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Introduction
Since Bekenstein’s landmark paper [1] offering a reconciliation of the second

law or thermodynamics and the existence of black holes, there have been many
efforts to apply the general study of systems embodied in thermodynamics to
black holes. First seen only as a mathematical analogy [2], Hawkings’s discovery
of black hole radiation [3] convinced many that the laws governing black hole
behavior, analogous to the laws of thermodynamics, are in fact the manifestation
of the laws themselves. Apart from their beauty, they also hint at a connection
between general relativity and quantum theory: being both intrinsically relativis-
tic, as pertaining to black holes, and genuinely quantum, as fluctuating fields in
the black hole background.

In this work we construct the equations known as the laws of black hole
thermodynamics, describing their connection to the conventional laws of ther-
modynamics. Specifically, our aim is to describe the relationship for a reader
familiar with general relativity equivalent to the customary “first course of gen-
eral relativity”, thus in some places we derive well-known results. The other aim
is to provide a reference work for the important, but often scattered, results,
thus we explicitly present detailed calculations wherever possible and refer to the
literature for more tedious derivations.

In particular, the derivation of the laws themselves is often a fairly technical
computation; thus in the main text they are only motivated, and the mathematics
with all the necessary tools are gathered in the appendix. Due to the level
intended for this work, we also only motivate the result for the temperature felt
by an accelerated observer and, therefore, also a temperature of thermal radiation
emitted by a black hole. To derive these results in a rigorous way, quantum field
theory on curved spacetime is needed, which we do not presume the reader to be
familiar with.

In the first part, we concern ourselves with the temperature of the black hole
and its corresponding classical quantity – the surface gravity. We motivate their
proportionality by means of a Rindler observer and purely thermodynamic con-
siderations, also giving a classical resolution to the paradox of Geroch’s engine
in the process. Thus we land on the zeroth and third laws of black hole ther-
modynamics. The zeroth law is derived in part in the main text, and then more
rigorously, employing the properties of geodesic congruences, in the appendix.
By considering a stronger statement of the Raychaudhuri equation, we shorten
the classical proof of Wald [4]. A rigorous derivation of the third law requires
more than we presume of the reader, so instead we give a reference and a review
of the discussion of its validity.

In the second part, we discuss the black hole entropy, proportional to the black
hole horizon area, as first introduced by Bekenstein, and fix the proportionality
constant, first derived by Hawking. We arrive at this constant of proportionality
from multiple standpoints; for example, we employ the Euclidean path integral
approach to thermodynamics to calculate the entropy for multiple spacetimes.
Here we also discuss the first and second law.

In the last part we look at relatively recent developments regarding phase
transitions of black hole spacetimes in anti-de Sitter (AdS) space, giving novel
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results for black holes described by the abridged virial expansion equation of
state in the extended phase space. In particular, we give general procedure for
finding the corresponding static metric and show that under a few simplifying
assumptions only Schwarzschild-AdS (S-AdS) black hole spacetime is permitted
by the imposed constraints.

Unless otherwise noted, we work in the geometrical units c = ℏ = kB = G = 1
and signature (−,+,+,+).
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1 Premilinaries
1.1 The Rindler coordinates

In the article introducing the equivalence and general covariance principle
Einstein wrote [5]:

“In the discussion that follows, we shall therefore assume the complete
physical equivalence of a gravitational field and a corresponding accel-
eration of the reference system. This assumption extends the principle
of relativity to the uniformly accelerated translational motion of the
reference system. The heuristic value of this assumption rests on the
fact that it permits the replacement of a homogeneous gravitational
field by a uniformly accelerated reference system, the latter case being
to some extent accessible to theoretical treatment.”

We shall then also start by discussing the uniformly accelerated (Rindler)
observer. We are going to show that such an observer perceives the Mikowski
vacuum as a thermal state of temperature proportional to the acceleration. Then
any static observer near a black hole should be exactly the same as an accelerated
observer and therefore see thermal radiation.

1.1.1 Linearly accelerated observer
Consider a Minkowski spacetime with inertial coordinates xµ = (t, x), sup-

pressing the remaining coordinates for brevity. Then, let a particle of rest mass
m0 be acted upon by a constant 3-force w.r.t. the above coordinates, such that
it is in the direction of x and its magnitude is f , that is

dp
dt = f = const . (1.1)

It then follows that (using the relativistic formula for the momentum)

p = ft = m0v√
1 − v2

⇒ v =
ft
m0√︃

1 + f2t2

m2
0

, (1.2)

or, by integration:

x =
∫︂ t

0

ft
m0√︃

1 + f2t2

m2
0

dt = m0

f

√︄
1 + f 2t2

m2
0
, (1.3)

where we have set integration constants to zero to describe acceleration from rest
from the point x(t = 0) = m0

f
.

Calculating the proper time τ of the observer by integrating

dτ
dt =

√
1 − v2 = 1√︃

1 + f2t2

m2
0

⇒ ft

m0
= sinh

(︄
fτ

m0

)︄
, (1.4)
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Figure 1.1: The Rindler coordinates with a few plotted lines of X = const

and substituting into the above relation (1.3) we obtain a trajectory of a uniformly
accelerated observer:

t = 1
a

sinh aτ , (1.5)

x = 1
a

cosh aτ , (1.6)

where we have set a ≡ f/m0.
We thus define the Rindler coordinates Xµ = (τ,X), τ ∈ R, X ∈ (0,∞),

using the relations

t = X sinh aτ ,
x = X cosh aτ . (1.7)

Using the metric transformation rule, gµν = ηαβ
∂xα

∂Xµ
∂xβ

∂Xν , the Minkowski metric
now reads

ds2 = −X2a2dτ 2 + dX2 . (1.8)

These coordinates cover only a region of spacetime called the (right) Rindler
wedge, in Figure 1.1 denoted by I. Its boundary is the lightcone highlighted in
the figure. Since light cones are invariant, no signals from region III can reach an
accelerated observer, and any signal sent by her to region III cannot be returned.
Thus, the light cone serves as a causal boundary – a Rindler horizon, formally
described as X = 0.

Now we wish to make the the following identification:

iτ = ϕ . (1.9)

Our motivation is threefold: for one it is fairly standard trick in special relativity
in its early days, secondly the metric becomes a familiar one – in form identical to
the Euclidean metric written in polar coordinates, and lastly it is Wick rotation,
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which will prove instrumental in our discussion of black hole temperature. With
renaming ρ ≡ X we get

ds2 = ρ2 d(aϕ)2 + dρ2 . (1.10)

To ensure regularity at the origin, we must take ϕ to be (β = 2π/a)-periodic.1
This observation will turn out to be important in Section 2.2.2, where we shall
argue that the periodicity of the Wick-rotated time ϕ is related to the temperature
as

T = 1
β

= a

2π . (1.11)

It can be shown that this is precisely the temperature of thermal bath observed
by an accelerated observer.

1.2 Black holes
Black holes are interesting objects in general relativity for a multitude of

reasons. For one, they are simple macroscopic objects exactly described by general
relativity, but they also show the relativistic features of spacetime to a measurable
degree. First believed to be a purely mathematical construct, black holes have
since been observed in multiple ways – for example, by direct interferometry
producing the famous black hole image [7] or by observing the gravitational waves
emitted by the merger of two black holes [8].

In general, a black hole (interior) is a region of spacetime causally disconnected
from the rest, i.e., a signal cannot be sent from within a black hole to any outside
observer. The boundary of a black hole is called the event horizon.

In this work, we shall focus on theoretical aspects of black holes, namely
their thermodynamics. In this task, we shall restrict to stationary, eternal black
holes. Stationarity is a feature of the whole spacetime and means the existence
of a Killing vector timelike at infinity. A special case is a static spacetime that
is invariant under “time” inversion, w.r.t. this Killing vector. By eternal we
mean a black hole as a solution to the vacuum Einstein equations, not a feature
of spacetime dynamically formed during its evolution. We shall also ignore the
backreaction of various processes that occur in the black hole vicinity on the black
hole geometry, unless explicitly stated.

Hawking showed [9] that any stationary black hole spacetime must be either
static or axisymmetric. Thus, for a stationary rotating black hole, which is neces-
sarily axisymmetric, there are two Killing vector fields tµ, φµ, for which Hawking
derived

kµ = tµ + ΩHφ
µ , (1.12)

where ΩH is the black hole’s angular frequency and kµ is null at the horizon. In
particular, for the static case ΩH = 0, so kµ = tµ. Therefore, any event horizon is
a Killing horizon, i.e. a null hypersurface on which the norm of a Killing vector

1Why the regularity of the manifold should be preserved by taking a complex time is not
obvious, more so when physical consequences are derived from it.

Physically, a different period would correspond to matter in the origin of the coordinates,
but that is not the case by assumption. A mathematical argument can be made using theory
beyond the scope of this work. For a formal treatment, see, e.g., [6].
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is zero. Penrose [10] also showed that any event horizon is generated by null
geodesics, that have no future end points.

Note that all future history of a spacetime must be known to determine the
position of an event horizon. This “teleological” property makes it awkward to
use, for example, in numerical general relativity. For this reason, terms such
as apparent horizon or trapped surface (important especially in the dynamical
settings) were devised in literature, but these notions go beyond the scope of this
work.
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2 Laws of black hole
thermodynamics
2.1 Surface gravity

2.1.1 Definition of surface gravity and physical interpre-
tation

For any stationary black hole, its horizon is generated by a Killing field kµ.
Since the horizon is a null surface and kµ is normal to it kµkµ = 0 = const, and
therefore (kµkµ);ν is also normal to the horizon. For some function κ it must be
the case that

(kµkµ);ν = −2κkν . (2.1)

Writing out the covariant derivative using the Leibniz rule and the fact that kµ

is a Killing vector
kµ;νk

µ = −kν;µk
µ = −κkν , (2.2)

from which we get a more conventional defining relationship for κ

kµ
;νk

ν = κkµ . (2.3)

As is clear from the derivation, the quantities are defined only on the horizon. It
turns out that κ has a physical interpretation, it is called the surface gravity. To
see this, we first turn to some mathematical preliminaries [11].

Consider a family of surfaces Φ = const for a scalar function Φ, and a vector
field orthogonal to it, which can therefore be written as

nµ = −λΦ,µ (2.4)

differentiating this relationship gives

nµ;ν = −λΦ;µν − λ;νΦ;µ (2.5)

Using these two results yields

n[ηnµ;ν] = 0 , (2.6)

which can be seen be writing out all the terms and using the fact that Φ;µν = Φ;νµ.
The result (2.6) and its converse are called the Frobenius theorem.

Since the horizon is a null hypersurface we get

k[ηkµ;ν] = 0 . (2.7)

Thanks to the Killing equation the expression simplifies to

kηkµ;ν + kνkη;µ + kµkν;η = 0 , (2.8)
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contracting (2.8) by kµ;ν leads to

kηk
µ;νkµ;ν = −kνkη;µk

µ;ν − kµkν;ηk
µ;ν

= −kνkµ;ηk
ν;µ − kµkν;ηk

µ;ν

= κkµkµ;η + κkνkν;η

= −2κ2kη , (2.9)

which gives another useful expression for κ

κ2 = −1
2k

µ;νkµ;ν . (2.10)

For every Killing vector it holds that

3k[ηkµ;ν]k[ηkµ;ν] = 1
3 [(kηkµ;ν + kνkη;µ + kµkν;η) (kηkµ;ν + kνkη;µ + kµkν;η)]

= kηkηk
µ;νkµ;ν + kηkµ;νkνkη;µ + kηkµ;νkµkν;η

= kηkηk
µ;νkµ;ν − 2kηkµ;νkνkµ;η . (2.11)

On the horizon gradient of the original expression must vanish due to the Frobe-
nius theorem, while the gradient of kηkη does not (it is proportional to κ which we
consider to be nonzero). Then by dividing the whole expression by kηkη, taking
a limit to the horizon and applying the l’Hospital’s rule, the LHS is zero. This
yields

κ2 = lim
−kµ

;νk
νkµ;ηk

η

kηkη

. (2.12)

Let us denote aµ ≡ kµ
;νk

ν/(−kηkη), a ≡ √−aµaµ, and V ≡
√︂

−kηkη so we
finally obtain

κ = lim V a . (2.13)
This formula precisely gives direct physical interpretation of κ. To see this

consider one observer staying in place near a black hole and another one at infinity.
If one wishes to define “staying in place” in a curved space time, sensible

definition is that with local motion the local metric does not change. Then the
4-velocity is a (normalised) Killing vector, in our case uµ = kµ/V . Using the
“comma-to-semicolon rule” we might define 4-acceleration as aµ = uµ

;νu
ν . So

aµ =
kµ

;νk
νV − 1

V 2k
µkηkν;ηk

ν

V 2 = 1
V
V ;µ , (2.14)

where we used the Killing equation. We also see that our two definitions of aµ

match.
Consider now a static spacetime, i.e., “kµ → ∂t”, then we define energy at

infinity of a particle as E = −mkµuµ, m the mass as measured at infinity, in our
case then E = mV . Let an observer at infinity “drop a string” to an observer
near a black hole to produce the 4-acceleration. Force at infinity is simply

F∞ = [(−E;µ)(−E;µ)]
1
2 = m [V ;µV;µ]

1
2 . (2.15)

For an observer/particle near the horizon it must be the case that F µ = maµ,
using (2.14)

F = m

V
[V ;µV;µ]

1
2 , (2.16)
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therefore F∞/m = V F/m = V a which is near the horizon the same as expression
(2.13)! We see that κ is the acceleration of a particle near a horizon as viewed
by an observer in infinity, which is a good definition of surface gravity.1

2.1.2 Surface gravity as acceleration in the Rindler frame
Having identified surface gravity with a local acceleration viewed at infinity

we can use locally Rindler frames near the horizon to describe the gravitational
field as it is locally indistinguishable from an accelerated frame.

Concretely, consider a metric of the form

ds2 = −f(r) dt2 + 1
f(r) dr2 + r2 dΩ2 , (2.17)

where dΩ2 is the line element on S2. Clearly ∂t is a Killing vector with norm
f(r)1/2. Therefore, its norm vanishes at some rh such that f(rh) = 0.

Using a Taylor expansion of f(r) at rh

f(r) = 0 + f ′(r)(r − rh) + O
(︂
(r − rh)2

)︂
. (2.18)

Near the horizon, we can limit ourselves to the first order, finding the metric (2.17)
takes the form

ds2 = −f ′(rh)(r − rh) dt2 + 1
f ′(rh)(r − rh) dr2 + r2

h dΩ2 (2.19)

Using a substitution ρ = 2
√︂

r−rh

f ′(rh) and denoting κ = f ′(rh)/2 we get

ds2 = −ρ2κ2 dt2 + dρ2 + r2
h dΩ2 , (2.20)

which is exactly the metric (1.8) where κ plays the role of the acceleration as
expected.

2.1.3 Calculating the surface gravity from definition
To dispel any doubts about the identification of κ in (2.20) as a surface gravity,

we shall calculate it for the metric of the form (2.17) from definitions (2.3) and
(2.10).

In the case of metric (2.17) the vector kµ takes the form ∂t or in coordinate
expression kµ = δµ

t , so we get equation (2.3) as

kµ
;νk

ν =
(︄
∂δµ

t

∂xν
+ Γµ

νσδ
σ
t

)︄
δν

t = Γµ
tt = 1

2g
µν (gνt,t + gtν,t − gtt,ν)

= −1
2g

rrgtt,rδ
µ
r = f ′(r)

2 (f∂r) . (2.21)

One would expect the RHS of (2.21) to be proportional to ∂t. It in fact is,
although obscured by the degeneracy of the coordinates at the horizon – but then
we claimed the validity of (2.3) only at the horizon.

1Locally the force is of course infinite. One might also wonder what to do if the space is not
asymptotically flat or being at rest in infinity is not possible - we use the term surface gravity
regardless to refer to κ defined more generally by (2.3).
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To show this degeracy, we will follow the discussion of [11] and show that
at the horizon f∂r = ∂t.

For this we are going to use the Kruscal–Szekeres coordinates Xµ, which are
non-singular at the horizon, defined as

U = −1
κ

e−κu , V = 1
κ

eκv , (2.22)

where

u = t− r⋆ , v = t+ r⋆ ; r⋆ ≡
∫︂ dr′

f(r′) , κ = f ′(rh)/2 . (2.23)

The r⋆ is called “the tortoise coordinate” as it grows logarithmically. Then

∂t ≡ ∂

∂t
= ∂Xµ

∂t

∂

∂Xµ
= κ

(︄
−U ∂

∂U
+ V

∂

∂V

)︄
, (2.24)

∂r ≡ ∂

∂r
= ∂Xµ

∂r

∂

∂Xµ
= 1
f

∂Xµ

∂r⋆

∂

∂Xµ
= κ

f

(︄
U
∂

∂U
+ V

∂

∂V

)︄
. (2.25)

Noting that at the horizon U = 0, we get exactly

∂t|horizon = κ

(︄
−U ∂

∂U
+ V

∂

∂V

)︄⃓⃓⃓⃓
⃓
horizon

= f
κ

f

(︄
U
∂

∂U
+ V

∂

∂V

)︄⃓⃓⃓⃓
⃓
horizon

=

= f∂r|horizon . (2.26)

Now equipped with using the equality (2.26), we can continue the equality (2.21)

kµ;ν kν |horizon = f ′(r)
2 (f∂r)

⃓⃓⃓⃓
⃓
horizon

= f ′(rh)
2 (∂t)

⃓⃓⃓⃓
⃓
horizon

= κkµ |horizon , (2.27)

where we used the definition (2.3), from which we immediately get

κ = f ′(rh)
2 . (2.28)

The alternative definition (2.10) allows us to compute κ directly from the
form (2.17). Again kµ = δµ

t , kµ = −fδt
µ, so

kµ;ν = ∂kµ

∂xν
− Γσ

νµkσ = −f,νδ
t
µ − Γtνµ (2.29)

kµ;ν = gνσkµ
;σ = gνσ

(︄
∂kµ

∂xσ
+ Γµ

σρk
ρ

)︄
= gνσΓµ

σt (2.30)

kµ;νkµ;ν = gνσΓµ
σt

(︂
−f,νδ

t
µ

)︂
− gνσΓµ

σtΓtνµ

= −1
2g

rrgttgtt,rf,r − 0

= −1
2 (f ′)2 (2.31)

Using the formula (2.10) one exactly re-creates κ = ±f ′(r)/2 2.
2Here we take the plus sign, but it is in fact WLOG. To see this, one can look at (2.3) and

note that any scalar multiple of k fits the definition. In asymptotically flat spacetimes this issue
is readily resolved by demanding (kµ)2 = −1 at infinity.
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2.1.4 Calculation in Eddington–Finkelstein coordinates
In the Schwarzschild-like coordinates (2.17), the horizon, located at r = rh is

only covered as t → ∞. Thus, one might have doubts about the above results. Let
us then consider the Eddington-Finkelstein coordinates (v,r) where v is defined
by (2.23). Since in terms of the Schwarzschild-like coordinates dv = dt+ f−1 dr

ds2 = −f(r) dv2 + 2 dv dr + r2 dΩ2 . (2.32)

The inverse metric thus reads

∂s2 = 2∂v∂r + f(r)∂r2 + r−2∂Ω2 . (2.33)

To get the Eddington-coordinates expression of ∂t consider
∂

∂t
= ∂Xµ

∂t

∂

∂Xµ
= ∂v

∂t

∂

∂v
= ∂

∂v
, (2.34)

where Xµ denotes the new coordinates.
Finally using the definition (2.3), we have

kµ
;νk

ν = κkµ , δµ
t;νk

ν = κδµ
t , Γµ

νσδ
ν
vδ

σ
v = κδµ

v , Γv
vv = κ . (2.35)

But then

Γv
vv = 1

2g
vσ (2gvσ,v − gvv,σ) = −1

2g
vrgvv,r − 1

2g
vvgvv,v = −1

2g
vr (−f ′) = f ′

2
κ = f ′

2 , (2.36)

exactly as expected.

2.1.5 0th law of black hole thermodynamics
There is a remarkable result: κ is constant on the event horizon of a stationary

black hole. This fact, called the 0th law of black hole thermodynamics, should
seem reasonable - it is exactly what we got in many ways for the metric (2.17).

To prove 0th law, people typically consider two possible sets of conditions
[12]: i) Assuming that the horizon is a Killing horizon and the black hole is
either static or axisymmetric and “t − φ” reflection symmetric, in which case
no field equations (or energy conditions) have to be imposed and ii) assuming
only stationarity together with Einstein field equations and the dominant energy
condition.

Here we shall show that κ is constant along orbits of kµ [11], second part of
the proof with the second set of assumptions can be found in the appendix.

Let us first derive a mathematical preliminary valid for all Killing vectors.
Let kµ to be a Killing vector. The Ricci identity reads

kµ;νη − kµ;ην = R ρ
ηνµ kρ , (2.37)

then, using the Killing equation and permutation, we see that

kµ;νη + kη;µν = R ρ
ηνµ kρ ,

−kη;µν − kν;ηµ = −R ρ
νµη kρ ,

kν;ηµ + kµ;νη = R ρ
µην kρ . (2.38)
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Summing the equations (and “adding a zero” at the end) leads to

2kµ;νη = (R ρ
ηνµ +R ρ

νµη +R ρ
µην − 2R ρ

νµη )kρ . (2.39)

The sum of the first three terms on the RHS is zero due to the second Ricci
identity, which finally yields

kµ;νη = −R ρ
νµη kρ . (2.40)

Consider now the change of κ2 along kµ given as a Killing generator of the
horizon, calculated on the horizon. Using equations (2.10) and (2.40)

(κ2);ρk
ρ = −1

2(kµ;νkµ;ν);ρk
ρ = −kµ;νkµ;νρk

ρ = kµ;νRνµρσk
ρkσ = 0 , (2.41)

where we used the (anti)symmetry of the Riemann tensor in the last two indices.
Therefore κ is constant along the orbits of kµ.3 That the only change is along kµ

is proven in the appendix in section A.1.

3A skillful geometer can see this immediately by taking the Lie derivative of equation (2.1)
and getting £kκ = 0.
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2.2 Temperature
In this section we show that the temperature of a black hole can be identified

as T = κ/2π. That the temperature of a black hole is proportional to its surface
gravity can surprisingly be gleaned from purely classical treatment, but the full
explanation requires QFT. There are three main ways to define temperature in
thermodynamics that we know of:

1. an attribute of a system, that characterises thermal equilibrium, this way
one gets empirical temperature,

2. a parameter of thermal baths between which a reversible engine operates,
one gets thermodynamic temperature,

3. and an inverse of a derivative of the fundamental entropy equation w.r.t.
internal energy.

We shall therefore be careful in what sense we talk about the temperature.

2.2.1 Geroch’s engine
Consider now a particular example of a spherical metric (2.17), the familiar

Schwarzschild metric, known to describe a vacuum spherically symmetric black
hole [13]:

ds2 = −
(︃

1 − 2M
r

)︃
dt2 +

(︃
1 − 2M

r

)︃−1
dr2 + r2 dΩ2 . (2.42)

This metric is asymptotically flat with a timelike Killing vector ∂t so energy
is well defined – it is the projection of the 4-momentum onto ∂t.

Geroch proposed [14] a thought experiment, which shows that the thermody-
namic temperature of such black holes should be zero: Consider an observer at
infinity slowly lowering an isolated body of rest mass m and nonzero temperature
towards the black hole via a string, see Figure 2.1. When it is near the horizon,
its energy as measured at infinity E = m(1 − 2M/r)1/2 goes to zero (because of
the redshift), thus the body has done work m.

Let the isolation then be undone and the body radiates energy ∆m, then it
is carried back to infinity by expending energy m− ∆m.

In this procedure, the quantity of heat ∆m has been completely converted to
work, thus violating the second law of thermodynamics in Planck’s formulation:
“It is impossible to construct an engine which will work in a complete cycle, and
produce no effect except the production of work and cooling of a heat reservoir”.

This device is called the Geroch engine and has produced much discussion
[15]. It seems to show that black hole must necessarily have zero temperature.4,
which turns out not to be the case, as we shall show.

4Efficiency of any engine working between two (thermodynamic) temperatures Th, Tc,
Tc < Th has efficiency η ≤ 1 − Tc/Th. Geroch’s engine has η = 1 (all heat is transformed
into work), which implies Tc = 0.

18



Figure 2.1: Artistic representa-
tion of the Geroch’s engine [16]

Roughly, we shall show that black holes be-
have as a canonical ensemble, which describes
a system in equilibrium with a reservoir of con-
stant temperature, which describes the empir-
ical temperature. The connection of empirical
and thermodynamic temperature rests on the
possibility of connecting two such objects via
a Carnot engine, which could very well mean
that these two temperatures for black holes dif-
fer, since it is not obvious that such a connec-
tion is possible.5

There is a consensus that Geroch’s result
stems from an unphysical limit of lowering the
mass to the horizon with various authors giving
different solutions, e.g., [1][15]. At the classical
level there is a resolution that points to the
connection of κ with temperature that we shall
describe here [12].

Consider two static black holes sufficiently
far apart; in particular, let them be described
at least in their neighborhood by a metric of
the form (2.17), we denote their surface gravi-
ties κ1, κ2.

Let a massless box capture heat of rest mass
m in a small distance d above the first black
hole. By physical interpretation of κ, we know
that the Killing energy must be E1 ≈ mκ1d.
Then the box is slowly lifted and lowered to distance d above the second black
hole, its energy E2 ≈ mκ2d. The useful work extracted is E1 −E2 with an input
of E1 near the first black hole, therefore the efficiency is η = 1 − E2/E1. Then,
exactly as with the Carnot engine, we define T2/T1 ≡ E2/E1. Therefore, near the
horizon E2/E1 ≈ κ2/κ1, in limit d → 0,6

T2

T1
= κ2

κ1
=⇒ T ∝ κ . (2.43)

2.2.2 Thermal states
For a more direct, but quantum, approach, we first show, that a thermal state

in QFT corresponds to periodicity in complex time [4].
Consider a thermal density matrix for inverse temperature β

ρ̂ = exp
(︂
−βĤ

)︂
/Z , (2.44)

5Strictly speaking, empirical temperature has the same value for object in thermal equilib-
rium but otherwise arbitrary. Here we naturally define that a body has a higher temperature
if heat flows spontaneously from it to another - then above discussion holds.

6The unphysical nature of the limit in most discussion stems from quantum effects on the
horizon, see sources above. On the classical level, we note that any physical rope snaps before
reaching the horizon[17].

19



where Ĥ is the time-independent Hamiltonian7, where Z = Tr
(︂
−βĤ

)︂
, then ex-

pected value of an observable A is⟨︂
Â
⟩︂

ρ̂
= Tr

(︂
ρ ̂Â
)︂
, (2.45)

and its time evolution is described (in Heisenberg picture) as

Â(t+ t0) = eiĤtÂ(t0)e−iĤt . (2.46)

One notices the similarity between the evolution operator and the equation (2.44)
given by β = it, which we will exploit. We define the thermal Feynman propagator
at the inverse temperature β as

iGF (x1, x2) = Tr[ρ̂Tφ(x1)φ(x2)] = 1
Z

Tr
[︂
exp

(︂
−βĤ

)︂
Tφ(x1)φ(x2)

]︂
, (2.47)

where φ(x1) is the field observable operator, i.e., giving the value of the field, and
T is the time ordered product. It can be shown that GF is essential to the notion
of particles in curved spacetime and therefore to thermal equilibrium [4].

If it is possible to analytically continue t, let t = −iτ , such that equations
(2.46) and (2.47) continue to hold. Let then x′

1 be the point x1 translated in imagi-
nary time by β and for imaginary times of x1, x2 denoted τ1, τ2, let τ2 > τ1 > τ2−β
Then

iGF (x′
1, x2) = 1

Z
Tr
[︂
e−βĤ Tφ(x′

1)φ(x2)
]︂

= 1
Z

Tr
[︂
e−βĤφ(x′

1)φ(x2)
]︂

= 1
Z

Tr
[︂
e−βĤ eβĤφ(x1)e−βĤφ(x2)

]︂
= 1
Z

Tr
[︂
φ(x1)e−βĤφ(x2)

]︂
= 1
Z

Tr
[︂
e−βĤφ(x2)φ(x1)

]︂
= 1
Z

Tr
[︂
exp

(︂
−βĤ

)︂
Tφ(x1)φ(x2)

]︂
= iGF (x1, x2) ,

from which it is obvious that if |τ1 − τ2| < β then GF (x1, x2) is β-periodic in
complex time for both arguments - therefore this periodicity is characteristic for
thermal states.8

Let us consider the formula (1.10). We precisely got 2π/a-periodicity of the
metric in the complex time which necessitates that every continuous function has
this periodicity, in particular GF which is analytic. Symbolically

T = β−1 = a/2π , (2.48)

But then we identified in equation (2.20) a with κ so

T = κ

2π . (2.49)

7As noted in [4], in QFT Hamiltonian cannot be rigorously defined “and, in any case,
exp{−βH} would not define a normalizable density matrix”, but equation (2.44) would still
describe at least formally state of thermal equilibrium.

8For a more thorough explanation, see [6].
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In SI units the temperature is T = ℏc3κ/2πGkB, if we consider the Schwarzschild
solution, we obtain κ = 1/4M therefore T = ℏc3/8πMGkB. For a black hole of
mass 8,5 · 1036 kg as is Sagittarius A*, the supermassive black hole in the center
of the Milky Way, this turns out to be around 10−14 K, which is much lower than
the temperature of CMB (about 2,7 K).

2.2.3 3rd law of Black Hole Mechanics
Broadly speaking, the third law of thermodynamics, sometimes called the

Nernst postulate, says that the state of absolute zero cannot be reached in a
finite number of steps. Looking at the analogies between thermodynamics and
our version with black holes, it bars the black hole state of κ ≤ 0.

Indeed, looking at the expression for the Schwarzschild black hole κ = 1/4M ,
so κ decreases with increasing mass, but it does not reach zero in finite mass. With
κ being the surface gravity, it would also seem peculiar if the surface gravity of a
body (as taken at infinity) were zero.

For the most general stationary solution, the Kerr-Newmann black hole, i.e.
black hole with mass, spin, and charge the situation is more complicated. The
solution describes a black hole for

m2 ≥ a2 + e2 (2.50)

where m is the mass of the black hole, a its angular momentum per unit mass,
and e its charge. Explicit calculation shows that this is equivalent to κ ≥ 0 (with
the same conditions for equality; see, e.g., [4]). The case of equality of (2.50) is
an extreme case, as is infinite mass for the Schwarzschild solution, so such a black
hole is called extremal.

The third law is closely tied to the cosmic censorship hypothesis, which
roughly states that every singularity is enveloped by a horizon and therefore is
“censored” from observation. This can be seen from the Kerr-Newmann solution
with “m2 < a2 + e2” describes a naked singularity, i.e., without a horizon.

The cosmic censorship hypothesis has not been proven, but no “reasonable”
counterexample nor a disproving observation has been found.

Israel showed [18] that a non-extremal black hole cannot become extremal at
finite time for a free-falling observer near the horizon in any continuous process
in which the stress-energy tensor of accreted matter stays bounded and satisfies
the weak energy condition in a neighborhood of the horizon, thus proving the
law.

Related are the thought experiments of destroying a black hole, with the
seminal work by Wald [19]. With a black hole satisfying (2.50) one can drop
test particles with high charge and angular momentum to mass ratios to come
arbitrarily close to equality. Wald therefore considered the extremal case and
showed that any test particles that would cause the inequality to be violated will
not be captured by the black hole.9

Another attempt of black hole destruction was due to Hubeny [20]. She
showed that a non-rotating black hole can be overcharged by considering a close-
to-extremal but non-extremal hole, in contrast to Wald. Crucially, this procedure

9It is worth noting that this paper came about 12 years before Israel’s proof.
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neglected the effects of backreaction on the particle. An analogous result with
analogous setup has been obtained by Jacobson and Sotiriou for non-charged
spinning black hole [21].

Chirco et al. [22] provided a reconciliation of these results and the Israel’s
proof by showing that while the body can reach the horizon at a finite proper
time, if the process is considered to be continuous, the extremal black hole is not
created in a finite time, i.e. the absorption of the particle must be assumed to
last infinitely long.

Sorce and Wald [23] gave a resolution in which they generalized the result of
[19] to arbitrary matter (with an energy condition on the stress-energy tensor)
and by calculating the self-force effects, showed that thought experiments of the
Hubeny type cannot succeed in violating inequality (2.50).

Some recent papers also suggest that extremal black holes are in fact more
singular than expected and might therefore be un-physical [24].

To summarize, it seems that the third law of thermodynamics may also prevail
in black hole thermodynamics.
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2.3 Entropy
In his seminal paper on the generalised second law of thermodynamics Beken-

stein wrote[1]:

“The area of a black hole appears to be the only one of its properties
having this entropylike [sic] behavior which is so essential if the second
law as we have stated it is to hold when entropy goes down a black
hole.”

What he was chiefly worried about was that if an observer drops a package
of entropy into the black hole, the entropy of the exterior decreases but once the
black holes has settled to a new equilibrium, it has only the following degrees
of freedom: mass, charge and angular momentum (as seen from the No Hair
theorem). Therefore she cannot exclude the possibility that the total entropy of
the universe has decreased and thus the second law becomes “transcended”.10

He then proceeds to formulate the second law as “Common entropy plus black-
hole entropy never decreases”, where black-hole entropy is defined as proportional
to its area.

Reasons to define it proportional to area were that Hawking proved that the
surface area of a black hole never decreases [9] and Chistodoulou showed that
it increases in most processes [25][26]. We shall motivate this definition from
multiple perspectives and in doing so fix the proportionality constant of black-
hole entropy and its area. We also give proof of the area increase theorem in the
appendix.

2.3.1 1st law of black hole thermodynamics
The Schwarzschild metric (2.42) describes a one-parametric family of metrics,

where the parameter M is easily associated with mass in the Newtonian limit.
In the metric the hypersurface r = rh = 2M describes the horizon, its area

(at constant time) is A = 4πr2
h, and one easily checks that κ = 1/4M . But then

by the first relation dM = drh/2 and by the second dA = 8πrh drh, so then

dM = κ

2π
dA
4 . (2.51)

Since we identified the first fraction with temperature in previous sections and
mass is equivalent with energy, then by analogy of the first law of thermodynamics
δE = TδS we must have

SBH = A

4 . (2.52)

The equation (2.51) is the 1st law of black hole mechanics restricted to the
Schwarzschild solution. More general version with physical derivation can be
found in the appendix.

10Do note that Bekenstein does not claim that the entropy would be decreased, but only that
an outside observer could not exclude the possibility, which then of course makes the second
law observationally useless.

23



2.3.2 Path integral approach
In section 2.2.2 we saw a correspondence between the thermal state of a space

and its time evolution. We will use this approach to calculate the partition func-
tion [27] from which we get entropy by the standard thermodynamic identities.

Partition function

In QFT to get the amplitude to evolve from a field configuration φ1 at time
t1 to φ2 at t2, one can calculate

⟨φ2, t2|φ1, t1⟩ =
∫︂

d[φ] exp(iS[φ]) , (2.53)

where S[φ] is the action and the integral is over all field configuration from φ1 at
t1 to φ2 at t2. On the other hand for time independent Hamiltonian

⟨φ2, t2|φ1, t1⟩ =
⟨︂
φ2

⃓⃓⃓
exp

(︂
−iĤ (t2 − t1)

)︂⃓⃓⃓
φ1
⟩︂
. (2.54)

If we now use the Wick rotation in the form t2 − t1 = −iβ and consider only
φ1 = φ2 then summing over all φ1 (exactly the steps of taking a trace), we obtain∫︂

d[φ] exp(iS[φ]) = Tr exp
(︂
−βĤ

)︂
, (2.55)

where we take the integral over all field β-periodic in imaginary time. We then
notice that the RHS is just the partition function Z for the canonical ensemble at
inverse temperature β. For computation of the path integral it is advantageous
to again complexify the metric by aN identification τ = −it. We get

Z =
∫︂

d[φ] exp(−SE[φ]) ,

where SE is the euclidean action, i.e. action with the metric of “euclidean”
signature (+, +, +, +). Using the saddle point method we can approximate

Z ≈ exp{−SE[φclassic]} , (2.56)

where φclassic is the classical (but euclidean) stationary metric of the spacetime.
Due to the analogue of a canonical ensemble, we identify Helmholtz free energy
as

F = − 1
β

lnZ = SE[φclassic]
β

, (2.57)

which implies the entropy given as

S = −∂F

∂T
. (2.58)

Calculation for the Rindler metric

The Euclidean action of general relativity over an open region Ω is given by

SE =
∫︂

Ω

d4x
√
gR

16π −
∫︂

∂Ω

d3y
√
hK

8π , (2.59)
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where g is the determinant of the metric, R is the Ricci scalar, h is the determinant
of the induced metric on ∂Ω, K is the second fundamental form, or extrinsic
curvature, of ∂Ω.

We take the metric (1.10) with ϕ ∈ (0, β); ρ ∈ (0,∞); y, z ∈ R. The region Ω
is given by ρ < C, where C is a constant which we shall take to infinity. Thus,
the parameterization covers the Rindler wedge and we are mainly interested in
the ”light cone horizon” ρ = const.

The metric is clearly flat, so the Riemann tensor identically vanishes, thus
R = 0. For the hypersurface ρ = C the normal is given by nµ = δµ

ρ ,
√
h = ρa, so

K ≡ nµ
;µ = 1

√
g

(√gnµ),µ = 1
ρa

(ρa nµ),µ = 1
ρ

(ρ),ρ = 1
ρ
, (2.60)

from which
SE = − lim

C→∞

∫︂
ρ=C

dϕ dy dz ρa
ρ8π = − a

2π
βA

4 , (2.61)

where we identified A =
∫︁

dy dz . Using equations (2.57), (2.48) and (2.58) we
get

F = SE

β
= − a

2π
A

4 = −T A4 , (2.62)

S = −∂F

∂T
= A

4 , (2.63)

exactly as expected. Moreover, note that according to laws of thermodynamics,
the free energy F is related to the internal energy (mass) as

F = M − TS . (2.64)

This thermodynamic identity can easily be checked upon expecting (2.62) and
noticing that for the Rindler space M = 0.

Calculation for the Schwarzschild metric

For the Schwarzschild metric (2.42) we take the boundary r = r0, where we
then consider the limit r0 → ∞. The action (2.59) turns out to be infinite but in
the same way that an empty space (M = 0) would, so we consider a renormalized
action

SE =
∫︂

Ω

d4x
√
gR

16π −
∫︂

∂Ω

d3y
√
h(K −K0)

8π , (2.65)

where K0 is the extrinsic curvature of the hypersurface as embedded in a flat
spacetime.11 The R is again 0 thanks to the Einstein equations.

The Euclidean metric reads

ds2 =
(︃

1 − 2M
r

)︃
dτ 2 +

(︃
1 − 2M

r

)︃−1
dr2 + r2 dθ2 + r2 sin2 θ dϕ2 , (2.66)

for the “Euclidean” coordinates, where (r, θ, ϕ) are the usual spherical coordi-
nates and τ is the complex time in the interval (0, β). We shall denote, as in

11This can be done thanks to the fact that the Schwarzschild metric is asymptotically flat.
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previous discussion f(r) = (1 − 2M/r). Square root of its determinant √
g =

= r2 sin θ.
Then the induced metric on the surface r = r0 reads

ds2
r=r0 = f(r0) dτ 2 + r2

0 dθ2 + r2
0 sin2 θ dϕ2 , (2.67)

thus the square root of its determinant
√
h =

√
fr2

0 sin θ .
The unit normal is given as nα =

√
fδα

r so then

K = nα
;α = 1

√
g

(√gnα),α

= 1
r2 sin θ

(︃
r2 sin θ

√︂
fδα

r

)︃
,α

= 1
r2

(︃
r2
√︂
f
)︃

,r

= 2
√
f

r
+ f ′

√
f
. (2.68)

For a flat metric f = 1, therefore K0 = 2/r. Then

SE = lim
r0→∞

− 1
8π

∫︂ β

0

∫︂
S2
r2

0 sin θ
√︂
f(K −K0)

= −β

2 lim
r0→∞

r2
0(K −K0) = βM

2 , (2.69)

where we used the easily checked fact that for large r we can write
√
f(K−K0) =

= −M/r2 + O(r−3). Thus by using equation (2.57) F = M/2. By earlier results,
for the Schwarzschild black hole T = 1/8πM = 1/4πrh, rh being the black hole
radius, which yields

F = 1
16πT , (2.70)

so then by equation (2.58)

S = −∂F

∂T
= 1

16πT 2 = πr2
h = A

4 . (2.71)

de Sitter universe

The de Sitter universe is a vacuum solution to the Einstein equations with the
cosmological constant Λ > 0. In a manner similar to the Schwarzschild solution,
the metric can be written as [28]

ds2 = −
(︄

1 − Λr2

3

)︄
dt2 +

(︄
1 − Λr2

3

)︄−1

dr2 + r2 dΩ2 . (2.72)

For simplicity it is useful to introduce ℓ ≡
√︂

3/Λ which simplifies the metric to

ds2 = −
(︄

1 − r2

ℓ2

)︄
dt2 +

(︄
1 − r2

ℓ2

)︄−1

dr2 + r2 dΩ2 . (2.73)

26



We immediately see that this metric is singular at r = ℓ and with the same
structure as the metric (2.17), in particular it is locally Rindler at, as such r = ℓ
with temperature of

T = −f ′(r = ℓ)
4π = 1

2πℓ . (2.74)

The minus sign in the formula is added “by hand” to ensure a positive tem-
perature. Physical calculations show that the temperature is actually positive
[29], but recently there have been arguments that the temperature should be
considered negative [30].

The de Sitter space is compact, thus the boundary term vanishes, but the
bulk term does not. Since Λ ̸= 0

SE = −
∫︂

Ω

d4x
√
g(R − 2Λ)
16π , (2.75)

The Einstein equations give R = 4Λ, taking Ω = {xµ : r < ℓ}

SE = − 1
16π

∫︂ β

0

∫︂
r<ℓ

√
g2Λ

= − Λ
8πβ

∫︂
r<ℓ

r2 sin θ

= − Λ
8πβ

4
3πℓ

3

= −πℓ2 , (2.76)

where we used the equation (2.74), the fact that β = 1/T and the definition of ℓ.
The negative result could be surprising, but consider the thermodynamic case

logZ = −βF = −β(E − TS) = S , (2.77)

if E = 0 which is precisely the case here - the energy of a gravitational field is all
in the boundary[31]. Therefore by the equation (2.56)

S = πℓ2 = A

4 , (2.78)

where the area is naturally A = 4πℓ2.

2.3.3 2nd law and Black Hole Mechanics
For the second law of black hole mechanics is usually taken the area increase

theorem, but how does this integrate with the usual second law of thermodynam-
ics dS > 0?

As Bekenstein writes in his paper [1]

dS ≥ 0 , (2.79)

where S is the sum of entropies of black holes (proportional to their area) and
the entropy of everything outside of the black holes, the “common entropy”.
The choice of direct proportionality with the area and not some monotonically
increasing function of the area is interesting. He argues:
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“We ensure that the total black-hole entropy of a system of black holes
(the sum of individual Sb.h.) depends only on the total horizon area,”

but this also preserves additivity of black hole entropy across “systems”, the black
holes, and therefore of entropy as a whole.

It is also illuminating to write the black hole entropy in proper units

SBH = kB

L2
P

A

4 = kBc
3

Gℏ
A

4 , (2.80)

where kB is the Boltzmann constant, LP is the Planck length, c the speed of
light, G the gravitational constant and ℏ the reduced Planck constant. It is
interesting that the natural units of measuring area turn out to be in Planck
length squared; this makes the black hole entropy comparatively enormous. But
maybe more importantly this formula has ℏ in the denominator, thus the classical
limit symbolically given as ℏ → 0 cannot work, which points to fundamental
connection between gravitation as given by general relativity and any quantum
theory.

28



3 Black hole phase transitions
In classical thermodynamics the Van der Waals fluid is often used as an intro-

ductory example to phase transitions. It turns out that the Reissner–Norström-
AdS (RN-AdS) black hole, i.e. charged black hole with negative cosmological
constant Λ, exhibits classical critical behaviour analogous to Van der Waals flu-
ids [32].

Lately, the variation of Λ in the first law of black hole thermodynamics has
gained attention. This variation compares black holes with different asymptotics,
as opposed to the AdS background being fixed. Thus we have to abandon the
classical notion of Λ being the parameter of the theory. There are two reasons we
shall mention here for this step: black hole thermodynamics can be interpreted
as a study of a “solution phase space”, where the variables are the parameters
of the black hole. It can be shown that, for example, the first law still holds
under reasonable assumptions [33]. One may consider theories where physical
‘constants’ are not a priori fixed but arise from some physical phenomena, in
which case it is natural to consider their variations in the first law.

A natural interpretation of Λ is as pressure. Similarly as in the de Sitter case,
we denote ℓ ≡

√︂
3/(−Λ)

P = − 1
8πΛ = 3

8π
1
ℓ2 , (3.1)

with the natural “conjugate volume”[32]

V =
(︄
∂M

∂P

)︄
S,Q,J

= 4
3πr

3
+ , (3.2)

where r+ is the event horizon radius.

3.1 RN-AdS
In Schwarzchild-like coordinates, the metric of a 4-dimensional spherical RN-

AdS black holes reads [32]

ds2 = −fdt2 + dr2

f
+ r2dΩ2 , (3.3)

where
f = 1 − 2M

r
+ Q2

r2 + r2

ℓ2 , (3.4)

and the black hole event horizon is given as the largest root of f , f(r+) = 0.
The black hole temperature can thus be identified as

T = f ′(r+)
4π = 1

4πr+

(︄
1 + 3r2

+
ℓ2 − Q2

r+

)︄
, (3.5)

and the entropy as

S = 4πr2
+

4 . (3.6)
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Electric potential Φ at infinity with respect to the horizon is

Φ = Q

r+
, (3.7)

with P and V given as above we get the first law for RN-AdS black hole in the
form

dM = T dS + Φ dQ+ V dP . (3.8)

Note that with the first law in this form the natural interpretation of M is not
the internal energy but enthalpy.

To investigate the phase transition, we shall consider the case Q = const, so
from (3.5) we get an equation of state P = P (V, T )

P = T

2r+
− 1

8πr+2 + Q2

8πr+4 , r+ =
(︃3V

4π

)︃1/3
, (3.9)

where we used the fact that the identity V = 4/3πr3
+ holds in these coordinates.

Consider the Van der Waals equation of state

P = RT

v − b
− a

v2 , (3.10)

where P is the pressure, R the gas constant, T the thermodynamic temperature,
and v the molar volume, a, b being constants.

In proper units

pressure ↔ hc

L2
p

P ,

temperature ↔ hc

kB

T , (3.11)

where Lp is the Planck length. Therefore, comparing the equations (3.9) and
(3.10), we identify 2L2

pr+ ↔ v. Apart from the scaling factor of 2, it seems natural
to have the reduced volume measured in Lp, the natural units of the black hole
horizon area as seen in (2.80), and r+, the independent length parameter.

From the viewpoint of thermodynamics, this identification is problematic as
v in (3.10) is intensive, while r+ increases with the size of the system in any
reasonable definition of “the system”.

Performing this identification, we obtain the “thermodynamic” equation of
state as

P (T, v) = T

v
− 1

2πv2 + 2Q2

πv4 . (3.12)

This equation can be used to study isotherms in the phase space. In particular,
let us study the critical point, i.e. for some particular T = Tc, v = vc

∂P

∂v

⃓⃓⃓⃓
⃓
Tc,vc

= 0 ⇒ −Tcπv
3
c + v2

c − 8Q2 = 0 ,

∂2P

∂v2

⃓⃓⃓⃓
⃓
Tc,vc

= 0 ⇒ 2Tcπv
3
c − 3v2

c + 40Q2 = 0 . (3.13)
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T = Tc

T < Tc
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va
v

P

Figure 3.1: Plots of P (v) for various T

Denoting P (Tc, vc) ≡ Pc the equations yield

vc = 2
√

6Q, Tc =
√

6
18πQ, Pc = 1

96πQ2 ⇒ Pcvc

Tc

= 3
8 . (3.14)

We note that the last fraction has the same value as in the study of the regular
van der Waals fluid. The qualitative plot of few isotherms in figure 3.1 again
shows behavior analogous to the van der Waals fluid. It can be shown that the
Maxwell construction must again be performed to preserve the stability and that
critical exponents of the transition have the same value as in the van der Waals
case [32].

3.2 Virial expansion
More directly, one can look at a a virial expansion

Pv

RT
= 1 + B(T )

v
+ C(T )

v2 + D(T )
v3 + . . . (3.15)

or more suggestively

P/R = T

v
+ b(T )

v2 + c(T )
v3 + d(T )

v4 + . . . (3.16)

which is exactly of the form found in (3.12).
Following [34], we shall here consider static ansatz and black hole thermody-

namic requirements to seek a black hole spacetime that yields the equation of
state in the virial expansion form.

We consider again spacetimes with negative cosmological constant Λ with
identification of pressure as above

P ≡ − Λ
8π ≡ 3

8πℓ2 . (3.17)
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For sake of simplicity we take the metric of the form

ds2 = −f(r, P ) dt2 + dr2

f(r, P ) + r2 dΩ2 , (3.18)

f(r, P ) = 1 − 2M
r

+ r2

l2
+ h(r, P ) , (3.19)

for some function h(r, P ). If we consider h = O(1/r2) we might identify the
”thermodynamic” mass of the black hole as the M in (3.19) [35]. On the horizon
f(r+, P ) = 0. This leads to

M = r+

2 + 4
3πr

3
+P + r+

2 h(r+, P ) . (3.20)

Volume is the conjugate quantity of pressure, which yields

V ≡ ∂M

∂P

⃓⃓⃓⃓
⃓
S,...

= 4
3πr

3
+ + r+

2
∂h

∂P
(3.21)

and lastly we place the size of the system to be proportional to the black hole
area, in units,

N ≡ 1
k

A

L2
p

= 4πr2
+

kL2
p

, (3.22)

for some constant k. Thus, for the specific volume v

v ≡ V

N
= k

(︄
1
3r+ + 1

8πr+

∂h

∂P

)︄
. (3.23)

The temperature of the black hole is

T = 1
4π
∂f

∂r

⃓⃓⃓⃓
⃓
r=r+

= 1
4π

⎛⎝2M
r+2 + 16πP

3 r+ + ∂h

∂r

⃓⃓⃓⃓
⃓
r=r+

⎞⎠ . (3.24)

Thus for any equation of state T (v, P ) one may substitute (3.23), compare with
(3.24) and solve for h.

Since this is in general difficult, let us consider a simple case of abridged virial
case with constant coefficients b, c

P = T

v
+ b

v2 + c

v3 , (3.25)

and h = h(r). This has the benefit, that V is of the expected form (3.2) and
(3.25) is invertible to get T = T (v, P ).

This gives equation

2M
r+2 + 16πP

r+
+ dh

dr = 4πPv − 4πb
v

− 4πc
v2 , (3.26)

where M is given by (3.20) and v by (3.23) as v = kr+/3 ≡ k̃r+, where we
rescaled the constant k, k̃ = k/3. Similarly, let us denote b̃ = 4πb and c̃ = 4πc.
Then the solution of of (3.26) is given as

h(r) =
−k̃r(b̃+ k̃) − c̃ log(r) + 4

3π(k̃ − 2)k̃2
Pr3

k̃
2
r

+ c1

r
,
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for some constant c1.
Now we apply the asymptotic behaviour requirements to h. From here, the

first term gives b̃ = −k̃, second c̃ = 0, third k̃ = 2 and c1 = 0. Note that
k̃ = 2 =⇒ k = 6 is in line with predictions by [36].

Thus we are left with h ≡ 0. Therefore, the only possible spacetime described
by (3.19) is the one with h ≡ 0, that is, a Schwarzschild-AdS spacetime, which is
a well-known and well-behaved solution of the Einstein equations.
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Conclusion
In this thesis we have introduced black holes and discussed their thermody-

namic properties. Chapter 2 was devoted to the laws of black hole thermody-
namics. First, we defined surface gravity of a black hole, motivated its name,
and calculated it for a general static spherical black hole in multiple ways. We
showed that it is constant on the event horizon of a stationary black hole. By
considering a purely classical engine working between two black holes, we showed
that the temperature of a black hole should be proportional to the surface gravity.
Considering thermal quantum states with complex time, we fixed the proportion-
ality constant as T = κ/2π. We then discussed the third law of thermodynamics
vis-à-vis the extremal black holes and attempts to destroy black holes by var-
ious physical processes. We then considered black hole entropy, showing the
Bekenstein–Hawking formula from multiple directions: i) as a quantity conjugate
to temperature, ii) via the Euclidean path integral approach, and iii) by necessity
of the second law of thermodynamics not being “transcended”.

In chapter 3 we discussed phase transitions of black holes, showing a thermo-
dynamic analogy between RN-AdS black holes and Van der Waals fluids, as well
as presented novel results regarding the virial expansion equation of state on the
extended phase space.

Critically, we have omitted quantum properties of black holes, namely the
quantum origins of the black hole temperature, the Hawking radiation, and dis-
cussion of the black hole entropy and its (so far unknown) quantum microscopic
origin. We have also ignored the black hole information problem and would like
to refer the interested reader to [37] for a discussion of many recent developments
on this issue.

We have found a unique solution for the virial expansion equation of state
under various simplifying assumptions, some of which could presumably be lifted
in upcoming work. In particular, one might look at the virial coefficients, analyt-
ically calculated for different models, and compare them with possible solutions.
We hope to report on these in the nearby future.
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A Derivation of the laws
A.1 0th law derivation

Here we shall show that the gradient of κ is collinear with kµ, thus finishing
the proof from 2.1.5 [4].
Equation (2.3) reads

κkµ = kµ;νk
ν .

Applying k[σ∇λ] gives

kµκ;[λkσ] + κkµ;[λkσ] = (kµ;νk
ν);[λkσ]

= kµ;νk
ν
;[λkσ] + kνkµ;ν[λkσ]

= kµ;νk
ν
;[λkσ] − kνR

ρ
νµ[λ kσ]kρ , (A.1)

where we used equation (2.40) in the last step. Re-arranging equation (2.8) gives

kµ;νkη = −2kη;[µkν] , (A.2)

so then by this equation and the definition of surface gravity (2.3) we can express
the first term on the RHS of (A.1) as

kµ;νk
ν
;[λkσ] = −1

2kµ;νk
νkλ;σ

= −1
2κkµkλ;σ

= κkµ;[λkσ] . (A.3)

Therefore equation (A.1) reduces to

kµκ;[λkσ] = kνR
ρ

µν[λ kσ]kρ . (A.4)

Let us apply k[σ∇ω] to equation (A.2)

kµ;νkη;[ωkσ] + kηkµ;ν[ωkσ] = −2kη;[µkν];[ωkσ] − 2kη;[µ|[ωkσ]|kν] . (A.5)

The first term on the LHS equals the first term of RHS due to equation (A.2).
Employing equation (2.40) on the remaining terms we get

−kηR
ρ

νµ[ω kσ]kρ = 2k[νR
ρ

µ]η[ω kσ]kρ . (A.6)

Contracting η − ω eliminitates the LHS and writing out the second bracket we
obtain

−k[νR
ρ

µ] kσkρ = k[νR
ρ

µ]ησ kηkρ . (A.7)

The RHS the same structure as RHS of equation (A.4), so by comparison

κ;[ηkσ] = −k[σR
ρ

η] kρ . (A.8)

Assuming dominant energy condition and Einstein’s equation the RHS van-
ishes. To show this we must first take a detour to geodesics.
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A.1.1 Kinematics of geodesics
Consider a congruence of timelike geodesics ξµ parametrized by their proper

time τ and normalized such that ξµξµ = −1. Let us then define tensor

Bµν ≡ ξµ;ν . (A.9)

Consider ηµ the orthogonal deviation from an arbitrarily chosen geodetic γ0. Then

£ξη
µ = 0 , (A.10)

which can be expressed in coordinate notation as

ηµ
;νξ

ν = ξµ
;νη

ν = Bµ
νη

ν , (A.11)

from which one sees that Bµ
ν measures the change on ηµ during a parallel trans-

port — more intuitively, along γ0 observer would see nearby geodesics as being
deformed by the linear map Bµ

ν . Bµν is “spatial” in the sense that

Bµνξ
µ = Bµνξ

ν = 0 , (A.12)

and we define the spatial metric as

hµν = gµν + ξµξν . (A.13)

It is easy to check that hµ
ν is a projection operator to the normal subspace of ξµ.

In analogy to continuum mechanics we define expansion θ, shear σµν and twist
ωµν of the congruence as

θ = Bµνhµν = Bµ
µ = ξµ;

µ , (A.14)

σµν = B(µν) − 1
3θhµν , (A.15)

ωµν = B[µν] . (A.16)

Now using the Ricci identities

Bµν;σξ
σ = ξµ;νσξ

σ = ξµ;σνξ
σ +R ρ

σνµ ξ
σξρ

= (ξµ;σξ
σ);ν − ξµ;σξ

σ
;ν +R ρ

σνµ ξ
σξρ

= −BµσB
σ

ν +R ρ
σνµ ξ

σξρ . (A.17)

Taking the trace we get the Raychaudhuri’s equation

θ;σξ
σ = dθ

dτ = −1
3θ

2 − σµνσ
µν + ωµνωµν −Rµνξ

µξν . (A.18)

In trying to retrace these steps for a congruence of null geodesics kµ one runs
into the problem of talking about the transversal direction, equivalent to spatial
above, since null vectors are orthogonal with themselves. To work around this
[38], one selects an auxiliary null field Nµ such that kµNµ = −1.1 This condition

1Consider the case of a Lorentz frame. Then one can consider null coordinates u = t − x,
v = t + x. If then the motion movement is studied along one coordinate, the natural choice is
the other for a transverse component.
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does not determine Nµ uniquely, but the relevant quantities are independent of
the choice of Nµ.2

We define the transverse metric by

hµν = gµν + 2N(µkν) . (A.19)

It is then easy to see that it is purely transverse (null contraction by Nµ or kµ in
either index) and two-dimensional. We can continue as above - we define

Bµν = kµ;ν , (A.20)

and its transverse part
B̃µν = hα

µh
β
νBαβ . (A.21)

Let the geodesics be parameterized such that kµ
;νk

ν = κkµ . Of course, one can
always change the parameterization to get κ = 0, which will give standard results
for equations below, but this nonstandard treatment shortens the proof. Let us
then write equation (A.21) in explicit form

B̃µν = (gα
µ + kαNµ +Nαkµ)(gβ

ν + kβNν +Nβkν)Bαβ

= (gα
µ + kαNµ +Nαkµ)(Bαν + κNνkα +NβkνBαβ)

= Bµν +NαkµBαν + κNνkµ − κNνkµ + kνBµβN
β + kµkνBαβN

αNβ .
(A.22)

Using the same decomposition

B̃µν = 1
2θhαβ + σαβ + ωαβ , (A.23)

where θ = B̃
µ

µ is the expansion, σµν = B̃(µν) −1/2θhµν the shear, and ωµν = B̃[µν]
is the twist. Explicitly

θ = gµνB̃µν = gµνBµν − κ = kµ
;µ − κ , (A.24)

so θ does not depend on the choice ofNµ and in the case of affine parameterization
the result is the same as for the timelike case.

Since θ characterises the expansion of the geodesics, it can be written in terms
of cross-sectional area dS as [38]

θ = 1
dS

d
dλ′ dS , (A.25)

where λ′ is the curve parameter.
First, we define the cross section of null geodesic congruence. Consider one

geodesic γ0 and a point P on it such that λ′ = λ′
P . Then let there be auxil-

iary curves with tangent Nµ parameterised by µ such that µ is constant on the
geodesics. Let β be the auxiliary curve passing throug P and µ|γ0

= µγ0 .
We define the cross section dS(λ′

P ) as a small neighborhood of P such that
through each point P ′ in the neighborhood goes a geodesic from the congruence

2This of course should be rigorously proven for each quantity. We shall not do the calcula-
tions here, see e.g. [38].
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and another auxiliary curve, and at each P ′ λ′ = λ′
P , µ = µγ0 . We can then change

the parameterization of γ0 and β so that they intersect dS(λ′
P ) orthogonally.

Since dS(λ′
P ) is a two-dimensional space, we can introduce coordinates on it

by labeling each point by θA, (A = 2, 3). Since exactly one geodesic goes through
every point, we labeled the geodesics themselves. By requiring geodesics to keep
their labels, we have constructed coordinates for every cross section dS(λ′).

Thus, we have constructed a coordinate system (λ, µ, θA) in the neighborhood
of γ0 with a well-defined transformation to arbitrary different coordinates xµ,
which allows us to write

kµ =
(︄
∂xµ

∂λ′

)︄
µ,θA

, (A.26)

and vectors
eµ

A =
(︄
∂xµ

∂θA

)︄
λ′,µ

, (A.27)

are tangent to the cross section. By this definition it is clear that

£ke
µ
A = 0 (A.28)

and on γ0 kµe
µ
A = Nµe

µ
A = 0.

We define the metric on the cross section dS(λ′) as σAB ≡ gµνe
µ
Ae

ν
B and its

area dS ≡
√
σ d2θ, σ being the determinant of σAB. Let the inverse metric σAB

be such that hµν = σABeµ
Ae

ν
B.

Using these definition the RHS of equation (A.25) reads

1√
σ

d
dλ′

√
σ = 1

2σ
AB dσAB

dλ′ . (A.29)

But

dσAB

dλ′ = (gµνe
µ
Ae

ν
B);ρ k

ρ ,

= gµν

(︂
eµ

A;ρk
ρ
)︂
eν

B + gµνe
µ
A

(︂
eν

B;ρk
ρ
)︂
,

= gµν

(︂
kµ

;ρe
ρ
A

)︂
eν

B + gµνe
µ
A

(︂
kν

;ρe
ρ
B

)︂
,

= (Bµν +Bνµ) eµ
Ae

ν
B , (A.30)

where we used equation (A.28) on the second line. Then to conclude the proof

σAB dσAB

dλ′ = (Bµν +Bνµ)σABeµ
Ae

ν
B = 2Bµνh

µν = 2Bµνg
µν = 2θ. (A.31)
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To get the analogue of Raychaudhuri’s equation

Bµν;σk
σ = kµ;νσk

σ = kµ;σνk
σ +R ρ

σνµ k
σkρ

= (kµ;σk
σ);ν − kµ;σk

σ
;ν +R ρ

σνµ k
σkρ

= (κkµ);ν −BµσB
σ

ν +R ρ
σνµ k

σkρ , (A.32)

and taking the trace

dθ
dλ′ = κθ − 1

2θ
2 − σµνσ

µν + ωµνωµν −Rµνk
µkν . (A.33)

with possible substitution from the Einstein’s equation

Rµνk
µkν = 8πTµνk

µkν . (A.34)

A.1.2 Finishing the proof
Equation (A.2) reads kµ;νkη = −2kη;[µkν], contracting it with arbitrary vectors

mµ, nν tangent to the horizon leads to

kµ;νm
µnν = 0 (A.35)

or in the notation of previous section B̃µν = 0, thus θ, σµν , ωµν vanish and from
equation (A.33) we get

Rµνk
µkν = 0 . (A.36)

The dominant energy condition states that −T µ
νk

ν must be future directed time-
like or null, but equations (A.34) and (A.36) imply T µ

νk
νkµ = 0. Therefore

−T µ
νk

ν must be collinear with kµ, thus

k[µTν]σk
σ = 0 (A.37)

so using Einstein’s equation shows that the RHS of equation (A.8) vanishes. This
yields

κ[;ηkσ] = 0 , (A.38)
from which we conclude that the gradient of κ is collinear with kµ and thus κ is
constant on the horizon.

A.2 Area increase theorem
Let us consider the Raychaudhuri’s equation for null geodesics (equation

(A.33)) for affinely parameterized congruence (κ = 0) that is hypersurface or-
thogonal (ωµν = 0 by the Frobenius theorem, holds at horizon due to equation
(A.35)). The value of σµνσ

µν is positive since σµν is transverse, so it is a sum of
squares. Then by the Einstein equations

Rµνk
µkν = 8π(Tµν + 1

2Rgµν)kµkν = 8πTµνk
µkν , (A.39)

the null energy condition Tµνk
µkν ≥ 0 implies that

dθ
dλ ≤ −1

2θ
2 . (A.40)

42



By separating variables and integrating from λ0 to λ we obtain

1
θ(λ) ≥ 1

θ(λ0)
+ 1

2λ . (A.41)

This is the focusing theorem. It says that if the geodesics are converging at λ0,
i.e. θ < 0, then θ → −∞ in finite λ. This generally means that some geodesics
come together in a point - a caustic. Finally we note that every event horizon
is generated by null geodesics with no future end points, thus they may never
create a caustic.

Then necessarily θ > 0 everywhere on the event horizon for all λ and increasing
λ means increasing time for a timelike observer so the horizon’s surface area
cannot decrease. A more rigorous proof with all the necessary details can be
found in [4].

A.3 First law derivation
We shall prove the first law in the form [38]

δM = κ

2π
δA

4 + ΩδJ . (A.42)

Consider the Killing timelike vector ξµ and the vector field

εµ = −T µ
νξ

ν , (A.43)

where Tµν is a stress-energy tensor. Then εµ can be interpreted as a energy
density flux vector, more so when one consider that

εµ
;µ = −T µ

ν;µξ
ν − T µ

νξ
ν
;µ = 0 , (A.44)

where we used the fact that the stress tensor is divergence-free and symmetric,
and the Killing equation. This then implies conservation by the usual Gauss’s
law argument and

∆M = −
∫︂

Σ
T µ

νξ
ν dΣµ , (A.45)

where ∆M is mass transferred through the hypersurface Σ. Similar procedure
for the Killing vector of axial symmetry ψµ yield

∆J =
∫︂

Σ
T µ

νψ
ν dΣµ , (A.46)

for the transferred angular momentum ∆J .
Consider the null hypersurface of the event horizon H. We take its normal to

be kµ and parameterize it by the non-affine parameter of kµ-generated geodesics
λ′ together with θA, which label the generators. Then

dΣµ = −kµ dS dλ′ , (A.47)

where dS is the surface element of the two-surface of constant λ′, which we shall
denote H(λ′).
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Let us drop a small amount of matter into a stationary black hole, described
by and infinitesimal stress-energy tensor Tµν such that the change of the black
hole mass and angular momentum change as given by equations (A.45) and (A.46)
(replacing ∆ with δ). We assume, that the black holes becomes stationary again
in the future.

Since the perturbation is small, we take Raychaudhuri’s equation (A.33) only
in the first order, i.e. neglecting the θ2 and σµνσ

µν with ωµν coming only from
the curvature which can be again neglected in the firt order we get

dθ
dλ′ = κθ − 8πTµνk

µkν . (A.48)

Then (taking kν = ξν + Ωψν)

δM − ΩδJ =
∫︂

H
Tµν(ξν + Ωψν)kµ dS dλ′

=
∫︂

dλ′
∫︂

H(λ′)
Tµνk

µkν

= − 1
8π

∫︂
dλ′

∫︂
H(λ′)

(︄
dθ
dλ′ − κθ

)︄
dS

= − 1
8π

∫︂
H(λ′)

θ dS
⃓⃓⃓⃓
⃓
+∞

−∞
+ κ

8π

∫︂
dλ′

∫︂
H(λ′)

θ dS

= κ

8π

∫︂
dλ′

∫︂
H(λ′)

(︄
1

dS
d

dλ′ dS
)︄

dS

= κ

8π

∫︂
H(λ′)

dS
⃓⃓⃓⃓
⃓
+∞

−∞
= κ

2π
δA

4 , (A.49)

where on the first line we used the definition of H and kν , on the second line
equation (A.48), on the third line the fact that the black hole is stationary before
and after perturbation so θ(λ′ = ±∞) = 0, and on the fourth the interpretation
of θ as given by (A.25).
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