fn)n∈N, (An)n∈N ⊆ A is a sequence of pairwise disjoint sets
and, by (3.3),

lim
n→∞

∫︂
An

|hn| dλ = η = η({fn : n ∈ N}). (3.8)

Let us set
η0 = η({χX\An · hn : n ∈ N}) =

= inf
δ>0

[︃
sup

{︃∫︂
E

χX\An · |hn| dλ : E ∈ A, λ(E) < δ, n ∈ N
}︃]︃

=

= lim
δ→0+

[︃
sup

{︃∫︂
E

χX\An · |hn| dλ : E ∈ A, λ(E) < δ, n ∈ N
}︃]︃

.

We want to show that η0 = 0.
By way of contradiction, let η0 > 0 and let α ∈ (0,η0). Then for every p ∈ N

we have

α < sup
{︄∫︂

E
χX\An · |hn| dλ : E ∈ A, λ(E) <

1
p

, n ∈ N
}︄

,

thus there exists Ep ∈ A with λ(Ep) < 1
p

and np ∈ N such that∫︂
Ep\Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ > α. (3.9)

Moreover, the indices np can be chosen in such a way that for every p ∈ N we
have np+1 > np. Because if not, then there exists p ∈ N such that for every
E ∈ A with λ(E) < 1

p+1 and for every l > np we have
∫︁

E\Al
|hl| dλ ≤ α. We also

have that the set {h1, . . . , hnp} is uniformly integrable (it is finite), and thus by
Proposition 14 we have η({h1, . . . , hnp}) = 0. Thus by i) after Definition 9 we
can find δ1 > 0 such that for every δ ∈ (0,δ1) we have

sup
{︃∫︂

A
|hk| dλ : A ∈ A, λ(A) < δ, k ∈ {1, . . . , np}

}︃
< α.

By setting δ0 = min{δ1,
1

p+1}, we obtain that for each δ ∈ (0,δ0) it holds

sup
{︃∫︂

E
χX\An · |hn| dλ : E ∈ A, λ(E) < δ, n ∈ N

}︃
≤ α.

As a result,

η0 = lim
δ→0+

[︃
sup

{︃∫︂
E

χX\An · |hn| dλ : E ∈ A, λ(E) < δ, n ∈ N
}︃]︃

≤ α.

This is a contradiction since η0 > α.
Notice that Ep \ Anp = (Ep ∪ Anp) \ Anp , p ∈ N and since

⃓⃓⃓
hnp

⃓⃓⃓
∈ L1(X, A, λ),

we obtain from (3.9)∫︂
Ep∪Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ −

∫︂
Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ =

∫︂
Ep\Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ > α.
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Then for every p ∈ N, we obtain from (3.3) that

η − 2
np

≤ η − 1
inp

− 1
np + 1 <

∫︂
Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ <

∫︂
Ep∪Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ − α. (3.10)

Since (hnp)p∈N is a subsequence of (fn)n∈N, it holds η({hnp : p ∈ N}) ≤ η <
η + 1

2 · α. Therefore by Definition 11 there exists δ > 0 such that

∀E ∈ A, λ(E) < δ ∀p ∈ N :
∫︂

E

⃓⃓⃓
hnp

⃓⃓⃓
dλ < η + 1

2 · α. (3.11)

By definition, limp→∞ λ(Anp) = 0, and for every p ∈ N we have λ(Ep ∪Anp) <
1
p

+ λ(Anp). That implies limp→∞ λ(Ep ∪ Anp) = 0. Therefore there exists p0 ∈ N
such that for every p ≥ p0 it holds λ(Ep ∪ Anp) < δ.

Therefore, for all p ≥ p0, we obtain from (3.10) and (3.11) that

η − 2
np

<
∫︂

Anp

⃓⃓⃓
hnp

⃓⃓⃓
dλ < η + 1

2 · α − α = η − 1
2 · α,

thus η − 2
np

≤ η − 1
2 · α for every p ≥ p0. Then we have η ≤ η − 1

2 · α, because
limp→∞

2
np

= 0. However, α > 0 and η ≤ η − 1
2 · α, which yields the desired

contradiction.
Therefore η0 = 0 and the family {χX\An · hn} is bounded. By (3.1), the

corresponding family of measures is uniformly absolutely continuous with respect
to λ. Therefore from Theorem 1.65 or Theorem 1.84 in Florescu and Godet-
Thobie [2012] it follows that the set {χX\An · hn} is weakly relatively compact in
L1(X, A, λ). By Theorem 13, the set {χX\An ·hn} is relatively weakly sequentially
compact. Therefore there exists a subsequence χX\Ank

· hnk
of χX\An · hn weakly

convergent in L1(X, A, λ). Thus, if we set gk = hnk
and ˜︁Ak = Ank

, we obtain
that ˜︁Ak is a sequence of pairwise disjoint sets and that (gk)k∈N is a subsequence
of (fn)n∈N such that (χ

X\˜︁Ak·gk
) is weakly convergent in L1(X, A, λ). Furthermore,

since (
∫︁ ˜︁Ak

|gk| dλ) is a subsequence of (
∫︁

An
|hn| dλ), (3.8) yields

lim
k→∞

∫︂
˜︁Ak

|gk| dλ = η = η({fn : n ∈ N}),

which completes the proof.

3.3 Main Results
Before we get to the Biting Lemma, we will need the following definition and
theorem.

Definition 13. Let f : R → R and x0 ∈ R. Then f is said to be upper semicon-
tinuous at the point x0 if

∀y ∈ R∗, y > f(x0) ∃δ > 0 : |x − x0| < δ ⇒ f(x) < y.

Let M ⊆ R be an open set. Then the function f is said to be upper semicon-
tinuous on M if it is upper semicontinuous at each point x0 ∈ M .

27



Note that f is upper semicontinuous at x0 if and only if lim supx→x0 f(x) ≤
f(x0). Indeed, if f is upper semicontinuous at x0, then for every ε > 0 there
exists δ > 0 such that for every x ∈ (x0 − δ,x0 + δ) it holds f(x) < f(x0) + ε. On
the other hand, if lim supx→x0 f(x) ≤ f(x0), then the upper semicontinuity at x0
follows from the definition.

For the following theorem, see Walter Rudin [1976, page 167].

Theorem 17 (Helly’s Selection Theorem). Let (fn)n∈N be a sequence of non-
increasing functions from R to R and let us assume that (fn)n∈N is uniformly
bounded, i.e., there exist a, b ∈ R such that a ≤ fn ≤ b for every n ∈ N. Then
there exists a function f from R to R and a subsequence (fnk

)k∈N of (fn)n∈N such
that

∀x ∈ R : lim
k→∞

fnk
(x) = f(x).

Now we are ready to prove the Biting Lemma, which is really important when-
ever we need to extract a (w2-)convergent subsequence from a bounded sequence
in L1. In particular it is used in the theory of partial differential equations. This
proof follows the one in John M. Ball and François Murat [1989]. The “besides”
part is proved in Florescu and Godet-Thobie [2012, Theorem 1.103].

Lemma 18 (Biting Lemma). Let (X, A, µ) be a measure space with a finite pos-
itive measure µ and let fn : X → R, n ∈ N be a bounded sequence in L1(X, A, µ),
i.e.

sup
n∈N

∥ fn ∥L1 = sup
n∈N

∫︂
X

|fn| dµ = C0 < ∞. (3.12)

Then there exists a function f : X → R, f ∈ L1(X, A, µ), a subsequence
(fnj

)j∈N of (fn)n∈N and a nonincreasing sequence of sets (Ek)k∈N ⊆ A with
limk→∞ µ(Ek) = 0, such that

fnj
→ f weakly in L1(X \ Ek, µ)

as j → ∞ for every fixed k ∈ N.
Besides, for every subsequence (fnjp

)p∈N of (fnj
)j∈N it holds

η({fnjp
: p ∈ N}) = η({fn : n ∈ N}).

Proof. Let fn : X → R, n ∈ N be a bounded sequence in L1(X, A, µ), i.e.

sup
n∈N

∫︂
X

|fn| dµ = C0 < ∞.

.
Let us denote η = η({fn : n ∈ N}). Notice that by the definition of η it

follows that η ∈ [0,∞).
For every l ≥ 0, let us define

φn(l) =
∫︂

{|fn|≥l}
|fn| dµ.

Then

(i) φn(0) = ∥ fn ∥L1 ≤ C0 by (3.12),
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(ii) for each n ∈ N, the function φn is nonincreasing (because if m ≥ l, then
φn(l) =

∫︁
{|fn|≥l} |fn| dµ ≥

∫︁
{|fn|≥m} |fn| dµ = φn(m)),

(iii) for each n ∈ N, the function φn is upper semicontinuous on (0,∞) (right
upper semicontinuous at 0). Indeed, fix n ∈ N and let l0 ∈ [0,∞) be
given. Let (lm)m∈N ⊆ [0,∞) satisfy limm→∞ lm = l0. We want to show that
lim supm→∞ φn(lm) ≤ φn(l0). If l0 = 0, we are done since φn is nonincreas-
ing. Now let l0 > 0. By way of contradiction, let

lim sup
m→∞

φn(lm) > α > φn(l0).

By definition, we have

φn(l0) =
∫︂

{|fn|≥l0}
|fn| dµ and φn(lm) =

∫︂
{|fn|≥lm}

|fn| dµ, m ∈ N.

Let (mp)p∈N ⊆ N be a strictly increasing sequence of indices such that
φn(lmp) > α for every p ∈ N. Then for every p ∈ N we have lmp < l0 because
φn(lmp) > α > φn(l0) and φn is nonincreasing. Then limp→∞ lmp = l0 and

α < φn(lmp) =
∫︂

{|fn|≥lmp }
|fn| dµ and α > φn(l0) =

∫︂
{|fn|≥l0}

|fn| dµ.

Furthermore, for every p ∈ N, we have∫︂
X

|fn| χ{|fn|≥lmp } dµ ≤
∫︂

X
|fn| dµ = C0,

thus Lebesgue’s Dominated Convergence Theorem gives us

lim
p→∞

φn(lmp) = lim
p→∞

∫︂
{|fn|≥lmp }

|fn| dµ =

= lim
p→∞

∫︂
X

|fn| χ{|fn|≥lmp } dµ =
∫︂

X
|fn| χ{|fn|≥l0} dµ = φn(l0).

However, that is not possible since

α ≤ lim
p→∞

φn(lmp) = φn(l0) < α.

(iv) Finally, for each fixed n ∈ N, liml→∞ φn(l) = 0. That is because for any
given n ∈ N, the set function ν(A) =

∫︁
A |fn| dµ, A ∈ A, is a measure on

A and since fn ∈ L1(X, A, µ), ν is finite. Now since φn is nonincreasing,
liml→∞ φn(l) exists and it holds

lim
l→∞

φn(l) = lim
k→∞

φn(k) = lim
k→∞

ν({|fn| ≥ k}) = ν

(︄ ∞⋂︂
k=1

{|fn| ≥ k}
)︄

= 0.

Now we will find a subsequence (fnq)q∈N of (fn)n∈N such that for every subse-
quence (fnqs

)s∈N of (fnq)q∈N it holds η({fnqs
: s ∈ N}) = η.

For each n ∈ N, let us define the functions Fn : [0,∞) → [0,∞) by Fn(t) =
supi≥n φi(t). Then, for every n ∈ N, Fn is nonincreasing by (ii). Furthermore, by
Proposition 14, limt→∞ Fn(t) = η({fi : i ≥ n}) for every fixed n ∈ N. By Proposi-
tion 14 and by (iv), η({fi : i ≤ n}) = limt→∞ supi≤n φi(t) = 0. Then for all n ∈ N
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and for all t ∈ [0,∞) we have supi∈N φi(t) ≥ supi≥n φi(t) and conversely, since the
functions φi are nonnegative, supi∈N φi(t) ≤ supi≤n φi(t) + supi≥n φi(t) for every
n ∈ N. Therefore for all n ∈ N we have limt→∞ Fn(t) ≤ limt→∞[supi∈N φi(t)] = η,
and on the other hand, limt→∞ Fn(t) ≥ limt→∞(supi∈N φi(t) − supi≤n φi(t)) =
η − 0 = η. Thus

∀n ∈ N : lim
t→∞

Fn(t) = η. (3.13)

Then, if we fix n = 1, we obtain from (3.13) that there exists (tq) ⊆ [0,∞)
a strictly increasing sequence such that limq→∞ tq = ∞ and

∀q ∈ N : F1(tq) ∈
(︄

η − 1
q

, η + 1
q

)︄
(3.14)

From the definition of the functions Fn it follows that for every fixed t ∈ [0,∞)
we have Fn(t) ≤ Fm(t) whenever n ≥ m. Then, for every q ∈ N, we obtain
from (3.13) and from (3.14)

η − 1
q

< η = lim
t→∞

Fq(t) = inf
t∈[0,∞)

Fq(t) ≤

≤ Fq(tq) = sup
i≥q

φi(tq) = sup
i≥q

∫︂
{|fi|≥tq}

|fi| dµ =

= Fq(tq) ≤ F1(tq) < η + 1
q

.

(3.15)

In particular, from (3.15) it follows that

∀q ∈ N : η − 1
q

< sup
i≥q

∫︂
{|fi|≥tq}

|fi| dµ,

and thus for each q ∈ N there exists nq ≥ q such that

η − 1
q

<
∫︂
{|fnq |≥tq}

⃓⃓⃓
fnq

⃓⃓⃓
dµ. (3.16)

Without loss of generality we can assume that (fnq)q∈N is a subsequence of
(fn)n∈N, i.e. nq is strictly increasing (otherwise we find a strictly increasing sub-
sequence (nqs)s∈N, which is possible since nq ≥ q for each q ∈ N. Then the rest
of the proof will be the same, there will only be an extra subscript).

Now let (fnqs
)s∈N be an arbitrary subsequence of (fnq)q∈N. Then by Proposi-

tion 14 we have

η({fnqs
: s ∈ N}) = lim

t→∞

[︄
sup
s∈N

∫︂
{|fnqs |≥t}

⃓⃓⃓
fnqs

⃓⃓⃓
dµ

]︄
≤

≤ lim
t→∞

[︄
sup
n∈N

∫︂
{|fn|≥t}

|fn| dµ

]︄
= η({fn : n ∈ N}).

On the other hand, from Proposition 14 and from (3.16) we have

η = lim
s→∞

(η − 1
qs

) ≤ lim
s→∞

∫︂
{|fnqs |≥tqs}

⃓⃓⃓
fnqs

⃓⃓⃓
dµ ≤

≤ lim
s→∞

sup
r∈N

∫︂
{|fnqr |≥tqs}

⃓⃓⃓
fnqr

⃓⃓⃓
dµ ≤

≤ lim
t→∞

sup
r∈N

∫︂
{|fnqr |≥t}

⃓⃓⃓
fnqr

⃓⃓⃓
dµ = η({fnqs

: s ∈ N}),
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hence η({fnqs
: s ∈ N}) = η.

Therefore it now suffices to find a w2-convergent subsequence of (fnq)q∈N (and
thus a w2-convergent subsequence of (fn)n∈N). That is because by Definition 12
such subsequence satisfies the desired conclusion of the lemma and by the above
it also satisfies the “besides” part.

Therefore, we are finding a w2-convergent subsequence of (fnq)q∈N. By (i) and
by (ii), (φnq)q∈N is a uniformly bounded sequence of nonincreasing functions, thus
by Theorem 17 there exists (φnqj

)j∈N a subsequence of (φnq)q∈N and a function
α : [0,∞) → R such that

∀l ∈ [0,∞) : α(l) = lim
j→∞

φnqj
(l). (3.17)

Since for every l ≥ 0 we have φnqj
(l) ≥ φnqj

(t) for each t ≥ l and for all j ∈ N,
the function α is nonincreasing. Hence we can set liml→∞ α(l) = L ∈ [0,∞).

Case 1. L = 0. We want to show that the set {fnqj
: j ∈ N} is sequentially

weakly relatively compact in L1(X, A, µ). Let ε > 0 be given. Since L = 0, we
can find l0 > 0 such that for every l ≥ l0 we have α(l) < ε. By (3.17) there
exists j0 such that for every j ≥ j0 it holds φnqj

(l0) < ε. Then we can find l1 > l0
such that φnqj

(l1) < ε for all j ≤ j0. Thus, by (ii), φnqj
(l1) < ε for all j ∈ N.

Thus for every l > l1 and for every j ∈ N we have

0 ≤
∫︂{︂⃓⃓⃓

fnqj

⃓⃓⃓
>l

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ ≤

∫︂{︂⃓⃓⃓
fnqj

⃓⃓⃓
>l1

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ = φnqj

(l1) < ε,

which implies
lim
l→∞

sup
j∈N

∫︂{︂⃓⃓⃓
fnqj

⃓⃓⃓
>l

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ = 0.

Thus the set {fnqj
: j ∈ N} is uniformly integrable. Then Theorem 12 yields

that the set {fnqj
: j ∈ N} is weakly relatively compact. From Theorem 13

we obtain that the set {fnqj
: j ∈ N} is sequentially weakly relatively compact

in L1(X, A, µ), which is what we wanted.
Therefore, by Definition 10 there exists a subsequence (fnqji

)i∈N of (fnqj
)j∈N

which converges weakly in L1(X, A, µ) to some f ∈ L1(X, A, µ), hence the con-
clusion of the lemma holds with all the sets Ek empty.

Case 2. L > 0.
Step 1. We claim that there exists a sequence (lj)j∈N ⊆ R such that

lim
j→∞

lj = ∞ and lim
j→∞

φnqj
(lj) = L.

To prove this, let us define lj = sup{l > 0 : φnqj
(l) ≥ L − 1/l}. Then lj ∈ R

for every j ∈ N, because for all j ∈ N, the set {l > 0 : φnqj
(l) ≥ L − 1/l} is

nonempty (because by (ii) and (iii), the functions φnqj
are all nonnegative whereas

liml→0+ L − 1/l = −∞) and bounded from above (by (iv) and because L > 0).
Moreover, the supremum is attained, because if not, we have φnqj

(lj) < L − 1/lj
and by (iii) and by Definition 13 there exists δ > 0 such that φnqj

(l) < L − 1/lj
for all l ∈ (lj − δ,lj + δ), which contradicts the definition of lj. Notice that (lj)j∈N
cannot contain a bounded subsequence (ljγ )γ∈N, because if (ljγ )γ∈N is a bounded
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subsequence of (lj)j∈N, then any l′ > supγ∈N ljγ satisfies φnqjγ
(l′) < L − 1/l′ for

every γ ∈ N. Then

α(l′) = lim
j→∞

φnqj
(l′) = lim

γ→∞
φnqjγ

(l′) ≤ L − 1/l′,

which is not possible since the function α is nonincreasing and L is its limit
as l → ∞. Hence limj→∞ lj = ∞. Therefore, given any m ≥ 0, we can find
j0 ∈ N such that for every j ≥ j0 it holds lj ≥ m. Then for every j ≥ j0 we
have L − 1/lj ≤ φnqj

(lj) ≤ φnqj
(m), where the first inequality follows from the

fact that the supremum lj is attained and the second inequality follows from (ii).
Hence

L = lim inf
j→∞

(L − 1/lj) ≤ lim inf
j→∞

φnqj
(lj) ≤

≤ lim sup
j→∞

φnqj
(lj) ≤ lim sup

j→∞
φnqj

(m) = α(m),

therefore by letting m → ∞ we get limj→∞ φnqj
(lj) = L, which proves our claim.

Step 2. We claim that

lim
m→∞

sup
j∈N

∫︂{︂
m≤
⃓⃓⃓
fnqj

⃓⃓⃓
<lj

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ = 0.

To prove this, let us define

S(m) = sup
j∈N

∫︂{︂
m≤
⃓⃓⃓
fnqj

⃓⃓⃓
<lj

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ.

Notice that S is nonicreasing and also, by definition of φnqj
, we have that

S(m) = sup
j∈N, lj>m

(︂
φnqj

(m) − φnqj
(lj)

)︂
.

Let ε > 0 be given. Then there exists m1 ∈ (0,∞) such that for every m ≥ m1
it holds α(m) ∈ (L − ε,L + ε). Then, by (3.17) and by Step 1, there exists j0
such that for every j ≥ j0 it holds both φnqj

(m1) ∈ (α(m1) − ε,α(m1) + ε) and
φnqj

(lj) ≥ L − ε. Therefore for every j ≥ j0 we have

φnqj
(m1) − φnqj

(lj) ≤ α(m1) + ε − L + ε ≤ 3ε.

Notice that for every m ≥ m1 and for every j ∈ N we have φnqj
(m) ≤ φnqj

(m1).
That is because the functions φnqj

are nonincreasing by (ii). Therefore, if we set
M = max{m1, l1, . . . , lj0}, then for any given m ≥ M and for any j ≥ j0 it holds

φnqj
(m) − φnqj

(lj) ≤ φnqj
(m1) − φnqj

(lj) ≤ 3ε. (3.18)

Let us notice that if m ≥ M and lj > m, then lj > m ≥ l1, l2, . . . , lj0 , thus j > j0.
Hence for every m ≥ M , inequality (3.18) yields

0 ≤ S(m) = sup
j∈N, lj>m

(φnqj
(m) − φnqj

(lj)) ≤ 3ε,

which proves the claim.
Step 3. Now we assert that for every k ∈ N there exist sets Ek ∈ A and

Nk, Mk ⊆ N (for the rest of the proof we denote E0 = X and M0 = N0 = N)
satisfying
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(a) the sets Nk and Mk are infinite,

(b) Mk ⊇ Nk ⊇ Mk+1 ⊇ Nk+1 for every k ∈ N ∪ {0},

(c) min Nk < min Nk+1 for every k ∈ N ∪ {0},

(d) µ(Ek) < 1
k

for every k ∈ N,

(e) Ek = ⋃︁
j∈Mk

{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥ lj

}︂
for every k ∈ N and

(f) for every k ∈ N, there exists gk ∈ L1(X \ Ek, µ) such that the sequence
(fnqj

)j∈Nk
converges weakly to gk in L1(X \ Ek, µ).

The objects will be constructed inductively.
To start the induction, let us find an infinite set M1 ⊆ N satisfying min M1 > 1

and
(︂∑︁

j∈M1
1
lj

)︂
· C0 < 1 (that can be done since limj→∞ lj = ∞, hence it suffices

to choose M1 such that lj > 2j · C0 for all j ∈ M1). Let E1 = ⋃︁
j∈M1

{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥ lj

}︂
.

Then Chebyshev’s inequality implies

µ(E1) = µ

⎛⎝ ⋃︂
j∈M1

{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥ lj

}︂⎞⎠ ≤
∑︂

j∈M1

µ
(︂{︂⃓⃓⃓

fnqj

⃓⃓⃓
≥ lj

}︂)︂
≤

≤
∑︂

j∈M1

1
lj

∫︂{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥lj

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ ≤

∑︂
j∈M1

(︄
1
lj

· C0

)︄
< 1.

By Step 2 we also have

lim
m→∞

sup
j∈M1

∫︂{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥m

}︂
\E1

⃓⃓⃓
fnqj

⃓⃓⃓
dµ ≤ lim

m→∞
sup
j∈M1

∫︂{︂
m≤
⃓⃓⃓
fnqj

⃓⃓⃓
<lj

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ = 0.

Therefore by Definition 9 the set {fnqj
: j ∈ M1} is uniformly integrable, and thus

weakly relatively compact in L1(X \ E1, µ) by Theorem 12. Then Theorem 13
implies that the set {fnqj

: j ∈ M1} is sequentially weakly relatively compact,
hence there exists N1 ⊆ M1 infinite such that the sequence (fnqj

)j∈N1 converges
weakly to a function g1 ∈ L1(X\E1, µ) in L1(X\E1, µ). Then (a)-(f) are satisfied.

Now let us assume that k ≥ 2 and that we have the sets E1, . . . , Ek, N1, . . . , Nk

and M1, . . . , Mk satisfying (a)-(f). Let us find an infinite set Mk+1 ⊆ Nk satisfying
min Mk+1 > min Nk as well as

(︂∑︁
j∈Mk+1

1
lj

)︂
· C0 < 1

k+1 . Let us define Ek+1 =⋃︁
j∈Mk+1

{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥ lj

}︂
. Then Chebyshev’s inequality implies

µ(Ek+1) = µ

⎛⎝ ⋃︂
j∈Mk+1

{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥ lj

}︂⎞⎠ ≤
∑︂

j∈Mk+1

µ
(︂{︂⃓⃓⃓

fnqj

⃓⃓⃓
≥ lj

}︂)︂
≤

≤
∑︂

j∈Mk+1

1
lj

∫︂{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥lj

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ ≤

∑︂
j∈Mk+1

(︄
1
lj

· C0

)︄
<

1
k + 1 .

By Step 2 we also have

lim
m→∞

sup
j∈Mk+1

∫︂{︂⃓⃓⃓
fnqj

⃓⃓⃓
≥m

}︂
\Ek+1

⃓⃓⃓
fnqj

⃓⃓⃓
dµ ≤ lim

m→∞
sup

j∈Mk+1

∫︂{︂
m≤
⃓⃓⃓
fnqj

⃓⃓⃓
<lj

}︂ ⃓⃓⃓fnqj

⃓⃓⃓
dµ = 0.

33



Therefore by Definition 9 the set {fnqj
: j ∈ Mk+1} is uniformly integrable, and

thus weakly relatively compact in L1(X \ Ek+1, µ) by Theorem 12. Then Theo-
rem 13 implies that the set {fnqj

: j ∈ Mk+1} is sequentially weakly relatively com-
pact, hence there exists Nk+1 ⊆ Mk+1 infinite such that the sequence (fnqj

)j∈Nk+1

converges weakly to a function gk+1 ∈ L1(X \ Ek+1, µ) in L1(X \ Ek+1, µ). Then
(a)-(f) are satisfied and the inductive construction is complete.

Step 4. We want to show that everything works.
First of all, the sequence (Ek)k∈N ⊆ A is nonincreasing by (b) and (e) and

also limk→∞ µ(Ek) = 0 by (d).
For every k ∈ N, let us set

˜︁gk(x) =
⎧⎨⎩gk(x), x ∈ X \ Ek,

0, x ∈ Ek,

where the functions gk come from (f). Then the functions ˜︁gk are measurable,
because the sets Ek are measurable and gk ∈ L1(X \ Ek, µ) for every k ∈ N. Let
us set f(x) = limk→∞ ˜︁gk(x) for those x ∈ X for which the limit exists. Notice
that the limit exists for µ-almost every x ∈ X, because it holds

∀n ∈ N ∀k ∈ N, k ≥ n : ˜︁gk(x) = gn(x) for almost every x ∈ X \ En. (3.19)

That follows from (e), (f) and uniqueness of the weak limit. Therefore the limit
exists for µ-almost every x ∈ ⋃︁∞

n=1(X \ En) = X \ ⋂︁∞
n=1 En. Then from the

assumption that the measure µ is finite and from (d) we obtain that the limit
exists for µ-almost every x ∈ X. Therefore f is measurable as a pointwise (for
µ-almost every x ∈ X) limit of measurable functions.

Let us denote pi = min Ni. We want to show that

(fnqpi
) → f weakly in L1(X \ Ek, µ)

as i → ∞ for every fixed k ∈ N. However, this follows immediately from (b), (c),
(f) and (3.19).

Finally we need to show that f ∈ L1(X, A, µ). Let k ∈ N. Let us consider
a function h(x) = 2χ{f≥0}(x) − 1, x ∈ X \ Ek. Then h ∈ L∞(X \ Ek, µ), and
thus h represents a functional ϕ ∈ L∗

1(X \ Ek, µ). By definition of the weak
convergence, limi→∞ ϕ(fnqpi

) = ϕ(f). That implies

lim
i→∞

∫︂
X\Ek

(fnqpi
h) dµ = lim

i→∞
ϕ(fnqpi

) = ϕ(f) =
∫︂

X\Ek

(fh) dµ =
∫︂

X\Ek

|f | dµ.

Since h(X) ⊆ [−1,1], we obtain∫︂
X\Ek

⃓⃓⃓
fnqpi

⃓⃓⃓
dµ ≥

∫︂
X\Ek

(fnqpi
h) dµ

for every i ∈ N, which implies∫︂
X\Ek

|f | dµ ≤ lim inf
i→∞

∫︂
X\Ek

⃓⃓⃓
fnqpi

⃓⃓⃓
dµ ≤ C0.
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Then Levi’s theorem yields∫︂
X

|f | dµ =
∫︂

X
lim

k→∞
|f | χX\Ek

dµ = lim
k→∞

∫︂
X

|f | χX\Ek
dµ =

= lim
k→∞

∫︂
X\Ek

|f | dµ ≤ lim
k→∞

C0 = C0,

which means f ∈ L1(X, A, µ). This completes the proof.

As promised above, for any bounded sequence in L1 we would like to find
a subsequence, which we can split into a weakly convergent part and an “unpleas-
ant” part. Or, more precisely, if we use the modulus of uniform integrability, we
would like to find a subsequence, which we can split into 2 parts: one with the
modulus of uniform integrability equal to 0 and the other with the same modulus
of uniform integrability as the original sequence. However, that is a corollary
of Theorem 16 and Lemma 18. The proof of this corollary follows the one in
Florescu and Godet-Thobie [2012, Corollary 1.106].
Corollary 19 (Rosenthal’s subsequence splitting lemma). Let (X, A, λ) be a mea-
surable space with a finite positive measure λ. Let (fn)n∈N ⊆ L1(X, A, λ) be
a bounded sequence (in L1(X, A, λ)). Then there exist a subsequence (hn)n∈N of
(fn)n∈N and a sequence of pairwise disjoint sets (An)n∈N ⊆ A such that

(i) η({fn : n ∈ N}) = limn→∞
∫︁

An
|hn| dλ and

(ii) (χX\An · hn)n∈N is weakly convergent in L1(X, A, λ).

Proof. According to Theorem 18 there exists a w2-convergent subsequence
(gn)n∈N of (fn)n∈N such that for every subsequence (hn)n∈N of (gn)n∈N it holds
η({hn : n ∈ N}) = η({fn : n ∈ N}).

According to Theorem 16 there exists a subsequence (hn)n∈N of (gn)n∈N and
a sequence of pairwise disjoint sets (An)n∈N ⊆ A such that limn→∞

∫︁
An

|hn| dλ =
η({gn : n ∈ N}) = η({fn : n ∈ N}) and (χX\An · hn)n∈N is weakly convergent
in L1(X, A, λ).

Now we would like to finish what we have started in the introduction, where
we were trying to extract a convergent subsequence from a bounded sequence
of finite absolutely continuous measures. Let us consider a bounded sequence of
finite measures (µn)n∈N ⊆ ca(A) such that for each n ∈ N it holds µn ≪ λ for
a finite positive measure λ. By the Radon-Nikodym theorem, we can find for
every n ∈ N a function fn ∈ L1(X, A, λ) such that for all A ∈ A it holds µn(A) =∫︁

A fn dλ. Then, because the sequence (µn)n∈N is bounded in (ca(A), ∥ · ∥), we
get that the sequence (fn)n∈N is bounded in L1(X, A, λ). That is because the
subspace caλ(A) = {µ ∈ ca(A) : µ ≪ λ} of (ca(A), ∥ · ∥) is linearly isomet-
ric to L1(X, A, λ), where the linear isometry is µ ↦→ f , where f = dµ

dλ
is the

Radon-Nikodym derivative (the fact that it is a bijection follows from the Radon-
Nikodym theorem). To see that it is an isometry, let µ ∈ caλ(A) be given and let
f = dµ

dλ
. Then we have

∥ µ ∥ = |µ| (X) =
∫︂

X
|f | dλ = ∥ f ∥,
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which is what we wanted. We are thus in a situation when we have a bounded
sequence (fn)n∈N ⊆ L1(X, A, λ). Then if (fn)n∈N converges weakly to a function
f ∈ L1(X, A, λ), we can see that in particular

∀A ∈ A : lim
n→∞

µn(A) = lim
n→∞

∫︂
X

χA · fn dλ =
∫︂

X
χA · f dλ =

∫︂
A

f dλ.

Or in other words, the sequence (µn)n∈N converges setwise to an absolutely contin-
uous measure µ with respect to λ where µ(A) =

∫︁
A f dλ for all A ∈ A. Therefore,

finding a convergent subsequence of (µn)n∈N is easy, because we just take the
original sequence. Note that this satisfies the last assumption of Theorem 10
(Vitali-Hahn-Saks theorem), and thus the measures µn are automatically uni-
formly absolutely continuous with respect to λ.

For the sake of completeness, let us note that the converse is also true: i.e. if
the sequence (µn)n∈N converges to µ ∈ caλ(A) setwise, then if we denote f = dµ

dλ
,

we obtain that the functions fn converge to f weakly in L1(X, A, λ). That is
because

∀A ∈ A : lim
n→∞

∫︂
A

fn dλ = lim
n→∞

µn(A) = µ(A) =
∫︂

A
f dλ,

which is according to Florescu and Godet-Thobie [2012, Theorem 1.57] equivalent
to a statement that the sequence (fn)n∈N converges weakly to f in L1(X, A, λ).
Notice that this is very similar to what we have proved in Lemma 8, except there
we could improve it to a strong convergence by using Theorem 7.

Similarly, if the sequence (fn)n∈N admits a weakly convergent subsequence,
then the sequence (µn)n∈N admits a setwise convergent subsequence. And con-
versely, if the sequence (µn)n∈N admits a setwise convergent subsequence, then
the sequence (fn)n∈N admits a weakly convergent subsequence.

Now the more interesting situation is when the sequence (fn)n∈N does not
admit a weakly convergent subsequence in L1(X, A, λ), which is by Theorem 13,
Theorem 12 and by Remark 2 equivalent to η = η({fn : n ∈ N}) > 0. Since the
sequence (fn)n∈N is bounded and λ is a finite positive measure, we can apply the
Biting Lemma (Theorem 18) and extract a w2-convergent subsequence (fnj

)j∈N.
Or in other words, we can find a nonincreasing sequence (Ek)k∈N ⊆ A such that
limk→∞ λ(Ek) = 0, a subsequence (fnj

)j∈N and a function f ∈ L1(X, A, λ) such
that fnj

→ f weakly in L1(X \ Ek, A, λ) for every fixed k ∈ N. Therefore, for
every fixed k ∈ N, we obtain that

(i) by the above, the sequence (µnj
)j∈N converges setwise (to the measure µ

which has f as its Radon-Nikodym derivative) on X \ Ek and

(ii) η({fnj
· χX\Ek

}) = 0 by Theorem 12.

Now, from (ii) we obtain the following:
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η = η({fn : n ∈ N}) = lim
δ→0+

[︃
sup

{︃∫︂
A

⃓⃓⃓
fnj

⃓⃓⃓
dλ : A ∈ A, λ(A) < δ, j ∈ N

}︃]︃
=

= lim
δ→0+

[︄
sup

{︄∫︂
A∩Ek

⃓⃓⃓
fnj

⃓⃓⃓
dλ +

∫︂
A\Ek

⃓⃓⃓
fnj

⃓⃓⃓
dλ : A ∈ A, λ(A) < δ, j ∈ N

}︄]︄
≤

≤ lim
δ→0+

[︃
sup

{︃∫︂
A∩Ek

⃓⃓⃓
fnj

⃓⃓⃓
dλ : A ∈ A, λ(A) < δ, j ∈ N

}︃
+
]︃

[︄
+ sup

{︄∫︂
A\Ek

⃓⃓⃓
fnj

⃓⃓⃓
dλ : A ∈ A, λ(A) < δ, j ∈ N

}︄]︄
=

= lim
δ→0+

[︃
sup

{︃∫︂
A∩Ek

⃓⃓⃓
fnj

⃓⃓⃓
dλ : A ∈ A, λ(A) < δ, j ∈ N

}︃]︃
=

= η({fnj
· χEk

: n ∈ N}),
(3.20)

where the second equality follows from the “besides” part of the Biting Lemma
(Theorem 18). By Definition 11 we have η({fn : n ∈ N}) ≥ η({fnj

·χEk
: n ∈ N}),

and thus from (3.20) it follows

η = η({fnj
· χEk

: n ∈ N}). (3.21)

Now by Definition 11 and by the correspondence between the measures µnj
and

the functions fnj
, we can rewrite (3.21) as follows:

η = lim
δ→0+

[︂
sup

{︂⃓⃓⃓
µnj

⃓⃓⃓
(A) : A ∈ A, A ⊆ Ek, λ(A) < δ, j ∈ N

}︂]︂
.

Now we can see that in a sense, the measures µnj
concentrate their masses on the

sets Ek.
This gets very interesting if X in our setup is a compact Hausdorff topological

space. For instance, let us suppose that X = [0,1], A is the σ-algebra of Borel sets
(with respect to the standard Euclidean topology) and λ is the Lebesgue measure.
Then M(X), the space of all regular Borel measures on X, is linearly isometric
to the dual space of C(X) (the space of all continuous functions on X). Now let
us consider the sequence fn = nχ[0, 1

n
]. This is a bounded sequence in L1(X, A, λ);

for each n ∈ N we have ∥ fn ∥ = 1. Now, for all n ∈ N, let µn denote the measure
such that fn = dµn

dλ
. Then for every n ∈ N it holds µn ∈ M(X): obviously

the measures µn are all Borel and by Donald L. Cohn [2013, Proposition 7.2.3]
they are also regular. Moreover, it also holds µn ≪ λ for each n ∈ N. Now let
us observe that the sequence (fn)n∈N does not converge weakly in L1(X, A, λ).
Indeed, for each C ∈ R there exists nC ∈ N satisfying nC > C, and therefore

sup
n∈N

∫︂
{fn>C}

|fn| dλ ≥
∫︂

{fnC
>C}

|fnC
| dλ =

∫︂ 1

0
nCχ[0, 1

nC
] dλ = 1,

which implies limC→∞ supn∈N
∫︁

{fn>C} |fn| dλ ≥ 1. Furthermore, since for each
n ∈ N we have ∥ fn ∥ = 1, we have limC→∞ supn∈N

∫︁
{fn>C} |fn| dλ = 1. This by

Definition 9 means that the family {fn : n ∈ N} is not uniformly integrable. Thus
by Theorem 12 the sequence (fn)n∈N does not converge weakly in L1(X, A, µ).
However, it is easy to see that the sequence (fn)n∈N is w2-convergent to 0. Indeed,
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the sets Ek = [0, 1
k
] localize the concentration of mass of (fn). So again, we have

that for each k ∈ N the sequence (fn)n∈N converges weakly on X \ Ek, but this
time we can say something more about what happens on the whole set X.

We already know that the sequence (fn)n∈N does not converge weakly on the
whole X, and thus by the above, the sequence (µn)n∈N does not converge setwise
on X. However, since we already know that for each n ∈ N it holds µn ∈ M(X),
we could at least try for the weak* convergence. Let f ∈ C(X), then

lim
n→∞

∫︂ 1

0
f dµn = lim

n→∞

∫︂ 1

0
f · nχ[0, 1

n
] dλ =

= lim
n→∞

n ·
∫︂ 1

n

0
f dλ = f(0) =

∫︂ 1

0
fdδ0,

where δ0 denotes the Dirac measure at 0. Therefore the sequence (µn)n∈N con-
verges to δ0 weakly* in M(X) (note that δ0 ∈ M(X): obviously it is a Borel
measure, by definition it is outer regular and since {0} is a closed set, it is also
inner regular). So, each set Ek splits our sequence (fn) into two sequences. One
of them is (fn · χX\Ek

)n∈N, which converges weakly in L1(X, A, λ) and the cor-
responding sequence of measures (on X \ Ek) converges setwise to an absolutely
continuous measure with respect to λ. The other sequence is (fn · χEk

)n∈N, which
does not converge weakly and the corresponding sequence of measures (on Ek)
does not converge setwise (the example of this is the set {0}). However, we have
at least the weak* convergence of the corresponding measures to δ0, which is not
absolutely continuous with respect to λ.

Therefore, to summarize, we can see that the two parts of this thesis – one
about measures, the other about functions – are indeed deeply connected by the
Radon-Nikodym theorem.
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Conclusion
In Chapter 2, we have proved two theorems concerning sequences of bounded
measures and their limits. We have used a stronger version of Schur’s theorem to
prove that the setwise limit of a sequence of bounded measure is a measure and
moreover, such a sequence is uniformly σ-additive (Nikodym theorem). Then we
have shown that the setwise limit of a sequence of bounded measures that are
absolutely continuous with respect to one universal measure λ is an absolutely
continuous measure with respect to λ (Vitali-Hahn-Saks theorem).

In Chapter 3, we have shown that even in L1, a non-reflexive space, it is
possible to extract a (w2-)convergent subsequence from any bounded sequence
(Biting Lemma). Then we used this fact to prove that every bounded sequence
in L1 contains a subsequence, which we can split into two parts in such a way that
the modulus of uniform integrability of one part is equal to 0 and the modulus
of uniform integrability of the other part is the same as the modulus of uniform
integrability of the original sequence (Rosenthal’s subsequence splitting lemma).

Finally, at the end of the third chapter, we have discussed how the Radon-
Nikodym theorem connects these two parts of the thesis together.
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