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Abstract: The content of this work is a measurement of spin waves in triangu-
lar lattice antiferromagnets. Single crystals of Na2BaMn(PO4)2 were successfully
grown and the magnetic properties of this system were initially studied by the
specific heat with applied magnetic field along ab and c axis. These measurements
revealed a rich magnetic phase diagram with a new phase, that might be a highly
exotic Vortex crystal phase. Complementary inelastic neutron scattering studies
of this system could be performed only thanks to the development and improve-
ment of the new experimental technique called Automatic Laue Sample Aligner
(ALSA). After several tests and improvements, we used this device to automati-
cally coalign hundreds of milligram crystals to form a large enough sample. Such
an advanced approach led to the impressive mosaicity spread around 2◦ and thus
to a very sensitive inelastic neutron study performed on IN12 at Institute Laue-
Langevin. It allowed us to determine the propagation vector in the ground state
at 55 mK as k = (1/3, 1/3, ±0.181(4)). Additionally, spin waves were measured
in a fully polarized state in a magnetic field of 10 T revealing magnon dispersion
in Na2BaMn(PO4)2.
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Introduction
Two-dimensional triangular lattice antiferromagnetic systems are perfect repre-
sentation of geometrical frustrated magnetism (1). The magnetic phase diagram
of a two-dimensional triangular lattice antiferromagnetic system has been earlier
studied theoretically revealing the coplanar phase 120◦ phase in ground state that
evolves into Y, up-up-down (UUD), and V phase upon increasing magnetic field
and temperature (2).
There are not many two-dimensional antiferromagnetic systems that exhibit mag-
netic phase diagram proposed. In practice, not as many two-dimensional trian-
gular lattice Heisenberg antiferromagnetic systems follow the proposed model
and different perturbations can destroy or modify the ideal ground state, such
as anisotropy (3), next-nearest-neighbor (4) or inter-layer interactions (5). Com-
pounds Na2BaX(PO4)2 (X = Co, Ni, Mn) were reported to show frustrated mag-
netism on the triangular lattice with spins 1/2, 1, and 5/2 respectively. All three
compounds host the UUD phase (6; 7; 8) and their phase diagrams show promis-
ing conditions for hosting the quantum spin liquid phase. To prove or disprove the
quantum spin liquid phase one must measure the magnetic excitations of ground
state using inelastic neutron scattering, which proves to be experimentally very
complicated.
Single crystals of compounds Na2BaX(PO4)2 (X = Co, Ni, Mn) are generally very
small with an average mass of 10 mg, which is not enough for inelastic neutron
experiment. Traditionally, experimental physicists are coaligning big amount of
single crystals in order to have higher inelastic signal (9). This process is very
time-consuming, demanding, and could suffer from low precision1. For this rea-
son, we developed a new experimental technique for crystal coalignment called
Automatic Laue Sample Aligner (ALSA). ALSA combines a robotic arm, cam-
era vision, and Laue diffractometer to coalign crystals automatically. The whole
coalignment process is one of the key parts of this thesis.
ALSA provides not only acceleration of the production process of samples for
inelastic neutron experiments but also improvement in the quality and precision
of the production process. Using ALSA it would be possible to distinguish com-
plicated spin wave dispersions that were previously hidden in the elastic signal.
In this thesis, we present inelastic neutron measurement on multiple samples
prepared by ALSA demonstrating its capabilities.

1Private communications with Huiqian Luo, one of the authors of (9)
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1 Theory

1.1 Magnetism
The magnetic moment in magnetism is the fundamental object, which can be
defined as (10)

−→
dµ = I

−→
dS (1.1)

where I is current going trough the oriented loop of area −→
dS and magnetic moment

µ has units of Am2. In solid-state physics, it is much more convenient to use
Bohr magneton since it describes the magnetic moment at the atomic level. It is
described as

µB = eℏ
2me

(1.2)

A magnetic solid consists of a large number of these current loops with magnetic
moments. The magnetization −→

M is defined as the magnetic moment per unit
volume and defines the vector field inside the solid. In special case magnetization−→
M is linearly related to the magnetic field −→

H , the solid is called linear material,
and we can write −→

M = χ
−→
H (1.3)

where χ is the dimensionless quantity called the magnetic susceptibility.
The electronic angular momentum defined by equation 1.1 is associated with the
orbital motion of an electron around the nucleus. In a real atom, it depends on
the electronic state occupied by the electron. In addition electron possesses an
intrinsic magnetic moment which is associated with intrinsic angular momentum.
This intrinsic angular momentum of an electron is called spin. The magnetic
moment on an atom is associated with its total angular momentum −→

J which
is determined by the third Hunds rule (11). We can calculate total angular
momentum from orbital angular momentum −→

L and the spin angular momentum−→
S .

1.2 Order and magnetic structure
In the previous section, we introduced the magnetism of free ions. However, for
magnetic ions in certain materials one cannot usually ignore interactions between
magnetic ions. In this section, we will introduce different types of interactions
that can lead to long range order, which we also parameterise.

1.2.1 Interactions

One of the most fundamental interactions between two magnetic dipoles −→µ 1 and
−→µ 2 is the magnetic dipolar interaction, which have energy equal to

E = µ0

4πr3

[︃
−→µ 1 · −→µ 2 − 3

r2 (−→µ 1 · −→r ) (−→µ 2 · −→r )
]︃

(1.4)

which depends on their separation and their degree of mutual alignment. This
interaction is weak compared to others and interaction energy is equivalent to
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about 1 K in temperature.
Exchange interactions are mostly responsible for phenomena associated with
long range magnetic order. Exchange interactions are electrostatic interactions
and can be described by Heisenberg Hamiltonian (12)

Ĥ = −2
∑︂
i<j

Jij

−→
S i ·

−→
S j (1.5)

where Jij is exchange constant between the ith and jth spin and i < j prevents
the double-counting. Often it is possible to take Jij to be equal to a constant for
nearest neighbour spins and to be 0 otherwise, which is called nearest neighbor
approximation.
If the electrons on neighboring magnetic atoms interact via an exchange interac-
tion (see figure 1.1), this is known as direct exchange. Thus we can classify this
interaction as a short range. This is the case when the wave functions of neigh-
boring magnetic atoms have sufficient overlap and the exchange integral reaches
values around 102-103 K.

Figure 1.1: Schematic picture of the direct exchange interaction. Arrows repre-
sent magnetic moments. (13)

Indirect exchange interaction (also called superexchange) is a mechanism
that takes place between the non-neighboring magnetic ions and is mediated by
non-magnetic ions between them. Indirect exchange can be found in ionic com-
pounds such as oxides and fluorides and is usually mediated by p and d - elements
such as oxygen. This exchange is Schematic of this mechanism is shown in figure
1.2. The magnitude of this interaction is usually lower than in the case of direct
exchange, typically around 100-102 K.
There is another indirect exchange called Ruderman–Kittel–Kasuya–Yosida (RKKY)

Figure 1.2: Schematic picture of the indirect exchange interaction. Arrows rep-
resent magnetic moments. (13)

interaction. This interaction is mediated by the conduction electrons, which make
it relevant interaction in metals.
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1.2.2 Magnetic structures

Let us consider the different types of magnetic ground states that can be produced
by interactions described in section 1.2.1.

A ferromagnet is a ground state in which adjacent magnetic moments are
in parallel alignment as illustrated in figure 1.3a, which results in spontaneous
magnetization in the absence of an applied field. Ferromagnetism is generally
caused by exchange interaction and the appropriate Hamiltonian (10) to sole in
applied magnetic field −→

B is

Ĥ = −
∑︂
ij

Jij
−→
S i ·

−→
S j + gµB

∑︂
j

−→
S j

−→
B (1.6)

and the exchange constant, defined in equation 1.5, for neighbors will be positive
to ensure ferromagnetic alignment. The first term on the right is the Heisenberg
exchange energy and the second is the Zeeman energy.
To make further progress we can use the Weiss model (14). In this model we
define an effective molecular field −→

B mf and for a ferromagnet the molecular field
will act so as to align neighboring magnetic moments. Since the molecular field
measures the effect of the ordering of the system one can assume that

−→
B ef = λ

−→
M (1.7)

where λ is a constant representing the strength of the molecular field. If we
introduce external magnetic field −→

B e solving Hamiltonian 1.6 simplifies to solving
Hamiltonian of paramagnet in magnetic field

(︂−→
B mf + −→

B e

)︂
. The paramagnetic

susceptibility will be
χP = µ0M

(Be + Bmf ) = C

T
(1.8)

where C is Curie constant. If we substitute 1.7 in 1.8 we obtain

χ = M

µ0Be

= C

T − Cλ
= C

T − TC

(1.9)

We can see that susceptibility has a singularity at T = Cλ = TC , which is for
ferromagnet positive. This temperature is called Curie temperature and at this
temperature spontaneous magnetization emerges. The last term in equation 1.9
is called Curie − Weiss law.
If the exchange interaction is negative (J < 0 in Hamiltonian 1.6) then nearest

neighboring magnetic moments prefer to lie antiparallel to each other creating
antiferromagnetic order. In most systems this can be considered as two in-
terpenetrating lattices as shown in figure 1.3b. We can use linear dependence of
magnetization on magnetic field 1.7 on each sublattice (the red and blue sublat-
tice in figure 1.3b). The strength constant of the molecular field λ is negative for
both sublattices. Applying the paramagnetic solution used for ferromagnet we
obtain a relation for magnetic susceptibility (14)

χ = 2C

T + TN

(1.10)

where C is Curie constant and TN is Néel temperature below which spontaneous
antiferromagnetic ordering occurs. Relations for susceptibilities of paramagnets,
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(a) Ferromagnetic ordering of magnetic
moments

(b) Antiferromagnetic ordering of mag-
netic moments

Figure 1.3: The basic types of magnetic ordering. Arrows represent magnetic
moments. (b) Purple and red color represent independent sublattices and green
box indicates compensation of magnetic moments.

ferromagnets from equation 1.9 and antiferromagnets from equation 1.10 can be
summarized with the general Curie − Weiss law

χ = C

T − Θcw

(1.11)

where Θcw is the paramagnetic Curie temperature (Weiss temperature) and C
is Curie constant. From Weiss temperature we can determine the character of
dominant interaction. For Θcw = 0 material is paramagnet, for Θcw > 0 we expect
Θcw = TC and it is ferromagnet and finally for Θcw < 0 it is antiferromagnet with
the predicted value Θcw = −TN .
The Curie constant C is directly related to the number of unpaired electrons and
can be used to determine the effective magnetic moment per ion in the unit of
Bohr magnetons (15)

µeff =
√

8CµB[cgs] µeff
∼= 800

√
C[SI] (1.12)

Both of these equations relate effective magnetic moment to Curie constant with
units (emu K mol−1) in cgs and (m3 K mol−1). This effective moment can be
directly compared to the calculated value for the ion in question, given by

µcal = gJ

√︂
J(J + 1)µB (1.13)

which depends only on its total angular momentum J and its g-tensor gJ . In 3d
magnets the magnetic moment can be very well approximated by the spin-only
moment and the equation 1.13 is reduced to (15)

µcal = 2
√︂

S(S + 1)µB (1.14)
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In the previous paragraph we applied Weiss’s mean field theory on ferromagnetic
and antiferromagnetic structure. This model is a very powerful tool in magnetic
data interpretation, but it breaks under certain circumstances for example in low
temperatures because it does not reflects dynamics of the system. A more precise
approach is by so-called spin waves. To introduce spin waves first imagine a
chain of N spins with value S as shown in figure 1.4a). Energy associated with
this chain is (16)

Eex = −2JS2(N − 1) (1.15)
where J is the strength of interaction between neighboring spins. Now suppose
that we create an excitation, we flip one spin in the other direction as shown in
figure 1.4b). Energy associated with this excited state is

Eex = −2JS2(N − 3) + 2 × 2JS2 = −2JS2(N − 1) + 8JS2 (1.16)

So by flipping just one spin we created local excitation and increased energy of
this system. When the spin flip is made gradually, the net increase in energy can
be smaller. Thus a wave-like spin flip occurs, called spin wave and is shown in
figure 1.4c).

Figure 1.4: a) The classical picture of the ground state of a simple ferromagnet.
b) A possible excitation: one spin is reversed. c) The low-lying elementary exci-
tations, spin waves. The ends of the spin vectors press on the surfaces of cones,
with successive spins advanced in phase by a constant angle (10).

A magnon is a quantized spin wave. Magnons as excitation have dispersion
relations. The disperse relation for triangular lattice antiferromagnet with nearest
neighbor interactions is (for calculation see appendix A)

E(−→k ) = 2JS

(︄
cos kx + 2 cos kx

2 cos
√

3ky

2

)︄
+ B∗ (1.17)

where −→
k = (kx, ky, kz) is the propagation vector, J is the in-plane nearest neigh-

bor interaction and B∗ = ∆ + gLµB, where B is external magnetic field, µ is
magnetic moment of magnetic ion in the external field, gL is the Landau g factor
and ∆ is the single-ion anisotropy.

1.3 Frustration
Some lattices do not allow to satisfy all the interactions in the system to find the
ground state. This leads to multiple competing phases near the ground state.
In that case we say that the system is frustrated. The antiferromagnet on the
triangular lattice is shown in figure 1.5. This lattice shows frustration because it
is not possible to orient the spin on the third site to satisfy the requirement of
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antiferromagnetic interaction with two other spins.

Figure 1.5: Antiferromagnetic nearest neighbor interaction on the triangular lat-
tice. (10)

A possible experimental quantification of frustration is the so-called frustra-
tion ratio (17)

f = |θCW |
TN

(1.18)

where TN is the ordering temperature (Neélé temperature) and ΘCW is the Curie-
Weiss temperature. Compounds with a frustration ratio greater than five are
commonly called frustrated. The most extreme cases are materials without long-
range order down to 0 K, meaning f = ∞, and correspond to a ground state
with only short-range correlations. A regime with highly correlated but fluctuat-
ing spins and long-range order at temperatures T ≪ |ΘCW | is often titled ”spin
liquid” (more precise definitions are available in section 1.4.2).
A prime example of the frustrated system is a triangular lattice antiferromag-
net. With an applied magnetic field, Heisenberg spins with isotropic exchange
interactions exhibit a large ground-state degeneracy. That means that in a finite
magnetic field, there exists an infinite number of continuously deformable spin
configurations that constitute minimal energy states (18).
Considering Hamiltonian in equation 1.6 with nearest neighbor interaction can be
simplified by considering the ”side-sharing” property of the triangular lattice, so
fixing all spins in one elementary triangle fixes two spins in each adjacent triangle.
That implies that all such states exhibit a three-sublattice structure, which must
satisfy (18)

S1 + S2 + S3 = B
3J

(1.19)

where Si are spins on each apex of the triangle. This condition provides equations
for angles needed to describe unit vectors defining the spins. In the absence of
magnetic field three of these angles are in the plane and form a three-sublattice
120◦ structure and can persist to non-zero magnetic fields. One of the remaining
free angles can be thought of as a gauge degree of freedom to rotate all spins
about the axis of an applied magnetic field. Two other free angles constitute the
phenomenon of accidental degeneracy.
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Thermal fluctuations lift the extensive degeneracy in favor of two coplanar Y
and V states and one collinear (UUD) spin configurations, shown in figure 1.6.
Coplanar states break two symmetries, first is the symmetry corresponding to the
choice of sublattice on which the down spin (in case of Y state) or the minority
spin (in case of V state) is located and symmetry of spin rotation about the
magnetic field axis. The collinear UUD state breaks only the choice of sublattice
for the down spin (18). The UUD phase is also very easy to experimentally
uncover. It shows as a plateau-like feature in magnetization curve M(B) at value
M = Msat/3, where Msat is the saturated magnetization.

Figure 1.6: Various spin configurations from the ground state manifold. (a)
coplanar Y state, (b) collinear UUD state, (c) coplanar V state, (d) non-coplanar
cone state, (e) coplanar inverted Y state. Magnetic field h is directed vertically
along z axis (18).

1.4 Spin liquid
An antiferromagnet consisting of a two-dimensional triangular lattice of Ising
spins is one of the prime examples of a frustrated system, forming a very large
degeneracy of ground states. At low temperatures spins continue to thermally
fluctuate in a correlated manner because they are restricted by ground state,
forming ”spin liquid” (19). The name is analog to normal liquid, where molecules
form dense, highly correlated state with no static order. The frustration param-
eter defined in equation 1.18 provides a measure of the depth of the spin-liquid
regime.
Fluctuation of the spins in spin liquid can be classical or quantum. Classical fluc-
tuations dominate for large spins and are driven by thermal fluctuations. Due to
thermal fluctuations the spins reorient randomly with time and if thermal energy
becomes too small classical fluctuations stop and spins freeze or order. For spins
comparable to 1/2 the uncertainty principle produces motion of spins, which per-
sists down to T = 0 K. Thermal (in the classical case) and quantum fluctuations
are similar to each other, but quantum fluctuations can be phase coherent. If
they are strong enough, they form a quantum spin liquid (QSL), which is a su-
perposition state in which the spins simultaneously point in different directions.
In a QSL, the spins are highly entangled with one another in a subtle way that
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involves entanglement between widely separated spins (19).

1.4.1 Spin ice

Spin-ice materials can be regarded as classical spin liquids. Examples of such ma-
terials are Dy2Ti2O7, Ho2Ti2O7 and Ho2Sn2O7 (20), where only ions of rare-earth
atoms (Dy and Ho) are magnetic and resides on a pyrochlore lattice, which is a
network of corner-sharing tetrahedra. Their f -electron spins are large and clas-
sical and their mutual nearest neighbor interactions are ferromagnetic, resulting
in frustration. To minimize the energy of a single tetrahedron spins have to align
into a configuration in which two spins point inward and two spins point outward
from the center of the tetrahedron (see figure 1.7). The name spin ice originates
from a direct analogy between these configurations and the positions of protons
in the tetrahedrally coordinated O2− framework of water ice (21).

Figure 1.7: A ground-state configuration of spins is shown in a pyrochlore lattice.
The spins obey the constraint of the ice rules that mandates two inward-pointing
spins and two outward-pointing ones on each tetrahedron (19).

1.4.2 Quantum spin liquid

In spin ice with decreasing temperature spin fluctuation decreases and eventually
falls out of equilibrium and freezes. This is the consequence of the large energy
barriers between different ice-rule configurations (22). By contrast, for materials
with spins of S = 1/2 quantum effects are strong and there are no obvious energy
barriers.
The most basic building block for a non-magnetic state is a valence bond, which
is a pair of spins forming a spin-0 singlet state shown in figure 1.8a. A valence
bond is a highly quantum object, where the two spins are maximally entangled.
To build quantum spin liquid valence bond must be allowed to undergo quantum
mechanical fluctuations. The ground state is then a superposition of different
partitioning of spins into valence bonds. Not all quantum spin liquids are alike.
The valence bond does not have to form only for nearby spins. If a valence bond
is formed for distant spins, then the bond is weak and can be broken forming free
spin with low energy. So states that have a significant weight from long-range
valence bonds have more low-energy spin excitations than states in which the
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valence bonds are mainly short-range (19).

Figure 1.8: In a VBS state a), a specific pattern of entangled pairs of spins —
the valence bonds - is formed. Entangled pairs are indicated by ovals that cover
two points on the triangular lattice. b) Spins in longer-range valence bonds (the
longer, the lighter the colour) are less tightly bound and are therefore more easily
excited into a state with non-zero spin (19).

In quantum spin liquids, there is one feature connecting them all, these are
exotic excitations. These exotic excitations are spinons, which are neutral and
carry spin 1/2. If we consider one-dimensional system, then spinons occur as
domain walls (see figure 1.9a) between spin up string and spin down string. In
true two-dimensional and three-dimensional quantum spin liquids the spinon can
be understood as a quantum superposition of reshuffled various spins and valence-
bond configuration that are already superposed in the ground state (19) (see figure
1.9b).

Figure 1.9: a) In a quasi-1D system (such as the triangular lattice depicted), 1D
spinons are formed as a domain wall between the two antiferromagnetic ground
states. Creating a spinon (yellow arrow) thus requires the flipping of a semi-
infinite line of spins along a chain, shown in red. b) In a 2D QSL, a spinon is
created simply as an unpaired spin, which can then move by locally adjusting the
valence bonds (19).

1.5 Neutron scattering
A neutron is a charge-neutral particle that deeply penetrates matter, making it
the perfect probe for bulk measurements of various condensed matter phenomena.
A particle with kinetic energy E and momentum p has according to the de Broglie
and Planc-Einstein equations wavelength λ and frequency ν

p = h

λ
= ℏk (1.20)

E = hν (1.21)
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where h = 6.626·10−34J is the Planck constant, ℏ = h/2π the reduced Planck
constant, and k = 2π/λ the wavevector (23).
Scattering as an interaction of neutron and nuclei is depicted in figure 1.10. A
neutron with initial energy Ei and wavevector ki is scattered into final state with
energy Ef and kf

Figure 1.10: Reprezenattion of scattering event (24)

The vector Q = ki - kf is called the scattering vector and the energy deposited
into the sample during the scattering event is defined as ℏω = Ei − Ef . Elastic
scattering is defined by zero energy transfer during scattering event Ei = Ef and
during inelastic scattering the energy changes Ei ̸= Ef .
We can express scattering event as cross-section. Total scattering cross-section
measures the likelihood of neutron being scattered by the target normalized by
an incoming flux of neutrons. However, during experiment we want to measure
a number of neutrons scattered in some general direction. We than define dif-
ferential scattering cross-section as the number of neutrons scattered into angle
dΩ. For fixed nuclei in elastic neutron scattering the differential cross-section is
defined as

dσ

dΩ = |
∑︂

j

bj exp(iQ · rj)|2 (1.22)

where bj is scattering length and rj position of said nuclei. When measuring in-
elastic scattering we define a partial differential cross-section d2σ

dΩdEf
as differential

cross-section but the energies of scattered neutrons have to be in the interval
(Ef , Ef + dEf ).
Neutrons as particles possess magnetic moment of 1.9 µN (µN = 5.005·10−27 Am−1

is nuclear magneton) and spin 1/2 which makes it the perfect probe for studying
magnetism in condensed matter. Neutrons interact with microscopic electromag-
netic fields through electromagnetic interactions, which are much weaker and
their range is much longer. The differential cross- section is given by Fermi’s
golden rule

d2σki→kf

dΩdEf

= kf

ki

(︃
mn

2πℏ2

)︃2∑︂
λi

pλi

∑︂
λf

|⟨σfλf |V (Q)|σiλi⟩|2δ(Eλf
− E

i
− ℏω) (1.23)

where V(Q) is the Fourier transform of the interaction potential between neutron
and scattering system. Labels λi, λf and σi, σf represent state of neutron and
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system before and after the interaction. For magnetic materials, we can separate
the nuclear and magnetic part of V(Q)

V (Q) = VN(Q) + VM(Q) (1.24)

where magnetic potential is

VM(Q) = −µ0µB · M⊥(Q) (1.25)

where M⊥(Q) is the Fourier transform of the corresponding magnetization, which
is perpendicular to the scattering vector. By combining equations 1.23 and 1.25
we obtain magnetic scattering cross-section

d2σki→kf

dΩdEf

= kf

ki

(︄
γr0

2µB

)︄2

S(Q, ω) (1.26)

where γ = 1.913, r0 = µ0e
2/(4πme) = 2.818 · 10−15 m, and

S(Q, ω) =
∑︂
λi

pλi

∑︂
λf

|2⟨σf |sn|σi⟩ · ⟨λf |M⊥(Q)|λi⟩|2δ(Eλf
− E

i
− ℏω) (1.27)

is the magnetic response function.

1.5.1 Propagation vector

Let us return to the magnetic structure introduced in section 1.2.2. It is important
to stress the difference between magnetic unit cell and a nuclear unit cell. The
magnetic unit cell is the smallest unit that has the same magnetic surroundings.
The magnetic unit cell is always greater or the same as the nuclear unit cell. If
the magnetic and crystal lattice periods are related by an integer or a rational
fraction then the magnetic structure is commensurate with the crystal lattice. A
magnetic unit cell cannot be defined if the periodicity of the magnetic structure
is not commensurate with the chemical lattice. Such structures are said to be
incommensurate. The relationship between magnetic and nuclear unit cell is
described by propagation vector, which is defined as one over number of nuclear
unit cells in one magnetic unit cell in certain direction.
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2 Studied Materials state of arts

2.1 Na2BaM(PO4)2 (M = Co, Ni, Mn)
Materials with formula Na2BaM(PO4)2 (M = Co, Mn, Ni) are currently under
active study, both theoretically and experimentally, because they exhibit rich
magnetic phase diagrams at low temperatures due to complex magnetic inter-
actions and strong quantum fluctuations of the magnetic moment. They are
promising candidates for a quantum spin liquid state. Na2BaCo(PO4)2 (25)
and Na2BaMn(PO4)2 (8) have trigonal crystal structure shown in Fig. 2.1.
Na2BaNi(PO4)2 was first reported as space group P3 (26), but most recent study
suggest the same structure as Co and Mn compounds (27).
Structural and magnetic properties of compounds with common formula Na2BaM(PO4)2
are summed up in table 1.

Figure 2.1: The structure of Na2BaM(PO4)2. a) The crystal structure of
Na2BaM(PO4)2 based on the packing of M-O polyhedra. b) Top view of the
relative orientation of the MO6 and other groups in the 2D triangular layer. c)
View emphasizing the layers of MO6 octahedra along the c axis view from the b
axis.(25)

Formula Space group a(Å) c(Å) V(Å3) S(spin) TN (K)
Na2BaCo(PO4)2 P3̄m1 5.3185 7.0081 171.676 1/2 0.15
Na2BaNi(PO4)2 P3̄/P3̄m1 5.2790 6.9596 167.96 1 0.41
Na2BaMn(PO4)2 P3̄m1 5.3761 7.0999 177.38 5/2 1.32

Table 1: Summarizing of the most important magnetic properties of
Na2BaM(PO4)2 (25; 26; 8)

Single crystal diffraction on these compounds (25; 26; 8) indicates that the
compounds are stoichiometric with a simple whole number ratio of constituents.
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Schematic diagrams of their crystal structure are shown in figure 2.1. Triangu-
lar layers of magnetic MO6 octahedra form A-A-A stacking pattern. The mag-
netic layers are separated by a single layer of nonmagnetic BaO12 polyhedra with
[PO4]3− units and Na+ filling the gaps in the magnetic layers. The magnetic ex-
change coupling of magnetic octahedra depends on the overlap of metal-oxygen
and oxygen-oxygen bonds (superexchange). This means that the coupling in the
same triangular layer is trough M-O-O-M (M = Co, Ni, Mn) super-superexchange
(J1) and the exchange coupling of neighboring layers is trough M-O-O-O-M super-
super-superexchange (J2). This situation is shown in figure 2.2. In these com-
pounds, the in-plane exchange J1 is much larger than the exchange between planes
J2, which makes these compounds effectively 2-dimensional triangular magnets.

Figure 2.2: The triangular layer of MO6 octahedra in the ab plane, with J1 and
J2 marked to indicate the super-exchange coupling between the nearest neighbor
M ions in the same plane and the neighboring plane. (25)

2.1.1 Na2BaCo(PO4)2

Quantum spin liquid candidate Na2BaCo(PO4)2 has Co2+ with effective spin
S=1/2 residing on a geometrically frustrated triangular lattice. A significant ad-
vantage of this material is that it does not display any significant site mixing or
lattice distortion and is simply growable.
The Curie-Weiss law was applied to fit the susceptibility from 200 to 300 K, mea-
sured in fig 2.3. From the fit was found ΘCW,⊥ = -31.9 K, µeff,⊥ = 4.96 µB and
ΘCW,∥ = -32.6 K, µeff,∥ = 5.87 µB for the magnetic field applied perpendicular
and parallel to the c axis respectively, indicating that the antiferromagnetic in-
teraction dominate.
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Figure 2.3: Temperature dependence of dc susceptibility down to 1.8K measured
with µ0H = 0.1T on a single crystal sample oriented with external field perpen-
dicular to c axis (H⊥c; black) and parallel to the c axis (H∥c; red) (25)

For this compound magnetic phase diagram has been reported (6). To con-
struct this phase diagram thermal conductivity, specific heat and AC suscep-
tibility have been measured. The magnetic phase diagram is in figure 2.6 for
directions B∥c and B⊥c. For B∥c it is clear that the phase II is up up down
(UUD) phase, which is deduced from the 1/3Ms plateau in magnetization mea-
surement observed at 22mK, which is shown in Fig. 2.4a. Since the 120◦ spin
structure is a prerequisite phase for the appearance of the UUD phase, we ascribe
the phase I as the canted 120◦ spin structure. For the H⊥c the UUD phase was
not observed as shown in Fig. 2.4b.

(a) (b)

Figure 2.4: Measurement of magnetisation dependence on the magnetic field.
The top dashed line indicates saturated magnetization. a) Magnetization curve
with magnetic field applied along c axis The lower dashed line indicates a 1/3
plateau. b) Magnetization curve with magnetic field applied along a axis (6).
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(a) (b)

Figure 2.5: The magnetic phase diagram of Na2BaCo(PO4)2 for B∥c (a) and
B⊥c (b). The data points are obtained from the AC susceptibility (AC), specific
heat (Cp) and temperature or field dependence of thermal conductivity (κ(T) and
κ(B)) measurements. The dashed lines are to guide the eye. (6)

The single crystal neutron diffraction experiments on a Na2BaCo(PO4)2 were
performed (28). The magnetic Bragg peaks were observed at 50 mK (see figure
2.6a). All observed magnetic reflections can be indexed by propagation vector
−→
k = (1/3, 1/3, ±0.167(3)).
The spin wave dispersion in a fully polarized state (B = 3.5 T) measured along
points M-K-Γ1-M in figure 2.6b. The energy gap around 0.484(5) meV arose at
K point. Empty circles are the fitted center position and the solid blue line is the
simulated linear spin wave dispersion by equation 1.17 and the coefficients are J
= 0.076(1) meV and B∗ = 0.128(9) meV.

(a) (b)

Figure 2.6: a) Magnetic Bragg peaks at temperature 50 mK that disappear at
temperature 450 mK. b) Contour maps of the experimental spin wave dispersion
along M-K-Γ1-M direction in the fully polarized state, in field B = 3.5 T and at
temperature T = 50 mK (28).
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2.1.2 Na2BaNi(PO4)2

DC susceptibility was measured on single crystal from 2 K to 300 K and Curie-
Weiss law was applied on data between 50 K and 300 K shown in figure 2.7. The
fitting results are ΘCW,∥ = −6.615 K and µeff,∥ = 3.092µB and ΘCW,⊥ = −43.979
K, µeff,⊥ = 3.832µB for χ∥(T ) and χ⊥(T ) respectively. The significant difference
between ΘCW,∥ and ΘCW,⊥ reveals strong magnetic anisotropy.

Figure 2.7: Magnetic susceptibility with field applied a) parallel and b) perpen-
dicular to c. The FC data (clack squares) and ZFC data (green dashed line) were
measured under H = 1 T and in the temperature range 2K to 300 K. The red
solid line are the Curie-Weiss law fitting for the 1/χ data (blue dots) (26)

To further reveal the magnetic anisotropy magnetization at T = 300 K, 100
K, 50 K, 2 K with magnetic field parallel or perpendicular to c axis was measured,
the results are shown in figure 2.8.

Figure 2.8: Magnetization of Na2BaNi(PO4)2 at a) 300 K, b) 100 K, c) 50 K and
d) 2 K. The dotted line in d) indicates the saturated magnetization value for a
Ni2+ ion when only concerning the spin moment. (26)
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In figure 2.8(a)-2.8(c) both M∥ and M⊥ increase linearly from 0 to 7 T with
M∥ larger than M⊥. The anisotropy can be observed at 300 K, indicating the
anistropic excitation gap should be comparable with the thermal energy. At 2
K M is proportional to H at lower fields and tends to saturate at higher fields.
Saturation magnetization equals to 2 µB/Ni2+. The magnetization curves at
all measured temperatures have no anomaly, indicating the absence of magnetic
transition or long-range order.
To construct a magnetic phase diagram of Na2BaNi(PO4)2 the temperature de-
pendence of specific heat Cp(T), magnetic field and temperature dependence of
ac susceptibility χ′(B), χ′(T) and magnetic field and temperature dependence of
thermal conductivity κ(B), κ(T) were measured and the final phase diagram is
in figure 2.9(a,b). The UUD phase was recognized as phase II along c axis. This
phase was discovered by magnetization 1/3 plateau in figure 2.9(c,d).

Figure 2.9: The magnetic phase diagram of Na2BaNi(PO4)2 with field applied
along the c axis (a) and ab plane (b). Magnetization along c axis (c) and a axis
(d) obtained by integrating the AC susceptibility curve. (7)

Single crystal neutron scattering experiment on Na2BaNi(PO4)2 was per-
formed at zero field and a low temperature T = 80 mK shown in figure 2.10.
All observed magnetic reflections can be classified by propagation vector equiva-
lent to k = (1/3, 1/3, ±δ) where δ ≈ 0.293(1).
The spin wave dispersion in fully polarized state (B = 5 T) was measured along
points Γ1-K-M-Γ. The black empty circles are centers of the Gaussian fit to the
data. These points were fitted by equation 1.17 and coefficients J = 0.032(1) meV
and B∗ = -0.090(1) meV.
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(a)

Figure 2.10: a) The neutron diffraction pattern measured in the L = 0.29 plane
at T = 80 mK and B = 0T. b) Inelastic neutron scattering intensity measured at
T = 60mK and B = 5T along Γ1-K-M-Γ. (27)

2.1.3 Na2BaMn(PO4)2

Na2BaMn(PO4)2 was first found in Japan as a naturally grown crystal found in
Japan called Iwatite (29).
Temperature dependence of DC magnetic susceptibility was measured and is
shown in figure 2.11a. The χ(T) curves show a monotonic increase upon cooling
from 320 to 1.8 K without any significant long-range order. Using the Curie-Weiss
model at 20K≤ T ≤ 100 K the Curie-Weiss temperature ΘCW,⊥ = -7.20 K and
ΘCW,∥ = -7.61 K and effective magnetic moment µeff,⊥ = 5.61 µB and µeff,∥ =
5.60 µB on one Mn ion were found (8). Magnetization measurement, shown in
figure 2.11b, was performed at temperature 2 K. It shows isotropic behavior in
both directions. The slope changes around 6 T, but it does not saturate up to
the maximum magnetic field measured.

For the construction of the magnetic phase diagram, the temperature depen-

(a) (b)

Figure 2.11: a) Temperature dependence of susceptibility measured along two
crystallographic orientations. b) Magnetic field dependence of magnetization at
2K. (8)
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dence of specific heat was measured in the temperature range 0 K to 2 K in a
different magnetic field in the range from 0 T to 4 T in two directions H ∥ c
and H ∥ ab. To further track the magnetic transitions both temperature and
field-dependent AC magnetic susceptibility was measured. The field-dependent
AC susceptibility was measured in a range from 0 T to 7 T and also from 7 T to
0 T. Strong hysteresis of AC susceptibility along the c axis was observed around
3 T and the hysteresis weakens with increasing temperature (see figure 2.12a).
Combining Cp(T), χ(T), and χ(H) data the full magnetic phase diagram of
Na2BaMn(PO4)2 along two applied field directions was obtained and is shown
in figure 2.12(a,b). When the magnetic field is applied along the c axis we ob-
serve a series of ordered phases. Only the UUD phase can be determined by
magnetization plateau at 1/3Ms, which is shown in figure 2.12c. When the field
is applied along the ab plane the phase diagram consists of three phases. The
UUD phase is absent, which suggests easy-axis anisotropy of this system.

Figure 2.12: The magnetic phase diagram of Na2BaMn(PO4)2 with field applied
along the c axis (a) and ab plane (b). Grey area in (a) describes the hump
region with hysteresis observed in AC susceptibility. (c) Magnetization along two
directions at 0.076K obtained by integrating the AC susceptibility curve(8).

2.2 Na2BaM(VO4)2 (M = Co, Ni, Mn)
Compounds Na2BaM(VO4)2 (M = Co, Mn, Ni) are new series of triangular lat-
tice magnets. Their structure has been reported to be P3̄ (30) and P3̄m1 (31).
Making their structure very similar to Na2BaM(PO4)2 (M = Co, Mn, Ni) shown
in figure 2.1. The magnetic MO6 (M = Co, Ni, Mn) octahedra is separated
by VO4 tetrahedral instead of PO4. The lattice constants of the three mate-
rials are a = 5.5223(3)Å and c = 7.0419(5)Å (M=Ni), a = 5.54880(10)Å and
c = 7.0730(2)Å (M = Co) and a = 5.5962(3)Å and c = 7.1653(4)Å (M = Mn).

2.2.1 Na2BaCo(VO4)2

Magnetic susceptibility of Na2BaCo(VO4)2 was measured in temperature range
2 K to 300 K. Curie-Weiss law fitting was performed on the data between 200 K
and 300 K (see figure 2.13a) which give us ΘCW,∥ = 13 K and µeff,∥ = 5.865µB

and ΘCW,⊥ = −54 K and µeff,⊥ = 5.585µB. However if we fit data in temperature
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region 5 to 25 K (see figure 2.13a) we obtain ΘCW,∥ = 3.1 K and µeff,∥ = 5.441µB

and ΘCW,⊥ = 1.7 K and µeff,⊥ = 3.687µB. This difference is caused by con-
siderable contribution from the orbital moment. A magnetic phase transition is
observed at TC = 3.9 K.
Figure 2.13b shows magnetization curve measured at 2 K.

(a) (b)

Figure 2.13: a) Reciprocal magnetic susceptibility of Na2BaCo(VO4)2 from 1.8
and 300 K. The dashed lines show the results of Curie–Weiss fitting. The inset
shows the magnetic susceptibility at low temperatures. b) Magnetization curve
of Na2BaCo(VO4)2 measured at 2K under magnetic fields along the c axis. The
inset shows the detail in the low-field region. (30)

2.2.2 Na2BaNi(VO4)2

Figure 2.14a shows the reciprocal magnetic susceptibilities of Na2BaNi(VO4)2 as
a function of temperature measured under the two directions of a magnetic field.
Overall, the results seem to be linear over the temperature range measured. The
susceptibility is slightly anisotropic over the entire temperature region, which
can be attributed to the anisotropy of the g value due to spin–orbit coupling.
A Curie–Weiss analysis of the data for 100–300 K (see figure 2.14a) gives a
ΘCW,∥ = 3.6 K and µeff,∥ = 3.464µB and ΘCW,⊥ = 6.5 K and µeff,⊥ = 3.225µB.
The positive Weiss temperature indicates that the nearest neighbor exchange in-
teractions are ferromagnetic. The inset of figure 2.14a shows that this compound
undergoes a magnetic phase transition at TC 8.4 K. The magnetic susceptibility
for the in-plane magnetic field rises steeply at around TC , while that for the out-
of-plane field has a sharp bend at TC .
Figure 2.14b shows the magnetization curves measured at 2 K. For B ⊥ c, the
magnetization rises steeply with the magnetic field and becomes almost saturated
at 0.1 T. The magnetization curve for B ∥ c with low magnetic fields shown in
the inset has a slight hysteresis. In contrast, the magnetization is less sensitive to
the B ∥ c fields, where no hysteresis or spontaneous magnetization is observed in
the magnetization curves. The magnetization saturation values are 2.3 and 2.2
µB for B ∥ c and B ⊥ c respectively.
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(a) (b)

Figure 2.14: a) Reciprocal magnetic susceptibility of Na2BaNi(VO2)4 from 1.8
and 300 K.The dashed line shows the result of Curie–Weiss fitting. The inset
shows the magnetic susceptibility at low temperatures. b) Magnetization curves
of Na2BaNi(VO4)2 measured at 2K. The inset shows the detail under low magnetic
fields perpendicular to the c axis.(30)

2.2.3 Na2BaMn(VO4)2

Figure 2.15a shows the reciprocal magnetic susceptibility of Na2BaMn(VO4)2
measured in the temperature range 2 to 300 K. Although the reciprocal suscepti-
bilities are linear in wide range of temperature, the Currie-Weiss fit was performed
between 100 and 300 K. The fits give us Θcw,⊥ = −4.5 K and µeff,⊥ = 5.865µB

and Θcw,∥=−9.4 K and µeff,∥ = 6.131µB. The negative Weiss temperatures indi-
cate that the nearest-neighbor exchange interactions are antiferromagnetic in this
material. Therefore, the effect of geometric frustration arising from the triangular
arrangement of the magnetic atoms can be expected.
Figure 2.15b shows the magnetization curves for Na2BaMn(VO4)2 under magnetic
fields parallel and perpendicular to the c axis. The top-left inset of figure 2.15b
shows that the magnetization curve measured at 2 K is slightly anisotropic, which
is qualitatively in accordance with the anisotropy indicated from the g value. The
magnetization increases almost proportionally to the magnetic field up to 4 T and
then curves gently downward at higher magnetic fields without any anomalies that
would indicate a phase transition. This behavior suggests that Na2BaMn(VO4)2
is still in a paramagnetic state at 2 K. At 0.6 K, the magnetizations under both
directions of the magnetic field reach saturation at approximately 6 T, where a
sharp bend appears.
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(a) (b)

Figure 2.15: a) Reciprocal magnetic susceptibility of Na2BaMn(VO4)2 from 1.8
and 300 K. The inset shows the magnetic susceptibility at low temperatures. b)
Magnetization curves of Na2BaMn(VO4)2 measured using a pulse magnet at 0.6
K. The bottom-right inset shows the detail at low magnetic fields. The top-left
inset shows the magnetization curves measured using the SQUID at 2 K. The
magnetizations at 0.6 K are normalized according to the saturation values. (30)

2.3 Selection of studied material
All of the materials described in section 2 were considered as possible candidates
for our neutron experiment. Isostructural Na2BaCo(PO4)2 and Na2BaNi(PO4)2
are very good spin liquid candidates (6; 7) with low spin value, but neutron ex-
periments have already been performed on these compounds (28; 27).
Compounds Na2BaCo(VO4)2 and Na2BaNi(VO4)2 are not suitable for studying
quantum spin liquid behavior because they exhibit ferromagnetic interactions.
Even thought Na2BaMn(VO4)2 exhibits antiferromagnetic behavior, but unlike
Na2BaMn(PO4)2 vanadium compound do not indicate exotic phase transitions.
For the neutron experiment, we choose Na2BaMn(PO4)2. This system exhibits
antiferromagnetic behavior, strong frustration on the triangular lattice and the
magnetic phase diagram contains possible exotic quantum phases (8), which
makes this material quantum spin liquid candidate. Also, there are no neutron
experiments performed on this material.
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3 Sample Preparation
Inelastic neutron scattering described in section 1.5 is a very powerful experimen-
tal technique, but unfortunately suffers from low flux scattered from the sample.
Traditionally, experimental physicists are coaligning big amounts of single crystals
in order to have higher inelastic signal (32) when bigger crystals are not avail-
able. This is necessary also for Na2BaMn(PO4)2 as its single crystals are tiny
and in the form of thin plates with an average mass of 10 mg (see Fig. 4.1). To
prepare Na2BaMn(PO4)2 sample for inelastic neutron scattering, we developed
the Automatic Laue Sample Aligner (ALSA).

3.1 Methods of crystal growth
In the early years of material research only natural minerals were studied, but
with the development of the field, new methods for single crystal growth were
necessary. In terms of crystal growth one of the first techniques usable on a
large scale was flame fusion by Verneuil (33) (mainly used for ruby synthesis).
In the first half of the twentieth century methods of crystal growth saw signifi-
cant advances. Mainly new growth techniques of crystal growth were developed,
hydrothermal growth, crystal pulling, the Bridgman method, and more. Nowa-
days the most notable crystal growth method is the Czochralski method, which
is widely used not only by scientists but in industry as well. Czochralski method
accounts for the most of the silicone production.

3.1.1 High-Temperature Solution Growth (Flux)

Multi-component compounds usually have high melting points or require other
extreme conditions. Therefore it is difficult to grow such substances using con-
ventional melting crystal growth methods. Crystallization of these compounds
is carried out from a high-temperature solution where the temperature for their
growth is much lower than their melting points. To crystallize the compound
we first need to dissolve all components in a solvent at high temperature. Then,
a supersaturation in the solution is attained by slow cooling of the solution or
evaporation of the solvent such that crystals nucleate and grow in the supersat-
urated solution. Supersaturation can also be attained by creating a temperature
difference between the locations of growing crystal and nutrient (34).
The main advantage of this method is that almost any material can be prepared.
However, the solvent has to be chosen based on the knowledge of the composition
of the material and has to be chemically similar. Based on this ”comparability”
of solvent and grown materials variety of impurities are introduced into grown
crystals. The solvent should also have a low melting point, low vapor pressure,
and low toxicity (35).
A typical growth experiment starts by weighing and mixing the required con-
stituent material in the right ratio. The mixture is loaded into a crucible and is
then placed into a furnace initially heated to the maximum temperature, then
holding the crucible for several hours of soaking time to dissolve and homogenize
the solution, slow cooling of the furnace to room temperature, and extracting
grown crystals. The crystals obtained after growth can also be separated from
the solution by decanting it (36).
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3.2 Automatic Laue Sample Aligner (ALSA)
ALSA utilizes a robotic arm Meca500, Basler camera system, and conventional
Laue X-ray diffractometer shown in figure 3.1.

Figure 3.1: Inner space of ALSA containing 3 Basler cameras Laue X-ray diffrac-
tometer and robotic arm Meca500

The robotic arm in combination with PELCO Vacuum pic-up system, shown
in figure 3.4, is able to automatically pick up crystals and move them between
predefined zones. In each zone, a specific action is performed:

• Init zone - Crystals meant for coaligment are placed into this zone. The
init camera takes a picture and detects crystals, as shown in figure 3.2, and
saves the position of their center of mass. The robotic arm then picks up
the crystal in the center of mass and moves it into X-ray zone.
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(a) Raw image (after camera calibration)
form Init camera

(b) Detected crystals with calculated cen-
ter of mass

Figure 3.2: Crystal detection in Init zone

• Xray zone - Crystal in this zone is placed in front of diffractometer and
the Laue pattern is recorded, which is then automatically processed (this
process is described in section 3.3) and crystal orientation is obtained. The
robotic arm than moves the crystal in the correct orientation into the Macro
zone.

• Macro zone - Crystal in correct crystallographic orientation is placed in
front of the Macro camera and its exact shape is detected, as shown in
figure 3.3.

(a) Raw black and white image from Macro
camera

(b) Detected borders of crystal, high-
lighted by green line

Figure 3.3: Crystal shape detection in Macro zone

• End zone - In the End zone we place a custom plate to place our crystal
on. The position of this plate is detected by ArUco markers (37) glued to
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a predefined position on the plate, shown in figure 3.4b. To calculate the
optimal position of each crystal on the plate we use 2D irregular bin packing
problem solution (38) (function is demonstrated in figure 3.5) implemented
into our system. Before placing the crystal onto a plate, it is coated in
glue. We use hydrogen-free glue CYTOP, which is based on amorphous
fluoropolymer, completely without hydrogen making it perfect for neutron
experiments (39).

Figure 3.4: a) Tip of PELCO system holding a crystal. This tip is connected to
the pump that creates negative pressure, holding the crystal in place. b) Copper
plate with ArUco marker number 0. Through ArUco marker detection system
located the plate and its shape.

Figure 3.5: Additive process of adding crystal-shaped polygons. We choose 5
steps in the addition process (the red dot highlights the polygon that has been
added last).

3.3 Coaligment algorithm
In section 3.2 we briefly introduced ALSAs parts and basic workflow and in this
section we will focus on coaligment algorithm.
Basic overview of ALSA workflow is in figure 3.6.
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Macro zone

Xray zone

End zone

User imputs their crystals

Init camera detect crystals in init zone

 

We snap the Lauegram image

We solve crytalographic orientation 
and save the necesary rotation of crystal

We take picture of oriented crystal
and save the macroscopic shape

Using macroscopic shape we solve the
irregular bin packing problem for plate 

in end zone

Using the outcome of irregular bin packing 
problem we apply glue on the calculated coordinates

We place the crystal into the glue

Have we placed all crystals?

 False 

Bake the plate with crystals

 True 

The plate is ready for experiment

  This algotitm will be
  discussed later

Figure 3.6: Workflow of ALSA in pseudo code. Code is divided into three sections
based on robot zones.

The algorithm for solving the crystal structure relies on the known trigonal
crystal structure of the crystals as described in section 2.1 and it is combined
with the macroscopic shape of grown crystals. The main face of the crystal is
perpendicular to the c axis, which creates six-fold symmetry in the Lauegram.
The algorithm itself can be divided into consecutive parts:

• Peak detection - For implementation, we choose Python as a program-
ming language. And for image processing, we use OpenCV2 library (40).
Our function requires a certain intensity threshold, which determines the
difference between peaks and background. The functionality of our code is
demonstrated in figure 3.7.

• Finding of the circle - Coordinates of peaks in Lauegram (in pixels) are
transferred into the detector coordinate system (in millimeters) using de-
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Figure 3.7: Raw lauegram, on the left, with acquisition time of 60 seconds and
processed lauegram with detected peaks highlighted by blue contour

tector size. Then we loop through pairs of peaks creating circles (the center
of the circle is between these two peaks and the diameter is the distance
between these two peaks). There are two conditions for finding the right
orientation. There have to be exactly six peaks on the circle and their mu-
tual angle has to be sixty degrees. The algorithm returns the center of the
circle and the position of those six peaks, demonstrated in figure 3.8.

Figure 3.8: Raw lauegram, on the left, with acquisition time of 60 seconds and
lauegram with determined circle and its center.

• Determining macroscopic angles of rotation - From the position of
the center we can calculate rotations leading the crystal to align its c axis
perpendicular to the detector. We basically imagine c axis as a vector and
we want to rotate this vector using Euler angles. This task has a solution
implemented into our algorithm.
The alignment of a axis is calculated from the position of individual peaks.
We want to align the a axis with x axis of the detector. We can calculate
the angle between the peak and the x axis for each peak and then rotate
the crystal around c axis to get to the orientated position. Due to the 6-fold
symmetry, rotation by 60◦ also satisfies final condition.
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4 Results and Discussion

4.1 Crystal growth
Single crystals for susceptibility, specific heat, magnetization and neutron exper-
iments were synthesized by the flux method described in section 3.1.1. Dried
Na2CO3, BaCO3, MnO and (NH4)2HPO4 were mixed stoichiometrically and
grinded well with the flux media NaCl in a molar ratio of 1:5 (25). The mix-
ture was loaded into an alumina crucible and then heated up to 950 ◦C for 2 h
followed by a slow cooling to 750 ◦C. The obtained transparent single crystals
were manually separated from the bulk. Typical dimension of the crystals is
∼1.5-4.0 mm in edge length and ∼0.3 mm in thickness. Na2BaMn(PO4)2 single
crystal are transparent in color, as shown in figure 4.1, and are planar in shape
with planes perpendicular to the c axis.

Figure 4.1: Photograph of multiple single crystals varying in size on 1×1 mm2

grid.

We used the ALSA machine to check the quality of our crystals. The Laue-
grams of the [001] plane are shown in figure 4.2. In this figure the (110) and (100)
directions are highlighted. The two crystallographic directions are important for
the neutron experiment in section 4.3. This crystal orientation will enable us to
scan in (110)×(001) plane.

Figure 4.2: Lauegram with an acquisition time of 60 seconds with highlighted
(110) and (001) directions.
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To probe the inner structure of grown crystals we measured powder diffrac-
tion on Bruker D8 Diffractometer in the Bragg-Brentano geometry. Measured
spectrum is in figure 4.3 and was collected at room temperature. The profile re-
finement was done by Rietveld refinement using FullProf suite. The best fit was
achieved with the space group P3̄m1 and lattice parameters a = b = 5.3791(1) Å
and c = 7.1041(2) Å. The Crystallographic coordinates were extracted and are
in table 2.
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Figure 4.3: Rietveld refinement of Na2BaMn(PO4)2 at room temperature using
FullProf Suite with Bragg R-factor 14.07. Green lines denote peaks expected
from symetry P3̄m1.

Atom Wyckoff x y z Occupancy
Na 2d 2/3 1/3 0.773(2) 0.15(8)
Ba 1b 0 0 1/2 0.071(4)
Mn 1a 0 0 0 0.064(4)
P 2d 2/3 1/3 0.191(1) 0.09(6)
O1 2d 2/3 1/3 0.444(1) 0.2(1)
O2 6i 0.1686(8) 0.8314(8) 0.8096(8) 0.4(2)

Table 2: Crystallographic coordinates extracted from the Rietveld refinement
carried out using X-ray powder diffraction data at room temperature

Refinement of this structure proved to be very complicated due to large pref-
erential orientation in direction (001). This large preferential orientation comes
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from the plate-like shape of crystals with c axis perpendicular to the plate. Occu-
pancy in table 2 are normalized so they add up to one. The chemical content of
the unit cell is Na2.2(2)Ba1Mn0.9(1)P1.4(8)O8.8(9). Due to a large error that exceeded
60% for some atoms the quantitative analysis or our sample is not reliable. How-
ever, all of the observed peaks are indexed, which means that our crystals do not
contain another phase.

4.2 Bulk measurements
To probe the magnetic properties of this material we measured the temperature
dependence of DC susceptibility and magnetic field dependence of magnetization
by Quantum Design Vibrating Sample Magnetometer (VSM) for the Physical
Property Measurement System (PPMS) and temperature dependence of specific
heat was measured by Quantum Design Heat Capacity System for the PPMS.
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Figure 4.4: Temperature dependence of magnetic susceptibility measured in ab
plane in the magnetic field 0.1 T.

Temperature dependence of DC susceptibility was measured in magnetic fields
of 0.1 T, 1 T, 10 T, and 14 T in temperature range 2 - 300 K. In this range the
χ(T) curve shows a monotonic increase with temperature without any signature
of long-range order. Susceptibility in a magnetic field was measured in two crys-
tallographic directions along c axis and in ab plane except in the magnetic field
0.1T where susceptibility was measured only in ab plane as shown in figure 4.4.
We applied Currie-Weiss model at 50 K ≦ T ≦ 250 K and found that the CW
temperature ΘCW = -5.88(1) T and effective magnetic moment of Mn2+ µeff =
6.5(9) µB. This value of the effective magnetic moment is larger than expected for
spin-only Mn2+ calculated from equation 1.14 as 5.92 µB. The frustration ratio
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defined in equation 1.18 for this material f1 = 5.9(3), where the index of frustra-
tion ratio corresponds to phase transition in the ground state in figure 4.11. This
value of frustration ratio is similar to other 2d triangular lattice Heisenberg anti-
ferromagnetic systems such as Rb4Mn(MoO4)3 (7.14) (41), RbFe(MoO4)2 (5.79)
(42) and Na2BaNi(PO4)2 (4.3) (26).
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Figure 4.5: Temperature dependence of susceptibility measured along two crys-
tallographic directions from 2K to 300 K in magnetic field 1 T.

The magnetic susceptibility was measured in higher magnetic fields 1 T in fig-
ure 4.5, 10 T in figure 4.6 and 14 T in figure 4.7 along c axis and in ab plane. The
susceptibility was also fitted by Curie-Weiss law and the results are summarized
in table 3. The anisotropy ratio (≡ χ∥c/χ∥ab) at minimal measured temperature
2 K is 0.96(1) for 1 T, 1.01(3) for 10 T and 1.03(2) for 14 T.

∥ c ∥ ab

B = 1 T ΘCW (K) - 7.75(1) - 6.74(1)
µeff (µB) 6.8(2) 6.9(2)

B = 10 T ΘCW (K) - 8.88(3) - 16.43(5)
µeff (µB) 7.1(6) 7.7(8)

B = 14 T ΘCW (K) -12.94(4) -21.67(6)
µeff (µB) 7(2) 7(2)

Table 3: Result of Curie-Weiss fit of susceptibility in different magnetic field.
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Figure 4.6: Temperature dependence of susceptibility measured along two crys-
tallographic directions from 2K to 300 K in magnetic field 10 T.
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Figure 4.7: Temperature dependence of susceptibility measured along two crys-
tallographic directions from 2K to 300 K in magnetic field 14 T.

Magnetization measurements at 2 K along c axis and in ab plane in the mag-
netic field range from 0 to 14 T is in figure 4.8. Magnetization at this temperature
shows isotropic behavior for both directions. The slope starts to saturate at 6
T and fully saturates around 12 T at a value 4.9(1) µB/Mn. The theoretical
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saturated magnetization is gSµB and is equal to 5 µB/Mn if only considering the
spin moment, which is consistent with the observed value.
Magnetization was also measured at higher temperatures of 5 K, 10 K and 15 K
in ab plane in figure 4.9 and at temperatures 5 K, 10 K, 15 K and 50 K along c
axis in figure 4.10. At higher temperatures, magnetization does not saturate up
to the maximum measured magnetic field. The magnetization anisotropy ratio
stays close to one for all measured temperatures. In higher temperatures, the
dependency is not linear but does not saturate up to the maximum magnetic
field measured.
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Figure 4.8: Magnetic field dependency of magnetization at 2 K measured along
c axis and in ab plane.
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Figure 4.9: Magnetic field dependency of magnetization at temperature 2 K, 5K,
10 K, and 15 K in ab plane.
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Figure 4.10: Magnetic field dependency of magnetization at temperature 2 K,
5K, 10 K, 15 K, and 50 K along c axis.

To further study the phase transition at lower temperatures, we measured the
specific heat down to 0.5 K. Figure 4.11 shows the CP (T) curve under 2 K with-
out applying a magnetic field. The peak features at low temperatures indicate
magnetic long-range order and two-phase transitions. From the maxima of two
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peaks, we determined Néele temperature as TN1 = 1.1 K and TN2 = 1.3 K.
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Figure 4.11: Specific heat measured below 2 K in zero magnetic field revealing
Néele temperature for this system.

To map out the magnetic phase diagram we measured the temperature de-
pendence of specific heat from zero magnetic field up to 9 T with step 0.1 T.
Constructed contour phase diagram with applied magnetic field along c axis is
in figure 4.12. Since we measured temperature dependence of specific heat it is
hard to properly distinguish individual phases that have a constant boundary in
temperature. To properly see the development of those phases we constructed
field dependency of specific heat shown in figure 4.13 as an artificial cut from the
dataset. Red lines in figure 4.12 represent scans in figure 4.13 and red stars in
figure 4.12 represent phase transitions denoted as black stars in figure 4.13. At
higher temperatures, we observed a very strong transition from fully polarized
state to a magnetically ordered state at magnetic field ≈ 2.6 T. This boundary
shifts to higher fields with lower temperatures and around 0.9 K splits into two
phases and at temperature 0.9 K one of the phase transitions disappears and one
splits into two. The boundary between the fully polarized state and the magneti-
cally ordered state stays visible down to the minimal temperature measured, but
phase transition visible at 0.8 K and around 4 T disappears at temperature 0.6
K.
At lower temperatures, there is also another phase transition. This phase transi-
tion originates from the peak at 1.1 K in zero field which moves to 0.8 T at 1 K
and then slowly rises in magnetic field with decreasing temperature.
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Figure 4.12: Map of specific heat constructed from temperature scans with dif-
ferent applied fields with step 0.1 T. Red lines correspond to field scans and red
stars correspond to black stars in figure 4.13.
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Figure 4.13: Magnetic field dependant specific heat at different temperatures. All
curves except for T = 1.3 K are sequentially shifted by 15 J·mol−1·K−1 for clarity.
Black stars denote the phase transition.

There is also a phase boundary at lower fields ≈ 0.6 T which is almost con-
stant with lower temperatures. There is also a very weak phase transition at
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magnetic field 1 T and temperature 1.2 K, which is in figure 4.13 denoted by
green stars. This phase transition has not been reported (8) in the original phase
diagram in section 2.1.3. To further probe this pocked phase we constructed field
dependency of specific heat shown for temperatures 1.05 K, 1.1 K, 1.2 K, and
1.25 K shown in figure 4.14. The weak phase transition is denoted by black stars
in figure 4.14. This pocket phase resembles the newly reported Vortex crystal
phase (43), which has been reported for square lattice frustrated ferromagnet.
The phase diagram of a square lattice frustrated ferromagnet with new phase
Vortex crystal is in figure 4.15.
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Figure 4.14: Magnetic field dependant specific heat around weak phase transition
at ≈ 1 T. Black star denotes the weak phase transition of pocket phase.

Figure 4.15: Finite size phase diagram of a square lattice frustrated ferromagnet
in the applied magnetic field, showing classical spin liquid and at low fields vortex
crystal (43).
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We also probed the magnetic phase diagram with a magnetic field applied
in ab plane with temperature scans of heat capacity in different magnetic fields
from 0 T to 7 T with step 0.1 T shown in Figure 4.16. To properly see individ-
ual transitions we also constructed magnetic field scans in different temperatures
in figure 4.18 and temperature scans of specific heat in different magnetic fields
in figure 4.17. In these scans, we determined the positions of individual peaks
corresponding to individual phase transitions. The peak at 1.1 K in zero mag-
netic fields up to the magnetic field of 0.9 T. Around magnetic field 1 T the phase
boundary became constant in temperature and disappears under temperature 0.9
K. This is most likely a consequence of measuring only temperature dependency
of specific heat, where this phase transition is hidden between individual scans.
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Figure 4.16: Map of specific heat constructed from temperature scans with dif-
ferent applied magnetic fields in ab plane with step 0.1 T. Red lines and red stars
corresponds to scans and peaks in figure 4.18 and black lines and black stars
corresponds to scans and peaks in figure 4.17.

The second peak at temperature 1.3 K at zero fields indicates the phase bound-
ary between the spin-polarized state and magnetically ordered state. The phase
boundary stays at a temperature of 1.3 K up to a magnetic field of 3.5 T, where
it starts to move to lower temperatures with an increasing magnetic field. This
phase transition is clearly visible down to the minimal temperature measured.
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Figure 4.17: Temperature dependency of specific heat in different magnetic fields.
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Figure 4.18: Magnetic field dependant specific heat at different temperatures.
Black stars denote the phase transitions.

Our constructed phase diagrams were compared to the published phase dia-
grams (8) in figure 4.19 along c axis and in figure 4.20 in ab plane. Our phase
diagrams correspond to the reported phase diagrams in general, however, we
updated the phase diagram along the c axis by pocket phase determined as a
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possible Vortex crystal phase (43).

Figure 4.19: Comparison of our magnetic phase diagram on the left and published
magnetic phase diagram (8) on the right with magnetic field applied along c axis.
New Vortex crystal phase is highlighted by red circle.
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Figure 4.20: Comparison of our magnetic phase diagram on the left and published
magnetic phase diagram (8) on the right with magnetic field applied in ab plane.

4.3 Neutron experiment
Neutron experiments were carried out at Institute of Laue-Langevin (ILL) at
cold neutron triple-axis spectrometer IN12 (Instrument is described in appendix
B). This master thesis contains two experimental measurements on IN12 with
proposal number 4-01-1795 (44) and CRG-3066 (45). In addition our scientific
team performed measurements on thermal neutron two-axis diffractometer D23
with proposal numbers 5-41-1252 and CRG-3064. These two experiments on D23
will be referenced in this thesis, but only to support data from IN12 or other
measurements.
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4.3.1 Coaligment results

Using ALSA described in section 3.2 two samples were prepared (see figure 4.21).
The first sample (see figure 4.21a) was used in the experiment on IN12 with
proposal number 4-01-1795. Sample consisted of six copper plates connected
by a middle piece ensuring the plates are parallel. Crystals on each plate were
coaligned to have the same crystallographic directions. Plates were coaligned to-
gether using instrument OrientExpress (46).

(a) (b)

Figure 4.21: a) The original sample of over 200 coaligned crystals with a mass
over 2 g. b) Improved sample of 300 coaligned crystals and mass over 3g

To measure the overall mosaicity using the IN12 we scanned at temperature
5 K the angular dependence of nuclear Bragg peaks (002) (see figure 4.23) and
(110) (see figure 4.23) to see the mosaic spread of c axis and ab plane.
The result of crystal coaligment done by ALSA is summed up in the table 4,
84% of crystal mass with FWHM of 4.06◦ has ab plane oriented in the same
direction. The disarrangement of crystals ab plane is caused by the growth of
crystals and how are the crystals placed on the copper plate.This disarrangement
is impossible to get rid of, because of the non perfect surface of the crystals. The
satellite peaks around the main one consisting of 15% of crystal mass indicates
that some crystals are lying on top of each other or are grown imperfectly.
The crystal c axis misalignment forms four peaks which are described in table
5. It is clear that peak3 and peak4 have almost double the intensity of peak1
and peak2. If we compare those intensity ratios with the individual weight of
crystals on each plate, we can see that peak1 and peak2 correspond to plate with
crystal mass 0.31 g and 0.35 g and peak3 and peak4 correspond to plates with
crystal mass (0.38 + 0.33) g and (0.33 + 0.32) g. This split is caused by the
misalignment of individual plates. The width of individual peaks is below 2.2◦.
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Figure 4.22: The mosaic spread of the older sample in ab plane.

ab plane missorientation
Intensity ratio (%) FWHM (◦)

peak1 84 (4.06±0.02)
peak2 4 (2.2±0.2)
peak3 3 (1.1±0.1)
peak4 6 (2.2±0.2)
peak5 3 (2.0±0.1)

Table 4: Missorientation of ab plane of all crystals
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Figure 4.23: The mosaic spread of the older sample in c axis.

c axis missorientation
Intensity ratio (%) FWHM (◦) Crystal weight (g)

peak1 15 (2.1±0.2) 0.31
peak2 12 (1.22±0.09) 0.35
peak3 40 (2.18±0.08) 0.38 + 0.33
peak4 33 (1.43±0.04) 0.33 + 0.32

Table 5: Missorientation of c axis of all crystals

To negate the misalignment of individual plates we added two supporting
copper rods to hold individual plates in the same mutual orientation (see figure
4.21b). To check the overall misalignment we preformed angular scan at temper-
ature 300 K of Bragg peaks (002) for c axis (see figure 4.25) (-1-10) for ab plane
(see figure 4.24) and (-1-1-1) for combined c axis and ab plane (see figure 4.26).
For this newer sample, the result of the coalignment is in the table 6. The mis-
orientation of ab plane looks better as 72 % of crystal mass with FWHM of 1.9◦.
This result is caused bz better quality of single crystals grown in next batch.
The c axis misalignment of this new sample is summarized in table 7. The prob-
lem of misaligned plates seems to be solved with this new technique since 92 % of
crystal mass with FWHM 2.93◦ shares the same direction. There are additional
satellite peaks, but their combined intensity is below 10 %, these are caused by
mistakes in crystal placing an will be improved in the future. However, this result
seems to be sufficient for the inelastic neutron experiment. ALSA should be able
to perform better coalignment with FWHM below 2◦ as we observed in the first
sample.
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Figure 4.24: The mosaic spread of the new sample in ab plane.

ab plane missorientation
Intensity ratio (%) FWHM (◦)

peak1 72 (1.9±0.1)
peak2 20 (2.3±0.5)
peak3 6 (1.2±0.2)
peak4 2 (1.1±0.3)

Table 6: Missorientation of ab plane of all crystals on the new sample

c axis missorientation
Intensity ratio (%) FWHM (◦)

peak1 92 (2.93±0.05)
peak2 6 (0.91±0.01)
peak3 2 (1.1±0.3)

Table 7: Missorientation of c axis of all crystals on the new sample
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Figure 4.25: The mosaic spread of the new sample in c axis.
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Figure 4.26: The mosaic spread of combined c axis and ab plane

combined misorientation of c axis and ab plane
Intensity ratio (%) FWHM (◦)

peak1 76 (1.98±0.01)
peak2 6 (1.03±0.07)
peak3 5 (1.8±0.2)
peak4 11 (1.5±0.1)
peak5 2 (1.2±0.2)

Table 8: Combined misorientation of c axis and ab plane

The result of the combined misarrangement of crystals is summarized in the
table 8. The sample is definitely suitable for an inelastic neutron experiment
with 76 % of crystal mass with FWHM 1.98◦ correctly coaligned. This result
of ALSA is very promising but can be improved to over 95 % mass of aligned
crystals through hardware and software improvements.

4.3.2 Determination of propagation vector

From the single crystal neutron diffraction experiment on IN12 (44) we discov-
ered magnetic peaks at temperature 60 mK (see figure 4.27) suggesting long-range
magnetic order. To determine if this peak is magnetic we measured the temper-
ature dependence of this peak shown in figure 4.28. Magnetic Bragg peak
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disappears above the temperature 1.2 K which is consistent with the magnetic
phase diagram and it proves that observed peaks are of magnetic origin.
Our sample was prepared so that we are scanning in [hh0]×[00l] planes, which
means we can do scans in (Qh, Qh, 0), (0, 0 ,Ql) and directions combining the
previous two directions. We observe two magnetic peaks corresponding to the
propagation vector of the ground state. To properly determine the propagation
vector both peaks were fitted by 2D Gaussian function. The brighter peak shown
in figure 4.29 has fitted maximum at Qh=0.3325(1) and Ql=0.176(2) with the
FWHM along Qh 0.013(1) and along Ql 0.022(2) and the parasitic peak has max-
imum at Qh=0.331(5) and Ql=0.2498(9) with the FWHM along Qh 0.011(5) and
along Ql 0.017(1). The parasitic peak has one-fifth of the main peak intensity. A
less intense peak has fitted maximum at Qh=0.667(3) and Ql=0.179(1) with the
FWHM along Qh 0.011(3) and along Ql 0.0414(1).

Figure 4.29: Magnetic Bragg peak with greater intensity with smaller parasitic
peak fitted by 2D Gaussian function.
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Figure 4.30: Less intense magnetic Bragg peak fitted by 2D Gaussian function.

Fitting magnetic Bragg peaks by 2D Gaussian is not very accurate because we
have to account for the step in Ql direction. That means that the error is half the
step so 0.01. Also from figure 4.27 we can see that the maximum intensity of the
brighter peak is measured by Qh scan at Ql=0.18. This one-dimensional scan is
shown in figure 4.31. In this scan, we fitted both peaks by the Gaussian function
and we obtained a maximum of the brighter peak at Qh = 0.3330(7) with FWHM
of 0.0284(4) and the maxim of the second peak at Qh = 0.6671(2) with FWHM of
0.02402(5). From the discussion above we conclude that the propagation vector
in the ground state is (1/3,1/3,±0.181(4)).
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Figure 4.31: One dimensional Qh scan at Ql=0.18 revealing maxim of both mag-
netic Bragg peaks.

Magnetic Bragg peaks were measured on the new sample as well. Magnetic

51



Bragg peak was discovered at the same position (see figure 4.32 and 4.33) and
were fitted by Gaussian function revealing position Qh = 0.3342(7) with FWHM
along Qh 0.0115(7) and Ql = 0.1805(4) with FWHM along Ql 0.0269(4). Results
from the new samplehad better quality because we do not observe any parasitic
peak in the Ql scan.
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Figure 4.32: Magnetic Bragg peak in new sample, measured along Qh direction
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Figure 4.33: Magnetic Bragg peak in new sample, measured along Qh direction

A propagation vector in the ground state was also observed in the D23 ex-
periment. Results from this experiment are consistent with the results above.
From the magnetic reflections observed by D23 at temperature 55 mK and in
zero magnetic field the magnetic structure of the ground state was determined2.

2Preliminary data refinement of diffraction experiment on D23 done by M. Stekiel.
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4.3.3 Spin waves in spin-polarized state

The relatively small critical field of Na2BaMn(PO4)2 (around 6 T) allows us to
measure spin waves in the spin-polarized state. We measured in the magnetic
field of 10 T, where the system is fully polarized. This technique is often used at
QSL systems, because it allows determination of coupling constants which could
not be accessible in the ground state (47).
The energy dispersion along the (0,0,Ql) direction is shown in figure 4.34 in K
(1/3,1/3,Ql) point and in figure 4.35 in M (1/2,1/2,Ql) point. We can see that
the dispersion in this direction is flat. The blue line is the linear fit of the centers
of Gaussian functions and the error bar is the FWHM of each Gaussian peak
fitted for each energy scan. The results of these linear fits are in table 9. The
slope of these dispersions is very close to zero suggesting negligible dispersion
along the c axis. From the intercepts of linear fit, we can determine the energy
gap in these high symmetry points.

Figure 4.34: Flat spin wave dispersion along (0,0,Ql) at high symmetry point K
measured in magnetic field 10 T and temperature 55 mK. Blue dots represent
fitted center positions of Gaussian functions and the blue line is the linear fit of
this dispersion.
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Figure 4.35: Flat spin wave dispersion along (0,0,Ql) at high symmetry point M
measured in magnetic field 10 T and temperature 55 mK. Blue dots represent
fitted center positions of Gaussian functions and the blue line is the linear fit of
this dispersion.

High symmetry point Slope Energy gap (meV)
K point -0.0006(5) 0.455(5)
M point 0.0008(6) 0.499(3)

Table 9: Result of linear fitting of flat dispersion in (0,0,Ql) direction at high
symmetry points.

In contrast to the negligible dispersion along c axis, the dispersion in (Qh,Qh,0)
plane shows remarkable momentum dependence. This dependence can be de-
scribed by the model 1.17. We measured the dispersion of the spin waves Qh
= 0.2 to Qh = 0.5 and up to energy 1 meV shown in figure 4.36. Obtained
parameters from dispersion relation are J = 0.0299(1) meV and B∗ = 0.677(3)
meV. Additional points were measured, but are not in the figures 4.36 and 4.37,
because they do not form map. Additional points are plotted in figure 4.38.
In the dispersion one spin wave excitation is clearly visible, but around Qh = 0.35
another branch appears. This is not a real signal, but an spurios signal coming
from (IN12) itself (so called cuppat-axe spurion (24)). To support this statement
we present measured dispersion on new sample in figure 4.37. No parasitic branch
of spin wave dispersion is observed. We can also see that the background is re-
duced and the FWHM of the spin wave excitations are smaller.
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Figure 4.36: Contour maps of the experimental spin-wave dispersion in the fully
polarized state, in field B = 10 T and at temperature T = 55 mK. Blue circles
with error bars are the fitted center positions, and the solid blue curve is the
simulated linear spin wave dispersion.

Figure 4.37: Contour maps of the experimental spin-wave dispersion in the fully
polarized state in the new sample, in field B = 10 T and at temperature T = 55
mK. Blue circles with error bars are the fitted center positions, and the solid blue
curve is the simulated linear spin wave dispersion.

Obtained dispersion of Na2BaMn(PO4)2 in fully polarized state was compared
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toothermeasurementsoncompoundsNa2BaCo(PO4)2(28)andNa2BaNfi(PO4)2
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Ffigure4.38:Spfinwavesfinthespfin-polarfizedstateofNa2BaX(PO4)2(X=Co
(28),Nfi(27),Mn)allscaledfinthemagnetficfield10Tandallmeasuredpofints
forNa2BaMn(PO4)2.

MeasureddatawerealsocomparedtothesfimulateddatausfingMonteCarlo
calculatfionsthroughthesoftwareTakfinfinordertotakeresolutfionofthefinstru-
mentfintotheaccount. ThfiscalculatfionmethodfisdescrfibedfinAppendfixC.
SfimulatedspfinwavesfinthewholerangeofoneBrfilloufin(fromQh=-0.5to0.5)
zonearefinfigure4.39.Thesfimulatfionsfisnotscaledtoourdata.Alsotosave
tfimeoursfimulatfionwasprogrammedtoreturnzero,whenfarfromthefinelastfic
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Wealsosfimulatedspectrumtocomparetoourmeasureddataasshownfinfigure
4.40.
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Figure 4.39: Simulated spin wave spectrum using Takin in whole Brillouin zone.

(a) (b)

Figure 4.40: Comparison of a) measured data and b) simulated data by Takin
from Qh = 0.3 to 0.6.
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5 Conclusions
The goal of this thesis was to a) uncover physics in frustrated magnets b) to
develop and test new experimental technique. For this purpose a high- quality
single crystals of Na2BaMn(PO4)2 were grown using the flux growth method and
characterized by Laue diffraction and x-ray powder diffraction, revealing their
good quality. The constructed magnetic phase diagram resulting from our heat
capacity measurements is in agreement with the previously published one, reveal-
ing a complex magnetic phase structure expected for frustrated triangular lattice
antiferromagnet. Additionally, we have detected and described previously unre-
ported phase which was initially hidden in the up-up-down phase. This phase
was tentatively determined as the Vortex Crystal phase, but further analysis is
required and preparatory steps to investigate this exotic quantum phase have
already been taken.
As the mass of the crystals of Na2BaMn(PO4)2 is typically below 10 mg, it is
almost impossible to perform inelastic neutron experiments to study these mag-
netic phases in detail. Therefore a new experimental device based on robotic arm
and robotic vision called ALSA was developed as a part of this thesis. ALSA was
used for the preparation of two generations of samples formed by co-aligning hun-
dreds of crystals. The first generation sample prepared by ALSA was analyzed
by neutron scattering and several improvements to the preparation technique
were made: a new sample holder was developed and crystal placement was im-
proved. The subsequent improvement of ALSA proved to be very successful.
We observed significant improvement in data comparing these two generations
of samples. ALSA proved to be a reliable help in the laboratory and provided a
new and more efficient way to prepare samples. ALSA can co-align samples with
mosaic spread under 2◦, making it more efficient than human research.
The experiment on co-aligned crystals using ALSA was done in Institute Laue-
Langevin using cold neutron triple axis spectrometer. The propagation vector in
the ground state of this compound was determined as −→

k = (1/3, 1/3, ±0.181(4)).
In the same experiment, the spin waves in a fully polarized state were ob-
served and they are in good agreement with one magnon dispersion. Our ob-
served data were also compared to isostructural compounds Na2BaCo(PO4)2 and
Na2BaNi(PO4)2. The spin wave dispersion appears to be flat in the Ql direction,
revealing a strong Qh dependence on the dispersion spectrum. Magnon dispersion
of all three compounds was then compared and it seemed to be mostly dependent
on the spin of the magnetic compound as expected.
Both goals a) and b) of this thesis were successfully accomplished.
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6 Future Plans
Measurements on the second generation of samples revealed spin waves dispersion
in the ground state and other states from the magnetic phase diagram, which were
previously hidden in the signal of the elastic line. We are currently in the process
of analyzing the data. We are also in the process of refining the data from D23
and determining the magnetic structures of individual phases. Contents of this
thesis with measurements of spin waves in other phases and magnetic structure
refinement will be published.
We are also improving ALSA and preparing for the distribution of ALSA to the
users. ALSA can be used for sample preparation of other promising candidates for
inelastic neutron studies who suffer from low masses of available single crystal,
such as Henmilite studied by Ankit Labh. We are preparing paper describing
algorithms behind ALSA usage.
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Appendices

A Dispersion relation of spin waves
Compounds Na2BaM(PO4)2 (M = Co, Ni, Mn) are two-dimensional triangular
lattice antiferromagnetic systems so we can rewrite Hamiltonian in equation 1.6
into the XXZ-Hamiltonian

H =
∑︂
⟨ij⟩

[︂
J
(︂
Sx

i Sx
j + Sy

i Sy
j

)︂
+ ∆Sz

i Sz
j

]︂
+ gµB

∑︂
i

B · S (A.1)

For simplicity of calculations, we will focus on the first term in Hamiltonian
without a magnetic field. Now we rewrite the whole Hamiltonian in the non-
Hermitian ladder operators defined by

Sx
i = 1

2
(︂
S+

i + S−
i

)︂
(A.2)

Sy
i = 1

2i

(︂
S+

i − S−
i

)︂
(A.3)

To obtain the Sz
i component we use the normalisation of spin (Sx)2 + (Sy)2 +

(Sz)2 = 1 and expand the square root
√

1 − x ≈ 1 − x
2 . After substituting it into

equation A.1 we obtain

H =
∑︂
⟨ij⟩

[︄
J
(︂
S+

i S−
j + S−

i S+
j

)︂
+ ∆

(︄
1 + (Sx

i )2

2 + (Sy
i )2

2 −
(Sx

j )2

2 −
(Sy

j )2

2

)︄]︄
(A.4)

Now to solve equation A.4 we apply linear spin wave theory. The spin operators
are expanded in terms of creation and annihilation operators on every magnetic
site in the local coordinate system. By keeping only the lowest order of the
operator we create a linear approximation of the complex spin dynamics (48):

S+
i =

√
2Sa†

i (A.5)
S−

i =
√

2Sai (A.6)
(A.7)

and we obtain Hamiltonian in terms of creation and annihilation operators.

H =
∑︂
⟨ij⟩

[︂
SJ

(︂
a†

iaj + aia
†
j

)︂
+ ∆

(︂
1 + 4S

(︂
a†

iai − a†
jaj

)︂)︂]︂
(A.8)

Now we apply the Fourier transform of creation and annihilation operators (49)

a
(†)
i = 1√

N

∑︂
k

a
(†)
k e(±ik·ri) (A.9)

where k = (kx, ky) is the propagation vector, which we assume to be two-
dimensional and we substitute that in

H =
∑︂
⟨ij⟩

[︄
SJ

N

∑︂
k

a†
kak (2 cos(k(rj − ri))) + ∆

]︄
(A.10)
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Now we need to exchange sums and sum over nearest neighbors in a triangular
lattice. There are six nearest neighbors in a triangular lattice, but we just need
to sum over three neighbors with vectors

r1 = (1, 0)
r2 = (1/2,

√
3/2)

r3 = (−1/2,
√

3/2)

and multiply the whole term by 2 because cosine is an even function. The Hamil-
tonian simplifies

H = 2SJ

N

∑︂
k

a†
kak

(︄
cos kx + 2 cos kx

2 cos
√

3ky

2

)︄
+ ∆ (A.11)

Now we just need to diagonalize this Hamiltonian, which is straightforward (50)
obtaining the equation

E(k) = 2SJ

[︄
cos kx + 2 cos kx

2 cos
√

3ky

2

]︄
+ B∗ (A.12)

where in B∗ we combined the ∆ and Zeeman term from the beginning.
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B IN12
IN12 is a triple-axis spectrometer using cold neutrons. That means that neutrons
guided to the instrument by neutron guide are moderated by so called cold sor-
ces at temperature 4 K. The layout of IN12 is in figure B.1. The initial white
neutron beam comes from neutron guide H144 and the velocity selector selects
a wavelength band that continues through the neutron guide to the monochro-
mator. The monochromator is a single crystal of pyrolytic graphite (002) which
selects an initial wavelength using Bragg’s law and directs a neutron beam onto
the sample. Then the beam interacts with the sample and is scattered in many
different directions and with different energies. This change in direction and en-
ergy is what we want to detect. To measure the energy of the scattered beam
the secondary spectrometer, comprising the analyzer and detector, is used. The
secondary spectrometer is moved to choose the direction of measuring the final
intensity, and the analyzer and detector are then set to measure neutrons at the
final wavelength. The intensity of the scattered neutron bean is measured while
scanning the initial or final wavelengths.

Figure B.1: The layout of cold neutron triple axis spectrometer (51).
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C Introduction to Takin data analysis
Software suite Takin (52) is used to perform convolution of a physical system’s
dynamical structure factor S(Q, E) and the instrument resolution function (53).
S(Q, ω) function is provided via Python script.
Triple-axis spectrometers are very versatile instruments for inelastic neutron scat-
tering. All magnetic and nuclear excitations can be investigated by measuring
intensity in arbitrary points in four-dimensional momentum (Q) and energy (ω)
space. This means that we need to know the four-dimensional resolution function
of our instrument. Because the doubly-curved monochromators are used, we need
to use the resolution dependent on the actual position in real space where the
scattering event takes place (shown in figure C.1).

Figure C.1: Layout of a three-axis spectrometer along with different beam paths
that have to be considered in resolution calculations. The dashed lines repre-
sent the optical axes and correspond to the nominal setting of the spectrometer
characterized by wave vectors k0

i and k0
f for the incident and scattered neutrons,

respectively (54).

The scattered neutron intensity is represented by

I(k0
i , k0

f ) =
∫︂

V
dr
∫︂

dkiWi(r, ki)
∫︂

dkiWf (r, kf )S(Q, ω) (C.1)

Wi(r, ki) is the probability that a neutron with a particular wave vector ki hits
the sample at r, and Wf (r, kf ) is the probability that a neutron with some wave
vector kf that is scattered at r is actually registered in the detector. In Gaus-
sian approximation, the resolution function can be characterized by the so-called
resolution ellipsoid that is the surface in (Q,ω)-space (54). The orientation of
this ellipsoid is determined by the coupling of momentum and energy resolution.
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Figure C.2: Resolution ellipsoid for ki = 2.662Å using a monochromator at the
center of the optical path (black) and ± 1 cm displaced (blue and red) using flat
monochromator with open collimators (54).

For a flat monochromator the ellipsoid is rotated and its orientation becomes
almost parallel to the monochromator crystal (see figure C.2) since higher energy
neutrons (corresponding to larger kx) are predominantly reflected under smaller
angles. Again, there is a shift of the center with y. However due to the large
extension of the ellipsoid along ∆kx, this effect is hidden by the smearing of the
resolution.
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