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Introduction
The compactness of mappings is one of the most important questions that have
been studied in contemporary functional analysis. This field of mathematics is
interesting not only from the theoretical point of view but, at the same time, has
a wide array of applications in various parts of mathematics. However, especially
in infinite-dimensional spaces, the mapping in question is often not compact.

The difference between compactness and non-compactness of an operator is
however often too rough, and, therefore, it is worthwhile to study its various
refinements.

One particular example of such a refinement is offered by studying the so-
called measure of non-compactness.
The measure of non-compactness α(T ) can attain any value between zero and
the operator norm ||T || of the mapping T : X → Y in question, where X and Y
are (alpha/quasi)-normed linear spaces. In the case when α(T ) coincides with
the operator norm, the mapping is called maximally non-compact. The concept
of measure of non-compactness is a good device for quantifying how bad the
non-compactness of a mapping is.

We will study this property for various particular instances of embedding
(identity) operators in sequence spaces, focusing on Lorentz sequence spaces.

The thesis is divided into three parts. In the first part we introduce the
definition of measure of non-compactness α(T ), which we get from the article [1].
We also state and prove some of its basic properties, which follow from those of
metric spaces and the operator norm, and are mentioned in the article without
the proof.

In the second part we focus on generalisation of the example in the intro-
duction of the article [1]. We formulate the prerequisites and state some general
theorems which are addressing the question whether an identity operator between
two embedded sequence spaces is maximally non-compact.

In the final third part we study the Lorentz sequence spaces ℓp,q and some of
their basic properties. We prove that for an arbitrary combination of p, q ∈ [1, ∞]
such that min{p, q} < ∞, the space ℓp,q is a subset of c0 by using some elementary
knowledge of series convergence from introductory courses of mathematical anal-
ysis. After that, we concentrate on finding the inclusions ℓp1,q1 ↪→ ℓp2,q2 between
the Lorentz sequence spaces depending on the values of p1, p2 and q1, q2. We
draw some of the inequalities and inclusions from the article [2]. Either we try
to detail and complete their proofs, or we try to generalize them more. Then in
some of the cases we also determine the exact values of the norms of the identity
operators between these spaces.

Lastly we determine whether these identity operators are maximally non-
compact by using our general theorems from the second part of the thesis.
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1. Notation and preliminaries
We will throughout the text denote by K the field of scalars, that is, either the
set of real numbers R or the set of complex numbers C.

Definition 1.1 (Norm, quasinorm and α-norm). Let X be a linear space over K
and ∥ . ∥ : X → [0, ∞) satisfying:

1. For all x ∈ X : ∥x∥ = 0 ⇔ x = 0,

2. For all x ∈ X, t ∈ K : ∥tx∥ = |t|∥x∥,

3. For all x, y ∈ X : ∥x + y∥ ≤ ∥x∥ + ∥y∥.

Then ∥ · ∥ is called a norm. If it satisfies 1., 2. and instead of 3.

3.’ There exists a constant α ∈ (0, 1] such that for all x, y ∈ X :

∥x + y∥α ≤ ∥x∥α + ∥y∥α,

or

3.” There exists a constant C ∈ R such that for all x, y ∈ X :

∥x + y∥ ≤ C(∥x∥ + |∥y∥),

then it is called an α-norm or a quasinorm, respectively.

Remark 1.2. Below are some basic relations between norms, quasinorms and
α-norms:

1. Every norm is a quasinorm with constant C = 1 and also an α-norm with
α = 1.

2. If α ≤ β and ∥ · ∥ is a β-norm then ∥ · ∥ is also a α-norm.

3. Every α-norm is a quasinorm with constant C = 2 1
α

−1 but not every quasi-
norm is a α-norm.

The proofs can be find in the first chapter of [3, Proposition 1.5; 1.7; 1.8].

Definition 1.3. Let X and Y be (alpha/quasi)-normed linear spaces over K. For
x ∈ X, A ⊂ X a α ∈ K we define following sets:

x + A = {x + y; y ∈ A},

αA = {αy; y ∈ A}.

Notation 1.4. Let X be an (alpha/quasi)-normed linear space over K. We will
denote the closed unit ball by

BX := {x ∈ X : ∥x∥ ≤ 1}
and the closed unit ball centered in x ∈ X with radius r > 0 by

BX(x, r) := {y ∈ X : ∥x − y∥ ≤ r}.
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Remark 1.5. For every x ∈ X and r > 0 the following equality holds:

x + rBX = {x + ry; y ∈ BX} = BX(x, r).

Definition 1.6 (Compact operator). Let X and Y be (alpha/quasi)-normed lin-
ear spaces over K and let T : X → Y be a bounded mapping defined on X and
taking values in Y . We say that the operator T is compact, if for every bounded
sequence {xn} in X the image {T (xn)} has a convergent subsequence in Y .

Definition 1.7 (Ball measure of non-compactness). Let X, Y be (alpha/quasi)-
normed linear spaces over K and let T : X → Y be a bounded mapping defined
on X and taking values in Y . The ball measure of non-compactness α(T ) of T
is defined as the infimum of radii r > 0 for which there exists a finite set of balls
in Y of radii r that covers T (BX). In other words,

α(T ) = inf{r > 0 : T (BX) ⊂
m⋃︂

i=1
(yi + rBY ) yi ∈ Y & m ∈ N}.

Definition 1.8 (Operator norm). Let X and Y be (alpha/quasi)-normed linear
spaces over K and let T : X → Y be a bounded mapping defined on X and taking
values in Y . We define the operator norm ||T || of T as follows:

∥T∥ = sup
x∈BX

∥T (x)∥.

We shall now present a simple proof of the two-sided estimate for the measure
of non-compactness.

Proposition 1.9. Let X and Y be (alpha/quasi)-normed linear spaces over K
and let T : X → Y be a bounded linear mapping defined on X and taking values
in Y . Then:

0 ≤ α(T ) ≤ ∥T∥.

Proof. We will prove each of the inequalities separately:
We can see that α(T ) ≥ 0 easily from the definition of the ball measure of

non-compactness, because infimum of positive radii r is always greater or equal
to zero.

Take ϱ > ∥T∥ arbitrarily. Then for every x ∈ BX one has ∥Tx∥ ≤ ∥T∥ < ϱ,
which in turn implies that Tx ∈ BY (0, ϱ). Since x was arbitrary, this implies that

T (BX) ⊂
m=1⋃︂
i=1

(0 + ϱBY ).

The last inclusion is true for all ϱ > ∥T∥. Consequently, α(T ) ≤ ∥T∥.

Definition 1.10. Let X be a metric space and A ⊂ X. We say that A is:

1. relatively compact in X if the closure of A is compact.

2. totally bounded in X if for every real number ε > 0, there exists a finite
collection of open balls of radius ε whose centers lie in X and whose union
contains A.
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Lemma 1.11. Let (X, ϱ) be a metric space and A ⊂ X. Then A is relatively
compact in X if and only if every sequence {xn} ⊂ A has a subsequence that is
convergent in X.

Proof. ”⇒”: A is compact from the definition of relative compactness, therefore
{xn} ⊂ A ⊂ A has a convergent subsequence {xnk

} with a limit in A.
”⇐”: Let {xn} ⊂ A be a sequence. Then for every n ∈ N exists yn ∈ A such
that xn ∈ BX(yn, 1

n
). According to our assumption {yn} ⊂ A has a convergent

subsequence {ynk
} with a limit y ∈ A. Then ϱ(xnk

, y) ≤ ϱ(xnk
, ynk

) + ϱ(ynk
, y) ≤

1
nk

+ ϱ(ynk
, y) → 0 as k → ∞. Hence xnk

→ y and we get that A is compact.

Remark 1.12. Let X be a metric space and A ⊂ X. We recall some basic and
known properties of totally bounded and relatively compact sets.

1. A is totally bounded if and only if every sequence in A has a Cauchy sub-
sequence.

2. Relative compactness of A always implies that A is totally bounded.
This is because a sequence in A has a convergent subsequence with limit
in A from relative compactness, and a convergent subsequence is a Cauchy
subsequence, so A is totally bounded.

3. If X is complete, then A is relatively compact if and only if A is totally
bounded.

There is an intimate relation between the situation when the measure of non-
compactness of a given operator is zero and its compactness. We shall collect
relations between these two notions in the following proposition.

Proposition 1.13. Let X and Y be (alpha/quasi)-normed linear spaces over K
and let T : X → Y be a bounded linear mapping defined on X and taking values
in Y . Then:

1. T is compact if and only if for every bounded A ⊂ X the set T (A) is relatively
compact in Y .

2. If T is compact, then α(T ) = 0.

3. If Y is a complete space and α(T ) = 0, then T is compact.

Proof. We will gradually prove each statement from the proposition.

1. ”⇐”: Let A ⊂ X be bounded and let {yn} be a sequence in T (A). Then for
every n ∈ N there is xn ∈ A such that yn = T (xn). Then {xn} is a bounded
sequence in A and {yn} = {T (yn)} has a convergent subsequence owing to the
compactness of T . It follows that T (A) is relatively compact from Lemma 1.11.
”⇒”: Let A ⊂ X be bounded and and let {xn} be a sequence in A. Because
{T (xn)} ⊂ T (A), there exists an increasing sequence of indices {nk} such that
{T (xnk

)} converges thanks to the relative compactness of T (A). So T satisfies
the definition of a compact operator.
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2. Let T be compact. From (i) we have that for every bounded A ⊂ X the
set T (A) is relatively compact in Y therefore T (BX) is relatively compact.
Hence, T (BX) is totally bounded (as follows from Remark 1.12). Consequently,
for every ε > 0, one has T (BX) ⊂ ⋃︁m

i=1(yi + εBY ), in which yi ∈ Y for
i ∈ {1, . . . , m}, and m ∈ N. Therefore, α(T ) = 0.

3. Since α(T ) = 0, for every ε > 0 we have T (BX) ⊂ ⋃︁m
i=1(yi + εBY ), where

yi ∈ Y and m ∈ N, which implies that T (BX) is totally bounded. Because Y
is complete, this implies that T (BX) is relatively compact in Y .
Now let A ⊂ X be a bounded set and let {xn} ⊂ A be a sequence from A.
Then there exists r > 0 such that {xn} ⊂ A ⊂ BX(0, r). Then 1

r
xn ⊂ BX .

Now, similarly to the proof of (i), {T (1
r
xn)} ⊂ T (BX), and there exists an

increasing sequence of indices {nk} such that {T (1
r
xnk

)} converges owing to
the relative compactness of T (BX). But then also, by the linearity of T and
linearity of limits, we get that {T (xn)} = {rT (1

r
xnk

)} converges. Therefore,
for every bounded A ⊂ X the set T (A) is relatively compact in Y . So, from
1., T is compact.

Definition 1.14 (Maximal non-compactness). Let X and Y be (alpha/quasi)-
normed linear spaces over K and let T : X → Y be a bounded mapping defined on
X and taking values in Y . We say that T is maximally non-compact if

α(T ) = ∥T∥.
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2. Maximal non-compactness of
embedding operators in sequence
spaces
Definition 2.1 (Sequence space ℓp). Let 1 ≤ p < ∞. Then we define the sequence
space:

ℓp = {{xn}∞
n=1 ⊂ K;

∞∑︂
n=1

|xn|p < +∞} with norm ∥{xn}∥p =
(︄ ∞∑︂

n=1
|xn|p

)︄1/p

.

We also define

ℓ∞ = {{xn}∞
n=1 ⊂ K; sup

n∈N
|xn| < +∞} with norm ∥{xn}∥∞ = sup

n∈N
|xn|.

Definition 2.2 (Sequence space c0). We define

c0 = {{xn}∞
n=1 ⊂ K; lim

n→∞
xn = 0} with norm ∥{xn}∥∞.

Definition 2.3. Let (ℓ, ∥ · ∥ℓ) and (w, ∥ · ∥w) be sequence (alpha/quasi)-normed
linear spaces over K. We say that ℓ is a embedded into w (we shall denote this
as ℓ ↪→ w) if ℓ is a linear subspace of w and the identity operator is bounded in
the sense that there exists a constant C ≥ 0 such that for every a ∈ ℓ one has
a ∈ w and ∥a∥w ≤ C∥a∥ℓ.

Remark 2.4. For 1 ≤ p ≤ q < ∞, the following inclusions clearly hold:

ℓp ⊂ ℓq ⊂ c0 ⊂ ℓ∞.

Definition 2.5 (Canonical sequence ej). For j ∈ N, we denote

ej = (ej
n)∞

n=1 = (0, . . . , 0, 1, 0, . . . ),

where on the j-th position is 1 and 0 on all the others. We call every such sequence
a canonical sequence.

We shall now present a proposition which nicely illustrates the principle of
showing that a given identity operator between two embedded subspaces of c0 is
maximally non-compact. A particular case of this assertion can be found in [1].

Proposition 2.6. Let ℓ and w be sequence (alpha/quasi)-normed linear spaces
over K satisfying:

1. ℓ, w ⊂ c0,

2. ℓ ↪→ w,

3. the embedding I : ℓ → w satisfies ∥I∥ ≤ 1, and ej ∈ Bℓ for every j ∈ N.

Then I is maximally non-compact.

7



Proof. We will prove the proposition by contradiction. Let us assume that I is
not maximally non-compact. Then α(I) < ∥I∥ and we take ϱ ∈ (α(I), ∥I∥). Then
from the definition of the ball measure of non-compactness we find y1, . . . , ym ∈ w
and m ∈ N such that:

I(Bℓ) ⊂
m⋃︂

i=1
(yi + ϱBw).

Note that yi ∈ w ⊂ c0 for each i ∈ {1, . . . , m}. So from the definition of limit there
exists j0 ∈ N satisfying: |(yi)j| < ∥I∥ − ϱ for all j ≥ j0 and for all i ∈ {1, . . . , m}.
Now, the sequence ∥I∥ej = (0, . . . , 0, ∥I∥, 0, . . . ), j ≥ j0, satisfies ||I||ej ∈ I(Bℓ),
but ∥I∥ej /∈ (yi + ϱBw) for any i ∈ {1, . . . , m}. Because for every z ∈ (yi + ϱBw),
we have (z)j < (∥I∥−ϱ)+ϱ = ∥I∥, so we get our contradiction, hence α(I) = ∥I∥,
and I is maximally non-compact.

We shall now present an example which illustrates Proposition 2.6.
Example 2.7. Let 1 ≤ p < ∞ and I : ℓp → c0 be the identity operator. Then I is
maximally non-compact.

1. From Remark 2.4 we know that ℓp ⊂ c0.

2. We will compute the operator norm of I. For every x = (xn)∞
n=1 ∈ ℓp it

holds that:

∥x∥∞ = sup
n∈N

|xn| ≤
(︄ ∞∑︂

n=1
|xn|p

)︄1/p

= ∥x∥p.

Moreover, ∥I(x)∥∞ = ∥x∥∞, and so we get ∥I∥ ≤ 1. We will show that the
norm of I achieves the value 1 on the closed unit ball. For arbitrary j ∈ N,
we get ∥ej∥p = 1 (i.e. ej ∈ Bℓp), and also ∥I(ej)∥∞ = ∥ej∥∞ = 1. So we get
that ∥I∥ = 1.

3. From computations in the previous step, ℓp ↪→ c0 and the embedding op-
erator I satisfies the prerequisites of Proposition 2.6, namely ∥I∥ ≤ 1 and
ej ∈ Bℓp for all j ∈ N.

So I is maximally non-compact and α(I) = ∥I∥ = 1.
We can notice that Proposition 2.6 limits us to the cases where the norm of

the embedding operator is less or equal to 1. Later in this chapter we present a
more general theorem addressing the maximal non-compactness in c0 subspaces.
But first we need to introduce some new terminology and definitions.

Notation 2.8. We denote by P(N) the power set of the set N of all natu-
ral numbers. We endow the set N with the usual σ-finite counting measure
m : P(N) → [0, ∞].

Below we define a decreasing rearrangement for sequences. We use the defi-
nition from the book [4, Definition 1.1 and Definition 1.5; page 36–39] and refor-
mulate it only for the special case where we set the space (X, A, µ) with a σ-finite
measure µ equal to (N, P(N), m).

8



Definition 2.9. [Distribution function and decreasing rearrangement] Let us con-
sider the measure space (N, P(N), m). For a sequence {a}∞

n=1 ⊂ K we define its
distribution function ma : [0, ∞) → [0, ∞] in the following way:

ma(ω) = m{n ∈ N : |an| > ω}

and the decreasing rearrangement a∗ : N → [0, ∞] of the sequence a as:

a∗
n = inf{ω > 0: ma(ω) ≤ n}.

Definition 2.10 (Rearrangement-invariant lattice). Let (ℓ, ∥ · ∥ℓ) be a
(alpha/quasi)-normed sequence space over K. We say that ℓ is a rearrangement-
invariant lattice if it satisfies the following axioms:

1. Let b ∈ ℓ and let a be a sequence such that for all n ∈ N : |an| ≤ |bn|, then also
a ∈ ℓ and ∥a∥ℓ ≤ ∥b∥ℓ.

2. For every a ∈ ℓ it holds that ∥a∗∥ℓ = ||a||ℓ.

We can now state our first principal result, namely, a general theorem about
the maximal non-compactness in c0 subspaces.

Theorem 2.11. Let ℓ and w be sequence (alpha/quasi)-normed linear spaces over
K satisfying:

1. ℓ ↪→ w ⊂ c0,

2. ℓ, w are rearrangement-invariant lattices,

3. the embedding operator I : ℓ → w satisfies 0 < ∥I∥ < ∞, where ∥I∥ =
sup
x∈Bℓ

∥x∥w.

Then the embedding operator I is maximally non-compact.

Proof. We will prove the proposition by contradiction. Let us assume that I is
not maximally non-compact, then α(I) < ∥I∥. We take ϱ ∈ (α(I), ∥I∥) and find
λ ∈ (0, 1) such that:

ϱ

1 − λ
< ∥I∥. (2.1)

From the definition of ∥I∥ we find x ∈ Bℓ satisfying:

∥x∥w >
ϱ

1 − λ
. (2.2)

Then from the definition of the ball measure of non-compactness we find m ∈ N
and y1, . . . , ym ∈ w such that

I(Bℓ) ⊂
m⋃︂

i=1
(yi + ϱBw). (2.3)

Let us now define a new sequence ε = {εk}∞
k=1. For all k ∈ N we set

εk = λx∗
k. (2.4)
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Owing to (2.4), ε ∈ c0. Then from the positive homogeneity of (alpha/quasi)-
norm, our prerequisite that w is a rearrangement-invariant lattice, and inequality
(2.2), we get

∥x∗ − ε∥w = ∥{x∗
k − λx∗

k}∥w = ∥(1 − λ)x∗∥w = (1 − λ)∥x∥w > ϱ. (2.5)

Now yi ∈ w ⊂ c0 for each i ∈ {1, . . . , m}. So for every k ∈ N, there exists jk ∈ N,
such that for every k ≥ 2, one has jk+1 > jk, and for all i ∈ {1, . . . , m}

|(yi)jk
| ≤ εk. (2.6)

Let us now define a new sequence:

a :=
∞∑︂

k=1
x∗

kejk . (2.7)

Then a∗ = x∗. Consequently, a ∈ Bℓ, ∥a∥ℓ = ∥x∥ℓ and ∥a∥w = ∥x∥w, since ℓ and
w are rearrangement-invariant lattices and x ∈ Bℓ. Now for every i ∈ {1, . . . , m}
and every k ∈ N from inequality (2.6) and definition of a:

ajk
− yi

jk
= x∗

k − yi
jk

≥ x∗
k − εk ≥ 0. (2.8)

This together with inequality (2.5) yields

∥a − yi∥w = ∥
∞∑︂

k=1
ejkx∗

k − yi∥w ≥ ∥
∞∑︂

k=1
ejk(x∗

k − yi
jk

)∥w

≥ ∥
∞∑︂

k=1
ejk(x∗

k − εk)∥w

= ∥x∗ − ε∥w

> ϱ.

We showed that a /∈ (yi + ϱBw) for all i ∈ {1, . . . , m}. Which gives us a con-
tradiction with our claim (2.3) for any choice of ϱ ∈ (α(I), ∥I∥). Therefore I is
maximally non-compact, and α(I) = ∥I∥.

We will now state an example of a maximally non-compact embedding, where
the target space is not a subspace of c0, and therefore Theorem 2.11 cannot be
used.
Example 2.12. Let I be the embedding operator I : c0 → ℓ∞. Then I is maximally
non-compact.

Proof. First, we compute the operator norm of I. Let x = {xn}∞
n=1 ∈ c0, then

∥I(x)∥ = ∥x∥∞. So I is a linear isometry from c0 to ℓ∞, which implies that
∥I∥ = 1 and it achieves its norm on an arbitrary element x ∈ Bc0 such that
∥x∥∞ = 1.

We will proceed with the proof by contradiction. Let us assume that I is not
maximally non-compact. Then α(I) < ∥I∥ = 1 and we take ϱ ∈ (α(I), 1). Then
from the definition of the ball measure of non-compactness we find y1, . . . , ym ∈
ℓ∞, where m ∈ N, such that:

Bc0 ⊂
m⋃︂

i=1
(yi + ϱBℓ∞).
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We will define a sequence a = (aj)∞
j=1 in the following way:

aj =

⎧⎪⎪⎨⎪⎪⎩
1, if (yj)j < 0 and j ∈ {1, . . . , m},

−1, if (yj)j ≥ 0 and j ∈ {1, . . . , m},

0, for j > m.

Trivially a ∈ c0, because it has only a finite number of non-zero elements. Also
∥a∥∞ = supn∈N |an| = 1. So a ∈ Bc0 .

We will show that a /∈ yi+ϱBℓ∞ for any i ∈ {1, . . . , m}. Fix i ∈ {1, . . . , m} and
j ∈ N. Then for all z ∈ yi +ϱBℓ∞ it holds that zj ∈ [(yi)j −ϱ, (yi)j +ϱ]. We have
ϱ ∈ (0, 1), thus for any j ∈ N it cannot happen that {1, −1} ⊂ [(yi)j −ϱ, (yi)j +ϱ],
because this interval can contain at most one of the elements of the set {1, −1}.
Let us take j ∈ {1, . . . , m} arbitrarily. From the definition of a it follows that
the element aj /∈ [(yj)j − ϱ, (yj)j + ϱ]. So the whole sequence a cannot belong
to the ball (yj + ϱBℓ∞). This holds for every j ∈ {1, . . . , m}. And thus we have
shown that a /∈ ⋃︁m

i=1(yi + ϱBℓ∞) and we get a contradiction.

Our next aim is to find conditions under which an operator is not maximally
non-compact. We will need the following new notion.

Definition 2.13 (Sequence space span). Let ℓ be a (alpha/quasi)-normed se-
quence space over K. We define the span σℓ of ℓ as follows:

σℓ := sup
y∈Bℓ

(︄
sup
n∈N

yn − inf
n∈N

yn

)︄
. (2.9)

We are now in a position to state and prove our next main result. It gives
a general sufficient condition for an embedding operator into ℓ∞ to avoid maximal
non-compactness.

Theorem 2.14. Let ℓ be a sequence (alpha/quasi)-normed linear space over K
satisfying ℓ ↪→ ℓ∞ and

∥I∥ ≤ σℓ < 2∥I∥. (2.10)

Then the embedding operator I : ℓ → ℓ∞ is not maximally non-compact. More-
over, α(I) ≤ σℓ/2.

Proof. Denote ϱ ∈ (σℓ/2, ∥I∥) and consider m ∈ N such that(︃
1 + 1

m

)︃
σℓ

2 < ϱ. (2.11)

Define λk = σℓk
2m

for k = −m, . . . , m and let yk be a constant sequence defined by
(yk)j = λk for every j ∈ N and k = −m, . . . , m. We will show that

Bℓ ⊂
m⋃︂

i=−m

(yi + ϱBℓ∞), (2.12)

proving α(I) ≤ ϱ < ∥I∥. Assume y ∈ Bℓ. Then y ∈ Bℓ∞(0, ∥I∥) and |yj| ≤ ∥I∥ ≤
σℓ for every j ∈ N. Now from (2.9) it follows that sup y − inf y ≤ σℓ. We shall
now distinguish three cases.
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a) If inf y = −σℓ, then sup y ∈ [−σℓ, 0]. Thus, yj ∈ [−σℓ, 0] for each j ∈ N, and
we claim that y ∈ y−m + ϱBℓ∞ . Indeed, since ϱ > σℓ

2 and for every j ∈ N we
have (y−m)j = λ−m = σℓ(−m)

2m
= −σℓ

2 , the claim follows.

b) If inf y ∈ (−σℓ, 0], then there is a unique k ∈ {−m + 1, . . . , m} such that
inf y + σℓ/2 ∈ (λk−1, λk] = (σℓ(k−1)

2m
, σℓk

2m
] ⊂ (−σℓ/2, σℓ/2]. Then by the choice

of ϱ > σℓ/2 and inequality (2.10),

λk + ϱ > λk + σℓ/2 ≥ inf y + σℓ ≥ sup y.

Here, we get the second inequality from

inf y + σℓ ∈ (λk−1 + σℓ/2, λk + σℓ/2].

On the other hand, using the definition of λk and inequality (2.11), we arrive
at

inf y > λk−1 − σℓ/2 = σℓk − σℓ − σℓm

2m
= λk −

(︃
1 + 1

m

)︃
σℓ

2 > λk − ϱ.

c) If inf y ∈ (0, σℓ], then yj ∈ [0, σℓ] for each j ∈ N, hence, evidently, y ∈
ym + ϱBℓ∞ .

Altogether, we showed that y ∈ yk + ϱBℓ∞ , and (2.12) follows. Therefore α(I) ≤
σℓ/2 < ∥I∥ and I is not maximally non-compact.

Remark 2.15. We could not use Theorem 2.14 for the embedding I : c0 → ℓ∞
in Example 2.12, because σc0 = 2. It is achieved for example on the sequence
y = (1, −1, 0, 0, . . . ) ∈ Bc0 .
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3. Lorentz sequence spaces
Definition 3.1 (Lorentz sequence spaces ℓp,q). Let p, q ∈ [1, ∞]. We define
Lorentz sequence space ℓp,q as a space of all sequences a = {an}∞

n=1 ⊂ K, for
which the value ∥a∥p,q defined below is finite:

∥a∥p,q =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︄ ∞∑︂
n=1

(a∗
n)qn

q
p

−1
)︄ 1

q

, if 1 ≤ q < ∞ and 1 ≤ p ≤ ∞,

sup
n∈N

{n1/pa∗
n}, if q = ∞ and 1 ≤ p ≤ ∞,

where a∗ = {a∗
n}∞

n=1 is the decreasing rearrangement of a.

Remark 3.2. Throughout, we adopt the convention 1/∞ = 0.

Observation 3.3. Below are some of the basic properties of Lorentz sequence
spaces which follow directly from the definition:

1. ∥a∥p,q =
(︂∑︁∞

n=1(a∗
n)qn

q
p

−1
)︂ 1

q = ∥n
1
p

− 1
q a∗∥ℓq ,

2. ℓp,p = ℓp.

Remark 3.4. If 1 ≤ q ≤ p ≤ ∞, then ∥ · ∥p,q is a norm. If 1 ≤ p < q ≤ ∞, ∥ · ∥p,q

is not a norm but it is a quasi-norm satisfying, for any a, b ∈ ℓp,q,

∥a + b∥p,q ≤ 21/p(∥a∥p,q + ∥b∥p,q).

The proof can be found in [2, p. 76, Proposition 1].

Observation 3.5. Any Lorentz sequence space ℓp,q, p, q ∈ [1, ∞], trivially sat-
isfies the axioms in Definition 2.10. Therefore, it is a rearrangement-invariant
lattice.

3.1 Inclusions of Lorentz sequence spaces
Lemma 3.6. Let p, q ∈ [1, ∞] and min{p, q} < ∞, then ℓp,q ⊂ c0.

Proof. Let us assume that ℓp,q ̸⊂ c0 and take a ∈ ℓp,q \c0. Then there exists ε > 0,
such that for all n0 ∈ N there exists n ≥ n0, n ∈ N : |an| ≥ ε, which implies that
a∗

n ≥ ε for ∀n ∈ N. First, let us look at the case when q < ∞ and p ∈ [1, ∞].
Then:

∞ > ∥a∥p,q ≥ ε

(︄ ∞∑︂
n=1

(n
1
p

− 1
q )q

)︄ 1
q

= ε

(︄ ∞∑︂
n=1

n
q
p

−1
)︄ 1

q

= ∞,

because for all p ∈ [1, ∞] one has ( q
p
−1) ≥ −1, and we know that∑︁∞

n=1 nα diverges
for α ≥ −1. This gives us a contradiction with our assumption that a ∈ ℓp,q.
Similarly, for q = ∞ and p ∈ [1, ∞) we get ∞ > ∥a∥p,∞ ≥ supn∈N{εn1/p} = ∞,
which is a contradiction once again.
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The following two lemmas occur in the article [2, p. 77-78]. However, the
proofs are rather incomplete there. Here we present the complete proofs including
full details.

Lemma 3.7. Let p ∈ [1, ∞], q ∈ [1, ∞) and a = {an}∞
n=1 ∈ ℓp,q, then for all

n ∈ N it holds that

1. a∗
n ≤

(︂
q
p

)︂ 1
q n− 1

p ∥a∥p,q, if 1 ≤ p ≤ q < ∞,

2. a∗
n ≤ n− 1

p ∥a∥p,q, if 1 ≤ q < p ≤ ∞.

Proof. We will prove the individual cases:

1. Let 1 ≤ p ≤ q < ∞ and fix n ∈ N, Then:

∥a∥q
p,q =

∞∑︂
i=1

i
q
p

−1(a∗
i )q

≥
n∑︂

i=1
i

q
p

−1(a∗
i )q

≥ (a∗
n)q

n∑︂
i=1

i
q
p

−1

≥ (a∗
n)q p

q

n∑︂
i=1

(︂
i

q
p − (i − 1)

q
p

)︂
= (a∗

n)q

(︄
p

q

)︄
n

q
p .

Here, the second inequality follows from the fact that (a∗
i ) is the decreasing

rearrangement. The third inequality results from the Lagrange mean value
theorem. Indeed, for all i ∈ N, there exists ξ ∈ (i − 1, i), that satisfies for the
function f(t) = p

q
t

q
p , where t ≥ 0 following equality:

f
′(ξ) = ξ

q
p

−1 = p

q

[︂
i

q
p − (i − 1)

q
p

]︂
.

Also i
q
p

−1 ≥ ξ
q
p

−1, because q
p

≥ 1 and i > ξ > 1. From the estimates above we
get the third inequality and 1. is proven.

2. Analogously to the computations in 1. we get the following inequality:

∥a∥q
p,q ≥ (a∗

n)q
n∑︂

i=1
i

q
p

−1

≥ (a∗
n)qnn

q
p

−1

= (a∗
n)qn

q
p .

Here the second inequality follows from the fact that for all i ≤ n it holds that
q
p

∈ [0, 1). Therefore
(︂

q
p

− 1
)︂

∈ [−1, 0), so we get n( q
p

−1) ≤ i(
q
p

−1), and 2. is
proven.
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Lemma 3.8. Let 1 ≤ p ≤ ∞, 1 ≤ q1 < q2 ≤ ∞, Then:

ℓp,q1 ↪→ ℓp,q2 ,

and for all a ∈ ℓp,q1 it holds that

1. ∥a∥p,q2 ≤
(︂

q1
p

)︂ 1
q1

− 1
q2 ∥a∥p,q1; if p < q1,

2. ∥a∥p,q2 ≤ ∥a∥p,q1; if p ≥ q1.

Proof. We will treat each case separately

1. (a) Let q2 < ∞. From the first part of Lemma 3.7 we get:

∥a∥q2
p,q2 =

∞∑︂
n=1

n
q2
p

−1(a∗
n)q2−q1(a∗

n)q1

≤
∞∑︂

n=1
n

q2
p

−1
(︄

q1

p

)︄ q2−q1
q1

n− q2−q1
p ∥a∥q2−q1

p,q1 (a∗
n)q1

=
(︄

q1

p

)︄ q2
q1

−1

∥a∥q2−q1
p,q1

∞∑︂
n=1

n
q1
p

−1(a∗
n)q1

=
(︄

q1

p

)︄ q2
q1

−1

∥a∥q2−q1
p,q1 ∥a∥q1

p,q1

=
(︄

q1

p

)︄ q2
q1

−1

∥a∥q2
p,q1 .

(b) Now, let q2 = ∞:

∥a∥p,q2 = sup
n∈N

n
1
p a∗

n

≤ sup
n∈N

n
1
p

(︄
q1

p

)︄ 1
q1

n− 1
p ∥a∥p,q1

=
(︄

q1

p

)︄ 1
q1

∥a∥p,q1 .

Here the first inequality again follows from Lemma 3.7.
So 1. is proven.

2. Now let p ≥ q1. Then, the following inequality follows from the second part of
Lemma 3.7:

∥a∥q2
p,q2 =

∞∑︂
n=1

n
q2
p

−1(a∗
n)q2−q1(a∗

n)q1

≤
∞∑︂

n=1
n

q2
p

−1n− q2−q1
p ∥a∥q2−q1

p,q1 (a∗
n)q1

= ∥a∥q2−q1
p,q1

∞∑︂
n=1

n
q1
p

−1(a∗
n)q1

= ∥a∥q2−q1
p,q1 ∥a∥q1

p,q1

= ∥a∥q2
p,q1 .
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We will now concentrate on establishing the embeddings ℓp1,q1 ↪→ ℓp2,q2 be-
tween the Lorentz sequence spaces in dependence on the values of p1, p2 and
q1, q2. Then we will try to calculate the exact value of the operator norms of
these embeddings.

Lemma 3.9. Let 1 ≤ p1 < p2 ≤ ∞ and q1, q2 ∈ [1, ∞]. Then

ℓp1,q1 ↪→ ℓp2,q2 ,

and for all a ∈ ℓp1,q1 holds:

1. ∥a∥p2,q2 ≤ ∥a∥p1,q1, if q1 ≤ p1,

2. ∥a∥p2,q2 ≤
(︄ ∞∑︂

n=1
n

q2
p2

− q2
p1

−1
)︄1/q2

∥a∥p1,∞, if p1 < q1 = ∞ and q2 < ∞,

3. ∥a∥p2,q2 ≤
(︂

q1
p1

)︂ 1
q1

− 1
q2 ∥a∥p1,q1, if p1 < q1 < q2 < ∞,

4. ∥a∥p2,q2 ≤ ∥a∥p1,q1, if p1 < q1 < ∞ and q1 ≥ q2.

5. ∥a∥p2,q2 ≤ ∥a∥p1,q1, if q1 = q2 = ∞.

Proof. Let 1 ≤ p1 < p2 ≤ ∞. We will prove the individual cases.

1. Let q1 ≤ p1 < ∞.

a) Let q2 < ∞. Then

∥a∥q2
p2,q2 =

∞∑︂
n=1

n
q2
p2

−1(a∗
n)q2

=
∞∑︂

n=1
n

q2
p2

−1(a∗
n)q2−q1(a∗

n)q1

≤ ∥a∥q2−q1
p1,q1

∞∑︂
n=1

n
− q2−q1

p1 (a∗
n)q1n

q2
p2

−1

= ∥a∥q2−q1
p1,q1

∞∑︂
n=1

n
q2
p2

− q2
p1 (a∗

n)q1n
q1
p1

−1

≤ ∥a∥q2−q1
p1,q1

∞∑︂
n=1

(a∗
n)q1n

q1
p1

−1

≤ ∥a∥q2
p1,q1 .

Here the first inequality follows from the second part of Lemma 3.7

a∗
n ≤ n

− 1
p1 ∥a∥p1,q1 ,

and we get the second inequality from the fact that

n
q2
p2

− q2
p1 < 1.
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b) Now let q2 = ∞ then:

∥a∥p2,∞ = sup
n∈N

a∗
nn

1
p2

≤ sup
n∈N

n
1

p2 n
− 1

p1 ∥a∥p1,q1

= ∥a∥p1,q1 sup
n∈N

n
1

p2 n
− 1

p1

≤ ∥a∥p1,q1 .

The first inequality follows from the second part of Lemma 3.7

a∗
n ≤ n

− 1
p1 ∥a∥p1,q1 .

And we get the second inequality from the fact that

n
1

p2
− 1

p1 ≤ 1.

2. Let p1 < q1 = ∞ and q2 < ∞, then:

∥a∥q2
p2,q2 =

∞∑︂
n=1

n
q2
p2

−1(a∗
n)q2

=
∞∑︂

n=1
n

q2
p2

− q2
p1

−1(a∗
n)q2n

q2
p1

≤
(︄

sup
n∈N

a∗
nn

1
p1

)︄q2 ∞∑︂
n=1

n
q2
p2

− q2
p1

−1

= ∥a∥q2
p1,∞

∞∑︂
n=1

n
q2
p2

− q2
p1

−1
,

in which the sum
∞∑︂

n=1
n

q2
p2

− q2
p1

−1 converges, because q2
p2

− q2
p1

− 1 < −1.

3. Let p1 < q1 < ∞ and q2 < ∞, then:

∥a∥q2
p2,q2 =

∞∑︂
n=1

n
q2
p2

−1(a∗
n)q2

=
∞∑︂

n=1
n

q2
p2

−1(a∗
n)q2−q1(a∗

n)q1

≤ ∥a∥q2−q1
p1,q1

(︄
q1

p1

)︄ q2−q1
q1 ∞∑︂

n=1
n

− q2−q1
p1 (a∗

n)q1n
q2
p2

−1

= ∥a∥q2−q1
p1,q1

(︄
q1

p1

)︄ q2
q1

−1 ∞∑︂
n=1

n
q2
p2

− q2
p1 (a∗

n)q1n
q1
p1

−1

≤
(︄

q1

p1

)︄ q2
q1

−1

∥a∥q2
p1,q1 .

Here the first inequality follows from the first part of Lemma 3.7

a∗
n ≤

(︄
q1

p1

)︄ 1
q1

n
− 1

p1 ∥a∥p1,q1
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and we get the second inequality from the fact that

n
q2
p2

− q2
p1 ≤ 1.

4. Let p1 < q1 < ∞ and q1 ≥ q2, then from the computations in the 3. part of
the proof we have:

∥a∥p2,q2 ≤
(︄

q1

p1

)︄ 1
q1

− 1
q2

∥a∥p1,q1 ,

where q1
p1

> 1 because p1 < q1 < ∞. But 1
q1

− 1
q2

≤ 0 because q1 ≥ q2. So(︂
q1
p1

)︂ 1
q1

− 1
q2 ≤ 1 and ∥a∥p2,q2 ≤ ∥a∥p1,q1 .

5. Let q1 = q2 = ∞, then:

∥a∥p2,∞ = sup
n∈N

a∗
nn

1
p2

≤ sup
n∈N

n
1

p1 a∗
n

= ∥a∥p1,q1 ,

where the inequality follows from p1 < p2, hence n
1

p1 ≥ n
1

p2 .

Lemma 3.10. Let 1 ≤ p1 < p2 ≤ ∞ and q1 ∈ [1, ∞] and q2 ∈ [1, ∞], then the
norm of the embedding operator I : ℓp1,q1 → ℓp2,q2 is equal to:

1. ∥I∥ = 1, if q1 ≤ p1,

2. ∥I∥ = 1, if p1 < q1 < ∞ and q1 ≥ q2,

3. ∥I∥ = 1, if q1 = q2 = ∞,

4. ∥I∥ =
(︄ ∞∑︂

n=1
n

q2
p2

− q2
p1

−1
)︄1/q2

, if p1 < q1 = ∞ and q2 < ∞.

Proof. We will prove the individual cases separately:

1. Let q1 ≤ p1. We get the upper estimate for the operator norm from the first
part of Lemma 3.9. So ∥I∥ ≤ 1. Now we will show that I attains 1 on the
closed unit ball. For arbitrary ej we have that (ej)∗ = e1 and:

∥ej∥p1,q1 =
(︄ ∞∑︂

n=1
n

q1
p1

−1((ej
n)∗)q1

)︄ 1
q1

=
(︃

1
q1
p1

−11q1

)︃ 1
q1 = 1.

So ej ∈ Bℓp1,q1
. Now we need to show that also ∥I(ej)∥p2,q2 = ∥ej∥p2,q2 = 1.

a) Let q2 < ∞. Then ∥ej∥p2,q2 = 1 follows from the computations above.

b) Let q2 = ∞. Then ∥ej∥p2,q2 = sup
n∈N

((ej
n)∗)n

1
p2 = 1

18



It already follows that ∥I∥ = 1.

2. Let p1 < q1 < ∞ and q1 ≥ q2. We get the upper estimate for the operator
norm from the fourth part of Lemma 3.9. So ∥I∥ ≤ 1. We can show that
I attains 1 on the closed unit ball at an arbitrary ej. The computations are
same as in the proof of 1. So again ∥I∥ = 1.

3. Let q1 = q2 = ∞. We get the upper estimate for the operator norm from the
fifth part of Lemma 3.9. So ∥I∥ ≤ 1. We can show that I attains 1 on the
closed unit ball at an arbitrary ej. The computations are similar as in the
proof of 1.

∥ej∥p1,q1 = sup
n∈N

((ej
n)∗)n

1
p1 = 1 = ∥ej∥p2,q2

So again ∥I∥ = 1.

4. Let p1 < q1 = ∞ and q2 < ∞. Once again we get the upper estimate for the
operator norm from the second part of Lemma 3.9.

Therefore ∥I∥ ≤
(︄ ∞∑︂

n=1
n

q2
p2

− q2
p1

−1
)︄1/q2

. Now we will again show that I achieves

this upper estimate on the closed unit ball. Let us consider the sequence
a = a∗ = (1, 2− 1

p1 , 3− 1
p1 , . . . , n

− 1
p1 , . . . ), then

∥a∥p1,∞ = sup
n∈N

a∗
nn

1
p1 = sup

n∈N
n

− 1
p1 n

1
p1 = 1.

Hence a ∈ Bℓp1,∞ and we will now compute the norm of ∥I(a)∥p2,q2 = ||a||p2,q2 .

∥a∥p2,q2 =
(︄ ∞∑︂

n=1
n

q2
p2

−1(a∗
n)q2

)︄1/q2

=
(︄ ∞∑︂

n=1
n

q2
p2

−1(n− 1
p1 )q2

)︄1/q2

=
(︄ ∞∑︂

n=1
n

q2
p2

− q2
p1

−1
)︄1/q2

.

So indeed I achieves it’s upper estimate on the closed unit ball and 4. is
proven.

Lemma 3.11. Let 1 ≤ p < q < ∞ , then the norm of the embedding operator
I : ℓp,q → ℓp,∞ is:

∥I∥ =
(︄

q

p

)︄ 1
q

.

Proof. ∥I∥ ≤
(︂

q
p

)︂ 1
q from the first part of Lemma 3.8.

We want to show that there exists a sequence {an}∞
n=1 of nonzero elements, where

an ∈ ℓp,q for all n ∈ N, such that:

lim
n→∞

∥an∥p,∞

∥an∥p,q

=
(︄

q

p

)︄ 1
q1

. (3.1)
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This would already imply that ∥I∥ =
(︂

q
p

)︂ 1
q1 , since we would be able to get

arbitrarily close to our upper estimate
(︂

q
p

)︂ 1
q of the operator norm ∥I∥.

For every n ∈ N set an = (1, 1, 1, . . . , 1, 0, 0 . . . ), where an
i = 1 for i ∈

{1, 2, . . . , n} and an
i = 0 for i > n. Then for every n ∈ N:

∥an∥p,∞ = sup
i≤n

i
1
p = n

1
p ,

while

∥an∥p,q =
(︄

n∑︂
i=1

i
q
p

−1
)︄ 1

q

.

Now, from the theory of the Riemann integral, we know

lim
n→∞

∥an∥p,∞

∥an∥p,q

= lim
n→∞

n
1
p(︄

n∑︂
i=1

i
q
p

−1
)︄ 1

q

= 1(︄
lim

n→∞

n∑︂
i=1

(︃
i

n

)︃ q
p

−1 1
n

)︄ 1
q

=
(︃∫︂ 1

0
x

q
p

−1dx
)︃− 1

q

=
(︄

q

p

)︄ 1
q

.

Hence {an}∞
n=1 satisfies (3.1) and we proved ∥I∥ =

(︂
q
p

)︂ 1
q .

3.2 Maximal non-compactness of embedding
operators in Lorentz sequence spaces

We shall now present examples of embeddings between Lorentz sequence spaces
which illustrate Theorem 2.11.
Example 3.12. Let p, q ∈ [1, ∞] and min{p, q} < ∞. Then the embedding opera-
tor I : ℓp,q → c0 is maximally non-compact.

1. ℓp,q ⊂ c0 from Lemma 3.6.

2. We find the norm of operator I. Fix a = {an}∞
n=1 ∈ ℓp,q.

a) Let q = ∞. Then ∥I(a)∥ = ∥a∥∞ = supn∈N |an| ≤ supn∈N{n1/pa∗
n} =

∥a∥p,q, where the inequality results from the fact that n1/p ≥ 1 for all
n ∈ N and the Definition 2.9 of the decreasing rearrangement of a.

b) Let q < ∞. Then ∥I(a)∥ = ∥a∥∞ = supn∈N |an| ≤
(︄ ∞∑︂

n=1
(a∗

n)qn
q
p

−1
)︄ 1

q

=

∥a∥p,q, where the inequality results from the Definition 2.9 of the decreasing
rearrangement of a and because supn∈N |an| = a∗

1 = 1
q
p

−1(a∗
1)q.
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Thus ∥I∥ ≤ 1 for any p ∈ [1, ∞), q ∈ [1, ∞]. Now we will show that I achieves
1 on the closed unit ball. For an arbitrary ej we have that (ej)∗ = e1, therefore
∥ej∥p,q = ∥e1∥p,q = 1, thus ej ∈ Bℓp,q and also ∥I(ej)∥∞ = ∥ej∥∞ = 1, hence
∥I|∥ = 1.

So from the Theorem 2.11 the embedding operator I is maximally non-compact
and α(I) = ∥I∥ = 1.
Example 3.13. Let 1 ≤ p1 < p2 ≤ ∞, q1, q2 ∈ [1, ∞], min{p2, q2} < ∞ and ℓp1,q1 ,
ℓp2,q2 Lorentz sequence spaces. Then the embedding operator I : ℓp1,q1 → ℓp2,q2 is
maximally non-compact. We have

1. ℓp1,q1 ↪→ ℓp2,q2 and 0 < ∥I∥ < ∞ from Lemma 3.9,

2. ℓp1,q1 , ℓp2,q2 ⊂ c0 from Lemma 3.6.

So the prerequisites from Theorem 2.11 are satisfied, the embedding operator I is
maximally non-compact and α(I) = ∥I∥, where the values of ∥I∥ for some individ-
ual relations between p1, q1 and q2 are computed in Lemma 3.10 or Lemma 3.11.

3.3 Examples of embedding operators that are
not maximally non-compact

We will now present examples of embeddings of Lorentz sequence spaces into ℓ∞

which are not maximally non-compact. This will be shown by finding their span
σℓp,q and applying Theorem 2.14.
Example 3.14. Let p ∈ [1, ∞), q ∈ [1, ∞] and p ≤ q. Then the embedding
operator I : ℓp,q → ℓ∞, ∥I∥ = 1 is not maximally non-compact. More precisely:

1. α(I) ≤ 2−1/q < 1 when q < ∞,

2. α(I) ≤ 2−1(1 + 2−1/p) < 1 when q = ∞.

Proof. We have ℓp,q ⊂ c0 ⊂ ℓ∞ from Lemma 3.6 and ||I|| = 1 follows from the
computations in Example 3.12

1. First we will have a look at the case when q < ∞. Denote σ = 21−1/q. Then
∥I∥ ≤ σ < 2∥I∥. Assume y ∈ Bℓp,q , then y ∈ Bℓ∞ since ∥I∥ = 1, hence
|yj| ≤ 1 ≤ σ. We claim that

sup y − inf y ≤ σ. (3.2)

Indeed, given ε > 0, we find from the definition of supremum and infimum
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s, i ∈ N such that ys > sup y − ε and yi < inf y + ε. We get

1 ≥ ∥y∥p,q

=
(︄ ∞∑︂

n=1
(y∗

n)qn
q
p

−1
)︄ 1

q

≥
(︄ ∞∑︂

n=1
(y∗

n)q

)︄ 1
q

=
(︄ ∞∑︂

n=1
(yn)q

)︄ 1
q

≥ (|ys|q + |yi|q)1/q

≥ 21/q−1(|ys| + |yi|)

>
1
σ

(sup y − inf y − 2ε),

where the second inequality follows from our prerequisite p ≤ q thus n
q
p

−1 ≥ 1
and the fourth follows from the binomial expansion and the fact that

0 ≤ 21/q−1 ≤ 1.

Now when sending ε → 0+ we get our claim. Therefore

σℓp,q ≤ σ < 2∥I∥

and all the prerequisites of Theorem 2.14 are satisfied, so I is not maximally
non-compact and α(I) ≤ σ/2 < 1 = ∥I∥.

2. Now let q = ∞. We will proceed with the proof similarly to the way we did
in the first part. The only difference is that we set σ = 1 + 2−1/p. Assume
y ∈ Bℓp,∞ . We again need to verify that the inequality

sup y − inf y ≤ σ. (3.3)

Let y ∈ Bℓp,∞ , then

||y||p,∞ = sup
n∈N

{n1/py∗
n} ≤ 1, hence sup

n∈N
{yn} ≤ 1. (3.4)

Inequality (3.4) implies that the decreasing rearrangement y∗ of y must satisfy
y∗

n ≤ n−1/p for all n ∈ N. So every sequence from Bℓp,∞ has its decreasing
rearrangement bounded from above by the decreasing sequence {n−1/p}∞

n=1
and from below by {−n−1/p}∞

n=1. We shall now distinguish two cases.

a) If sup y ≤ 2−1/p, then from the observation above inf y ≥ −1 and inequality
(3.3) holds.

b) If sup y > 2−1/p, then from the observations above y∗
n is bounded by the

decreasing sequence n−1/p, so there can be only one index j ∈ N such that
yj > 2−1/p, therefore y∗

1 = yj and we get that for all i ̸= j : |yi| ≤ 2−1/p,
which implies that inf y ≥ −2−1/p. Thus sup y − inf y ≤ 1 − (−2−1/p) = σ
holds for all y ∈ Bℓp,q , and inequality (3.3) follows.

We computed that σℓp,q = σ = 1+2−1/p < 2∥I∥. Now again from Theorem 2.14
we get that I is not maximally non-compact and α(I) ≤ ϱ = 2−1(1+2−1/p) < 1.
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