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6 Introduction

Introduction

One may encounter Hausdorff and Capacitary dimensions in many branches of mathe-
matics. The most prevalent ones are certainly Fractal Geometry and Geometric Measure
Theory. Hausdorff dimension is capable of determining the dimension of objects with non-
integer dimension, while the Capacitary dimension quantifies the energy distribution in
those sets. This thesis aims to prove that the Hausdorff dimension is equal to Capacitary
dimension.

To this end I have made a detailed introduction to Hausdorff measure and its most
important properties. To further not only the goals of this thesis, but also the reader’s
understanding of the Hausdorff measure, I have shown how Hausdorff measure relates to
the Lebesgue measure. These measures are, in fact, equivalent on Rn. This is a paramount
result with far-reaching applications in Mathematical Analysis. An important tool to
show this equivalence is the Steiner Symmetrization Process alongside the Isodiametric
Inequality. Both of these concepts can be found in this thesis including proofs. While this
introduction might seem superfluous at first, it provides great insight into the intricate
theory of Hausdorff measure, and consequently, Hausdorff dimension.

Besides defining both the Hausdorff and Capacitary dimensions and mentioning some
of their fundamental properties, I needed a tool to prove that they are indeed equal. To
prove this, one must prove both inequalities, where one is significantly more demanding
than the other. A key ingredient to proving the more difficult inequality is a so called
Frostman’s Lemma, which was proved in this thesis. Essential theory has been either
built up or referenced to prove this Lemma.

The main goal of this thesis was to provide a detailed and understandable summary of
Hausdorff measure and its properties, the equivalence of Hausdorff and Lebesgue measure,
and the equality of Hausdorff and Capacitary dimension. While these results are well-
known, this thesis provides a direct approach to this equality and pays no mind to other
aspects of Fractal Geometry or Geometric Measure Theory. It also delves deep into the
Hausdorff measure and its properties to fully grasp its intricacy.

This thesis mainly draws from Pertti Mattila’s book - Geometry of Sets and Measures
in Euclidean Spaces: Fractals and Rectifiability [3]. To cover the Hausdorff measure I have
used the notes of Professor Rataj from Univerzita Karlova in Prag [4]. I have also used the
book Measure Theory and Fine Properties of Functions [1] for Steiner Symmetrization,
Isodiametric Inequality and the equivalence of Lebesgue measure and Hausdorff measure
on Rn.



7 Notation

Notation

∅ Empty set
N Natural numbers
Rn Real space of dimension n

P(X) Power set of set X

Bn = B(Rn) σ-algebra of Borel sets
diam(A) Diameter of set A

| · | Euclidean norm in Rn

dist(A,B) Distance between sets A and B

µ(A) Measure of set A

µ∗(A) Outer measure of set A

Hd(A) Hausdorff measure of dimension d of set A

Hd
δ(A) δ-outer Hausdorff measure of dimension d of set A

λn(A) Lebesgue measure of dimension n of set A

La
b Line through point b in the direction of point a

Pa Plane through the origin perpendicular to the point a

Sa(A) Steiner Symmetrization of set A with respect to the plane Pa

⟨x, y⟩ Scalar product of x and y

supp(µ) Support of measure µ

X∗ The dual space of X
Cc(X) The space of compactly supported complex-valued continuous functions

w∗
−→ weak* convergence

dimH A Hausdorff dimension of set A

dimcA Capacitary dimension of set A
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1 Hausdorff Measure

This chapter draws from Measure Theory by Evans and Gariepy [1], from lecture notes
provided by Professor Rataj [4] and from lecture notes provided by Professor Tores from
Purdue University in Indiana [7]. Lecture notes provided by Dr. Monica Torres have been
especially helpful to prove Theorem 1.8.

We first motivate the definition of Hausdorff measure. Intuitively, we need to measure
objects in a metric space which have a ‘lower’ dimension than the space itself. To this
end, we shall use Hausdorff measure. We demonstrate the need for this measure in the
following example:

Figure 1: Sierpinski triangle

This is a so-called Sierpinski triangle. What is its dimension? It is possible to show
that the Hausdorff dimension1 is exactly log 3

log 2
. This result is far from trivial and it is an

important result in Fractal Geometry. We start with some elementary definitions.

1.1 Elementary Definitions and Properties

Definition 1.1 (Outer measure). Let X be a nonempty set. The function µ∗ : P(X) →
[0,∞] is an outer measure on X if the following holds

1. µ∗(∅) = 0.

2. If A ⊂ B, then µ∗(A) ≤ µ∗(B). In other words, the outer measure is monotone.

3. If An ⊂ X, n ∈ N, then µ∗ (
⋃︁∞

n=1 An) ≤
∑︁∞

n=1 µ
∗(An). We say that the outer

measure possesses countable-subadditivity property.
1We will define the so-called Hausdorff dimension in the next section.
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Definition 1.2 (Metric outer measure). Let (X, ϱ) be a metric space. The outer measure
µ∗ is metric if and only if

µ∗(A ∪B) = µ∗(A) + µ∗(B),

for every A,B ⊂ X with dist(A,B) > 0.

Definition 1.3 (Hausdorff measure). Let (X, ϱ) be a metric space and δ > 0. We define
the δ-outer Hausdorff measure of dimension d by

Hd
δ(A) = inf

{︄
∞∑︂
i=1

(diamUi)
d : A ⊂

∞⋃︂
i=1

Ui, diamUi < δ

}︄
.

We define the Hausdorff measure of dimension d by

Hd(A) = lim
δ→0+

Hd
δ(A).

Observe that as δ → 0+, the infinimum from the definition above is taken over a
smaller and smaller class, meaning the right hand-side increases. Since the limit of a
monotonic function always exists, the left hand-side is well-defined, albeit it may attain
infinite values.

Remark. It is clear from the definition that we may assume later on that the sets Ui are
closed, thus taking a so-called closed covering of set A.

We will now prove that both these measures are outer measures on X and, moreover,
that Hd is metric.

Theorem 1.4. Both Hd
δ and Hd are outer measures on X.

Proof. One can easily see that Hd
δ(∅) = 0 = Hd(∅). It follows directly from definition

that the Hausdorff measure is monotone.
Now to prove the countable subadditivity. Let Ai ⊂ X for all i ∈ N. Assume Hd(Ai)

is finite for all i ∈ N. Were it not so, the inequality from the definition would follow
trivially. Then Hd

δ(Ai) is also finite for all i ∈ N and for all δ > 0 as follows from the
definition. We wish to show

Hd
δ

(︄
∞⋃︂
i=1

Ai

)︄
≤

∞∑︂
i=1

Hd
δ(Ai) for all δ > 0.

Proving this also shows that Hd is subadditive as we can interchange the sum and the
limit thanks to the fact that the Hausdorff measure is non-negative. In other words, it
holds that

lim
δ→0+

∞∑︂
i=1

Hd
δ(Ai) =

∞∑︂
i=1

lim
δ→0+

Hd
δ(Ai) =

∞∑︂
i=1

Hd(Ai).

So in total we end up with

lim
δ→0+

Hd
δ

(︄
∞⋃︂
i=1

Ai

)︄
= Hd

(︄
∞⋃︂
i=1

Ai

)︄
≤

∞∑︂
i=1

Hd(Ai)
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thanks to the discussion above.
Let ε > 0. Let {U i

j}∞j=1 be a class such that Ai ⊂
⋃︁∞

j=1 U
i
j and

∞∑︂
j=1

(diamU i
j)

d < Hd
δ(Ai) +

ε

2i
.

Then
⋃︁∞

i=1Ai ⊂
⋃︁∞

i=1

⋃︁∞
j=1 U

i
j and therefore

Hd
δ

(︄
∞⋃︂
i=1

Ai

)︄
≤

∞∑︂
i=1

∞∑︂
j=1

(diamU i
j)

d <
∞∑︂
i=1

Hd
δ(Ai) + ε.

Sending ε → 0+ we get the desired result which concludes the proof.

Theorem 1.5. The outer measure Hd is metric.

Proof. We only wish to show that

Hd(A ∪B) ≥ Hd(A) +Hd(B)

as the other inequality follows trivially from the fact that Hd is an outer measure. Once
again we assume Hd(A ∪ B) is finite, otherwise the inequality is trivial. Let ε > 0 and
0 < δ < dist(A,B). Let U = {Uj}∞j=1 be a cover of A ∪B with diamUi < δ and

∞∑︂
i=1

(diamUi)
d ≤ Hd(A ∪B) + ε.

Since dist(A,B) > δ > diamUi, then every set Ui may intersect only one set A or B. In
such a way we get disjoint covers of A and B

V = {Ui ∈ U : A ∩ Ui ̸= ∅},
V ′ = {Ui ∈ U : B ∩ Ui ̸= ∅}.

Thus

Hd
δ(A) +Hd

δ(B) ≤
∑︂
Ui∈V

(diamUi)
d +

∑︂
Ui∈V ′

(diamUi)
d ≤

∞∑︂
i=1

(diamUi)
d < Hd

δ(A ∪B) + ε.

Taking ε → 0+ and then δ → 0+ yields the result.

Theorem 1.6. The measure Hd is a Borel measure in the following sense: for all A ⊂ X
there exists B ∈ Bn such that A ⊂ B and Hd(B) = Hd(A).

Proof. Let A ⊂ Rn. If Hd(A) = ∞ we can simply put B = X. Let us assume that Hd(A)
is finite. Let {Uk

i }∞i=1 be a closed covering of A, where diamUk
i ≤ 1

k
, k ∈ N is fixed, and

∞∑︂
i=1

(diamUk
i )

d ≤ Hd
1
k
(A) +

1

k
.
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Set Bk =
⋃︁∞

i=1 U
k
i . This is a union of closed sets and is therefore a Borel set. Let

B =
⋂︁∞

k=1Bk. Then B is a Borel set and A ⊂ B. Thus Hd(A) ≤ Hd(B) is trivial. Now
B ⊂

⋃︁∞
i=1 U

k
i and therefore we can write

Hd
1
k
(B) ≤

∞∑︂
i=1

(diamUk
i )

d ≤ Hd
1
k
(A) +

1

k
.

Letting k → ∞ gives Hd(B) ≤ Hd(A) and concludes the proof.

It is also worth noting that the Hausdorff measure is invariant under rotation and
translation which can easily be seen from the fact that the diameter doesn’t change under
rotation or translation.

In the next subsection we discuss the equivalence of Lebesgue and Hausdorff measures.

1.2 Relation between Lebesgue and Hausdorff measures

Definition 1.7. We define the normalized Hausdorff measure as

Hd
N(A) = αdHd(A) for all A ⊂ Rn,

where αd =
π

d
2

2dΓ( d
2
+1)

with Γ denoting the Gamma function.

This is the exact measure for which we get Hn
N = λn. It is worth noting that αn is the

volume of a unit sphere in Rn, n ∈ N. So, we get an interesting result in one dimension:
H1 = λ.

Theorem 1.8 (Hausdorff and Lebesgue measure relation). It holds that Hn
N = λn on

Lebesgue measurable subsets of Rn, n ∈ N.

At first glance, it is far from clear on how one should proceed with the proof. In fact,
we need a bit more theory.

Definition 1.9 (Vitali Covering). We say that covering of closed balls denoted F is a
Vitali covering of set A ⊂ Rn if the following holds

For all x ∈ A and for all ε > 0 there exists a ball B ∈ F such that r(B) < ε and x ∈ B,

where r(B) denotes the radius of ball B.

Lemma 1.10. Let A ⊂ Rn and Hd
∞(A) = 0. Then Hd(A) = 0.

Proof. We know Hd
∞(A) = 0 and therefore for all ε > 0 there exists a covering {Ui}∞i=1

such that
∞∑︂
i=1

(diamUi)
d ≤ ε.

It follows that diamUi ≤ ε
1
d . Let δ̃ = ε

1
d . Thus Hd

δ̃
(A) ≤ ε and ε → 0+ and then δ̃ → 0+

gives our conclusion.
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Lemma 1.11 (Isodiametric inequality). Let A ⊂ Rn. The following inequality holds

λn(A) ≤ αn(diamA)n.

Theorem 1.12 (Vitali Covering Lemma). Let A ⊂ Rn and G be a Vitali covering of A.
Then there exists a disjoint Vitali covering F ⊂ G such that

λn

(︄
A \

⋃︂
B∈F

B

)︄
= 0.

We shall prove these later. Now our goal is to prove the Theorem 1.8.

Proof of Theorem 1.8. Let us first prove λn(A) ≤ Hn
N(A). Let δ > 0. We find a covering

{Ui}∞i=1 of A satisfying diamUi < δ such that we obtain

λn(A) ≤ λn

(︄
∞⋃︂
i=1

Ui

)︄
≤

∞∑︂
i=1

λn(Ui) ≤
∞∑︂
i=1

αn(diamA)n ≤ αnHn
δ (A) + δ,

where the third inequality follows from isodiametric inequality. Sending δ → 0+ gives the
desired result.

Now we prove the converse inequality Hn
N(A) ≤ λn(A). Let B be an open set, A ⊂ B

and
λn(B) ≤ λn(A) + ε.

We find a Vitali covering of set B by closed balls as in Definiton 1.9 and by Theorem 1.12
there exists a disjoint closed covering {Bi}∞i=1 of set B with diamBi < δ such that

λn

(︄
B \

∞⋃︂
i=1

Bi

)︄
= 0.

It holds

αnHn
δ

(︄
∞⋃︂
i=1

Bi

)︄
≤

∞∑︂
i=1

αn(diamBi)
n =

∞∑︂
i=1

λn(Bi) = λn

(︄
∞⋃︂
i=1

Bi

)︄
= λn(B) ≤ λn(A) + ε.

The first equality holds thanks to the fact that αn is the volume of a unit sphere in Rn

and Bi are closed balls in Rn. The balls Bi are disjoint and so the second equality is also
true. The third equality follows from

0 = λn

(︄
B \

∞⋃︂
i=1

Bi

)︄
= λn(B)− λn

(︄
∞⋃︂
i=1

Bi

)︄
.

It remains to show that Hn
δ (B \

⋃︁∞
i=1 Bi) = 0. Let {Ci}∞i=1 be a covering by open

pairwise disjoint dyadic cubes of some open2 set C. It is obvious that diamCi =
√
nl(Ci),

where l(Ci) denotes the side length of cube Ci. From this we can easily derive

αnHn
∞(C) ≤ αn

∞∑︂
i=1

(diamCi)
n ≤ αn

√
n
n

∞∑︂
i=1

(l(Ci))
n.

2Open set can be covered with pairwise disjoint dyadic cubes so that the measure of the set and the
measure of the union of the cubes is equal.



13 1.2 Relation between Lebesgue and Hausdorff measures

This gives us
αnHn

∞(C) ≤ αn

√
n
n
λn(C).

Observe that λn(C) is truly equal to
∑︁∞

i=1(l(Ci))
n. On the right we have the volume of

the cubes which cover the set C and thus we obtain its Lebesgue measure. Now for all
ε > 0 we find an open set

⋃︁∞
i=1 Bi so that B\

⋃︁∞
i=1 Bi ⊂ G and λn (G \ (B \

⋃︁∞
i=1 Bi)) < ε.

We use this to determine the following

αnHn
∞

(︄
B \

∞⋃︂
i=1

Bi

)︄
≤ αnHn

∞(G) ≤ αn
n
√
nλn(G) ≤ αn

√
n
n
λn

(︄
B \

∞⋃︂
i=1

Bi

)︄
+ αn

√
n
n
ε

= 0 + αn

√
n
n
ε.

Sending ε to 0+ yields the desired conclusion. Note that

αnHn
∞

(︄
B \

∞⋃︂
i=1

Bi

)︄
= 0

implies

αnHn

(︄
B \

∞⋃︂
i=1

Bi

)︄
= 0

as stated in Lemma 1.10 and therefore we obtain

αnHn
δ

(︄
B \

∞⋃︂
i=1

Bi

)︄
= 0.

In total we have

αnHn
δ (A) ≤ αnHn

δ

(︄
A ∩

∞⋃︂
i=1

Bi

)︄
+ αnHn

δ

(︄
A \

∞⋃︂
i=1

Bi

)︄

≤ αnHn
δ

(︄
∞⋃︂
i=1

Bi

)︄
+ αnHn

δ

(︄
B \

∞⋃︂
i=1

Bi

)︄
≤ λn(A) + ε.

Sending ε → 0+ and then δ → 0+ yields the desired inequality.

1.2.1 Proof of the Isodiametric Inequality

To prove this inequality, we define the so-called Steiner symmetrization which transforms
a compact set A ⊂ Rn into a symmetric set A∗. We say a set is symmetric if A = −A,
i.e. if a ∈ A, then −a ∈ A for all a ∈ A. We prove that a certain symmetric set which we
shall denote Sa(A) has the same Lebesgue measure as A but diamSa(A) ≤ diamA. This
leads to the desired inequality.

Let a, b ∈ Rn and |a| = 1. We denote

La
b = {b+ ta : t ∈ R},

Pa = {x ∈ Rn : ⟨a, x⟩ = 0}.

The first set describes a line through point b in the direction of a. Set Pa denotes a plane
through the origin perpendicular to a.
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Definition 1.13 (Steiner Symmetrization). Let a ∈ Rn, |a| = 1 and A ⊂ Rn. Steiner
symmetrization of A with respect to the plane Pa is defined in the following way

Sa(A) =
⋃︂
b∈Pa

A∩Lb
a ̸=∅

{︃
b+ ta : |t| ≤ 1

2
λ(A ∩ La

b )

}︃
.

Informally, we replace the set La
b ∩ A with line Sa which has the same length and is

symmetric with respect to Pa. One can easily observe by the use of Fubini theorem that
both sets have the same Lebesgue measures. We can see how this works in the following
figure:

Steiner Symmeterization 
Process

P

Figure 2: Steiner Symmetrization

Lemma 1.14. Let A ⊂ Rn. The following holds

1. diamSa(A) ≤ diamA.

2. If A is measurable, then λn(Sa(A)) = λn(A).

Proof. Recall that the Lebesgue measure is rotation invariant. Now we begin with the
proof:

1. Assume diamA < ∞ and that A is closed. If it was not so, we replace A with A.
Let ε > 0 and choose x, y ∈ Sa(A) so that

diamSa(A) ≤ |x− y|+ ε.
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Set b = x − ⟨a, x⟩a and c = y − ⟨a, y⟩a. Using |a| = 1 we get ⟨x − ⟨a, x⟩a, a⟩ = 0
and so b ∈ Pa. Showing c ∈ Pa is analogous. We define

r = inf{t ∈ R : b+ ta ∈ A},
s = sup{t ∈ R : b+ ta ∈ A},
u = inf{t ∈ R : c+ ta ∈ A},
v = sup{t ∈ R : c+ ta ∈ A}.

Without any loss of generality we may assume that v − r ≥ s − u, otherwise we
would exchange the role of x and y. We may write

v − r ≥ 1

2
(v − r) +

1

2
(s− u) =

1

2
(s− r) +

1

2
(v − u) ≥ 1

2
λ(A ∩ La

b ) +
1

2
λ(A ∩ La

c).

The last inequality follows from the fact that on the right hand-side we measure
line segments, whereas on the left hand-side we have the length (measure) of a line
connecting the first point of the first line segment and the last point of the last line
segment. The equality happens if and only if it is a line segment. Since x, y ∈ Sa(A)
and we may write x = b + ta, where b ∈ Pa, |a| = 1 and |t| ≤ 1

2
λ(A ∩ La

b ), it is
obvious that

|⟨a, x⟩| ≤ 1

2
λ(A ∩ La

b )

and
|⟨a, y⟩| ≤ 1

2
λ(A ∩ La

c).

It follows
v − r ≥ |⟨a, x⟩|+ |⟨a, y⟩| ≥ |⟨a, x⟩ − ⟨a, y⟩|.

Thus we obtain

(diamSa(A)− ε)2 ≤ |x− y|2 = |b+ ⟨a, x⟩a− (c+ ⟨a, y⟩a)|2

≤ |b− c|2 + |⟨a, x⟩ − ⟨a, y⟩|2 ≤ |b− c|2 + (v − r)2

= |(b+ ra)− (c+ va)|2 ≤ (diamA)2.

Since A is closed we have b + ra ∈ A and c + va ∈ A. Sending ε → 0+ yields the
result.

2. Without any loss of generality let a = (0, . . . , 0, 1)T . Then Pa = Rn−1. We define
the map

f : Rn−1 → R, f(b) = λ(A ∩ La
b ).

Note that b ∈ Pa. This map is measurable (proof can be found in [2]) and using
Fubini’s theorem we obtain

λn(A) =

∫︂
Rn−1

f(b) db.

Therefore

Sa(A) =

{︃
(b, y) : − f(b)

2
≤ y ≤ f(b)

2

}︃
\ {(b, 0) : A ∩ La

b = ∅}
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is measurable since the area under a graph of a measurable function is measurable.
Therefore

λn(Sa(A)) =

∫︂
Rn−1

∫︂ f(b)
2

− f(b)
2

1 dy db =

∫︂
Rn−1

f(b) db = λn(A).

This concludes the proof.

Now we can finally prove the isodiametric inequality.

Proof of Lemma 1.11. Let us assume that diamA < ∞ and define the following sequence:
A1 = Se1(A), A2 = Se2(A1), . . . , An = Sen(An−1), where {e1, . . . , en} is the canonical basis
of Rn. We divide the proof into smaller steps:

1. We firstly show that A∗ = An is symmetric with respect to the origin. It is enough to
show that it is symmetric with respect to Pe1 , . . . , Pen . Indeed, let (a1, . . . , an) ∈ A∗

and let us assume that A∗ is symmetric with respect to Pe1 , . . . , Pen . Since A∗

is symmetric with respect to Pe1 , we may write (−a1, . . . , an) ∈ A∗. This set is
also symmetric with respect to Pe2 , so (−a1,−a2, . . . , an) ∈ A∗. We proceed in
the same manner by induction. A∗ is symmetric with respect to Pen and thus
(−a1,−a2, . . . ,−an) ∈ A∗. This is the same as saying that A∗ is symmetric with
respect to the origin.

We claim that Ak is symmetric with respect to Pej for j ∈ {1, . . . , k}. We prove
this statement by induction. We defined A1 to be symmetric with respect to Pe1 .
Let 1 ≤ k < n and assume Ak is symmetric with respect to Pe1 , . . . , Pek . Again, by
definition, Ak+1 = Sek+1

(Ak) is symmetric with respect to Pek+1
. Let 1 ≤ j ≤ k and

Sj is Steiner Symmetrization with respect to Pej . Let b ∈ Pek+1
. Set Ak is already

symmetric since 1 ≤ j ≤ k and therefore Sj(Ak) = Ak by induction hypothesis. The
following holds

λ
(︁
Ak ∩ L

ek+1

b

)︁
= λ

(︂
Ak ∩ L

ek+1

Sj(b)

)︂
.

It follows that

{t ∈ R : b+ tek+1 ∈ Ak+1} = {t ∈ R : Sj(b) + tek+1 ∈ Ak+1}

and we get Sj(Ak+1) = Ak+1. That means Ak+1 is symmetric with respect to Pej .
This gives us that A∗ is symmetric with respect to Pe1 , . . . , Pen .

2. We wish to show
λn(A∗) ≤ αn(diamA∗)n.

Let x ∈ A∗. Set A∗ is symmetric and so −x ∈ A∗ as follows from the previous part
of the proof and 2|x| ≤ diamA∗. Set A∗ is thus contained in a ball with radius
diamA∗

2
and center in the origin. It follows that

λn(A∗) ≤ λn

(︃
B

(︃
0,

diamA∗

2

)︃)︃
= αn(diamA∗)n.
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3. The final step is to get the isodiametric inequality itself. A is closed and bounded
and therefore compact in Rn. That means it is also measurable. Using Lemma 1.14
we get

λn(A) ≤ λn
(︁
A
)︁
= λn

(︂(︁
A
)︁∗)︂ ≤ αn

(︂
diam

(︁
A
)︁∗)︂n ≤ αn

(︁
diamA

)︁n
= αn(diamA)n.

1.2.2 Proof of the Vitali Covering Lemma

Before we begin with the proof itself, we show an additional lemma.

Lemma 1.15. Let A ⊂ Rn. Let F be a covering by closed balls of set A with supB∈F r(B) <
∞. There exists a disjoint covering of A by closed balls F ′ such that for all B ∈ F there
exists a ball C ∈ F ′, B ∩ C ̸= ∅, and B ⊂ 5C, where 5C denotes a ball with five times
the radius of ball C.

Proof. Let R = supB∈F r(B) and for all k ∈ N we define

Fk =

{︃
B ∈ F : r(B) ∈

(︃
R

2k
,

R

2k−1

]︃}︃
.

Now we inductively define a sequence of systems of closed balls Bk ⊂ Fk, k ∈ N, in the
following way: B1 is an arbitrary maximum disjoint subsystem of F1. For B1, . . . ,Bk−1

defined Bk is an arbitrary maximum disjoint subsystem of

{B ∈ Fk : B ∩ C = ∅ for all C ∈ B1 ∪ · · · ∪ Bk−1}.

Let F =
⋃︁∞

k=1 Bk. This system of balls is pairwise disjoint and contains closed balls. It
is also a subsystem of F . Let B ∈ F . Then there exists k ∈ N such that B ∈ Fk and
therefore there also exists C ∈ B1 ∪ · · · ∪ Bk with B ∩ C ̸= ∅. We wish to show that
B ⊂ 5C. It is fairly obvious that r(C) > R

2k
. Thus r(B) < 2r(C). Let B = B(x1, r1) and

C = C(x2, r2). Let y ∈ B. It holds ∥x1 − x2∥ ≤ r1 + r2 since the balls are not disjoint. It
follows

∥y − x2∥ ≤ ∥y − x1∥+ ∥x1 − x2∥ ≤ r1 + r1 + r2 ≤ 5r2,

and therefore y ∈ 5C. This concludes the proof.

Now we can prove the Vitali covering lemma.

Proof of Theorem 1.12. We may assume that our covering consists of balls with radius
smaller than or equal to one since removing balls (of "big" radius) from Vitali covering
does not change the fact that we still have a Vitali covering. Call this covering G. By
the previous lemma there exists a disjoint closed covering F ⊂ G such that for all B ∈ G
there exists C ∈ F , B ∩ C ̸= ∅ and B ⊂ 5C. We wish to show

λ

(︄(︄
A \

⋃︂
B∈F

B

)︄
∩B(0, r)

)︄
= 0 for all r > 0.
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Let ε > 0 and we take a subcovering F ′ ⊂ F such that all balls in F ′ intersect B(0, r).
It is obvious that all balls of F ′ are contained in B(0, r + 2) since they intersect B(0, r)
and their radius is smaller than or equal to one. Therefore∑︂

B(x,r′)∈F ′

λ(B(x, r′)) ≤ λ(B(0, r + 2)) < ∞. (1)

Fix δ > 0 such that ∑︂
B(x,r′)∈F ′

r′<δ

λ(B(x, r′)) <
ε

5n
.

There are balls with r′ ≥ δ and there are only finitely many of them by (1). We set
G = {B(x, r′) ∈ F ′ : r′ ≥ δ}. Then G is a closed set as a finite union of closed sets. We
have a Vitali cover and so for all x ∈

(︁
A \

⋃︁
B∈F B

)︁
∩ B(0, r) there exists a ball Bx ∈ G

such that x ∈ Bx, Bx ⊂ B(0, r) and Bx ∩ G = ∅. It is obvious that Bx intersects some
ball Cx ∈ F ′ since Bx ⊂ B(0, r). Also note that the radius of Cx is smaller than δ since
Bx ∩G = ∅. Thus Bx ⊂ 5Cx and we may write

λ

(︄(︄
A \

⋃︂
B∈F

B

)︄
∩B(0, r)

)︄
≤

∑︂
x∈(A\

⋃︁
B∈F B)∩B(0,r)

λ(Bx) ≤
∑︂

x∈(A\
⋃︁

B∈F B)∩B(0,r)

λ(5Cx)

≤ 5n
∑︂

B(x,r′)∈F ′

r′<δ

λ(B(x, r′)) < ε.

Therefore
(︁
A \

⋃︁
B∈F B

)︁
∩B(0, r) is a null set and the proof is finished.



19

2 Hausdorff Dimension

In this chapter we define the Hausdorff dimension. We draw from [1] and [3].

Theorem 2.1. Let 0 ≤ d < s and A ⊂ Rn. The following holds:

Hd(A) < ∞ ⇒ Hs(A) = 0,

Hs(A) > 0 ⇒ Hd(A) = ∞.

Proof. Let Hd(A) < ∞ and δ > 0. We find a cover {Ui}∞i=1 of A such that diamUi < δ
and

∞∑︂
i=1

(diamUi)
d ≤ Hd

δ(A) + 1.

We know that Hd
δ(A) ≤ Hd(A). Therefore

∞∑︂
i=1

(diamUi)
d ≤ Hd(A) + 1.

Let s > d. It follows

Hs
δ(A) ≤

∞∑︂
i=1

(diamUi)
s =

∞∑︂
i=1

(diamUi)
d(diamUi)

d−s ≤ δd−s(Hd(A) + 1).

Letting δ → 0+ yields Hs(A) = 0.

Definition 2.2 (Hausdorff dimension). Let A ⊂ Rn. We define the Hausdorff dimension
as

dimH A = inf{d ≥ 0: Hd(A) = 0}.

We mention two important properties: Let A ⊂ B ⊂ Rn and Ai ⊂ Rn, i ∈ N, then

dimH A ≤ dimH B,

dimH

∞⋃︂
i=1

Ai = sup
i∈N

dimH Ai.

The first property follows from monotonicity of Hausdorff measure. If Hd(B) = 0,
then Hd(A) = 0 and so inf{t : Hd(A) = 0} ≤ inf{t : Hd(B) = 0}. The latter property
follows from monotonicity and subadditivity: Hd(Ai) = 0 for all i ∈ N if and only if
Hd (

⋃︁∞
i=1 Ai) = 0.
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3 Capacitary Dimension

This chapter relies almost entirely on Mattila’s book [3], especially when it comes to
proving the Frostman’s Lemma (Theorem 3.13). Proofs have been completed or expanded
upon.

Before we are able to define capacitary dimension we need to understand what a
Radon measure is and what it means for a measure to have a compact support. With this
knowledge in hand we are able to define the capacitary dimension and lay a foundation
for Frostman’s lemma which is key to proving the equality of capacitary and Hausdorff
dimensions.

We start with some elementary definitions. We are working in Rn, however a Radon
measure, support of a measure and terms derived from this may be defined on a Hausdorff
topological space.

3.1 Essential definitions and properties

In the following definitions we assume µ to be a measure on Bn := B(Rn).

Definition 3.1 (Inner regular measure). We say that the measure µ is inner regular or
tight if, for all U open it holds that

µ(U) = sup
K⊂U

K is compact

µ(K).

Definition 3.2 (Locally finite measure). The measure µ is said to be locally finite if for
every point x ∈ Rn there exists r > 0 such that µ(B(x, r)) is finite.

Definition 3.3 (Radon measure). The measure µ is said to be a Radon measure if it is
inner regular and locally finite.

Definition 3.4 (Support of a measure). The support of measure µ is the smallest closed
set F ⊂ Rn such that µ(Rn \ F ) = 0. We denote the support of measure µ as supp(µ).

Let us assume that µ is a Radon measure and denote

Is(µ) =

∫︂
Rn

∫︂
Rn

1

|x− y|s
dµ(x) dµ(y).

We shall soon see that this is key for the definition of capacitary dimension. Before
that, we introduce two lemmas and Banach-Alaoglu theorem. Both of these lemmas will
be proved. One is essential to prove Proposition 3.9 and the other to prove Frostman’s
lemma (Theorem 3.13). The Banach-Alaoglu theorem, which we need to prove Frostman’s
lemma, will not be proved as it is a well-known result from functional analysis and proving
it would be above the scope of this thesis.
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Lemma 3.5. Let µ be a Borel measure and f a non-negative Borel function on a separable
metric space X. Then ∫︂

X

f dµ =

∫︂ ∞

0

µ({x ∈ X : f(x) ≥ s}) ds.

Proof. Let A = {(x, s) ∈ X × [0,∞) : f(x) ≥ s}. By using Fubini’s theorem we immedi-
ately see that∫︂ ∞

0

µ({x ∈ X : f(x) ≥ s}) ds =
∫︂ ∞

0

µ({x ∈ X : (x, s) ∈ A}) ds

=

∫︂ ∞

0

∫︂
X

χA(x, s) dµ(x) ds

=

∫︂
X

λ({s ∈ [0,∞) : (x, s) ∈ A}) dµ(x)

=

∫︂
X

λ([0, f(x)]) dµ(x) =

∫︂
X

f(x) dµ(x).

Thus we obtain the desired result.

Using this lemma we may obtain∫︂
Rn

1

|x− y|s
dµ(y) =

∫︂ ∞

0

µ

(︃{︃
y :

1

|x− y|s
≥ t

}︃)︃
dt =

∫︂ ∞

0

µ

(︃
B

(︃
x,

1

t
1
s

)︃)︃
dt

= s

∫︂ ∞

0

r−s−1µ(B(x, r)) dr. (2)

Lemma 3.6. Let µ1, µ2, . . . be Radon measures on a locally compact metric space. If
µi

w∗
−→ µ and G ⊂ X is open, then

µ(G) ≤ lim inf
i→∞

µi(G).

Proof. Let µi
w∗
−→ µ, then for any f ∈ Cc(X) it holds

lim
i→∞

∫︂
X

f dµi =

∫︂
X

f dµ

Here we use a variation of the Riesz representation theorem from functional analysis. We
formulate the theorem for clarity:

Let X be a locally compact Hausdorff space and let φ be a positive linear functional on
Cc(X). Then there exists a unique Radon measure µ on X such that φ(f) =

∫︁
X
f dµ for

all f ∈ Cc(X).
Proof can be found in Danny Espejo’s paper [6].
Now let

Gk =

{︃
x ∈ X : dist(x,X \G) ≤ 1

k

}︃
for some ε > 0 and set G =

⋃︁∞
k=1Gk. Then µ(G) = limk→∞ µ(Gk) as G1 ⊂ G2 ⊂ . . .

and G and Gk are open (thus measurable) for all k ∈ N. Let fk be a continuous function
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with compact support such that 0 ≤ fk ≤ 1 on X, fk = 1 on Gk and fk = 0 outside G.
Existence of fk follows directly from Urysohn’s lemma. This lemma can indeed be used
as every metric space is normal. We obtain

µ(Gk) ≤
∫︂
X

fk dµ = lim
i→∞

∫︂
X

fk dµi ≤ lim inf
i→∞

µi(G). (3)

The last inequality holds as
∫︁
X
fk dµi ≤ µi(G) and we apply limit inferior to both sides.

Using k → ∞ in (3) yields the desired result.

Theorem 3.7 (Banach-Alaoglu). Let X be a normed separable space. Then every bounded
sequence in the dual space X∗ has a weak* convergent subsequence.

Let us just point out that this is not the standard formulation of the Banach-Alaoglu
theorem. It is however a direct corollary. The proof of the standard version can be found
in [5].

3.2 Capacitary dimension and Frostman’s lemma

Definition 3.8. Let A ⊂ Rn. The capacitary dimension of A is defined in the following
way

dimc A = sup{d : There exists µ ∈ M(A) such that µ(B(x, r)) ≤ rd, x ∈ Rn, d > 0}
= sup{s : There exists µ ∈ M(A) such that Is(µ) < ∞},

where

M(A) = {µ : µ is a Radon measure with compact support,
supp(µ) ⊂ A, 0 < µ(Rn) < ∞}.

The following proposition shows that the equality in the preceding definition holds.

Proposition 3.9. The following equality holds

sup{d : There exists µ ∈ M(A) such that µ(B(x, r)) ≤ rd, x ∈ Rn, d > 0}
= sup{s : There exists µ ∈ M(A) such that Is(µ) < ∞}.

Proof. If µ ∈ M(A) and we have some d > s for which µ(B(x, r)) ≤ crd, where x ∈ Rn

and r > 0, then

Is(µ) =

∫︂
Rn

s

∫︂ ∞

0

r−s−1µ(B(x, r)) dr dµ(x)

≤
∫︂
Rn

s

∫︂ 1

0

rd−s−1 dr⏞ ⏟⏟ ⏞
<∞

dµ(x) +

∫︂
Rn

µ(X) · s
∫︂ ∞

1

r−s−1 dr dµ(x) < ∞,

for d > s, where we use (2) from discussion above in the first inequality.
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Now let us assume µ ∈ M(A) and define a Borel set

A =

{︃
x :

∫︂
Rn

1

|x− y|d
dµ(y) ≤ M

}︃
.

If Id(µ) < ∞, then there exists some constant M for which the set A has positive measure.
Let ν = µ

⃓⃓
A
. It holds that

1

rd
ν(B(x, r)) ≤

∫︂
B(x,r)

1

|x− y|d
dν(y) ≤ M,

where x ∈ A and r > 0. Let x ∈ Rn and r > 0. If B(x, r) ∩ A = ∅, then ν(B(x, r)) = 0.
If there exists z ∈ B(x, r) ∩ A, then

1

rd
ν(B(x, r)) ≤ 2d

1

(2r)d
ν(B(z, 2r)) ≤ 2dM.

Choosing measure η = 1
2dM

ν yields the desired result.

Definition 3.10. Let s > 0. The Riesz s-capacity of A ⊂ Rn is defined by

Cs(A) = sup{Is(µ)−1 : µ ∈ M(A), µ(Rn) = 1}.

We also define Cs(∅) = 0.

Definition 3.11. Let s > 0 and A ⊂ Rn. Then we define

dimcA = sup{s : Cs(A) > 0} = inf{s : Cs(A) = 0}.

Theorem 3.12. Let A ⊂ Rn.

1. If s > 0 and Hs(A) < ∞, then Cs(A) = 0.

2. dimc A ≤ dimH A.

Proof. We consecutively prove both statements:

1. We prove this by contradiction. Let us assume that Cs(A) > 0, A ⊂ Rn. There
exists µ ∈ M(A) so that µ(A) = 1 and Is(µ) < ∞. Since

Is(µ) =

∫︂
Rn

∫︂
Rn

1

|x− y|s
dµ(y) dµ(x) < ∞,

then for almost all x ∈ Rn we obtain

lim
r→0+

∫︂
B(x,r)

1

|x− y|s
dµ(y) = 0.

Therefore, for an arbitrary ε > 0, there exists B ⊂ A and δ > 0 such that µ(B) > 1
2

and

µ(B(x, r)) ≤ rs
∫︂
B(x,r)

1

|x− y|s
dµ(y) ≤ εrs for all x ∈ B and 0 < r ≤ δ.
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Indeed, let

Ak =

{︃
x ∈ A :

∫︂
B(x,r)

1

|x− y|s
dµ(y) ≤ rs for all r ∈

(︃
0,

1

k

)︃}︃
Then Ak ↗ A and thus there exists k ∈ N such that µ(Ak) > 1

2
µ(A). We put

B = Ak and δ = 1
k
.

Now we find sets B1, B2, . . . so that B ⊂
⋃︁

i∈NBi, B ∩ Bi ̸= ∅, diamBi ≤ δ for
all i ∈ N and ∑︂

i∈N

(diamBi)
s ≤ Hs(A) + 1.

Let xi ∈ B ∩Bi and set ri = diam(Bi), then we obtain

1

2
< µ(B) ≤

∑︂
i∈N

µ(B(xi, ri)) ≤ ε
∑︂
i∈N

rsi ≤ ε(Hs(A) + 1).

Sending ε → 0+ we get Hs(A) = ∞, which is the contradiction.

2. This follows directly from the first statement.

This concludes the proof.

Now we prove the Frostman’s lemma which is key to proving dimH A ≤ dimcA,
A ⊂ Rn is a Borel set. As we have already proven the converse inequality in the previous
theorem, we eventually get dimH A = dimcA, which is our objective.

Theorem 3.13 (Frostman’s lemma). Let A ⊂ Rn be a Borel set. Then Hs(A) > 0 if and
only if there exists nonzero µ ∈ M(A) such that µ(B(x, r)) ≤ rs for x ∈ Rn and r > 0.
Moreover, we can find µ so that µ(A) ≥ cHs

∞(A) where c > 0 depends only on n.

Proof. Let us first assume that µ(B(x, r)) ≤ rs for x ∈ Rd and r > 0 arbitrary. Let
ε > 0. We find a covering of A by closed balls {Bi} so that A ⊂

⋃︁
i∈N Bi, A ∩ Bi ̸= ∅,

diamBi ≤ δ for all i ∈ N and∑︂
i∈N

(diamBi)
s ≤ Hs

δ(A) + ε ≤ Hs(A) + ε.

Choose xi ∈ A ∩Bi and set ri = diam(Bi). Thus we obtain

0 < µ(A) ≤
∑︂
i∈N

µ(B(xi, ri)) ≤
∑︂
i∈N

rsi ≤ Hs(A) + ε.

Letting ε → 0+ we get Hs(A) > 0.
It remains to show the converse implication. Let us assume that A is compact and

that A is contained in a dyadic cube. Since Hs(A) > 0, then Hs
∞(A) > 0. Therefore for

any covering of A by cubes {Qi}i∈N there exists a constant c > 0 depending on n ∈ N so
that ∑︂

i∈N

(diamQi)
s ≥ cHs

∞(A).
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For m ∈ N denote Qm the family of dyadic cubes of Rn with side-length 1
2m

. For Q ∈ Qm

we define the measure µm
m in the following way:

µm
m|Q = 1

2ms
1

λn(Q)
λn|Q, if A ∩Q ̸= ∅,

µm
m|Q = 0, if A ∩Q = ∅,

Furthermore, for Q ∈ Qm−1 we define

µm
m−1|Q = µm

m|Q, if µm
m(Q) ≤ 1

2(m−1)s ,

µm
m−1|Q = 1

2(m−1)s
1

µm
m(Q)

µm
m|Q, if µm

m(Q) > 1
2(m−1)s .

We proceed in this manner. For Q ∈ Qm−k−1 we get µm
m−k−1 from µm

m−k as follows:

µm
m−k−1|Q = η(Q)µm

m−k|Q,

where η(Q) = min{1, 1
2(m−k−1)s

1
µm
m−k(Q)

}. We finish this process if A ⊂ Q for some Q ∈
Qm−k0 and set µm = µm

m−k0
. It is vital to realize that the measure of the dyadic cubes

does not increase, and so µm(Q) ≤ 1
2(m−k)s for any Q ∈ Qm−k, k ∈ N. Also, for all x ∈ A

there exist k ∈ N and Q ∈ Qm−k such that x ∈ Q and

µm(Q) =
1

2(m−k)s
=

(︃
1√
n

)︃s(︃ √
n

2m−k

)︃s

=
1

n
s
2

(diamQ)s. (4)

For each x ∈ A we choose the largest such Q. Since A is compact, we obtain a finite
covering of A by cubes Q1, . . . , Qk so that

µm(Rn) =
k∑︂

i=1

µm(Qi) =
1

n
s
2

k∑︂
i=1

(diamQi)
s ≥ c

n
s
2

Hs
∞(A). (5)

Set νm = µm

µm(Rn)
, then νm(Rn) = 1 and for Q ∈ Qm−k using (4) and (5) we get

νm(Q) ≤ 1

2(m−k)s

n
s
2

cHs
∞(A)

. (6)

The sequence {νm} has a weakly convergent sub-sequence {νmi} w−→ ν, which follows from
Theorem 3.7. From this it follows that ν ∈ M(A) and ν(A) = 1. Indeed, let φ be a
continuous function with compact support, 0 ≤ φ ≤ 1 and φ = 1 on a neighbourhood of
A. Then ∫︂

Rn

φ dν = lim
m→∞

∫︂
Rn

φ dνm = lim
m→∞

νm(Rn) = 1.

As ν is Radon, we get infφ
∫︁
Rn φ dν = ν(A).

For all x ∈ Rn and r ∈ (0,∞) it holds that B(x, r) ⊂ int
⋃︁2n

i=1 Qi, where Q ∈ Qp with

diamQi =
n

1
2

2p
≤ 4n

1
2 r. Therefore, for all m ≥ p using (6) we obtain

νm

(︄
int

2n⋃︂
i=1

Qi

)︄
≤ 2n

cHs
∞(A)

n
s
2

2ps
≤ 2n+2sn

s
2 rs

cHs
∞(A)

.
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Finally, by Lemma 3.6 we get

ν(B(x, r)) ≤ νm

(︄
int

2n⋃︂
i=1

Qi

)︄
≤ lim inf

i→∞
νmi

(︄
int

2n⋃︂
i=1

Qi

)︄
≤ 2n+2sn

s
2 rs

cHs
∞(A)

.

Thus ν(B(x, r)) ≤ Crs, as we wanted. Setting µ = cHs
∞(A)

2n+2sn
s
2
ν finishes the proof.

Corollary. Let A ⊂ Rn be a Borel set. If s > 0 and Cs(A) = 0, then Hd(A) = 0 for
d > s. From this also follows that dimH(A) ≤ dimc(A)

Proof. We prove this by contrapositive. If Hd(A) > 0, then from Theorem 3.13 there exists
µ ∈ M(A) such that µ(B(x, r)) ≤ rd. We already know from the proof of Proposition 3.9,
that for 0 < s < d we have Is(µ) < ∞. Therefore Cs(A) > 0 and the proof is finished.

Theorem 3.14 (Equality of Hausdorff and Capacitary dimension). Let A ⊂ Rn be a
Borel set. Then dimcA = dimH A.

Proof. This follows directly from the previous corollary and Theorem 3.12.
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