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Introduction
Discontinuous Galerkin method is method developed for solving the partial dif-
ferential equations. The principle of the method is to use partitioning (mesh) of
the computational domain into finite number of elements, where we approximate
the solution using polynomials of some degree. The standard conforming finite
element method approximates the solution by functions, that are piecewise poly-
nomial on the mesh and that are continuous in the whole domain. This is not the
case of the DGM, which is based on a piecewise polynomial but discontinuous
approximation. In order to guarantee the well-posedness of the numerical scheme,
we have to introduce some term, which mimics the continuity on the boundaries
of the elements. This term is called the interior penalty.

The discretization of the partial differential equation leads to a large sparse
algebraic system, which is usually solved by a suitable iterative solver. The
solution of algebraic systems exhibits usually the most time consuming part of
the whole computational process.

The domain decomposition method was developed in the end of 19th century
for the computation of partial differential equations, see the article Schwarz [1870].
Nowadays it is being studied again to use with modern numerical methods, where
we must deal with large problems and the use of the supercomputers need the
parallelization of the computations to be efficient. The DDM decomposes the
computational domain into smaller subdomains, where the problem is computed
separately and then it is put back together. There are also many versions of
DDM, so we will only focus on the Additive Schwarz (AS) method. In particular,
we analyze and numerically verify the AS preconditioners, which significantly
reduce the computational costs of iterative solvers.

In the first chapter we introduce the DGM on a model problem. The analysis
can be extended to more complicated problems with different boundary condi-
tions. We prove the continuity and coercivity of the billinear form from DGM,
since these two properties are necessary for the condition number bounds. In
the second chapter, we formulate the Additive Schwarz method and using three
assumptions on the local solvers we obtain the condition bounds for the precon-
ditioned system arising from DGM. In the final chapter we introduce the results
of numerical experiments performed to back up the analysis.
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List of used notation

N natural numbers
R real numbers
∇ gradient

∂Ω boundary of domain Ω
Ω closure of domain Ω

λ(A) eigenvalue of bilinear form A
λ(A) eigenvalue of matrix A

κ(A) condition number of billinear form A
κ(A) condition number of matrix A

x · y scalar product of two vectors x, y

3



1. Discontinuous Galerkin
Method
In this chapter, we introduce Discontinuous Galerkin method for the numerical
solution of a model problem. We slightly extend the results from the monograph
(Doleǰśı and Feistauer [2015]) which will be used later in the analysis of the
domain decomposition method.

1.1 Model Problem
By Ω ⊆ Rd, d = 2, 3, we denote a bounded domain with polygonal, Lipschitz
boundary ∂Ω. We use the notation L2(Ω) for the space of square integrable
Lebesgue functions and W s,p(Ω), 1 ≤ p ≤ ∞, s ∈ N for the Sobolev spaces. In
particular we set Hs(Ω) := W s,2(Ω) , s > 0. We denote by | · |s,Ω and ∥ · ∥s,Ω the
standard Sobolev seminorm and norm, respectively, defined on Hs(Ω). Moreover,
we denote by H1

0 (Ω) the space of functions from H1(Ω) that have zero trace on
the boundary ∂Ω. Finally, we denote by (·, ·)Ω the standard inner product in
[L2(Ω)]d.

We consider the following problem. Let f = f(x) ∈ L2(Ω) be given, we seek
u = u(x) such that

−div(K∇u) = f in Ω (1.1)
u = 0 on ∂Ω, (1.2)

where K = K(x) is a symmetric positive definite matrix in Rd×d. We assume
that ∃k0, k1 > 0 such that,

k0|ξ| ≤ |Kξ| ≤ k1|ξ| ∀ξ ∈ Rd. (1.3)

For simplicity, we consider homogeneous Dirichlet boundary condition on ∂Ω,
but the results can by simply extended to a more general case. For the complete-
ness we state the definition of the weak solution.

Definition 1 (Weak solution). A weak solution of problem (1.1) is function u ∈
H1

0 (Ω), that satisfies the following identity∫︂
Ω

K∇u · ∇v dx =
∫︂

Ω
fv dx ∀v ∈ H1

0 (Ω). (1.4)

The existence of the weak solution can be proven by the Lax-Milgram lemma.

1.2 Discontinuous Galerkin discretization

1.2.1 Partitioning of domain Ω
Let Th, h > 0 be a partition of Ω into a finite number of closed d-dimensional
non-overlapping simplexes K, such that⋃︂

K∈Th

K = Ω. (1.5)
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Every element K ∈ Th is an image of fixed master element K̂, and K̂ is the
open unit d-simplex in Rd. In d = 3, K is a tetrahedron, but we call it triangle.
The partition Th is called a triangulation of Ω, we do not assume the standard
conforming properties, so we are allowing hanging nodes in the triangulation.
Further we will use following notation. We denote by ∂K the boundary of element
K and hK as its diameter. We set h = maxK∈Th

hK .
Let K, K ′ ∈ Th. We say that K and K ′ are neighboring elements of the

triangulation Th, if ∂K ∩ ∂K ′ has a positive d − 1 dimensional measure. We say
that γ ⊂ ∂K is a face of element K, if γ is maximal connected subset of either
∂K ∩∂K ′, for K ′ neighboring element of K, or ∂K ∩∂Ω. The (d−1) dimensional
Lebesgue measure of γ we denote as |γ| and the same notation will also be used
for the d dimensional Lebesgue measure of the simplex K.

Further, let Fh denote the union of all faces (d = 3) or edges (d = 2) of all
triangles in the triangulation Th. We will use the term ”face” even for d = 2 in
the following text for simplicity. Furthermore we will distinguish between interior
and boundary faces as

• the set of boundary faces denoted by
FB

h = {γ ∈ Fh : γ ⊂ ∂Ω}, (1.6)

• and the set of inner faces denoted by
F I

h = Fh \ FB
h . (1.7)

Let p := {pK : K ∈ Th} be a set of integers that assigns to each element
of triangulation its polynomial degree of approximation. We also assume that
the polynomial order has local bounded variant. Which means that there exists
constant CV > 0, such that

pK1

pK2

≤ CV , (1.8)

for any pair of elements K1 and K2 sharing a face.
In some theorems we will use the broken Sobolev space defined by the following

for s ∈ N
Hs(Ω, Th) := {v ∈ L2(Ω) : v|K ∈ Hs(K) ∀K ∈ Th}. (1.9)

For v ∈ Hs(Ω, Th), we define the the norm
∥v∥2

Hs(Ω,Th) =
∑︂

K∈Th

∥v∥2
s,K (1.10)

and the seminorm
|v|2Hs(Ω,Th) =

∑︂
K∈Th

|v|2s,K . (1.11)

We define the space of discontinuous piecewise polynomial functions as
Shp := {v ∈ L2(Ω) : v|K ∈ PpK

(K)∀K ∈ Th}, (1.12)
where PpK

(K) denotes the space of polynomials of degree less than pK on K.
Furthermore we have that

Shp ⊂ Hs(Ω, Th), s ∈ N. (1.13)
For the sake of simplicity we will use in text the generic constant C > 0, that
does not depend on h and p. The constants that are somewhat important, will
have assigned index.
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Jump notation

Let v ∈ Hs(Ω, Th) and q ∈ [Hs(Ω, Th)]d, s ∈ N, be a vector and scalar valued
functions smooth in the interior of K ∈ Th. We denote by v± and q± the trace of
functions v and q on two neighboring elements K+, K− ∈ Th sharing interior face
γ. Using this notation we will introduce definition of jump [·] and mean value ⟨·⟩
of function on faces as

[v] = v+n+ + v−n−,

⟨v⟩ = 1
2(v+ + v−),

[q] = q+ · n+ + q− · n−,

⟨q⟩ = 1
2(q+ + q−),

(1.14)

where n± denotes unit outward normal for an element K± respectively. On a
boundary face γ ∈ FB we define jump and mean value in the following way
[v] = vn, [q] = q · n, ⟨v⟩ = v, ⟨q⟩ = q.

Asumption on meshes

We consider a system of triangulation {Th}h∈(0,h̄), h̄ ≥ 0. The following assump-
tion are used for the continuity of bilinear form, that we will get from DGM
discretization.

• The system of triangulation {Th}h∈(0,h̄), h̄ ≥ 0 is shape - regular if there
exist constant CR such that

hK

ρK

≤ CR ∀K ∈ Th ∀h ∈ (0, h̄). (1.15)

Moreover we need to introduce the quantity hγ for γ ∈ Fh, which is a counterpart
to hK on the faces. For this quantity we will assume the equivalence condition.

• The system of triangulations {Th}h∈(0,h̄) satisfy the equivalence condition, if
there exists constants CU ≥ 0 and CL ≥ 0 such that

CLhK ≤ hγ ≤ CUhK ∀K ∈ Th ∀γ ∈ Fh, γ ⊂ ∂K ∀h ∈ (0, h̄). (1.16)

The equivalency condition (1.16) can be fulfilled by the suitable choice of hγ

based on additional assumption on the family of triangulations {Th}h∈(0,h̄). For
example:

• If faces γ ⊂ ∂K do not degenerate with respect to the diameter of K, h → 0,
we can rewrite it as:

∃Cd ≥ 0 such that hK

diam(γ) ≤ Cd ∀K ∈ Th, ∀γ ∈ Fh, γ ⊂ ∂K, (1.17)

then
hγ = diam(γ). (1.18)

• The family of triangulations {Th}h∈(0,h̄) is locally quasi − uniform

∃CQ ≥ 0 ∀K, K ′ ∈ Th, K, K ′neighbors, ∀h ∈ (0, h̄) : hK ≤ CQhK′ .
(1.19)

6



• The family of triangulations {Th}h∈(0,h̄) is called quasi-uniform if:

∃CU ≥ 0 ∀K ∈ Th h ≤ CUhK . (1.20)

We can set the parameter hγ as follows.

• If Th is conforming (no hanging nodes are allowed), then we can set

hγ := diam(γ). (1.21)

• If Th is local quasi-uniform, then we can set

hγ := max
K,K′∈Th

γ⊂∂K∩∂K′

(hK , hK′) (1.22)

Finally for an edge γ we can define the polynomial degree pγ by:

pγ :=
⎧⎨⎩max{pK′ , pK} if γ ⊂ ∂K ′ ∩ ∂K,

pK if γ ⊂ ∂K ∩ ∂Ω.
(1.23)

In our experiments, we will use the quasi-uniform mesh with same polynomial
degree on every element K.

1.2.2 Discontinuous Galerkin method based on primal
formulation

Now we are ready to introduce the symmetric interior penalty variant of DGM.
Multiplying the probem (1.1) with function v ∈ H2(Ω, Th), summing over K and
using Green’s theorem, we obtain the identity

Ah(u, v) = (f, v)Ω ∀v ∈ H2(Ω, Th), (1.24)

where Ah : H2(Ω, Th) × H2(Ω, Th) → R is bilinear form given by

Ah(u, v) := ah(u, v) + Jσ
h(u, v), u, v ∈ H2(Ω, Th), (1.25)

where

ah(u, v) :=
∑︂

K∈Th

∫︂
K

K∇u · ∇v dx −
∑︂

γ∈FI
h

∫︂
γ
(⟨K∇u⟩ · [v] + ⟨K∇v⟩ · [u]) dS (1.26)

and
Jσ

h(u, v) :=
∑︂

γ∈FI
h

∫︂
γ

σ [u] [v] dS v ∈ H2(Ω, Th). (1.27)

The form Jσ
h is called the interior and boundary penalty bilinear form, that

we introduced in order to mimic the continuity of conforming FEM. The pa-
rameter σ ≥ 0 is chosen arbitrary. For our analysis we will use the following
representation. For σ : ⋃︁γ∈FI

h
→ R we use

σ|γ = σγ = α
k0p

2
γ

hγ

, γ ∈ F I
h , (1.28)

where k0 is from (1.3) and α > 0 is some positive constant. In the analysis, we
will show some bound for it.

Finally, we can formulate the definition of the approximate solution uh.
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Definition 2. The function uh ∈ Shp is called an approximate solution of (1.4)
if

Ah(uh, v) = (f, v)Ω ∀v ∈ Shp. (1.29)
This scheme is called the symmetric interior penalty Galerkin (SUPG) method.

Now that we have formulated the form Ah we discuss its properties.

1.2.3 Basic properties of DGM
We introduce a few inequalities that will be useful in the numerical analysis.
First, we prove some properties of the norms in the space Shp and form Ah. We
define the DG-norm by the following

|||u|||Th
:= (k0|u|2H1(Ω,Th) + Jσ

h(u, u))1/2, where k0 is from (1.3), (1.30)
In the following text we will shall omit the subscript Th and write just ||| · |||.

Inverse inequality and multiplicative trace inequality

For the analysis, it is important to show the relations between the norms that
we use. The following results are taken from Doleǰśı and Feistauer [2015] and
Antonietti and Houston [2011]. We will need them to prove the continuity and
coercivity of the bilinear form Ah.
Lemma 1 (Inverse inequality). Let the shape-regularity assumption (1.15) be
satisfied. Then there exists a constant CI ≥ 0 independent of v, h, p and K such
that

|v|21,K ≤ CI
p4

K

h2
K

∥v∥2
0,K ∀v ∈ PpK

(K), ∀K ∈ Th, ∀h ∈ (0, h̃). (1.31)

Lemma 2 (Multiplicative trace inequality 1). Let the shape-regularity assumption
(1.15) hold. Then there exists a constant CM̃ > 0 independent of v, h and K such
that

∥v∥2
0,∂K ≤ CM̃

(︂
∥v∥0,K |v|1,K + h−1

K ∥v∥2
0,K

)︂
, ∀K ∈ Th,

∀v ∈ H1(K), ∀h ∈ (0, h̃).
(1.32)

Proof can be found in (Doleǰśı and Feistauer [2015]).
Lemma 3 (Multiplicative trace inequality 2). Let the shape-regularity assumption
(1.15) hold. Then there exists a constant CM > 0, that is independent of v, h and
K

∥v∥2
0,∂K ≤ CM

p2
K

hK

∥v∥2
0,K ∀v ∈ PpK

(K), ∀K ∈ Th, ∀h ∈ (0, h̃). (1.33)

Proof. The proof easily follows from (1.32) and (1.31). Let v ∈ PpK
(K) for some

K ∈ Th, we have that
∥v∥2

0,∂K ≤ CM̃

(︂
∥v∥0,K |v|1,K + h−1

K ∥v∥2
0,K

)︂
≤ CM̃

(︄√︂
CI

p2
K

hK

∥v∥2
0,K + 1

hK

∥v∥2
0,K

)︄

≤ CM̃(1 +
√︂

CI)p2
K

hK

∥v∥2
0,K .

(1.34)

Setting CM = CM̃(1 +
√

CI) is the proof completed.
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For the norm of the jump we will need the following result, which follows from
the definition of the mean value (1.14) and the equivalence condition (1.16). For
v ∈ H1(Ω, Th) we have∑︂

γ∈FI
h

hγ∥⟨v⟩∥2
0,γ ≤ CU

∑︂
K∈Th

hK∥v∥2
0,∂K . (1.35)

Continuity of bilinear form for SIPG

First in our analysis we will show the continuity of the form Ah. For this we
adopt the analysis done in (Doleǰśı and Feistauer [2015]). The proofs of the
theorems that we mention, are modification of the proofs mentioned in the book.
We formulate auxillary lemmas that we change to fit our model problem and that
will help us prove the continuity in DG-norm.

First we will use the Corollary 1.33. from (Doleǰśı and Feistauer [2015]).

Lemma 4. Let the system of triangulation {Th}h∈(0,h̄) be shape-regular (1.15)
and let the quantity hγ, γ ∈ Fh, h ∈ (0, h̄), satisfy the equivalence condition
(1.16). Let the parameter σ be defined by (1.28). Then the form Ah, defined
above, satisfies the estimate

|Ah(u, v)| ≤ 2k1

k0
∥u∥1,σ∥v∥1,σ ∀u, v ∈ H2(Ω, Th), (1.36)

where
∥v∥2

1,σ = |||v|||2 +
∑︂

γ∈FI
h

∫︂
γ

k2
0σ−1(n · ⟨∇v⟩)2dS. (1.37)

Proof. We will prove the bounds for the specific parts of the billinear form Ah.
First

|ah(u, v)| ≤
∑︂

K∈Th

∫︂
K

|K∇u · ∇v| dx
⏞ ⏟⏟ ⏞

δ1

+
∑︂

γ∈FI
h

∫︂
γ

|n · ⟨K∇u, ∇v⟩| dS

⏞ ⏟⏟ ⏞
δ2

+
∑︂

γ∈FI
h

∫︂
γ

|n · ⟨K∇v, ∇u⟩| dS

⏞ ⏟⏟ ⏞
δ3

.
(1.38)

We will start with bound to δ1 using a Cauchy-Schwarz inequality for integral
and then for series and using (1.3).

δ1 ≤
∑︂

K∈Th

k1

k0
k

1
2
0 |u|1,Kk

1
2
0 |v|1,K ≤ k1

k0
k

1
2
0 |u|H1(Ω,Th)k

1
2
0 |v|H1(Ω,Th). (1.39)

For the δ2 we will again use the Cauchy-Schwarz ineguality and the (1.3)

δ2 ≤
∑︂

γ∈FI
h

(︄
k2

1
k2

0

∫︂
γ

k2
0σ−1(n · ⟨∇u⟩)2 dS

)︄ 1
2 (︃∫︂

γ
σ[v]2 dS

)︃ 1
2

≤

⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

k2
0σ−1(n · ⟨∇u⟩)2 dS

⎞⎟⎠
1
2
⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

σ[v]2 dS

⎞⎟⎠
1
2

,

(1.40)
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and we will do the same manipulation for δ3. From that we get

δ3 ≤

⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

k2
0σ−1(n · ⟨∇v⟩)2 dS

⎞⎟⎠
1
2
⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

σ[u]2 dS

⎞⎟⎠
1
2

. (1.41)

Now putting (1.38) - (1.41) together and using the discrete Cauchy-Schwarz in-
equlity we obtain,

ah(u, v) ≤ k1

k0
k

1
2
0 |u|H1(Ω,Th)k

1
2
0 |v|H1(Ω,Th)

+

⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

k2
0σ−1(n · ⟨∇u⟩)2 dS

⎞⎟⎠
1
2
⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

σ[v]2 dS

⎞⎟⎠
1
2

+

⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

k2
0σ−1(n · ⟨∇v⟩)2 dS

⎞⎟⎠
1
2
⎛⎜⎝k1

k0

∑︂
γ∈FI

h

∫︂
γ

σ[u]2 dS

⎞⎟⎠
1
2

≤ k1

k0

⎛⎜⎝k0|u|2H1(Ω,Th) +
∑︂

γ∈FI
h

∫︂
γ

k2
0σ−1(n · ⟨∇u⟩)2 dS + Jσ

h (u, u)

⎞⎟⎠
1
2

×

⎛⎜⎝k0|v|2H1(Ω,Th) +
∑︂

γ∈FI
h

∫︂
γ

k2
0σ−1(n · ⟨∇v⟩)2 dS + Jσ

h (v, v)

⎞⎟⎠
1
2

≤ k1

k0
∥u∥1,σ∥v∥1,σ.

(1.42)

Now for the term Jσ
h (u, v) we have from Cauchy-Schwarz, that

|Jσ
h (u, v)| ≤ Jσ

h (u, u) 1
2 Jσ

h (v, v) 1
2 . (1.43)

Putting (1.38) - (1.43) together and using the definition of ||| · ||| norm, we get

|Ah(u, v)| ≤ |ah(u, v)| + |Jσ
h(u, v)| ≤ k1

k0
∥u∥1,σ∥v∥1,σ + Jσ

h(u, u) 1
2 Jσ

h(v, v) 1
2

≤ k1

k0
∥u∥1,σ∥v∥1,σ + ∥u∥1,σ∥v∥1,σ = 2k1

k0
∥u∥1,σ∥v∥1,σ

(1.44)

The next lemma will be dealing with bounding of the jump term Jσ
h (u, u) 1

2 .
We will also get the bound for the norm ∥·∥1,σ, that we will need for the continuity
of the bilinear form in the DG-norm.

Lemma 5. Under the assumption as in Lemma 4, there exists constant Cσ ≥ 0
such that

Jσ
h (u, u) 1

2 ≤ |||u||| ≤ ∥u∥1,σ ∀u ∈ H2(Ω, Th), h ∈ (0, h̄), (1.45)

and

Jσ
h (vh, vh) 1

2 ≤ |||vh||| ≤ ∥vh∥1,σ ≤ Cσ|||vh||| ∀vh ∈ Shp, h ∈ (0, h̄). (1.46)

10



Proof. All of the inequalities are trivial except for the last inequality ∥vh∥1,σ ≤
Cσ|||vh|||. For this inequality we need the following bound, using estimate (1.35)
and (1.8) we get

∑︂
γ∈FI

h

∫︂
γ

k2
0σ−1(n · ⟨∇v⟩)2dS ≤ Ck0

α

∑︂
K∈Th

hK

p2
K

∥∇v∥0,∂K

≤ Ck0

α

∑︂
K∈Th

hK

p2
K

CM
p2

K

hK

|v|1,K

≤ CCMk0

α

∑︂
K∈Th

|v|1,K .

(1.47)

Hence we can add this term into the DG-norm and we get the inequality with
constant Cσ independent of pK .

Now for the we have the auxillary estimates prepared for proving the conti-
nuity of form Ah in the DG-norm.

Theorem 6 (Continuity of the billinear form). Let the system of triangulation
{Th}h∈(0,h̄) be shape regular and let the quantity hγ, γ ∈ Fh, h ∈ (0, h̄), satisfy
the equivalence condition. Let the parameter σ be defined by (1.28). Then there
exists a positive constant Cσ ≥ 0 such that

|Ah(u, v)| ≤ 2Cσ
k1

k0
|||u||| |||v||| ∀u, v ∈ Shp. (1.48)

Proof. The proof of this theorem follows from the auxillary lemmas, that we
stated before. More precisely Lemma 4 and Lemma 5.

Coercivity of bilinear form for SIPG

The following result will be needed in the proof of Theorems 8 and 11.

Theorem 7 (Coercivity). Let the system of triangulation {Th}h∈(0,h̄) be shape reg-
ular and let the quantity hγ, γ ∈ Fh, h ∈ (0, h̄), satisfy the equivalence condition.
Let

α ≥ k2
14CUCMCV

k2
0

, (1.49)

where CU , CM and CV are constant from (1.16), (1.33) and (1.8), respectively,
and let the penalty parameter be given by (1.28) for all γ ∈ Fh. Then

Ah(vh, vh) ≥ 1
2 |||vh|||2 ∀vh ∈ Shp ∀h ∈ (0, h̄). (1.50)

Proof. Let δ ≥ 0 be a constant that we will specify later. Then from definition of
the form ah(·, ·), boundedness of eigenvalues of K and from Cauchy and Young’s

11



inequality it follows that

ah(vh, vh) ≥ k0|vh|2H1(Ω,Th) − 2
∑︂

γ∈FI
h

∫︂
γ

n · ⟨K∇vh⟩[vh] dS

≥ k0|vh|2H1(Ω,Th) − 2

⎧⎪⎨⎪⎩k1

δ

∑︂
γ∈FI

h

∫︂
γ

hγ(n · ⟨∇vh⟩)2 dS

⎫⎪⎬⎪⎭
1
2
⎧⎪⎨⎪⎩k1δ

∑︂
γ∈FI

h

∫︂
γ

1
hγ

[vh]2 dS

⎫⎪⎬⎪⎭
1
2

≥ k0|vh|2H1(Ω,Th) − ω − k1δ

k0α
Jσ

h(vh, vh),

(1.51)

where
ω := k1

δ

∑︂
γ∈FI

h

∫︂
γ

hγ

p2
γ

|⟨∇vh⟩|2 dS. (1.52)

Now we use the multiplicative trace inequality, equivalence condition for hK and
hγ , bound (1.35) , assumption (1.8) and we get

ω ≤ CUCV k1

δ

∑︂
K∈Th

hK

p2
K

∥∇vh∥2
0,∂K

≤ CMCUCV k1

δ

∑︂
K∈Th

|vh|21,K

≤ CMCUCV k1

δ
|vh|2H1(Ω,Th).

(1.53)

Now, we choose
δ = 2CMCUCV k1

k0
. (1.54)

Then it follows

ah(vh, vh) ≥ 1
2

(︄
k0|vh|2H1(Ω,Th) − 4CMCUCV k2

1
αk2

0
Jσ

h(vh, vh)
)︄

≥ 1
2
(︂
k0|vh|2H1(Ω,Th) − Jσ

h(vh, vh)
)︂ (1.55)

Now if we use this in the form Ah we get

Ah(vh, vh) = ah(vh, vh) + Jσ
h(vh, vh)

≥ 1
2
(︂
k0|vh|2H1(Ω,Th) + Jσ

h(vh, vh)
)︂

≥ 1
2 |||vh|||2

(1.56)

For the completeness of the analysis, we introduce the theorems about the
existence and uniqueness of the approximate solution and about the bounds of
the error. We refer to (Doleǰśı and Feistauer [2015]) for the Lax-Milgram lemma
and for the proofs of the following theorems.

Theorem 8. There exists only one approximate solution of problem (1.29).

12



Proof. By the Lax-Milgram lemma, the coercivity and boundedness of the bilinear
form Ah implies the existence and uniqueness of the solution of the discrete
problem (1.29).

Theorem 9. Let Ω be bounded, convex polygonal domain and let u ∈ Hs(Ω) is
the solution of (1.1). Let Th be the triangulation of Ω with all the assumptions in
Section 1.2.1.Let s and p be the vectors defined in Doleǰśı and Feistauer [2015],
such that sK ≥ 2 and pK ≥ 1, ∀K ∈ Th. Moreover, let all the assumptions for
the boundedness and coercivity of the bilinear form Ah be satisfied then

|||uh − u||| ≤ C

⎛⎝ ∑︂
K∈Th

h
2(µK−1)
K

p2sK−3
K

∥u∥sK ,K

⎞⎠ , (1.57)

where µK = min{pK + 1, sK}.

1.2.4 Equivalence with the system of linear algebraic
equations

Choosing a suitable basis of a function space Shp, we can get the equivalence of
the problem (1.29), with the system of linear algebraic equations

Au = F . (1.58)

This system can be solved using a numerous numerical methods, for example
GMRE, MINRES, Conjugate Gradients, etc.. Usually the system is very large
and the traditional methods are very slow. Hence we use the preconditioning to
increase the speed of the method. One of the things that can be done to increase
the speed of convergence is to decrease the condition number. This doesn’t mean
that, if we lower the condition number that we get faster convergence all the time,
but it is the usually true.

1.3 hp - condition number estimates
Now that we have proven essential properties of the form Ah(u, v) we will look
at the estimates for the form. First we will define the spectrum of bilinear form
Ah.We will use the definition presented in Rynne and Youngson [2007].

Definition 3. Let Ah be a bilinear form defined on the space Shp, dim(Shp) = N
and wj be a nonzero function from Shp such that

Ah(wj, v) = λj (wj, v)Ω ∀v ∈ Shp, j = 1, . . . , N. (1.59)

The functions wj are called eigenfunctions and the scalars λj are called eigenval-
ues.

For the condition numbers are important the largest and smallest eigenvalues
given by the following definitions

λmax(Ah) := max
v ̸=0

Ah(v, v)
(v, v)Ω

, λmin(Ah) := min
v ̸=0

Ah(v, v)
(v, v)Ω

. (1.60)

Now we can formulate the definition of the condition number of bilinear form Ah.

13



Definition 4. The condition number κ(Ah) of the bilinear form Ah is defined by
the following

κ(Ah) := λmax

λmin

. (1.61)

For the completeness of the analysis we, also state the definitions for matrices.

Definition 5. Let A ∈ Rn×n be a real valued matrix and let there be a vector
v ∈ Rn, ∥v∥ = 1 such, that

Av = λv. (1.62)
The λ ∈ R is called eigenvalue of matrix A and the vector v is called a eigen-
vector. The condition number of symmetric matrix B ∈ Rn×n is defined by the
following

κ(B) := |λmax(B)|
|λmin(B)| , (1.63)

where λmax(B) and λmin(B) are maximal and minimal (by moduli) eigenvalues
of B respectively.

Now let the functions {φj}N
j=1 be the basis functions of the space Shp,

dim(Shp) = N . Then
Shp = span{φ1, . . . , φN}, (1.64)

and for all functions v ∈ Shp we have the following representation

v =
N∑︂

j=1
vjφj, (1.65)

where vi = R, i = 1, . . . , N . We use this representation to define stiffness matrix
A ∈ RN×N and mass matrix M ∈ RN×N , that corresponds to the bilinear form
Ah and scalar product in L2(Ω) respectively. The entries of those matrices are
given by

Aij := Ah(φj, φi), Mij := (φj, φi)Ω i, j = 1, . . . , N. (1.66)

Using these matrices we can rewrite the action of bilinear form and scalar product
on two functions u, v by the following identities

Ah(u, v) = uT Av (u, v)Ω = uT Mv, (1.67)

where u = (u1, . . . , uN)T and v = (v1, . . . , vN) are vectors of coefficients from the
representation of the functions in the basis of Shp, cf. (1.65). Then we deduce
the relations between κ(M), κ(A) and κ(Ah). These relations are the following
inequalities:

λmax(A) ≤ λmax(Ah)λmax(M), λmin(Ah)λmin(M) ≤ λmin(A). (1.68)

The proof of the first inequality can be as follows

λmax(A) = uT
mAum = uT

mMum
uT

mAum

uT
mMum

≤ sup
|u|=1

(uT Mu)λmax(Ah)

≤ λmax(M)λmax(Ah),

(1.69)
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where um is the eigenvector of A corresponding to λmax. The other inequalities
can be proven the same way.

Moreover we state auxillary lemma.
Lemma 10 (Friedrich-Poincare inequality). Let M ⊂ Ω be an open connected
polyhedral domain such that M is an union of elements from Th. Let the diameter
of M be HM . Then for any function v ∈ H1(Ω, Th) the following holds

∥v∥2
0,M ≤ CH2

M

⎛⎜⎜⎜⎝ ∑︂
K∈Th
K⊂M

|v|21,K +
∑︂

γ∈FI
h

γ⊂M

∥h
− 1

2
γ [v] ∥2

0,γ +
∑︂

γ∈FI
h

γ⊂∂M

∥h
− 1

2
γ v∥2

0,γ

⎞⎟⎟⎟⎠ , (1.70)

where C > 0. Moreover if v has a zero average over M , then we have

∥v∥2
0,M ≤ CH2

M

⎛⎜⎜⎜⎝ ∑︂
K∈Th
K⊂M

|v|21,K +
∑︂

γ∈FI
h

γ⊂M

∥h
− 1

2
γ [v] ∥2

0,γ

⎞⎟⎟⎟⎠ (1.71)

The proof can be found in Antonietti and Houston [2011]. There is also the
Broken Poincare inequality introduced in Doleǰśı and Feistauer [2015], that can
be also used in the analysis. Now the hp-bounds of the condition number κ(Ah)
are given in next theorem.
Theorem 11. For any v ∈ Shp, we get

Ck0
∑︂

K∈Th

∥v∥2
0,K ≤ Ah(v, v) ≤ Ck1

∑︂
K∈Th

p4
K

h2
K

∥v∥2
0,K (1.72)

Proof. For the lower bound we can use the Lemma 10 with M = Ω and the
coercivity of the form Ah:

k0∥v∥2
0,Ω ≤ k0CH2

Ω

⎛⎜⎝ ∑︂
K∈Th

|v|21,K +
∑︂

γ∈FI
h

∥h
− 1

2
γ [v] ∥2

0,γ

⎞⎟⎠
≤ CH2

Ω

⎛⎜⎝ ∑︂
K∈Th

k0|v|21,K +
∑︂

γ∈FI
h

1
αp2

γ

∥σ
1
2 [v] ∥2

0,γ

⎞⎟⎠
≤ CH2

Ω max
⎧⎨⎩1,

1
α minγ∈FI

h
p2

γ

⎫⎬⎭ |||v|||2

≤ 2CH2
ΩAh(v, v).

(1.73)

For the upper bound of the first term in the DG-norm we can use the inverse
inequality (1.31) and we get:

k0
∑︂

K∈Th

∥∇v∥2
0,K = k0

∑︂
K∈Th

|v|21,K ≤ k0CI

∑︂
K∈Th

p4
K

h2
K

∥v∥2
0,K . (1.74)

For the jump term Jσ
h(u, u) we use the definition of σ (1.28) and the inverse

inequality (1.31):

Jσ
h(u, u) =

∑︂
γ∈FI

h

∥σ
1
2 [v] ∥2

0,γ =
∑︂

γ∈FI
h

αp2
γk0

hγ

∥ [v] ∥2
0,γ ≤ k0C

∑︂
K∈Th

p4
K

h2
K

∥v∥2
0,K (1.75)
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Now if we use the continuity of the form Ah, cf. (1.48). we get the result we
needed.

Corollary 12. The condition number of A can be estimated using the inequality
(1.68) and previous theorem to get the result:

κ(A) ≤ C
k1 maxK∈Th

p4
K

k0 minK∈Th
h4

K

κ(M). (1.76)

Hence in order to bound the condition number of A it is sufficient to bound
the condition number of M, in other words bound the eigenvalues of M. This
problem depends on the choice of basis. We will suppose that the basis {φj}N

j=0
is orthogonal, which is easy for DGM to construct in practice. Then we get the
diagonal matrix, and then the following result from Quarteroni and Valli [2008]
can be proven

Lemma 13. Let {φi}N
i=1 be the orthogonal basis of the space Shp. Then for any

u ∈ Shp, let u be the vector of coefficients of u in the basis {φi}N
i=1, then

C min
K∈Th

hd
KuT u ≤ uT Mu ≤ C max

K∈Th

hd
KuT u. (1.77)

Hence we get the following corollary combining the two previous results.

Corollary 14. For a set of orthogonal functions {φi}N
i=1, which form the basis

of the space Shp, we have the following bound on the condition number κ(A) of a
system matrix A

κ(A) ≤ C
k1 maxK∈Th

p4
K

k0 minK∈Th
h2

K

maxK∈Th
hd

K

minK∈Th
hd

K

. (1.78)

Therefore, if the triangulation Th has a globally quasi-uniform polynomial approx-
imation, then

κ(A) ≤ C
k1

k0
p4h−2. (1.79)

Therefore, for h → 0 and p → ∞ we have that κ(Ah) → ∞. Hence the
computation cost is increasing with the usage of finer mesh and higher polynomial
approximation. This leads us to using the preconditions to increase the speed of
the computation. As we already said, this is not the most reliable way, since in
some cases this does not have to lead to increased speed of computation, but it
is all we can do.
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2. Domain decomposition
method
Domain decomposition method is a method for solving partial differential equa-
tions by partitioning of the domain Ω into subdomains Ωi and solving the problem
there. We will be mostly interested in the non-overlapping Schwarz precondition-
ers. The preconditioning is important for solving large systems with a lot of
unknowns where the traditional methods will be slow and inefficient. More de-
tails on the domain decomposition method can be found in Dolean et al. [2015]
or Toselli and Widlund [2004].

2.1 Subdomain partitioning, Local and Coarse
solvers

We consider an non-overlapping domain partitioning of Ω onto the finite set of
open domains Ωi such that

Ω =
N⋃︂

i=1
Ωi, (2.1)

and
Ωi ∩ Ωj = ∅ i, j = 1, . . . , N, i ̸= j. (2.2)

We assume that the domains Ωi are unions of elements of triangulation Th. In
addition, we consider the coarse partitioning of Ω. We will use the notation Th

for the fine partitioning and the TH for the coarse partitioning. We will assume
that these partitioning are nested i.e. the element of a coarse mesh is union of
elements of the fine mesh. By Γij we denote the set of all faces γ ∈ F I

h such that
γ ⊂ ∂Ωi ∩ ∂Ωj, i, j = 1, . . . , N .

Next, we will introduce the local solvers in Ωi and the coarse solver on the
coarse mesh.

2.1.1 Local Solvers
The local solvers on Ωi, i = 1, . . . , N are defined using a space of piecewise
polynomial functions. We will introduce the spaces Si

hp, that are the restriction
of space Shp on the domains Ωi. More precisely,

Si
hp = {u ∈ L2(Ωi) : u|K ∈ PpK

∀K ∈ Th K ⊂ Ωi}. (2.3)

The space is generally discontinuous, and the functions generally do not vanish
on ∂Ωi. Then the bilinear from Ah(u, v) will reduce to Ai

h : Si
hp × Si

hp → R using
the extension operators

RT
i : Si

hp → Shp i = 1, . . . , N, (2.4)

where the transpose of the restriction operator Ri is with respect to L2(Ωi) inner
product. The extension operators give us the representation of the space Shp as
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the sum of spaces Si
hp,

Shp = RT
1 S1

hp ⊕ · · · ⊕ RT
NSN

hp. (2.5)

The sum here is interpreted as a linear combination of extended function from
Si

hp by zero on Ω \ Ωi. Now we can finally write the definition of the local solvers
as

Ai
h(ui, vi) := Ah(RT

i ui, RT
i vi) ∀ui, vi ∈ Si

hp, i = 1, . . . N. (2.6)

2.1.2 Coarse solver
With the coarse solver we will first need to deal with the inconsistency of the
polynomial degree. We will denote by qD the polynomial degree of the coarse
element D ∈ TH . We set qD such that

0 ≤ qD ≤ min
K⊂D

pK . (2.7)

Then we define the finite dimensional space for coarse solver as

S0
Hp := {v ∈ L2(Ω) : v|D ∈ PqD

(D), D ∈ TH} (2.8)

We can define the the extension operator RT
0 : S0

Hp → Shp as the classical
injection of S0

Hp in Shp. Then we can use this extension to define the coarse
solver as

A0
h(u0, v0) := Ah(RT

0 u0, RT
0 v0) ∀u0, v0 ∈ S0

Hp. (2.9)
The coarse solver is used to speed up the transition of information among

the subdomains. In general, if we use a higher polynomial degree, then more
information will travel, but the computation will be more costly. In general, it is
chosen to balance the cost and efficiency of the computation. For our analysis,
we will assume that the coarse solver is piecewise constant approximation.

2.1.3 Variational formulation
Now we will define the local projection operators P̃ i, which we use for projection
of u to the space Si

hp, i = 1, . . . , N . The operators are defined as

P̃ i : Shp → Si
hp, Ai(P̃ iu, vi) = Ah(u, RT

i vi), ∀vi ∈ Si
hp. (2.10)

Moreover, we define the projection operators on the space Shp

Pi := RT
i P̃ i : Shp → Shp ∀i = 1, . . . , N. (2.11)

The same definition of projection operators can be formulated for the coarse space
S0

Hp, i. e.,

P̃ 0 : Shp → S0
Hp, A0(P̃ 0u, v0) := Ah(u, RT

0 v0), ∀v0 ∈ S0
Hp. (2.12)

and
P0 := RT

0 P̃ 0 : Shp → Shp (2.13)
Then we can formulate the operator of additive Schwarz method by

Pad :=
N∑︂

i=0
Pi. (2.14)
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2.2 Convergence analysis
The convergence analysis is based on the general framework of Toselli and Wid-
lund [2004]. Three assumptions on the local solvers are needed for the formal
analysis. We will follow the analysis done in Antonietti and Houston [2011] , but
the proof of the auxillary lemma is new and the proof of the last theorem is a
modification of the proof done in the article.

Assumption 1 (Stable decomposition) Let C0 > 0 be a constant such that for
every u ∈ Shp we have the decomposition

u =
N∑︂

i=0
RT

i ui, (2.15)

with u0 ∈ S0
Hp, ui ∈ Si

hp, i = 1, . . . , N , such that

N∑︂
i=0

Ai
h(ui, ui) ≤ C2

0Ah(u, u). (2.16)

Assumption 2 (Local stability) There exist a constant 0 ≤ ω ≤ 2, such that

Ah(RT
i ui, RT

i ui) ≤ ωAi
h(ui, ui) ∀ui ∈ Si

hp, i = 1, . . . , N,

Ah(RT
0 u0, RT

0 u0) ≤ ωA0
h(u0, u0) ∀u0 ∈ S0

Hp.
(2.17)

Assumption 3 (Strengthened Cauchy-Schwarz inequalities) There exist con-
stant 0 ≤ ϵij ≤ 1, i, j = 1, . . . , N , such that

|Ah(RT
i ui, RT

j uj)| ≤ ϵijAh(RT
i ui, RT

i ui)
1
2 Ah(RT

j uj, RT
j uj)

1
2 , i, j = 1, . . . N,

(2.18)
for all ui ∈ Si

hp, uj ∈ Sj
hp. By ρ(ε) we denote the spectral radius of ε = {ϵij}N

i,j=0

The spectral bounds for the Schwarz operator, follows from Assumptions 1,
2 and 3. The result is taken from Toselli and Widlund [2004] is formulated the
following theorem.

Theorem 15. Let the Assumptions 1 - 3 be satisfied. Then the condition number
of the additive Schwarz operator can be bounded as

κ(Pad) ≤ C2
0 ω (ρ(ε) + 1). (2.19)

Proof. The proof can be found in Toselli and Widlund [2004].

The aim of the remaining part of the section is to show that for the operators
defined in Section 2.1 satisfies Assumptions 1 - 3. Then we obtain the bounds of
condition number of the preconditioned system.

First we can see that Assumption 2 is trivially satisfied, from the definition
of the local projections and local solvers. In fact, it is an identity with ω = 1.
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Moreover, for the assumption 3, it can be seen that ϵii = 1 for i = 1, · · · , N .
Since the form Ah defines a symmetric and positive definite matrix, the Cauchy-
Schwarz inequality implies

Ah(u, v) ≤ Ah(u, u) 1
2 Ah(v, v) 1

2 , ∀u, v ∈ H1
0 (Ω, Th). (2.20)

Moreover, if ∂Ωi ∩ ∂Ωj = ∅, then

Ah(RT
i ui, RT

j uj) = 0. (2.21)

Therefore, we have ϵij = 1, when ∂Ωi ∩ ∂Ωj ̸= ∅ and ϵij = 0 otherwise. Then we
can bound the spectral radius ρ(ε) as

ρ(ε) ≤ max
i=1,...,N

N∑︂
j=1

|ϵij| ≤ 1 + NC , (2.22)

where NC is the maximum number of the adjacent subdomains that a given
subdomain can have and is typically independent of h.

Before verifying Assumption 1, we prove the following result. Obviously any
u ∈ Shp can be uniquely represented as

u =
N∑︂

i=1
RT

i ui, ui ∈ Si
hp, i = 1, . . . , N. (2.23)

Hence the following identity holds

Ah(u, u) =
N∑︂

i=1
Ai

h(ui, ui) +
N∑︂

i,j=1
i ̸=j

Ah(RT
i ui, RT

j uj). (2.24)

The following result deals with the upper bound of the second term of the identity
(2.24).

Lemma 16. Let u ∈ Shp, we have the following upper bound⃓⃓⃓⃓
⃓⃓⃓⃓ N∑︂
i,j=1
i ̸=j

Ah(RT
i ui, RT

j uj)

⃓⃓⃓⃓
⃓⃓⃓⃓ ≤ C

k1

k0

⎛⎜⎜⎝|||u|||2 +
N∑︂

i,j=1
i ̸=j

∑︂
γ∈Γij

(︂
∥σ

1
2 ui∥2

0,γ + ∥σ
1
2 uj∥2

0,γ

)︂⎞⎟⎟⎠ ,

(2.25)
where ui ∈ Si

hp, i = 1, . . . , N are given by (2.23) and C > 0 independent of h, H,
pK, k0, k1.

Proof. Let u ∈ Shp. From the definition of the form Ah we have that for ∂Ωi ∩
∂Ωj = ∅, Ah(RT

i ui, RT
j uj) = 0. Also, we have the triangle inequality for the sum⃓⃓⃓⃓

⃓⃓⃓⃓ N∑︂
i,j=1
i ̸=j

Ah(RT
i ui, RT

j uj)

⃓⃓⃓⃓
⃓⃓⃓⃓ ≤

N∑︂
i,j=1
i ̸=j

|Ah(RT
i ui, RT

j uj)|. (2.26)

For simplicity we will use the notation ũi and ũj for RT
i ui and RT

j uj respectively.
Let Ωi and Ωj be neighbouring subdomains. We have

Ah(ũi, ũj) = ah(ũi, ũj) + Jσ
h(ũi, ũj). (2.27)
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We bound every term on the right-hand side of (2.27). First, we deal with the
form

ah(ũi, ũj) =
∑︂

K∈Th

∫︂
K

K∇ũi · ∇ũj dx −
∑︂

γ∈FI
h

∫︂
γ
(⟨K∇ũi⟩ · [ũj] + ⟨K∇ũj⟩ · [ũi]) dS.

(2.28)
The first term on the right is easy to deal with, since

∫︁
K K∇ũi ·∇ũj dx = 0. This

is due to the fact that the functions ũi and ũj are zero on all subdomains except
on Ωi and Ωj respectively. For the next bound, we need to use the notation Ki

γ for
the element K ∈ Th such that γ ⊂ ∂K and K ⊂ Ωi. Using the Cauchy-Schwarz
inequality, the multiplicative trace inequality (1.33) and the bound (1.35) and
the assumption (1.8), we estimate the middle term in (2.28) as∑︂

γ∈FI
h

∫︂
γ
⟨K∇ũi⟩ · [ũj] dS ≤ Ck1

∑︂
γ∈Γij

∫︂
γ
⟨∇ũi⟩ · [ũj] dS

≤ C
k1

k0

∑︂
γ∈Γij

∫︂
γ

k0⟨∇ũi⟩ · [ũj] dS

≤ C
k1

k0

∑︂
γ∈Γij

k
1
2
0 ∥⟨∇ũi⟩∥0,γk

1
2
0 ∥[ũj]∥0,γ

≤ C
k1

k0

∑︂
γ∈Γij

k
1
2
0 ∥∇ũi∥0,∂Ki

γ
k

1
2
0 ∥[ũj]∥0,γ

≤ C
k1

k0
√

α

∑︂
γ∈Γij

k
1
2
0 ∥∇ũi∥0,Ki

γ

(︄
k0

p2
γα

hγ

)︄ 1
2

∥[ũj]∥0,γ

≤ C
k1

k0
√

α

⎛⎜⎜⎝ ∑︂
K∈Th
K⊂Ωi

k0∥∇ũi∥2
0,K

⎞⎟⎟⎠
1
2

⎛⎜⎜⎜⎜⎝
∑︂

γ∈FI
h

γ⊂Ω̄j

∥σ
1
2 [ũj]∥2

0,γ

⎞⎟⎟⎟⎟⎠
1
2

≤ C
k1

k0
√

α

⎛⎜⎜⎜⎜⎝
∑︂

K∈Th
K⊂Ωi

k0∥∇ũi∥2
0,K +

∑︂
γ∈FI

h

γ⊂Ω̄j

∥σ
1
2 [ũj]∥2

0,γ

⎞⎟⎟⎟⎟⎠ .

(2.29)

The same can be done for the third term, and we get

∑︂
γ∈FI

h

∫︂
γ
⟨K∇ũj⟩ · [ũi] dS ≤ C

k1

k0
√

α

⎛⎜⎜⎜⎜⎝
∑︂

K∈Th
K⊂Ωj

k0∥∇ũj∥2
0,K +

∑︂
γ∈FI

h

γ⊂Ω̄i

∥σ
1
2 [ũi]∥2

0,γ

⎞⎟⎟⎟⎟⎠ .

(2.30)
Now for the term Jσ

h we use the Cauchy-Schwarz inequality and we get

Jσ
h(ũi, ũj) ≤ C

∑︂
γ∈Γij

∥σ
1
2 ũi∥0,γ∥σ

1
2 ũj∥0,γ

≤ C

⎛⎝ ∑︂
γ∈Γij

∥σ
1
2 ũi∥2

0,γ +
∑︂

γ∈Γij

∥σ
1
2 ũj∥2

0,γ

⎞⎠ .

(2.31)
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Now adding the previous formulas together, we get

Ah(ũi, ũj) ≤ C
k1

k0

⎛⎝ ∑︂
K∈Th
K⊂Ωi

k0∥∇ũi∥2
0,K +

∑︂
γ∈FI

h

γ⊂Ω̄j

∥σ
1
2 [ũj]∥2

0,γ+

+
∑︂

K∈Th
K⊂Ωj

k0∥∇ũj∥2
0,K +

∑︂
γ∈FI

h

γ⊂Ω̄i

∥σ
1
2 [ũi]∥2

0,γ

+
∑︂

γ∈Γij

∥σ
1
2 ũi∥2

0,γ +
∑︂

γ∈Γij

∥σ
1
2 ũj∥2

0,γ

⎞⎠
(2.32)

Finally, using the fact that u|Ωi
= ũi and on each γ ∈ Γij, [ũi] = uini we get

Ah(ũi, ũj) ≤ C
k1

k0

⎛⎝ ∑︂
K∈Th

K⊂Ωi∪Ωj

k0∥∇u∥2
0,K +

∑︂
γ∈FI

h

γ⊂Ω̄j∪Ω̄i

γ ̸⊂Γij

∥σ
1
2 [u]∥2

0,γ

+
⎛⎝ ∑︂

γ∈Γij

∥σ
1
2 ui∥2

0,γ + ∥σ
1
2 uj∥2

0,γ

⎞⎠⎞⎠
(2.33)

Hence, summing over all subdomains Ωi we get the result.

The key point in the analysis of the domain decomposition preconditioners is
the stable splitting, that can be found for a family of subspaces and the corre-
sponding bilinear form.

Theorem 17 (Stable decomposition). For any u ∈ Shp, there exists a decompo-
sition of the form u = ∑︁N

i=0 RT
i ui, with u0 ∈ S0

Hp and ui ∈ Si
hp, i = 1, . . . , N , such

that

N∑︂
i=0

Ai(ui, ui) ≤ CC2
0Ah(u, u), C2

0 = α
k1

k0
max
D∈TH

HD

maxK∈Th
K⊂D

p2
K

minK∈Th
K⊂D

hK

, (2.34)

where C is independent of h, H, pK , k0, k1.

Proof. Given u ∈ Shp, let u0 ∈ S0
hp be defined by

u0|D := 1
|D|

∫︂
D

udx, ∀D ∈ TH . (2.35)

Next, we decompose uniquely u − RT
0 u0 = ∑︁N

i=1 RT
i ui. From the unique decom-

position and from identity (2.24), we have

Ah(u − RT
0 u0, u − RT

0 u0) =
N∑︂

i=1
Ah(RT

i ui, RT
i ui) +

N∑︂
i,j=1
i ̸=j

Ah(RT
i ui, RT

j uj). (2.36)

Now if we add to both sides A0(u0, u0) = Ah(RT
0 u0, RT

0 u0), putting the second
term on the right-hand side on the other side, taking the absolute value of the

22



equality and using the triangle inequality we get⃓⃓⃓⃓
⃓

N∑︂
i=0

Ah(RT
i ui, RT

i ui)
⃓⃓⃓⃓
⃓ ≤C

⎛⎝|Ah(u − RT
0 u0, u − RT

0 u0)| + |Ah(RT
0 u0, RT

0 u0)|

+

⃓⃓⃓⃓
⃓⃓⃓⃓ N∑︂
i,j=1
i ̸=j

Ah(RT
i ui, RT

j uj)

⃓⃓⃓⃓
⃓⃓⃓⃓⎞⎠.

(2.37)

Now will will try to bound every term on the right-hand side. For the first term,
we have for C > 0 using (2.20) and Young inequality

|Ah(u − RT
0 u0, u − RT

0 u0)| ≤ C|Ah(u, u)| + |Ah(RT
0 u0, RT

0 u0)|. (2.38)

We then get⃓⃓⃓⃓
⃓

N∑︂
i=0

Ah(RT
i ui, RT

i ui)
⃓⃓⃓⃓
⃓ ≤C

⎛⎝|Ah(u, u)| + |Ah(RT
0 u0, RT

0 u0)|

+

⃓⃓⃓⃓
⃓⃓⃓⃓ N∑︂
i,j=1
i ̸=j

Ah(RT
i ui, RT

j uj)

⃓⃓⃓⃓
⃓⃓⃓⃓⎞⎠.

(2.39)

First term in (2.39) is estimated by the continuity of the form Ah (1.48). Now
we focus on the bounding of the second term in (2.39). We show the following
bound

|Ah(RT
0 u0, RT

0 u0)| ≤ C

⎛⎝|||u|||2 +
∑︂

D∈TH

ηD∥u − RT
0 u0∥2

0,∂D

⎞⎠ , (2.40)

where constant ηD is defined by

ηD := α
maxK∈Th

K⊂D
p2

K

minK∈Th
K⊂D

hK

. (2.41)

Now, for the bound, we use the continuity of the form Ah, the we add and subtract
u and use the triangle inequality. Due to (2.35), u0 is a piecewise constant, so we
have

∇RT
0 u0 = 0 ∀K ∈ Th. (2.42)

Using (1.25), triangle inequality and the definition of the norm (1.30), we get

|Ah(RT
0 u0, RT

0 u0)| ≤ C
k1

k0

∑︂
γ∈FI

h

∥σ
1
2
[︂
RT

0 u0
]︂

∥2
0,γ

≤ C
k1

k0

⎛⎜⎝ ∑︂
γ∈FI

h

∥σ
1
2
[︂
u − RT

0 u0
]︂

∥2
0,γ + |||u|||2

⎞⎟⎠
(2.43)
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We estimate the first term on the right-hand side. We use the fact that the jump
of u0 is zero on the edges in D. Hence, we get∑︂
γ∈FI

h

∥σ
1
2
[︂
u − RT

0 u0
]︂

∥2
0,γ =

∑︂
D∈TH

∑︂
γ∈FI

h
γ∈D

∥σ
1
2 [u] ∥2

0,γ +
∑︂

D∈TH

∑︂
γ∈FI

h
γ∈∂D

∥σ
1
2
[︂
u − RT

0 u0
]︂

∥2
0,γ

≤ |||u|||2 +
∑︂

D∈TH

∑︂
γ∈FI

h
γ∈∂D

∥σ
1
2
[︂
u − RT

0 u0
]︂

∥2
0,γ

≤ |||u|||2 + k0
∑︂

D∈TH

ηD∥
[︂
u − RT

0 u0
]︂

∥2
0,∂D.

(2.44)
If we add together (2.43) and (2.44) we get the bound (2.40).

Now we will use Lemma 16 for the bound of the third term in (2.39). Since
each Ωi is a union of elements of TH we get that

N∑︂
i,j=1
i ̸=j

∑︂
γ∈Γij

(︂
∥σ

1
2 ui∥2

0,γ + ∥σ
1
2 uj∥2

0,γ

)︂
≤ Ck0

∑︂
D∈TH

ηD∥u − RT
0 u0∥2

∂D. (2.45)

We note that ui, i = 1, . . . , N in (2.45) come from the unique decomposition
u − RT

0 u0 = ∑︁N
i=1 RT

i ui. Using Lemma 16, we get⃓⃓⃓⃓
⃓⃓⃓⃓ N∑︂
i,j=1
i ̸=j

Ah(RT
i u, RT

j u)

⃓⃓⃓⃓
⃓⃓⃓⃓ ≤ C

k1

k0

⎛⎝|||u − RT
0 u0|||2 + k0

∑︂
D∈TH

ηD∥u − RT
0 u0∥2

∂D

⎞⎠ .

(2.46)
We simplify equation (2.39). We will use all these bounds, which we just did now,
and we will use the triangle inequality and the continuity of the form Ah and we
get⃓⃓⃓⃓
⃓

N∑︂
i=0

Ah(RT
i ui, RT

i ui)
⃓⃓⃓⃓
⃓ ≤ C

k1

k0

⎛⎝|||u|||2 + |||u − RT
0 u0|||2 + k0

∑︂
D∈TH

ηD∥u − RT
0 u0∥2

∂D

⎞⎠
≤ C

k1

k0

⎛⎝|||u|||2 + k0
∑︂

D∈TH

ηD∥u − RT
0 u0∥2

∂D

⎞⎠ .

(2.47)
Now we will need the trace inequality shown in [Feng and Karashian, 2002,
Lemma 3.1], which is for v ∈ H1(Ω, Th) and D ∈ TH as follows:

∥v∥2
0,∂D ≤ C

⎡⎢⎢⎢⎣H−1
D ∥v∥2

0,D + HD

⎛⎜⎜⎜⎝ ∑︂
K∈Th
K⊂D

|v|21,K +
∑︂

γ∈FI
h

γ⊂D

h−1
γ ∥v∥2

0,γ

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (2.48)

Now we can use this inequality for the last term in our bound and we also use
the fact that RT

0 u0 is a constant on D and we get

∥u − RT
0 u0∥2

0,∂D ≤ C

⎡⎢⎢⎢⎣H−1
D ∥u − RT

0 u0∥2
0,D + HD

⎛⎜⎜⎜⎝ ∑︂
K∈Th
K⊂D

|u|21,K +
∑︂

γ∈FI
h

γ⊂D

h−1
γ ∥u∥2

0,γ

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

(2.49)
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Hence, using (2.47) and (2.49), we get
⃓⃓⃓⃓
⃓

N∑︂
i=0

Ah(RT
i ui, RT

i ui)
⃓⃓⃓⃓
⃓ ≤ C

k1

k0

⎛⎝|||u|||2 + k0
∑︂

D∈TH

ηD∥u − RT
0 u0∥2

∂D

⎞⎠
≤ C

k1

k0

⎧⎨⎩|||u|||2+

+ k0
∑︂

D∈TH

ηD

⎡⎣H−1
D ∥u − RT

0 u0∥2
0,D + HD

(︃ ∑︂
K∈Th
K⊂D

|u|21,K +
∑︂

γ∈FI
h

γ⊂D

h−1
γ ∥u∥2

0,γ

)︃⎤⎦⎫⎬⎭.

(2.50)

Now, using the Friedrich-Poincare inequality (1.71) on the term ∥u − RT
0 u0∥2

0,D,
we get

⃓⃓⃓⃓
⃓

N∑︂
i=0

Ah(RT
i ui, RT

i ui)
⃓⃓⃓⃓
⃓ ≤ C

k1

k0

⎛⎜⎜⎜⎝|||u|||2 +
∑︂

D∈TH

CD

⎛⎜⎜⎜⎝ ∑︂
K∈Th
K⊂D

|u|21,K +
∑︂

γ∈FI
h

γ⊂D

h−1
γ ∥u∥2

0,γ

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

(2.51)
where CD = k0ηDHD. Now using the coercivity (1.50) of Ah, we get the desired
result.

If we now use assumptions (1.8) and (1.16), we get the estimate

N∑︂
i=0

Ai(ui, ui) ≤ Cα
p2Hk1

hk0
Ah(u, u). (2.52)

Finally, Theorem 15 gives

κ(Pad) ≤ Cα
p2Hk1

hk0
. (2.53)

This shows us the dependence of the condition number on the coarse mesh size
and its elements. However, we do not see the role of the coarse mesh polynomial
degree. This aspect was analysed in Antonietti et al. [2016].

2.3 Implementation
In this section, we briefly describe the implementation of the two-level additive
Schwarz method defined in Section 2.1 - 2.2. The implementation is inspired by
the method done in Antonietti et al. [2014]. Let n ∈ N be the dimension of
the space Shp. The DG discretization (1.29) is equivalent to the following linear
algebraic problem. Find u ∈ Rn such that

Au = F , (2.54)

where F ∈ Rn is the vector of right hand side and matrix A ∈ Rn×n is repre-
sentation of the bilinear form Ah in a suitable basis. Now we use the matrix
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representation RT
i i = 0, . . . , N of operator (2.4) and P̃ i i = 0, . . . , N of an op-

erator (2.11), for the restriction and prolongation operators, respectively. Using
the notation ni = dim(Si

hp) we know that RT
i ∈ Rn×ni , i = 1, . . . , N and from

the construction of the operators it is clear that P̃ i = (RT
i )T .

Now we can see that the local billinear form Ai will have

Ai = RiART
i ∈ Rni×ni (2.55)

Now if we want to write the projection operators Pi in the matrix representa-
tion we have for i = 0, . . . n that

Pi = RT
i A−1

i RiA. (2.56)

Then we can rewrite the operator PAD as follows

PAD =
N∑︂

i=0
Pi =

N∑︂
i=0

RT
i A−1

i RiA = M−1
ADA (2.57)

Hence in computation we will use the matrix MAD as a preconditioner. The
computation of the system (2.54) will be done using the preconditioned GMRES.
The algorithm we present is taken from Golub and Van Loan [2013].

Preconditioned m-step GMRES If A ∈ Rn×n and M ∈ Rn×n are nonsin-
gular, b ∈ Rn and x0 ∈ Rn is an initial vector and m is an positive integer
setting the maximum number of steps. Then we obtain the approximate solution
of Ax = b using the algorithm:

Algorithm 1 Preconditioned m-step GMRES
k = 0, r0 = b − Ax0, Solve Mz0 = r0, β0 = ∥z0∥2
while βk > 0 and k < m do

qk+1 = 1
βk

zk

k = k + 1
Solve Mzk = Aqk

for i = 1 : k do
hik = qT

i zk

zk = zk − hikqi

end for
βk = ∥zk∥2, hk+1k = βk

Apply G1, . . . , Gk−1 matrices of Givens rotation to Hk+1,k = {hij}j=1,...,k
i=1,...,k+1,

and determine Gk, Rk, pk and ρk = ∥M−1(b − Axk)∥2.
end while
Solve Rkyk = pk and set x̃ = x0 + Qkyk, where Qk = [q1, . . . , qk].

In our implementation the Solve step can be done using direct solvers, since
we have a special structure of the matrix MAD. The action of the matrix MAD

on some vector z is described in Algorithm 1 in Antonietti et al. [2014]. For the
completeness of the implementation method we will also mention it.

We build the coarse mesh using the partition of the elements Ωi into k
macroelements, that are union of elements of the fine mesh. Subdomains Ωi
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Algorithm 2 Action of the precondition matrix MAD

set z = 0
for i = 1:N do

xi = Riz
Solve Aiui = xi

zi = RT
i ui

z = z + zi

end for
x0 = R0z
Solve A0u0 = x0
z0 = RT

0 u0
z = z + z0

are generated from the fine mesh using the library METIS. For the direct solvers
used in the preconditioning we use the Multifrontal Massively Parallel Solver
(MUMPS).

From the implementation may arise numerical errors that can have an impact
on our results. We state few numerical difficulties, that can lead to errors.

• The assembling of matrix A in the code is done by multiplication by a
canoniacal vector.

• The performance of the preconditioning can also be problematic. We use
MUMPS to compute the solution using A−1

i , i = 0, . . . , N .

• The partition of the triangulation into subdomains Ωi, i = 1, . . . , N can
also have an impact.

• The precision of the function used in MATLAB can also lead to numerical
errors.
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3. Numerical experiments
We present several numerical experiments supporting the theoretical results from
Chapter 2. The first problem that we discuss is the Laplace equation with ho-
mogeneous Dirichlet boundary condition. It is the simplest version of problem
(1.1). In the following example we will use more nontrivial problem dealing with
the magnetic field in the alternator.

3.1 Laplace equation
We consider the problem

−∆u = f in Ω (3.1)
u = 0 on ∂Ω, (3.2)

where Ω = (0, 1)2. Since k0 = k1 = 1 all results depend only on h, H and p.
We use the ADGFEM code (Doleǰśı [2020]) to generate the problem matrix (3.1).
The ADGFEM code assembles the preconditioned matrices which are exported
to MATLAB which estimate the condition number using codest function. The
assembling by ADGFEM is carried out by multiplying the generated matrix by
a canonical vector. The function codest is the recommended function for es-
timation of the condition number of large sparse matrices. We investigate the
dependence of the condition number κ(A) and κ(M−1

Ad A) on the parameters h,
H and p as we have seen (1.79) and (2.53).

First, we evaluate the condition number of a non-preconditioned system (2.54)
and verify bound (1.79). We carried out computations using a sequence of uniform
meshes having (approximately) 125, 250, 500 and 1000 elements and a fixed
polynomial approximation p up to degree 5. Based on the result (1.79), we
expect that the condition number will increase with the polynomial degree and
also will increase with a finer partition of Ω. This is also very natural for the
problem to be more costly, since we want a better approximation. The results
can be found in Figures 3.1 and 3.2, respectively.
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p
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6
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8
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)

1000

500

250

125

Figure 3.1: Dependecy of the condition number of the system matrix on the
polynomial approximation for different meshes.

28



0.06 0.08 0.1 0.12 0.14 0.16

h

10
5

10
6

(A
)

Figure 3.2: Dependecy of the condition number of the system matrix on the size
of elements for p = 2.

Moreover, we deal with the evaluation of the condition number of the precon-
ditioned system by the two-level additive Schwarz method. Figure 3.3 illustrates
the mesh partition with subdomains and the coarse mesh.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Figure 3.3: Mesh of the square (0, 1)2 with highlighted subdomains (blue) and
coarse mesh (green).

We expect the results proven in 2.34. We will now expect to have some kind
of dependence on the coarse mesh size. Hence from our method of discretization
subdomains into coarse elements we also have dependence on the number of
subdomains. From the implementation, we know that this will be a hard task
and we can expect different results using different implementation methods for
some subtask in our code. For example the method of choosing the prologation
operators can be tricky and also the definition of the coarse solver. We present
results with q = p, since we are using the constant polynomial approximation on
all elements of the fine mesh.

The dependence of the preconditioned system on the polynomial degree can
be seen in Figure 3.4. where we can already see that we have some computational
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errors. However, we still see the increase of the condition number with increasing
polynomial approximation.
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Figure 3.4: Dependency of the condition number of the preconditioned system
matrix on the polynomial approximation.

Finally, the dependence of the condition number on the coarse mesh size can be
seen in Figure 3.5. We can see that the condition number has decreased compared
to the condition number without preconditioning, but we have behavior that we
did not expect. Still, for the mesh with 500 elements, we can see the increase of
the condition number, with respect to the increase of the coarse mesh elements.
As we already said, this is the more tricky part to implement, and one has more
options how to do some steps in the computation. Therefore, we can say that
this probably is due to some implementation inaccuracies, e.g., in the setting of
the coarse solver, performing on the solution of the local and coarse systems or
due to the fact that we are far from asymptotic regime. However, the application
of the additive Schwarz preconditionier reduces the condition number by several
orders.
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Figure 3.5: Dependency of the condition number of the preconditioned system
matrix on the coarse element size H.

3.2 Symmetric linear elliptic equation
The second example is a simplified variant of the example from Doleǰśı and Con-
greve [2023]. It deals with the magneto-static field of an alternator. We consider
as domain Ω only the quarter of the alternator, this is due to the symmetry of the
problem. We also consider the partitioning Ω = Ωs ∪Ωr ∪Ωa, where Ωs represents
the stator, Ωr represents the rotor, and Ωa represents the gap that is filled by air,
see Figure 3.6.

The problem is described by the Maxwell equations for the stationary mag-
netic field in the form

rotH = f in Ω
divB = 0 in Ω,

(3.3)

where H = (H1, H2), is the magnetic intensity field, B = (B1, B2) is the magnetic
induction field and f is the current density. The operator rot is defined by the
following rot(H) = (∂H2

∂x1
, ∂H1

∂x2
). We consider the constitutive relation

H(x) = ν(x, |B(x)|2)B(x), x ∈ Ω, (3.4)

where ν is given by

ν(x, r) =
⎧⎨⎩

1
µ0

for x ∈ Ωa

1
µ0

(︂
α + (1 − α) r4

β+r4

)︂
for x ∈ Ωs ∪ Ωa.

(3.5)

The symbols µ0, α, β are taken from Glowinski and Marrocco [1974]. Conse-
quently, we get the problem

−div(µ(x, |∇u(x)|2)∇u(x)) = f in Ω. (3.6)
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Figure 3.6: Geometry of the alternator
.

In this section, we consider the linearized variant of (3.5) – (3.6), namely we
replace (3.5) by

ν(x, r) =
⎧⎨⎩

1
µ0

for x ∈ Ωa

100
µ0

for x ∈ Ωs ∪ Ωa,
(3.7)

where µ0 = 1.256 · 10−6.
We follow the steps done for the Laplace equation. First, we generate the

system matrix with the ADGFEM code and then we use MATLAB to compute
the condition number. The assembly is done again by the multiplication by a
canonical vector. We use the mesh seen in Figure 3.7, where we have the fine mesh,
coarse mesh, and domain decomposition partitioning. We use 20 subdomains and
only look at the condition number of the system matrix, when we change the
coarse mesh partitionig (partitioning of the subdomains Ωi into macroelements
H) and the polynomial degree of the approximation. The polynomial degree of
the coarse solver q is taken as maximum of the polynomial degrees pK , where
K ∈ Th, K ⊂ H. We look at the polynomial degrees p = 1, 2, 3, 4, 5 and set
p = pK , ∀K ∈ Th.
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Figure 3.7: Triangular mesh of the alternator domain (red), with Ωi partitioning
(blue) and coarse mesh (green).

We examine the dependence of the condition number on the parameters
h, H, p, k0 and k1. First, we look at the matrix of the non-preconditioned system
A and its condition number. We see the results in Figure 3.8, where is the plot
of the dependence of the condition number on the polynomial degree. We see
that the results are in compliance with our analysis. The results are similar to
the results obtained for the Laplace problem.
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Figure 3.8: Dependence of the condition number κ(A) (non-preconditioned sys-
tem) on the polynomial approximation.

Figure 3.9 shows the dependence of the condition number of the precondi-
tioned system M−1

ADA on the polynomial order p. Again we can see, that the
condition number is growing with the degree of the polynomial approximation as
we expected, but we can see the implmentation inaccuracies that we described
earlier.
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For the coarse mesh refinement we get the result that is expected by the
analysis. Here we see a better graph than what we have seen in the case of the
Laplace equation. This can be due to the mesh geometry and also due to the
implementation done in ADGFEM. The graph for the polynomial degree p = 2
can be seen in Figure 3.10.
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Figure 3.9: Dependence of the condition number of the preconditioned system
κ(M−1

ADA) on the polynomial approximation for different coarse mesh partitioning
Ωi.
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Figure 3.10: Dependence of the condition number of the preconditioned system
on the coarse element size H, for p = 2

Finally, we look at the results we get for different ratios of k1 and k0. We use
the ratios 10, 100, 500 and 1000 and generate the matrix for p = 1, 2, 3, 4. The
results for the non-preconditioned matrix A can be seen in Figure 3.11 and the
results for the preconditioned system can be seen in Figure 3.12. We see that
our results are in agreement with the results (1.79) and (2.53). The results have
some errors, which might be due to the implementation, as we discussed in the
previous.
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Figure 3.11: Dependence of the condition number of matrix A on the bounds k1
and k0, for different polynomial approximations.
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Figure 3.12: Graph of condition number of the preconditioned system depending
on bounds k1 and k0, for different p.

Generally we can say, that the condition number of the preconditioned system
is lower by few orders, than the condition number of the non-preconditioned
system, despite some inaccuracies in the implementation.

3.3 Symmetric nonlinear elliptic equation
For the non-linear case of the alternator problem (3.6) we have the equations

−div(ν(x, |∇u|)∇u) = f, in Ω, (3.8)

where ν is given by the nonlinear formula (3.5). The nonlinear problem (3.8) is
solved as a sequence of linear ones, namely

−div(ν(x, |∇uk−1|)∇uk) = f, in Ω, (3.9)

where k = 1, 2, . . . is the index of iteration.
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Moreover, we are not interested in the solution itself but in the value of the
quantity of interest, in our case the magnetic energy given by

J(u) := 1
2

∫︂
Ω

ν(x, |∇u(x)|2)|∇u(x)|2dx. (3.10)

The error of this quantity can be estimated by the goal-oriented techniques and
based on this estimates we performed several level of the anisotropic hp-mesh
adaptation. This approach optimizes the size and shape of mesh elements and
also the polynomial approximation degrees. For more details, we refer to Doleǰśı
and Congreve [2023], Doleǰśı and May [2022].

The linearized problem for each k = 1, 2, . . . is solved by GMRES method
with two-level additive Schwarz preconditioner. Figure 3.13 shows the generated
meshes for the first and last mesh adaptation level together with the correspond-
ing domain decomposition. The solution and hp-mesh are shown in Figure 3.14.
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Figure 3.13: Initial mesh of the alternator on left and the final adaptation of the
mesh on the right.
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Figure 3.14: Final hp-mesh on the left and the corresponding magnetic potential
on the right
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Moreover, Figure 3.15 shows the convergence of the error of the quantity of
interest eh = |J(u) − J(uh)| (cf. (3.10)) and its estimate. The ”exact” value J(u)
has been calculated by an overkill using a sufficiently refined grid. In this figure,
we plot two types of error estimators: ηI(uh), which is the residual of the primal
problem tested by the interpolation error of the dusolution,on, and ηI(uh), which
is the bound of ηI(uh) arising from the Cauchy inequality, for more details, we
refer to Doleǰśı and Congreve [2023], Doleǰśı and May [2022]. We note that the
mesh adaptation is carried out with respect to the estimate ηI(uh).
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Figure 3.15: Convergence of the non-linear alternator problem. (3.8).

Finally, Figure 3.16 demonstrates the convergence of the nonlinear solver, each
line corresponds to one mesh adaptation and each nodes corresponds to residual
of the linearized problem (3.9) for one k.
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Figure 3.16: Convergence of the iterative solvers for non-linear alternator prob-
lem.
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Conclusion
We dealt with the numerical solution of linear elliptic problem (1.1) by the
symmetric interior penalty variant of the discontinuous Galerkin method (SIPG
scheme). We proved the coercivity and continuity properties of the bilinear form
arising from the SIPG discretization. These properties guarantee the existence
of the discrete solution and they are important for the analysis of the bounds of
the condition number of the equivalent system of algebraic equations.

In the second chapter we presented the two level non-overlapping Schwarz
method for the DGM. We formulated bounds on the condition number of the
preconditioned system using three assumption. We then presented new proof
of the auxiliary lemma and modified proof from Antonietti and Houston [2011]
of the stable decomposition assumption of our form Ah. Moreover, we shown
bounds of the condition number depending on the fine mesh size h, coarse mesh
size H, data bounds k1 and k0 and on the polynomial degree of the approximation
p. We briefly discussed the implementation of the method and presented some
algorithms used for the computation, as well as some implementation problems
that can arise.

In the third chapter, we presented the numerical study and verification of
the theoretical results. First we considered the Laplace equation on the unit
square. We observed a relative good agreement with the theoretical results, some
inconsitencies were discussed. Moreover, we dealt with the numerical simulation
of a linearized magneto-static field in the alternator, where the condition number
of the preconditioned operator (2.53) was investigated. Finally, we dealt with
the original non-linear version of the alternator problem and demonstrated the
potential of the two-level additive Schwarz preconditioning.

For further research, an interesting question is the investigation of the de-
pendence of the condition number on the number of subdomains. This aspect
was investigated in Krzyżanowski [2016] but for a different setting where the
subdomains are smaller than the elements of the coarse mesh.
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