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Abstract: In this thesis, we study characterization by forbidden patterns of many
classes of x-monotone drawings of complete graphs with various given restrictions.
We generalize previously known characterizations of pseudolinear, semisimple,
and simple drawings of Kn by showing that also bounded pseudoparabola draw-
ings of Kn can be characterized by finite forbidden patterns. On the other hand,
we show that there is no such finite characterization for extended pseudoparabola
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1. Introduction

1.1 Preliminaries
Let G be a graph without loops and multiple edges. A (bounded) drawing D of
G in the plane is an image of a mapping that maps vertices to distinct points
and edges to continuous arcs connecting the images of their endpoints. Formally,
we have an injective function f : V → R2, mapping vertices from V to the plane.
Each edge e = {u, v} corresponds to the image of the interval [0, 1] and via
the continuous mapping mapping g : [0, 1] → R2 such that g(0) = f(u) and
g(1) = f(v).

An extended drawing D of G in the plane is the image of a mapping that maps
vertices to distinct points and edges to continuous arcs connecting the images of
their endpoints extended to infinity on both ends. Formally, the vertex function
is the same again. However, for edges, we have different functions. Each edge
e = {u, v} corresponds to the image of the real line R via mapping g : R → R2

such that g(0) = f(u) and g(1) = f(v) and g([0, 1]) corresponds to the (bounded)
part of the edge e. See an example of a bounded and an extended drawing in
Figure 1.1.

Figure 1.1: Full curves represent a bounded drawing of K4. Together with the
dashed parts they represent the extended drawing of K4.

We sometimes do not distinguish between a graph and its drawing, in par-
ticular, we identify edges and the arcs representing them, and vertices with the
points representing them as well. For simplicity, we assume that the following
four conditions are satisfied:

1. no edge goes through a vertex that is not its endpoint,

2. no two edges touch at an interior point,

3. no three edges meet at one common interior point,

4. any two edges share a finite number of intersections.
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σ(i, j, k) = − σ(i, j, k) = +

vi vj vk

vi vj vk

Figure 1.2: Encoding the position of an edge {vi, vk} with respect to vertex vj by
a sign σ(i, j, k) in signature σ.

A drawing of a graph is rectilinear if each edge is represented by a segment.
An extended version is a linear drawing. Linear drawing of a graph is such
that each edge is represented by a line. The generalization of linear drawings
is pseudolinear drawing. A drawing is pseudolinear if each of two edges crosses
exactly once (crossing at a vertex counts). A drawing of a graph is x-monotone
if each edge is crossed by every vertical line at most once.

1.2 Sign functions
We would like to describe a combinatorial characterization of x-monotone draw-
ings based on so-called signature functions. These and similar characterizations
were used by many researchers [1, 2, 3, 4] as generalizations of order types of
planar point sets.

Let Tn be the set of ordered triples (i, j, k) with i < j < k, from the set
[n] = 1, 2, . . . , n. Let Σn be the set of signature functions, that is, functions of
the type σ : Tn → {−, +}. Here we used − and + as abbreviations for −1 and
+1, respectively. For positive integer k, we use the notation (−)k for (−1)k and
(+)k for 1k. In particular, inequality − ≤ + holds.

From now on, we consider only complete graphs Kn with n vertices and all(︂
n
2

)︂
edges. Take x-monotone drawing D of Kn with vertices v1, . . . , vn ordered

by increasing x-coordinates, that is, x(v1) < x(v2) < · · · < x(vn). We encode the
drawing D with a signature function σ ∈ Σn according to the following rule. For
every edge {vi, vk} and every integer j ∈ (i, k), we define σ(i, j, k) = + if edge
{vi, vk} goes above the point vj, otherwise we set σ(i, j, k) = −; see Figure 1.2.
To simplify, we use ξ to denote a general sign from {−, +} and ξ to denote the
opposite one. We then say that σ is realized by D.

It is easy to see that for every signature function σ ∈ Σn, there exists an
x-monotone drawing D which induces σ. However, the interesting question is
what is the minimal number of crossings for each pair of edges to have to realize
such a σ.

A pattern of size k in a signature σ of an x-monotone drawing D of Kn is a
signature function induced in σ by a subset of k vertices of D. Let C be a class of
x-monotone drawings. For example, a class of unbounded drawings where edges
are represented by lines. A forbidden pattern for C is a pattern that does not
appear in a signature of any drawing from C.

For integers a, b, c, d ∈ [n] with a < b < c < d, signs ξ1, ξ2, ξ3, ξ4 ∈ {−, +}
and a signature function σ ∈ Σn, we say that the 4-tuple (a, b, c, d) is of the form
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ξ1ξ2ξ3ξ4 in σ if

σ(a, b, c) = ξ1, σ(a, b, d) = ξ2, σ(a, c, d) = ξ3, and σ(b, c, d) = ξ4.

We sometimes use the abbreviation

σ(a, b, c)σ(a, b, d)σ(a, c, d)σ(b, c, d)

for the 4-tuple (σ(a, b, c), σ(a, b, d), σ(a, c, d), σ(b, c, d)).
We sometimes use a generalization of signature functions from triples to r-

tuples. Let T r
n be a set of all ordered r-tuples (x1, . . ., xr) with x1 < · · · < xr

from the set [n]. Let Σr
n be the set of generalized signature functions, that is,

functions of the type σ : T r
n → {−, +}. A r-signotope is a signature function

σ : Σr
n → {+, −} such that every (r + 1)-tuple X = (x1, . . . , xr+1) of elements

xi ∈ [n] with x1 < . . . < xn satisfies σ(Xr+1) ≤ σ(Xr) ≤ · · · ≤ σ(X2) ≤ σ(X1) or
σ(Xr+1) ≥ σ(Xr) ≥ · · · ≥ σ(X2) ≥ σ(X1) where X i is tuple X without the ith
element. We call r the order of the signotope. If the order is omitted we mean
3-signotopes, where we are dealing with patterns of size 4.

Signotopes are a very natural class since there is a correspondence between
signotopes and pseudolinear x-monotone drawings which was proved indepen-
dently by Knuth [4], by Felsner, and Weil [3], and by Balko, Fulek, and Kynčl [2].
A similar characterization for pseudolinear drawings of Kn, which is based on
so-called CC systems, was introduced by Knuth [4]; see [2] for more discussion.

Theorem 1 ([2, 3, 4]). A signature function σ ∈ Σn can be realized by a pseu-
dolinear x-monotone drawing if and only if every ordered 4-tuple of indices from
[n] is of one of the forms

++++, −−−−, ++−−, −−++,

−−−+, +++−, +−−−, −+++

in σ.

1.3 Our motivation
Similar characterizations as the one from Theorem 1 were obtained for other
various classes of drawings of Kn and these constitute the main motivation of our
work. Also, it turns out that, besides pseudolinear x-monotone drawings of Kn,
several other geometric objects can be characterized by signotopes.

1.3.1 Realizations of signotopes
The characterization in Theorem 1 was generalized in various ways.

Miyata [5] introduced a similar characterization for k-intersecting pseudocon-
figuration of points, sometimes called higher-order point configurations [6]. Eliáš
and Matoušek [6] and Balko [7] considered various Erdős–Szekeres-type results.
We now define this formally.

Definition 1. [5] Let (P, L) be an arrangement of points P and curves L in a
plane going trough these points. Then, (P, L) is a k-intersecting pseudoconfigu-
ration of points if it satisfies the following three conditions:

4
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432

1

(a) (b)

Figure 1.3: Examples of simple k-pseudoconfigurations of four points for k = 1
(part (a)) and k = 2 (part (b)). The sign function of the 1-pseudoconfiguration
maps each triple of points to −. The sign function of the 2-pseudoconfiguration
assigns + to the only 4-tuple of points. This figure was taken from [7].

1. for every l ∈ L, there are at least k + 1 points of P lying on l,

2. for every (k +1)-tuple of distinct points of P , there is a unique curve l from
L passing through each point of this (k + 1)-tuple,

3. any two distinct curves from L cross at most k times.

A k-pseudoconfiguration (P, L) of points is simple if each curve from L passes
through exactly k+1 points of P ; see Figure 1.3. If (P, L) is simple, we let li1,...,ik+1

be the curve from L passing through points pi1 , . . . , pik+1 . Each curve l from L
is a graph of a continuous function fl : R → R and we let l− := {(x, y) ∈ R2 :
y < fl(x)}. A signature of a simple k-pseudoconfiguration (P, L) is a function
f :

(︂
P

k+2

)︂
→ {−, +} such that, given {i1, . . . , ik+2} ∈

(︂
P

k+2

)︂
with i1 < · · · < ik+2,

we have f(pi1 , . . . , pik+2) = − if and only if pik+2 ∈ l−
i1,...,ik+1

.
The signatures of simple k-pseudoconfigurations are characterized by the fol-

lowing result by Miyata [5].

Theorem 2 ([5]). For k, n ∈ N, there is a one-to-one correspondence between sign
functions of simple k-pseudoconfigurations of n points and (k +2)-signotope. The
(k + 2)-signotope corresponding to a k-pseudoconfiguration P is the sign function
of P .

It was shown by Felsner and Weil [3] that a one-to-one correspondence exists
between d-signotopes and arrangements of n pseudohyperplanes in Rd−1 that
allow a certain “sweeping procedure”, for all d ≥ 3. We now introduce the
definition of these arrangements formally.

In Rd, where d ≥ 2, we define a pseudohyperplane H as a homeomorphic
representation of a hyperplane in Rd. Each pseudohyperplane H in Rd divides
Rd into two connected components, each of which is homeomorphic to an open
d-dimensional ball. Pseudohyperplanes H1 and H2 cross if H1 (H2, respectively)
intersects both components of Rd \ H2 (Rd \ H1, respectively).

Now, turning our attention to arrangements of pseudohyperplanes in Rd, re-
ferred to as d-arrangements, we define them as collections {H1, . . . , Hn} of pseu-
dohyperplanes in Rd. Within such an arrangement, any pair Hi and Hj crosses
in a pseudohyperplane homeomorphic to Rd−1. Additionally, the intersections
Hi ∩ Hj, for fixed i and j ̸= i ranging over [n], form an arrangement of pseudohy-
perplanes in Hj

∼= Rd−1. A d-arrangement A is labeled as simple if any collection
of d + 1 pseudohyperplanes from A has an empty intersection.

We assume that every d-arrangement A of pseudohyperplanes H1, . . . , Hn is
normal. This means that A is simple and embedded in Rd in the following manner.
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1 2 3 4

Figure 1.4: A C2-arrangement of four pseudolines. Here, the sign function assigns
− to the triple {1, 2, 3} and + to the triple {2, 3, 4}. The figure was taken from
[7].

Let A be embedded in the hypercube [0, 1]d. For i ∈ [d − 1], we define Ii as the
(d−i)-dimensional subspace of Rd containing the side of [0, 1]d obtained by setting
the last i coordinates to 0. It is required that A ∩ Ii forms a (d − i)-arrangement
of n pseudohyperplanes. Additionally, the pseudohyperplanes in A are labeled by
their increasing first coordinates in their intersection with Id−1.

The concept of a sign function of a normal d-arrangement A of n pseudohyper-
planes H1, . . . , Hn is introduced as a function f : T d+1

n → {−, +}, where for given
i1 < · · · < id+1, f(i1, . . . , id+1) = − if and only if the pseudoline Hi3 ∩ · · · ∩ Hid+1 ,
oriented away from I1, intersects Hi1 before Hi2 .

A normal d-arrangement A is said to be a Cd-arrangement if the normal (d−1)-
arrangement formed by H ∩ I1 for H ∈ A has no + sign in its sign function. It
is important to note that while every normal arrangement of pseudolines is a
C2-arrangement, this does not hold for Cd-arrangements with d ≥ 3.

We present a theorem, inspired by [3], stating that for d ≥ 2 and n ∈ N, there
exists a bijection between sign functions of Cd-arrangements of n pseudohyper-
planes in Rd and (d + 1)-signotopes; see Figure 1.4.

Furthermore, besides the geometric interpretations of signotopes provided,
there exists a third interpretation, as discovered by Ziegler [8], where signotopes
can be viewed as extensions of the cyclic arrangement of hyperplanes with a
pseudohyperplane.

Signotopes are sign functions that allow at most one change in the sign for each
4-tuple. It is therefore natural to generalize signotopes as follows. The generalized
signotopes are sign functions that allow at most 2 changes of a sign. This structure
was studied by Bergold et al. [9] and they proved that some well-known theorems
also hold for this structure. Generalized signotopes are interesting because there
is still not known their geometrical representation. Bergold et al. [9] also showed
that sign functions of simple drawings of Kn are generalized signotopes, on the
other hand, there are, asymptotically, more generalized signotopes than simple
drawings of Kn.

1.3.2 Other classes of drawings
A drawing is simple if any two intersect at most once. That is adjacent edges
cannot cross and two independent edges can share at most one crossing. A
drawing is semisimple if any two adjacent edges cannot cross but independent
edges can cross any number of times.

Theorem 1 is our main motivation and the main theorem we aim to generalize.

6



++++

−−−−

++−−

−−++

−−−+

+−−−

−+++

+++−

pseudolinear

+−−+

−++−

semisimple

Figure 1.5: The 4-tuples in pseudolinear and semisimple drawings. This figure is
taken from [2].

The following result by Balko, Fulek, and Kynčl [2] gives another example of a
characterization of a class of x-monotone drawings of Kn by forbidden patterns
of size four. Namely, we obtain this characterization for x-monotone semisimple
drawings of Kn. For simple drawings, we also need some forbidden patterns of
size five.

Theorem 3 ([2]). A signature function σ ∈ Σn can be realized by a semisimple
x-monotone drawing if and only if every 4-tuple of indices from [n] is of one of
the forms

++++,−−−−, ++−−, −−++, −++−, +−−+,

−−−+, +++−, +−−−, −+++

in σ. The signature function σ can be realized by a simple x-monotone drawing
if, in addition, there is no 5-tuple (a, b, c, d, e) with a < b < c < d < e such that
σ(a, b, e) = σ(a, d, e) = σ(b, c, d) = σ(a, c, e).

Note that the 4-tuples mentioned in Theorems 1 and 3 are the “allowed”
patterns. However, one could equivalently list their complements of eight and six,
respectively, forbidden patterns of size four. These two theorems are the basic
building blocks of our work where we aim to obtain similar characterizations for
broader classes of x-monotone drawings of Kn. See Figure 1.5 for a geometric
realization of allowed patterns in Theorems 1 and 3.

We would also like to mention one more result about characterizations by
forbidden patterns. Kynčl [10] showed that so-called complete AT-graphs (see
[10] for definition) can be characterized by forbidden patterns of size at most six.

Theorem 4 ([10]). Every complete AT-graph that is not simply realizable has an
AT-subgraph on at most six vertices that is not simply realizable.

Kynčl [10] also shows that six is a minimal size of forbidden patterns needed
to characterize the simple realizability of complete AT-graphs. In our results, we
also aim to use the forbidden patterns of minimal size.

7



Characterizations of classes of drawings by forbidden patterns of constant size
are also useful from an algorithmic point of view as they provide polynomial time
recognition algorithms for the corresponding classes of drawings. In particular, it
follows from Theorem 1 that we can recognize x-monotone pseudolinear drawings
of Kn in time O(n4) by simply checking the signature of a given drawing for
forbidden patterns by size four. Similarly, we obtain recognition algorithms for
semisimple and simple x-monotone drawings of Kn with the worst-case running
times O(n4) and O(n5), respectively. For AT-graphs, Theorem 4 analogously
gives O(n6)-running time recognition algorithm.

1.4 Our contribution
Our goal is to develop similar characterizations based on small forbidden pat-
terns for classes of x-monotone drawings where edges are allowed to cross multi-
ple times. We consider several such classes depending on the maximum allowed
number of crossings an edge can participate in. We mostly focus on a general-
ized variant of 1-intersecting pseudoconfigurations of points where we allow two
distinct curves to cross more than once.

In Chapter 2, we generalize Theorem 1 to a characterization of pseudoparabola
drawing, both bounded and unbounded; see Chapter 2 for definitions. First, we
provide such a characterization based on forbidden patterns of size at most 6
for bounded pseudoparabola drawings (Theorem 5). In the case of unbounded
pseudoparabola drawings, we, perhaps surprisingly, show that no characterization
based on forbidden patterns of finite size is possible (Theorem 15).

We further generalize the characterization from Theorem 5 in Chapter 3 to
so-called bounded drawings of degree d, where the edges are allowed to cross up to
d times (Theorem 17). We also show that no characterization based on forbidden
patterns of finite size is possible for unbounded drawings of degree d (Theorem
25).

Lastly in Chapter 4, we discuss x-monotone drawings where the maximum
allowed number of crossings is different for pairs of adjacent edges and pairs of
independent edges. For example, semisimple drawings fall within this framework.
Our motivation here was to explore the border where the characterizations based
on finite forbidden patterns stop working. We have found the border and the full
characterization is in Theorems 27, 28, 29, 30.

8



2. Pseudoparabola x-monotone
drawings

2.1 Introduction
Similarly to the combinatorial characterization of pseudolinear drawings of Kn

from Theorem 1 proved by Balko, Fulek, and Kynčl [2], we would like to charac-
terize higher-degree “pseudopolynomial” x-monotone drawings of Kn. A drawing
D of a graph G is an pseudoparabola drawing if the edges of D can be drawn as
simple curves that cross each other at most twice. Similarly, an extended drawing
D of G is an extended pseudoparabola drawing if the edges of D can be drawn as
unbounded simple curves that cross each other at most twice.

In this chapter, we will show that every x-monotone pseudoparabola drawing
of Kn can be characterized combinatorically by forbidden 5-tuples and 6-tuples
(Theorem 5) and disprove the existence of finite forbidden patterns for extended
x-monotone pseudoparabolas (Theorem 15).

2.2 Bounded pseudoparabolas
In the following result we show that x-monotone pseudoparabola drawings can
characterized by forbidden patterns of size 5 and 6; see Figure 2.1 for an illustra-
tion of this statement.

Theorem 5. A signature function σ ∈ Σn can be realized by bounded pseu-
doparabola x-monotone drawing if and only if there is no ordered 5-tuple (a1, . . . ,
a5) with a1 < · · · < a5 that satisfies

σ(a1, a2, a5) = σ(a1, a3, a5) = σ(a1, a4, a5) = σ(a1, a2, a4) = σ(a1, a3, a4)

or

σ(a1, a4, a5) = σ(a1, a3, a5) = σ(a1, a2, a5) = σ(a2, a4, a5) = σ(a2, a3, a5)

and, additionally, there is no ordered 6-tuple (a1, . . . , a6) with a1 < · · · < a6 that
satisfies

σ(a1, a2, a5) = σ(a1, a3, a5) = σ(a1, a4, a5)
= σ(a2, a3, a6) = σ(a2, a4, a6) = σ(a2, a5, a6)

or

σ(a1, a2, a6) = σ(a1, a3, a6) = σ(a1, a4, a6)
= σ(a1, a5, a6) = σ(a2, a3, a5) = σ(a2, a4, a5).

9



a1 a2 a3 a4 a5

a3a2a1 a4 a5

a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6

+ = σ(a1, a2, a5) = σ(a1, a3, a5) = σ(a1, a4, a5) = σ(a1, a2, a4) = σ(a1, a3, a4)

− = σ(a1, a4, a5) = σ(a1, a3, a5) = σ(a1, a2, a5) = σ(a2, a4, a5) = σ(a2, a3, a5)

+ = σ(a1, a2, a5) = σ(a1, a3, a5) = σ(a1, a4, a5) = σ(a2, a3, a6) = σ(a2, a4, a6) = σ(a2, a5, a6)

+ = σ(a1, a2, a6) = σ(a1, a3, a6) = σ(a1, a4, a6) = σ(a1, a5, a6) = σ(a2, a3, a5) = σ(a2, a4, a5)

Figure 2.1: One example for each forbidden tuple in the statement of Theorem 5.

Proof. Let D be an x-monotone pseudoparabola drawing of Kn. It is clear that
D does not contain any of the forbidden 5- or 6-tuples as otherwise there are two
edges of D that cross more than twice; see Figure 2.1.

To prove the other implication, let σ be a sign function from Σn that does
not contain any of the forbidden 5- or 6-tuples. We will construct an x-monotone
pseudoparabola drawing D from σ. This construction will be also used later and
we refer to it as a pseudoparabola construction.
Pseudoparabola construction. We start with the points vi = (i, 0) for i ∈ [n] as
vertices. We denote the vertical line going through vertices vm as Lm for every
m ∈ [n]. To determine the drawing D up to a combinatorial equivalence, it
suffices to specify the right and left vertical orders of lines starting or ending in
each vm and also the relative orders of intersections of curves with vertical lines
Lm. Then we place the crossings of edges of D with Lm so that they respect these
orders and afterward we connect them with line segments.

10



≤L
i ≤R

i

vi vi vi

≤L
i ≤R

i ≤L
i ≤R

i

pi,j

pi,k

pi,j

pk,l pj,k

pl,m

Figure 2.2: Illustration of the relative order on the vertical line Li.

For distinct i and j from [n], we denote by pi,j the resulting piece-wise linear
curve representing the edge vivj. Note that pi,j = pj,i; see Figure 2.2.

For each i ∈ [n], we define two total orders ≤L
i and ≤R

i on the set P =
{pj,k : j, k ∈ [n], j ̸= k} of all curves pj,k. The order ≤L

i (≤R
i , respectively)

represents the vertical left (right, respectively) order of curves from P at the
neighborhood of Li; see Figure 2.2. Let Pi = {pi,j : j ∈ [n], i ̸= j} be a set curves
from P that contain the vertex vi. We want the curves from P \ Pi to be in the
same relative order in ≤L

i and ≤R
i .

We first specify the relative order of the curves from Pi in the orderings ≤L
i

and ≤R
i . Later, we also specify the relative order of the remaining curves from P

in these two orders.
Definition 2. For i, j, k ∈ [n] with j < k and i /∈ {j, k}, the orders ≤L

i and ≤R
i

on Pi are defined in the following way; see Figure 2.3:

• assume i < j < k, we set pi,j ≤R
i pi,k if σ(i, j, k) = − and there is m

satisfying i < m < j, σ(i, m, j) = −, and σ(i, m, k) = +. We set pi,k ≤R
i pi,j

if σ(i, j, k) = + and there is m satisfying i < m < j, σ(i, m, j) = +,
and σ(i, m, k) = −. Otherwise, we set pi,j ≤R

i pi,k if σ(i, j, k) = + and
pi,k ≤R

i pi,j if σ(i, j, k) = −.

• assume j < k < i, we set pj,i ≤L
i pk,i if σ(j, k, i) = − and there is m

satisfying j < m < k, σ(k, m, i) = − and σ(j, m, i) = +, We set pk,i ≤L
i pj,i

if σ(j, k, i) = + and there is m satisfying j < m < k, σ(k, m, i) = +
and σ(j, m, i) = −. Otherwise, we set pj,i ≤L

i pk,i if σ(j, k, i) = + and
pk,i ≤L

i pj,i if σ(j, k, i) = −.

In both cases, the first variant is equivalent to one of the forbidden 4-tuples
in pseudolinear drawings of Kn from [2] as one intersection is forced; see the first
part of Figure 2.

It is easy to see that the relation ≤R
i on Pi is weakly anti-symmetric since

we cannot have pi,j ≤R
i pi,k and pi,k ≤R

i pi,j for distinct curves pi,j, pi,k as by
Definition 2 we would have different signs σ(i, j, k) = − and also σ(i, j, k) = +
which is impossible. Analogously, we can prove that ≤L

i is weakly anti-symmetric.
We will prove that the relations ≤L

i and ≤R
i described in Definition 2 are total

orders at each point i.
Let pi,j, pi,k be two distinct curves from Pi with j < k. To prove that ≤R

i

is a total order, we will define for each pair pi,j, pi,k new auxiliary relation ≤R
i,a.
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vi vj vkm

vi vj vk

pi,j ≤R
i pi,k

σ(i, j, k) = − and ∃m, i < m < j, σ(i,m, j) = − and σ(i,m, k) = +

σ(i, j, k) = +,

m

Figure 2.3: Examples of curves pi,j, pi,k satisfying pi,j ≤R
i pi,k in Definition 2. The

second case has no m satisfying i < m < j, σ(i, m, j) = −, and σ(i, m, k) = +.

The proof that ≤L
i can be done analogously due to vertical symmetry. The new

relation ≤R
i,a is defined analogously as in Definition 2 but the first case considers

with the only difference that the vertex m is restricted to lie only in the interval
a ≤ m < j, and not in the whole interval (i, j); see Figure 2.4.

vi vj vkm

vi vj vk

pi,j ≤R
i pi,k

σ(i, j, k) = − and ∃m, i < a ≤ m < j, σ(i,m, j) = − and σ(i,m, k) = +

σ(i, j, k) = +,

m

a

a

Figure 2.4: Example of pi,j ≤R
i,a pi,k in Definition 3.
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Definition 3. For a, i, j, k ∈ [n] with j < k and i /∈ {j, k}, the orders ≤L
a,i and

≤R
i,a on Pi are defined in the following way; see Figure 2.4:

• assume i ≤ a ≤ j < k, we set pi,j ≤R
i,a pi,k if σ(i, j, k) = − and there is m

satisfying a ≤ m < j, σ(i, m, j) = −, and σ(i, m, k) = +. We set pi,k ≤R
i,a

pi,j if σ(i, j, k) = + and there is m satisfying a ≤ m < j, σ(i, m, j) = +
and σ(i, m, k) = −. Otherwise, we set pi,j ≤R

i,a pi,k if σ(i, j, k) = + and
pi,k ≤R

i,a pi,j if σ(i, j, k) = −.

• assume j < k ≤ a ≤ i, we set pj,i ≤L
a,i pk,i if σ(j, k, i) = − and there is m

satisfying j < m ≤ a, σ(k, m, i) = −, and σ(j, m, i) = +. We set pk,i ≤L
a,i

pj,i if σ(j, k, i) = + and there is m satisfying a ≤ m < k, σ(k, m, i) = +
and σ(j, m, i) = −. Otherwise, we set pj,i ≤L

a,i pk,i if σ(j, k, i) = + and
pk,i ≤L

a,i pj,i if σ(j, k, i) = −.

As we mentioned above, we consider pi,j = pj,i and for simplicity, for a triple
(a, b, c) with a < b < c and any triple (a′, b′, c′) satisfying {a′, b′, c′} = {a, b, c} we
define σ(a′, b′, c′) = σ(a, b, c). We will now state an auxiliary lemma to prove the
transitivity of ≤R

i . Informally, this lemma says that two curves pi,j, pi,k cross if
and only if there is a vertex a between i and j with one of the curves above and
the other one below while this relative order is opposite for a + 1.
Lemma 6. For a, i, j, k ∈ [n] with i ≤ a ≤ j < k, consider two curves pi,j, pi,k.
If pi,j ≤R

i,a+1 pi,k, then we have σ(i, a, j) = + and σ(i, a, k) = − if and only if
pi,k ≤R

i,a pi,j.
Similarly, if pi,k ≤R

i,a+1 pi,j, then we have σ(i, a, j) = − and σ(i, a, k) = + if
and only if pi,j ≤R

i,a pi,k.

Proof. By horizontal symmetry, we can without loss of generality assume that
σ(i, a, j) = +. There are only two subcases:

1. Either σ(i, j, k) = + and therefore a represents the vertex m in the first
case of Definition 3 for pi,k ≤R

i,a pi,j. It can also be seen that if σ(i, a, j) = +
and σ(i, a, k) = − is not true, then there is no change of the relation ≤R

i,a

in the case of Definition 3.

2. Or σ(i, j, k) = − and there is m satisfying a + 1 ≤ m < j, σ(i, m, j) = −
and σ(i, m, k) = + and we have forbidden 5-tuple (i, a, m, j, k). On the
other hand, if σ(i, a, j) = + and σ(i, a, k) = − is not true, then there is no
change in the case of Definition 3.

Due to vertical symmetry, we obtain an analogous result for the ≤L
a,i.

Lemma 7. For a, i, j, k ∈ [n] with j < k ≤ a ≤ i, consider two curves pi,j, pi,k.
If pj,i ≤L

a−1,i pk,i, then we have σ(j, a, i) = + and σ(k, a, i) = − if and only if
pk,i ≤L

a,i pj,i .
Similarly, if pk,i ≤L

a−1,i pj,i, then we have σ(j, a, i) = − and σ(k, a, i) = + if
and only if pj,i ≤L

a,i pk,i.
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We say that these two curves pi,j, pi,k from Pi cross between a and a + 1 if
pi,j ≤R

i,a+1 pi,k and σ(i, a, j) = + = σ(i, a, k) or if pi,k ≤R
i,a+1 pi,j and σ(i, a, j) =

− = σ(i, a, k). By symmetry such a crossing between a − 1 and a appears if
pj,i ≤L

a−1,i pk,i and σ(j, a, i) = + = σ(k, a, i) or if pk,i ≤L
a−1,i pj,i and σ(j, a, i) =

− = σ(k, a, i).
Corollary 8. For a, i, j, k ∈ [n] with i ≤ a ≤ j < k satisfying σ(i, a, j) = + and
σ(i, a, k) = − following holds pi,k ≤R

i,a pi,j.
Similarly, if σ(i, a, j) = − and σ(i, a, k) = + following holds pi,j ≤R

i,a pi,k.

Proof. By horizontal symmetry, we can without loss of generality assume that
σ(i, a, j) = +. Then the claim easily follows from Lemma 6 as either pi,j ≤R

i,a+1
pi,k and there is a cross of pi,j, pi,k and hence pi,k ≤R

i,a pi,j due to Lemma 6 or
pi,k ≤R

i,a+1 pi,j and there is no cross of pi,j, pi,k and hence pi,j ≤R
i,a pi,k due to

Lemma 6.

And again by vertical symmetry, we obtain the result for the relations ≤L
i .

Corollary 9. For a, i, j, k ∈ [n] with k < j ≤ a ≤ i satisfying σ(j, a, i) = + and
σ(k, a, i) = − following holds pk,i ≤L

i,a pj,i.
Similarly, if σ(j, a, i) = − and σ(k, a, i) = + following holds pj,i ≤L

a,i pk,i.
We are now ready to prove that the relations ≤R

i,a are transitive, which implies
that the relations ≤R

i are also transitive. By vertical symmetry, we again obtain
the transitivity also for the relations ≤L

i as all the Lemmas and Corollaries hold
symmetrically for ≤R

i,a and ≤L
a,i too.

Lemma 10. For every i, a ∈ [n] with i ≤ a the relation ≤R
i,a is transitive.

Proof. Let i, j, k, l be elements from [n] with i < j < k < l. Each of the three
curves pi,j, pi,k, pi,l. Consider a satisfying i < a ≤ j. We start with the base case
with a = j and then proceed by induction:

1. If σ(i, j, k) = ξ and σ(i, j, l) = ξ, then we can apply Corollary 8. This
means that pi,k ≤R

i,j pi,l if ξ = − and pi,l ≤R
i,j pi,k if ξ = +. Also pi,j ≤R

i,j pi,l

(pi,l ≤R
i,j pi,j, respectively) and pi,k ≤R

i,j pi,j (pi,j ≤R
i,j pi,k, respectively) as

there is no vertex m that is considered in Definition 3. Hence we end up with
a transitive order pi,k ≤R

i,j pi,j ≤R
i,j pi,l (pi,l ≤R

i,j pi,j ≤R
i,j pi,k, respectively).

2. If σ(i, j, k) = ξ and σ(i, j, l) = ξ, then we can deduce that pi,j ≤R
i,j pi,k and

pi,j ≤R
i,j pi,l if ξ = + and pi,k ≤R

i,j pi,j and pi,l ≤R
i,j pi,j if ξ = −, as there is

no vertex m that is considered in Definition 3. Then

(a) either pi,k ≤R
i,j pi,l holds and we get pi,j ≤R

i,j pi,k ≤R
i,j pi,l (pi,k ≤R

i,j

pi,l ≤R
i,j pi,j, respectively) which gives the transitivity.

(b) or pi,l ≤R
j pi,k and then pi,j ≤R

j pi,l ≤R
j pi,k (pi,j ≤R

i,j pi,l ≤R
i,j pi,k,

respectively) holds which gives the transitivity.

Now, we proceed with the induction step; see Figure 2.5. Assume we have
the vertex m with i < m < j. We use integers a, b, c with {a, b, c} = {j, k, l}
to denote permutation of i, j, k. We assume that pi,a ≤R

i,m+1 pi,b ≤R
i,m+1 pi,c and

pi,a ≤R
i,m+1 pi,c.
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pi,a ≤R
i,m+1 pi,b ≤R

i,m+1 pi,cpi,a ≤R
i,m pi,c ≤R

i,m pi,b

Lm+1Lm

pi,c

pi,a

pi,b

σ(i,m, c) = − and σ(i,m, b) = + and σ(i,m, a) = −

vm+1vm

Figure 2.5: Illustration of case 2(a) of the induction step.

1. The simplest case happens when the signs of the curves pi,a, pi,b, pi,c with
respect to vertex m do not cause a crossing between m + 1 and m. Then
none of these pairs changes the order, so we have pi,a ≤R

i,m pi,b ≤R
i,m pi,c and

pi,a ≤R
i,m pi,c.

2. Curves pi,c and pi,b cross, (that is σ(i, m, c) = − and σ(i, m, b) = +) and
then either

(a) σ(i, m, a) = − and hence the order between pi,a, pi,b and pi,a, pi,c stays
the same and the order between pi,a, pi,b changes due to Lemma 6.
Then we have pi,a ≤R

i,m pi,c ≤R
i,m pi,b and pi,a ≤R

i,m pi,b as pi,b and pi,c is
the only pair that changed the order.

(b) σ(i, m, a) = + and therefore pi,c crosses both pi,b and pi,a. Due to
Lemma 6 both orders are changed. The curves pi,a and pi,b do not
cross due to Lemma 6. Then we have pi,c ≤R

i,m pi,a ≤R
i,m pi,b and

pi,c ≤R
i,m pi,a.

3. By horizontal symmetry, we can solve the case where pi,b crosses pi,a as they
have the same relative order as pi,c and pi,b.

4. If pi,a crosses pi,c then, also either pi,b crosses pi,c or pi,a depending on the
sign σ(i, m, b). Nevertheless, we have already solved both these cases in the
second step, so we are done.

We have completed the induction step and the base case too. Therefore, we know
that there is a transitive order of three curves pi,j, pi,k, pi,l at vertex i + 1. Since
we now know that ≤R

i,i+1 is transitive and since ≤R
i =≤R

i,i=≤R
i,i+1, the order ≤R

i

from Definition 2 is transitive on Pi.
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e

f

e

f

e

f

vi vj

vi

Figure 2.6: Three types of bigons formed by two curves e and f . A minimal
empty bigon, a smooth bigon, and a bigon that is neither empty nor smooth.
Figure was taken from [2].

Observe that the relations ≤R
m and ≤L

m are reflexive on Pm. Altogether we
know that ≤R

m and ≤L
m are reflexive, anti-symmetric, transitive, and total, thus

they are total orders.
It is easy to see that orders ≤R

m and ≤L
m specify the relative position of curves

with respect to vertices, but the relative position of the curves is still completely
specified. For example, if we have two curves that do not contain vertex vm

but intersect Lm, the orders only specify a partition of these curves into two
subsets, depending on whether the curves intersect Lm below or above vm. We
now choose a drawing D of Kn that obeys all the required conditions from ≤R

m

and ≤L
m and additionally minimizes the total number of crossings of the curves.

Combinatorially, this last condition is equivalent to minimizing the total number
of inversions between pairs of permutations corresponding to ≤R

m and ≤L
m+1 for

all m ∈ [n − 1].
We assume that no three piece-wise linear curves in D that represent edges

cross at a common interior point. We show that any two curves in D cross at most
two times and thus they are indeed pseudoparabolas. Let e, f be two x-monotone
curves from the drawing D. A bigon B formed by e and f is a closed topological
disc bounded by two simple arcs e′, f ′ that have common endpoints and disjoint
relative interiors, and such that e′ is a portion of e and f ′ is a portion of f . The
common endpoints of e′ and f ′ are the two vertices of B. Observe that if two
curves e and f cross k times, then e and f form exactly k − 1 bigons. A bigon B
is empty if B ∩ {v1, v2, . . . , vn} = ∅. Moreover, a bigon B is considered smooth if
its boundary does not intersect v1, v2, . . . , vn; see to Figure 2.6.
Lemma 11. No two curves from D form an empty bigon.

Proof. Suppose, for the sake of contradiction, that two curves e and f form an
empty bigon B. Let e′ ⊆ e and f ′ ⊆ f be the two arcs forming the boundary
of B. We consider B to be the minimal empty bigon with respect to inclusion
among all such pairs of curves. Moreover, we assume that e′ and f ′ are minimal
among all pairs forming either the lower or the upper part of B. Next, any curve
g, distinct from e and f , either does not intersect B or intersects both e′ and f ′

the same number of times. Hence, we can redraw e alongside f ′ outside of B,
reducing the number of crossings by two. Despite this modification, the orders
≤R

m and ≤L
m remain unaltered, as the neighborhoods of points vi and the signature

function of pseudoparabola curves and points vi remain unchanged. However, this
contradicts the assumption of the minimum number of crossings in D.

Corollary 12. Every smooth bigon formed by two curves contains at least one
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i m m′ j k

i m j k

1)

2)

Figure 2.7: Illustration of the two cases in the proof of Claim 13.

point vm in its interior.

Claim 13. Any two curves sharing a point vi cross at most twice.

Proof. Suppose that for some j, k ∈ [n] \ {i} with j < k, the curves pi,j and
pi,k cross more than twice. By symmetry, we may assume that i < k and that
pi,j ≤R

i pi,k.
We have only two cases due to Corollary 12 as there cannot be any empty

bigon except for the first one containing vertex i; see Figure 2.7.

1. There are at least 2 consecutive bigons with points m, m′ in their interiors,
and therefore (i, m, m′, k, l) forms one of the forbidden 5-tuples from the
statement of Theorem 5.

2. We have only two bigons. One bigon is without a point in its interior and
the other one contains a vertex m inside due to Corollary 12. However, this
contradicts pi,j ≤R

i pi,k as σ(i, m, j) = +, σ(i, m, k) = − and σ(i, j, k) =
+.

Claim 14. For any pairwise distinct integers i, j, k, l from [n], the curves pi,j and
pk,l do not intersect more than twice.

Proof. Suppose for contradiction that pi,j and pk,l cross at least 3 times and hence
form at least two smooth bigons B1, and B2, numbered from left. Hence, by
Corollary 12, B1 and B2 contain points m1 and m2 inside, respectively. Without
loss of generality assume that i < k. Then

1. either j < l holds. Consequently, σ(i, k, j) = σ(i, m1, j) = σ(i, m2, j) =
σ(k, m1, l) = σ(k, m2, l) = σ(k, j, l), which forms a forbidden 6-tuple
(i, k, m1, m2, j, l).

2. or l < j holds. Then, σ(i, k, j) = σ(i, m1, j) = σ(i, m2, j) = σ(i, l, j) =
σ(k, m1, l) = σ(k, m2, l), which forms a forbidden 6-tuple (i, k, m1, m2, l, j).
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Altogether, we see that any two curves from D cross at most twice. Thus, we
have finished the proof of the other implication from the statement of Theorem 5.

All the forbidden 5-tuples and 6-tuples from the statement of Theorem 5 are
necessary. We call a signature function σ realizable by a pseudoparabola drawing
if there is a pseudoparabola drawing with σ as its signature function.

Consider a signature that is not realizable by a pseudoparabola drawing with
one of the forbidden 5-tuples from the statement of Theorem 5 on the first 5
vertices and with the rest of the signs set to +. This signature does not contain
any forbidden 6-tuple from the statement of Theorem 5 as there are no two
independent curves with alternating signs. Hence, the forbidden 6-tuples are not
sufficient by themselves.

Analogously, we can show that the forbidden 5-tuples are also not sufficient
by themselves. Consider a signature that is not realizable by a pseudoparabola
drawing with one of the forbidden 6-tuples from the statement of Theorem 5 on
the first 6 vertices and with the rest of the signs set to +. This signature does
not contain any forbidden 5-tuple from the statement of Theorem 5 as there are
no two adjacent curves with alternating signs.

2.3 Extended pseudoparabolas
Since we have Theorem 5 and since there is characterization of pseudoline draw-
ings based on forbidden 4-tuples (Theorem 1), which is similar to the character-
ization of x-monotone simple and semisimple drawings (Theorem 3), one could
expect that there is characterization of extended pseudoparabola drawing by fi-
nite forbidden configurations. Perhaps surprisingly, we show in this section that
this is not the case. That is, we prove the following result.

Theorem 15. For extended pseudoparabola drawing, there does not exist a set of
forbidden t-tuples, where t ≤ C for some fixed constant C.

We start by proving the following auxiliary result about extending pseu-
doparabola drawings of Kn.

Lemma 16. Every extended pseudoparabola D of a graph G on n vertices can be
extended into an extended pseudoparabola drawing of Kn.

Proof. We start with an informal sketch of the proof. By applying a suitable
homeomorphism of the plane, we can assume that all vertices of D lie on a
horizontal line. Consider shrinking D so that it lies in a small neighborhood of
this horizontal line. Then, each curve pi,j representing an edge of Kn that is not
in G can be composed of line segments and half-lines to form a piece-wise linear
curve in the following way; see Figure 2.8.

We start drawing in the minus infinity on the x-axis and below D going
horizontally until we almost reach the x-coordinate of the vertex vi and then we
draw an almost vertical line going through vi up to above D. Then, we draw the
rest of the curve as a horizontal line until we almost reach the x-coordinate of the
vertex vj where we draw an almost vertical line down through vertex vj. Lastly,
we draw a horizontal line to the right up to infinity on the x-axis. For every i,
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D

vi vjvj′

Figure 2.8: Extension of subdrawing in Lemma 16.

we draw the curves pi,j so that they intersect only at vi. We will now describe
this more formally.

We describe relations ≤R
i similarly as in the proof of Theorem 5. We will first

define set P = {pj,k : j, k ∈ [n], j ̸= k} of all curves pj,k. Let Pi = {pi,j : j ∈
[n], i ̸= j}. We have already drawn D. That means we have already realized
curves pi,j for some i, j ∈ [n] with i < j. We denote PD as the set of all such
curves pi,j contained in D. The drawing D already naturally defines ≤R

m on the
curves of PD. Consider i, j, j′ ∈ [n] with i < j′ < j and extend the orders ≤R

i in
the following way.

• For pi,j, pi,j′ ∈ Pi \ PD we set pi,j′ ≤R
i pi,j.

• For pi,j, ∈ PD, pi,j′ ∈ Pi \ PD we set pi,j ≤R
i pi,j′ .

• For pi,j′ ∈ PD, pi,j ∈ Pi \ PD we set pi,j′ ≤R
i pi,j.

It is easy to verify that this relation is a total order on Pi. For two new curves,
the order depends only on the relative order of the endpoints of the curves. For
pairs made of new and old curves, the order is given.

Lastly, we will define the remaining signs for curves in P \ PD. We define the
signs similarly as before, in other words, for i, j, k ∈ [n] with i < j < k, we define
σ(i, j, k) = +. Among all such drawings of Kn extending D satisfying relations
≤R

i and the prescribed signs from the previous paragraph, we choose one with
a minimal number of crossings. One can observe that the formal definition now
merges with the description in the sketch of the proof from the second paragraph.

When we draw the remaining curves in this way, we can easily see that any
two curves have at most 2 crossings. This is obvious for the curves contained
in D as D is an extended pseudoparabola drawing. Next, an intersection of two
new curves can only appear on the almost vertical parts as we chose the curves
so that we have a minimal number of crossings. Therefore, new curves can cross
at most once. The last option is to consider a crossing between a new curve and
an original curve of D. This also can happen at most two times as horizontal
parts are away from D and we have only two (almost) vertical parts of each new
curve that can be crossed at most once each as curves are x-monotone.

We are now ready to prove Theorem 15.
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vb1

vg,t

v′g,t

vb2

vg,b v′g,b v′′g,b

y1,t

y1,b
vb3

y2,t

y2,b

yk,t
yk,b

. . .

Figure 2.9: Full curves are given by signs of σ and dashed parts are extensions.

Proof of Theorem 15. Suppose for contradiction that there is a positive integer
C such that for every positive integer n all extended pseudoparabola drawings
of Kn can be characterized by forbidden t-tuples with t ≤ C. For some positive
integers k and m with m > k > t, we construct an extended drawing D of a
graph on m vertices that is not an extended psedoparabola drawing and contains
k vertices y1,b, . . . , yk,b such that by deleting any of them, we obtain an extended
pseudoparabola drawing D; see Figure 2.9 for the construction. By Lemma 16
each of the smaller drawings on m − 1 vertices can be extended to an extended
pseudoparabola drawing of Km−1. Since D is not an extended pseudoparabola
drawing, there is a t-tuple T of its vertices that forms one of the forbidden pat-
terns. Let yc,b be a vertex of D that is not contained among these t vertices.
The vertex yc,b exists as k > t. Let D′ be a drawing obtained from D by re-
moving yc,b. We will show that D′ is an extended pseudoparabola drawing but
still contains the forbidden pattern T . We will then apply Lemma 16 to this ex-
tended pseudoparabola drawing to obtain an extended pseudoparabola drawing
D′′ of Km−1. However, D′′ then contains the forbidden pattern T on t vertices
which contradicts the assumption that these patterns characterize the extended
pseudoparabola drawings of Kn.

Consider the x-monotone drawing D from Figure 2.9 and let σ be its signature
function. We now show that σ is not realizable by an extended pseudoparabola
drawing as extensions of its curves are forced to cross too many times.

We name each yellow and green curve according to its left vertex, that is, a
curve with left vertex v is called γ(v). Note that each yellow and green curve in
Figure 2.9 is uniquely determined by its left vertex. For convenience, we divide
each curve into three parts — its left extension, its inner part, and its right
extension. For yellow curves, the left extension of a curve γ(yi,t) stays below
curve γ(yi+1,t) for i ∈ {1, . . . , k − 1} as they have already crossed twice in the
inner part (given by σ).

Similarly, the left extension of the curve γ(y1,t) stays above curve vb1vb3 as
they also already crossed twice (again given by σ). Moreover, the left extension
of γ(vg,t) stays below the left extension of the curve vb1vb2 as they already crossed
twice. Lastly, the left extension of the curve γ(yk,t) stays below the inner part
of γ(vg,t) as they already crossed twice. Hence, the left extensions of γ(vk,t) and
γ(vg,t) are forced to cross in the neighborhood of the vertex vb1 as can be seen
in Figure 2.9. Therefore, D is not an extended pseudoparabola drawing as the
curves γ(vk,t) and γ(vg,t) intersect 3 times.

To finish the proof, it remains to find the extended pseudoparabola drawing
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vb1

vg,t

v′g,t

vb2

vg,b v′g,b v′′g,b

y1,t

y1,b
vb3

y2,t

yk,t
yk,b

. . .

Figure 2.10: Redrawn figure 2.9 so that left extension of all yellow curves γ(yj,t)
for j ≥ c goes down trough inner curve segment vb1vb3 . On the other hand, all
right extensions of yellow curves γ(yj,t) for j < c go up through the yellow curve
γ(vyk,t).

D′ with signature function σ′. Each curve γ(yi,t) has two vertices yi,t and yi,b

associated with it. There is at least one vertex yi,b which is not included in T as
k > C ≥ t. Therefore, there exists c for which the vertex yc,b is not in T . Hence,
we can redraw D so that curves γ(yc,t) and γ(yc−1,t) do not cross in the inner
part of the curves; see Figure 2.10 where this is illustrated for c = 2. This means
that σ′ is realizable with an extended pseudoparabola drawing D′. Now we can
apply Lemma 16 to obtain also a pseudoparabola drawing D′′ of Km−1 which is
a contradiction as D′′ contains T .

Theorem 15 hence implies that there is no algorithm that checks the realiz-
ability of a signature function by extended pseudoparabola drawing that is based
on checking forbidden patterns of fixed size. One would need to check patterns of
size dependent on the number of vertices n. We recall that such algorithms exist
for pseudoline drawings and simple x-monotone drawings of complete graphs.
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3. Higher degree curves
x-monotone drawings

3.1 Introduction
In this chapter, we generalize our results from the previous chapter to “higher-
degree pseudopolynomial” x-monotone drawings of Kn. An x-monotone drawing
D of a graph G is a d-degree drawing if the edges of D can be drawn as simple x-
monotone curves that intersect each other at most d times. Similarly, an extended
x-monotone drawing D of G is an extended d-degree drawing if the edges of D can
be drawn as unbounded simple x-monotone curves that intersect each other at
most d-times. One can easily see that extended 1-degree drawings are equivalent
to pseudoline drawings and 2-degree drawings are equivalent to pseudoparabola
drawings.

We will prove that a d-degree drawings of Kn with a fixed degree d also admit a
characterization with forbidden patterns of constant size f(d) depending on d and
therefore we can easily obtain a brute force algorithm that checks the realizability
of a d-degree drawing of Kn of the given signature in O(nf(d)). Similarly as for
extended pseudoparabola drawings of Kn, extended higher degree drawings do
not admit such a characterization.

3.2 Bounded d-degree curves
In the following result, we show a similar result to Theorem 5. Theorem 17 states
that d-degree drawings can characterized by forbidden patterns of size d + 3 and
d + 4; see Figure 2.1 for an illustration of this statement.

Theorem 17. A signature function σ ∈ Σn can be realized by bounded d-degree
drawing if and only if there is no ordered (d + 3)-tuple (a1, . . . , ad+3) with a1 <
· · · < ad+3 that satisfies, for all feasible i, j, k, l ∈ [n],

σ(a1, a2i, ad+3) = σ(a1, a2j+1, ad+3) = σ(a1, a2k, ad+2) = σ(a1, a2l+1, ad+3)

or

σ(a1, a2i, ad+3) = σ(a1, a2j+1, ad+3) = σ(a2, a2k, ad+3) = σ(a2, a2l+1, ad+3)

and, additionally, there is no ordered (d + 4)-tuple (a1, . . . , ad+4) with a1 < · · · <
ad+4 that satisfies, for all feasible i, j, k, l ∈ [n],

σ(a1, a2i, ad+3) = σ(a1, a2j+1, ad+3) = σ(a2, a2k, ad+4) = σ(a2, a2l+1, ad+4)

or

σ(a1, a2i, ad+4) = σ(a1, a2j+1, ad+4) = σ(a2, a2k, ad+3) = σ(a2, a2l+1, ad+3).
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Proof. Let D be an x-monotone d-degree drawing of Kn. It is clear that D does
not contain any of the forbidden (d + 3)- or (d + 4)-tuples as otherwise there are
two edges of D that cross more than d times; see Figure 2.1 for d = 2.

To prove the other implication, let σ be a sign function from Σn that does
not contain any of the forbidden (d + 3)- or (d + 4)-tuples. We will start with
Pseudoparabola construction 2.2 that states basic requirements on relations ≤L

i

and ≤R
i which represents relative order of lines pj,k ∈ P = {pj,k : j, k ∈ [n], j ̸= k}

at each Lm. To recall, Pi = {pi,j : j ∈ [n], i ̸= j} is a set curves from P that
contain the vertex vi.

We first specify the relative order of the curves from Pi in the orderings ≤L
i

and ≤R
i . Later, we also specify the relative order of the remaining curves from P

in these two orders.
Definition 4. For i, j, k ∈ [n] with j < k and i /∈ {j, k}, the orders ≤L

i and ≤R
i

on Pi are defined in the following way; see Figure 2.3

• assume i < j < k then consider maximal d′ ∈ [d − 1] such that,

1. there are d′ vertices m1, . . . , md′ satisfying i < m1 < m2 < · · · <
md′−1 < md′ < j, σ(i, m2a+1, j) = −, σ(i, m2a+1, k) = +, σ(i, m2a, j) =
+, and σ(i, m2a, k) = − for all feasible nonnegative integers a. Lastly
σ(i, j, k) = (−)d′.

2. or there are d′ vertices m1, . . . , md′ satisfying i < m1 < m2 < · · · <
md′−1 < md′ < j, σ(i, m2a+1, j) = +, σ(i, m2a+1, k) = −, σ(i, m2a, j) =
−, and σ(i, m2a, k) = + for all feasible nonnegative integers a. Lastly
σ(i, j, k) = (−)d′+1.

We set pi,j ≤R
i pi,k in the first case and pi,k ≤R

i pi,j in the second case.

• assume k < j < i then consider maximal d′ ∈ [d − 1] such that,

1. there are d′ vertices m1, . . . , md′ satisfying j < m1 < m2 < · · · <
md′−1 < md′ < i, σ(j, m2a+1, i) = −, σ(k, m2a+1, i) = +, σ(j, m2a, i) =
+, and σ(k, m2a, i) = − for all feasible nonnegative integers a. Lastly
σ(k, j, i) = (−)d′.

2. or there are d′ vertices m1, . . . , md′ satisfying j < m1 < m2 < · · · <
md′−1 < md′ < i, σ(j, m2a+1, u) = +, σ(k, m2a+1, i) = −, σ(j, m2a, i) =
−, and σ(k, m2a, i) = + for all feasible nonnegative integers a. Lastly
σ(k, j, i) = (−)d′+1.

We set pj,i ≤L
i pk,i in the first case and pk,i ≤L

i pj,i in the second case.

Is is easy that for d′ = 0 one of the two conditions is satisfied and hence the
relations between pi,j and pi,k is set too.

One can easily verify that the relation ≤R
i on Pi is weakly anti-symmetric

since we cannot have pi,j ≤R
i pi,k and pi,k ≤R

i pi,j for distinct curves pi,j, pi,k as by
Definition 4 we would have different signs σ(i, j, k) = − and also σ(i, j, k) = +
which is impossible. Analogously, we can prove that ≤L

i is weakly anti-symmetric.
We will prove that the relations ≤L

i and ≤R
i described in Definition 4 are total

orders at each point i.
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Let pi,j, pi,k be two distinct curves from Pi with j < k. To prove that ≤R
i is a

total order, we will again define for each pair pi,j, pi,k new generalized auxiliary
relation ≤R

i,a. The proof that ≤L
i can be done analogously due to vertical symme-

try. The new relation ≤R
i,a is defined analogously as in Definition 4 but the first

case considers with the only difference that the vertices m1, . . . , mp is restricted
to lie only in the interval a ≤ mp < j for p ∈ {1, . . . , d′}, and not in the whole
interval (i, j); see Figure 2.4.
Definition 5 (Generalized Definition 3). For a, i, j, k ∈ [n] with j < k and
i /∈ {j, k}, the orders ≤L

a,i and ≤R
i,a on Pi are defined in the following way; see

Figure 2.4 for d = 2:

• assume i ≤ a ≤ j < k then consider maximal d′ ∈ [d − 1] such that,

1. there are d′ vertices m1, . . . , md′ satisfying a ≤ m1 < m2 < · · · <
md′−1 < md′ < j, σ(i, m2p+1, j) = −, σ(i, m2p+1, k) = +, σ(i, m2p, j) =
+, and σ(i, m2p, k) = − for all feasible non negative integers p. Lastly
σ(i, j, k) = (−)d′.

2. or there are d′ vertices m1, . . . , md′ satisfying a ≤ m1 < m2 < · · · <
md′−1 < md′ < j, σ(i, m2p+1, j) = +, σ(i, m2p+1, k) = −, σ(i, m2p, j) =
−, and σ(i, m2p, k) = + for all feasible non negative integers p. Lastly
σ(i, j, k) = (−)d′+1.

We set pi,j ≤R
i pi,k in the first case and pi,k ≤R

i pi,j in the second case.

• assume k < j ≤ a ≤ i then consider maximal d′ ∈ [d − 1] such that,

1. there are d′ vertices m1, . . . , md′ satisfying j < m1 < m2 < · · · <
md′−1 < md′ ≤ a, σ(j, m2p+1, i) = −, σ(k, m2p+1, i) = +, σ(j, m2p, i) =
+, and σ(k, m2p, i) = − for all feasible non negative integers p. Lastly
σ(k, j, i) = (−)d′.

2. or there are d′ vertices m1, . . . , md′ satisfying j < m1 < m2 < · · · <
md′−1 < md′ ≤ a and also σ(j, m2p+1, u) = +, σ(k, m2p+1, i) = −,
σ(j, m2p, i) = −, and σ(k, m2p, i) = + for all feasible non negative
integers p. Lastly σ(k, j, i) = (−)d′+1.

We set pj,i ≤L
i pk,i in the first case and pk,i ≤L

i pj,i in the second case.

As we mentioned above, we consider pi,j = pj,i and for simplicity, for a triple
(a, b, c) with a < b < c and any triple (a′, b′, c′) satisfying {a′, b′, c′} = {a, b, c} we
define σ(a′, b′, c′) = σ(a, b, c). We will again state an auxiliary lemma, general-
ization of Lemma 6, to prove the transitivity of ≤R

i . Informally, this lemma says
that two curves pi,j, pi,k cross if and only if there is a vertex a between i and j
with one of the curves above and the other one below while this relative order is
opposite for a + 1.
Lemma 18 (Generalized Lemma 6). For a, i, j, k ∈ [n] with i ≤ a ≤ j < k,
consider two curves pi,j, pi,k. If pi,j ≤R

i,a+1 pi,k, then we have σ(i, a, j) = + and
σ(i, a, k) = − if and only if pi,k ≤R

i,a pi,j.
Similarly, if pi,k ≤R

i,a+1 pi,j, then we have σ(i, a, j) = − and σ(i, a, k) = + if
and only if pi,j ≤R

i,a pi,k.
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Proof. By horizontal symmetry, we can without loss of generality assume the
first case pi,j ≤R

i,a+1 pi,k, σ(i, a, j) = + and σ(i, a, k) = −. Consider maximal d′

witnessing pi,j ≤R
i,a+1 pi,k together with d′ vertices m′

1, . . . , m′
d′ . There are only

two subcases:

1. Either d′ < d and therefore a represents the vertex m1 in the first case
of Definition 5 for pi,k ≤R

i,a pi,j for d′ + 1 with m1 = a and mp = m′
p−1

for p ∈ {2, . . . , d′ + 1}. It can also be seen that if σ(i, a, j) = + and
σ(i, a, k) = − is not true, then there is no change of the relation ≤R

i,a in the
case of Definition 5.

2. Or d′ = d and we have forbidden (d + 3)-tuple (i, a, m′
1, m′

2, . . . , m′
d′ , j, k).

On the other hand, if σ(i, a, j) = + and σ(i, a, k) = − is not true, then
there is no change in the case of Definition 5.

Due to vertical symmetry, we obtain an analogous result for the relation ≤L
a,i.

Lemma 19. For a, i, j, k ∈ [n] with j < k ≤ a ≤ i, consider two curves pi,j, pi,k.
If pj,i ≤L

a−1,i pk,i, then we have σ(j, a, i) = + and σ(k, a, i) = − if and only if
pk,i ≤L

a,i pj,i .
Similarly, if pk,i ≤L

a−1,i pj,i, then we have σ(j, a, i) = − and σ(k, a, i) = + if
and only if pj,i ≤L

a,i pk,i.
Analogously to pseudoparabola drawings, we say that these two curves pi,j, pi,k

from Pi cross between a and a + 1 if pi,j ≤R
i,a+1 pi,k and σ(i, a, j) = + = σ(i, a, k)

or if pi,k ≤R
i,a+1 pi,j and σ(i, a, j) = − = σ(i, a, k). By symmetry, such a crossing

between a − 1 and a appears if pj,i ≤L
a−1,i pk,i and σ(j, a, i) = + = σ(k, a, i) or if

pk,i ≤L
a−1,i pj,i and σ(j, a, i) = − = σ(k, a, i).

Corollary 20. (Generalized Corollary 8) For a, i, j, k ∈ [n] with i ≤ a ≤ j < k
satisfying σ(i, a, j) = + and σ(i, a, k) = − following holds pi,k ≤R

i,a pi,j.
Similarly, if σ(i, a, j) = − and σ(i, a, k) = + following holds pi,j ≤R

i,a pi,k.

Proof. By horizontal symmetry, we can without loss of generality assume that
σ(i, a, j) = +. Then the claim easily follows from Lemma 18 as either pi,j ≤R

i,a+1
pi,k and there is a cross of pi,j, pi,k and hence pi,k ≤R

i,a pi,j due to this lemma or
pi,k ≤R

i,a+1 pi,j and there is no cross of pi,j, pi,k.

And again, by vertical symmetry, we obtain the result for the relations ≤L
i .

Corollary 21. For a, i, j, k ∈ [n] with k < j ≤ a ≤ i satisfying σ(j, a, i) = + and
σ(k, a, i) = − following holds pk,i ≤L

i,a pj,i.
Similarly, if σ(j, a, i) = − and σ(k, a, i) = + following holds pj,i ≤L

a,i pk,i.

We are now ready to prove that the relations ≤R
i,a are transitive, which implies

that the relations ≤R
i are also transitive. By vertical symmetry, we again obtain

the transitivity also for the relations ≤L
i as all the lemmas and corollaries hold

symmetrically for ≤R
i,a and ≤L

a,i too.

Lemma 22 (Generalized Lemma 10). For every i, a ∈ [n] with i ≤ a the relation
≤R

i,a is transitive.
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Proof. The proof is analogous to the proof of Lemma 10. Let i, j, k, l be elements
from [n] with i < j < k < l. Each of the three curves pi,j, pi,k, pi,l. Consider a
satisfying i < a ≤ j. We start with the base case with a = j and then proceed
by induction:

1. If σ(i, j, k) = ξ and σ(i, j, l) = ξ, then we can apply Corollary 20. This
means that pi,k ≤R

i,j pi,l if ξ = − and pi,l ≤R
i,j pi,k if ξ = +. Also pi,j ≤R

i,j pi,l

(pi,l ≤R
i,j pi,j, respectively) and pi,k ≤R

i,j pi,j (pi,j ≤R
i,j pi,k, respectively) as

there is no vertex m that is considered in Definition 5. Hence we end up with
a transitive order pi,k ≤R

i,j pi,j ≤R
i,j pi,l (pi,l ≤R

i,j pi,j ≤R
i,j pi,k, respectively).

2. If σ(i, j, k) = ξ and σ(i, j, l) = ξ, then we can deduce that pi,j ≤R
i,j pi,k and

pi,j ≤R
i,j pi,l if ξ = + and pi,k ≤R

i,j pi,j and pi,l ≤R
i,j pi,j if ξ = −, as there is

no vertex m that is considered in Definition 5. Then

(a) either pi,k ≤R
i,j pi,l holds and we get pi,j ≤R

i,j pi,k ≤R
i,j pi,l (pi,k ≤R

i,j

pi,l ≤R
i,j pi,j, respectively) which gives the transitivity.

(b) or pi,l ≤R
j pi,k and then pi,j ≤R

j pi,l ≤R
j pi,k (pi,j ≤R

i,j pi,l ≤R
i,j pi,k,

respectively) holds which gives the transitivity.

Now, we proceed with the induction step; see Figure 2.5. Assume we have
the vertex m with i < m < j. We use integers a, b, c with {a, b, c} = {j, k, l}
to denote permutation of i, j, k. We assume that pi,a ≤R

i,m+1 pi,b ≤R
i,m+1 pi,c and

pi,a ≤R
i,m+1 pi,c.

1. The simplest case happens when the signs of the curves pi,a, pi,b, pi,c with
respect to vertex m do not cause a crossing between m + 1 and m. Then
none of these pairs changes the order, so we have pi,a ≤R

i,m pi,b ≤R
i,m pi,c and

pi,a ≤R
i,m pi,c.

2. Curves pi,c and pi,b cross, (that is σ(i, m, c) = − and σ(i, m, b) = +) and
then either

(a) σ(i, m, a) = − and hence the order between pi,a, pi,b and pi,a, pi,c stays
the same due to Lemma 18. Then we have pi,a ≤R

i,m pi,c ≤R
i,m pi,b and

pi,a ≤R
i,m pi,b as pi,b and pi,c is the only pair that changed the order.

(b) σ(i, m, a) = + and therefore pi,c crosses both pi,b and pi,a. The curves
pi,a and pi,b do not cross due to Lemma 18. Then we have pi,c ≤R

i,m

pi,a ≤R
i,m pi,b and pi,c ≤R

i,m pi,a.

3. By horizontal symmetry, we can solve the case where pi,b crosses pi,a as they
have the same relative order as pi,c and pi,b.

4. If pi,a crosses pi,c then, also either pi,b crosses pi,c or pi,a depending on the
sign σ(i, m, b). Nevertheless, we have already solved both these cases the
second step, so we are done.

We have completed the induction step and the base case too. Therefore, we
know that there is a transitive order of three curves pi,j, pi,k, pi,l at vertex i + 1.
Since we now know that ≤R

i,i+1 is transitive and since ≤R
i =≤R

i,i=≤R
i,i+1, the order

≤R
i from Definition 4 is transitive on Pi.
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We have completed the induction step and the base case too. Therefore, we
know that there is a transitive order of three curves pi,j, pi,k, pi,l at vertex i + 1.
Since we now know that ≤R

i,i+1 is transitive and since ≤R
i =≤R

i,i=≤R
i,i+1, the order

≤R
i from Definition 4 is transitive on Pi.

Observe that the relations ≤R
m and ≤L

m are reflexive on Pm. Altogether we
know that ≤R

m and ≤L
m are reflexive, anti-symmetric, transitive, and total, thus

they are total orders.
Similarly to pseudoparabola drawings, it is easy to see that orders ≤R

m and
≤L

m specify the relative position of curves with respect to vertices, but the relative
position of the curves is still completely specified. We again choose a drawing D
of Kn that obeys all the required conditions from ≤R

m and ≤L
m and additionally

minimizes the total number of crossings of the curves.
The proofs of Lemma 11 and Corollary 12 depend only on the minimality of

number of crossing of D hence these results also hold for the d-degree drawing D
with a minimal number of crossings without any change in the proofs.

Claim 23. Any two curves that share a point vi cross at most d times.

Proof. Suppose that for some j, k ∈ [n] \ {i} with j < k, the curves pi,j and pi,k

cross more than d times. By symmetry, we may assume that i < k and that
pi,j ≤R

i pi,k.
We have only two cases due to Lemma 11 as there cannot be any empty bigon

except for the first one containing vertex i; see Figure 2.7 for d = 2.

1. There are at least d consecutive bigons with points m1, . . . , md in their
interiors and therefore (i, m1, . . . , md, k, l) forms one of the forbidden (d+3)-
tuples from the statement of Theorem 17.

2. We have d bigons. The first bigon from left is without a point in its interior
and the other d − 1 bigons contain vertices m1, . . . , md−1, respectively, in
their interior due to Corollary 12. However, this contradicts pi,j ≤R

i pi,k as
σ(i, m2p+1, j) = +, σ(i, m2p+1, k) = − and σ(i, m2p, j) = −, σ(i, m2p, k) = +
for all feasible nonnegative integers p and lastly σ(i, j, k) = (−)d−1. The
d − 1 is greatest possible d′ to consider in Definition 4 hence m1, . . . , md

truly witness the maximum.

Claim 24. For any pairwise distinct integers i, j, k, l from [n], the curves pi,j and
pk,l do not intersect more than d times.

Proof. Suppose for contradiction that pi,j and pk,l cross at least d + 1 times and
hence form at least d smooth bigons B1, B2, . . . , Bd numbered from left. Hence,
by Corollary 12, B1, B2, . . . , Bd contain points m1, m2, . . . , md inside, respectively.
Without loss of generality, assume that i < k. Then

1. j < l and d is even. Consequently, we have σ(i, k, j) = σ(i, m1, j) =
σ(i, m2, j) = · · · = σ(i, md−1, j) = σ(i, md, j) = σ(k, m1, l) = σ(k, m2, l) =
· · · = σ(k, md−1, l) = σ(k, md, l) = σ(k, j, l), which forms a forbidden (d+4)-
tuple (i, k, m1, . . . , md, j, l).

27



2. j < l and d is odd. Consequently, we have σ(i, k, j) = σ(i, m1, j) =
σ(i, m2, j) = · · · = σ(i, md−1, j) = σ(i, md, j) = σ(k, m1, l) = σ(k, m2, l) =
· · · = σ(k, md−1, l) = σ(k, md, l) = σ(k, j, l), which forms a forbidden (d+4)-
tuple (i, k, m1, . . . , md, j, l).

3. l < j and d is even. Consequently, σ(i, k, j) = σ(i, m1, j) = σ(i, m2, j) =
· · · = σ(i, md−1, j) = σ(i, md, j) = σ(i, l, j) = σ(k, m1, l) = σ(k, m2, l) =
· · · = σ(i, md−1, j) = σ(i, md, j), which forms a forbidden (d + 4)-tuple
(i, k, m1, m2, . . . , md, l, j).

4. l < j and d is odd. Consequently, σ(i, k, j) = σ(i, m1, j) = σ(i, m2, j) =
· · · = σ(i, md−1, j) = σ(i, md, j) = σ(i, l, j) = σ(k, m1, l) = σ(k, m2, l) =
· · · = σ(i, md−1, j) = σ(i, md, j), which forms a forbidden (d + 4)-tuple
(i, k, m1, m2, . . . , md, l, j).

Altogether, we see that any two curves from D cross at most d times. Thus, we
have finished the proof of the other implication from the statement of Theorem 17.

All the forbidden (d + 3)-tuples and (d + 4)-tuples from the statement of
Theorem 17 are necessary. We call a signature function σ realizable by a d-degree
drawing if there is a d-degree drawing with σ as its signature function.

Consider a signature that is not realizable by a d-degree drawing with one of
the forbidden (d + 3)-tuples from the statement of Theorem 17 on the first d + 3
vertices and with the rest of the signs set to +. This signature does not contain
any forbidden (d+4)-tuple from the statement of Theorem 17 as there are no two
independent curves with alternating signs. Hence, the forbidden (d + 4)-tuples
are not sufficient by themselves.

Analogously, we can show that the forbidden (d + 3)-tuples are also not suf-
ficient by themselves. Consider a signature that is not realizable by a d-degree
drawing with one of the forbidden (d + 4)-tuples from the statement of Theorem
17 on the first d+4 vertices and with the rest of the signs set to +. This signature
does not contain any forbidden (d + 3)-tuple from the statement of Theorem 17
as there are no two adjacent curves with alternating signs.

3.3 Extended d-degree x-monotone drawings
Similarly to Theorem 15, one could expect that there is no characterization of
extended d-degree drawing by finite forbidden configurations. Indeed, we will
show that there is no such characterization. The following theorem generalizes
Theorem 15 but needs to distinguish cases for odd and even d.

Theorem 25 (Generalized Theorem 15). For extended d-degree drawing, there
does not exist a set of forbidden t-tuples, where t ≤ C for some fixed constant C.

Proof. Suppose for contradiction that there is a positive integer C such that for
every positive integer n all extended d-degree drawings of Kn can be characterized
by forbidden t-tuples with t ≤ C. For some positive integers k and m with
m > k > t, we construct an extended drawing D of a graph on m vertices that is
not an extended d-degree drawing and contains k vertices y1,b1 , . . . , yk,b1 such that
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vb1

vg,t

v′g,t

vb2

vg,b v′g,b v′′g,b

y1,t1

y1,b1

vb3

y2,t1

y2,b1

yk,t1
yk,b1

. . .

Figure 3.1: Full curves are given by signs of σ and dashed parts are extensions
for even d.

vb1
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v′g,t
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vg,b
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v′′g,b

v′′g,t

vb3

y1,t1

y1,b1

y1,t2

y2,t1
y2,b1

y2,t2
yk,t1

yk,b1

yk,t2

Figure 3.2: Full curves are given by signs of σ and dashed parts are extensions
for odd d.

by deleting any of them, we obtain an extended d-degree drawing; see Figure 2.9
for the construction. By Lemma 16 each of the smaller drawings on m−1 vertices
can be extended to an extended d-degree drawing of Km−1. Since D is not an
extended d-degree drawing, there is a t-tuple of its vertices that forms one of the
forbidden patterns. Let yc,b1 be a vertex of D that is not contained among these
t vertices. The vertex yc,b1 exists as k > t. Let D′ be a drawing obtained from D
by removing yc,b1 . We will show that D′ is an extended d-degree drawing. We will
then apply Lemma 16 to this extended d-degree drawing to obtain an extended
d-degree drawing D′′ of Km−1. However, D′′ then contains the forbidden pattern
T on t vertices which contradicts the assumption that these patterns characterize
the extended d-degree drawings of Kn.

Consider the x-monotone drawing from Figure 3.1 (Figure 3.2) and let σ be
its signature function. We now show that σ is not realizable by an extended
d-degree drawing as extensions of its curves are forced to cross too many times.

We name each yellow and green curve according to its left vertex, that is, a
curve with left vertex v is called γ(v). Note that each yellow and green curve in
Figure 3.1 (Figure 3.2) is uniquely determined by its left vertex. For convenience,
we divide each curve into three parts — its left extension, its inner part, and its
right extension. For yellow curves, the left extension of a curve γ(yi,t1) stays
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below curve γ(yi+1,t1) for i ∈ {1, . . . , k − 1} as they have already crossed d times
in the inner part (given by σ).

Similarly, the left extension of the curve γ(y1,t1) stays above curve vb1vb3 as
they also already crossed d times (again given by σ). Moreover, the left extension
of γ(vg,t) stays below the inner part of the curve vb1vb2 as they already crossed d
times. Lastly, the left extension of the curve γ(yk,t1) stays below the inner part
γ(vg,t) as they already crossed d times. Hence, the left extensions of γ(vk,t1) and
γ(vg,t) are forced to cross in the neighborhood of the vertex vb1 as can be seen in
Figure 3.1 (Figure 3.2). Therefore, D is not an extended d-degree drawing as the
curves γ(vk,t1) and γ(vg,t) intersect d + 1 times.

vb1

vg,t

v′g,t

vb2

vg,b v′g,b v′′g,b

y1,t1

y1,b1

vb3

y2,t1

yk,t1
yk,b1

. . .

Figure 3.3: Redrawn figure 3.1 so that left extension of all yellow curves γ(yj,t1)
for j ≥ c goes down trough inner curve segment vb1vb3 . On the other hand, all
right extensions of yellow curves γ(yj,t1) for j < c go up through the yellow curve
γ(vyk,t1).

vb1

vg,t

v′g,t

vb2

vg,b

v′g,b

v′′g,b

v′′g,t

vb3

y1,t1

y1,b1

y1,t2

y2,t1

y2,t2
yk,t1

yk,b1

yk,t2

Figure 3.4: Redrawn figure 3.2 so that left extension of all yellow curves γ(yj,t1)
for j ≥ c goes down trough inner curve segment vb1vb3 . On the other hand, all
right extensions of yellow curves γ(yj,t1) for j < c go down through the yellow
curve γ(vyk,t1).

To finish the proof, it remains to find the extended d-degree drawing D′ with
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its signature function σ′. Each curve γ(yi,t1) has d vertices yi,t1 , yi,b1 , . . . , yi,td/2 ,
yi,bd/2 (yi,t1 , yi,b1 , . . . , yi,t⌈d/2⌉) associated with it. There is at least one vertex yi,b1

which is not included in T as k > C ≥ t. Therefore, there exists c for which
the vertex yc,b1 is not in T . Hence, we can redraw D so that curves γ(yc,t1) and
γ(yc−1,t1) do not cross in the inner part of the curves; see Figure 3.3 (Figure
3.4) where this is illustrated for c = 2. This means that σ′ is realizable with
an extended d-degree drawing D′. Then we can apply Lemma 16 to obtain the
extended d-degree drawings D′′ which is a contradiction as D′′ contains T .

Similarly as before, Theorem 25 hence implies that there is no algorithm that
checks the realizability of a signature function by extended d-degree drawing that
is based on checking forbidden patterns of fixed size. One would need to check
patterns of size dependent on the number of vertices n.
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4. Independent generalisation
x-monotone drawings

4.1 Introduction
In this chapter, we generalize our results from the previous chapter even more to
“higher-degree pseudopolynomial” x-monotone drawings of Kn where the allowed
number of crossings for adjacent and independent edges can be different.

For integers di ≥ 0 and da ≥ 1, an x-monotone drawing D of a graph G is
a (da, di)-degree drawing if the edges of D can be drawn as simple x-monotone
so that adjacent curves intersect each other at most da times and independent
curves intersect each other at most di times. Similarly, an x-monotone drawing D
of a graph G is a extended (da, di)-degree drawing if the edges of D can be drawn
as unbounded simple x-monotone so that adjacent curves intersect each other at
most da times and independent curves intersect each other at most di times.

We will first show the result for (extended) (d, 0)-degree drawings as it turns
out that this class is rather trivial.

4.2 (Extended) (d, 0)-degree drawings

v1 v2 v3 v4 v5

Figure 4.1: Up to vertical and horizontal symmetries due to Lemma 26 unique
(d, 0)-degree drawing

We show this class admits only drawings of Kn with n ≤ 4.

Lemma 26. Let σ ∈ Σn be a signature function such that is realizable by a
(extended) (d, 0)-degree drawing. Then for any i, j, k ∈ [n] with i < k < j, σ
cannot change the sign between k and k + 1, that is, σ(i, k, j) = ξ and σ(i, k +
1, j) = ξ.

Proof. The change of sign of pi,j between k and k + 1 means that the portion of
the curve pi,j to the left of the vertex k is on the opposite side of pk,k+1 than its
right portion to the right of k + 1. Therefore, there is a crossing between two
independent curves pk,k+1 and pi,j, which is not allowed since di = 0.
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We can see that the drawing D of K4 from Figure 4.1 is unique up to sym-
metries and a suitable homeomorphism. We can easily see that curve p2,5 in Kn

for n ≥ 5 cannot be drawn to extend D. It suffices to consider only two cases
as σ cannot change the sign due to Lemma 26. Hence, both the bounded and
extended class of (d, 0)-degree drawings has only a finite set of allowed patterns.

4.3 Bounded (da, di)-degree drawings
Here, we will show that bounded (da, di)-degree drawings can always be charac-
terized by finite forbidden patterns for any values of da and di.

4.3.1 (1, 1)-degree drawings and (1, ∞)-degree drawings
These classes are already described by finite forbidden patterns in Theorem 3 as
simple and semisimple x-monotone drawings, respectively.

4.3.2 (da, di)-degree drawings
We now state Theorem 27 which generalizes Theorem 17. In particular, for the
choices da = 1, di = 1 and da = 1, di = ∞ gives a characterization by forbidden
patterns for the classes of simple and semisimple, respectively, drawings.

Theorem 27. For integers da ≥ 1 and di ≥ 1, a signature function σ ∈ Σn can
be realized by a bounded (da, di)-degree drawing if and only if there is no ordered
(da + 3)-tuple (a1, . . . , ad+3) with a1 < · · · < ada+3 that satisfies, for all feasible
i, j, k, l ∈ [n],

σ(a1, a2i, ada+3) = σ(a1, a2j+1, ada+3) = σ(a1, a2k, ada+2) = σ(a1, a2l+1, ada+3)

or

σ(a1, a2i, ada+3) = σ(a1, a2j+1, ada+3) = σ(a2, a2k, ada+3) = σ(a2, a2l+1, ada+3)

and, additionally, there is no ordered (di +4)-tuple (a1, . . . , adi+4) with a1 < · · · <
adi+4 that satisfies, for all feasible i, j, k, l ∈ [n],

σ(a1, a2i, adi+3) = σ(a1, a2j+1, adi+3) = σ(a2, a2k, adi+4) = σ(a2, a2l+1, adi+4)

or

σ(a1, a2i, adi+4) = σ(a1, a2j+1, adi+4) = σ(a2, a2k, adi+3) = σ(a2, a2l+1, adi+3).

We only sketch the proof of Theorem 27. Note that all lemmas and corollaries
in the proof of Theorem 17 hold independently for adjacent and independent
curves. Hence, it suffices to proceed in the same way, we only apply the lemmas
that work with adjacent curves with parameter da and the ones that work with
independent curves with parameter di.
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4.4 Extended (da, di)-degree drawings
In this section, we sketch the proof of the following result. For any di ≥ 1, the class
of extended (1, di)-degree drawings admits a characterization by finite forbidden
patterns, while for any da ≥ 2 and di ≥ 1 the class of extended (da, di)-degree
drawings does not admit any such characterization.

4.4.1 Extended (1, 1)-degree drawings
Similarly, as in Subsection 4.3.1, this class has already been described by finite
forbidden patterns in Theorem 1.

4.4.2 Extended (1, d)-degree drawings with d ≥ 2

v1 v2 v1 v2

Figure 4.2: Up to symmetry, both cases of the drawings that can be obtained
from the pattern ξξξξ depending on whether the right extension of the curve p1,2
is below or above the curve p2,4 at vertex v2. Therefore, the pattern ξξξξ is not
realizable by (1, d)-degree drawings of Kn.

We will show that the forbidden patterns of (1, d)-degree drawings are the
same as for pseudoline drawings.

Theorem 28. A signature function σ ∈ Σn can be realized by a (1, d)-degree
drawing if and only if every ordered 4-tuple of indices from [n] is of one of the
forms

++++, −−−−, ++−−, −−++,

−−−+, +++−, +−−−, −+++

in σ.

By Theorem 28, the forbidden patterns in (1, d)-degree drawings are of the
form

+−++, +−+−, −+−−, −+−+,

++−+, −−+−, +−−+, −++−.

That is, those are exactly the forbidden patterns that appear in Theorem 1.

Proof. We can start with the forbidden patterns of form ξξξζ and ζξξξ. Their
realizability forces adjacent curves to cross and therefore are forbidden for this
drawing class. The other forbidden patterns from the statement of Theorem 1
and also Theorem 28 are of form ξξξξ. Here we need to show more carefully

34



that it is not realizable by (1, d)-degree drawings; see Figure 4.2. Hence we have
shown the forbidden patterns from the statement of Theorem 1 are also forbidden
patterns for this class of drawings.

On the other hand, suppose we have a signature function σ without forbidden
patterns from the statement of Theorem 28. As these are the same forbidden
patterns as in the statement of Theorem 1 we can apply this theorem to prove
that σ is realizable by pseudolinear drawing of Kn which is, by definition, also
(1, d)-degree drawing for d ≥ 1.

Hence, we have proved that the class of (1, d)-degree drawings has the same
characterization by forbidden patterns as the class of pseudolinear drawings.

4.4.3 Extended (d, 1)-degree drawings with d ≥ 2
Analogously to Theorem 15 we will formulate a similar Theorem 29, but the proof
will be a little bit more technical.

Theorem 29. Let d be an integer with d ≥ 2. Then for extended (d, 1)-degree
drawings, there does not exist a set of forbidden t-tuples, where t ≤ C for some
fixed constant C.

v1 v2

vkvk−1· · ·a

b c

Figure 4.3: Full curves are given by signs of σ and dashed parts are extensions.

Proof. Similarly as in the proof of Theorem 15, suppose for contradiction that
there is a positive integer C such that for every positive integer n all extended
(d, 1)-degree drawings of Kn can be characterized by forbidden t-tuples with t ≤
C. For some even positive integer k and a positive integer m with m > k > t, let
D be an extended drawing of a graph on m vertices from Figure 4.3. We show
that D is not an extended (d, 1)-degree drawing and contains k vertices v1, . . . , vk

such that by deleting any of them, we obtain an extended (d, 1)-degree drawing.
By case analysis, each of the smaller drawings on m − 1 vertices can be extended
to an extended (d, 1)-degree drawing of Km−1. Since D is not an extended (d, 1)-
degree drawing, there is a t-tuple of its vertices that forms one of the forbidden
patterns. Let vc be a vertex of D that is not contained among these t vertices.
The vertex vc exists as k > t. Let D′ be a drawing obtained from D by removing
vc.

We will show that D′ is an extended (d, 1)-degree drawing. In this case, we
cannot apply Lemma 16. We will do some casing to prove that D′ can be extended
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to an extended (d, 1)-degree drawing D′′ of Km−1. Then, however, D′′ contains
the forbidden pattern T on t vertices which contradicts the assumption that these
patterns characterize the extended (d, 1)-degree drawings of Kn.

Let σ be the signature function of D. We now show that σ is not realizable by
an extended (d, 1)-degree drawing as extensions of its curves are forced to cross
too many times.

We denote by γ(vi) the curve from D with left vertex vi. We can see that the
left extension of v1v4 needs to go up before curve av2 as these independent curves
already crossed each other. Analogously, left extension of each curve γ(v2i+1),
goes up before left extension of γ(v2i−1) for all feasible integers i. Hence the left
extension of the curve vk−1c and the curve ab are forced to cross for a second time,
which is in contradiction with realizability by a (d, 1)-degree drawing as vk−1c and
ab are independent. Therefore, D is not an extended (d, 1)-degree drawing.

v2 v3 v5

v4

u4

v1

u2

u1
u2

v1
v2

v3
v4

v1
v2

v3
v4

v1 v2 u1u2

v1
v2

v3
u1

v1

v2 v3
u1

v1

v2 v3
u1

Figure 4.4: Redrawn Figure 4.3 so that left extension of curves vivj go up trough
inner curve segment v1u2 and all right extensions of vivj go down the gap between
last u and last v vertex. Analogously for uiuj curves, left extensions go down and
the right go up. Below we can see a case analysis of possible crossings.

To finish the proof, it remains to find the extended (d, 1)-degree drawing D′
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with its signature function σ′. There is at least one vertex vi which is not included
in T as k > C ≥ t. Therefore, there exists c for which the vertex vc is not in
T . We can therefore omit one of the curves of four consecutive vertices whose
endpoint is vc which splits vis into two groups. We will label the vertices to the
left to the gap as vis numbered from the left and the vertices to the right to the
gap as uis numbered from the right. Hence, we can redraw D so that the left
extension of vk−1c does not cross in the inner part of the curve ab; see Figure 4.4.

We will now extend the drawing D′ so that it is a drawing of Km−1. The
remaining curves with both vertices of type v will have all signs − in the inner
part and the left extension will go up so that we cause a minimal number of
crossings. The right extension will go below each of the vertices until it reaches
the gap and then go down. Similarly, curves with both u type vertices will do
the same but with left and right extensions having the opposite behavior. Lastly,
curves with one u and one v vertices will have both extensions going down and the
inner part will have all signs equal to +. We can see that none of the independent
curves cross more than once; see the case analysis at the bottom of Figure 4.4.

A similar case analysis can be done for adjacent curves where we merge two
out of the four vertices. Then one new crossing can occur because the extensions
could go immediately to the opposite side than their inner part. However, only
one such a crossing can occur, as if there were two, could swap the order at the
joined vertex and reduce it to zero. Nevertheless d ≥ 2, hence that means σ′ is
realizable with an extended (d, 1)-degree drawing D′.

4.4.4 Extended (da, di)-degree drawings with da ≥ 2 and
di ≥ 2

One can easily see that in the proof of Lemma 16 it is only necessary to have
da, di ≥ 2. Then it only suffices to realize that the construction of σ in the proof
of Theorem 25 is based only on independent edges; see Figures 3.1 and 3.2. We
will therefore generalize Theorem 25.

Theorem 30 (Generalized Theorem 25). Let da, di be integers with da ≥ 2 and
di ≥ 2. For extended (da, di)-degree drawing, there does not exist a set of forbidden
t-tuples, where t ≤ C for some fixed constant C.

We can apply Theorem 25 for d = di to obtain that extended (da, di)-degree
drawings with da ≥ 2 and di ≥ 2 cannot be characterized by finite forbidden
patterns.
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5. Conclusion
In this thesis, we have generalized the characterization by forbidden patterns.
Bounded (da, di)-degree drawings can always be characterized by finite forbidden
patterns for any values of da and di. On the other hand, extended (da, di)-
degree drawings can be characterized by finite forbidden patterns only for di = 0
or da ≤ 1. In other cases the characterization by finite forbidden patterns is
impossible.

For classes where characterization by finite forbidden patterns is possible,
there is an algorithm that checks the realizability of a signature function by
(da, di)-degree drawing that is based on checking forbidden patterns of fixed size.
For classes that do not allow such characterization, such an algorithm does not
exist.

In this thesis, we were looking for forbidden patterns to characterize the sig-
nature function of many classes of x-monotone drawings. Another interesting
question appears when one would like to do it from the opposite point of view.

We can consider, for example, generalized signotopes. It would be really
interesting to have a geometric representation for generalized signotopes (see
Subsection 1.3.1 for the definition) on 4-tuples. We can also proceed to an even
more general version. For positive integers r, k with k ≤ r, we can consider a class
of (r, k)-generalized signotopes where on each (r + 1)-tuple at most k changes of
the sign are allowed. Such a class of signature functions deserves known geometric
characterization.

Following a similar direction as Miyata [5], one can also generalize k-inter-
secting pseudoconfiguration of points and relax the third condition in its definition
to allow intersecting at most k′ times with k′ > k. It would be interesting to know
if this class of drawings can be combinatorially characterized.
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