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Department: Institute of Theoretical Physics

Supervisor: Dr. Federico Urban, CEICO, Institute of Physics, Czech Academy
of Sciences

Abstract: The possible existence of a massive spin-2 field alongside the stan-
dard massless graviton of General Relativity is a recent theoretical development
in gravitational physics. If such an additional tensor field exists, it could leave
potentially observable imprints in several astrophysical, cosmological and labo-
ratory settings. This thesis studies the phenomenon of flavour oscillations in a
nearly degenerate coupled system of photons with massive and massless spin-
2 particles propagating in an external magnetic field. The framework for our
calculations is provided by the ghost-free bimetric theory of gravity coupled to
electromagnetism. We discuss several potentially observable manifestations of
such oscillations and make numerical predictions for some relevant laboratory
setups and astrophysical scenarios.

Keywords: massive spin-2 field, dark matter, mixing of photons with other par-
ticles, bigravity

iii
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Katedra: Ústav teoretické fyziky
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částicemi, bigravitace

iv



Contents

Introduction 3

1 Mixing of photons with scalars 7
1.1 Derivation of the mixing equations . . . . . . . . . . . . . . . . . 7

1.1.1 Action and its variation . . . . . . . . . . . . . . . . . . . 7
1.1.2 Propagation on a magnetic background . . . . . . . . . . . 10
1.1.3 Plane-wave solution and gauge fixing . . . . . . . . . . . . 13
1.1.4 Ultrarelativistic approximation . . . . . . . . . . . . . . . 15
1.1.5 Environmental effects and vacuum polarization . . . . . . 16
1.1.6 Equations of motion in momentum space . . . . . . . . . . 20

1.2 Searching for mass eigenstates . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Diagonalization of M(p) . . . . . . . . . . . . . . . . . . . 21
1.2.2 Transfer matrix . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 A⊥–ϕ oscillations . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.4 Simplification of the transfer matrix . . . . . . . . . . . . . 25
1.2.5 Mixing limits . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Observable effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.1 Effects on photon polarization . . . . . . . . . . . . . . . . 33
1.3.2 Light-shining-through-wall experiments . . . . . . . . . . . 37
1.3.3 Relative intensity decrease . . . . . . . . . . . . . . . . . . 39

2 Mixing of photons with massive spin-2 field 40
2.1 Non-interacting massive graviton . . . . . . . . . . . . . . . . . . 40

2.1.1 Dynamical constraints . . . . . . . . . . . . . . . . . . . . 41
2.1.2 Warm-up: polarization of a massive vector . . . . . . . . . 42
2.1.3 Polarizations of a massive spin-2 field . . . . . . . . . . . . 44

2.2 Interaction with the EM field . . . . . . . . . . . . . . . . . . . . 47
2.2.1 Coupling to the EM stress-energy tensor . . . . . . . . . . 47
2.2.2 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.3 Mixing equations . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Searching for mass eigenstates . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Decoupled spin-2 polarizations . . . . . . . . . . . . . . . . 53
2.3.2 χ×2–A∥ mixing . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.3 χ+2–χ0–A⊥ mixing . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Observable effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1 Effects on photon polarization . . . . . . . . . . . . . . . . 57
2.4.2 LSW experiments . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.3 Relative intensity decrease . . . . . . . . . . . . . . . . . . 63

3 Mixing of photons in GR 65
3.1 The Einstein-Maxwell theory . . . . . . . . . . . . . . . . . . . . . 65
3.2 Linearization around a background . . . . . . . . . . . . . . . . . 67

3.2.1 First variation . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Second variation . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1



3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Derivation of the mixing equations . . . . . . . . . . . . . . . . . 73

3.3.1 Linearized gauge symmetries . . . . . . . . . . . . . . . . . 73
3.3.2 Linearized equations of motion . . . . . . . . . . . . . . . 73
3.3.3 Propagation on a magnetic EM background . . . . . . . . 75
3.3.4 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.5 Mixing equations . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Identifying mass eigenstates . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 H×2–A∥ mixing . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 H+2–A⊥ mixing . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Observable effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.1 Mixing angles, oscillation lengths and conversion probabilities 83
3.5.2 Effects on photon polarization . . . . . . . . . . . . . . . . 86
3.5.3 LSW experiments . . . . . . . . . . . . . . . . . . . . . . . 89

4 Mixing of photons in bigravity 94
4.1 Linearized bigravity . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 The bimetric action . . . . . . . . . . . . . . . . . . . . . . 94
4.1.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . 95
4.1.3 Proportional solutions . . . . . . . . . . . . . . . . . . . . 96
4.1.4 Expanding in fluctuations . . . . . . . . . . . . . . . . . . 97
4.1.5 Mixing equations in a magnetic background . . . . . . . . 101

4.2 Searching for mass eigenstates . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Decoupled massive spin-2 polarizations . . . . . . . . . . . 101
4.2.2 H×2–χ×2–A∥ mixing . . . . . . . . . . . . . . . . . . . . . 102
4.2.3 H+2–χ+2–χ0–A⊥ mixing . . . . . . . . . . . . . . . . . . . 107

4.3 Observable effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.1 Mixing angles, oscillation lengths and conversion probabilities112
4.3.2 Effects on photon polarization . . . . . . . . . . . . . . . . 114
4.3.3 LSW experiments . . . . . . . . . . . . . . . . . . . . . . . 115

Conclusion 119

Bibliography 123

List of Abbreviations 127

List of Figures 128

2



Introduction
In 2022, the LHAASO experiment reported the observation of a gamma-ray burst
with high-energy photons, specifically with energies up to 18 TeV, whose redshift
was estimated to be z = 0,151 [1]. In addition to this, a shower corresponding to a
photon with an energy of 251 TeV originating from the same gamma-ray burst was
observed shortly afterwards by the Carpet-2 experiment at the Baksan Neutrino
Observatory [2]. However, this creates a puzzle, because such high-energy photons
should be significantly inhibited through interactions with photons from the cos-
mic microwave background radiation (CMB) and extragalactic background light
(EBL) and thus should not be able to reach us from the distance corresponding
to the estimated redshift. That we observe them nonetheless could therefore very
well be a signature of phenomena beyond the standard model of particle physics.
Most often discussed in this context are axions, hypothetical spin-0 particles with
pseudoscalar coupling to the EM field that, among other things, are considered
as possible candidates for dark matter particles. The significance which axions
bear in relation to the problem of observing energetic photons lies in the fact
that, unlike photons, they are assumed to interact only very weakly with ordi-
nary matter. Moreover, in the presence of an external magnetic field, coupling
between two photons and an axion should lead to oscillations between the two
particle species, thus allowing the observation of the aforementioned high-energy
photons: having propagated for most of its journey to the Earth in the guise of
an axion, the photon would escape the loss of energy through interactions with
background photons and the subsequent e+e− production [3].

Several specific astrophysical setups where the axions should be observable
have already been proposed [4]. Experimentally, particles such as axions could
be detectable in “light-shining-through-wall” experiments ([5, 6], see [7] for a
review). In these, a laser beam is propagated through a magnetic field into which
an obstacle (wall) is inserted. While photons cannot pass through the wall,
particles like axions have no problem penetrating even very dense materials due
to the their very weak interaction with ordinary matter. Having passed through
the obstacle, they can then be converted back into photons through another
magnetic field, which, in turn, can be detected on the other side of the barrier.
An outside observer would therefore conclude that some light has been shone
through the wall (albeit in the form of axions). So far, however, the existence of
particles that would allow for this phenomenon has not been demonstrated from
these experiments.

Many studies which consider the problem of particles mixing with the EM
field focus on the case of the axion, because it also provides a possible resolution
of the strong CP problem [8, 9]. However, one has to bear in mind that a similar
effect can be mediated by any other light particle with suitable coupling to the
EM field. In particular, one does not have to restrict to spin-0 and consider, for
instance, coupling the photons to spin-2 particles [10] (mixing of photons with
spin-1 particles is forbidden by the Landau-Yang theorem [11, 12]). This is closely
related to (linearized) theory of general relativity, which can be understood as a
theory of a single massless particle with spin 2, called the massless graviton.

In addition to this massless graviton of general relativity, the existence of
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its massive variant, called the massive graviton, has recently been considered.
Indeed, one could envisage that there could be a natural extension of general
relativity, where one would add (in a well-defined and consistent manner) a second
metric tensor to the metric tensor of general relativity so as to end up with one
massless and one massive dynamical spin-two field. Such a setup is known as
bigravity. Note that this theory is relatively new, because for a long time, it was
believed that no consistent theory for gravitating massive spin-2 fields can be
formulated owing to the unavoidable presence of a fatal ghost instability ([13],
see [14] for a review). While the first linearized massive spin-2 field theory was
proposed by Fierz and Pauli [15], it was found that upon taking the massless
limit, the theory exhibits the so-called van Dam – Veltman – Zakharov (vDVZ)
discontinuity [16, 17]. In particular, the massless limit did not seem to provide
a theory for a massless spin-2 particle on its own, but only in combination with
a propagating scalar field as a remnant of the spin-0 polarization of the massive
spin-2 field. Nevertheless, the so-called Vainshtein mechanism [18] (see [19] for a
review) soon explained that up to a certain distance from a source (the Vainshtein
radius), this scalar is so strongly coupled that a linearized analysis breaks down.
As a consequence, inside the Vainshtein sphere the scalar becomes hidden by non-
linear effects and its presence is felt only at large distances. At the same time,
the problem of consistency of such non-linear extensions of massive gravity was
addressed by Boulware and Deser, who pointed out the necessity of the presence
of a ghost instability (the so-called Boulware-Deser ghost), a scalar field with
negative kinetic energy that would cause fatal instabilities [13]. Decades later,
however, it turned out that their analysis was not general enough and the ghost
instability can be systematically eliminated, a development which culminated in
the de-Rham-Gabadadze-Tolley (dRGT) theory [20] and its later generalization,
the Hassan-Rosen bimetric theory [21].

If the above mentioned additional tensor field exists, one could in principle ob-
serve its signatures in various astrophysical, cosmological and laboratory settings.
For example, the massive graviton, similarly to the axion, is a seriously-considered
candidate for a particle which would account for the observed abundance of dark
matter in present universe: both in the regime where its mass is large [22], thus
working in the weakly interacting massive particle (WIMP) / ΛCDM (Λ cold dark
matter) paradigm (see [23] for a review), as well as for very small massive spin-2
masses [24] (the ULDM – ultra light dark matter paradigm [25, 26, 27, 28, 29, 30]).

So far, we know about the existence of dark matter only from its gravita-
tional effects. One possible explanation is that it is a manifestation of gravity
itself, naturally extended by a massive spin-2 field [31]. Due to its weak coupling,
the presence of this field would have significant effects only at larger distances, so
as to retain consistency with observations. It appears that using a combination
of the standard Newtonian potential and the Yukawa potential induced by the
massive graviton, the rotation curves of galaxies can be fit quite successfully [32].
The existence of ultralight dark matter could also be revealed by pulsars, as the
oscillations of the spin-2 field could affect the dynamics of binary pulsar systems,
causing changes in the arrival times of the pulses [24, 33]. Moreover, signatures
in fluctuations of the cosmic microwave background may also be associated with
gravitons [34, 35] as the thermal CMB photons could have been converted into
gravitons when interacting with the primordial magnetic field during the recom-
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bination epoch. Therefore, the observations of CMB fluctuations can be used to
detect high frequency gravitational waves [36, 37] and provide constraints on the
strength of the primordial magnetic field. This could possibly be an example of
a magnetic field strong enough also for the massive gravitons to undergo conver-
sion to photons with a non-trivial rate. In turn, the same mechanism also allows
for the conversion of relic gravitons into photons, which could be a possibility in
testing various cosmological theories [34]. This should be enough of a motivation
for a deeper study of these particles and their interactions.

In this thesis, we will mainly focus on the aspects of eigenstate mixing be-
tween the EM fluctuations and other particles in an external magnetic field. This
phenomenon arises whenever there is a (near) degeneracy of masses of mutually
interacting particles and gives rise to flavour oscillations. As a consequence, we
will work in the regime, where the particles interacting with the EM field are
ultrarelativistic and thus approximately massless (as is the photon). In particu-
lar, as we have argued above, these oscillations may leave potentially observable
imprints: among other things, they could provide explanation for the recent ob-
servations of high energy photons. In Chapter 1, we study (mostly as a toy
example) a spin-0 particle interacting with electromagnetic field through a scalar
coupling: step by step, we derive the equations of motion from the lagrangian,
linearize them and find the solution for the oscillations of photons and scalars. We
also discuss possible signatures of these oscillations in various experiments and
observations. In chapter 2, we then turn to a more complicated situation that
will be of more interest to us later in this thesis: the interaction of the EM field
with a massive spin-2 field. Starting with the linearized Fierz-Pauli lagrangian
coupled to the EM stress-energy tensor and going in detail through all deriva-
tions, we emphasize various similarities and differences compared with the story
of the scalar. Noticing that upon taking the massless limit, the spin-0 polariza-
tion of the massive spin-2 field does not decouple from the dynamics (a direct
manifestation of the vDVZ discontinuity), we realize that the massless spin-2 case
deserves separate treatment, which we then outline in Chapter 3. Starting from
the Einstein-Hilbert action minimally coupled to the Maxwell action, we derive a
linearized action for the metric and the EM fluctuations which, as in the massive
spin-2 case, we find to be coupled together through the EM stress-energy tensor.
Since this is an example of a theory where all parameters are explicitly known,
we are able to make quantitative predictions for the photon-graviton conversion
rates (the so-called Gertsenshtein-Zel’dovich effect) and other observables. In
particular, we conclude that a photon double-conversion mediated by the mass-
less graviton alone is unlikely to explain the observations of high-energy photons
from GRB221009A. Finally, in Chapter 4, we discuss the combined interaction of
the EM field with both the massive and the massless spin-2 fluctuations within
the unifying framework of the bimetric theory of gravity. Building heavily upon
the results derived in the previous chapters, we are able to reduce the coupled
dynamics of the EM field and the two gravitons into two separate systems, where
each exhibits 3-flavour mixing. Finding the mass eigenstates perturbatively in the
couplings, we derive general formulae for various observables effects which arise as
a consequence of oscillations between various polarizations of the fields involved.
We also evaluate some of these quantities in the two regimes in the bimetric pa-
rameter space for which the massive spin-2 field has so far been considered as a

5



candidate for dark matter: the heavy CDM regime (relative coupling strength of
the two spin-2 fields α ≃ 10−11 − 10−13, Fierz-Pauli mass mFP ≃ 1 − 100 TeV)
and the ULDM regime (α ≃ 10−5 and mFP ≃ 10−23 − 10−17 eV). At the end, we
conclude with a summary and discussion of the main points.

Conventions

Throughout the thesis, we will use the mostly-minus (West-Coast) Minkowski
metric

η =

⎛⎜⎜⎜⎝
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ . (1)

Unless we say otherwise, we will also use the system of natural units common to
the high-energy physics literature, that is

c = ℏ = ε0 = 1 . (2)

This also implies

µ0 = 1
ε0c2 = 1 (3)

for the vacuum permeability µ0 as well as

α = e2

4πε0ℏc
= e2

4π (4)

for the fine structure constant in terms of the elementary charge e.
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1. Mixing of photons with scalars
Let us first explore the problem of eigenstate mixing in the simple case of a
massive scalar particle interacting with electromagnetic field. In order to achieve
efficient mixing, we will work in the ultrarelativistic regime m0 ≫ ω (denoting by
m0 is the mass of the scalar field) where the masses of the scalars and photons
become effectively degenerate. We will mainly follow the presentation of [5] and
[10].

1.1 Derivation of the mixing equations
We first focus on deriving the evolution of coupled EM and scalar (spin-0) modes
as they propagate through a background magnetic field.

1.1.1 Action and its variation
Let us first write down the lagrangian (density) describing a scalar field ϕ coupled
to the electromagnetic field Aµ through a cubic vertex [15]. That is, we write

L = LEM + LKG + 1
4g0F

µνFµνϕ , (1.1)

where LEM is the usual free electromagnetic (Maxwell) lagrangian, which is writ-
ten in terms of the Maxwell tensor Fµν = ∂µAν − ∂νAµ as

LEM = −1
4F

µνFµν (1.2)

and LKG is the lagrangian describing a free massive scalar field (with mass m0)
[38]

LKG = 1
2(∂αϕ)(∂αϕ) − 1

2m
2
0ϕ

2 . (1.3)

Finally, g0 is a coupling constant with dimensions mass−1. Note that having in
mind our later applications to deriving the mixing equations, we chose to ignore
any potential O(ϕ3) self-interactions of the scalar, as these would have been
dropped during the process of linearization around a background with ϕ = 0. Also
note that the interaction term is invariant under the EM gauge transformation

Aµ → Aµ + ∂µλ (1.4)

for some gauge parameter λ because Fµν does not transform under (1.4).
We will soon convince ourselves that the lagrangian (1.1) describes well the

oscillations between the EM and scalar fluctuations propagating on a constant
magnetic background, at least in pure vacuum and at a classical field theory
level. However, for practical applications, it will be important to also consider
the following two effects.

First, one has to bear in mind that perfect vacuum does not exist. Therefore,
as they propagate through the medium the particles, mainly the photons,1 will

1Mainly the photons, the scalars and other highr-spin fields considered in the remainder of
this thesis, will be treated as dark matter, which interacts very weakly with ordinary matter.
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interact with external matter, whose presence, in principle, should be reflected
through the inclusion of other couplings in the lagrangian (1.1). In practice, we
will later on bypass this by parametrizing this interaction with effective refractive
indices for the EM modes.

Second, even in a (hypothetical) perfect vacuum, a background EM field
may effectively induce different refractive indices for different EM polarizations
through loop diagrams in QED [39]. This is a consequence of the fact that QED is
not purely a theory EM field fluctuations, but it couples photons to charged mat-
ter (electrons), which may mediate 2-2 photon-photon scattering through higher
loop Feynman diagrams. At leading order, such a scattering would be mediated
by one electron loop with four vertices, to which the external photons are at-
tached (see figure 1.1). This gives rise to the effective Euler-Heisenberg coupling
[40]

LEH = α2

90m4
e

[︄(︂
FµνF

µν
)︂2

+ 7
4
(︂
FµνF̃

µν
)︂2
]︄
, (1.5)

where α = e2

4π
is the fine structure constant and me is the electron mass. Also,

F̃
µν is the Hodge dual of Fµν , namely

F̃
αβ = 1

2ϵ
αβµνFµν . (1.6)

We will postpone explicit inclusion of effects due to LEH up until section 1.1.5
below, where we will observe that upon turning on a background EM field, it
effectively gives rise to a birefringent medium, whose refractive indices we will
compute.

Figure 1.1: Leading order contribution to 2-2 photon-photon scattering in QED.

For the moment, let us come back to considering just the classical lagrangian
(1.1). In order to derive the equations of motion, we can either vary the ac-
tion directly or substitute into the the Euler-Lagrange equations. Let us adopt
the second approach here. For the scalar equation of motion we will thus be
substituting into

0 = ∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ) (1.7)
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that is, in detail,

0 = ∂LEM

∂ϕ
+ ∂LKG

∂ϕ
+
∂(1

4g0F
µνFµνϕ)
∂ϕ

+

− ∂µ
∂LEM

∂(∂µϕ) − ∂µ
∂LKG

∂(∂µϕ) − ∂µ

∂(1
4g0F

µνFµνϕ)
∂(∂µϕ) , (1.8a)

0 =
∂(−1

4F
µνFµν)

∂ϕ⏞ ⏟⏟ ⏞
=0

+
∂
[︂

1
2(∂αϕ)(∂αϕ) − 1

2m
2
0ϕ

2
]︂

∂ϕ
+
∂(1

4g0F
µνFµνϕ)
∂ϕ

(1.8b)

− ∂µ

∂(−1
4F

µνFµν)
∂(∂µϕ)⏞ ⏟⏟ ⏞

=0

−∂µ

∂
[︂

1
2(∂αϕ)(∂αϕ) − 1

2m
2
0ϕ

2
]︂

∂(∂µϕ) − ∂µ

∂(1
4g0F

µνFµνϕ)
∂(∂µϕ)⏞ ⏟⏟ ⏞

=0

, (1.8c)

0 = −m2
0ϕ+ 1

4g0F
µνFµν − ∂µ(∂µϕ) , (1.8d)

so that finally we obtain

0 = (□ +m2
0)ϕ− 1

4g0F
µνFµν . (1.9)

As for the equation of motion for the photon, we need to substitute into the
Euler-Lagrange equation

0 = ∂L
∂Aν

− ∂µ
∂L

∂(∂µAν) (1.10)

and, again in detail,

0 = ∂LEM

∂Aν

+ ∂LKG

∂Aν

+
∂(1

4g0F
µνFµνϕ)

∂Aν

+

− ∂µ
∂LEM

∂(∂µAν) − ∂µ
∂LKG

∂(∂µAν) − ∂µ

∂(1
4g0F

µνFµνϕ)
∂(∂µAν) , (1.11a)

0 =
∂(−1

4F
µνFµν)

∂Aν⏞ ⏟⏟ ⏞
=0

+
∂
[︂

1
2(∂αϕ)(∂αϕ) − 1

2m
2
0ϕ

2
]︂

∂Aν⏞ ⏟⏟ ⏞
=0

+
∂(1

4g0F
µνFµνϕ)

∂Aν⏞ ⏟⏟ ⏞
=0

+

− ∂µ

∂(−1
4F

µνFµν)
∂(∂µAν) − ∂µ

∂
[︂

1
2(∂αϕ)(∂αϕ) − 1

2m
2
0ϕ

2
]︂

∂(∂µAν)⏞ ⏟⏟ ⏞
=0

−∂µ

∂(1
4g0F

µνFµνϕ)
∂(∂µAν) ,

(1.11b)
0 = ∂µF

µν − g0(ϕ∂µF
µν + F µν∂µϕ) , (1.11c)

so that we end up with the equation of motion

0 = ∂µF
µν − g0(ϕ∂µF

µν + F µν∂µϕ) . (1.12)

In total, we will therefore consider the equations of motion

0 = (□ +m2
0)ϕ− 1

4g0F
µνFµν , (1.13a)

0 = ∂µF
µν − g0(ϕ∂µF

µν + F µν∂µϕ) . (1.13b)
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1.1.2 Propagation on a magnetic background
We would like to expand the fields in small fluctuations around a background,
which is defined by the constant magnetic field. Let us assume that the particle
propagates along the z-axis. The background can be divided into two components:
the component parallel to the direction of propagation, denoted by BL and the
component perpendicular to it, denoted by BT. Without loss of generality, we
can consider this second component only in the x-axis direction, which gives us
the field-strength tensor in the form

F ext
µν =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 BL 0
0 −BL 0 BT
0 0 −BT 0

⎞⎟⎟⎟⎠ , (1.14)

which is assumed to be turned on in a region of space |r| ≲ L and vanishes
otherwise. Here L characterizes the size of the region. In order to describe the
propagation of photons in such a background, we want to expand the vector
potential as

Aν → Aext
ν + Aν . (1.15)

and correspondingly the EM tensor as

Fµν → F ext
µν + Fµν . (1.16)

However, note that turning on a non-trivial background F ext
µν for the EM field only

is apparently inconsistent with the equations of motion (1.13a), because non-zero
F ext

µν clearly becomes a source for the scalar. Hence, expanding the equations
of motion (1.13a) and (1.13b) in small fluctuations around the background with
F ext

µν ̸= 0 while ϕext
µν = 0 should be expected to lead to contradictory results.

Although it is true that formally speaking, this necessitates turning on a non-
trivial classical background for the scalar, we will now argue that this can be
neglected on the grounds of perturbative consistency of the lagrangian (1.1).

Neglecting the induced scalar background

Indeed, starting with the scalar equation of motion (1.13a), we obtain

0 = (□ +m2
0)ϕ− 1

4g0

[︃
F µνFµν + F µνF ext

µν + (F ext)µνFµν + (F ext)µνF ext
µν

]︃
. (1.17)

The first term in the parentheses is quadratic in small fluctuations, meaning that
we will drop it. The second and third are identical and together equal to

2F ext
µν (∂µAν − ∂νAµ) = 4F ext

µν ∂
µAν , (1.18)

while the last term can be evaluated as

(F ext)µνF ext
µν = 2(B2

L +B2
T) . (1.19)

Hence, equation (1.17) can be rewritten as

0 = (□ +m2
0)ϕ− g0(F ext)µν∂µAν − 1

2g0(B2
L +B2

T) . (1.20)
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Note that since the last term is a constant, equation (1.20) cannot be balanced
for small enough fluctuations ϕ and Aν

To correct this problem, let us now also consider turning on a background
ϕext ̸= 0 for the scalar. To determine the value of ϕext, let us again start with
the scalar equation of motion, but now let us try to solve it for the background
fields ϕext and Aext

µ , as those need to satisfy the equations of motion (1.13a) and
(1.13b) as well. Assuming first that m0 ≫ 1/L in natural units, the mass term in
the equation of motion dominates over the derivative terms and we can therefore
assume that ϕext = const. inside |r| ≤ L (and ϕext = 0 outside the region, with
an exp(−m0r)-suppression near |r| = L). We then have

0 = (□ +m2
0)ϕext − 1

4g0(F ext)µνF ext
µν , (1.21a)

0 = (□ +m2
0)ϕext − 1

2g0(B2
L +B2

T) , (1.21b)

0 = m2
0ϕ

ext − 1
2g0(B2

L +B2
T) . (1.21c)

This gives
g0ϕ

ext = g2
0(B2

L +B2
T)

2m2
0

̸= 0 inside |r| ≤ L . (1.22)

On the other hand, in the regime m0 ≤ 1/L, the derivative terms in the equation
of motion start to dominate the mass term and the profile of ϕext can no longer
assumed to be constant. Assuming the fall-off condition ϕext → 0 as r → ∞,
one can derive that the profile will have characteristic size g0ϕ

ext ∝ g2
0B

2L2.
(Correspondingly, this would also induce a non-constant O(g2

0B
2L2) correction

to F ext through the equation of motion for the EM background.)
However, here one has to note that perturbative consistency of the lagrangian

(1.1) (which we have to demand) remains in place only if the interaction term
1
4g0F

µνFµνϕ is small compared to LEM and LKG. This means that g0ϕ has to be
small and so g0ϕ

ext has to be small too. If this condition were not satisfied, we
would escape the regime of validity of our analysis and we would have to add
higher order interaction terms into the lagrangian (1.1) to restore consistency. In
other words, in order to be inline with perturbative consistency of the lagrangian
(1.1) (which in turn guarantees that one can neglect the scalar background ϕext

in the ensuing analysis), one needs to assume that the external magnetic field is
weak compared to the scales given by the mass m0 of the scalar, or, by the size
L of the region, inside which it is being turned on. In particular, one needs to
demand

g2
0B

2
ext

m2
0

≪ 1 (1.23)

in the regime m0 ≫ 1/L and

g2
0B

2
extL

2 ≪ 1 (1.24)

for m0 ≤ 1/L.
Also note that had we considered coupling the EM field to a pseudoscalar

particle instead (that is a coupling aFµνF̃
µν [5] for an axion-like particle a instead
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of ϕFµνF
µν), we would be automatically getting ϕext = 0. Indeed, schematically

written, we have

F =
(︄

0 +E
−E B

)︄
, F̃ =

(︄
0 B

−B E

)︄
, (1.25)

so that in an analogous way as in the case of a scalar particle, the case of a
pseudoscalar would yield

aext = g0

4m2
0
(F ext)µνF̃

ext
µν , (1.26)

that is
aext = g0

4m2
0
(Eext · Bext) . (1.27)

Since in our case the electric field is zero, we would have got aext = 0 exactly.

Linearization around the EM background

Going back to the case of a scalar particle, expanding the equation of motion
(1.13a) using ϕext ̸= 0 and keeping only terms which are linear in fluctuations,
we get

0 = (□ +m2
0)(ϕ+ ϕext) − 1

4g0(F µνF ext
µν + F µν

extFµν + F µν
extF

ext
µν ) , (1.28a)

0 = (□ +m2
0)ϕ− 1

2g0F
µν
extFµν + (□ +m2

0)ϕext − 1
4g0F

µν
extF

ext
µν . (1.28b)

Using the equation of motion (1.21a) for ϕext, the last two terms will go away.
Hence, we get the scalar equation of motion in the form

0 = (□ +m2
0)ϕ− 1

2g0F
µν
extFµν . (1.29)

Substituting the expansions into the photon equation of motion (1.13b) we get

0 = ∂µ(F µν +F µν
ext)−g0

[︃
(ϕ+ϕext)∂µ(F µν

ext+F µν)+(F µν
ext+F µν)∂µ(ϕext+ϕ)

]︃
. (1.30)

Subtracting the equation of motion satisfied by the background, we get

0 = ∂µF
µν − g0(ϕext∂µF

µν + ϕ∂µF
µν + F µν

ext∂µϕ+ F µν∂µϕ) (1.31)

and after we leave just the terms of first order in fluctuations, we get

0 = ∂µF
µν − g0(ϕext∂µF

µν + F µν
ext∂µϕ) (1.32a)

0 = (1 − g0ϕ
ext)∂µF

µν − g0F
µν
ext∂µϕ . (1.32b)

Finally, using the above-discussed assumption g0ϕ
ext ≪ 1, we obtain

0 = ∂µF
µν − g0F

µν
ext∂µϕ . (1.33)

To summarize, so far we have managed to put the linearized equations of motion
into the form

0 = (□ +m2
0)ϕ− 1

2g0F
µν
extFµν , (1.34a)

0 = ∂µF
µν − g0F

µν
ext∂µϕ . (1.34b)
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1.1.3 Plane-wave solution and gauge fixing
Far away from the source, the wave can be treated locally as a plane wave. So
from now on we will be searching for a solution of the equations (1.34) in the
form of a plane wave with wave vector

kµ = (ω(p), 0, 0, p) , (1.35)

where p > 0 is some momentum and ω(p) the corresponding energy. In particular,
we will write

Aµ(t, z) = Aµ(p)ei(ωt−pz) , (1.36a)
ϕ(t, z) = ϕ(p)ei(ωt−pz) . (1.36b)

In order to simplify the analysis, we would now like to completely fix the gauge
symmetry (1.4) associated with the EM field. Let us start by fixing the Lorentz
gauge

∂µA
µ = 0 . (1.37)

Using this condition, the equations of motion (1.34) reduce to

0 = (□ +m2
0)ϕ− g0F

µν
ext∂µAν , (1.38a)

0 = □Aν − g0F
µν
ext∂µϕ . (1.38b)

In particular, since F µ0
ext = 0, we observe that

□A0 = 0 . (1.39)

This enables us to fix the residual gauge symmetry by putting

A0 = 0 . (1.40)

Indeed, the residual gauge symmetry is a transformation of the form (1.4), which
does not violate the Lorentz condition (1.37), i.e. the one given by a gauge pa-
rameter that satisfies

□λ = −∂µA
µ = 0 . (1.41)

Hence, for a generic A0 ̸= 0, we can put

λ = −
∫︂ t

dτ A0 , (1.42)

so that after the gauge transformation, we indeed have

(A′)0 = A0 + ∂0λ = 0 (1.43)

and, at the same time

□λ = ∂2
t λ− ∂2

i λ (1.44a)

= −∂2
t

∫︂ t

dτ A0 +
∫︂ t

dτ ∂2
i A

0 (1.44b)
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= −Ȧ0 +
∫︂ t

dτ ∂2
τA

0 −
∫︂ t

dτ □A0 (1.44c)

= −Ȧ0 + Ȧ
0 (1.44d)

= 0 , (1.44e)

where we have used (1.39) in the process. Substituting the constraint (1.40) into
the gauge condition (1.37) this yields

0 = ∂tA
0 − ∂zA

3 = −∂zA
3 . (1.45)

Therefore, for the plane-wave solution (1.36), we can simply put

A3 = 0 . (1.46)

This is clearly consistent with the equation of motion for A3, namely

□A3 = 0 , (1.47)

where we have noted that F 03
ext = F 33

ext = 0. Hence, the EM field will have only
two independent degrees of freedom, namely

A1 = A∥ , (1.48a)
A2 = A⊥ . (1.48b)

Summarizing the discussion so far, the plane wave solution for both the EM field
and the scalar will be assumed to propagate along the z-axis. In the region
where the background EM field is turned on, we will assume pure magnetic field
Bi = (BT, 0, BL) = (F ext

23 , 0, F ext
12 ). The two independent photon polarizations of

the EM field are then assembled into the 4-potential as Aµ = (0, A∥, A⊥, 0), where
A∥ is the polarization parallel to BT and A⊥ is the polarization perpendicular to
BT. See also figure 1.2.

Figure 1.2: The relative configuration of the magnetic field and the propagating
beam.
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1.1.4 Ultrarelativistic approximation
In this chapter, we will be interested in considering mixing between the prop-
agating EM excitations (which are massless) and the excitations of the spin-0
field. Since flavour mixing can only efficiently take place when the two respective
particles have degenerate masses, we are motivated to focus on the regime where
the scalar excitations are ultrarelativistic and thus effectively massless. In such
a case, that is when the rest mass is negligible compared to the total energy, i.e.
when

m2
0

2ω2 ≪ 1 , (1.49)

(where ω(p) is the energy) we expect p ≈ ω, so that we can linearize the dif-
ferential operators appearing in the equations of motion. In particular, we can
linearize the operator −□ (in the frequency space) as

ω2 + ∂2
z = (ω + i∂z)(ω − i∂z) = (ω + p)(ω − i∂z) ≈ 2ω(ω − i∂z) . (1.50)

Considering the conditions above, the field solutions to the equations of motion
will be plane waves with an energy dependence eiωt and a spatial dependence
e−ipz. Isolating the time-dependence as

Aµ(t, z) = Aµ(z)eiωt , (1.51a)
ϕ(t, z) = ϕ(z)eiωt . (1.51b)

and plugging the linearized operator above into the equations of motion, we have
for the scalar equation of motion

[−2ω(ω − i∂z) +m2
0]ϕ = 1

2g0F
ext
µν (∂µAν − ∂νAµ) (1.52a)(︃

− ω + i∂z + m2
0

2ω

)︃
ϕ = g0

4ωF
µν
ext(∂µAν − ∂νAµ) (1.52b)(︃

− ω + i∂z + m2
0

2ω

)︃
ϕ = 2 g0

4ωF
µν
ext∂µAν (1.52c)(︃

− ω + i∂z + m2
0

2ω

)︃
ϕ = − g0

2ωBT∂zA⊥ , (1.52d)

(where, in the last step, we have used that ∂1A2 = 0 because there is no x-
dependence) that is

0 =
(︃

− ω + i∂z + m2
0

2ω

)︃
ϕ+ g0

2ωBT∂zA⊥ . (1.53)

For the photon equation of motion we have

0 = □Aν − g0F
µν
ext∂µϕ (1.54a)

0 = □Aν − g0(F 0ν
ext∂tϕ+ F 3ν

ext∂zϕ) . (1.54b)

From this, we can get four equations, one for each ν. With ν = 0, 3 as we have
extensively discussed in the previous section, there are no associated propagating
degrees of freedom. On the other hand, for ν = 1 (∥) we get

0 = □A∥ (1.55a)
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0 = 2ω(ω − i∂z)A∥ (1.55b)
0 = (ω − i∂z)A∥ , (1.55c)

while for the polarization ν = 2 (that is, ⊥), we similarly get

0 = −□A⊥ − g0F
32
ext∂zϕ (1.56a)

0 = 2ω(ω − i∂z)A⊥ + g0BT∂zϕ (1.56b)

0 = (ω − i∂z)A⊥ + g0BT

2ω ∂zϕ . (1.56c)

In summary, at this stage, the evolution of the coupled system of the EM and
scalar fluctuations is dictated by the equations

0 =
(︃

− ω + i∂z + ∆0

)︃
ϕ+ g0

2ωBT∂zA⊥ , (1.57a)

0 = (ω − i∂z)A⊥ + g0BT

2ω ∂zϕ , (1.57b)

as well as by the equation

0 = (ω − i∂z)A∥ (1.58)

for the (decoupled) polarization A∥. Note that we have introduced the notation

∆0 = m2
0

2ω (1.59)

for the mass term in the scalar equation of motion.

1.1.5 Environmental effects and vacuum polarization
In general, as we have already discussed above, we should allow for the medium,
in which the EM modes A∥ and A⊥ propagate, to have a non-trivial refractive
index due to interaction with matter. Moreover, upon turning on a background
magnetic field, it turns out, that the two modes A∥ and A⊥ will be subject to
slightly different values of this refractive index, which we will denote by n∥ and
n⊥.

The contribution to this birefringence due to the interaction with matter is
called the Cotton-Mouton effect and is sensitive to a non-zero transverse external
magnetic field BT. Furthermore, even in the case, when we could completely
evacuate the region around the beam so that it does not interact with any ex-
ternal matter, the non-zero background magnetic field will polarize the vacuum
through the (1-loop effective) Euler-Heisenberg lagrangian (1.5) so that one ob-
tains differing contributions to both n∥ and n⊥. In other words, in the presence
of an external magnetic field, the vacuum itself becomes a birefringent medium
[39, 41].

For the sake of completeness, let us also mention that a non-zero longitudinal
magnetic field BL would have given rise to off-diagonal terms mixing the two
transverse polarizations A∥ and A⊥ through the Faraday effect [42]. However,
we have to bear in mind the kind of applications we will consider later on: 1.
in laboratory experiments, we can always arrange for BL = 0 exactly, so that
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the Faraday effect does not contaminate the measurements, 2. in astrophysical
environments, we mostly consider propagation of high-energetic photons, where
one would have found this effect to contribute negligibly, as it is significantly
suppressed at high values of ω. We will therefore neglect contributions due to the
Faraday effect from now on.

Let us now quantify the above-described effects. Assuming both n∥ and n⊥
to be close to unity, it will be convenient to introduce the parametrization

n∥ = 1 + ∆∥

ω
, (1.60a)

n⊥ = 1 + ∆⊥

ω
, (1.60b)

where ∆∥ ≪ ω, as well as ∆⊥ ≪ ω. The ∆-parameters will then enter the EM
equations of motion in a similar manner as the mass parameter ∆0 in the scalar
equation of motion. In particular, we will end up with the coupled system of
equations of motion

ϕ : 0 = (ω − i∂z − ∆0)ϕ− g0

2ωBT∂zA⊥ , (1.61a)

∥ : 0 = (ω − i∂z + ∆∥)A∥ , (1.61b)

⊥ : 0 = (ω − i∂z + ∆⊥)A⊥ + g0BT

2ω ∂zϕ . (1.61c)

As suggested above, we will take into account two main contributions to the ∆-
parameters for the EM fluctuations: due to interactions with matter (typically a
near-vacuum gas) and due to vacuum birefringence. Namely, we will write

∆∥ = ∆(gas)
∥ + ∆(vac)

∥ , (1.62a)

∆⊥ = ∆(gas)
⊥ + ∆(vac)

⊥ . (1.62b)

Mean refractive indices

First the interaction with matter will give rise to a mean refractive index, which
will of course depend on the precise nature and state of the gas the photons
interact with as they propagate through the magnetic field. For instance, in the
case of a laboratory experiment, where the beam passes through an evacuated
chamber with air at pressure 10−9 Pa, one would find [5] a mean refractive index
n with n(gas) − 1 ≃ 10−17. In astrophysical environments, the refractive index
would arise due to the interaction of EM waves with free electrons. One would
then obtain [5]

n(gas) − 1 = −
ω2

p

2ω2 , (1.63)

where

ωp =
√︄
Ne

ε0

e2

me
(1.64)

is the plasma frequency. (By Ne we have denoted the number density of the free
electrons.) Note that for a plasma, one is faced with a refractive index which is
smaller than one, meaning ∆(gas) < 0 and a phase velocity of EM propagation
greater than c. The group velocity of course needs to be smaller then c.
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Cotton-Mouton effect

Introducing a constant transverse background magnetic field BT will generally
give rise to a non-zero difference n(gas)

∥ − n
(gas)
⊥ . In the case of neutral gases, this

satisfies [5]

n
(gas)
∥ − n

(gas)
⊥ = 2πc

ω
CB2

T , (1.65)

where C is the material-dependent Cotton-Mouton constant. For example, in
the case of air evacuated down to a pressure of 10−9 Pa, one would find [5] the
value C = −5 × 10−20 T−2 m−1. For a laser beam at energy ℏω = 2.4 eV (about
520 nm) and a magnetic field BT = 10 T, one would obtain n

(gas)
∥ − n

(gas)
⊥ of the

order 10−24, a very small number indeed.

Birefringence in plasma

On the other hand, in media where the EM waves interact with free electrons,
one obtains [43] (in the limit ω ≫ ωp and ω ≫ ωc)

n
(gas)
∥ − n

(gas)
⊥ =

ω2
p

2ω2
ω2

c
ω2 , (1.66)

where

ωc = eBT

me
(1.67)

is the cyclotron frequency of the background transverse magnetic field.

Vacuum birefringence

Finally, as we have advertised, the refractive indices n∥ and n⊥ receive non-zero
contributions even in pure vacuum. These are due to loop effects in QED. Let
us now discuss deriving these contributions starting from the Euler-Heisenberg
lagrangian (1.5) [5, 40]. First, varying the corresponding term in the action with
respect to the EM potential Aµ, we obtain

δ
∫︂
d4xLEH = α2

90m4
e
δ
∫︂
d4x

[︃(︂
FµνF

µν
)︂2

+ 7
4
(︂
FµνF̃

µν
)︂2
]︃

(1.68a)

= α2

90m4
e

∫︂
d4x

[︃
4FµνF

µνFαβδFαβ+

+ 7
2FµνF̃

µν
ϵαβρσFρσδFαβ

]︃
(1.68b)

= − α2

90m4
e

∫︂
d4x δAβ ∂α

[︃
8FµνF

µνFαβ+

+ 7FµνF̃
µν
ϵαβρσFρσ

]︃
(1.68c)

The Euler-Heisenberg lagrangian therefore contributes with a total divergence
term

− α2

90m4
e
∂α

[︃
8FµνF

µνFαβ + 14FµνF̃
µν
F̃

αβ
]︃

(1.69)
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into the EM equations of motion. We will now linearize this term around the
constant magnetic background (Fext)µν . First, we obtain

− α2

90m4
e
∂α

[︃
16Fµν(Fext)µν(Fext)αβ + 8(Fext)µν(Fext)µνFαβ+

+ 28Fµν(F̃ ext)µν(F̃ ext)αβ + 14(Fext)µν(F̃ ext)µνF̃
αβ
]︃
. (1.70)

We then recall that in the absence of the background electric field, we have already
shown in (1.27) that (F̃ ext)µν(Fext)µν = 0. Substituting

(F ext)µνF ext
µν = 2(B2

L +B2
T) , (1.71)

and using the Lorentz gauge condition (1.37) we can further manipulate the
linearized Euler-Heisenberg contribution (1.70) to the the EM equations of motion
into

− α2

90m4
e

[︃(︂
32(Fext)µν(Fext)αβ + 56(F̃ ext)µν(F̃ ext)αβ

)︂
∂α∂µAν+

+ 16(B2
L +B2

T)□Aβ
]︃
. (1.72)

Since the Euler-Heisenberg contribution represents already a small effect, we can
safely put □Aβ ≈ 0. The remaining two terms can be explicitly evaluated case
by case for β = 1 and β = 2 using the explicit form (1.14) of (Fext)µν and the
fact that there is no x and y dependence in the plane wave solution (1.36). For
β = 1, we eventually obtain the contribution

− 28α2

45m4
e
(F̃ ext)01(F̃ ext)01∂0∂0A1 = 28α2

45m4
e
(BT)2ω2A∥ (1.73)

into the A∥ equation of motion. Similarly, for β = 2, one obtains that the EH
effective term contributes into the A⊥ equation of motion with

− 16α2

45m4
e
(Fext)32(Fext)32∂3∂3A2 = 16α2

45m4
e
(BT)2ω2A⊥ . (1.74)

Hence, we can identify

n
(vac)
∥ − 1 =

∆(vac)
∥

ω
= 14α2

45m4
e
(BT)2 = 7

2ξ(BT) , (1.75a)

n
(vac)
⊥ − 1 = ∆(vac)

⊥
ω

= 8α2

45m4
e
(BT)2 = 4

2ξ(BT) , (1.75b)

where the parameter

ξ(BT) = α

45π

(︃
BT

Bcrit

)︃2
(1.76)

is defined in terms of the critical magnetic field [5]

Bcrit = m2
ec

2

eℏ
≃ 4.42 × 109 T . (1.77)
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In particular, we confirm that vacuum “polarized” by an external transverse mag-
netic field BT behaves as a birefringent medium, as the difference

n
(vac)
∥ − n

(vac)
⊥ = 3

2ξ(BT) = α

30π

(︃
BT

Bcrit

)︃2
(1.78)

is clearly non-zero. In a possibly-achievable laboratory setup with BT ≃ 10 T,
one would obtain a very small refractive-index difference n(vac)

∥ −n(vac)
⊥ of the order

10−22. While this is still an extremely small number, we note that it represents
an effect which is about 100 times larger than the matter Cotton-Mouton effect
computed above for an evacuated air chamber and ℏω = 2.4 eV. At the same time,
for neutron stars, whose magnetic fields are typically comparable with Bcrit, we
can see that the vacuum birefringence becomes a significant effect.

1.1.6 Equations of motion in momentum space
Let us finally substitute for the momentum dependence of the plane wave solution.
We will therefore substitute

A∥(z) = A∥(p)e−ipz , (1.79a)
A⊥(z) = A⊥(p)e−ipz , (1.79b)
ϕ(z) = ϕ(p)e−ipz . (1.79c)

We will first focus on the ∥ photon equation of motion, which can be written as

0 = ωe−ipzA∥(p) − pe−ipzA∥(p) + ∆∥e
−ipzA∥(p) , (1.80a)

0 = (ω − p+ ∆∥)e−ipzA∥(p) , (1.80b)

that is
0 = (ω − p+ ∆∥)A∥(p) . (1.81)

Let us now repeat the process also for the other two equations. The equation for
ϕ gives

0 =
[︃
(−ω + p+ m2

0
2ω )ϕ(p) − i

g0BT

2ω pA⊥(p)
]︃
e−ipz , (1.82)

that is
0 =

(︃
− ω + p+ m2

0
2ω

)︃
ϕ(p) − i

g0BT

2ω pA⊥(p) . (1.83)

Finally, for A⊥ we get

0 = (ω − p+ ∆⊥)A⊥(p) − i
g0BT

2ω pϕ(p) . (1.84)

Note that the equations for ⊥ and ϕ can be written in matrix form as(︄
0
0

)︄
=
(︄
ω − p− ∆0 +iap

−iap ω − p+ ∆⊥

)︄(︄
ϕ(p)
A⊥(p)

)︄
(1.85a)(︄

0
0

)︄
=
(︄
ω − p− ∆0 ap

ap ω − p+ ∆⊥

)︄(︄
ϕ(p)
iA⊥(p)

)︄
, (1.85b)
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where we have denoted

a = g0BT

2ω . (1.86)

Relabelling iA⊥ → A⊥ and recalling also the equation for A∥ this finally gives
the mixing equations

0 = (ω − p+ ∆∥)A∥(p) , (1.87a)(︄
0
0

)︄
=
(︄
ω − p− ∆0 ap

ap ω − p+ ∆⊥

)︄(︄
ϕ(p)
A⊥(p)

)︄
. (1.87b)

We observe that the parallel polarization A∥ of the photon decouples and propa-
gates independently without getting mixed with the scalar and the perpendicular
photon polarization A⊥.

1.2 Searching for mass eigenstates
To determine the possible values of p of the remaining mixture of ϕ and A⊥ in
terms of the energy ω, we use the condition that the determinant of the matrix

M(p) =
(︄
ω − p− ∆0 ap

ap ω − p+ ∆⊥

)︄
(1.88)

appearing in (1.87b) has to be zero in order for the equation (1.87b) to have solu-
tions. This will give us some relations of the form p1(ω) and p2(ω). These should
then be interpreted as the mass-shell (dispersion) relations for two independently-
propagating particle species which arise from the mixture of the scalar and the
perpendicular photon polarization A⊥. On the other hand the A∥ polarization
already propagates as a mass eigenstate with dispersion relation

p∥(ω) = ω + ∆∥ , (1.89)

since it decouples from the rest and does not participate in the oscillations. As a
result, the evolution of the A∥ mode as it propagates through the magnetic field,
is simply given as

A∥(z) = A∥(0)e−i(ω+∆∥)z = A∥(0)e−iωn∥z . (1.90)

1.2.1 Diagonalization of M(p)
First, note that for the determinant of M(p), we can write

detM = (ω − p− ∆0)(ω − p+ ∆⊥) − a2p2 (1.91a)
= (ω − p)2 + p(∆0 − ∆⊥) − ∆0∆⊥ − a2p2 (1.91b)
= (1 − a2)p2 + p(∆0 − ∆⊥ − 2ω) − ∆0∆⊥ + ω2 + ω(∆⊥ − ∆0) . (1.91c)

Let p1(ω) and p2(ω) be the two solutions of the equation

detM = 0 . (1.92)

21



These give the dispersion relations

2(1 − a2)p1(ω) = 2ω + ∆⊥ − ∆0 −
√
D , (1.93a)

2(1 − a2)p2(ω) = 2ω + ∆⊥ − ∆0 +
√
D , (1.93b)

where D is the discriminant. We will shortly see that it will prove useful to note
the corresponding Vieta’s formulae

(1 − a2)p1p2 = ω2 + ω(∆⊥ − ∆0) − ∆0∆⊥ , (1.94a)
(1 − a2)(p1 + p2) = 2ω + ∆⊥ − ∆0 . (1.94b)

It is then straightforward to see that the solutions (ϕ(1), A
(1)
⊥ ) and (ϕ(2), A

(2)
⊥ ) of

(1.87b) which correspond to p1 and p2 satisfy

A
(1)
⊥

ϕ(1) = −ap1

ω − p1 + ∆⊥
≡ − tan Θ1 , (1.95a)

ϕ(2)

A
(2)
⊥

= −ap2

ω − p2 − ∆0
≡ + tan Θ2 . (1.95b)

The definition of the angles Θ1 and Θ2 is such that they measure the angular
distance (in the ϕ − A⊥ flavour space) of the solution 1 to the pure scalar state
(1, 0) and of the solution 2 to the pure photon state (0, 1). In other words, the
directions in the flavour space corresponding to the two mass eigenstates with
the dispersion relations (1.93) are given by the normalized vectors

e1 = 1√︂
1 + tan2 Θ1

(︄
1

− tan Θ1

)︄
, e2 = 1√︂

1 + tan2 Θ2

(︄
tan Θ2

1

)︄
. (1.96)

The z-dependence of a generic plane-wave solution involving the scalar and ⊥-
photon polarization can then be written as a linear combination of the two mass-
eigenstates, namely(︄

ϕ(z)
A⊥(z)

)︄
= C1e1e

−ip1z + C2e2e
−ip2z , (1.97a)

= C1√︂
1 + tan2 Θ1

(︄
1

− tan Θ1

)︄
e−ip1z+

+ C2√︂
1 + tan2 Θ2

(︄
tan Θ2

1

)︄
e−ip2z (1.97b)

for some constants C1, C2. Assuming that the system was prepared in an initial
state (︄

ϕ(0)
A⊥(0)

)︄
(1.98)

at z = 0, we obtain conditions

ϕ(0) = C1√︂
1 + tan2 Θ1

+ C2 tan Θ2√︂
1 + tan2 Θ2

, (1.99a)
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A⊥(0) = − C1 tan Θ1√︂
1 + tan2 Θ1

+ C2√︂
1 + tan2 Θ2

, (1.99b)

that is

C1 =

√︂
1 + tan2 Θ1

1 + tan Θ1 tan Θ2

[︂
ϕ(0) − A⊥(0) tan Θ2

]︂
, (1.100)

C2 = +

√︂
1 + tan2 Θ2

1 + tan Θ1 tan Θ2

[︂
A⊥(0) + ϕ(0) tan Θ1

]︂
. (1.101)

Altogether, we therefore find that the evolution of the ϕ–A⊥ system with generic
initial conditions ϕ(0) and A⊥(0) is described by the solution(︄

ϕ(z)
A⊥(z)

)︄
=

= 1
1 + tan Θ1 tan Θ2

(︄
1

− tan Θ1

)︄ [︂
ϕ(0) − A⊥(0) tan Θ2

]︂
e−ip1(ω)z+

+ 1
1 + tan Θ1 tan Θ2

(︄
tan Θ2

1

)︄ [︂
A⊥(0) + ϕ(0) tan Θ1

]︂
e−ip2(ω)z . (1.102)

At the same time, we recall that for the decoupled polarization A∥(z), we simply
obtain

A∥(z) = A∥(0)e−iωn∥z . (1.103)

1.2.2 Transfer matrix
We can notice that the evolution equations (1.102) and (1.103) can be recast
in a form familiar from quantum mechanics. Introducing a combined amplitude
(“wave function” or “state”) in the three-dimensional A∥–ϕ–A⊥ flavour space as

Ψ(z) =

⎛⎜⎝A∥(z)
ϕ(z)
A⊥(z)

⎞⎟⎠ , (1.104)

the evolution of the system, as it propagates in the external magnetic field, can
be succinctly expressed as

Ψ(z) = U(z, 0)Ψ(0) , (1.105)

where we have introduced the unitary transfer matrix (or operator)

U(z, 0) = U∥(z, 0)U⊥(z, 0) . (1.106)

The matrix U∥(z, 0) acts only on the A∥ subsystem and is simply identified as

U∥(z, 0) =

⎛⎜⎝e
−ip∥(ω)z 0 0

0 1 0
0 0 1

⎞⎟⎠ , (1.107)
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while for U⊥(z, 0), we have to write

U⊥(z, 0) =

⎛⎜⎜⎝
1 0 0
0
0

U(z, 0)

⎞⎟⎟⎠ , (1.108)

where the 2 by 2 submatrix U(z, 0) reads

U(z, 0) = 1
1 + tan Θ1 tan Θ2

×

×
(︄
e−ip1z + e−ip2z tan Θ1 tan Θ2 (e−ip2z − e−ip1z) tan Θ2

(e−ip2z − e−ip1z) tan Θ1 e−ip2z + e−ip1z tan Θ1 tan Θ2

)︄
. (1.109)

The unitarity of U(z, 0) (and hence the unitarity of U(z, 0)) can be checked to
hold as the consequence of relations satisfied by p1(ω), p2(ω), as well as Θ1,Θ2.

1.2.3 A⊥–ϕ oscillations
It follows that given the system (beam) was prepared at z = 0 in a state Ψ(0) ≡
Ψi, then the probability P (Ψi → Ψf), that we will measure a state Ψ(z) ≡ Ψf in
the beam after the beam has travelled over a distance z through the magnetic
field, can be computed as

P (Ψi → Ψf) = |Ψ†
f U(z, 0)Ψi|2

|Ψf |2|Ψi|2
. (1.110)

For instance, one could be interested in the (transition) probability that one will
find a scalar mode

Ψϕ =

⎛⎜⎝0
1
0

⎞⎟⎠ (1.111)

in a beam, which was initially prepared in a (normalized) pure-photon state

ΨA = 1√︂
|A∥(0)|2 + |A⊥(0)|2

⎛⎜⎝A∥(0)
0

A⊥(0)

⎞⎟⎠ . (1.112)

We obtain

(Ψϕ)†U(z, 0)ΨA =

= 1√︂
|A∥(0)|2 + |A⊥(0)|2

⎛⎜⎝0
1
0

⎞⎟⎠
†

U(z, 0)

⎛⎜⎝A∥(0)
0

A⊥(0)

⎞⎟⎠ (1.113a)

= 1√︂
|A∥(0)|2 + |A⊥(0)|2

1
1 + tan Θ1 tan Θ2

×

×

⎛⎜⎝0
1
0

⎞⎟⎠
†⎛⎜⎝ A∥(0)e−ip∥(ω)z(1 + tan Θ1 tan Θ2)

A⊥(0)(e−ip2z − e−ip1z) tan Θ2
A⊥(0)(e−ip2z + e−ip1z tan Θ1 tan Θ2)

⎞⎟⎠ (1.113b)
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= A⊥(0)√︂
|A∥(0)|2 + |A⊥(0)|2

tan Θ2

1 + tan Θ1 tan Θ2
(e−ip2z − e−ip1z) , (1.113c)

that is, using the fact that the two states ΨA and Ψϕ defined in (1.112) and
(1.111) were already normalized, we get the transition probability

P (ΨA → Ψϕ; z) =

= |(Ψϕ)†U(z, 0)ΨA|2 (1.114a)

= (A⊥(0))2

(A∥(0))2 + (A⊥(0))2
4 tan2 Θ2

(1 + tan Θ1 tan Θ2)2 sin2 (p1 − p2)z
2 . (1.114b)

This can be directly interpreted as a (measurable) relative decrease in the in-
tensity of the photon component of the beam. We can see that P (ΨA → Ψϕ; z)
oscillates with length losc = 2π

p1−p2
: indeed, while the transition probability in-

creases from 0 as we increase z to reach a maximum at z = losc/2, it will again
fall to zero when z is an integer multiple of losc. This behaviour is a direct con-
sequence of having initially prepared the system in a state which was not a pure
mass eigenstate of the system in a background magnetic field – situation which
is quite analogous to the well known case of neutrino oscillations. As expected,
the amplitude of these oscillations is maximized when A∥(0) = 0, because the
parallel polarization does not mix with the scalar. Also, since the transfer matrix
U(z, 0) is unitary, the probability of measuring any photon state in the beam is
simply equal to 1 − P (ΨA → Ψϕ).

1.2.4 Simplification of the transfer matrix
Our objective now will be to simplify the above derived expressions for the mix-
ing angles and the dispersion relations p1(ω), p2(ω) given that most efficient
mixing between the photon and the scalar should take place in the ultrarelativis-
tic regime. Based on the simplified formulae derived in this section, we will then
work through two interesting limits of the mixing angle.

To this end, let us first denote

ϵ = g0BT

m0
. (1.115)

where we recall that for large enough m0 (grater than 1/L), we need to assume
that ϵ ≪ 1 in order for g0ϕ

ext ≪ 1 and hence in order for the perturbative
lagrangian description to be valid. On the other hand, in the regime m0 ≤ 1/L
(which is relevant for the limit m0 → 0), we would need to assume g0BTL ≪ 1.

Let us then consider the discriminant D of the quadratic equation

0 = (1 − a2)p2 + p(∆0 − ∆⊥ − 2ω) − ∆0∆⊥ + ω2 + ω(∆⊥ − ∆0) (1.116)

resulting from the condition that the determinant of M(p) needs to vanish. We
can first manipulate it as

D = (∆0 − ∆⊥ − 2ω)2 − 4(1 − a2)(ω(∆⊥ − ∆0) + ω2 − ∆0∆⊥) (1.117a)
= 4ω2 + (∆0 − ∆⊥)2 − 4ω(∆0 − ∆⊥) − 4ω2 + 4∆0∆⊥+
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− 4ω(∆⊥ − ∆0) + 4a2(ω(∆⊥ − ∆0) + ω2 − ∆0∆⊥) (1.117b)
= (∆0 − ∆⊥)2 + 4∆0∆⊥ + 4a2(ω(∆⊥ − ∆0) + ω2 − ∆0∆⊥) (1.117c)

= (∆0 + ∆⊥)2 + 4ω2a2
(︃

1 + ∆⊥ − ∆0

ω
− ∆0∆⊥

ω2

)︃
. (1.117d)

We will now analyze the magnitudes of the individual terms. In particular, we
have

(∆0 + ∆⊥)2 ∼ ∆2

ω2 ω
2 , (1.118a)

4a2ω2 ∼ ϵ2 ∆
ω
ω2 , (1.118b)

4a2ω2 ∆⊥ − ∆0

ω
∼ ∆2

ω2 ϵ
2ω2 , (1.118c)

4a2ω2 ∆0∆⊥

ω2 ∼ ∆2

ω2 ϵ
2 ∆
ω
ω2 . (1.118d)

We can therefore see that in the ultrarelativistic limit (1.49), which we now write
as

∆
ω

≪ 1 , (1.119)

(where ∆ can be any of ∆0,∆⊥,∆∥) we can safely neglect the third and the fourth
term in (1.118) compared to the first two (whose relative size will depend on the
ratio of (∆/ω) and ϵ2 and will be discussed below). Hence, we can approximately
write

D ≈ (∆0 + ∆⊥)2 + 4ω2a2 (1.120a)

= ω2
[︃
4a2 +

(︃∆0 + ∆⊥

ω

)︃2]︃
, (1.120b)

that is

√
D ≈ ω

√︄
4a2 +

(︃∆0 + ∆⊥

ω

)︃2
. (1.121)

Also note that

a = g0BT

2ω = ϵ
m0

2ω , (1.122)

meaning that we automatically get a ≪ 1 in the regime m0 ≫ 1/L due to the
relativistic approximation and the consistency condition ϵ ≪ 1. In the regime
m0 ≤ 1/L, it is useful to note that

a = g0BTL
1

2ωL , (1.123)

where g0BTL ≪ 1 due to perturbative consistency of the lagrangian and 1/(ωL) =
λ/L ≪ 1, so that a large number of waves can fit inside the region with non-zero
background magnetic field. Hence, in both regimes we get

a ≪ 1 . (1.124)
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For the solutions p1 and p2, we therefore have

p1 ≈
(︃
ω + ∆⊥ − ∆0 −

√
D

2

)︃
(1 + a2) (1.125a)

≈ ω + ∆⊥ − ∆0 −
√
D

2 + a2ω , (1.125b)

where we have neglected products of small quantities. Similarly we have

p2 = ω + ∆⊥ − ∆0 +
√
D

2 + a2ω . (1.126)

Multiplying by a, we can therefore drop everything except for the leading contri-
bution, namely

ap1 ≈ aω , (1.127a)
ap2 ≈ aω . (1.127b)

Finally, we can establish

−(ω − p1 + ∆⊥) = a2ω + ∆⊥ − ∆0 −
√
D

2 − ∆⊥ (1.128a)

= a2ω − ∆0 + ∆⊥

2 −
√
D

2 (1.128b)

≈ ω

[︄
− 1

2

√︄
4a2 +

(︃∆0 + ∆⊥

ω

)︃2
− 1

2
∆0 + ∆⊥

ω
+ a2

]︄
(1.128c)

= 1
2(∆0 + ∆⊥)

[︄
−

⌜⃓⃓⎷1 + 4a2ω2

(∆0 + ∆⊥)2 −1+ a
2aω

∆0 + ∆⊥

]︄
(1.128d)

and similarly

(ω − p2 − ∆0) ≈ 1
2(∆0 + ∆⊥)

[︃
−

⌜⃓⃓⎷1 + 4a2ω2

(∆0 + ∆⊥)2 − 1 − a
2aω

∆0 + ∆⊥

]︃
. (1.129)

Recalling that we have defined

tan Θ1 = − ap1

−(ω − p1 + ∆⊥) , (1.130a)

tan Θ2 = − ap2

ω − p2 − ∆0
, (1.130b)

we therefore obtain

tan Θ1 ≈ − 2aω
∆0 + ∆⊥

1
−
√︂

1 + 4a2ω2

(∆0+∆⊥)2 − 1 + a 2aω
∆0+∆⊥

, (1.131a)

tan Θ2 ≈ − 2aω
∆0 + ∆⊥

1
−
√︂

1 + 4a2ω2

(∆0+∆⊥)2 − 1 − a 2aω
∆0+∆⊥

. (1.131b)
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Hence, denoting

y ≡ 2aω
∆0 + ∆⊥

= g0BT

∆0 + ∆⊥
, (1.132)

we can rewrite (1.131) as

tan Θ1 ≈ y√
1 + y2 + 1 − ay

, (1.133a)

tan Θ2 ≈ y√
1 + y2 + 1 + ay

. (1.133b)

1.2.5 Mixing limits
We will now distinguish two limits depending on the value of the parameter y:
the small mixing scenario, which arises for y ≪ 1 and the large mixing scenario
y ≫ 1.

Small mixing

Let us first assume y ≪ 1, that is g0BT ≪ ∆0 + ∆⊥. This gives

tan Θ1 ≈ tan Θ2 ≈ y

2 = 1
2

g0BT

∆0 + ∆⊥
≪ 1 , (1.134)

meaning that this lands us at the regime of small mixing between the scalar and
the A⊥ polarization of the photon. The square-root of the discriminant can now
be manipulated as

√
D ≈ ω

√︄
4a2 +

(︃∆0 + ∆⊥

ω

)︃2
(1.135a)

= (∆0 + ∆⊥)
√︂

1 + y2 (1.135b)

≈ (∆0 + ∆⊥)
(︃

1 + y2

2

)︃
. (1.135c)

For the solution p1, we therefore obtain

p1 = ω + ∆⊥ − ∆0 −
√
D

2 + a2ω (1.136a)

≈ ω +
∆⊥ − ∆0 − (∆0 + ∆⊥)(1 + y2

2 )
2 + a2ω (1.136b)

= ω − ∆0 − y2

4 (∆0 + ∆⊥) + a2ω . (1.136c)

Finally, substituting a2 = g2
0B2

T
4ω2 and using the relativistic approximation (1.119),

we end up with

p1 = ω − ∆0 − 1
4

g2
0B

2
T

∆0 + ∆⊥
+ 1

4
g2

0B
2
T

ω
(1.137a)

≈ ω − ∆0 − 1
4

g2
0B

2
T

∆0 + ∆⊥
. (1.137b)
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Similarly, we have

p2 = ω + ∆⊥ − ∆0 +
√
D

2 + a2ω (1.138a)

≈ ω +
∆⊥ − ∆0 + (∆0 + ∆⊥)(1 + y2

2 )
2 + a2ω (1.138b)

= ω + ∆⊥ + y2

4 (∆0 + ∆⊥) + a2ω (1.138c)

= ω + ∆⊥ + 1
4

g2
0B

2
T

∆0 + ∆⊥
+ 1

4
g2

0B
2
T

ω
(1.138d)

≈ ω + ∆⊥ + 1
4

g2
0B

2
T

∆0 + ∆⊥
. (1.138e)

In total, in the small-mixing scenario we obtain the dispersion relations

p1(ω) = ω − ∆0 − 1
4

g2
0B

2
T

∆0 + ∆⊥
, (1.139a)

p2(ω) = ω + ∆⊥ + 1
4

g2
0B

2
T

∆0 + ∆⊥
(1.139b)

for the scalar-like and the photon-like particles, with the mixing angle

Θ1 ≈ Θ2 ≈ Θ = 1
2

g0BT

∆0 + ∆⊥
. (1.140)

Note that by introducing the mass parameter

b ≡ ∆0 + ∆⊥ , (1.141)

we can rewrite the dispersion relations (1.139) using the refractive index n⊥
(which was defined by (1.60b)) as

p1(ω) = ωn⊥ − b(1 + Θ2) , (1.142a)
p2(ω) = ωn⊥ + bΘ2 . (1.142b)

The directions in the flavour space corresponding to the two mass eigenstates are
specified by the normalized vectors

e1 = 1√
1 + Θ2

(︄
1

−Θ

)︄
, e2 = 1√

1 + Θ2

(︄
Θ
1

)︄
, (1.143)

respectively. These can be used to write down the general solution for the ϕ–A⊥
oscillations in the small-mixing scenario

eiωn⊥z

(︄
ϕ(z)
A⊥(z)

)︄
= 1

1 + Θ2

(︄
1

−Θ

)︄ [︂
ϕ(0) − A⊥(0)Θ

]︂
eib(1+Θ2)z+

+ 1
1 + Θ2

(︄
Θ
1

)︄ [︂
A⊥(0) + ϕ(0)Θ

]︂
e−ibΘ2z . (1.144)

The corresponding sub-matrix U(z, 0) of the full transfer matrix U(z, 0) for the
combined A∥–ϕ–A⊥ system (see (1.108) for definitions and discussion) therefore
reads

U(z, 0) = e−iωn⊥z

1 + Θ2

(︄
eib(1+Θ2)z + Θ2e−ibΘ2z Θ(e−ibΘ2z − eib(1+Θ2)z)
Θ(e−ibΘ2z − eib(1+Θ2)z) Θ2eib(1+Θ2)z + e−ibΘ2z

)︄
, (1.145)
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whose unitarity can be explicitly checked. This enables to rewrite (1.144) as(︄
ϕ(z)
A⊥(z)

)︄
= U(z, 0)

(︄
ϕ(0)
A⊥(0)

)︄
. (1.146)

Substituting this into the expressions (1.108) and (1.106) for the transition ma-
trix, one then obtains the transition probability P (ΨA → Ψϕ; z) as

P (ΨA → Ψϕ; z) =

= 1
|A∥(0)|2 + |A⊥(0)|2

⃓⃓⃓⃓
⃓⃓⃓⃓
⎛⎜⎝0

1
0

⎞⎟⎠
†

U(z, 0)

⎛⎜⎝A∥(0)
0

A⊥(0)

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
2

(1.147a)

= 1
|A∥(0)|2 + |A⊥(0)|2

1
(1 + Θ2)2 ×

×

⃓⃓⃓⃓
⃓⃓⃓⃓
⎛⎜⎝0

1
0

⎞⎟⎠
†⎛⎜⎝ e−iωn∥zA∥(0)(1 + Θ2)

e−iωn⊥zΘ(e−ibΘ2z − eib(1+Θ2)z)A⊥(0)
e−iωn⊥z(Θ2eib(1+Θ2)z + e−ibΘ2z)A⊥(0)

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
2

(1.147b)

≈ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 4Θ2 sin2 bz

2 (1.147c)

where we have kept only leading terms in the (small) mixing angle Θ. (This also
corresponds to a relative decrease in the intensity of the photon component of
the beam.) Again, we observe that the probability P (ΨA → Ψϕ; z) (which is the
same as the relative intensity of the scalar component of the beam) oscillates with
length

losc = 2π
b

= 2π
∆0 + ∆⊥

. (1.148)

The amplitude of these oscillations is maximized when A∥(0) = 0 (i.e. no admix-
ture of the parallel polarization which does not contribute to the mixing). This
maximal value first occurs for z = losc/2 and is simply given by the mixing angle
as

Pmax(ΨA → Ψϕ) = 4Θ2 =
(︃

g0BT

∆0 + ∆⊥

)︃2
. (1.149)

Focusing on the case when A∥(0) = 0, if our measurements are carried out over a
sufficiently large length scale z ≫ losc, one will find a mean transition probability
(relative decrease of photon intensity)

⟨P (ΨA⊥ → Ψϕ; z)⟩ = 2Θ2 = 1
2

(︃
g0BT

∆0 + ∆⊥

)︃2
. (1.150)

On the other hand, for z ≪ losc, the transition probability can be well approxi-
mated as

P (ΨA⊥ → Ψϕ; z) ≈ Θ2b2z2 = 1
4g

2
0B

2
Tz

2 . (1.151)

In this limit, the transition probability therefore becomes insensitive to the mass
m0 of the scalar and the refractive index n⊥. It only depends on the coupling g0.
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Large mixing

We will now on the other hand assume y ≫ 1, that is g0BT ≫ ∆0 + ∆⊥. Note
that in principle, this could be achievable by experimentally tuning

∆⊥ ≈ −∆0 = −m2
0

2ω (1.152)

in materials (such as plasma), where one can arrange for ∆⊥ < 0. Alternatively,
one could arrange for separately having ∆0 ≪ g0BT, as well as |∆⊥| ≪ g0BT.

Reflecting the limit y ≫ 1 on the mixing angles, we obtain

tan Θ1 ≈ −y 1
−y − 1 + ay

≈ 1 , (1.153a)

tan Θ2 ≈ −y 1
−y − 1 − ay

≈ 1 , (1.153b)

meaning that we have

Θ1 ≈ Θ2 = π

4 , (1.154)

namely the case of the maximum mixing. For y ≫ 1, the ϕ-A⊥ mixing problem
therefore becomes precisely analogous to the resonant regime of the Mikheyev-
–Smirnov–Wolfenstein effect in the context of neutrino oscillations in matter.
[44, 45] We then also have

√
D

ω
≈ 2a

√︄
1 + 1

y2 ≈ 2a
(︃

1 + 1
2y2

)︃
, (1.155)

so that the dispersion relations can be rewritten as

p1 = ω + ∆⊥ − ∆0 −
√
D

2 + a2ω (1.156a)

= ω + ∆⊥ − ∆0

2 − aω + a2ω (1.156b)

≈ ω(1 + ∆⊥ − ∆0

2ω − a) (1.156c)

≈ ω(1 − a) , (1.156d)

and similarly

p2 ≈ ω(1 + a) . (1.157)

In total, the maximum mixing is therefore associated with the mass-shell (dis-
persion) relations

p1(ω) = ω(1 − a) , (1.158a)
p2(ω) = ω(1 + a) , (1.158b)

which correspond to the normalized states

e1 = 1√
2

(︄
1

−1

)︄
, e2 = 1√

2

(︄
1
1

)︄
, (1.159)
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in the ϕ−A⊥ flavour space. As we have noted above, this large mixing scenario
arises as a consequence of the resonant condition

∆0 + ∆⊥ ≈ 0 . (1.160)

One of the ways through which this may arise is when we take the separate limits
m0 → 0 and ∆⊥ → 0. We can actually check that performing these limits at
the level of the original momentum-space equations of motion (1.87b), one would
directly obtain the solutions (1.158) for p1(ω) and p2(ω).

Oscillations in the ϕ–A⊥ flavour space are therefore described by the solution

eiωz

(︄
ϕ(z)
A⊥(z)

)︄
= 1

2

(︄
1

−1

)︄ [︂
ϕ(0) − A⊥(0)

]︂
e

1
2 ig0BTz+

+ 1
2

(︄
1
1

)︄ [︂
A⊥(0) + ϕ(0)

]︂
e− 1

2 ig0BTz . (1.161)

which can be again conveniently rewritten as(︄
ϕ(z)
A⊥(z)

)︄
= U(z, 0)

(︄
ϕ(0)
A⊥(0)

)︄
, (1.162)

where the unitary sub-matrix U(z, 0) of the full transfer matrix U(z, 0) reads

U(z, 0) = e−iωz

(︄
cos g0BTz −i sin g0BTz

−i sin g0BTz cos g0BTz

)︄
. (1.163)

Similarly as in the case of large mixing, one can calculate the transition probabil-
ity P (ΨA → Ψϕ; z) as (assuming that the photon beam has no parallel component,
that is A∥(0) = 0, to maximize the transition probability)

P (ΨA⊥ → Ψϕ; z) =

⃓⃓⃓⃓
⃓⃓⃓⃓
⎛⎜⎝0

1
0

⎞⎟⎠
†

U(z, 0)

⎛⎜⎝0
0
1

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
2

= sin2 g0BTz . (1.164)

In contrast to the small-mixing scenario, this time the probability oscillates with
oscillation length

losc = π

g0BT
, (1.165)

with amplitude equal to 1 and is completely insensitive to the mass scale m0 and
the refractive indices of the medium. This means that after the beam travels
through the magnetic field a distance z = losc

2 , the photon component A⊥ of the
beam should completely die out. Provided that the scale of losc is much less than
the extent of the magnetic field, we can average over the oscillations and find
that the mean transition probability is simply 1

2 . However, note that one should
be cautious about this regime, as it fails to satisfy the perturbativity condition
g0BTL ≪ 1 on the validity of the lagrangian (1.1). On the other hand, for
z ≪ losc, we can approximate

P (ΨA⊥ → Ψϕ; z) ≈ g2
0B

2
Tz

2 , (1.166)

which is large by a factor of four than the corresponding result obtained for large
mixing.
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1.3 Observable effects
In this section we will use the results derived up to this point in order to discuss
certain (potentially) observable effects due to the mixing between photons and
ultrarelativistic massive spin-0 particles in an external EM field. We will focus
on the minimal-mixing scenario, as this should be (comparably) less difficult to
achieve in practice.

1.3.1 Effects on photon polarization
Let us start by considering the laboratory setup, where we take a source of linearly
polarized photons (laser beam) and shine them through a magnetic field. We will
now try to exploit the fact that the two photon polarizations A∥ and A⊥ are
affected differently by the mixing with the massive scalar field ϕ.

Let us first recall the experimental configuration, which will be taken to be the
same as we have considered throughout this chapter: we consider a beam photons
propagating along the z axis with the magnetic field having components BT
perpendicular to the z-axis and BL parallel to it. The EM four-potential will have
spatial components lying in the plane perpendicular to the line of propagation:
A1 ≡ A∥ which is parallel to BT and A2 ≡ A⊥, which is perpendicular to BT. We
will assume that the environment in which the photons propagate, has refractive
indices n∥ and n⊥ for the polarizations A∥ and A⊥, respectively. These can be
thought of as arising due to both the presence of free electrons, as well as due to
the effect of vacuum birefringence.

Relative amplitude decrease η(z) and phase delay φ(z)

Clearly, in such a setup, the system is initially prepared in a pure photon state
A∥(0), A⊥(0) and ϕ(0) = 0. After entering the region with the magnetic field
at z = 0, the solution for the ϕ–A⊥ oscillations, as well as for the decoupled
propagation of the A∥ polarization, will therefore read

eiωn∥zA∥(z) = A∥(0) , (1.167a)

eiωn⊥zA⊥(z) = 1
1 + Θ2

[︂
Θ2eib(1+Θ2)z + e−ibΘ2z

]︂
A⊥(0) , (1.167b)

eiωn⊥zϕ(z) = − Θ
1 + Θ2

[︂
e−ibΘ2z − eib(1+Θ2)z

]︂
A⊥(0) . (1.167c)

We observe that as a consequence of the mixing between the A⊥ polarization and
the scalar field ϕ in the magnetic field (as well as due to the refractive indices ∆∥,
∆⊥), the two EM polarizations behave differently as they propagate throught the
region with non-zero BT. In particular, for the ratio of the two EM modes we
obtain

A⊥(z)
A∥(z)

= e−iω(n⊥−n∥)z 1
1 + Θ2

[︂
Θ2eib(1+Θ2)z + e−ibΘ2z

]︂A⊥(0)
A∥(0) . (1.168)

Since we expect the change in this ratio as a function of z to be very small, let
us introduce the parametrization

A⊥(z)
A∥(z)

= A⊥(0)
A∥(0)

[︂
1 − η(z)

]︂
e−iφ(z) , (1.169)
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where η(z) measures the decrease in the amplitude of the A⊥ mode relative to
the A∥ mode while φ(z) represents a phase delay. Assuming both η and φ to be
small this can be rewritten as

A⊥(z)/A⊥(0)
A∥(z)/A∥(0) = 1 − η(z) − iφ(z) . (1.170)

In order for η, φ ≪ 1 to be indeed true, we will first assume that the experiment
is set up so that

ω(n⊥ − n∥)z ≪ 1 . (1.171)

This is crucial in order for the refractive indices of the environment not to cause
decoherence of the two EM polarizations which would obscure the effects due to
the mixing with the scalar field which are to be expected as very small, namely

bΘ2z ≪ 1 . (1.172)

In practice, assuming a conceivable laboratory setup as in section 1.1.5 (with laser
frequency ω = 2.4 eV, transverse magnetic field 10 T and a chamber evacuated
down to a pressure of 10−9 Pa), where we have shown that the vacuum contribu-
tion to birefringence dominates over the matter Cotton-Mouton effect, we would
obtain

ω

c
(n∥ − n⊥) ≃ 10−15 m−1 , (1.173)

so we are safe to assume that (1.171) is valid for any practical value of z. Ex-
panding the r.h.s. of (1.168) using these assumptions, one obtains

A⊥(z)/A⊥(0)
A∥(z)/A∥(0) = 1 − 2Θ2 sin2 bz

2 − iω(n⊥ − n∥)z + iΘ2(sin bz − bz) , (1.174)

so that one can identify the relative decrease in the amplitude η(z) and the phase
delay φ(z) to be

η(z) = 2Θ2 sin2 bz
2 , (1.175a)

φ(z) = ω(n⊥ − n∥)z + Θ2
(︂
bz − sin bz

)︂
. (1.175b)

Moreover, one can also choose to focus on the case when bz ≪ 1. That is to
say, we will assume that the length z is much smaller than the oscillation length
losc = 2π/b, so that the EM wave A⊥ and the scalar wave ϕ remain coherent as
they propagate through the magnetic medium. Notice that these are stronger
conditions than the ones imposed by (1.171) and (1.172). Substituting again
explicitly for our typical laboratory setup as above (recalling from section 1.1.5
that n− 1 ≈ 10−17 for air at pressure 10−9 Pa), we would get

ω

c
(n⊥ − 1) ≃ 10−10 m−1 , (1.176)

so that one can safely assume ∆⊥z ≪ 1 for any values of z relevant for a labora-
tory. If, moreover, the mass of the scalar is small enough as well, so that we can
put bz ≪ 1, the expressions (1.175) then simplify as

η(z) ≈ 1
2Θ2b2z2 , (1.177a)
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φ(z) ≈ ω(n⊥ − n∥)z + 1
6Θ2b3z3 . (1.177b)

On the other hand, if the mass m0 of the scalar were large enough, so that the
length z over which the beam propagates through the magnetic field is much larger
than the oscillation length losc, then harmonic contributions to the expressions
(1.175) average out and we end up with

⟨η(z)⟩ = Θ2 , (1.178a)

⟨φ(z)⟩ = ω(n⊥ − n∥)z + Θ2bz . (1.178b)

Having non-zero η and ϕ results into two observable effects: 1. a rotation by an
angle δθ of the direction in which the linearly polarized EM wave oscillates in
the plane perpendicular to the line of propagation, and, 2. appearance of a small
ellipticity δψ in the linearly polarized EM wave. See also figure 1.3.

Figure 1.3: Rotation of the polarization plane and induced ellipticity of an EM
wave due to mixing.

Rotation δθ(z) and induced ellipticity δψ(z)

In order to quantify these effects, let θ denote the angle which the direction in
which the EM field initially oscillates makes with the direction of the magnetic
field, that is

tan θ = A⊥(0)
A∥(0) . (1.179)

Then, due to the EM wave propagating a distance z in the magnetic field, we
obtain a change

δ(tan θ) = 1
cos2 θ

δθ = −η(z)A⊥(0)
A∥(0) = −η(z) tan θ , (1.180)
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that is

δθ(z) = −η(z) tan θ cos2 θ = −1
2η(z) sin 2θ . (1.181)

Secondly, the induced phase delay φ(z) between the two modes A⊥ and A∥ will
cause EM polarization vector to trace out a very thin ellipse instead of being
linearly polarized (as it was before entering the magnetic field). This minor semi-
axis of this ellipse can be seen to satisfy

Ab ≈ −φA⊥(0) cos θ ≈ −φA∥(0) sin θ , (1.182)

while the major semi-axis is simply

Aa ≈
√︂

|A⊥(0)|2 + |A∥(0)|2 . (1.183)

Defining the induced ellipticity δψ as the ratio

δψ = Ab

Aa

(1.184)

of the shorter and the longer axis of the thin ellipse, we therefore obtain

δψ(z) = −φ(z) cos θ A⊥(0)√︂
|A⊥(0)|2 + |A∥(0)|2

= −1
2φ(z) sin 2θ . (1.185)

Summarizing, having propagated the EM wave a distance z through the region
with the magnetic field, one should observe a rotation δθ(z) of the plane in which
the linearly polarized EM wave oscillates, as well as a small induced ellipticity
δψ(z), which, in terms of the variables of our setup and fundamental constants,
satisfy (under the assumption that the EM waves and the scalar wave do not
decohere, that is z ≪ 1

b
∼ losc)

δθ(z) ≈ − 1
16g

2
0B

2
Tz

2 sin 2θ , (1.186a)

δψ(z) ≈ −1
2(n⊥ − n∥)ωz sin 2θ+

− 1
96
g2

0B
2
Tz

3

ω

[︂
m2

0 + 2(n⊥ − 1)ω2
]︂

sin 2θ . (1.186b)

Notice that both of these measurable quantities are maximized when we set up
our experiment so that θ = π

4 . Also note, that in the coherent limit z ≪ losc, the
rotation δθ is not contaminated by the refractive indices and is independent of the
mass m0 of the scalar. It can therefore be used to directly measure the coupling
constant g0. Also note that n⊥ and ω determine a mass scale (for n⊥ > 1)

mc =
√︂

2(n⊥ − 1)ω , (1.187)

which decides, whether m0 effectively drops out from the ellipticity δψ(z): if
the mass m0 of the scalar is significantly less then mc, the ellipticity cannot be
used to find it out by measurement. Substituting again the values for our typical
laboratory setup (n⊥ − 1 = 10−17, ω = 2.4 eV) one finds mc = 10−8 eV.
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Similarly one could write down the averaged values of δθ and δψ in the case
z ≫ losc, that is

⟨δθ(z)⟩ = −1
2

g2
0B

2
Tω

2

[m2
0 + 2(n⊥ − 1)ω2]2 sin 2θ , (1.188a)

⟨δψ(z)⟩ = −1
2(n⊥ − n∥)ωz sin 2θ − 1

4
g2

0B
2
T

m2
0 + 2(n⊥ − 1)ω2ωz sin 2θ . (1.188b)

Again, we note that if m0 ≪ mc, it drops out from the measurement of both
⟨δθ(z)⟩ and ⟨δψ(z)⟩. Also note, that the average induced ellipticity ⟨δψ(z)⟩ be-
comes linear in z, where the presence of the mixing with the scalar field is felt
through a small change in the slope of this dependence.

1.3.2 Light-shining-through-wall experiments
Another experimental setup which one could envisage is the following: a source of
EM waves (laser beam) is directed towards a concrete wall which stops all photons.
Before hitting the wall, the beam has to pass through a region with magnetic field
with components BL and BT. As a consequence, part of the photons are converted
into the scalar particles which only interact very weakly with the matter the wall
is made of and thus pass through undisturbed to the other side. There the scalar
particles pass through another region of constant magnetic field so that some of
them are converted back to photons and may be detected. We will now quantify
the probability of making a positive measurement of an EM wave on the other
side of the wall.

Initially, let us prepare the system in a pure A⊥ state

Ψi =

⎛⎜⎝0
0
1

⎞⎟⎠ ≡ ΨA⊥ . (1.189)

This is to maximize the fraction of photons converted to the massive scalar par-
ticles, as the A∥ polarization does not participate in the oscillations. After the
beam propagates over a distance z1 through a region with constant magnetic field
BT, the beam will be in a state

U(z1, 0)Ψi . (1.190)

When the beam hits the wall, the EM component will be stopped while the scalar
component passes through to the other side unimpeded. Hence, on the other side
of the wall, the system should find itself in the state

ΠϕU(z1, 0)Ψi , (1.191)

where by Πϕ, we have denoted the projector on the one-dimensional subspace
spanned by the scalar fluctuations, namely

Πϕ =

⎛⎜⎝0 0 0
0 1 0
0 0 0

⎞⎟⎠ . (1.192)
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After this pure-scalar beam enters the second region with the constant magnetic
field BT, a non-zero A⊥ component should regenerate. Hence, in the final state
(assuming the thickness of this second region along the z axis to be z2)

Ψf = U(z2, 0)ΠϕU(z1, 0)Ψi (1.193)

one should be able to find an admixture of a pure A⊥ state Ψf ≡ ΨA⊥ = (0, 0, 1),
namely

(Ψf)†Ψi = (ΨA⊥)†U(z2, 0)ΠϕU(z1, 0)ΨA⊥ ̸= 0 . (1.194)

Since both the initial and the final states are normalized, the corresponding tran-
sition probability P (A⊥ → ϕ → A⊥) (that is, the photon regeneration probability
in a light-shining-through-wall experiment) is then computed as

P (A⊥ → ϕ → A⊥) = |(Ψf)†Ψi|2 (1.195a)
= |(ΨA⊥)†U(z2, 0)ΠϕU(z1, 0)ΨA⊥|2 . (1.195b)

Going through the intermediate steps of the beam evolution, we obtain

U(z1, 0)ΨA⊥ = 1
1 + Θ2 e

−iωn⊥z1

⎛⎜⎝ 0
Θ(e−ibΘ2z1 − eib(1+Θ2)z1)
(Θ2eib(1+Θ2)z1 + e−ibΘ2z1)

⎞⎟⎠ , (1.196a)

ΠϕU(z1, 0)ΨA⊥ = 1
1 + Θ2 e

−iωn⊥z1Θ(e−ibΘ2z1 − eib(1+Θ2)z1)

⎛⎜⎝0
1
0

⎞⎟⎠ , (1.196b)

as well as

U(z2, 0)ΠϕU(z1, 0)ΨA⊥ = Θ
(1 + Θ2)2

⎛⎜⎝ 0
eib(1+Θ2)z2 + Θ2e−ibΘ2z2

Θ(e−ibΘ2z2 − eib(1+Θ2)z2)

⎞⎟⎠×

× (e−ibΘ2z1 − eib(1+Θ2)z1)e−iωn⊥(z1+z2) , (1.197a)

(ΨA⊥)†U(z2, 0)ΠϕU(z1, 0)ΨA⊥ = Θ2

(1 + Θ2)2 (e−ibΘ2z2 − eib(1+Θ2)z2)×

× (e−ibΘ2z1 − eib(1+Θ2)z1)e−iωn⊥(z1+z2) . (1.197b)

Incorporating the assumption (1.172) for both regions and keeping only terms
quadratic in the mixing angle Θ (which needs to be very small in order for the
small-mixing scenario to take place), this simplifies as

(Ψf)†Ψi = (ΨA⊥)†U(z2, 0)ΠϕU(z1, 0)ΨA⊥ (1.198)
= Θ2e−iωn⊥(z1+z2)

(︂
1 − eibz1

)︂(︂
1 − eibz2

)︂
. (1.199)

Hence, we finally obtain the photon regeneration probability

P (A⊥ → ϕ → A⊥) = |(Ψf)†Ψi|2 (1.200a)

= 4Θ4(1 − cos bz1)(1 − cos bz2) (1.200b)
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= 16Θ4 sin2 bz1

2 sin2 bz2

2 . (1.200c)

In the case that bz1 ≪ 1 and bz2 ≪ 1, that is, the sizes of both regions with
magnetic field are much less then the oscillation length losc (i.e. that the EM
waves and the scalars do not decohere as they propagate through the magnetic
regions) and substituting in terms of the physical parameters of the system and
fundamental constants, we finally obtain the regeneration probability

P (A⊥ → ϕ → A⊥) ≈ 1
16g

4
0B

4
Tz

2
1z

2
2 . (1.201)

We can see that this is insensitive to the mass m0 of the scalar. On the other
hand, if the opposite regime takes place, that is if we have both z1 ≫ losc and
z2 ≫ losc, the dependence on z1 and z2 gets averaged out and we obtain the mean
regeneration probability

⟨P (A⊥ → ϕ → A⊥)⟩ = 4Θ4 = 4g4
0B

4
Tω

4

[m2
0 + 2(n⊥ − 1)ω2]4 . (1.202)

Form0 much greater or at least comparable tomc =
√︂

2(n⊥ − 1)ω, this is sensitive
to both g0 and m0.

1.3.3 Relative intensity decrease
We have already noted above that, as a consequence of the mixing, one should
observe a relative decrease in the intensity of ⊥-polarized photons in a laser beam
passing through the magnetic field. In particular, assuming that initially there
was no A∥ component in the beam, we can write (based on the above result
(1.147c))

|A⊥(0)|2 − |A⊥(z)|2
|A⊥(0)|2 = P (ΨA → Ψϕ; z) = 4Θ2 sin2 bz

2 (1.203)

in the small mixing scenario. Hence, the relative decrease of the A⊥ intensity
oscillates with length losc = 2π

b
and has amplitude α = 4Θ2. Both losc and α are

(in principle) measurable quantities, which we can express as

losc = 4πω
m2

0 + 2(n⊥ − 1)ω2 , (1.204a)

α = 4g2
0B

2
Tω

2

[m2
0 + 2(n⊥ − 1)ω2]2 . (1.204b)

Thus, in the ideal case when one is able to measure both losc and α (and provided
that that m0 is greater, or at least comparable to mc, so that it does not drop
out), we could in principle extract both parameters g0 and m0 of the massive
scalar lagrangian.
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2. Mixing of photons with
massive spin-2 field
Let us now turn to describing the mixing of a massive spin-2 particle with photons
propagating in a constant magnetic background field. We will follow ideas of
[10]. In contrast with the spin-0 case (which was discussed in the preceding
chapter), we will see that the massive spin-2 has five physical degrees of freedom
(polarizations). While a priori, one has to assume that all of these can mix with
the EM field, we will find that only three polarizations enter non-trivially and the
remaining two decouple from the dynamics. Also, this time both polarizations of
the EM field will participate in the oscillations.

2.1 Non-interacting massive graviton
A free massive spin-two particle is represented by a rank-2 symmetric tensor
which we will denote as χµν . Its free dynamics is described by the lagrangian
found by Fierz and Pauli [15]

LFP = 1
2(∂ρχµν)(∂ρχµν) − (∂µχ

µν)(∂ρχρν) + (∂ρχ
ρν)(∂νχ

µ
µ)+

− 1
2(∂νχ

µ
µ)(∂νχµ

µ) − m2

2 χµνχ
µν + m2

2 (χµ
µ)2 , (2.1)

where m denotes the mass of the spin-2 particle. To derive the equations of
motion, let us consider directly varying the corresponding action and then setting
variation to zero, that is

δSFP = δ
∫︂
d4xLFP = 0 . (2.2)

In detail, we have

0 = δ
∫︂
d4x

[︃1
2(∂ρχµν)(∂ρχµν) − (∂µχ

µν)(∂ρχρν) + (∂ρχ
ρν)(∂νχ

µ
µ)+

− 1
2(∂νχ

µ
µ)(∂νχµ

µ) − m2

2 χµνχ
µν + m2

2 (χµ
µ)2
]︃

(2.3a)

=
∫︂
d4x

[︃
(∂ρχµν)δ(∂ρχµν) − 2(∂µχ

µν)δ(∂ρχρν) + δ(∂ρχ
ρν)(∂νχ

µ
µ)+

+ (∂ρχ
ρν)∂νδχ

µ
µ − (∂νχ

µ
µ)∂νδχµ

µ −m2χµνδχ
µν +m2(χµ

µ)δχµ
µ

]︃
. (2.3b)

Integrating by parts and throwing away the boundary terms (assuming suitable
boundary conditions at infinity, as usual) we thus obtain

0 =
∫︂
d4x

[︃
− ∂ρ∂ρχµνδχ

µν + 2∂ρ∂µχ
µνδχρν − ∂ν∂ρδχ

ρνχµ
µ+

− ∂ν∂ρχ
ρνδχµ

µ + ∂ν∂νχ
µ
µδχ

µ
µ −m2χµνδχ

µν +m2χµ
µδχ

µ
µ

]︃
(2.4a)

=
∫︂
d4x

[︃
− ∂ρ∂ρχ

µν + 2∂µ∂ρχ
ρν − ∂ν∂µχρ

ρ − ∂ρ∂σχ
ρσηµν+
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+ ∂ρ∂ρχ
σ
ση

µν −m2χµν +m2χσ
ση

µν
]︃
δχµν . (2.4b)

Since we are varying the action with respect to the tensor χµν which is symmetric,
the variation δχµν only probes the symmetric part of the integrand. Hence, for
an arbitrary but symmetric variation δχµν , the least-action principle (2.2) implies
that the symmetric part of the integrand in (2.4b) needs to vanish. This gives us
the (free) equations of motion

0 = −∂ρ∂ρχ
µν + ∂µ∂ρχ

ρν + ∂ν∂ρχ
ρµ − ∂ν∂µχρ

ρ − ∂ρ∂σχ
ρσηµν+

+ ∂ρ∂ρχ
σ
ση

µν −m2χµν +m2χσ
ση

µν . (2.5)

2.1.1 Dynamical constraints
We are now going to simplify the equation of motion (2.5) by noticing, that it
actually implies the constraints

0 = ∂µχ
µν , (2.6a)

0 = χ µ
µ . (2.6b)

First, let us take the trace of the equation (2.5), that is, we multiply it by ηµν .
This gives

0 = −∂ρ∂ρχ
µ
µ + ∂µ∂ρχ

ρµ + ∂ν∂ρχ
ρν − ∂µ∂µχ

ρ
ρ − 4∂ρ∂σχ

ρσ+
+ 4∂ρ∂ρχ

σ
σ −m2χµ

µ + 4m2χσ
σ (2.7)

so that after relabeling the summation indices, this reduces to

0 = −2∂ρ∂ρχ
µ
µ + 2∂µ∂ρχ

ρµ − 3m2χµ
µ . (2.8)

We therefore obtain that the trace of the massive graviton field is algebraically
dependent on its derivatives as

χµ
µ = 2

3m2∂ρ(−∂ρχµ
µ + ∂µχ

ρµ) . (2.9)

Furthermore, we can calculate the divergence of the equation of motion (2.5).
Namely, let us apply on it the operator ∂µ. We obtain

0 = −∂ρ∂ρ∂µχ
µν + ∂µ∂

µ∂ρχ
ρν + ∂µ∂

ν∂ρχ
ρµ − ∂ν∂µ∂

µχρ
ρ − ∂ν∂ρ∂σχ

ρσ+
+ ∂ν∂ρ∂ρχ

σ
σ −m2∂µχ

µν +m2∂νχσ
σ . (2.10)

After relabelling the indices, we can notice that the first and the second term
cancel, the third and the fifth term cancel and finally that the fourth and the
sixth term cancel as well. This means that only the mass-terms will survive to
give us the constraint

0 = −∂µχ
µν + ∂νχσ

σ . (2.11)

Substituting this back into (2.9), we therefore obtain

χµ
µ = 0 . (2.12)
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Plugging this in turn back into (2.11), we finally have

∂µχ
µν = 0 . (2.13)

Substituting the constraints (2.12) and (2.13) back into the original equations of
motion (2.5), these simplify as

(□ +m2)χµν = 0 . (2.14)

Note that the tensor field χµν is symmetric, meaning that it generally has 10 inde-
pendent degrees of freedom. However, the constraints encoded by the equations
(2.12) and (2.13) eliminate 5 of these, which leaves us with only 5 independent
elements. This means that a massive spin-2 particle has 5 degrees of freedom,
as appropriate for a spin-2 representation of the Poincare group with a non-zero
value of the 4-momentum Casimir invariant [46]. It will therefore be useful to
decompose the field χµν into a basis of the five spin-two polarizations with some
coefficients (amplitudes).

2.1.2 Warm-up: polarization of a massive vector
Just for the sake of illustrating how polarizations work, let us first focus on the
much simpler case of a massive vector (spin-1) boson Aµ. The free action for such
a “massive photon” can be written as [47]∫︂

d4x
(︃

− 1
4FµνF

µν + 1
2m

2AνA
ν
)︃
, (2.15)

where, as usual, Fµν = ∂µAν − ∂νAµ. By varying this action, one can derive the
corresponding equations of motion as

∂µ∂
µAν − ∂ν∂µA

µ +m2Aν = 0 . (2.16)

Calculating their divergence

0 = ∂ν∂µ∂
µAν − ∂ν∂

ν∂µA
µ +m2∂νA

ν (2.17a)
= ∂ν□A

ν − □∂µA
µ +m2∂νA

ν (2.17b)

we can note that the first two terms are actually zero, so that the mass-term
yields a dynamical (transversality) constraint

∂νA
ν = 0 . (2.18)

Thanks to this, the equations of motion can be simplified as

(□ +m2)Aν = 0 . (2.19)

Consider now a plane wave of momentum p, where as before, p is chosen to be
greater than zero so that the photon moves in the positive direction of the z-axis.
The four-momentum k can then be written as kµ = (ω(p), 0, 0, p). That is, we
will write

Aρ(t, x; p) = Aρ(p)eikµxµ

, (2.20)
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where

Aµ(p) = (A0(p), A1(p), A2(p), A3(p)) (2.21)

are the amplitudes of oscillation of Aµ in different directions. Now, let us sub-
stitute this plane-wave ansatz into both the equation of motion (2.19) and the
constraint (2.18). First, we have

0 = (□ +m2)Aρ (2.22a)
= (−k2 +m2)Aρ(p) (2.22b)
= 0 , (2.22c)

that is

k2 = ω(p)2 − p2 = m2 (2.23)

and so the dispersion relation for the massive photon reads (fixing ω > 0)

ω(p) =
√︂
p2 +m2 , (2.24)

as expected. After plugging into the constraint (2.18), we also have

∂ρA
ρ = ikρA

ρ(p)eikµxµ = 0 (2.25)

which implies that

kρA
ρ(p) = 0 . (2.26)

In detail, this means that

0 = k0A0 − pA3 = ω(p)A0 − pA3 (2.27)

and so

ω(p)A0 = pA3 . (2.28)

This gives a relation between two of the four polarizations. The polarizations
A1 and A2 are independent. Hence, the total number of independent degrees
of freedom is three. Introducing the usual pure right- and left-handed massless
photon polarization vectors

ϵρ
+ = (0,−1,−i, 0) , (2.29a)
ϵρ

− = (0,+1,−i, 0) , (2.29b)

it is therefore convenient to decompose (using (2.28))

Aρ(p) = (0, A1(p), A2(p), 0) + (A0(p), 0, 0, A3(p)) (2.30a)

=
∑︂

a=+,−
γa(p)ϵρ

a + m

ω(p)A
3(p)( p

m
, 0, 0, ω(p)

m
) , (2.30b)

where

γ+(p) = iA2(p) − A1(p)
2 , (2.31a)

43



γ−(p) = iA2(p) + A1(p)
2 , (2.31b)

and, in the case of a more generic dispersion relation than (2.24), m2 should
be understood as ω(p)2 − p2. Hence, denoting the amplitude of longitudinal
polarization m

ω(p)A
3(p) as γ0(p) and introducing the corresponding longitudinal

basis vector

ϵρ
0 = ( p

m
, 0, 0, ω(p)

m
) , (2.32)

it is possible to rewrite

Aρ(p) =
∑︂

a=+,0,−
γa(p)ϵρ

a(p) . (2.33)

Hence, in terms of the three polarization vectors (2.29) and (2.32), a generic plane
wave can be expanded in the form

Aρ(t, x; p) =
[︃ ∑︂

a∈{+,0,−}
γa(p)ϵρ

a(p)
]︃
eikµxµ (2.34)

with corresponding amplitudes γ+(p),γ0(p) and γ−(p). Notice that three polar-
ization vectors ϵρ

a introduced above are orthonormal in the sense that

(ϵa)µ(ϵb)µ = δab . (2.35)

They are also transverse, namely they satisfy

kµϵ
µ
a = 0 , (2.36)

which is just a reflection of the fact that they implement the constraint ∂µA
µ = 0.

2.1.3 Polarizations of a massive spin-2 field
The procedure of decomposing a generic massive spin-2 plane wave into basis
polarizations will be similar to the case of a massive vector considered in the
previous subsection, but a bit more complicated. Recall that from the Fierz-
Pauli action SFP, we have inferred the equations of motion

(□ +m2)χµν = 0 (2.37)

together with the transverse and traceless constraints

∂µχ
µν = 0 , (2.38a)
χµ

µ = 0 . (2.38b)

Let us again consider a plane-wave solution with momentum p, where p is chosen
to be greater than zero so that the graviton moves in the positive direction of the
z-axis. The four-momentum k can be written as kµ = (ω(p), 0, 0, p). Then we
can put

χρσ(t, x; p) = χρσ(p)eikµxµ

. (2.39)
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The amplitudes of oscillation in different directions can be explicitly represented
by a 4 by 4 matrix

χµν(p) =
(︄
χ00(p) χ0i(p)
χi0(p) χij(p)

)︄
, (2.40)

where χ0i = χi0 and χij = χji. Plugging the plane wave ansatz (2.39) into
equation of motion (2.37) would again give the condition

k2 = m2 (2.41)

and hence the expected mass-shell relation

ω(p) =
√︂
p2 +m2 . (2.42)

The constraints on the polarizations can then be obtained by substituting the
plane wave (2.39) into the constraints (2.38). Focusing first on the transversality
condition (2.38a), we obtain

0 = ∂ρχ
ρσ = ikρχ

ρσ(p)eikµxµ

, (2.43)

that is

kρχ
ρσ(p) = 0 . (2.44)

Second, the tracelessness condition (2.38b) gives

0 = χρ
ρ = χρ

ρ(p)eikµxµ

, (2.45)

meaning that we have to require

χρ
ρ(p) = 0 . (2.46)

Evaluating the transversality constraint (2.44) explicitly in coordinates, we have

0 = kρχ
ρσ(p) (2.47a)

= k0χ0σ(p) − pχ3σ(p) (2.47b)
= ω(p)χ0σ(p) − pχ3σ(p) , (2.47c)

that is

ω(p)χ0σ(p) = pχ3σ(p) . (2.48)

Hence, the individual elements of χρσ(p) are constrained to satisfy

χ00 = p

ω
χ30 = p

ω
χ03 , (2.49a)

χ01 = χ10 = p

ω
χ31 = p

ω
χ13 , (2.49b)

χ02 = χ20 = p

ω
χ32 = p

ω
χ23 , (2.49c)

χ03 = χ30 = p

ω
χ33 . (2.49d)
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In particular, this gives

χ00 = p2

ω2χ
33 = p2

p2 +m2χ
33 =

(︃
1 − m2

ω2

)︃
χ33 . (2.50)

Expanding explicitly also the tracelessness condition (2.46), we obtain

0 = χ00 − χ11 − χ22 − χ33 (2.51a)

= (1 − m2

ω2 )χ33 − χ11 − χ22 − χ33 (2.51b)

= m2

ω2 χ
33 − χ11 − χ22 , (2.51c)

that is

χ11 + χ22 = −m2

ω2 χ
33 . (2.52)

It is therefore convenient to reparametrize χ11 and χ22 in terms of a single degree
of freedom as

χ11 = +χ̃11 − 1
2
m2

ω2 χ
33 , (2.53a)

χ22 = −χ̃11 − 1
2
m2

ω2 χ
33 . (2.53b)

In total, we can therefore parametrize χρσ(p) as

χρσ(p) =

⎛⎜⎜⎜⎜⎝
p2

ω2χ
33 p

ω
χ13 p

ω
χ23 p

ω
χ33

p
ω
χ13 χ̃11 − 1

2
m2

ω2 χ
33 χ12 χ13

p
ω
χ23 χ12 −χ̃11 − 1

2
m2

ω2 χ
33 χ23

p
ω
χ33 χ13 χ23 χ33

⎞⎟⎟⎟⎟⎠ (2.54)

From this form, we can see that there are only five independent degrees of freedom,
specifically: χ̃11, χ12, χ33, χ13 and χ23. Introducing the basis polarizations1

ϵρσ
+2 = 1√

2

⎛⎜⎜⎜⎝
0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠ , (2.55a)

ϵρσ
×2 = 1√

2

⎛⎜⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , (2.55b)

ϵρσ
+1 = −1

m
√

2

⎛⎜⎜⎜⎝
0 0 p 0
0 0 0 0
p 0 0 ω
0 0 ω 0

⎞⎟⎟⎟⎠ , (2.55c)

1Again, in the generic case where the spin-2 wave may not satisfy the exact dispersion
relation (2.42), we should understand m2 as being equal to ω(p)2 − p2.
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ϵρσ
×1 = 1

m
√

2

⎛⎜⎜⎜⎝
0 p 0 0
p 0 0 ω
0 0 0 0
0 ω 0 0

⎞⎟⎟⎟⎠ , (2.55d)

ϵρσ
0 = 1

m2

√︄
2
3

⎛⎜⎜⎜⎝
2p2 0 0 2pω
0 −m2 0 0
0 0 −m2 0

2pω 0 0 2ω2

⎞⎟⎟⎟⎠ , (2.55e)

the matrix χρσ(p) can therefore be decomposed as

χρσ = χ+2(p)ϵρσ
+2 + χ×2(p)ϵρσ

×2 + χ+1(p)ϵρσ
+1 + χ×1(p)ϵρσ

×1 + χ0(p)ϵρσ
0 , (2.56)

where the amplitudes χa(p) can be expressed in terms of the original independent
parameters χ̃11, χ12, χ33, χ13 and χ23. Overall, we can therefore rewrite the
massive spin-2 plane wave as

χρσ(t, x; p) =
[︃ ∑︂

a∈{+2,×2,+1,×1,0}
χa(p)ϵρσ

a

]︃
eikµxµ . (2.57)

Similarly to the case of the massive vector, the polarizations ϵρσ
a were chosen to

be orthonormal, that is

(ϵa)ρσ(ϵb)ρσ = δab . (2.58)

They also transverse and traceless, namely

0 = kµ(ϵa)µν , (2.59a)
0 = (ϵa)µ

ν (2.59b)

as they are implementing the constraints (2.38).

2.2 Interaction with the EM field
In this section we would like to consider coupling the massive spin-2 particle
to the electromagnetic fields (massless photons). That is, we generally want to
consider a lagragian of the form

L = LFP + LEM + Lint (2.60)

where LEM is the (usual) free Maxwell lagrangian, LFP is the Fierz-Pauli la-
grangian (2.1) and Lint is some interaction term.

2.2.1 Coupling to the EM stress-energy tensor
In particular, we will couple the massive spin-2 field to the full electromagnetic
stress-energy tensor

(TEM)µν = F µ
αF

αν + 1
4η

µνFαβF
αβ . (2.61)
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This can be motivated by considering the massless case, where this coupling arises
by expanding the Einstein-Hilbert action coupled to the covariantized Maxwell
action (see the following chapter for details). In chapter 4, we will also observe
that the coupling of χµν to the EM stress energy tensor follows from the bimetric
action. Let us therefore consider the interaction lagrangian of the form

Lint = g

2
√

2
χρσ(TEM)ρσ = g√

2
χρσ(F ρ

ν F
νσ + 1

4η
ρσFµνF

µν) . (2.62)

Varying the corresponding action as before, one obtains the equations of motion

0 = −∂ρ∂ρχ
µν + ∂µ∂ρχ

ρν + ∂ν∂ρχ
ρµ − ∂ν∂µχρ

ρ − ∂ρ∂σχ
ρσηµν+

+ ∂ρ∂ρχ
σ
ση

µν −m2χµν +m2χσ
ση

µν + g√
2

(TEM)µν , (2.63a)

0 = ∂µF
µα −

√
2g∂ν

(︃
χµαF ν

µ − χµνF α
µ + 1

2χ
ρ
ρF

να
)︃
. (2.63b)

Let us now see what kind of constraints on χµν these equations imply by cal-
culating the trace and the divergence of the graviton equation of motion. As a
preparation, let us first calculate trace and divergence of the EM stress-energy
tensor. For the trace we have

(TEM)µ
µ = FµαF

αµ + 1
4η

µ
µFαβF

αβ (2.64a)

= −FµαF
µα + FαβF

αβ (2.64b)

= 0 , (2.64c)

while for the divergence, we obtain

∂µ(TEM)µν = ∂µ(F µ
αF

αν + 1
4η

µνFαβF
αβ) (2.65a)

= (∂µF
µ
α )Fαν + F µ

α ∂µF
αν + 1

2η
µνFαβ∂µFαβ (2.65b)

We can substitute for the first term from (2.63b) so that it is O(gF∂(χF )). The
remaining two terms can be manipulated as

F µ
α ∂µF

αν + 1
2η

µνFαβ∂µFαβ =

= 1
2Fµα∂

µFαν + 1
2Fµα∂

µFαν + 1
2F

αβ∂νFαβ (2.66a)

= 1
2Fµα∂

µFαν − 1
2Fµα∂

αF µν + 1
2F

µα∂νFµα (2.66b)

= −1
2Fµα(∂µF να + ∂αF µν + ∂νFαµ) (2.66c)

= 0 , (2.66d)

where the final step holds due to the Bianchi identity. Hence, in total this gives

∂µ(TEM)µν = O(gF∂(χF )) . (2.67)
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Calculating now the trace of the whole graviton equation of motion, the result
(2.64) implies that the entire interacting part drops out and we are therefore left
with

∂µ(∂ρχ
ρµ − ∂µχσ

σ) = 3
2m

2χµ
µ , (2.68)

as in the case of the free massive spin-2 particle. Secondly, for the divergence of
graviton equation of motion, we get

0 = −m2∂µχ
µν +m2∂νχσ

σ + g√
2
∂µ(TEM)µν (2.69a)

0 = −m2∂µχ
µν +m2∂νχσ

σ + O(g2F∂(χF )) (2.69b)
that is

∂µχ
µν − ∂νχσ

σ = O( g2

m2F∂(χF )) . (2.70)
This means that upto higher-order terms (which have to be dropped if our analysis
is to be perturbatively consistent), we obtain

3
2m

2χµ
µ = ∂µ(∂ρχ

ρµ − ∂µχσ
σ) = 0 . (2.71)

Plugging this back into (2.70), we therefore recover the transverse-traceless con-
straints

χµ
µ = 0 , (2.72a)

∂µχ
µν = 0 . (2.72b)

Hence, we can conclude that the coupling of χµν to the EM stress-energy tensor
does not violate the transversality and tracelessness of χµν , so that it can be
expanded in the usual massive spin-2 polarizations as

χµν =
∑︂

a∈{+2,×2,+1,×1,0}
χaϵ

ρσ
a . (2.73)

Substituting the constraints (2.72) into the equations of motion (2.63a) and
(2.63b), we get

0 = −(□ +m2)χµν + g√
2

(TEM)µν (2.74)

for the massive graviton, as well as
0 = ∂µF

µα −
√

2gχµα∂νF
ν

µ −
√

2gF ν
µ ∂νχ

µα +
√

2gχµν∂νF
α

µ (2.75)
for the photon, where we note that the second term contains the divergence of
F and so is of higher order in g (by substituting from the photon equation of
motion into itself). In total, we therefore obtain the equations of motion

(□ +m2)χµν = g√
2

(TEM)µν , (2.76a)

∂µF
µα =

√
2g
(︃
F ν

µ ∂νχ
µα − χµν∂νF

α
µ

)︃
. (2.76b)

Expanding around the usual magnetic background (1.14), these can be straight-
forwardly linearized as

(□ +m2)χµν = g√
2

[︃
(Fext)µ

αF
αν + F µ

αF
αν
ext + 1

2η
µνFαβF

αβ
ext

]︃
, (2.77a)

□Aα − ∂α(∂µA
µ) =

√
2g(Fext) ν

µ ∂νχ
µα . (2.77b)
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2.2.2 Gauge fixing
Recall that in the case of the scalar – photon mixing, we were able to fix for the EM
field the Lorentz gauge (1.37) while also fixing the corresponding residual gauge
symmetry by putting A0 = 0. However, we can easily observe that repeating
exactly this in the case of the massive spin-2 particle leads to an inconsistency.
Indeed, considering the α = 0 component of the linearized equation of motion
(2.77b), we obtain

□A0 − ∂0(∂µA
µ) =

√
2g(Fext) ν

µ ∂νχ
µ0 . (2.78)

Assuming the usual ansatz of a plane wave propagating along the z-direction, we
can evaluate the RHS to obtain

□A0 − ∂0(∂µA
µ) =

√
2g(Fext) 3

2 ∂3χ
20 (2.79a)

=
√

2gipBTϵ
20
+1χ+1 (2.79b)

= −igBT
p2

√
ω2 − p2χ+1 , (2.79c)

where we have noticed that only for a = +1 do we obtain a non-zero 20 entry
in the polarization tensor. Hence, we obtain that we cannot possibly fix Lorentz
gauge and simultaneously fix A0 = 0, because then the LHS of (2.79) would
vanish while the RHS is clearly non-zero. Instead we can

1. either fix a generalization of the Lorentz gauge which would be found so as
to enable setting A0 = 0,

2. or, fix the usual Lorentz gauge but then allow for a non-zero A0 (and,
consequently, a non-zero A3).

While we will focus only on the first method, we have checked that they both
lead to the same result. First, we can see that fixing the deformed Lorentz gauge2

∂µA
µ = −

√
2g
∫︂ t

dτ (Fext) ν
µ ∂νχ

µ0 (2.80)

and substituting back into the equation (2.78) cancels the RHS and leads to the
equation

□A0 = 0 . (2.81)

Since the residual gauge symmetry of the gauge condition (2.80) is the same as the
residual gauge symmetry of the undeformed Lorentz gauge (the RHS of (2.80)
does not transform under the EM gauge transformation) we can use the same
analysis as in the previous chapter to check that in this case, A0 can be gauged
away. Evaluating the gauge-constraint (2.80) explicitly in coordinates for a plane
wave solution, we obtain

i(ωA0 − pA3) = gBT
p2

ω
√
ω2 − p2χ+1 . (2.82)

2Since we are assuming a plane-wave form for both both the EM and the massive spin-2
field, the integral

∫︁ t
dτ should be thought of as simply 1/(iω(p)).

50



Substituting A0, we observe that contrary to the case of the scalar – photon
mixing, we are now getting

A3 = −gBT
p

iω
√
ω2 − p2χ+1 ̸= 0 . (2.83)

As a quick consistency check, let us verify that A3 given by (2.83) satisfies the
equation of motion (2.77b) for α = 3. Indeed, for the LHS we get

□A3 − ∂3(∂µA
µ) = −(−ω2 + p2)gBT

p

iω
√
ω2 − p2χ+1+

− igBT
p3

ω
√
ω2 − p2χ+1 (2.84a)

= −igBT
ωp√
ω2 − p2χ+1 , (2.84b)

while the RHS evaluates to
√

2g(Fext) ν
µ ∂νχ

µ3 =
√

2g(Fext) 3
2 ∂3χ

23 (2.85a)
=

√
2igBTp(ϵ+1)23χ+1 (2.85b)

= −igBT
ωp√
ω2 − p2χ+1 , (2.85c)

which verifies that the equation of motion holds. To summarize, in the explicit
evaluation of the equations of motion for the remaining (independent) degrees of
freedom A1, A2, χ×2, χ+2, χ×1, χ+1, χ0, we will use the gauge constraints

∂µA
µ = −

√
2g
∫︂ t

dτ (Fext) ν
µ ∂νχ

µ0 , (2.86a)

A0 = 0 , (2.86b)

A3 = −gBT
p

iω
√
ω2 − p2χ+1 . (2.86c)

2.2.3 Mixing equations
Substituting the expansion (2.73) of the massive spin-2 field χµν in terms of a
basis εa for the five polarizations and using the orthonormality relations (2.58),
one can rewrite the massive graviton equation of motion (2.77a) as

(□ +m2)χi =

= g√
2

(ϵi)µν

[︃
(Fext)µ

αF
αν + F µ

α (Fext)αν + 1
2η

µνFαβ(Fext)αβ
]︃

(2.87a)

=
√

2g(ϵi)µν(Fext)µ
αF

αν , (2.87b)

where we have used the symmetry in the indices µ, ν and also the fact that the
polarizations (ϵi)µν are traceless. Furthermore, assuming that both the EM field
and the massive spin-2 field are simple plane waves, we can use the transversality
(ϵi)µνk

ν = 0 of the massive spin-2 polarization to simplify

(□ +m2)χi =
√

2g(Fext)µ
α

[︂
(ϵi)µν∂

αAν − (ϵi)µνik
νAα

]︂
(2.88a)

=
√

2g(Fext)µ
α(ϵi)µν∂

αAν (2.88b)
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=
√

2g(Fext)2
3(ϵi)2ν∂

3Aν (2.88c)
= −

√
2gBT(ϵi)2νipA

ν . (2.88d)

Employing the relativistic approximation (1.50) for the Klein-Gordon operator
□ +m2, one can recast the massive spin-2 equation of motion into the form

0 = (ω − p+ ∆)χi + gBT

ω

1√
2

(ϵi)2νipA
ν . (2.89)

Furthermore, substituting for A0 and A3 from the gauge constraints (2.86) and
recalling that A1 = −A∥, A2 = −A⊥, one obtains

0 = (ω − p+ ∆)χi − gBT

ω

1√
2
ip
[︂
(ϵi)21A∥ + (ϵi)22A⊥

]︂
+

+ 1
2δi,+1

(︃
gBT

ω

)︃2 p2

ω2 − p2χ+1 . (2.90)

Before proceeding further, let us discuss the last term in (2.90): this has origi-
nated from substituting for A3 from the gauge constraints (2.86) and clearly only
contributes to the equation of motion for χ+1. However, this spin-2 polarization
will be shown to decouple from the mixing problem and will therefore repre-
sent a well-defined eigenstate with mass m. We are therefore safe to substitute
ω2 −p2 = m2, so that the last term in (2.90) becomes O(g2B2

m2 ) and one can there-
fore neglect it by the token of perturbative consistency of the initial lagrangian.
Substituting the different possible choices for the index i one by one, one obtains
five equations of motion for the five massive spin-2 polarizations

0 = (ω − p− ∆)χ+1 , (2.91a)
0 = (ω − p− ∆)χ×1 , (2.91b)
0 = (ω − p− ∆)χ×2 + a2piA∥ , (2.91c)
0 = (ω − p− ∆)χ+2 + a2piA⊥ , (2.91d)
0 = (ω − p− ∆)χ0 + a0piA⊥ , (2.91e)

where we have introduced the parameters

a2 = +gBT

2ω , (2.92)

a0 = − gBT√
3ω

. (2.93)

On the other hand, focusing on the α = 1, 2 components of the EM equation
of motion (2.77b) (and realizing that, as usual, we have ∂1 = 0 = ∂2), we first
obtain

0 = □A1 −
√

2g(Fext) 3
2 ∂3χ

21 , (2.94a)
0 = □A2 −

√
2g(Fext) 3

2 ∂3χ
22 . (2.94b)

Substituting in terms of A∥, A⊥ and decomposing the spin-2 field into the usual
basis of polarizations, we eventually obtain

0 = (ω − p)iA∥ + a2pχ
2× , (2.95a)
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0 = (ω − p)iA⊥ + a2pχ
2+ + a0pχ

0 . (2.95b)

In total, expressing a0 in terms of a2 and, as in the case of the massive scalar,
introducing effective photon mass terms ∆∥, ∆⊥ for the EM polarizations A∥, A⊥
(and relabelling iA → A, as with the scalar), we can write all equations of motion
in the matrix form as

0 = (ω − p− ∆)χ+1 , (2.96a)
0 = (ω − p− ∆)χ×1 , (2.96b)

0 =
(︄
ω − p− ∆ a2p

a2p ω − p+ ∆∥

)︄(︄
χ×2
A∥

)︄
, (2.96c)

0 =

⎛⎜⎝ω − p− ∆ 0 a2p
0 ω − p− ∆ a0p
a2p a0p ω − p+ ∆⊥

⎞⎟⎠
⎛⎜⎝χ+2
χ0
A⊥

⎞⎟⎠ . (2.96d)

This form clearly emphasizes the mixing between various EM and spin-2 polar-
izations: the parallel EM polarization A∥ mixes with the χ×2 spin-2 polarization,
while the EM polarization A⊥ which is transverse to the external magnetic field,
mixes with the χ+2 and χ0 spin-2 polarizations.

2.3 Searching for mass eigenstates
Similarly as in the scalar case, we use the condition that the determinant of the
matrices has to be zero in order for the equations to have solutions to determine
the possible values of p in terms of the energy ω.

2.3.1 Decoupled spin-2 polarizations
Starting with the decoupled spin-2 polarizations χ+1 and χ×1, we simply get the
(linearized) dispersion relations

p+1(ω) = ω − ∆ , (2.97a)
p×1(ω) = ω − ∆ , (2.97b)

which are telling us that both χ+1 and χ×1 propagate as eigenstates of definite
mass which is directly given by the parameter m entering the lagrangian (2.1).
The modes would therefore propagate as

χ+1(z) = χ+1(0)e−i(ω−∆)z , (2.98a)
χ×1(z) = χ×1(0)e−i(ω−∆)z . (2.98b)

2.3.2 χ×2–A∥ mixing
Second, we note that the mixing problem of the EM polarization A∥ with the
spin-2 polarization χ×2 is precisely isomorphic to the 2-state mixing considered
extensively in the previous chapter for the transverse EM polarization A⊥ and the
massive scalar ϕ, meaning that we can straightforwardly write down the results.
In particular, one obtains the dispersion relations

2
(︂
1 − a2

2

)︂
p

(1)
×2,∥(ω) = 2ω + ∆∥ − ∆ −

√︂
D∥ , (2.99a)
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2
(︂
1 − a2

2

)︂
p

(2)
×2,∥(ω) = 2ω + ∆∥ − ∆ +

√︂
D∥ , (2.99b)

where the discriminant D∥ can be expressed as

D∥ = (∆ − ∆∥ − 2ω)2 − 4
(︂
1 − a2

2

)︂[︂
ω(∆∥ − ∆) + ω2 − ∆∆∥

]︂
. (2.100)

These dispersion relations describe the propagation of two mass eigenstates. The
corresponding two directions (χ(1)

×2, A
(1)
∥ ) and (χ(2)

×2, A
(2)
∥ ) in the χ×2–A∥ flavour

space are specified by the relations

A
(1)
∥

χ
(1)
×2

=
−a2p

(1)
×2,∥

ω − p
(1)
×2,∥ + ∆∥

≡ − tan Θ(1)
×2,∥ , (2.101a)

χ
(2)
×2

A
(2)
∥

=
−a2p

(2)
×2,∥

ω − p
(2)
×2,∥ − ∆

≡ + tan Θ(2)
×2,∥ . (2.101b)

Assuming the relativistic approximation ∆,∆∥ ≪ ω, as well as the small-mixing
scenario Θ(1)

×2,∥ ≈ Θ(2)
×2,∥ ≡ Θ×2,∥ ≪ 1 (which arises when gBT ≪ ∆ + ∆∥), we

obtain the dispersion relations

p
(1)
×2,∥(ω) = ω − ∆ − 1

4
g2B2

T
∆ + ∆∥

, (2.102a)

p
(2)
×2,∥(ω) = ω + ∆∥ + 1

4
g2B2

T
∆ + ∆∥

, (2.102b)

for the χ×2-like and the A∥-like mode, respectively. The mixing angle Θ×2,∥
becomes simply

Θ×2,∥ = 1
2

gBT

∆ + ∆∥
. (2.103)

If we furthermore introduce the mass parameter b× as

b× ≡ ∆ + ∆∥ , (2.104)

we can rewrite

p
(1)
×2,∥(ω) = ωn∥ − b×(1 + Θ2

×2,∥) , (2.105a)

p
(2)
×2,∥(ω) = ωn∥ + b×Θ2

×2,∥ . (2.105b)

This enables us to write down the general solution for the χ×2–A∥ oscillations in
the form

eiωn∥z

(︄
χ×2(z)
A∥(z)

)︄
=

= 1
1 + Θ2

×2,∥

(︄
1

−Θ×2,∥

)︄ [︂
χ×2(0) − A∥(0)Θ×2,∥

]︂
e

ib×(1+Θ2
×2,∥)z+

+ 1
1 + Θ2

×2,∥

(︄
Θ×2,∥

1

)︄ [︂
A∥(0) + χ×2(0)Θ×2,∥

]︂
e

−ib×Θ2
×2,∥z

. (2.106)

As in the case of the massive spin-0 mixing with the photon (which was considered
in the previous chapter), the evolution equation (2.106) can be recast in terms of
a unitary trasfer matrix U×2,∥(z, 0), see (2.142) below.
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2.3.3 χ+2–χ0–A⊥ mixing
Finally, let us address the problem of finding the mass eigenstates in the coupled
system of χ+2, χ0 and A⊥ polarizations. Naively, it might seem as if we will have
to force ourselves to go through the tedious work of diagonalizing the Hamiltonian
in a coupled system of three particle flavours by sheer brute force. However,
introducing the notation

a+ =
√︂
a2

0 + a2
2 =

√︄
7
3
gBT

2ω =
√︄

7
3a2 , (2.107)

one can conveniently observe that upon rotating the polarizations as⎛⎜⎝χ+
χ′

+
A⊥

⎞⎟⎠ = R

⎛⎜⎝χ+2
χ0
A⊥

⎞⎟⎠ , (2.108)

where the rotation matrix R is defined as

R =

⎛⎜⎜⎝
a2
a+

+ a0
a+

0
− a0

a+
a2
a+

0
0 0 1

⎞⎟⎟⎠ = 1√
7

⎛⎜⎝
√

3 −2 0
2

√
3 0

0 0 1

⎞⎟⎠ , (2.109)

one can rotate the (hamiltonian) matrix entering the equation of motion (2.96d)
to obtain

R

⎛⎜⎝ω − p− ∆ 0 a2p
0 ω − p− ∆ a0p
a2p a0p ω − p+ ∆⊥

⎞⎟⎠R−1 =

=

⎛⎜⎝ω − p− ∆ 0 a+p
0 ω − p− ∆ 0
a+p 0 ω − p+ ∆⊥

⎞⎟⎠ . (2.110)

The equation of motion (2.96d) therefore becomes

0 = (ω − p− ∆)χ′
+ , (2.111a)

0 =
(︄
ω − p− ∆ a+p

a+p ω − p+ ∆⊥

)︄(︄
χ+
A⊥

)︄
. (2.111b)

We conclude that the polarization χ′
+ decouples and is described by the dispersion

relation

p′
+(ω) = ω − ∆ , (2.112)

so that it represents an eigenstate of definite mass which is equal to m. On
the other hand for the polarizations χ+ and A⊥, we again obtain a 2-flavour
mixing problem. Imposing the condition that the determinant of the matrix in
the equation of motion (2.111b), one obtains the dispersion relations

2
(︂
1 − a2

+

)︂
p

(1)
+,⊥(ω) = 2ω + ∆⊥ − ∆ −

√︂
D⊥ , (2.113a)

2
(︂
1 − a2

+

)︂
p

(2)
+,⊥(ω) = 2ω + ∆⊥ − ∆ +

√︂
D⊥ , (2.113b)
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with the discriminant

D⊥ = (∆ − ∆⊥ − 2ω)2 − 4
(︂
1 − a2

+

)︂[︂
ω(∆⊥ − ∆) + ω2 − ∆∆⊥

]︂
. (2.114)

The two mass eigenstates described by these relations correspond to two directions
(χ(1)

+ , A
(1)
⊥ ) and (χ(2)

+ , A
(2)
⊥ ) in the χ+–A⊥ flavour space, which define the mixing

angles Θ(1)
+,⊥ and Θ(2)

+,⊥. These satisfy

A
(1)
⊥

χ
(1)
+

=
−a+p

(1)
+,⊥

ω − p
(1)
+,⊥ + ∆⊥

≡ − tan Θ(1)
+,⊥ , (2.115a)

χ
(2)
+

A
(2)
⊥

=
−a+p

(2)
+,⊥

ω − p
(2)
+,⊥ − ∆

≡ + tan Θ(2)
+,⊥ . (2.115b)

Adopting the ultrarelativistic regime ∆,∆⊥ ≪ ω and focusing again on the small-
mixing scenario Θ(1)

+,⊥ ≈ Θ(2)
+,⊥ ≡ Θ+,⊥ ≪ 1 (which arises when gBT ≪ ∆ + ∆⊥),

we obtain the dispersion relations

p
(1)
+,⊥(ω) = ω − ∆ − 7

12
g2B2

T
∆ + ∆⊥

, (2.116a)

p
(2)
+,⊥(ω) = ω + ∆⊥ + 7

12
g2B2

T
∆ + ∆⊥

. (2.116b)

The first one describes a χ+-like mode, while the second one represents a A⊥-like
mode. The mixing angle Θ+,⊥ becomes simply

Θ+,⊥ =
√︄

7
3

1
2

gBT

∆ + ∆⊥
. (2.117)

Introducing the mass parameter b+ as

b+ ≡ ∆ + ∆⊥ , (2.118)

we can rewrite

p
(1)
+,⊥(ω) = ωn⊥ − b+(1 + Θ2

+,⊥) , (2.119a)
p

(2)
+,⊥(ω) = ωn⊥ + b+Θ2

+,⊥ . (2.119b)

This enables us to write down the general solution for the χ+–A⊥ oscillations in
the form

eiωn⊥z

(︄
χ+(z)
A⊥(z)

)︄
=

= 1
1 + Θ2

+,⊥

(︄
1

−Θ+,⊥

)︄ [︂
χ+(0) − A⊥(0)Θ+,⊥

]︂
eib+(1+Θ2

+,⊥)z+

+ 1
1 + Θ2

+,⊥

(︄
Θ+,⊥

1

)︄ [︂
A⊥(0) + χ+(0)Θ+,⊥

]︂
e−ib+Θ2

+,⊥z . (2.120)

At the same time, the decoupled mode χ′
+ evolves simply as

χ′
+(z) = χ′

+(0)e−i(ω−∆)z . (2.121)

See (2.142) for the unitary transfer matrix which compactly expresses the evolu-
tion given by (2.120).
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2.4 Observable effects
We will now consider performing the same experiments and observations as in the
previous chapter in the case of the massive scalar particle. We will again observe
various quantities to oscillate upon varying length of the path z over which the
beam travels through the magnetic field. In particular, we will find the oscillation
lengths

losc,× = 2π
b×

, (2.122a)

losc,+ = 2π
b+

, (2.122b)

due to A∥–χ× mixing and the A⊥–χ+ mixing, respectively.

2.4.1 Effects on photon polarization
As in the scalar case, let prepare the system in a linearly polarized pure-EM
initial state (where χµν(0) = 0). Substituting into (2.120) and (2.106), we find
that the propagation of the EM fields in the region with the magnetic field turned
on is described by

eiωn∥zA∥(z) = 1
1 + Θ2

×2,∥

[︃
Θ2

×2,∥e
ib×(1+Θ2

×2,∥)z + e
−ib×Θ2

×2,∥z
]︃
A∥(0) , (2.123a)

eiωn⊥zA⊥(z) = 1
1 + Θ2

+,⊥

[︃
Θ2

+,⊥e
ib+(1+Θ2

+,⊥)z + e−ib+Θ2
+,⊥z

]︃
A⊥(0) . (2.123b)

Contrary to the massive scalar case, we observe that for massive spin-2, both the
A∥ mode, as well as the A⊥ mode evolve non-trivially, as they propagate through
the magnetic environment. Assuming as in the scalar case that we are in the
regime

ω(n⊥ − n∥)z ≪ 1 , (2.124)

as well as

b×Θ2
×2,∥z ≪ 1 , (2.125a)

b+Θ2
+,⊥z ≪ 1 , (2.125b)

the ratio A⊥(z)/A∥(z) changes only by a small amount, namely

A⊥(z)
A∥(z)

= A⊥(0)
A∥(0)

1 + Θ2
×2,∥

1 + Θ2
+,⊥

Θ2
+,⊥e

ib+(1+Θ2
+,⊥)z + e−ib+Θ2

+,⊥z

Θ2
×2,∥e

ib×(1+Θ2
×2,∥)z + e

−ib×Θ2
×2,∥z

e−iω(n⊥−n∥)z (2.126a)

≈ A⊥(0)
A∥(0)

(︂
1 + Θ2

+,⊥e
ib+z − ib+Θ2

+,⊥z − Θ2
×2,∥e

ib×z − i(∆⊥ − ∆∥)z+

+ ib×Θ2
×2,∥z + Θ2

×2,∥ − Θ2
+,⊥

)︂
(2.126b)

= A⊥(0)
A∥(0)

[︂
1 − 2Θ2

+,⊥ sin2 b+z

2 + 2Θ2
×2,∥ sin2 b×z

2 − i(∆⊥ − ∆∥)z+

− iΘ2
+,⊥

(︂
b+z − sin b+z

)︂
+ iΘ2

×2,∥

(︂
b×z − sin b×z

)︂]︂
. (2.126c)
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Given this, we can easily identify the relative change in the amplitude η(z), as
well as the phase delay φ(z) (see (1.169) for their definitions) as

η(z) = 2Θ2
+,⊥ sin2 b+z

2 − 2Θ2
×2,∥ sin2 b×z

2 , (2.127a)

φ(z) = (b+ − b×)z + Θ2
+,⊥

(︂
b+z − sin b+z

)︂
− Θ2

×2,∥

(︂
b×z − sin b×z

)︂
, (2.127b)

where we have noted that ∆⊥ − ∆∥ = b+ − b×. Furthermore, let us first assume
that the EM and the spin-2 wave do not decohere as they pass through the
region with the magnetic field. In other words, let us assume that z ≪ losc,× and
z ≪ losc,+ (that is, b+z ≪ 1 and b×z ≪ 1). We can approximate the expressions
for η(z) and φ(z) as

η(z) ≈ 1
6g

2B2
Tz

2 , (2.128a)

φ(z) ≈ (n⊥ − n∥)ωz + 1
36
g2B2

Tz
3

ω

[︃
m2 + 2

(︃
n⊥ − 1 + 3

4(n⊥ − n∥)
)︃
ω2
]︃
. (2.128b)

After the particle has passed through the magnetic field, one should measure that
the plane in which the electric field oscillates has rotated by an angle δθ(z) and
that the linearly polarized wave has acquired a small ellipticity δψ(z). Under the
assumption that z ≪ losc,× and z ≪ losc,+ (namely that coherence is retained),
these are given by

δθ(z) ≈ − 1
12g

2B2
Tz

2 sin 2θ , (2.129a)

δψ(z) ≈ −1
2(n⊥ − n∥)ωz

(︃
1 + 1

24g
2B2

Tz
2
)︃

sin 2θ+

− 1
72
g2B2

Tz
3

ω

[︃
m2 + 2(n⊥ − 1)ω2

]︃
sin 2θ . (2.129b)

It is now in order to comment on the differences with respect to the expressions
(1.186) which were obtained for the massive scalar. In particular one should be
interested in whether the massive spin-2 and massive spin-0 case could be told
apart by measuring δθ(z) and δψ(z) in the limit z ≪ losc,× and z ≪ losc,+. First,
we notice [10] that by performing a redefinition g′ = 4

3g
2 of the coupling constant,

one finds that except for the factor of

1 + 1
24g

2B2
Tz

2 , (2.130)

appearing in the first line in (2.129b), one ends up with expressions for δθ(z)
and δψ(z) which are identical to those for the massive scalar. So the problem
reduces to the question, in which regime the factor (2.130) becomes important –
if its effect is negligible, this experiment is unable to distinguish between massive
spin-0 and massive spin-2. This will very much depend on the relative magnitude
of the terms

m2 , (n⊥ − 1)ω2 and (n⊥ − n∥)ω2 . (2.131)

In particular, in order for (2.130) to play any role, we need (n⊥ − n∥)ω2 to be at
least comparable with (n⊥−1)ω2 and much greater then m2. 3 In practice, for the

3The price one would have to pay for being able to distinguish the two particle species in
this regime would be the inability to measure the mass m, as it then completely drops out from
both δθ(z) and δψ(z).
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typical laboratory setup we have considered in the previous chapter (ℏω = 2.4 eV,
chamber with air pressure 10−9 Pa and magnetic field BT = 10 T), one would need
m ≪ mc ≃ 10−8 eV (see (1.187) and below) in order for the m2 to be suppressed
compared to the other two terms listed in (2.131). However, even if this were
satisfied, one would need to arrange for the difference n∥ − n⊥ to be comparable
with n⊥ − 1. In practice, substituting our typical laboratory values, one finds
that n∥ − n⊥ ≃ 10−22 (dominated by vacuum birefringence) is much smaller
than n⊥ − 1 ≃ 10−17. We can therefore conclude that it would be difficult to
distinguish the massive spin-2 from massive spin-0 by measuring δθ(z) and δψ(z)
in the regime where z ≪ losc,× and z ≪ losc,+.[10]

Let us also briefly discuss the regime z ≫ losc,× and z ≫ losc,+, where the
oscillations are averaged out. One then obtains the average relative decrease and
phase delay

⟨η(z)⟩ = g2B2
Tω

2
[︃7
3(m2 + 2(n⊥ − 1)ω2)−2 − (m2 + 2(n∥ − 1)ω2)−2

]︃
, (2.132a)

⟨φ(z)⟩ = (n⊥ − n∥)ωz + 1
2g

2B2
Tωz

[︃7
3(m2 + 2(n⊥ − 1)ω2)−1+

− (m2 + 2(n∥ − 1)ω2)−1
]︃
, (2.132b)

which in turn give

⟨δθ(z)⟩ = −1
2g

2B2
Tω

2
[︃7
3(m2 + 2(n⊥ − 1)ω2)−2+

− (m2 + 2(n∥ − 1)ω2)−2
]︃

sin 2θ , (2.133a)

⟨δψ(z)⟩ = −1
2(n⊥ − n∥)ωz sin 2θ+

− 1
4g

2B2
Tωz

[︃7
3(m2 + 2(n⊥ − 1)ω2)−1+

− (m2 + 2(n∥ − 1)ω2)−1
]︃

sin 2θ . (2.133b)

It is not difficult to see that analogous discussion applies as in the limit z ≪ losc,×
and z ≪ losc,+: unless one can arrange for n∥ − n⊥ to be at least comparable
with n⊥ − 1 and, at the same time (n⊥ − 1)ω2 to be much greater than m2, the
measurement of ⟨δθ(z)⟩ and ⟨δψ(z)⟩ is unable to discern the massive spin-2 case
from the massive spin-0 case.

2.4.2 LSW experiments
Let us now calculate the photon regeneration probability in the light shining
through wall experiment. The experimental setup was described in detail in
the first chapter. This time, photon can be converted into massive graviton
instead of scalar particle, considered in previous chapter. However, the massive
graviton, like the scalar, does not interact with the wall material and can thus
pass through to the other side where it can be converted back into a photon in the
magnetic field. Notice that since in the massive spin-2 case, the A∥ polarization
also participates in the oscillations, it may now regenerate on the other side of
the wall alongside the polarization A⊥. Recalling the formalism we introduced in
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the case of the scalar, the total probability of photon regeneration will therefore
be equal to

P (A → χ → A) = |(ΨA⊥)†Ψi|2

|Ψi|2
+

|(ΨA∥)†Ψi|2

|Ψi|2
. (2.134)

where Ψi denotes the initial state and Ψf denotes the final state and the individual
terms correspond to the regeneration probability of A∥ and A⊥ respectively given
the initial state Ψi.

Let us start with a general pure photon state of the form

Ψi =

⎛⎜⎜⎜⎝
0

A∥(0)
0

A⊥(0)

⎞⎟⎟⎟⎠ . (2.135)

Similar to the scalar case, the final state can be computed as

Ψf = U(z2, 0)ΠχU(z1, 0)Ψi , (2.136)

where Πχ is the projector on the subspace spanned by the massive graviton fluc-
tuations, namely

Πχ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.137)

It remains to find the form of the transfer matrix U, given that now there are
two pairs of polarizations which separately undergo two-flavour mixing (χ×2–A∥
and χ+–A⊥), as well as one decoupled polarization χ′

+. That means that it will
be convenient to factorize (in an analogy with the first chapter)

U = U×2,∥U+,⊥U′
+ . (2.138)

where the constituent matrices U×2,∥, U+,⊥ and U′
+ can be parametrized as

U×2,∥(z, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝
U×2,∥

0 0 0
0 0 0

0 0
0 0
0 0

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.139)

as well as

U+,⊥(z, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0
0 1

0 0
0 0

0
0

0 0
0 0 U+,⊥

0
0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.140)
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and

U′
+(z, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 U ′

+

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.141)

As we can see that the mixing equations for each pair of polarizations take a form
very similar to what was encountered in the ϕ-A⊥ problem, it is not difficult to
write down the corresponding submatrices U×2,∥, U+,⊥, U ′

+, namely

U×2,∥(z, 0) = e−iωn∥z

1 + Θ2
×2,∥

×

×

⎛⎝ e
ib×(1+Θ2

×2,∥)z + Θ2
×2,∥e

−ib×Θ2
×2,∥z Θ×2,∥(e−ib×Θ2

×2,∥z − e
ib×(1+Θ2

×2,∥)z)
Θ×2,∥(e−ib×Θ2

×2,∥z − e
ib×(1+Θ2

×2,∥)z) Θ2
×2,∥e

ib×(1+Θ2
×2,∥)z + e

−ib×Θ2
×2,∥z

⎞⎠ ,

(2.142a)

U+,⊥(z, 0) = e−iωn⊥z

1 + Θ2
+,⊥

×

×
(︄
eib+(1+Θ2

+,⊥)z + Θ2
+,⊥e

−ib+Θ2
+,⊥z Θ+,⊥(e−ib+Θ2

+,⊥z − eib+(1+Θ2
+,⊥)z)

Θ+,⊥(e−ib+Θ2
+,⊥z − eib+(1+Θ2

+,⊥)z) Θ2
+,⊥e

ib+(1+Θ2
+,⊥)z + e−ib+Θ2

+,⊥z

)︄
,

(2.142b)

and

U ′
+ = e−i(ω−∆)z . (2.143)

Since χ′
+ does not mix with any other mode, it will not affect our LSW setup.

This allows us to ignore the last row and column in all matrices throughout the
calculation. After some manipulations, we would have found

|(ΨA∥)†U(z2, 0)ΠχU(z1, 0)Ψi|2

|Ψi|2
=

≈
|A∥(0)|2

|A∥(0)|2 + |A⊥(0)|2 Θ4
×2,∥

⃓⃓⃓
(1 − eib×z1)(1 − eib×z2)

⃓⃓⃓2
(2.144a)

= |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 16Θ4

×2,∥ sin2 b×z1

2 sin2 b×z2

2 , (2.144b)

as well as
|(ΨA⊥)†U(z2, 0)ΠχU(z1, 0)Ψi|2

|Ψi|2
=

≈ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2 Θ4

+,⊥

⃓⃓⃓
(1 − eib+z1)(1 − eib+z2)

⃓⃓⃓2
(2.145a)

= |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 16Θ4

+,⊥ sin2 b+z1

2 sin2 b+z2

2 . (2.145b)

Thus, the overall regeneration probability can be expressed as

P (A → χ → A) = 16
|A∥(0)|2 + |A⊥(0)|2

[︃
|A∥(0)|2Θ4

×2,∥ sin2 b×z1

2 sin2 b×z2

2 +
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+ |A⊥(0)|2Θ4
+,⊥ sin2 b+z1

2 sin2 b+z2

2

]︃
(2.146a)

= |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2P (A∥ → χ×2 → A∥)+

+ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2P (A⊥ → χ+ → A⊥) , (2.146b)

where we define

P (A∥ → χ×2 → A∥) = 16Θ4
×2,∥ sin2 b×z1

2 sin2 b×z2

2 , (2.147a)

P (A⊥ → χ+ → A⊥) = 16Θ4
+,⊥ sin2 b+z1

2 sin2 b+z2

2 . (2.147b)

These are the (elementary) probabilities of regenerating the polarization A∥ (or
A⊥) given that we start with a pure A∥ (or A⊥) beam (noticing as well that the
mixed transition probabilities P (A∥ → χ×2 → A⊥) and P (A⊥ → χ×2 → A∥)
both vanish). As expected, since the two photon polarizations do not interact
with each other through mixing with the massive spin-2 field, we observe that
they could have been treated individually.

We can further simplify the results for the situation where the sizes of both
regions with the magnetic field are much smaller than the oscillation lengths
(2.122) for the two independent 2-flavour mixing problems, i.e.

b×z1, b+z1 ≪ 1 , (2.148a)
b×z2, b+z2 ≪ 1 . (2.148b)

In this case the massive spin-2 waves and EM waves will not decohere as they
propagate through the magnetic field. After substituting for the mixing angles
Θ×2,∥ and Θ+,⊥ and mass parameters b× and b+, we arrive at the result

P (A → χ → A) ≈ 1
16g

4B4
Tz

2
1z

2
2
|A∥(0)|2 + 49

9 |A⊥(0)|2

|A∥(0)|2 + |A⊥(0)|2 . (2.149)

As in the case of the massive scalar, this does not depend on the mass parameter
m. We can notice that in order to maximize the regeneration probability, one
should take the initial beam to consist purely of the A⊥ polarization. On the
other hand, preparing the system in a pure A∥ initial state would enable us to
distinguish between the massive graviton and the scalar through this experiment,
because, while in the massive spin-2 case, one should expect a positive measure-
ment on the other side of the wall, in the scalar particle case, no signal would be
obtained.

On the other hand, if the opposite regime takes place, that is if we have
both b×z1, b+z1 ≫ 1 and b×z2, b+z2 ≫ 1 (z1 and z2 much greater than the two
oscillation lengths (2.122)), we obtain the mean regeneration probability

⟨P (A → χ → A)⟩ =

= 4
|A∥(0)|2 + |A⊥(0)|2

[︃
|A∥(0)|2Θ4

×2,∥ + |A⊥(0)|2Θ4
+,⊥

]︃
(2.150a)
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= 4g4B4
Tω

4

|A∥(0)|2 + |A⊥(0)|2

[︄
|A∥(0)|2

(m2 + 2(n∥ − 1)ω2)4 +

+ 49
9

|A⊥(0)|2
(m2 + 2(n⊥ − 1)ω2)4

]︄
. (2.150b)

We observe that the dependence on z1 and z2 has been traded for the dependence
on the mass m and the refractive indices n∥, n⊥.

2.4.3 Relative intensity decrease
As a consequence of the mixing, one should again expect to observe a relative
decrease in the intensity of the photon beam propagating in an external magnetic
field. This time the problem becomes slightly more complicated, because both
photon polarizations undergo mixing. Let us start with a pure-photon state Ψi =
(0, A∥(0), 0, A⊥(0)) and consider the small mixing scenario. The total relative
intensity decrease can then be computed as

|A(0)|2 − |A(z)|2
|A(0)|2 =

= 1
|A∥(0)|2 + |A⊥(0)|2

[︄
|A∥(0)|2 |A∥(0)|2 − |A∥(z)|2

|A∥(0)|2 +

+ |A⊥(0)|2 |A⊥(0)|2 − |A⊥(z)|2
|A⊥(0)|2

]︄
(2.151a)

= 1
|A∥(0)|2 + |A⊥(0)|2

[︄
|A∥(0)|2P (A∥ → χ×2)+

+ |A⊥(0)|2P (A⊥ → χ+)
]︄

(2.151b)

= |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 4Θ2

×2,∥ sin2
(︃
b×z

2

)︃
+

+ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 4Θ2

+,⊥ sin2
(︃
b+z

2

)︃
, (2.151c)

namely as a weighted sum of the two partial relative intensity decreases which
one would measure for each of the two photon polarizations (we have realized
that |A(0)|2 = |A∥(0)|2 + |A⊥(0)|2 and then used the results for the two-flavour
mixing derived already for the massive spin-0). We observe that depending on
the initial polarization of the beam, the intensity will oscillate with two different
amplitudes

α× = 4g2B2
Tω

2

[m2 + 2(n∥ − 1)ω2]2 , (2.152a)

α+ = 7
3

4g2B2
Tω

2

[m2 + 2(n⊥ − 1)ω2]2 , (2.152b)

and oscillation lengths

losc,× = 4πω
m2 + 2(n∥ − 1)ω2 , (2.153a)
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losc,+ = 4πω
m2 + 2(n⊥ − 1)ω2 . (2.153b)

While one should generally expect the oscillation lengths to be roughly the same
(unless n⊥ − n∥ is at least comparable to n⊥ − 1 and m2 is suppressed relative
to 2(n⊥ − 1)ω2), the two ampitudes, being proportional to the squares of the
corresponding mixing angles, will differ by a factor of 7/3.

64



3. Mixing of photons in GR
Let us now carefully discuss the case of mixing a massless graviton with a pho-
ton, which also goes by the name of the Gertsenshtein-Zel’dovich effect.[48, 49]
Although one could naively think that the dynamics of the oscillations in the
massless spin-2 case could be recovered by simply taking the m → 0 limit of
the massive spin-2 results derived in the previous chapter, this turns out to be
incorrect due to the fact that in the massive case, there are additional degrees of
freedom which do not decouple even for arbitrarily small value of m (namely the
χ0 mode). This is the famous van Dam-Veltman-Zakharov (vDVZ) discontinuity.
[16, 17] The massless spin-2 case therefore calls for a separate treatment.

Note that one has to be cautious about the signs because, unlike most of the
literature on Einstein gravity, in this thesis we are working with the mostly minus
(West Coast) convention for the metric signature.

3.1 The Einstein-Maxwell theory
We will start with an action derived by combining the standard general relativity
Lagrangian and the general-covariant electromagnetic Lagrangian LEM, namely
[50]

S =
∫︂
d4x

√
−g
(︃

− 1
2κR + LEM

)︃
, (3.1)

where g = det gµν denotes the determinant of the spacetime metric, R denotes
Ricci scalar and κ = 8πG

c4 is the Einstein gravitational constant. In the natural
units (2), it is related to the Planck mass mPl ≃ 2.4 × 1018 GeV as

1
2κ = m2

Pl . (3.2)

In particular, for the EM-part of the action (3.1) we have

SEM,int =
∫︂
d4x

√
−gLEM (3.3a)

= −1
4

∫︂
d4x

√
−gFµνg

µαgνβFαβ , (3.3b)

where by denoting it as SEM,int, we have emphasized the fact that it contains not
only the Maxwell kinetic term, but also the interactions of the EM field with the
gravitational field. Rewriting Fµν into covariant form and using the symmetry of
the Christoffel symbols in the lower indices, we have

Fµν = ∇µAν − ∇νAµ (3.4a)
= ∂µAν − Γ α

νµ Aα − (∂νAµ − Γ α
µν Aα) (3.4b)

= ∂µAν − ∂νAµ , (3.4c)

so that the EM field-strength tensor has the same form as in the flat space. It
is also straightforward to see that the Bianchi identity for the EM field-strength
tensor continues to hold in curved space. In particular, one has

∇αFβγ + ∇βFγα + ∇γFαβ =
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= ∂αFβγ + ∂βFγα + ∂γFαβ − Γδ
αβFδγ − Γδ

αγFβδ − Γδ
βγFδα+

− Γδ
βαFγδ − Γδ

γαFδβ − Γδ
γβFαδ , (3.5)

where, since Fαβ can be expressed in terms of ordinary partial derivatives as in
(3.4c), the first three terms vanish by the same argument as in the flat space,
while the remaining six terms vanish by recalling the symmetry of the Christoffel
symbols in its the lower indices. In total, one therefore has

∇αFβγ + ∇βFγα + ∇γFαβ = 0 . (3.6)

If we now vary the action (3.1) with respect to the metric, we get the well-known
Einstein’s field equations of general relativity, namely

Rµν − 1
2gµνR = κ(TEM)µν , (3.7)

where we define the Maxwell stress-energy tensor (TEM)µν on a generic curved
background as

(TEM)µν = 2√
−g

∂

∂gµν

(︂√
−gLEM

)︂
= 2∂LEM

∂gµν
− gµνLEM . (3.8)

Substituting the explicit form of LEM from (3.3), we obtain

(TEM)µν = Fµαg
αβFβν + 1

4gµνFρσFαβg
ραgσβ . (3.9)

It is straightforward to see that in the flat background gµν = ηµν , the expres-
sion (3.9) coincides with the expression (2.61) used in the previous chapter. On
the other hand, by varying the action with respect to Aµ, we would obtain the
equations of motion for the EM field, namely

0 = 1√
−g

∂α(
√

−gFµνg
µαgνβ) . (3.10)

We can note that for any anti-symmetric tensor field Ωαβ, one can rewrite the
covariant divergence as

∇αΩαβ = ∂αΩαβ + Γα
αδΩδβ + Γβ

αδΩαδ (3.11a)

= ∂αΩαβ + 1√
−g

∂δ(
√

−g)Ωδβ (3.11b)

= 1√
−g

∂α(
√

−gΩαβ) , (3.11c)

where in the second equality, we have used the symmetry of the Christoffel symbol
in its lower indices and also noted that

Γα
αδ = 1√

−g
∂δ(

√
−g) . (3.12)

It follows that one can rewrite
1√
−g

∂α(
√

−gFµνg
µαgνβ) = ∇α(Fµνg

µαgνβ) , (3.13)
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so that the equation of motion (3.10) for the EM field can be equivalently restated
as

0 = gµα∇αFµν . (3.14)

Using the equation of motion (3.14), as well as the Bianchi identity (3.6), one can
then prove the covariant conservation of (TEM)µν , namely

gσµ∇σ

(︂
(TEM)µν

)︂
= gσµ∇σ

(︂
Fµαg

αβFβν

)︂
+ 1

4g
σµ∇σ

(︂
gµνFρτFαβg

ραgτβ
)︂

(3.15a)

= gσµFµαg
αβ∇σFβν + 1

4∇ν

(︂
FρτFαβg

ραgτβ
)︂

(3.15b)

= Fµσg
αµgσβ∇αFβν + 1

2Fρτg
ραgτβ∇νFαβ (3.15c)

= 1
2Fµσg

αµgσβ(∇αFβν + ∇βFνα + ∇νFαβ) (3.15d)

= 0 . (3.15e)

Finally, computing the trace of the EM stress energy tensor, one gets

gµν(TEM)µν = Fµαg
µνgαβFβν + 1

4g
µνgµνFρσFαβg

ραgσβ (3.16a)

= −FµαFνβg
µνgαβ + FρσFαβg

ραgσβ (3.16b)

= 0 , (3.16c)

namely that the EM stress tensor is traceless. Hence, taking the trace of the field
equation (3.7), one concludes that on any classical field configuration, the Ricci
scalar needs to vanish. The equation of motion (3.7) can therefore be equivalently
recast as

Rµν = κ(TEM)µν . (3.17)

3.2 Linearization around a background
Let us start by considering the expansion of the Einstein-Hilbert-Maxwell action
(3.1) around a classical background, that is around field configurations gµν and
Aµ, which satisfy the classical equations of motion (3.7) and (3.10) (the coupled
system of Einstein-Maxwell field equations). To achieve this goal, we will expand
the fields gµν and Aµ in fluctuations δgµν , δAµ around their background values
gµν , Aµ as

gµν = gµν + δgµν , (3.18a)
Aµ = Aµ + δAµ . (3.18b)

We would like to find the corresponding expansion of the action (3.1) in powers
of δgµν and δAµ. We therefore seek to write the action (3.1) in the form

S
[︂
gµν + δgµν , Aµ + δAµ

]︂
=
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= S
[︂
gµν , Aµ

]︂
+ δ(1)S

[︂
gµν , Aµ

]︂
+ 1

2!δ
(2)S

[︂
gµν , Aµ

]︂
+ . . . , (3.19)

where the first variation δ(1)S automatically vanishes since the background fields
satisfy the equations of motion, while the second variation (1/2!)δ(2)S provides
a quadratic action for the fluctuations δgµν , δAµ whose extremization yields the
linearized equations of motion. Higher-order variations (. . . in (3.19)) will provide
higher-order interactions between the fluctuations δgµν and δAµ. Finally, the on-
shell action S[gµν , Aµ] can be treated as a constant shift with no impact on the
dynamics of the fluctuations.

3.2.1 First variation
Let us warm up by reviewing first the calculation of the first variation. One can
first find

δgµν = −gµαgνβδgαβ , (3.20a)

δ
√

−g = 1
2

√
−ggαβδgαβ . (3.20b)

Using these results, one can derive the variation of the Christoffel symbols

δΓα
βγ = 1

2δg
αρ(∂βgργ + ∂γgρβ − ∂ρgγβ)+

+ 1
2g

αρ(∂βδgργ + ∂γδgρβ − ∂ρδgγβ) (3.21a)

= −gαρΓν
βγδgρν + 1

2g
αρ(∂βδgργ + ∂γδgρβ − ∂ρδgγβ) (3.21b)

= 1
2g

αρ
(︂
∂βδgργ − Γν

βγδgρν − Γν
βρδgγν+

+ ∂γδgρβ − Γν
γβδgρν − Γν

γρδgβν+

− ∂ρδgγβ + Γν
βρδgγν + Γν

γρδgβν

)︂
(3.21c)

= 1
2g

αρ(∇βδgργ + ∇γδgρβ − ∇ρδgγβ) , (3.21d)

(where based on (3.21d), we note that as opposed to Γα
βγ, the variation δΓα

βγ is
a rank (1, 2) tensor field), the variation of the Riemann tensor

δRρ
σµν = ∂µδΓρ

νσ − ∂νδΓρ
µσ+

+ Γρ
µλδΓλ

νσ + Γλ
νσδΓ

ρ
µλ − Γρ

νλδΓλ
µσ − Γλ

µσδΓ
ρ
νλ (3.22a)

= ∂µδΓρ
νσ + Γρ

µλδΓλ
νσ − Γλ

µσδΓ
ρ
νλ − Γλ

µνδΓ
ρ
σλ+

− ∂νδΓρ
µσ − Γρ

νλδΓλ
µσ + Γλ

νσδΓ
ρ
µλ + Γλ

νµδΓ
ρ
σλ (3.22b)

= ∇µδΓρ
νσ − ∇νδΓρ

µσ , (3.22c)

the variation of the Ricci tensor

δRσν = ∇ρδΓρ
νσ − ∇νδΓρ

ρσ (3.23a)

= 1
2g

ρλ∇ρ∇νδgλσ + 1
2g

ρλ∇ρ∇σδgλν − 1
2g

ρλ∇ρ∇λδgνσ+
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− 1
2g

ρλ∇ν∇ρδgλσ − 1
2g

ρλ∇ν∇σδgλρ + 1
2g

ρλ∇ν∇λδgρσ (3.23b)

= 1
2g

ρλ∇ρ∇νδgλσ + 1
2g

ρλ∇ρ∇σδgλν − 1
2∇2δgνσ − 1

2∇σ∇νδg
λ

λ (3.23c)

and, finally, the variation of the Ricci scalar

δR = δ
(︂
gνσRνσ

)︂
(3.24a)

= −Rνσg
ναgσβδgαβ + gνσδRνσ (3.24b)

= −Rαβδgαβ + gνσgρλ∇ρ∇νδgλσ − ∇2δg λ
λ . (3.24c)

Hence, the lagrangian density of the pure-gravitational Einstein-Hilbert action is
varied as

δ(
√

−gR) = −
√

−g
(︃
Rαβ − 1

2Rg
αβ
)︃
δgαβ+

+ ∇ρ∇σ
[︂√

−g(δgρσ − gρσδg
λ

λ )
]︂
, (3.25)

where the second term is a total derivative and will therefore give vanishing
contribution upon assuming suitable boundary conditions. On the other hand,
varying the EM part of the lagrangian density with respect to the metric gives

δg(
√

−gLEM) = ∂

∂gµν
(
√

−gLEM)δgµν (3.26a)

= −1
2

[︃ 2√
−g

∂

∂gµν
(
√

−gLEM)
]︃√

−ggµαgνβδgαβ (3.26b)

= −1
2(TEM)αβ√

−gδgαβ , (3.26c)

where we have recognized the definition (3.8) of the EM stress-energy tensor.
Varying the EM lagrangian density with respect to Aµ gives (up to a total deriva-
tive which will result into a boundary term that can be made to vanish)

δA(
√

−gLEM) = ∂α(
√

−gFµνg
µαgνβ)δAβ (3.27a)

=
√

−g∇α(Fµνg
µαgνβ)δAβ , (3.27b)

where we have made use of the result (3.13). The first variation of the action
(3.1) can therefore be computed as

δ(1)S = 1
2κ

∫︂
d4x

√
−g
(︃
Rαβ − 1

2Rg
αβ − κ(TEM)αβ

)︃
δgαβ+

+
∫︂
d4x

√
−g∇α(Fµνg

µαgνβ)δAβ , (3.28)

which indeed manifestly vanishes upon substituting the background fields gµν ,
Aµ satisfying the equations of motion (3.7) and (3.14).

3.2.2 Second variation
Let us continue with computing the second variation. When evaluated at some
classical field configurations gµν , Aµ, it will give us the kinetic part of the action for
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the small fluctuations around such a background. It will be useful to decompose
the second variation as

δ(2)S
[︂
gµν , Aµ

]︂
= δ(2)

gg S
[︂
gµν , Aµ

]︂
+ δ

(2)
AAS

[︂
gµν , Aµ

]︂
+ 2δ(2)

AgS
[︂
gµν , Aµ

]︂
, (3.29)

that is into a term quadratic in δg, quadratic in δA and a mixing term which
is proportional to δgδA. In order to simplify the ensuing analysis, from now on
we will assume that the background configuration gµν , Aµ is just the flat-space
vacuum, namely

gµν = ηµν , Aµ = 0 . (3.30)

For this choice we simply have δ(2)
AgS

[︂
gµν , Aµ

]︂
= 0: indeed, one should expect that

in the flat-space vacuum, the metric and EM fluctuations should propagate as
mass eigenstates with no mixing. At the same time the kinetic term δ

(2)
AAS

[︂
gµν , Aµ

]︂
for the EM field Aµ in the linearized action around the flat-space configuration
(3.30) clearly has to come out as the usual flat-space Maxwell action, that is

δ
(2)
AAS

[︂
gµν = ηµν , Aµ = 0

]︂
≡ SEM[A] = −1

4

∫︂
d4xFµνF

µν (3.31)

(Indeed, this immediately follows from the fact, that we are taking second varia-
tion of a term which was already quadratic in the fluctuations.) We are therefore
left with determining the metric-metric contribution δ(2)

gg S
[︂
gµν , Aµ

]︂
to the kinetic

part of the linearized action.

Metric-metric part

In calculating δ(2)
g,gS[gµν , Aµ], it is useful to first note that we can write

δg

[︄
√

−g
(︃
Rαβ − 1

2Rg
αβ − κ(TEM)αβ

)︃]︄
=

= (2
√

−gδgβνgνσ + δβ
σδ

√
−g)

(︃
Rασ − 1

2Rg
ασ − κ(TEM)ασ

)︃
+

+
√

−ggαµgβν
(︃
δRµν − 1

2δRgµν − 1
2Rδgµν − κδg(TEM)µν

)︃
. (3.32)

Substituting for classical field configuration gµν = ηµν , Aµ = 0, the first term and
the term proportional to R both vanish. We also have

δRµν − 1
2ηµνδR =

= 1
2

(︃
δσ

µη
ρλ∂ρ∂ν + δσ

ν η
ρλ∂ρ∂µ − δλ

µδ
σ
ν ∂

2+

− ηλσ∂µ∂ν − ηµνη
τσηρλ∂ρ∂τ + ηµνη

λσ∂2
)︃
δgλσ (3.33a)

= 1
2□

ρσ
µν δgρσ , (3.33b)

where we have used the flat-space equation of motion Rρσ = 0 and we have
introduced the background wave operator

□ λσ
µν = δσ

µη
ρλ∂ρ∂ν + δσ

ν η
ρλ∂ρ∂µ − δλ

µδ
σ
ν ∂

2+
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− ηλσ∂µ∂ν − ηµνη
τσηρλ∂ρ∂τ + ηµνη

λσ∂2 . (3.34)

Calculating δg(TEM)µν and evaluating on a classical background field configura-
tion, we would have found that all terms contain at least two powers of the back-
ground EM field which we are setting to 0. Hence, we conclude that δg(TEM)µν

when evaluated on a flat-space background. In total, varying the first term in
(3.28) with respect to the metric and substituting for the flat-space background,
one obtains

δg

[︄
√

−g
(︃
Rαβ − 1

2Rg
αβ − κ(TEM)αβ

)︃]︄⃓⃓⃓⃓
⃓
g=η,A=0

= 1
2η

αµηβν□ ρσ
µν δgρσ . (3.35)

Denoting the metric fluctuations as δgµν = hµν one therefore obtains the action

Sgrav = 1
8κ

∫︂
d4xhµν(δσ

µη
ρλ∂ρ∂ν + δσ

ν η
ρλ∂ρ∂µ − δλ

µδ
σ
ν ∂

2+

− ηλσ∂µ∂ν − ηµνη
τσηρλ∂ρ∂τ + ηµνη

λσ∂2)hρσ (3.36)

= 1
8κ

∫︂
d4x (hµν∂α∂µhαν + hµν∂α∂νhαµ − hµν∂µ∂νh

α
α +

− hµν□hµν − h µ
µ ∂α∂βhαβ + h µ

µ □h α
α ) . (3.37)

Using the symmetry in indices µ and ν and integrating by parts assuming the
boundary terms to vanish, we finally end up with the expression

Sgrav = 1
4κ

∫︂
d4x

[︄
1
2∂ρh

µν∂ρhµν − 1
2∂ρh

µ
µ ∂ρh α

α +

+ ∂µh
µν∂νh

α
α − (∂µh

µν)(∂αhαν)
]︄
. (3.38)

Hence, rescaling the metric fluctuation as

Hµν = − 1
2
√
κ
hµν , (3.39)

we obtain

Sgrav[H] =
∫︂
d4x

[︄
1
2∂ρH

µν∂ρHµν − 1
2∂ρH

µ
µ ∂ρH α

α +

+ ∂µH
µν∂νH

α
α − (∂µH

µν)(∂αHαν)
]︄
. (3.40)

The integrand then clearly agrees with the m → 0 limit of the Fierz-Pauli la-
grangian (2.1) for a massive spin-2 particle.

3.2.3 Interactions
Higher-order interactions between the gravity fluctuations δgαβ and the EM fluc-
tuations δAα can be worked out by computing higher-order variations of the ac-
tion (3.1). This procedure of course becomes increasingly cumbersome with the
increasing order. We will therefore only explicitly derive the interaction which
we will need for later applications.
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In the previous chapters, the mixing problem between the photon and other
particles (scalar and massive spin 2) was considered from the perspective of an
interacting action linearized around an empty flat spacetime. Starting with such
an action, we expanded the fields around a classical solution corresponding to a
constant magnetic field and observed how the cubic interaction vertices of the
type photon–photon–(scalar/massive spin 2) gave rise to the mixing. In order to
be able to perform an analogous derivation in the case of the massless graviton,
let us therefore focus on deriving this interaction from the action (3.1) by varying
it once with respect to the metric and twice with respect to the EM field (in
arbitrary order). Calculating the second variation with respect to the EM field is
straightforward, as the Einstein-Hilbert-Maxwell action is quadratic in the EM
fields: one can simply replace the field-strength tensor Fµν with its fluctuation
δFµν to obtain

1
2!δ

(2)
AAS = −1

4

∫︂
d4x

√
−gδFµνδFαβg

µαgνβ . (3.41)

Varying once more with respect to the metric, one can see (as a direct consequence
of the definition (3.8)) that the metric fluctuation δgαβ will couple to the EM
stress-energy tensor for the fluctuations δAα. In an empty flat background gαβ =
ηαβ, Aα = 0, this becomes (denoting δgαβ = hαβ and relabelling δAα → Aα)

Sint = −1
2

∫︂
d4x

(︄
FµρF

ρ
ν + 1

4ηµνF
ρσFρσ

)︄
hµν . (3.42)

After the rescaling (3.39) and a redefinition

g =
√

2κ = 1
mPl

, (3.43)

of the coupling constant, we therefore obtain

Sint[H,A] = g√
2

∫︂
d4x

(︄
FµρF

ρ
ν + 1

4ηµνF
ρσFρσ

)︄
Hµν . (3.44)

This we recognize as the same form of interaction which we eventually considered
for the massive spin-2 particle in the previous chapter.

3.2.4 Summary
In total, specializing to the case of a flat empty spacetime gαβ = ηαβ, Aα = 0, we
can combine the results (3.40), (3.31) and (3.44) to obtain the action

S[H,A] = Sgrav + SEM + Sint (3.45a)

=
∫︂
d4x

[︄
1
2∂ρH

µν∂ρHµν − 1
2∂ρH

µ
µ ∂ρH α

α +

+ ∂µH
µν∂νH

α
α − (∂µH

µν)(∂αHαν)
]︄
+

− 1
4

∫︂
d4xFµνF

µν+

+ g

2

∫︂
d4x

(︄
FµρF

ρ
ν + 1

4ηµνF
ρσFρσ

)︄
Hµν . (3.45b)

This can be directly compared with the action for the massive spin-2 particle
considered in the previous chapter (setting m → 0).
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3.3 Derivation of the mixing equations
We will now discuss in detail how the mixing between the EM modes and the
metric modes on a constant magnetic background arises.

3.3.1 Linearized gauge symmetries
Action (3.45) is invariant under the gravity gauge transformation (order by order
in the coupling constant g)

δdHµν = ∂µdν + ∂νdµ , (3.46a)

δdAµ = − g√
2

(Aα∂µd
α + dα∂αAµ) , (3.46b)

(where we have introduced a gauge parameter dµ), which originates from in-
finitesimal diffeomorphisms. We could derive this transformation by considering
the infintesimal change of coordinates (x′)µ = xµ + g√

2ϵd
µ and investigating how

the linearized metric and the vector field Aµ transform. While it can be proved,
that the action (3.45) is invariant under the transformation (3.46) by directly
substituting the transformation in the action, we can argue for the invariance by
just noting that (3.45) comes from the original action (3.1), which is manifestly
generally-covariant. The gauge symmetry (3.46) will later be used to fix two
physical polarizations ×2, +2 for graviton.

It is also easy to prove that the action (3.45) is invariant under the electro-
magnetic gauge transformation

δλHµν = 0 , (3.47a)
δλAµ = ∂µλ . (3.47b)

We simply note that this transformation does not affect the graviton at all and
that the rest of S depends only on Fµν , which is a gauge-invariant quantity by
itself. As usual, the EM gauge symmetry (3.47) will allow us to fix the two
physical polarizations for the photon.

3.3.2 Linearized equations of motion
The equations of motion corresponding to the action (3.45) can be obtained by the
standard procedure, namely by varying the action we have found. We can already
predict that they will come out the same as in the case of the massive graviton,
only that the mass terms will vanish. The variation of Sgrav with respect to Hµν ,
after integrating by parts, throwing away the boundary terms and symmetrizing
the integrand (since we are varying with respect to a symmetric tensor) gives

δHSgrav =
∫︂
d4x δHµν

(︃
− ∂ρ∂ρH

µν + ∂µ∂ρH
ρν + ∂ν∂ρH

ρµ − ∂ν∂µHρ
ρ+

− ∂ρ∂σH
ρσηµν + ∂ρ∂ρH

σ
ση

µν
)︃
. (3.48)

which would indeed reproduce the free part of the equation of motion for a mass-
less graviton. Variation of SEM + Sint with respect to Hµν only receives contribu-
tions from the interacting part, namely

δH(SEM + Sint) = g√
2
δ
∫︂
d4xHµν

(︃
F µ

αF
αν + 1

4η
µνFβαF

βα
)︃

(3.49a)
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= g√
2

∫︂
d4x δHµν

(︃
F µ

αF
αν + 1

4η
µνFβαF

βα
)︃
. (3.49b)

Since the integrand of (3.49b) is already symmetric in the indices µ, ν, we can
immediately write down the corresponding interacting equation of motion

0 = −∂ρ∂ρH
µν + ∂µ∂ρH

ρν + ∂ν∂ρH
ρµ − ∂ν∂µHρ

ρ − ∂ρ∂σH
ρσηµν+

+ ∂ρ∂ρH
σ
ση

µν + g√
2

(︃
F µ

αF
αν + 1

4η
µνFβαF

βα
)︃
. (3.50)

To obtain the equation of motion for the EM field, let us vary the action with
respect to Aµ. We already know what the variation of SEM looks like from (1.13b).
Furthermore, the variation of Sgrav will be zero and finally, for the variation of
Sint we can write

δASint = g√
2
δA

∫︂
d4xHµν

(︃
F µαF ν

α + 1
4η

µνFβαF
βα
)︃

(3.51a)

=
√

2g
∫︂
d4xHµνF

µα
(︃
δF ν

α + 1
4η

µνF βαδFβα

)︃
(3.51b)

=
√

2g
∫︂
d4xHµν

[︃
F α

µ (∂αδAν − ∂νδAα) + 1
2ηµνF

βα∂βδAα

]︃
(3.51c)

=
√

2g
∫︂
d4x

[︃
(HµαF ν

µ −HµνF α
µ ) + 1

2H
ρ

ρ F να
]︃
∂νδAα . (3.51d)

Integrating by parts, one can then read of the EM equation of motion as

0 = ∂µF
µα −

√
2g∂ν

(︃
HµαF µ

ν −HµνF µ
α + 1

2Hρ
ρF να

)︃
. (3.52)

In order to make contact with the standard treatment of gravitational waves, let
us rewrite the equations of motion (3.50) and (3.52) in terms of the trace-reversed
metric perturbation

H̃
µν = Hµν − 1

2η
µνHρ

ρ . (3.53)

This clearly satisfies

H̃ρ
ρ = −Hρ

ρ . (3.54)

First, we can rewrite the graviton equation of motion as

0 = −□H̃
µν + 1

2η
µν□H̃ρ

ρ + ∂µ∂ρH̃
ρν − 1

2∂
µ∂νH̃ρ

ρ + ∂ν∂ρH̃
ρµ+

− 1
2∂

µ∂νH̃ρ
ρ − ∂ν∂µH̃

ρ

ρ + 1
2∂

µ∂ν(4H̃ρ
ρ) − ∂ρ∂σH̃

ρσ
ηµν+

+ 1
2□H̃α

αηµν − ηµν□H̃σ
σ + g√

2

(︃
F µ

αF
αν + 1

4η
µνFβαF

βα
)︃

(3.55a)

= −□H̃
µν + ∂µ∂ρH̃

ρν + ∂ν∂ρH̃
ρµ − ∂ρ∂σH̃

ρσ
ηµν+

+ g√
2

(︃
F µ

αF
αν + 1

4η
µνFβαF

βα
)︃

(3.55b)
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while the EM equation of motion can be recast as

0 = ∂µF
µα −

√
2g∂ν

(︃
H̃

µα
F µ

ν − 1
2H̃ρ

ρFαν+

− H̃
µν
F µ

α + 1
2H̃ρ

ρF να − 1
2H̃ρ

ρF να
)︃

(3.56a)

= ∂µF
µα −

√
2g∂ν

(︃
H̃

µα
F µ

ν − H̃
µν
F µ

α + 1
2H̃ρ

ρF να
)︃
. (3.56b)

Altogether, we therefore end up with the pair of equations

0 = −□H̃
µν + ∂µ∂ρH̃

ρν + ∂ν∂ρH̃
ρµ − ∂ρ∂σH̃

ρσ
ηµν+

+ g√
2

(︃
F µ

αF
αν + 1

4η
µνFβαF

βα
)︃

(3.57a)

0 = ∂µF
µα −

√
2g∂ν

(︃
H̃

µα
F µ

ν − H̃
µν
F µ

α + 1
2H̃ρ

ρF να
)︃

(3.57b)

for the fields H̃µν and Aµ.

3.3.3 Propagation on a magnetic EM background
As in the previous chapters we would like to expand the fields in small fluctuations
around a weak magnetic background to simplify the analysis of the equations of
motion. In this case, let us expand

F µν → F µν
ext + F µν , (3.58a)

H̃
µν → H̃

µν

ext + H̃
µν
, (3.58b)

where the background fields denoted by the subscript “ext” satisfy the above
derived equations of motion (3.57). Specifically, the field-strength tensor F µν

ext has
the already well-known form (1.14), so it is assumed to be constant in a region
of space |r| ≲ L and to vanish otherwise. It satisfies

∂µF
µν
ext = 0 (3.59)

everywhere. As we have mentioned, we, strictly speaking, also have to turn on
H̃ext which would satisfy

−□H̃
µν

ext + ∂µ∂ρH̃
ρν

ext + ∂ν∂ρH̃
ρµ

ext − ∂ρ∂σH̃
ρσ

extη
µν = − g√

2
T µν

ext , (3.60)

that is, schematically, ∂2H̃ext ∼ gB2. This would imply that H̃ext ∼ gB2r2 inside
the region |r| ≲ L and H̃ext ∼ gB2L3

r
outside. Hence gHext ≲ g2B2L2, so in order

to ensure that Sint ≪ SEM (so that it can be treated as a perturbation) and
neglect Hext, we need the external magnetic field to be weak in the sense that

g2B2L2 ≪ 1 . (3.61)

Note that this is the same condition which we have found for the massless limit
of the scalar particle. Also note that restoring SI units, we can express

g2B2L2 = 16πG
µ0c4 B

2L2 ≃ 3.3 × 10−37
(︃
B

T

)︃2 (︃L
m

)︃2
. (3.62)
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Hence, the assumption g2B2L2 ≪ 1 will certainly be valid in any conceivable
laboratory setup (L ∼ 1 m, B ∼ 10 T), as well as in known astrophysical envi-
ronments, such as around a pulsar (L ∼ 10 km, B ∼ 109 T).

From now on, we will therefore assume that we can neglect Hext and write
the equations of motion linearized around Fext as

□H̃
µν − ∂µ∂ρH̃

ρν − ∂ν∂ρH̃
ρµ + ∂ρ∂σH̃

ρσ
ηµν =

= g√
2

[︃
F µα

extFα
ν + F µα(Fext)α

ν + 1
2η

µνFαβ
extFαβ

]︃
(3.63)

and

∂µF
µα =

√
2g
[︃
(Fext)µ

ν∂νH̃
µα − (Fext)µ

α∂νH̃
µν + 1

2F
να
ext∂νH̃

ρ
ρ

]︃
. (3.64)

3.3.4 Gauge fixing
We will now use the gravity gauge transformation (3.46), as well as the EM gauge
transformation (3.47) to isolate the physical propagating degrees of freedom. Tak-
ing the trace of the gravity gauge transformation, we obtain

δdHρ
ρ = 2∂µd

µ , (3.65)

which gives the gauge transformation for the trace-reversed perturbation as

δdH̃
µν = δdH

µν − 1
2η

µνδdHρ
ρ (3.66a)

= ∂µdν + ∂νdµ + ηµν∂ρd
ρ . (3.66b)

We now want to fix a gauge so that

□H̃
01 = 0 , (3.67a)

□H̃
02 = 0 , (3.67b)

□H̃
03 = 0 , (3.67c)

□H̃
ρ

ρ = 0 , (3.67d)
□A0 = 0 . (3.67e)

This will then allow us to consistently set

H̃
01 = H̃

02 = H̃
03 = H̃ρ

ρ = A0 = 0 , (3.68)

as it is typically done in the case of freely propagating gravitational and EM
waves. Introducing the shorthand notation

(δTEM)µν = F µα
extFα

ν + F µα(Fext)α
ν + 1

2η
µνFαβ

extFαβ , (3.69)

the equations of motion (3.63) and (3.64) can be expanded in the respective
components as

□H̃
01 − ∂0∂ρH̃

ρ1 = g√
2

(δTEM)01 , (3.70a)
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□H̃
02 − ∂0∂ρH̃

ρ2 = g√
2

(δTEM)02 , (3.70b)

□H̃
03 − ∂0∂ρH̃

ρ3 − ∂3∂ρH̃
ρ0 = g√

2
(δTEM)03 , (3.70c)

□H̃ρ
ρ + 2∂ρ∂σH̃

ρσ = g√
2

(δTEM) ρ
ρ , (3.70d)

□A0 − ∂0∂µA
µ = g√

2
(Fext)µ

ν∂νH̃
µ0
, (3.70e)

where the second term on the left hand side of the equation (3.70d) can be
written as 2∂ρ∂σH̃

ρσ = 2∂0∂σH̃
0σ + 2∂3∂σH̃

3σ and on the right hand side of the
same equation, we obtain (δTEM) ρ

ρ = 0. We have also used the fact that F µ0
ext = 0,

since there is no background electric field. Hence, we need to fix a gauge such
that

∂0∂ρH̃
ρ1 = − g√

2
(δTEM)01 , (3.71a)

∂0∂ρH̃
ρ2 = − g√

2
(δTEM)02 , (3.71b)

∂0∂ρH̃
ρ3 + ∂3∂ρH̃

ρ0 = − g√
2

(δTEM)03 , (3.71c)

∂0∂σH̃
0σ + ∂3∂σH̃

3σ = 0 , (3.71d)

∂0∂µA
µ = − g√

2
(Fext)µ

ν∂νH̃
µ0
. (3.71e)

Having in mind a plane-wave solution for both the graviton and the EM field,
the first two equations in (3.71) can be solved as (for a plane wave)

∂ρH̃
ρ1 = − g√

2
1
iω

(δTEM)01 , (3.72a)

∂ρH̃
ρ2 = − g√

2
1
iω

(δTEM)02 . (3.72b)

At the same time, denoting ∂ρH̃
ρ0 = f 0 and ∂ρH̃

ρ3 = f 3, we can rewrite the
second pair of equations in (3.71) as

∂0f
3 − ∂3f

0 = − g√
2

(δTEM)03 , (3.73a)

∂0f
0 + ∂3f

3 = 0 . (3.73b)

These can therefore be solved for f 0 and f 3 by putting

f 0 = −∂3ψ (3.74a)
f 3 = +∂0ψ , (3.74b)

where the scalar function ψ solves the Poisson equation

(∂2
0 + ∂2

3)ψ = g√
2

(δTEM)03 . (3.75)

The solution then has the form

ψ = g√
2

∫︂
dτdξ G(t, z; τ, ξ)(δTEM)03 , (3.76)
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where Poisson kernel G(t, z; τ, ξ) is given by the Fourier transform of − 1
ω2+p2 .

Thus, for a plane wave solution, we may simply write

ψ = − g√
2

1
ω2 + p2 (δTEM)03 . (3.77)

Hence, in total, we will be fixing de Donder gauge deformed by the interaction

∂ρH̃
ρ1 = − g√

2
1
iω

(δTEM)01 , (3.78a)

∂ρH̃
ρ2 = − g√

2
1
iω

(δTEM)02 , (3.78b)

∂σH̃
0σ = − g√

2
ip

ω2 + p2 (δTEM)03 , (3.78c)

∂σH̃
3σ = − g√

2
iω

ω2 + p2 (δTEM)03 , (3.78d)

which we will accompany with the constraints

H̃
01 = H̃

02 = H̃
03 = H̃ρ

ρ = 0 . (3.79)

Those can be shown to fix all residual gauge symmetry. Combining (3.78) together
with (3.79), we can realize that also the polarizations H̃00, H̃33, H̃31, H̃32 and A3

are now fixed. In particular, for a plane wave solution it follows that

H̃
31 = − g√

2
1
pω

(δTEM)01 , (3.80a)

H̃
32 = − g√

2
1
pω

(δTEM)02 , (3.80b)

H̃
33 = + g√

2
ω

p

1
ω2 + p2 (δTEM)03 , (3.80c)

H̃
00 = − g√

2
p

ω

1
ω2 + p2 (δTEM)03 . (3.80d)

From the trace constraint H̃ ρ

ρ , we can also fix the polarization H̃
22 in terms of

H̃
11, namely

H̃
22 = −H̃11 + H̃

00 − H̃
33 (3.81a)

= −H̃11 − g√
2

1
ωp

(δTEM)03 . (3.81b)

Finally, for the photon, we note that we can actually fix

∂µA
µ = −

√
2g 1
iω

(Fext)µ
ν∂νH̃

µ0 = 0 , (3.82)

where in the second step, we have recalled that (Fext)0ν = 0 and used the con-
straints (3.79). This means that we can consistently impose

A0 = A3 = 0 . (3.83)
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We are now in a position to write down the equations of motion for the remaining
four degrees of freedom, namely A1 = A∥, A2 = A⊥ as well as1

H11 = H+2(ϵ+2)11 = − 1√
2
H+2 , (3.84a)

H12 = H×2(ϵ×2)12 = + 1√
2
H×2 . (3.84b)

3.3.5 Mixing equations
Employing the gauge constraints derived in the previous section in the equation
(3.63), it becomes straightforward to write down the equations of motion for the
two graviton polarizations H×2 and H+2, namely

□H×2 = +g(δTEM)12 , (3.85a)
□H+2 = −g(δTEM)11 , (3.85b)

Recalling the expression (3.69) for (δTEM)µν , it is straightforward to evaluate

(δTEM)11 = +BT∂3A⊥ , (3.86a)
(δTEM)12 = −BT∂3A∥ , (3.86b)

which, in turn, yields the equations

□H×2 = −gBT∂3A∥ , (3.87a)
□H+2 = −gBT∂3A⊥ . (3.87b)

As usual, assuming plane wave solutions in the ultrarelativistic regime, where
ω ≈ p and □ = −ω2 + p2 ≈ −2ω(ω − p) and substituting ∂3 = −ip, we therefore
obtain

(ω − p)H×2 + a2p(iA∥) = 0 , (3.88a)
(ω − p)H+2 + a2p(iA⊥) = 0 , (3.88b)

where we have introduced the notation

a2 = gBT

2ω . (3.89)

Similarly, substituting the gauge constraints into the EM equation of motion
(3.64) for A1 = A∥ and A2 = A⊥ and neglecting O(g2B2L2) terms, one obtains
equations of motion

□A∥ = +gBT∂3H×2 , (3.90a)
□A⊥ = +gBT∂3H+2 , (3.90b)

that is

(ω − p)iA∥ + a2pH×2 = 0 , (3.91a)
1From now on, since we are imposing the constraint that the trace H̃ ρ

ρ vanishes, we will
lose the distinction between H̃µν and Hµν .
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(ω − p)iA⊥ + a2pH+2 = 0 . (3.91b)

In total, including also refractive indices for the propagating EM modes and
relabelling as usual iA → A, we get mixing equations

0 =
(︄
ω − p a2p
a2p ω − p+ ∆∥

)︄(︄
H×2
A∥

)︄
, (3.92a)

0 =
(︄
ω − p a2p
a2p ω − p+ ∆⊥

)︄(︄
H+2
A⊥

)︄
. (3.92b)

On a magnetic background BT, one should therefore observe oscillations between
the H×2 polarization of the graviton and the A∥ polarization of the photon, as
well as oscillations between the H+2 polarization of the graviton and the A⊥
polarization of the photon. This is the Gertsenshtein-Zeldovich effect.

3.4 Identifying mass eigenstates
Since we are dealing with two separate systems exhibiting 2-flavour mixing (the
H×2–A∥ pair, as well as the H+2–A⊥ pair) we can directly apply the machinery
of 2-flavour mixing, which was discussed in great detail in chapter 1. As usual,
the dispersion relations will greatly simplify by assuming the relativistic approx-
imation ∆∥,∆⊥ ≪ ω. On top of that, we will also assume that the parameters

y∥ = gBT

∆∥
, (3.93a)

y⊥ = gBT

∆⊥
. (3.93b)

are kept small, namely y∥, y⊥ ≪ 1. This in turn will guarantee that we stay in
the small-mixing regime.

3.4.1 H×2–A∥ mixing
Adapting the results obtained for the mixing of a massive scalar with the A⊥
polarization of the EM field for the case of a massless spin-2 polarization H×2
(thus setting the mass terms ∆ to zero), we end up with the dispersion relations

2
(︂
1 − a2

2

)︂
p

(1)
×2,∥(ω) = 2ω + ∆∥ −

√︂
D∥ , (3.94a)

2
(︂
1 − a2

2

)︂
p

(2)
×2,∥(ω) = 2ω + ∆∥ +

√︂
D∥ , (3.94b)

as well as the discriminant

D∥ = (∆∥ + 2ω)2 − 4ω
(︂
1 − a2

2

)︂
(∆∥ + ω) . (3.95)

The two directions (H(1)
×2 , A

(1)
∥ ) and (H(2)

×2 , A
(2)
∥ ) in the H×2–A∥ flavour space cor-

responding to the respective mass eigenstates are specified by the mixing angles
Θ(1)

×2,∥, Θ(2)
×2,∥, which are given by the relations

A
(1)
∥

H
(1)
×2

=
−a2p

(1)
×2,∥

ω − p
(1)
×2,∥ + ∆∥

≡ − tan Θ(1)
×2,∥ , (3.96a)
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H
(2)
×2

A
(2)
∥

=
−a2p

(2)
×2,∥

ω − p
(2)
×2,∥

≡ + tan Θ(2)
×2,∥ . (3.96b)

Assuming the ultrarelativistic and small-mixing approximations then yields sim-
plified dispersion relations

p
(1)
×2,∥(ω) = ω − 1

4
g2B2

T
∆∥

, (3.97a)

p
(2)
×2,∥(ω) = ω + ∆∥ + 1

4
g2B2

T
∆∥

, (3.97b)

for the H×2-like and the A∥-like mode, respectively. The mixing angles then
satisfy

Θ(1)
×2,∥ ≈ Θ(2)

×2,∥ ≡ Θ×2,∥ ≪ 1 . (3.98)

where Θ×2,∥ is given simply by

Θ×2,∥ = 1
2
gBT

∆∥
. (3.99)

Finally, introducing the parameter b× as

b× ≡ ∆∥ , (3.100)

we can rewrite

p
(1)
×2,∥(ω) = ωn∥ − b×(1 + Θ2

×2,∥) , (3.101a)

p
(2)
×2,∥(ω) = ωn∥ + b×Θ2

×2,∥ . (3.101b)

This enables us to write down the general solution for the H×2–A∥ oscillations in
the form

eiωn∥z

(︄
H×2(z)
A∥(z)

)︄
=

= 1
1 + Θ2

×2,∥

(︄
1

−Θ×2,∥

)︄ [︂
H×2(0) − A∥(0)Θ×2,∥

]︂
e

ib×(1+Θ2
×2,∥)z+

+ 1
1 + Θ2

×2,∥

(︄
Θ×2,∥

1

)︄ [︂
A∥(0) +H×2(0)Θ×2,∥

]︂
e

−ib×Θ2
×2,∥z

. (3.102)

Altogether we observe that the H×2–A∥ oscillations can be obtained by simply
taking the m → 0 limit of the massive spin-2 case.

Note that as in the massive spin-0 case, the evolution equation (3.102) may be
expressed in terms a unitary transfer matrix U×2,∥(z, 0) acting on an initial state
(A∥(0), H×2(0)). See (3.147a) below. One would then find a transition probability

P (A∥ → H×2) = 4Θ2
×2,∥ sin2 b×z

2 , (3.103)

which can be seen to oscillate with length losc,× = 2π
b×

and amplitude α× = 4Θ2
×2,∥.
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3.4.2 H+2–A⊥ mixing
In the case of the interacting system of the graviton polarization H+2 and the
photon polarization A⊥, we analogously obtain dispersion relations

2
(︂
1 − a2

2

)︂
p

(1)
+2,⊥(ω) = 2ω + ∆⊥ −

√︂
D⊥ , (3.104a)

2
(︂
1 − a2

2

)︂
p

(2)
+2,⊥(ω) = 2ω + ∆⊥ +

√︂
D⊥ , (3.104b)

as well as the discriminant

D⊥ = (∆⊥ + 2ω)2 − 4ω
(︂
1 − a2

2

)︂
(∆⊥ + ω) . (3.105)

The mixing angles Θ(1)
+2,⊥, Θ(2)

+2,⊥, which specify the departure of the corresponding
two mass eigenstates from the graviton-like and the photon-like state in the H+2–
A⊥ flavour space, are given by the formulae

A
(1)
⊥

H
(1)
+2

=
−a2p

(1)
+2,⊥

ω − p
(1)
+2,⊥ + ∆⊥

≡ − tan Θ(1)
+2,⊥ , (3.106a)

H
(2)
+2

A
(2)
⊥

=
−a2p

(2)
+2,⊥

ω − p
(2)
+2,⊥

≡ + tan Θ(2)
+2,⊥ . (3.106b)

In the ultrarelativistic regime ∆⊥ ≪ ω and small-mixing regime y⊥ ≪ 1, the
dispersion relations simplify as

p
(1)
+2,⊥(ω) = ω − 1

4
g2B2

T
∆⊥

, (3.107a)

p
(2)
+2,⊥(ω) = ω + ∆⊥ + 1

4
g2B2

T
∆⊥

, (3.107b)

while the mixing angle becomes

Θ(1)
+2,⊥ ≈ Θ(2)

+2,⊥ ≡ Θ+2,⊥ = 1
2
gBT

∆⊥
≪ 1 . (3.108)

Introducing the mass parameter b+ as

b+ ≡ ∆⊥ , (3.109)

we can rewrite

p
(1)
+2,⊥(ω) = ωn⊥ − b+(1 + Θ2

+2,⊥) , (3.110a)
p

(2)
+2,⊥(ω) = ωn⊥ + b+Θ2

+2,⊥ . (3.110b)

This enables us to write down the general solution for the H+2–A⊥ oscillations
in the form

eiωn⊥z

(︄
H+2(z)
A⊥(z)

)︄
=

= 1
1 + Θ2

+2,⊥

(︄
1

−Θ+2,⊥

)︄ [︂
H+2(0) − A⊥(0)Θ+2,⊥

]︂
eib+(1+Θ2

+2,⊥)z+
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+ 1
1 + Θ2

+2,⊥

(︄
Θ+2,⊥

1

)︄ [︂
A⊥(0) +H+2(0)Θ+2,⊥

]︂
e−ib+Θ2

+2,⊥z . (3.111)

Again, one can re-express the evolution equation (3.111) in terms a unitary trans-
fer matrix U+2,⊥(z, 0), as in (3.147b) below. It is then possible to calculate the
transition probability

P (A∥ → H+2) = 4Θ2
+2,⊥ sin2 b+z

2 , (3.112)

which can be seen to oscillate with length losc,× = 2π
b×

and amplitude α× = 4Θ2
+2,⊥.

We point out that in contrast with the case of the H×2–A∥ oscillations, the
H+2–A⊥ oscillations cannot be obtained as a simple m → 0 limit of the massive
spin-2 story: taking the massless limit, we would have predicted a mixing angle
which is larger by a factor of

√︂
7/3! This can be seen as a direct (and, as we will

see below, hypothetically observable) manifestation of the vDVZ discontinuity
[16, 17].

3.5 Observable effects
Let us again consider performing the measurements and observations of the kind
considered in previous chapters. We will compare our results with the predictions
which were made for the massive spin-2 and spin-0 particles. Moreover, this time
we will have an advantage of (in principle) knowing all parameters of the problem
numerically so we will be to make explicit predictions.

3.5.1 Mixing angles, oscillation lengths and conversion
probabilities

Let us first try and explicitly evaluate the mixing angles and oscillation lengths
in a number of experimentally / observationally relevant setups. Since both
the mixing angles and oscillation lengths differ between the ×2 case and the
+2 case by a factor of ∆∥/∆⊥ = (n∥ − 1)/(n⊥ − 1) = O(1) and we will be
interested in orders of magnitude only, we can focus on just one of the two angles
/ lengths, without loosing generality. Reinstating units and substituting for the
∆ parameters in terms of the refractive index n, the corresponding mixing angle
can be expressed as

Θ = 1
2

√︄
16πG
µ0c4

cBT

ω
(n− 1)−1 ≃ 5.7 × 10−26 (n− 1)−1 eV

ℏω
B

T , (3.113)

while for the associated small-mixing oscillation length, we can write

losc = 1.24 × 10−6 (n− 1)−1 eV
ℏω

m . (3.114)

Laboratory

Considering first the laboratory setup of the previous chapters (ℏω = 2.4 eV,
n∥ − 1 ≈ n⊥ − 1 ≃ 10−17, BT ≃ 10 T), we would have obtained

Θ ≃ 10−8 ≪ 1 , (3.115a)
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losc ≃ 1011 m . (3.115b)

While the mixing angle clearly comes out to be quite small a number, the oscil-
lation length is comparable to one astronomical unit (Sun-to-Earth distance). In
usual laboratory conditions, one should be therefore safe to assume that z ≪ losc.

Neutron stars

Second, let us consider the environment around a neutron star (see also [51, 52, 53]
for recent discussions of the Gertsenshtein-Zeldovich effect and its realisation near
pulsars as a possible explanation of the fast radio bursts). For this kind of a
system, the actual magnetic field is of course far from constant (both in space
and time), but at the very least, we should be able to get to correct ballpark
estimates. We will take the magnetic fields around a neutron star to be as large
as BT ≃ 109 T (which we fix). The nature and magnitude of the dominant
contribution to the refractive index will then strongly depend on ω. While for
the vacuum contribution, we obtain

n(vac) − 1 ≃ 10−5 (3.116)

independently of ω, the free electrons will contribute (taking the typical electron
density as Ne ≃ 1018 m−3 [5] and recalling the formula (1.63) which gives the
plasma frequency ℏωp ∼= 4 × 10−5 eV)

n(gas) − 1 ≃ −1
2

(︃4 × 10−5 eV
ω

)︃2
. (3.117)

Hence, we can conclude that for photons with energies higher than ≃ 10−2 eV,
the vacuum contribution will dominate and one obtains

Θ ≃ 10−11 eV
ℏω

, (3.118a)

losc ≃ 10−1 eV
ℏω

m . (3.118b)

Since the typical size of a neutron star is at most 104 m, we will be well within the
regime z ≫ losc. One would therefore obtain photon-graviton transition probabil-
ity P (A → H) ≈ 2Θ2 ≃ 10−22 ( eV

ℏω
)2. We can see that since the vacuum refractive

indices are proportional to the square of the magnetic field, one can achieve
larger values for the mixing angle by taking smaller BT. For instance, for mag-
netic white dwarfs with BT = 104 T and taking ℏω = 10 eV then, assuming that
the refractive indices are still dominated by the vacuum contribution, we would
have obtained Θ ≃ 10−8 and losc ≃ 1 km [5], giving the transition probability
P (A → H) ≃ 10−16.

On the other hand, we notice that for the value of ω around 10−2 eV to 10−3 eV
(microwaves), the plasma contribution to the refractive index (for the above-given
electron number density around neutron stars) may actually balance the vacuum
contribution so that a MSW-like resonance is achieved [5]. In such a case, one
would observe maximum mixing between the photons and gravitons (Θ ≈ π

4 ) so
that the transition probability P (A → H) would oscillate with amplitude equal
to 1 with large-mixing oscillation length (recalling the result (1.165))

losc = π

gBT
≃ 109 m . (3.119)
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Given the typical dimensions of neutron stars, we will clearly have z ≪ losc
and so the full conversion of photons into gravitons will not be achieved (for
that we would need to maintain stronger magnetic fields over larger distances).
Recalling (1.166) and setting z = 104 m, the corresponding conversion probability
of photons into gravitons (or vice versa) will roughly go as

P (A → H; z) ≈ P (H → A; z) ≈ g2B2
Tz

2 ≃ 10−11 . (3.120)

Hence, given an energetic enough emission of gravitational waves (of the ap-
propriate frequency) passing around a neutron star, substantial power may be
converted into photons.

Galactic fields

Finally, let us consider conversion in galactic magnetic fields. For ordinary spiral
galaxies, we can take BT ≃ 2 × 10−9 T as well as Ne ≃ 106 m−3 and z ≃ 20 kpc,
while for starburst galaxies, we will assume the valuesBT ≃ 7×10−8 T (dominated
by the large scale anisotropic component) as well as Ne ≃ 109 m−3 and z ≃ 1 kpc
[3]. This yields the plasma frequencies (orders of magnitude)

ℏωp ≃
{︄

10−11 eV (spiral)
10−9 eV (starburst) , (3.121)

while the vacuum refractive indices are given by the formulae (1.75) as

n(vac) − 1 ≃
{︄

10−41 (spiral)
10−38 (starburst) . (3.122)

Hence, we see that in both spiral and starburst galaxies, the plasma refractive
index would dominate over the vacuum one for ω < 10 GeV. One would then
obtain mixing angle

Θω<10 GeV ≃
{︄

10−11 ℏω
eV (spiral)

10−13 ℏω
eV (starburst) (3.123)

The corresponding small-mixing oscillation length would be

losc,ω<10 GeV ≃
{︄

10−3 ℏω
eV kpc (spiral)

10−7 ℏω
eV kpc (starburst) , (3.124)

so given the above values of z, one can achieve both the coherent regime z ≪ losc
(for high enough ω) with conversion probability

P (A → H) ≈ 1
4g

2B2
Tz

2 ≃ 10−12 (3.125)

(valid for both spiral and starburst), as well as the averaged-oscillation regime
z ≫ losc (for small-enough ω) with conversion probabilities

⟨P (A → H)⟩ ≈ 2Θ2 ≃
{︄

10−21 (ℏω
eV )2 (spiral)

10−26 (ℏω
eV )2 (starburst) , (3.126)
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which will always be less than the coherent probability (3.125). Around ω ≃
10 GeV, one could obtain a resonant regime with strong mixing Θω≃10 GeV ≃ π

4
and large-mixing oscillation length

losc,ω≃10 GeV ≃
{︄

109 kpc (spiral)
107 kpc (starburst) , (3.127)

so that clearly z ≪ losc. Total conversion is therefore not achieved and one ends
up again with the probability (3.125). Finally, for ω > 10 GeV, the vacuum
refractive indices dominate over the plasma ones, so that one obtains mixing a
small angle

Θω>10 GeV ≃
{︄

107 eV
ℏω

(spiral)
106 eV

ℏω
(starburst) (3.128)

with small-mixing oscillation length

losc ≃
{︄

1016 eV
ℏω

kpc (spiral)
1013 eV

ℏω
kpc (starburst) , (3.129)

meaning that even for the most energetic photons ω ≃ 10 − 100 TeV, one has
z ≃ losc and otherwise z ≪ losc (namely the coherent regime). The transition
probability is therefore again given by (3.125).

Remarkably, we therefore conclude that the result P (A → H) ≃ 10−12 holds
over quite a universal range of values of ω for both spiral and starburst galaxies.
This is a similar value as the one obtained in (3.119) for the resonant regime in
the case of conversion near a neutron star. However, for the galactic conversion,
we did not have to fine-tune ω so as to achieve such a (relatively) high conversion
probability.

3.5.2 Effects on photon polarization
We will consider a linearly polarized beam of photons and let it propagate through
a region of constant magnetic field BT of thickness z along the line of propagation.
For the sake of brevity, we will focus on the small mixing scenario. See also [54]
for a similar analysis of the imprints on the photon polarization due to photon-
graviton mixing.

The two polarizations A∥ and A⊥ then evolve as

A∥(z) = 1
1 + Θ2

×2,∥

[︃
Θ2

×2,∥e
ib×(1+Θ2

×2,∥)z + e
−ib×Θ2

×2,∥z
]︃
e−iωn∥zA∥(0) , (3.130a)

A⊥(z) = 1
1 + Θ2

+2,⊥

[︃
Θ2

+2,⊥e
ib+(1+Θ2

+2,⊥)z + e−ib+Θ2
+2,⊥z

]︃
e−iωn⊥zA⊥(0) . (3.130b)

Notice that now the relation

b×Θ2
×2,∥z ≪ 1 (3.131)

already follows (in the small mixing case) from the previous assumptions: we can
write

b×Θ2
×2,∥z = Θ×2,∥gBTz , (3.132)
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where Θ×2,∥ ≪ 1 as a consequence of the small-mixing assumption, while, as it
was argued above, we need to take gBTz ≪ 1 so as to guarantee perturbative
consistency of the action (3.45) on the constant magnetic background. Similarly,
we can obtain b+Θ2

+2,⊥z ≪ 1. In particular, as we have numerically checked
above, these should be valid assumptions both in laboratory experiments, as well
as for environments around neutron stars.

Let us also briefly discuss validity of the second assumption needed to show
that the ratio A⊥/A∥ only changes by a very small amount, namely ω(n⊥−n∥)z ≪
1. We have already checked that this is true in our model laboratory setup.
For a neutron star, we have seen above that for photons ℏω ≥ 10−2 eV and for
B = 109 T, the difference n⊥ − n∥ will be independent of ω as it is dominated
by the vacuum birefringence. Using the formula (1.78), it can be evaluated as
n⊥ − n∥ ≃ 10−6. We then obtain

ω

c
(n⊥ − n∥) ≃ 20 ℏω

eV m−1 . (3.133)

that is, considering typical dimensions of neutron stars z = 104 m, one always
ends up having ω(n⊥ − n∥)z ≫ 1, so that it is no longer true that the change in
the ratio A⊥/A∥ will be small.

Assuming both bΘ2z ≪ 1, ω(n⊥ − n∥)z ≪ 1 (such as in a laboratory), it
follows that the evolution of the ratio A⊥/A∥ can be approximated as

A⊥(z)
A∥(z)

= A⊥(0)
A∥(0)

1 + Θ2
×2,∥

1 + Θ2
+2,⊥

Θ2
+2,⊥e

ib+(1+Θ2
+2,⊥)z + e−ib+Θ2

+2,⊥z

Θ2
×2,∥e

ib×(1+Θ2
×2,∥)z + e

−ib×Θ2
×2,∥z

e−iω(n⊥−n∥)z

(3.134a)

≈ A⊥(0)
A∥(0)

[︃
1 − Θ2

+2,⊥ + Θ2
×2,∥ − iω(n⊥ − n∥)z+

− ib+Θ2
+2,⊥z + ib×Θ2

×2,∥z + Θ2
+2,⊥e

ib+z − Θ2
×2,∥e

ib×z
]︃

(3.134b)

= A⊥(0)
A∥(0)

[︃
1 − 2Θ2

+2,⊥ sin2 b+z

2 + 2Θ2
×2,∥ sin2 b×z

2 − iω(n⊥ − n∥)z+

− iΘ2
+2,⊥(b+z − sin b+z) + iΘ2

×2,∥(b×z − sin b×z)
]︃
. (3.134c)

This gives the relative change η(z) in the A⊥ amplitude, as well as the phase
delay φ(z) as

η(z) = 2Θ2
+2,⊥ sin2 b+z

2 − 2Θ2
×2,∥ sin2 b×z

2 , (3.135a)

φ(z) = ω(n⊥ − n∥)z + Θ2
+2,⊥(b+z − sin b+z) − Θ2

×2,∥(b×z − sin b×z) . (3.135b)

Furthermore, let us again consider working in the regime when b+z ≪ 1, as well
as b×z ≪ 1 so that the EM wave and the massless spin-2 wave remain coherent.
Recall that for our model experimental setup, we found that ω

c
(n∥ −1)z ≈ ω

c
(n⊥ −

1)z ≃ 10−10 m−1 so assuming coherence is justified in this case. We can then first
approximate η(z) as

η(z) ≈ 2Θ2
+2,⊥

b2
+z

2

4 − 2Θ2
×2,∥

b2
×z

2

4 (3.136a)
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= 1
8g

2B2
Tz

2 − 1
8g

2B2
Tz

2 (3.136b)

= 0 . (3.136c)

Hence, in the coherent regime, contrary to all the previously considered cases, at
order O(g2B2z2) there is no relative change in the A⊥ amplitude (and therefore no
rotation δθ(z) of the polarization plane) due to the mixing of the photon with the
graviton in an external magnetic field. However, note that η(z) and consequently
δθ(z) receive non-zero (higher order) contributions upon considering loop effects
in QED [55]. See [54] for a detailed calculation.

Second, the phase delay can be approximated as

φ(z) ≈ ω(n⊥ − n∥)z + 1
6Θ2

+2,⊥b
3
+z

3 − 1
6Θ2

×2,∥b
3
×z

3 (3.137a)

= ω(n⊥ − n∥)z + 1
24g

2B2
T(b+ − b×)z3 (3.137b)

= ω(n⊥ − n∥)z
(︃

1 + 1
24g

2B2
Tz

2
)︃

(3.137c)

where we have noted that

b+ − b× = ∆⊥ − ∆∥ = (n⊥ − n∥)ω . (3.138)

This yields the corresponding induced ellipticity

δψ(z) ≈ −1
2ω(n⊥ − n∥)z

(︃
1 + 1

24g
2B2

Tz
2
)︃

sin 2θ . (3.139)

We can therefore conclude, that as a result of the photon-graviton mixing, one
can find an increase of the induced ellipticity by a factor of

1 + 1
24g

2B2
Tz

2 (3.140)

compared to a situation when there were no mixing, that is δψ0(z) = −1
2ω(n⊥ −

n∥)z. That is, the corresponding relative increase in ellipticity can be expressed
as

δψ(z) − δψ0(z)
δψ0(z)

= 1
24g

2B2
Tz

2 ≃ 1.4 × 10−38
(︃
BT

T

)︃2 (︃ z
m

)︃2
, (3.141)

which, in our laboratory setup, comes out as an extremely small number. We can
therefore conclude that although it was found in section 3.5.1 that the mixing an-
gles in our laboratory setup is not so small, the fact that the two polarizations A∥
and A⊥ are influenced by the mixing comparably means that this effect becomes
(most probably) unobservable through the measurement of δθ(z) and δψ(z).

Finally, note that as it is typically the case, due to the vDVZ discontinuity,
the results for the massless spin-2 particle cannot be derived by simply taking
the m → 0 of the massive spin-2 computation.
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3.5.3 LSW experiments
As in the previous chapters, we will now be interested in the probability of pho-
ton regeneration when passing through a wall, where on each side we turn on a
background transverse magnetic field. In contrast to the considerations in Chap-
ters 1 and 2, note that now we are dealing with a channel in which an LSW
experiment could yield a signal even with the Standard Model framework. In-
terestingly the only other such channel is mediated by the conversion of photons
into neutrino-antineutrino pairs [54, 56]. At leading order, this proceeds via an
electron triangle and a Z-boson exchange, or a mixed loop of an electron and a
W -boson. Nevertheless, this second channel appears to be strongly suppressed
with respect to the graviton channel, so the calculation which we are about to
embark on, would provide for the only significant LSW mechanism within the
boundaries of the Standard Model.

The experimental setup and the idea is the same as before. Photons can
only be measured on the other side of the wall if they are converted before they
reach the wall, this time into gravitons (which practically do not interact with
the medium). Once these are transformed back into photons in the magnetic field
on the other side of the wall, the beam becomes detectable again. Initially, let
us generally prepare the system in a pure photon state with general mixture of
parallel and perpendicular polarization

Ψi =

⎛⎜⎜⎜⎝
0

A∥(0)
0

A⊥(0)

⎞⎟⎟⎟⎠ . (3.142)

Following the ideas from the first chapter, we could then write for the final state
measured on the other side of the wall

Ψf = U(z2, 0)ΠHU(z1, 0)Ψi , (3.143)

where by ΠH , we have denoted the projector on the subspace spanned by both
graviton fluctuations, namely

ΠH =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎠ . (3.144)

The transfer matrix U may be expressed as a product of two matrices U×2,∥ and
U+2,⊥ acting on the subspaces spanned by the H×2, A∥ flavours and the H+2, A⊥
flavours, respectively. In particular, we can write

U = U×2,∥U+2,⊥ , (3.145)

where

U×2,∥(z, 0) =

⎛⎜⎜⎜⎝
U×2,∥

0 0
0 0

0 0
0 0

1 0
0 1

⎞⎟⎟⎟⎠ , (3.146a)
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U+2,⊥(z, 0) =

⎛⎜⎜⎜⎝
1 0
0 1

0 0
0 0

0 0
0 0 U+2,⊥

⎞⎟⎟⎟⎠ . (3.146b)

The submatrices U×2,∥(z, 0) and then read U+2,⊥(z, 0)

U×2,∥(z, 0) = e−iωn∥z

1 + Θ2
×2,∥

×

×

⎛⎝ e
ib×(1+Θ2

×2,∥)z + Θ2
×2,∥e

−ib×Θ2
×2,∥z Θ×2,∥(e−ib×Θ2

×2,∥z − e
ib×(1+Θ2

×2,∥)z)
Θ×2,∥(e−ib×Θ2

×2,∥z − e
ib×(1+Θ2

×2,∥)z) Θ2
×2,∥e

ib×(1+Θ2
×2,∥)z + e

−ib×Θ2
×2,∥z

⎞⎠ ,

(3.147a)

U+2,⊥(z, 0) = e−iωn⊥z

1 + Θ2
+2,⊥

×

×
(︄
eib+(1+Θ2

+2,⊥)z + Θ2
+2,⊥e

−ib+Θ2
+2,⊥z Θ+2,⊥(e−ib+Θ2

+2,⊥z − eib+(1+Θ2
+2,⊥)z)

Θ+2,⊥(e−ib+Θ2
+2,⊥z − eib+(1+Θ2

+2,⊥)z) Θ2
+2,⊥e

ib+(1+Θ2
+2,⊥)z + e−ib+Θ2

+2,⊥z

)︄
.

(3.147b)
We can notice that the LSW experiment for photon-graviton mixing does not mix
the two photon polarizations: the A∥ mode is converted by the magnetic field into
the H×2 mode of the graviton, which passes through the wall and converts back
into the A∥ mode on the other side. Analogously for the A⊥ mode. Hence, the
total regeneration probability P (A → H → A) can be expressed in terms of
elementary regeneration probabilities for the two photon polarizations P (A∥ →
H → A∥) and P (A⊥ → H → A⊥) as

P (A → H → A) = |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2P (A∥ → H → A∥)+

+ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2P (A⊥ → H → A⊥) , (3.148)

while we have
P (A∥ → H → A⊥) = 0 , (3.149a)
P (A⊥ → H → A∥) = 0 . (3.149b)

We can therefore simplify our analysis by computing P (A∥ → H → A∥) and
P (A⊥ → H → A⊥) first. To this end, let us first consider performing two separate
measurements: in the first, the system is initially prepared in the (normalized)
pure-A∥ state

ΨA∥ =

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , (3.150)

while in the second, we prepared the system to be in the pure-A⊥ state

ΨA⊥ =

⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠ . (3.151)
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We can then simply write (recalling that both Θ×2,∥ and Θ+2,⊥ are small angles)

P (A∥ → H → A∥) = |(ΨA∥)†U(z2, 0)ΠHU(z1, 0)ΨA∥|2 (3.152a)

≈ Θ4
×2,∥

⃓⃓⃓
(1 − eib×z1)(1 − eib×z2)

⃓⃓⃓2
(3.152b)

= 16Θ4
×2,∥ sin2 b×z1

2 sin2 b×z2

2 , (3.152c)

as well as

P (A⊥ → H → A⊥) = |(ΨA⊥)†U(z2, 0)ΠHU(z1, 0)ΨA⊥|2 (3.153a)

≈ Θ4
+2,⊥

⃓⃓⃓
(1 − eib+z1)(1 − eib+z2)

⃓⃓⃓2
(3.153b)

= 16Θ4
+2,⊥ sin2 b+z1

2 sin2 b+z2

2 . (3.153c)

In total, substituting (3.152c) and (3.153c) into (3.148), we obtain the overall
photon regeneration probability

P (A → H → A) = |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 16Θ4

×2,∥ sin2 b×z1

2 sin2 b×z2

2 +

+ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2 × 16Θ4

+2,⊥ sin2 b+z1

2 sin2 b+z2

2 . (3.154)

We notice that this can be maximized by a pure-A∥ beam if P (A∥ → H → A∥) >
P (A⊥ → H → A⊥) and vice versa if P (A∥ → H → A∥) < P (A⊥ → H → A⊥).

Again, if b×z1, b+z1 ≪ 1 and b×z2, b+z2 ≪ 1, that is, the sizes of both regions
with magnetic field are very small compared to the oscillation length, we can
simplify the above derived relation (using the definitions of the mixing angles Θ
and parameters b) as

P (A → H → A) ≈ 1
16g

4B4
Tz

2
1z

2
2 . (3.155)

Notice that unlike for the previously considered particles, all dependence on the
initial photon polarizations A∥ and A⊥ has dropped out in this limit. On the
other hand, in the opposite regime, where b×z1, b+z1 ≫ 1 and b×z2, b+z2 ≫ 1, we
could average over the oscillations and get the probability

⟨P (A → H → A)⟩ =

= 4
|A∥(0)|2 + |A⊥(0)|2

[︃
|A∥(0)|2Θ4

×2,∥ + |A⊥(0)|2Θ4
+2,⊥

]︃
(3.156a)

= g4B4
T

4ω4
1

|A∥(0)|2 + |A⊥(0)|2

[︄
|A∥(0)|2
(n∥ − 1)4 + |A⊥(0)|2

(n⊥ − 1)4

]︄
, (3.156b)

where the dependence on z1 and z2 has completely dropped out.

Laser experiments

Let us evaluate the photon regeneration probability P (A → H → A) for our
typical laboratory setup with ℏω = 2.4 eV and n∥ − 1 ≈ n⊥ − 1 ≃ 10−17 (see
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Chapter 1 for introduction). For these values, note that since we have already
found the mixing length losc ≃ 1011 m (see above), in a laboratory we can safely
put z1, z2 ≪ losc. Substituting into (3.155), we obtain

P (A → H → A) ≃ 6.8 × 10−75
(︃
BT

T

)︃4(︃z1

m

)︃2(︃z2

m

)︃2
, (3.157)

so that considering a (quite optimistic) laboratory experiment with BT ≃ 10 T
and z1 ≃ 10 m ≃ z2, we would obtain P (A → H → A) ≃ 10−66. Assuming
our laser has a power of 100 W (the actual power of the laser used in the ALPS
experiment at DESY was 35 W [57]), so that every second, it is emitting 2.6×1020

photons with energy ℏω = 2.4 eV, we can see that it would take about 1046 years
(on average) for a single photon to be measured on the other side of the wall.
This is more than the current age of the universe (by many orders of magnitude).

Cosmic double-conversion

Let us perform one final piece of calculation. As we have discussed in the in-
troduction, one possible explanation for the recent observations of the ultra-high
energy photons coming from a GRB would be an LSW-type scenario but on cos-
mic scales: in the GRB host galaxy, the photons would be converted into weakly
interacting particles (such as gravitons) and then regenerated back in a magnetic
field near to the observer at Earth, thus avoiding the energy loss through the in-
teraction with CMB and EBL. We can therefore estimate the significance of such
a phenomenon happening in the graviton channel by calculating the regeneration
probability P (A → H → A). As we have discussed above, graviton would be the
only viable channel for this double conversion within the framework of the Stan-
dard Model (the neutrino-antineutrino channel being suppressed). Since we will
be interested into an order-of-magnitude estimate only, we will not be considering
effects due to expansion of the universe.

Let us take ℏω = 100 TeV and assume that the two conversions were mediated
by the magnetic fields in the GRB host galaxy and the Milky Way. Since we are
making just an estimate, we will simply take these two magnetic fields to have
the same magnitude and extent. We will also assume same free-electron densities
in both galaxies. Recalling the result (3.125) which, in particular, was valid for
ω ≃ 100 TeV, we can then approximately write

P (A → H → A) ≃ 1
16g

4B4
Tz

4 ≃ 10−25 . (3.158)

Also note, that the total energy emitted by GRB221009A was estimated as
1055 erg ≃ 1067 eV [58]. Assuming for the sake of simplicity, that all of this energy
was radiated through the 100 TeV photons (very optimistic to say the least), that
would translate to 1053 high-energy photons emitted during the event. Were it
not for the interaction with CMB and EBL, the number of photons hitting the
cross-section of the Earth would then have been

1053 ×
(︃6370 km

0.6 Gpc

)︃2
≃ 1016 , (3.159)

where for the distance to the progenitor of GRB221009A, we have substituted
0.6 Gpc (based on its redshift z ≃ 0.15). Combining the results (3.158) and
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(3.159) (and assuming that no photon would have made it to the Earth without
undergoing the double conversion), we can therefore conclude that on average,
one photon would make it once in every 109 GRB221009A-like events. Hence,
the oscillations between photons and massless gravitons alone do not seem to be
strong enough an effect to explain the observations of 100 TeV photons, meaning
that one should consider physics beyond the standard model (see [3] for the study
which is based on an axion-mediated conversion).
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4. Mixing of photons in bigravity
Finally, let us discuss the mixing of both massless and massive spin-2 particles
with the EM fluctuations. We will do so in the consistent framework of the
bimetric theory of gravity.[20, 21, 59]

4.1 Linearized bigravity
We will first see how the linearized action for spin-2 (massive and massless) and
EM fluctuations arises from the full bimetric theory.

4.1.1 The bimetric action
Let us consider an action for two symmetric tensor fields gµν , fµν of the form

S[g, f, A] = S0[g, f ] +
∫︂
d4x

√
−gLEM , (4.1)

where the pure spin-2 part is given as [21, 22]

S0[g, f ] = − 1
2κg

∫︂
d4x

[︃√
−gR(g) + α2√−fR(f) + α2

κg

√
−gV (S; βn)

]︃
. (4.2)

Here κg is a coupling constant which will later be related to the Einstein gravita-
tional constant, while α is a dimensionless parameter which measures the relative
interaction strength of the two spin-2 fields. Also, LEM is the usual Maxwell
lagrangian, which is covariantized with respect to the metric gµν , namely

LEM = −1
4g

µαgνβFαβFµν , (4.3)

where Fµν = (∇g)µAν − (∇g)νAµ = ∂µAν − ∂νAµ. Finally, the interaction term
between the spin-2 fields g and f is given in terms of the potential V (S; βn) which
is defined so as to ensure the absence of the Boulware-Deser ghost. First, let us
introduce the square-root matrix S through the relation

Sρ
σS

σ
ν = gρµfµν . (4.4)

Then, in terms of S, the potential V can be expressed as

V (S; βn) =
4∑︂

n=0
βnen(S) , (4.5)

where βn are five dimensionless parameters and the symmetric polynomials en(S)
are defined as

en(S) = Sµ1
[µ1
. . . Sµn

µn] . (4.6)

More explicitly, these read

e0(S) = 1 , (4.7a)
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e1(S) = tr(S) , (4.7b)

e2(S) = 1
2
[︂
tr(S)2 − tr(S2)

]︂
, (4.7c)

e3(S) = 1
6
[︂
tr(S)3 − 3tr(S)tr(S2) + 2tr(S3)

]︂
, (4.7d)

e4(S) = 1
24
[︂
tr(S)4 − 6tr(S2)tr(S)2 + 3tr(S2)2 + 8tr(S)tr(S3) − 6tr(S4)

]︂
, (4.7e)

where, since we work in four dimensions, we can note that e4(S) can be identified
with the determinant of S, namely

e4(S) = detS . (4.8)

Also, attempting to continue the expansion of V in terms of symmetric polyno-
mials en(S) beyond n = 4 using the definition (4.6), we would have identically
found 0 at each n > 4 because we would have been antisymmetrizing over more
indices than there are dimensions.

Notice that β0 and β4 give cosmological constant terms for the tensors g and
f respectively: indeed, noting that

det(S)2 = det(S2) = det f
det g , (4.9)

one can see that β0 and β4 contribute into the action with the following terms

− α2

2κ2
g

∫︂
d4x

[︃√
−g
(︂
β0 + β4 detS

)︂]︃
=

= − α2

2κ2
g

∫︂
d4x

√
−gβ0 − α2

2κ2
g

∫︂
d4x

√
−fβ4 . (4.10)

On the other hand, the couplings β1, β2, β3 give non-linear interactions between
gµν and fµν .

Furthermore, observe that the pure spin-2 action (4.2) is symmetric under the
simultaneous replacements

gµν → α2fµν , (4.11a)
fµν → α−2gµν , (4.11b)
βn → α2n−4β4−n . (4.11c)

Finally, note that we have minimally coupled the Maxwell action to the spin-2
field gµν only: again, in order to ensure the absence of ghost instabilities, one can
only couple matter to either gµν or fµν . Since the action otherwise treats g and
f symmetrically, we have chosen to couple the EM field to gµν without loss of
generality.

4.1.2 Equations of motion
Varying the action (4.1) with respect to the spin-2 fields gµν , one obtains the
equations of motion

Rµν(g) − 1
2R(g)gµν + α2

2κg

Vµν(g, f) = κg(TEM)µν , (4.12a)
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Rµν(f) − 1
2R(f)fµν + 1

2κg

Ṽ µν(g, f) = 0 , (4.12b)

where we have defined

Vµν = − 2√
−g

∂

∂gµν
(
√

−gV ) , (4.13a)

Ṽ µν = − 2√
−f

∂

∂fµν
(
√

−gV ) , (4.13b)

and

(TEM)µν = + 2√
−g

∂

∂gµν
(
√

−gLEM) . (4.14)

It is possible to explicitly evaluate

Vµν = gµρ

3∑︂
n=0

(−1)nβn(Y(n))ρ
ν(S) , (4.15a)

Ṽ µν = fµρ

3∑︂
n=0

(−1)nβ4−n(Y(n))ρ
ν(S−1) . (4.15b)

where, for n = 0, . . . , 3, we have defined tensors

(Y(n))ρ
ν(S) =

n∑︂
k=0

(−1)kek(S)[Sn−k]ρν . (4.16)

Finally, for the EM field Aµ, we get the (curved) Maxwell equations

0 = gµα∇αFµν . (4.17)

4.1.3 Proportional solutions
Studying the classical solutions of the coupled set of equations of motion (4.12)
and (4.17) for gµν , fµν and Aµ in full generality seems like a formidable task. Let
us therefore restrict ourselves on considering the so-called proportional solutions,
where the classical field configurations take the form

f̄µν = c2ḡµν , (4.18)

with Āµ = 0. Note that without losing any generality, we can always rescale the
spin-2 field fµν and suitably redefine the couplings α and βn so as to be able to
set c2 = 1. This is facilitated by the fact that fµν is not coupled to any matter.
Given this choice, we have ḡ−1f̄ = 1 and so we can put S̄ = 1. This gives

e0(S̄) = 1 , e1(S̄) = 4 , e2(S̄) = 6 , e3(S̄) = 4 , e4(S̄) = 1 , (4.19)

which in turn yields

(Y(0))ρ
ν(S̄) = +δρ

ν , (4.20a)
(Y(1))ρ

ν(S̄) = −3δρ
ν , (4.20b)

(Y(2))ρ
ν(S̄) = +3δρ

ν , (4.20c)
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(Y(3))ρ
ν(S̄) = −δρ

ν . (4.20d)

Substituting into (4.15), the equations of motion (4.12) therefore become (recall
that we are restricting Āµ = 0)

Rµν(ḡ) − 1
2R(ḡ)ḡµν + Λgḡµν = 0 , (4.21a)

Rµν(ḡ) − 1
2R(ḡ)ḡµν + Λf ḡµν = 0 , (4.21b)

where we have introduced the cosmological constants

Λg = α2

2κg

(β0 + 3β1 + 3β2 + β3) , (4.22a)

Λf = 1
2κg

(β4 + 3β3 + 3β2 + β1) , (4.22b)

for the two spin-2 fields gµν and fµν . Hence, in order for the theory to actu-
ally admit such proportional solutions, we have to ensure that Λf = Λg, which
corresponds to fixing one of the parameters βn. We will actually make an even
stronger restriction of the β-parameter space by requiring that

Λf = Λg = 0 , (4.23)

so that the theory admits flat spacetimes

ḡµν = f̄µν = ηµν . (4.24)

This means that we will have to require that the linear constraints

0 = β0 + 3β1 + 3β2 + β3 , (4.25a)
0 = β4 + 3β3 + 3β2 + β1 , (4.25b)

on the β parameters are satisfied.

4.1.4 Expanding in fluctuations
Assuming that appropriate restrictions in the β parameter space have been made,
we would now like to expand the bimetric theory in fluctuations around the flat
proportional background, namely

gµν = ηµν + hµν , (4.26a)
fµν = ηµν + ℓµν , (4.26b)
Aµ = Aµ . (4.26c)

Expanding the action (4.1) in powers of the fluctuations, one would have found
an interacting action for hµν , ℓµν and Aµ, which couples hµν and ℓµν already at
quadratic order. As we have already gone through a similar derivation in great
detail for the massless spin-2 field in section 3.2, let us just summarize the results.
See for instance [22] for more details.
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Spin-2 part

In particular, the quadratic part of the expanded pure spin-2 part (4.2) of the
full action (4.1) reads

S
(2)
0 [h, ℓ] = 1

2κg

∫︂
d4x

[︄
1
4∂ρh

µν∂ρhµν − 1
4∂ρh

µ
µ ∂ρh α

α +

+ 1
2∂µh

µν∂νh
α

α − 1
2(∂µh

µν)(∂αhαν)
]︄
+

+ α2

2κg

∫︂
d4x

[︄
1
4∂ρℓ

µν∂ρℓµν − 1
4∂ρℓ

µ
µ ∂ρℓ α

α +

+ 1
2∂µℓ

µν∂νℓ
α

α − 1
2(∂µℓ

µν)(∂αℓαν)
]︄
+

+ 1
2κg

∫︂
d4x

M̃
2

4

[︃
(hµ

µ)2 − hµνh
µν + (ℓµ

µ)2 − ℓµνℓ
µν+

+ 2(hµνℓ
µν − hµ

µℓ
ν

ν)
]︃
, (4.27)

where we have introduced a mass scale

M̃
2 = α2

2κg

(β1 + 2β2 + β3) . (4.28)

In other words, due to the presence of the term

2(hµνℓ
µν − hµ

µℓ
ν

ν) (4.29)

in the last line of (4.27), the fluctuations hµν and ℓµν are not true mass eigenstates
of the theory, as they do not diagonalize the kinetic term of the action. Hence,
one has to perform a rotation in the space of the fluctuations in order to obtain
true mass eigenstates. Denoting these by Hµν and χµν , it turns out that one can
write

Hµν = 1
2

1√︂
κg(1 + α2)

(hµν + α2ℓµν) , (4.30a)

χµν = 1
2

α√︂
κg(1 + α2)

(ℓµν − hµν) , (4.30b)

or, vice versa,

hµν = 2
√︄

κg

1 + α2 (Hµν − αχµν) , (4.31a)

ℓµν = 2
√︄

κg

1 + α2 (Hµν + α−1χµν) . (4.31b)

In terms of the new variables Hµν and χµν , the quadratic part of the action then
becomes diagonal and reads

S
(2)
0 [H,χ] =

∫︂
d4x

[︄
1
2∂ρH

µν∂ρHµν − 1
2∂ρH

µ
µ ∂ρH α

α +

98



+ ∂µH
µν∂νH

α
α − (∂µH

µν)(∂αHαν)
]︄
+

+
∫︂
d4x

[︄
1
2∂ρχ

µν∂ρχµν + ∂µχ
µν∂νχ

α
α − (∂µχ

µν)(∂αχαν)+

− 1
2∂ρχ

µ
µ ∂ρχ α

α − (m(χ))2

2 χµνχ
µν + (m(χ))2

2 (χµ
µ)2
]︄
, (4.32)

where we notice that for the fluctuation χµν , one has obtained precisely the Fierz-
Pauli lagrangian (2.1) with spin-2 mass

(m(χ))2 = (β1 + 2β2 + β3)(1 + α2)
2κg

. (4.33)

We can therefore conclude that the bimetric theory with action (4.2), expanded
around a flat proportional background, can be understood in terms of two mass
eigenstates: a massless spin-2 field Hµν , as well as a massive spin-2.

It is interesting to note that since only the metric gµν couples to ordinary
matter, one should expect astrophysical objects to source waves which initially
excite only the gµν field. However, since this is not a mass eigenstate, then,
as the wave propagates, a non-zero fµν amplitude will regenerate. This again
leads to an oscillation phenomenon. Combined with the observational data from
the LIGO experiment, this can be used to derive interesting constraints on the
bimetric parameter space [60]. These oscillations will not be important for our
considerations as we will directly work with the mass eigenstates Hµν and χµν .

Coupling to the EM field

Let us now analyze, how the new degrees of freedom Hµν and χµν couple to the
EM field Aµ. This we will do by linearizing the EM term in (4.1) (which only
depends on gµν) by substituting the expansion (4.26). Keeping the kinetic term
for Aµ, as well as the cubic coupling AAh, we first obtain∫︂

d4x
√

−gLEM = −1
4

∫︂
d4xFµνF

µν+

− 1
2

∫︂
d4x

(︄
F µ

ρF
ρν + 1

4η
µνF ρσFρσ

)︄
hµν (4.34a)

≡ SEM + Sint , (4.34b)

where the kinetic part SEM of the action for Aµ is just the flat-space Maxwell
action. In the interaction term Sint, we can substitute for the field redefinition
(4.31) to obtain1

Sint = g(H)
√

2

∫︂
d4x

(︄
F µ

ρF
ρν + 1

4η
µνF ρσFρσ

)︄
Hµν+

+ g(χ)
√

2

∫︂
d4x

(︄
F µ

ρF
ρν + 1

4η
µνF ρσFρσ

)︄
χµν , (4.35)

1For the sake of convenience, we also rescale the fluctuation Hµν → −Hµν so that the two
couplings g(H) and g(χ) have same sign. This has no effect on the kinetic part of the action.
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where we have identified

g(H) =
√︄

2κg

1 + α2 , (4.36a)

g(χ) =
√︄

2κg

1 + α2α . (4.36b)

Hence, comparing with the HAA coupling obtained for the massless spin-2 field in
the preceding chapter (in particular the interaction term (3.44) and the rescaling
(3.39)), we conclude what we can identify

κ = κg

1 + α2 , (4.37)

where κ = 8πG/c4 is the Einstein gravitational constant.

Total linearized action

We can summarize by saying that the bimetric theory yields the action

S[H,χ,A] =
∫︂
d4x

[︄
1
2∂ρH

µν∂ρHµν − 1
2∂ρH

µ
µ ∂ρH α

α +

+ ∂µH
µν∂νH

α
α − (∂µH

µν)(∂αHαν)
]︄
+

+
∫︂
d4x

[︄
1
2∂ρχ

µν∂ρχµν + ∂µχ
µν∂νχ

α
α − (∂µχ

µν)(∂αχαν)+

− 1
2∂ρχ

µ
µ ∂ρχ α

α − (m(χ))2

2 χµνχ
µν + (m(χ))2

2 (χµ
µ)2
]︄
+

− 1
4

∫︂
d4xFµνF

µν+

+ g(H)
√

2

∫︂
d4x

(︄
F µ

ρF
ρν + 1

4η
µνF ρσFρσ

)︄
Hµν+

+ g(χ)
√

2

∫︂
d4x

(︄
F µ

ρF
ρν + 1

4η
µνF ρσFρσ

)︄
χµν (4.38)

for the massless spin-2 fluctuation Hµν , massive spin-2 fluctuation χµν and the
EM fluctuation Aµ. Moreover, we have learned that the coupling constants g(H),
g(χ) and the mass m(χ) of the spin-2 field χµν are given in terms of the parameters
of the bimetric theory and the Einstein gravitational constant as

g(H) =
√

2κ = 1
mPl

, (4.39a)

g(χ) =
√

2κα = α

mPl
= αg(H) , (4.39b)

and

m(χ) =
√︄
β1 + 2β2 + β3

2κ =
√︂
β1 + 2β2 + β3mPl , (4.40)

where mPl ≃ 2.4 × 1018 GeV is the Planck mass.

100



4.1.5 Mixing equations in a magnetic background
We observe that the action (4.38) is just a combination of the actions considered in
chapters 2 and 3 with precisely the same forms of the couplings of the massive and
massless spin-2 fields to the EM field. We can therefore spare ourselves a detailed
derivation of the mixing equations for the bimetric fluctuations in a background
magnetic field and just simply write down the result based on what we obtained
in previous chapters. In particular, including also vacuum birefringence for the
propagating EM modes, we get mixing equations

0 = (ω − p− ∆(χ))χ+1 , (4.41a)
0 = (ω − p− ∆(χ))χ×1 , (4.41b)

0 =

⎛⎜⎜⎝
ω − p 0 a

(H)
2 p

0 ω − p− ∆(χ) a
(χ)
2 p

a
(H)
2 p a

(χ)
2 p ω − p+ ∆∥

⎞⎟⎟⎠
⎛⎜⎜⎝
H×2

χ×2

A∥

⎞⎟⎟⎠ , (4.41c)

0 =

⎛⎜⎜⎜⎜⎜⎝
ω − p 0 0 a

(H)
2 p

0 ω − p− ∆(χ) 0 a
(χ)
2 p

0 0 ω − p− ∆(χ) a
(χ)
0 p

a
(H)
2 p a

(χ)
2 p a

(χ)
0 p ω − p+ ∆⊥

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
H+2

χ+2

χ0

A⊥

⎞⎟⎟⎟⎟⎟⎠ , (4.41d)

where we have defined

a
(H)
2 = +g

(H)BT

2ω , (4.42a)

a
(χ)
2 = +g

(χ)BT

2ω , (4.42b)

a
(χ)
0 = −g(χ)BT√

3ω
, (4.42c)

as well as

∆(χ) = (m(χ))2

2ω . (4.43)

Using the above identifications (4.39) and (4.40), the quantities a(H)
2 , a(χ)

2 , a(χ)
0 and

∆(χ) can, in turn, be expressed in terms of the parameters α, βi of the bimetric
theory and the Einstein gravitational constant κ.

4.2 Searching for mass eigenstates
As in the previous chapters, we will now identify the mass eigenstates of the
system propagating in a background magnetic field by setting the determinants
of the matrices appearing in (4.41) to zero and solving for p in terms of ω to find
the corresponding dispersion relations.

4.2.1 Decoupled massive spin-2 polarizations
In as the case of the isolated system of an EM field interacting with a massive
spin-2 field, we find that the spin-2 polarizations +1 and ×1 decouple from the
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rest and satisfy the massive dispersion relations

p+1(ω) = ω − ∆(χ) , (4.44a)
p×1(ω) = ω − ∆(χ) , (4.44b)

thus representing two freely propagating particles, each of them with mass mχ.
Their propagation is described simply as

χ+1(z) = χ+1(0)e−i(ω−∆(χ))z , (4.45a)
χ×1(z) = χ×1(0)e−i(ω−∆(χ))z . (4.45b)

4.2.2 H×2–χ×2–A∥ mixing
We will now consider the problem of identifying the mass eigenstates in the system
of coupled polarizations H×2, χ×2 and A∥. Although the corresponding equation
of motion (4.41c) looks very similar to the one considered in the case of 3-flavour
mixing for the photon-massive spin 2 system (equation (2.96d)), there is a crucial
difference which prevents us from using the same method to deal with the system:
the two flavours (H×2, χ×2) coupled to the EM polarization A∥ have different
masses. As a result, there is no apparent way of performing a rotation in the
flavour space to decouple one of the polarizations and convert the problem to a
simple 2-flavour mixing. Instead, we will make use of the fact as a consequence of
perturbative consistency of the lagrangian, as well as due to the ultrarelativistic
approximation, the numbers a(H)

2 and a
(χ)
2 need to be very small, namely

a
(H)
2 , a

(χ)
2 ≪ 1 . (4.46)

Hence, writing

a
(H)
2 = aα

(H)
2 , (4.47)

a
(χ)
2 = aα

(χ)
2 , (4.48)

where a ≪ 1 is some characteristic scale of the couplings a(H)
2 , a(χ)

2 we can search
for the mass eigenstates perturbatively in powers a. This should definitely be an
admissible treatment in the case when small mixing occurs between all flavours,
namely when the directions in the H×2–χ×2–A∥ flavour space corresponding to
the new mass eigenstates depart not too much from the three axes. Since, at the
same time, the small-mixing assumption is justified experimentally, we will focus
on this from now on.

To this end, let us start by expressing the matrix appearing in (4.41c) as

M×(p) ≡

⎛⎜⎜⎝
ω − p 0 a

(H)
2 p

0 ω − p− ∆(χ) a
(χ)
2 p

a
(H)
2 p a

(χ)
2 p ω − p+ ∆∥

⎞⎟⎟⎠ = M
[0]
× (p) + aM

[1]
× (p) , (4.49)

where we have introduced matrices

M
[0]
× (p) =

⎛⎜⎝ω − p 0 0
0 ω − p− ∆(χ) 0
0 0 ω − p+ ∆∥

⎞⎟⎠ , (4.50a)
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M
[1]
× (p) =

⎛⎜⎜⎝
0 0 α

(H)
2

0 0 α
(χ)
2

α
(H)
2 α

(χ)
2 0

⎞⎟⎟⎠ p . (4.50b)

In this way, one can set up perturbation theory in a around the system of decou-
pled polarizations H×2, A∥, χ×2 and observe how the mixing arises through O(a)
perturbations. Considering the smallness of a, we will be content with keeping
only leading terms in the expansion in the powers of a.

First we note, that expanding the determinant of M×(p) in powers of a, we
can write (still exactly in a at this point)

detM×(p) =

= detM [0]
× (p) + a2p2

[︃
(α(χ)

2 )2(p− ω) + (α(H)
2 )2(∆(χ) − ω + p)

]︃
, (4.51)

where we simply have

detM [0]
× (p) = (ω − p)(ω − p− ∆(χ))(ω − p+ ∆∥) . (4.52)

Clearly, the O(a0) condition

detM [0]
× (p) = 0 (4.53)

yields the O(a0) dispersion relations

p
(H),[0]
×2 (ω) = ω , (4.54a)
p

(χ),[0]
×2 (ω) = ω − ∆(χ) , (4.54b)
p

(A),[0]
∥ (ω) = ω + ∆∥ , (4.54c)

which correspond to three propagating mass eigenstates, which, in the H×2–A∥–
χ×2 flavour space, are associated with the directions

e
(H),[0]
×2 =

⎛⎜⎝1
0
0

⎞⎟⎠ , e
(χ),[0]
×2 =

⎛⎜⎝0
1
0

⎞⎟⎠ , e
(A),[0]
∥ =

⎛⎜⎝0
0
1

⎞⎟⎠ . (4.55)

We will now treat the full dispersion relations, which are the solution of the
condition

detM×(p) = 0 , (4.56)

as a-deformations of the O(a0) dispersion relations (4.54). In particular, let us
parametrize these full dispersion relations as

p
(H)
×2 (ω) = p

(H),[0]
×2 (ω) + a2p

(H),[2]
×2 (ω) + O(a4) , (4.57a)

p
(χ)
×2 (ω) = p

(χ),[0]
×2 (ω) + a2p

(χ),[2]
×2 (ω) + O(a4) , (4.57b)

p
(A)
∥ (ω) = p

(A),[0]
∥ (ω) + a2p

(A),[2]
∥ (ω) + O(a4) (4.57c)

and the full normalized mass eigenstates as

e
(H)
×2 = e

(H),[0]
×2 + ae

(H),[1]
×2 + O(a2) , (4.58a)
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e
(χ)
×2 = e

(χ),[0]
×2 + ae

(χ),[1]
×2 + O(a2) , (4.58b)

e
(A)
∥ = e

(A),[0]
∥ + ae

(A),[1]
∥ + O(a2) . (4.58c)

We can then substitute the a-expansions (4.57) into the full equations (4.56) and
then (using the fact that at O(a0), these are solved as a consequence of the fact
that the undeformed dispersion relations (4.54) solve the O(a0) condition (4.53))
obtain at O(a2) linear conditions for the subleading contributions

p
(H),[2]
×2 (ω) , p

(χ),[2]
×2 (ω) , p

(A),[2]
∥ (ω)

into the full dispersion relations. This procedure yields O(a2) linear conditions

0 = p
(H),[2]
×2 (ω)∆(χ)∆∥ + ω2(α(H)

2 )2∆(χ) , (4.59a)

0 = p
(χ),[2]
×2 (ω)∆(χ)(∆(χ) + ∆∥) + (ω − ∆(χ))2(α(χ)

2 )2∆(χ) , (4.59b)

0 = p
(A),[2]
∥ (ω)∆∥(∆∥ + ∆(χ))+

− (ω − ∆∥)2
[︃
(α(χ)

2 )2∆∥ + (α(H)
2 )2(∆(χ) + ∆∥)

]︃
. (4.59c)

In the ultrarelativistic limit ∆(χ),∆∥ ≪ ω, these can be solved to give

a2p
(H),[2]
×2 (ω) = −1

4
(g(H))2B2

T
∆∥

, (4.60a)

a2p
(χ),[2]
×2 (ω) = −1

4
(g(χ))2B2

T
∆∥ + ∆(χ) , (4.60b)

a2p
(A),[2]
∥ (ω) = +1

4
(g(H))2B2

T
∆∥

+ 1
4

(g(χ))2B2
T

∆∥ + ∆(χ) . (4.60c)

Similarly we can also compute the corrections

e
(H),[1]
×2 , e

(χ),[1]
×2 , e

(A),[1]
∥ (4.61)

to the corresponding directions e(H)
×2 , e(χ)

×2 , e(A)
∥ in the H×2–χ×2–A∥ flavour space.

We will do so by solving the equations

M×(p(H)
×2 )e(H)

×2 = 0 , (4.62a)
M×(p(χ)

×2 )e(χ)
×2 = 0 , (4.62b)

M×(p(A)
∥ )e(A)

∥ = 0 , (4.62c)

order by order in a. At order O(a0) these conditions read

0 = M
[0]
× (p(H),[0]

×2 )e(H),[0]
×2 =

⎛⎜⎝0 0 0
0 −∆(χ) 0
0 0 +∆∥

⎞⎟⎠ e(H),[0]
×2 , (4.63a)

0 = M
[0]
× (p(χ),[0]

×2 )e(χ),[0]
×2 =

⎛⎜⎝∆(χ) 0 0
0 0 0
0 0 ∆(χ) + ∆∥

⎞⎟⎠ e(χ),[0]
×2 , (4.63b)
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0 = M
[0]
× (p(A),[0]

∥ )e(A),[0]
∥ =

⎛⎜⎝−∆∥ 0 0
0 −∆∥ − ∆(χ) 0
0 0 0

⎞⎟⎠ e(A),[0]
∥ , (4.63c)

which are clearly solved by the eigenvectors (4.55). At order O(a1), we obtain
conditions2

0 = M
[0]
× (p(H),[0]

×2 )e(H),[1]
×2 +M

[1]
× (p(H),[0]

×2 )e(H),[0]
×2 , (4.64a)

0 = M
[0]
× (p(χ),[0]

×2 )e(χ),[1]
×2 +M

[1]
× (p(χ),[0]

×2 )e(χ),[0]
×2 , (4.64b)

0 = M
[0]
× (p(A),[0]

∥ )e(A),[1]
∥ +M

[1]
× (p(A),[0]

∥ )e(A),[0]
∥ , (4.64c)

or, after substituting,

0 =

⎛⎜⎝0 0 0
0 −∆(χ) 0
0 0 +∆∥

⎞⎟⎠ e(H),[1]
×2 + ω

⎛⎜⎝ 0
0

α
(H)
2

⎞⎟⎠ , (4.65a)

0 =

⎛⎜⎝∆(χ) 0 0
0 0 0
0 0 ∆(χ) + ∆∥

⎞⎟⎠ e(χ),[1]
×2 + (ω − ∆(χ))

⎛⎜⎝ 0
0
α

(χ)
2

⎞⎟⎠ , (4.65b)

0 =

⎛⎜⎝−∆∥ 0 0
0 −∆∥ − ∆(χ) 0
0 0 0

⎞⎟⎠ e(A),[1]
∥ + (ω + ∆∥)

⎛⎜⎜⎝α
(H)
2

α
(χ)
2
0

⎞⎟⎟⎠ . (4.65c)

This leads to the solutions (assuming, as usual, that ∆∥,∆(χ) ≪ ω)

ae
(H),[1]
×2 = −Θ(H)

×2

⎛⎜⎝0
0
1

⎞⎟⎠+ aβ(H)

⎛⎜⎝1
0
0

⎞⎟⎠ , (4.66a)

ae
(χ),[1]
×2 = −Θ(χ)

×2

⎛⎜⎝0
0
1

⎞⎟⎠+ aβ(H)

⎛⎜⎝0
1
0

⎞⎟⎠ , (4.66b)

ae
(A),[1]
∥ =

⎛⎜⎜⎝Θ(H)
×2

Θ(χ)
×2
0

⎞⎟⎟⎠+ aβ(A)

⎛⎜⎝0
0
1

⎞⎟⎠ , (4.66c)

where we have introduced the mixing angles

Θ(H)
×2 = g(H)BT

2∆∥
, (4.67a)

Θ(χ)
×2 = g(χ)BT

2(∆∥ + ∆(χ)) , (4.67b)

which, consistent with the weak-mixing scenario, we assume to be small, that is

Θ(H)
×2 ,Θ

(χ)
×2 ≪ 1 . (4.68)

2Note that here we can continue substituting the O(a0) results for the momenta, because
momenta receive first corrections only at second order in a.
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Observe that we did not forget to add elements from the kernel of the M
[0]
×

matrices in (4.66). However, the apparently arbitrary coefficients β(H), β(χ),
β(A) can be all set to zero by demanding that the perturbed eigenstates remain
normalized.

Altogether, we can summarize that after diagonalization, the 3-flavour system
H×2–χ×2–A∥ gives rise to mass eigenstates whose propagation is, in the ultrarel-
ativistic and weak-mixing limit, described by the dispersion relations

p
(H)
×2 (ω) = ω − 1

4
(g(H))2B2

T
∆∥

+ O(a4) , (4.69a)

p
(χ)
×2 (ω) = ω − ∆(χ) − 1

4
(g(χ))2B2

T
∆∥ + ∆(χ) + O(a4) , (4.69b)

p
(A)
∥ (ω) = ω + ∆∥ + 1

4
(g(H))2B2

T
∆∥

+ 1
4

(g(χ))2B2
T

∆(χ) + ∆∥
+ O(a4) , (4.69c)

giving, in turn, a graviton-like state, a massive spin-2 like state and a photon-like
state. In the H×2–χ×2–A∥ flavour space, these are represented by the directions

e
(H)
×2 = 1√︂

1 + (Θ(H)
×2 )2

⎛⎜⎝ 1
0

−Θ(H)
×2

⎞⎟⎠ , (4.70a)

e
(χ)
×2 = 1√︂

1 + (Θ(χ)
×2 )2

⎛⎜⎝ 0
1

−Θ(χ)
×2

⎞⎟⎠ , (4.70b)

e
(A)
∥ = 1√︂

1 + (Θ(H)
×2 )2 + (Θ(χ)

×2 )2

⎛⎜⎜⎝Θ(H)
×2

Θ(χ)
×2
1

⎞⎟⎟⎠ , (4.70c)

where the mixing angles are given by (4.67). If we furthermore introduce the
parameters b(H)

×2 and b
(χ)
×2 as

b
(H)
×2 ≡ ∆∥ , (4.71a)
b

(χ)
×2 ≡ ∆∥ + ∆(χ) , (4.71b)

we can rewrite the dispersion relations (4.69) as

p
(H)
×2 (ω) = ωn∥ − b

(H)
×2

[︂
1 + (Θ(H)

×2 )2
]︂

+ O(a4) , (4.72a)

p
(χ)
×2 (ω) = ωn∥ − b

(χ)
×2

[︂
1 + (Θ(χ)

×2 )2
]︂

+ O(a4) , (4.72b)

p
(A)
∥ (ω) = ωn∥ + b

(H)
×2 (Θ(H)

×2 )2 + b
(χ)
×2 (Θ(χ)

×2 )2 + O(a4) . (4.72c)

This enables us to write down the general solution for theH×2–χ×2–A∥ oscillations
in the form

eiωn∥z

⎛⎜⎝H×2(z)
χ×2(z)
A∥(z)

⎞⎟⎠ =
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= 1
1 + (Θ(H)

×2 )2

⎛⎜⎝ 1
0

−Θ(H)
×2

⎞⎟⎠[︂H×2(0) − A∥(0)Θ(H)
×2

]︂
e

ib
(H)
×2

[︂
1+(Θ(H)

×2 )2
]︂

z+

+ 1
1 + (Θ(χ)

×2 )2

⎛⎜⎝ 0
1

−Θ(χ)
×2

⎞⎟⎠[︂χ×2(0) − A∥(0)Θ(χ)
×2

]︂
e

ib
(χ)
×2

[︂
1+(Θ(χ)

×2 )2
]︂

z+

+ 1
1 + (Θ(H)

×2 )2 + (Θ(χ)
×2 )2

⎛⎜⎜⎝Θ(H)
×2

Θ(χ)
×2
1

⎞⎟⎟⎠×

×
[︂
A∥(0) +H×2(0)Θ(H)

×2 + χ×2(0)Θ(χ)
×2

]︂
e

−i

[︂
b

(H)
×2 (Θ(H)

×2 )2+b
(χ)
×2 (Θ(χ)

×2 )2
]︂

z
. (4.73)

4.2.3 H+2–χ+2–χ0–A⊥ mixing
Finally, we are faced with the problem of finding mass eigenstates in a system
of 4-flavour mixing. We will now demonstrate that this can be reduced to the
simple case of 2-flavour mixing in two steps. First, defining a new parameter

a
(χ)
+ =

√︂
(a(χ)

0 )2 + (a(χ)
2 )2 , (4.74)

let us perform a rotation ⎛⎜⎜⎜⎝
H+2
χ+
χ′

+
iA⊥

⎞⎟⎟⎟⎠ = Rχχ

⎛⎜⎜⎜⎝
H+2
χ+2
χ0
iA⊥

⎞⎟⎟⎟⎠ , (4.75)

using a matrix

Rχχ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 a

(χ)
2

a
(χ)
+

+a
(χ)
0

a
(χ)
+

0

0 −a
(χ)
0

a
(χ)
+

a
(χ)
2

a
(χ)
+

0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 1√
7

⎛⎜⎜⎜⎜⎝
1 0 0 0
0

√
3 −2 0

0 2
√

3 0
0 0 0 1

⎞⎟⎟⎟⎟⎠ . (4.76)

The four by four matrix which enters the equation of motion (4.41d) then becomes

Rχχ

⎛⎜⎜⎜⎜⎜⎝
ω − p 0 0 a

(H)
2 p

0 ω − p− ∆(χ) 0 a
(χ)
2 p

0 0 ω − p− ∆(χ) a
(χ)
0 p

a
(H)
2 p a

(χ)
2 p a

(χ)
0 p ω − p+ ∆⊥

⎞⎟⎟⎟⎟⎟⎠R−1
χχ =

=

⎛⎜⎜⎜⎜⎝
ω − p 0 0 a

(H)
2 p

0 ω − p− ∆(χ) 0 a
(χ)
+ p

0 0 ω − p− ∆(χ) 0
a

(H)
2 p a

(χ)
+ p 0 ω − p+ ∆⊥

⎞⎟⎟⎟⎟⎠ , (4.77)

so that the equation of motion can be recast as

0 = (ω − p− ∆(χ))χ′
+ , (4.78a)
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0 =

⎛⎜⎜⎝
ω − p 0 a

(H)
2 p

0 ω − p− ∆(χ) a
(χ)
+ p

a
(H)
2 p a

(χ)
+ p ω − p+ ∆⊥

⎞⎟⎟⎠
⎛⎜⎜⎝
H+2

χ+

iA⊥

⎞⎟⎟⎠ . (4.78b)

The polarization χ′
+ therefore decouples from the rest and satisfies the dispersion

relation

p′
+(ω) = ω − ∆(χ) , (4.79)

so that it propagates as a mode with definite mass mχ. We are then still left
with the coupled system of the three polarizations H+2, χ+ and A⊥, which will
be dealt with using perturbation theory, as in the case of the H×2–χ×2–A∥ oscil-
lations. Directly applying the results of the previous subsection, we obtain that
in the ultrarelativistic and weak-mixing limit, the propagation of the three mass
eigenstates is described by the dispersion relations

p
(H)
+2 (ω) = ω − 1

4
(g(H))2B2

T
∆⊥

+ O(a4) , (4.80a)

p
(χ)
+ (ω) = ω − ∆(χ) − 7

12
(g(χ))2B2

T
∆⊥ + ∆(χ) + O(a4) , (4.80b)

p
(A)
⊥ (ω) = ω + ∆⊥ + 1

4
(g(H))2B2

T
∆⊥

+ 7
12

(g(χ))2B2
T

∆(χ) + ∆⊥
+ O(a4) . (4.80c)

These give, in turn, a graviton-like state, a massive spin-2 like state and a photon-
like state. In the H+2–χ+–A⊥ flavour space, these are represented by the direc-
tions

e
(H)
+2 = 1√︂

1 + (Θ(H)
+2 )2

⎛⎜⎝ 1
0

−Θ(H)
+2

⎞⎟⎠ , (4.81a)

e
(χ)
+ = 1√︂

1 + (Θ(χ)
+ )2

⎛⎜⎝ 0
1

−Θ(χ)
+

⎞⎟⎠ , (4.81b)

e
(A)
⊥ = 1√︂

1 + (Θ(H)
+2 )2 + (Θ(χ)

+ )2

⎛⎜⎜⎝Θ(H)
+2

Θ(χ)
+
1

⎞⎟⎟⎠ , (4.81c)

where the mixing angles Θ(H)
+2 , Θ(χ)

+ are given by the expressions

Θ(H)
+2 = g(H)BT

2∆⊥
, (4.82a)

Θ(χ)
+ =

√︄
7
3

g(χ)BT

2(∆⊥ + ∆(χ)) ., (4.82b)

In line with the small-mixing assumption, one needs to assume that

Θ(H)
+2 ,Θ

(χ)
+ ≪ 1 . (4.83)
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If we furthermore introduce the parameters b(H)
+2 and b

(χ)
+ as

b
(H)
+2 ≡ ∆⊥ , (4.84a)
b

(χ)
+ ≡ ∆⊥ + ∆(χ) , (4.84b)

we can rewrite the dispersion relations (4.80) as

p
(H)
+2 (ω) = ωn⊥ − b

(H)
+2

[︂
1 + (Θ(H)

+2 )2
]︂

+ O(a4) , (4.85a)

p
(χ)
+ (ω) = ωn⊥ − b

(χ)
+

[︂
1 + (Θ(χ)

+ )2
]︂

+ O(a4) , (4.85b)

p
(A)
⊥ (ω) = ωn⊥ + b

(H)
+2 (Θ(H)

+2 )2 + b
(χ)
+ (Θ(χ)

+ )2 + O(a4) . (4.85c)

This enables us to write down the general solution for the H+2–χ+–A⊥ oscillations
in the form

eiωn⊥z

⎛⎜⎝H+2(z)
χ+(z)
A⊥(z)

⎞⎟⎠ =

= 1
1 + (Θ(H)

+2 )2

⎛⎜⎝ 1
0

−Θ(H)
+2

⎞⎟⎠[︂H+2(0) − A⊥(0)Θ(H)
+2

]︂
e

ib
(H)
+2

[︂
1+(Θ(H)

+2 )2
]︂

z+

+ 1
1 + (Θ(χ)

+ )2

⎛⎜⎝ 0
1

−Θ(χ)
+

⎞⎟⎠[︂χ+(0) − A⊥(0)Θ(χ)
+

]︂
e

ib
(χ)
+

[︂
1+(Θ(χ)

+ )2
]︂

z+

+ 1
1 + (Θ(H)

+2 )2 + (Θ(χ)
+ )2

⎛⎜⎜⎝Θ(H)
+2

Θ(χ)
+
1

⎞⎟⎟⎠×

×
[︂
A⊥(0) +H+2(0)Θ(H)

+2 + χ+(0)Θ(χ)
+

]︂
e

−i

[︂
b

(H)
+2 (Θ(H)

+2 )2+b
(χ)
+ (Θ(χ)

+ )2
]︂

z
. (4.86)

At the same time, the decoupled mode χ′
+ evolves simply as

χ′
+(z) = χ′

+(0)e−i(ω−∆(χ))z . (4.87)

4.3 Observable effects
Let us now discuss implications of the mixing between an EM wave, a massive
spin-2 wave and a massless spin-2 wave in various experimental and observational
setups.

Of course, since the realization of the massive bigravity in nature remains
hypothetical, we do not have the luxury of being able to substitute precise nu-
merical values for the parameters α and m(χ). However, it turns out [22] that one
can severely constrain the ranges of α and m(χ) by demanding that, at the same
time, the massive spin-2 particle explains the observed abundance of Dark Matter
in the present-day universe. We will therefore evaluate some of the observables
which we consider below for the most optimistic values of α and m(χ) (that is,
smallest allowed m(χ) and largest allowed Planck mass ratio α) which are still
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permitted by the requirement that the massive graviton is the elusive DM par-
ticle. We will consider two different scenarios following two different paradigms
for modelling dark matter in cosmology: the heavy spin-2 DM and the ultra-light
spin-2 DM.

For the first case, the corresponding bounds on the bimetric parameters are
displayed in figure 4.1 which was adapted from [22]3,4 In particular, the DM hy-
pothesis restricts the bigravity parameter space by three requirements: 1. ability
to treat the bigravity theory perturbatively, 2. stability of the massive spin-2 par-
ticle, so that it is a viable DM candidate, 3. high-enough production rate in the
early universe, so that the abundance of the massive spin-2 particles can match
the observed DM content in our universe. Thus, for the purposes of explicit
evaluation of some of the observables considered below, we shall adopt the most
optimistic values

m(χ) ≃ 1 TeV , α ≃ 10−11 . (4.88)

At the same time, such a small value of α ensures compatibility of the predic-
tions of the bimetric theory with standard GR and explains why massive spin-2
particles have not been observed in colliders. The coupling constant g(χ) can be
correspondingly evaluated as

g(χ) = αg(H) ≃ 4.2 × 10−30 GeV−1 . (4.89)

As a consequence, if the massive spin-2 particle with such a high value ofm(χ) is to
participate in the mixing with photons, we will have to take roughly ω > 10 TeV,
such as in the case of the ultra-high energetic photons observed by the Carpet-
2 experiment [2]. In fact, mixing of such photons with the bimetric massive
spin-2 particles could in principle explain, why we were able to observe these
photons in the first place. Indeed, assuming that such photons were, in their host
galaxy, converted into massive spin-2 particles and then regenerated back in our
Galaxy, they would in fact avoid losing their energy through the interaction with
the cosmic microwave background and extragalactic background light (with the
subsequent production of e+e− pairs) and thus allow themselves to be detected
upon arriving to Earth through what is effectively a light-shining-through-wall
mechanism. In particular, in the numerical evaluations of various observable
quantities below, we will be often taking

ω ≃ 100 TeV , (4.90)

which ensures that the ultrarelativistic condition m(χ) ≪ ω holds.
On the other hand, one can obtain different bounds on the bimetric parameters

by assuming that the massive spin-2 field is to provide the ultra-light dark matter.
Such bounds were indeed obtained [24] from constraints given by pulsar timing.
For the mass range

10−23 eV < m(χ) < 10−17 eV , (4.91)
3In that paper, the Fierz-Pauli mass of the massive spin-2 field χ is denoted by mFP, whereas

here we denote it by m(χ).
4The lower bound on the spin-2 particle mass can be reduced somewhat below the TeV scale

by considering self-interactions of χ [61].
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Figure 4.1: Bounds on the massive bigravity parameters α and mFP ≡ m(χ).
Figure taken from [22].

it turns out that one can constrain

α ≃ 10−5 . (4.92)

Thus, one gets a significantly stronger relative coupling of the two spin two fields
than in the heavy spin-2 case. Moreover, the massive spin-2 field will be ultra-
relativistic for all practically conceivable values of ω. In fact, in this scenario,
the mass m(χ) is so small that in most experimental / observational setups we
have up to now considered, the term ∆(χ) will be completely negligible compared
to ∆⊥ and ∆∥. Hence, for the massive spin-2 contribution to the mixing in this
regime, one should mostly obtain qualitatively similar results as for the massless,
except for having the coupling rescaled by α and, of course a relative factor of√︂

7/3 between the two mixing angles Θ(χ)
×2 and Θ(χ)

+ .
Finally, while it would be very elegant if DM and high-energy photons shared

the same explanation, one should bear in mind that nothing prevents the bimetric
massive spin-2 from providing a good explanation for the observations of 100 TeV
photons while, at the same time, failing to account for the observed DM abun-
dance (by, for instance, violating the bounds coming from production in the early
universe and stability). Thus, even if one finds that the bimetric massive spin-2
field with the DM-consistent parameters (4.88) does not yield large enough LSW
regeneration probabilities, there could still be allowed regions in the bimetric pa-
rameter space where it does so. It would only come at a price of having to search
for another explanation for DM.
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4.3.1 Mixing angles, oscillation lengths and conversion
probabilities

To get some idea about evolution of the coupled system of the photon with the
massive and massless spin-2 in an external magnetic field, let us first briefly
discuss evaluating the various mixing angles and oscillation lengths appearing in
the problem. Recall from the previous chapter that for the massless spin-2 mixing
angles, one obtains

Θ(H) ≃ 1
2

√︄
16πG
µ0c4

cBT

ω
(n− 1)−1 ≃ 5.7 × 10−26 (n− 1)−1 eV

ℏω
B

T . (4.93)

On the other hand, for the massive spin-2 mixing angles one obtains (forgetting
about the relative factor of

√︂
7/3 between the two massive spin-2 mixing angles

as we are interested in order of magnitude only)

Θ(χ) ≃ α
2(n− 1)ω2

(m(χ))2 + 2(n− 1)ω2 Θ(H) . (4.94)

Similarly, for the small-mixing oscillation length of the massive spin-2, one obtains

l(χ)
osc = 2(n− 1)ω2

(m(χ))2 + 2(n− 1)ω2 l
(H)
osc , (4.95)

while the large-mixing scenario oscillation length π
g(χ)BT

would have been enhanced
by a factor of 1/α.

ULDM case

First, we note that the massive spin-2 mixing angles will be suppressed relative to
the massless ones by a factor of α which, for both of the above mentioned scenaria
(heavy spin-2 DM and ULDM), is very small. Furthermore, in the ULDM regime,
the mass term will be mostly negligible with respect to the refractive indices so
we may approximately write

Θ(χ) ≃ αΘ(H) , l(χ)
osc ≃ l(H)

osc (ULDM) . (4.96)

This means that the conversion probabilities P (A → χ) and P (χ → A) will be
suppressed with respect to P (A → H) and P (H → A) by a factor of α2, while
the double-conversion probability P (A → χ → A) will be suppressed by α4.

Heavy spin-2 DM case

On the other hand, in the heavy spin-2 scenario with 100 TeV > ω > 10 TeV, for
small-enough n−1 one will typically have (m(χ))2 comparable with or dominating
over 2(n− 1)ω2, thus causing further suppression.5 In that case we can write

Θ(χ) ≃ α
2(n− 1)ω2

(m(χ))2 Θ(H) , l(χ)
osc ≃ 2(n− 1)ω2

(m(χ))2 l(H)
osc (heavy spin-2) . (4.97)

5There could be a small window where 2(n− 1)ω2 dominates over (m(χ))2. This would give
relations analogous to the ULDM case (4.96) and therefore similar suppression of transition
probabilities.
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In the incoherent case z ≫ l(H)
osc , the massive spin-2 will also oscillate incoherently

(since (4.97) gives l(χ)
osc < l(H)

osc ) and the transition probabilities P (A → χ) will
be suppressed relative to P (A → H) by a factor of 4α2 (n− 1)2ω4/(m(χ))4. In
the coherent case z ≪ l(H)

osc , we have to distinguish between two cases: 1. the
suppression of losc is mild so that we also have z ≪ l(χ)

osc (the massive as well
as massless spin-2 oscillate coherently), or, 2. the suppression of losc is strong so
that the massive spin-2 oscillation becomes incoherent, that is z ≫ l(χ)

osc (while
the massless spin-2 continues to oscillate coherently). For scenario no. 1, the
transition probabilities P (A → χ) will be suppressed by a factor of α2 while for
scenario number 2, they will be suppressed even more strongly by a factor of
α2(l(χ)

osc/z)2.

Resonant enhancement?

Notice that in principle, one could think about achieving a relative enhancement
of the massive spin-2 mixing angle and oscillation length with respect to the
massless case by resonantly tuning

m(χ)

ω
≈
√︂

2(1 − n) . (4.98)

This can only be possible when the refractive index is dominated by the free
electrons so that ∆∥,∆⊥ < 0. In such cases, the resonance condition (4.98) could
be solved for quite a wide range of ω by tuning the plasma frequency

ωp ≈ m(χ) (4.99)

in media with n < 1. In the ULDM case, this would require the free electron
number density from the range Ne ≃ 10−6 − 10−18 m−3. Such low values seem
to be impossible to achieve in our universe (even in intergalactic space, one has
Ne ≃ 102 m−3, see for instance [62]). Similarly, in the heavy spin-2 regime, one
would have to arrange for a plasma frequency ωp ≃ 1 TeV. This would correspond
to Ne ≃ 1051 m−3, which in turn gives a mass density (due to electrons and the
same number of protons so as to balance the total charge) of about 1024 kg m−3.
Since this is significantly larger than density of a typical neutron star (by a factor
of 107), we conclude that such ωp is unphysical. Hence, we have to conclude that
for the two massive spin-2 paradigms (ULDM and heavy spin-2), the resonant
enhancement of Θ(χ) relative to Θ(H) seems not likely to be achievable.

We have found that within the two regions of the bimetric parameter space
specified by the ULDM and heavy spin-2 DM paradigms, there does not seem
to be an opportunity for the effects due to the massive spin-2 to be comparable
with the effects due to massless spin-2 (which were extensively discussed in the
preceding chapter), let alone be enhanced relative to them. However, as we have
remarked above, it may be possible for the theory of bigravity to be realized in
nature in a setting which is different from the above two candidate descriptions of
Dark Matter (possibly with some intermediate value of the Fierz-Pauli mass m(χ)

or higher values of α). With this in mind, as well as for the sake of completeness,
let us now derive a number of general results for various observable quantities.
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4.3.2 Effects on photon polarization
Letting a linearly-polarized laser beam propagate over a distance z through a
region with constant magnetic field BT (that is, taking the solutions (4.73) and
(4.86) with the initial conditions χµν(0) = Hµν(0) = 0), one obtains that the EM
polarizations A∥ and A⊥ evolve as

eiωn∥zA∥(z)
A∥(0) = 1

1 + (Θ(H)
×2 )2

(Θ(H)
×2 )2e

ib
(H)
×2

[︂
1+(Θ(H)

×2 )2
]︂

z+

+ 1
1 + (Θ(χ)

×2 )2
(Θ(χ)

×2 )2e
ib

(χ)
×2

[︂
1+(Θ(χ)

×2 )2
]︂

z+

+ 1
1 + (Θ(H)

×2 )2 + (Θ(χ)
×2 )2

e
−i

[︂
b

(H)
×2 (Θ(H)

×2 )2+b
(χ)
×2 (Θ(χ)

×2 )2
]︂

z
, (4.100a)

eiωn⊥zA⊥(z)
A⊥(0) = 1

1 + (Θ(H)
+2 )2

(Θ(H)
+2 )2e

ib
(H)
+2

[︂
1+(Θ(H)

+2 )2
]︂

z+

+ 1
1 + (Θ(χ)

+ )2
(Θ(χ)

+ )2e
ib

(χ)
+

[︂
1+(Θ(χ)

+ )2
]︂

z+

+ 1
1 + (Θ(H)

+2 )2 + (Θ(χ)
+ )2

e
−i

[︂
b

(H)
+2 (Θ(H)

+2 )2+b
(χ)
+ (Θ(χ)

+ )2
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z
. (4.100b)

Making the usual set of assumptions

b
(H)
×2 (Θ(H)

×2 )2z ≪ 1 , (4.101a)
b

(χ)
×2 (Θ(χ)

×2 )2z ≪ 1 , (4.101b)
b

(H)
+2 (Θ(H)

+2 )2z ≪ 1 , (4.101c)
b

(χ)
+ (Θ(χ)

+ )2z ≪ 1 , (4.101d)

as well as

ω(n⊥ − n∥)z ≪ 1 , (4.102)

we can obtain the relative decrease η(z) in the A⊥ amplitude, as well as the phase
delay φ(z) as

η(z) = 2(Θ(H)
+2 )2 sin2 b

(H)
+2 z

2 − 2(Θ(H)
×2 )2 sin2 b

(H)
×2 z

2 +

+ 2(Θ(χ)
+2 )2 sin2 b

(χ)
+2z

2 − 2(Θ(χ)
×2 )2 sin2 b

(χ)
×2z

2 , (4.103a)

φ(z) = ω(n⊥ − n∥)z+

+ (Θ(H)
+2 )2(b(H)

+2 z − sin b(H)
+2 z) − (Θ(H)

×2 )2(b(H)
×2 z − sin b(H)

×2 z)+

+ (Θ(χ)
+ )2(b(χ)

+ z − sin b(χ)
+ z) − (Θ(χ)

×2 )2(b(χ)
×2z − sin b(χ)

×2z) . (4.103b)

Further approximating these expressions by assuming that coherence between the
EM wave and the massive and massless spin-2 waves is retained, namely

b
(H)
×2 z ≪ 1 , b

(χ)
×2z ≪ 1 , b

(H)
+2 z ≪ 1 , b

(χ)
+ z ≪ 1 , (4.104)
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one obtains

η(z) ≈ 1
6(g(χ))2B2

Tz
2 , (4.105a)

φ(z) ≈ ω(n⊥ − n∥)z
(︃

1 + 1
24(g(H))2B2

Tz
2 + 1

24(g(χ))2B2
Tz

2
)︃

+

+ 1
36

(g(χ))2B2
Tz

3

ω

[︃
(m(χ))2 + 2(n⊥ − 1)ω2

]︃
. (4.105b)

These then give rise to the rotation δθ(z) of the photon polarization plane, as
well as to the induced ellipticity δψ(z) of the beam, which can be expressed as

δθ(z) ≈ − 1
12(g(χ))2B2

Tz
2 sin 2θ , (4.106a)

δψ(z) ≈ −1
2ω(n⊥ − n∥)z

(︃
1 + 1

24(g(H))2B2
Tz

2 + 1
24(g(χ))2B2

Tz
2
)︃

sin 2θ+

− 1
72

(g(χ))2B2
Tz

3

ω

[︃
(m(χ))2 + 2(n⊥ − 1)ω2

]︃
sin 2θ .

(4.106b)

Note that regarding the distinguishability of the massive spin-2 particle from a
massive spin-0 particle through this measurement, the same discussion applies as
we have made at the end of section 2.4.1. In addition to this, we can see that
in order for the measurement to tell the difference between spin-2 and spin-2,
the (g(χ))2B2

Tz
2 term in the first line of (4.106b) must not be dominated by the

(g(H))2B2
Tz

2 term. That is to say, the massive spin-2 coupling g(χ) has to be
at least comparable to the gravitational coupling g(H) (which, for instance, does
not happen neither for the heavy spin-2 DM regime, nor the ULDM regime).
Otherwise, as we have pointed out in section 2.4.1, one can perform a rescalling
of g(χ) and the expressions for δθ(z) and δψ(z) will become identical to those one
would have obtained for a massive spin-0 field.

4.3.3 LSW experiments
Following the same ideas as in the previous three chapters, we can calculate the
regeneration probability of photon when the beam is passing through a wall with
magnetic fields on both sides. The total regeneration probability P (A → χ+H →
A) can be again expressed in terms of elementary regeneration probabilities for
the two photon polarizations P (A∥ → χ×2+H×2 → A∥) and P (A⊥ → χ++H+2 →
A⊥) as

P (A → χ+H → A) =

= |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2P (A∥ → χ×2 +H×2 → A∥)+

+ |A⊥(0)|2
|A∥(0)|2 + |A⊥(0)|2P (A⊥ → χ+ +H+2 → A⊥) . (4.107)

Thus let us first consider doing two measurements, in the first one the system will
be initially prepared in pure A∥ state ΨA∥ = (0, 0, 0, 0, 1, 0, 0, 0, 0), while in the sec-
ond one, the system will be initially in pure A⊥ state ΨA⊥ = (0, 0, 0, 0, 0, 0, 0, 0, 1)
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in the full 9-flavour space. The projector ΠχH on the spin-2 flavours will hence
be represented by a 9 by 9 matrix

ΠχH =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.108)

However, since the polarizations χ+1, χ×1 and χ′
+ do not mix with the rest,

we can just ignore the rows and columns 1, 2 and 8 in the matrix, as well as
corresponding components in the initial state vector. While, formally speaking,
the transfer matrix U will also be 9 by 9, due to the three decoupled polarizations,
we can limit ourselves to a 6 by 6 matrix Ũ which can be factorized as

Ũ = Ũ×,∥Ũ+,⊥ , (4.109)

where the matrices Ũ×,∥ and Ũ+,⊥ act non-trivially only on theH×2-χ×2-A∥ flavour
space and the H+2-χ+-A⊥ flavour space, respectively. They take on a familiar
form

Ũ×,∥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ũ×,∥

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.110)

and

Ũ+,⊥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

Ũ+,⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.111)

while the exact form of the submatrices Ũ×,∥ and Ũ+,⊥ (this time quite compli-
cated) can be deduced from the evolution equations (4.73) and (4.86) derived
above. Performing all the steps of a (by now surely familiar) calculation, we can
arrive at the probabilities (considering all Θs to be small)

P (A∥ → χ×2 +H×2 → A∥) =

=
⃓⃓⃓
(ΨA∥)†Ũ(z2, 0)ΠχHŨ(z1, 0)ΨA∥

⃓⃓⃓2
(4.112a)

≈
⃓⃓⃓⃓
(Θ(H)

×2 )2(−eib
(H)
×2 z2 + 1)(−eib

(H)
×2 z1 + 1)+
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(4.112c)

and

P (A⊥ → χ+ +H+2 → A⊥) =

=
⃓⃓⃓
(ΨA⊥)†Ũ(z2, 0)Πχ+HŨ(z1, 0)ΨA⊥|2 (4.113a)
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. (4.113c)

We can notice that in the case of both elementary regeneration probabilities
P (A∥ → χ×2 + H×2 → A∥) and P (A⊥ → χ+ + H+2 → A⊥), the result is given
by not just a plain sum of the regeneration probabilities derived earlier for the
massive and massless spin-2 field individualy. Instead, it also contains a new
interference term. This is caused by having two independent particle species
(H and χ) propagating through the wall which are then separately converted
back into EM waves upon passing through the second region with magnetic field.
These two regenerated EM waves are then superposed (summed) at the level of
wavefunctions but not at the level of probabilities. There is indeed some level of
analogy with the famous double-slit experiment: the two EM waves which have
regenerated from the massive spin-2 and the massless spin-2 wave, respectively,
can be identified with the two wavefronts propagating from each slit towards the
screen.

Finally, substituting from (4.112c) and (4.113c) into (4.107), the overall re-
generation probability will therefore read

P (A → χ+H → A) =

= |A∥(0)|2
|A∥(0)|2 + |A⊥(0)|2 ×
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In the case that b(χ)
+ z1, b

(χ)
×2z1, b

(H)
+2 z1, b

(H)
×2 z1 ≪ 1 as well as b(χ)

+ z2, b
(χ)
×2z2, b

(H)
+2 z2,

b
(H)
×2 z2 ≪ 1, that is, the sizes of both regions with magnetic field are much less

then the oscillation lengths (i.e. the coherent regime) and after substituting for
Θs and zs, we finally get

P (A⊥ → χ+H → A⊥) ≈

≈ 1
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4
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2
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2
2

1
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×
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)︃2
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g(H)2 + 7
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)︃2
]︄
. (4.116)

Again, this is not sensitive to the masses of the particles.
Analysis in the opposite mode, when the sizes of the regions with the magnetic

field are larger than the oscillation lengths, would be complicated in this case.
This is due to the appearance of the interference term, whose averaging would
depend on the hierarchy of magnitudes of the b parameters.
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Conclusion
In this thesis we have studied the mixing of EM fluctuations with nearly massless
particles in an external magnetic field, focusing mainly on the spin-2 case. The
first three chapters were devoted to a discussion of the mixing phenomena for the
photon-scalar system, photon-massive spin-2 system and photon-massless spin-2
system, respectively. In each particular case, we started from the corresponding
lagrangian and linearized around a constant magnetic background in order to
obtain the corresponding mixing equations in the ultrarelativistic regime. In the
process, we have also made a detailed analysis of the possible refractive indices
which one may have to deal with in various environments and which may in gen-
eral differ for different polarizations, thus giving rise to birefringence. Diagonal-
izing the mixing equations, we have identified the corresponding mass eigenstates
and wrote down general expressions for the evolution of the given states in time
and space. For this purpose, we introduced mixing angles that measure the dis-
tance of the mass eigenstates to the pure-flavour states. As it is conventional in
the literature, we also introduced the formalism of transfer matrices that enabled
us to continue working in terms of more compact expressions. While discussing
the observational aspects, we have mostly focused on the small mixing scenario as
it generally appears to be more relevant for real setups, although we have made
a number of comments on the occurrence of the resonant large-mixing regime
for certain fine-tuned conditions. The possibly observable effects we have ana-
lyzed include the effects the mixing may have on photon polarization (rotation
and induced ellipticity), transition probabilities and the light-shining-through-
wall experiments.

The simplest case we started with in chapter 1, the scalar, was mainly intended
for illustrative purposes. We used it to demonstrate the entire procedure in detail,
which then later helped us to somewhat streamline the discussion in the following
chapters. In particular, in chapter 1 we have discussed in detail the effects due to
the environment in which our particle beam propagates. We have seen that these
manifest themselves mainly through effective refractive indices and include the
Cotton-Mouton effect, plasma birefringence, as well as the vacuum birefringence
which we have derived in detail starting from the Euler-Heisenberg lagrangian. In
addition to small mixing, we have also analyzed in quite some detail the opposite
case, namely the strong (Mikheyev-Smirnov-Wolfenstein-like) mixing, which oc-
curs whenever the refractive index exactly balances the scalar mass term (for this
to be possible, we saw that we need n < 1). In general, the mixing equations we
have derived taught us that the field ϕ can only oscillate into the perpendicular
component of the photon polarization, while the parallel polarization decouples
and evolves independently of the rest. In the final section on observational as-
pects, we have first discussed the relative amplitude decrease and phase delay of
the two EM polarizations in a linearly polarized wave, which were induced by
the oscillations with the scalar. These were seen to result in the polarization
plane rotation, as well as into an induced ellipticity. In writing down our results
for these observables, we have distinguished between two possible cases: 1. when
the scalar and EM wave remain coherent, namely when the dimensions of the
magnetic region are much smaller than the oscillation length, and 2. when, on
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the contrary, the oscillation length is much smaller than the magnetic region,
which causes the oscillations to average out. We derived general expressions for
the probability of photon regeneration in the ”light-shining-through-wall” exper-
iments, as well as for the relative decrease in the total intensity of a laser beam
propagating through the magnetic field in response to the oscillations.

We subsequently repeated the analysis for the case of the massive graviton in
chapter 2. Motivated by the following chapters discussing the Einstein-Maxwell
theory and the bimetric theory coupled to electromagnetism, we wrote down
a cubic interaction lagrangian coupling the EM and massive spin-2 fields in a
way that preserves the transversality and tracelessness of the graviton. Having
arrived at the mixing equations for the 7 polarizations (five for the massive spin-
2 field χ and two for the EM field A) in a background magnetic field, we have
observed that not all of these can interact through mixing. In particular, the
two polarizations χ×1 and χ+1 of the massive spin-2 have decoupled, while the
remaining three polarizations χ×2, χ+2 and χ0 participate in the oscillations with
the photon polarizations in such a way so that A∥ can oscillate into χ×2 only,
while A⊥ can oscillate into both χ+2 and χ0. Moreover, performing a suitable
rotation in the χ+2-χ0 flavour subspace (following the idea of [10]), we have
defined new flavours χ+ and its orthogonal complement χ′

+, such that only χ+
remains coupled to the A⊥ photon, thus ending up with two pairs of flavours,
each separately undergoing 2-flavour mixing with coupling related by a factor of√︂

7/3. When discussing the observational aspects, we have focused on describing
the differences and similarities with the scalar case with the goal of determining
whether the photon oscillations mediated by massive spin-0 and massive spin-2
can be told apart by experiment. In particular, we have found that from the point
of view of measuring the polarization rotation and induced ellipticity, the spin-0
and spin-2 (after performing a suitable coupling redefinition) can only differ by
contributions of negligible magnitude under typical laboratory conditions. On
the other hand, in the case of the light shining through wall experiments, we
have seen that one is able to fully exploit the fact that massless spin-2 mixes
with both EM polarizations to arrange for experimental conditions which can
unambiguously tell the difference between spin-2 and spin-0. Finally, we have
explicitly observed that no matter how small the mass of the spin-2 particle is
taken to be, the expressions we have derived for various observables continue to be
affected by the presence of the scalar polarization χ0 through the aforementioned
relative factor of

√︂
7/3 between the A∥ and A⊥ mixing angles, in line with the

spirit of the vDVZ discontinuity.
The treatment of the exactly massless spin-2 particle (a.k.a. massless gravi-

ton) mixing with the photon in a background magnetic field (the Gertsenshtein-
Zeldovich effect) therefore necessitated a separate chapter. Before repeating the
by-now-standard procedure leading up to the derivation of the mixing equations,
we have first focused on rigorously deriving the correct form of the cubic inter-
action between two photons and one graviton starting from the Einstein-Hilbert-
Maxwell action for GR coupled to electromagnetism. Seeing that due to the
presence of both the EM gauge symmetry and the GR gauge (diffeomorphism)
symmetry the system will now propagate only four degrees of freedom, we have
went find that these pairwise oscillate into one another: A∥ into H×2 and A⊥
into H+2. Inspecting the obtained formulae for various quantities (such as the
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mixing angles) we were able to convince ourselves that these do not agree with
the m → 0 limit of the results from chapter 2. In discussing the observational
aspects of photon oscillations mediated by massless gravitons, we have taken
advantage of the (in-principle) numerical knowledge of all parameters entering
the problem, as the coupling constant g relates very simply to the Planck mass
and the refractive indices may be evaluated given that we specify a particular
experimental / observational setup. This enabled us to estimate the magnitude
of the mixing angles and oscillation lengths: first in laboratory environment and
then also for photons passing in the vicinity of neutron star, as well as for pho-
tons propagating through galactic magnetic fields. Interestingly, in both of these
two astrophysical configurations, we were able to identify regimes which allowed
for not-so-negligible photon-graviton transition probabilities (of the order 10−11

for the neutron star and 10−12 for the galactic fields). What is more, while we
found that the photon energy in the neutron star case had to be finely tuned to
a MSW-like resonance, the conversion probability for the galactic fields we were
able to maintain for a large range of ω. Going on to study the corresponding
double conversion in an LSW experiment, we confirmed that the photon-graviton
oscillations would yield signals so weak, that they could not be measured in a
present-day laboratory. Applying the double-conversion results to the problem of
having observed high-energy photons emitted by GRBs, we have found that the
photon-graviton mixing does not appear to provide a conversion channel strong
enough to explain these observations. Since this already was the most signifi-
cant channel within the framework of Standard Model, we have concluded that
the situation possibly calls for a beyond-standard-model explanation. Finally, we
have also seen that the photon-graviton oscillations would not contribute at the
leading order to the rotation of the polarization plane and would only have a very
weak effect on the induced ellipticity.

Finally, in the last chapter we have, for the first time, considered the combined
mixing of and EM wave, a massive spin-2 wave and a massless spin-2 wave. Work-
ing within the self-consistent framework of the bimetric theory of gravity, we have
verified that the linearized action for the fluctuations of the aforementioned three
fields consists of the exact same interactions as the ones considered in chapters 2
and 3. In the process, we were also able to express all coupling constants in terms
of the Einstein’s constant (which, in turn, can be expressed using Planck mass)
and the parameters of bimetric theory. Identifying the structure of the relevant
cubic interactions to be already familiar from the preceding chapters, we were
able to immediately write down the corresponding mixing equations for the 9 po-
larizations involved. Seeing three of these polarizations to decouple straight away,
we have recognized that the remaining modes can be organized into two oscil-
lating triplets (each containing one EM polarization, one massive spin-2 and one
massless spin-2 polarization). Diagonalizing each of these perturbatively order
by order in the couplings, we have identified the corresponding mass eigenstates
together with their disperion relations. This allowed us to write down the evolu-
tion equations describing oscillations in each triplet. We then went on to describe
the parameter space of the bimetric theory, focusing on two regions which have
been discussed in the literature from the perspective of providing Dark Matter
candidates: the heavy spin-2 DM region and the ULDM region. Comparing the
massive spin-2 mixing angles, oscillation lengths an conversion probabilities with
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the massless ones within each of these two parameter regions, we have found
there there appears to be no setting in which the massive conversion probabilities
P (A → χ) would not be suppressed relative to the massless conversion probabil-
ities P (A → H). In other words, tuning the parameters of the bimetric theory so
as to explain use it to explain DM appears to be disqualifying it from simultane-
ously explaining the high-energy GRB photon observations (recall the massless
conversion probabilities were already claimed not to be high enough so as to pro-
vide explanation to the GRB photon observations). Finally, we have provided
general results for a number of observables with no reference to particular values
of the couplng α and FP mass m(χ), in particular finding new interference terms
for the LSW regeneration probabilities, which were not present in the 2-flavour
mixing dynamics.

Having seen that the bimetric theory does not seem to able to provide simulta-
neous explanation to both Dark Matter and high-energy photon observations (at
least for the two considered DM paradigms), one has to consider the possibility
that either one of these phenomena (or both) are in need for a different explana-
tion. As we have already mentioned, an alternative candidate has been proposed
as the mediating particle in the kind of double-conversion process which saves the
high-energy photons from having been lost along the way from the GRB to the
Earth, namely the axion. In particular, promising results on the photon survival
rate have been reported in [3] for the range of axion masses ma ≃ (10−11−10−7) eV
and pseudoscalar coupling ga ≃ (3 − 5) × 10−12 GeV−1. Notice that this coupling
is greater than the gravitational coupling g(H) = 1

mPl
by about seven orders of

magnitude. Trying to adopt such a coupling strength for the massive spin-2 field
χ in the bimetric theory at these values of the FP mass would not only make it
an invalid DM candidate (a possibility which we are in principle happy to allow
for) but one would also immediately run into a clash with local gravity tests. In
the future, it would be interesting to investigate whether there exists a healthy
regime within the bimetric parameter space which would be consistent with the
massive and massless spin-2 particles mediating the processes which could explain
the high-energy photon observations from GRBs.
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