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citlivostńıch jader.
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Introduction

Blazing in gold and quenching in
purple,
Leaping like leopards to the sky,
Then at the feet of the old horizon
Laying her spotted face, to die;

Stooping as low as the otter’s
window,
Touching the roof and tinting the
barn,
Kissing her bonnet to the
meadow, —
And the juggler of day is gone!

The Juggler of Day
Emily Dickinson

The Sun, the closest star to planet Earth and the center of our planetary system,
is a star that appears blatantly unremarkable in almost every measurable aspect,
yet it holds immense significance for every single living organism, including us,
humans. From providing suitable conditions for life to offering one of the earliest
methods to measure time, our home star has been our closest ally for millennia.
It is, therefore, somewhat ironic that for the vast majority of our history as a
species, we knew virtually nothing about it.

The first true astronomical observations, and thus the first pieces of actual knowl-
edge, can be attributed to the ancient Chinese for their observations of sunspots
(Xu Zhen-tao, 1980). Similar measurements were later conducted by Arabs, Eu-
ropeans, and others, as described in Vaquero (2007). While sunspots continue
to serve as useful markers of solar activity even today, they do not reveal much
about the inner structure of the Sun. This limitation, the inability to see below
the optically thick photosphere, remained a challenge until only very recently. It
was only after the discovery of the ”5-minute oscillations” in the 1960s (Leighton
et al., 1962) and their theoretical explanation in the 1970s (Ulrich, 1970; Leibacher
and Stein, 1971) that we were finally able to peek deeper beneath the ”surface”
and expand our knowledge about the Sun far beyond just its visible disc.

The field of astrophysics that has enabled these deeper insights is called helioseis-
mology, often referred to as one of the most successful branches of astrophysics
(Buldgen, 2019). Helioseismology fundamentally involves the analysis of acoustic
wave propagation within the Sun. Despite its success and valuable contributions,
helioseismology remains a relatively young and evolving field of physics, and
some of its concepts and fundamental quantities have not yet been fully proven
or tested. Among these are the sensitivity kernels, which analytically computed
from various models, indicate how much various perturbations within the Sun’s
interior influence observable properties at its surface. The aim of this thesis is
to develop a model-independent method to verify the accuracy of at least one of
these sensitivity kernels.
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1. Solar structure
The Sun is a main sequence star of stellar classification G2V located in a disc of
the Milky Way galaxy, approximately 8 kpc from its center. Its interior structure
can be divided into four main regions; the core, the radiative zone, the convective
zone and the photosphere as shown in more detail in Fig. 1.1.

Figure 1.1: The interior structure of the Sun. Credit: Wikipedia Com-
mons/kelvinsong

1.1 Core
The core constitutes the innermost layer of the Sun, extending from its center
to approximately 20–25 % of its radius R⊙ (Garćıa et al., 2007; Hathaway, D.
H., 2022). Within this region, hydrogen nuclei undergo fusion to form helium
through the proton-proton chain (Salpeter, 1952), a process known as thermonu-
clear fusion. This reaction releases a substantial amount of energy, approxi-
mately 6.7 MeV per nucleon (Schumacher, 2001), which is subsequently emitted
from the Sun’s photosphere as visible light. Achieving conditions conducive to
nuclear fusion is no trivial matter, as emphasized by Schumacher (2001). The
reaction is particularly sensitive to temperature and density. The solar core main-
tains a central temperature of approximately 15 × 106 K and a density of about
150 × 103 kg/m3 (Hathaway, D. H., 2022). By around 20–25 % of the solar ra-
dius, the temperature decreases to about half its central value, while the density
drops to less than 1

6 of its initial magnitude. At this juncture, the temperature
and pressure become insufficient to sustain nuclear fusion, marking the boundary
between the solar core and the surrounding layers.

4



1.2 Radiative zone
Above the boundary of the core lies the radiative zone, extending further up to
approximately 70 % of the Sun’s radius. Its nomenclature derives from the pre-
dominant mode of energy transport within it: radiation. Due to its considerable
volume and high optical thickness, it takes approximately a million years for a
photon emitted in the core to traverse the radiative zone and reach the tachocline.
The temperature and density gradually decline to approximately 2 × 106 K and
200 kg/m3, respectively, at the upper boundary (Hathaway, D. H., 2022). More-
over, as demonstrated by bro (1985) and Howe (2009), the radiative zone exhibits
a rotational behavior akin to that of a rigid body, displaying minimal evidence
of differential rotation—a phenomenon contrasting sharply with the convective
zone situated above it.

1.3 Tachocline
The tachocline serves as a transitional region between the radiative zone and
the convective zone, exhibiting fundamental differences not only in terms of en-
ergy transport mechanisms but also in their rotational dynamics. Whereas the
radiative zone demonstrates an almost rigid body rotation, the convective zone
undergoes differential rotation. Given its approximate thickness of only 0.002 R⊙
(as per Elliott and Gough, 1999; Rogers, 2011), the tachocline experiences rapid
changes in its rotation profile, causing significant shear within the layer.

Some researchers (e.g. Gilman, 2005)) have proposed that the tachocline may
play a pivotal role in the solar dynamo process and potentially contribute to
the formation of magnetic patterns observable in the photosphere. Conversely,
findings by Wright and Drake (2016) suggest that the tachocline’s significance for
these phenomena may be considerably less than anticipated, if indeed present at
all.

1.4 Convective zone
The convective zone extends from the upper boundary of the tachocline, situated
approximately at 0.715 R⊙ (Christensen-Dalsgaard et al., 1991; Schumacher and
Sreenivasan, 2020), to the near surface. In this region, the temperature and
density are insufficient for energy to be transferred via radiation. However, the
relatively low density permits the occurrence of convective currents, allowing for
the transfer of energy from the lower layers to the surface.

Convection within the convective zone is propelled by a steep temperature gra-
dient where the plasma near the tachocline undergoes heating and expansion,
consequently decreasing its density and causing it to ascend. This upward move-
ment of heated plasma results in a continuous circulation pattern, with cooler
material descending to replace the rising warm plasma.
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The convective motion effectively transports energy outward, ultimately con-
tributing to the surface phenomena observed in the Sun (Schumacher and Sreeni-
vasan, 2020). Such phenomena mainly include granulation and super-granulation
(Leighton, 1963; Hathaway, D. H., 2022) which cause the familiar granular struc-
ture in observation of the solar photosphere as can be seen in Fig. 1.2.

Figure 1.2: Closeup image of granulation in solar photosphere. Credit: NSO
(nso.edu).

1.5 Photosphere
The photosphere, the Sun’s visible surface, plays a crucial role in solar observa-
tion, offering insights into its activities. It extends from the top of the convective
zone up about 100 km where it blends into chromosphere (Hathaway, D. H., 2022).
With temperatures ranging between 4,000 and 6,500 K, the photosphere emits
light across the visible spectrum, allowing for direct observation. This emitted
light primarily originates from the convective zone, where energy initially created
in the core rises upward.

Distinctive patterns like granules and super-granules are present in the photo-
sphere. Granules, small bright cells approximately 1,000 kilometers wide, form
as hot plasma rises and cools. Super-granules, larger networks of these cells up
to 30,000 kilometers wide, reveal the underlying convective processes (Leighton,
1963; Hathaway, D. H., 2022).

Transient events such as sunspots, faculae, and solar flares are also observable in
the photosphere. Sunspots, dark patches resulting from intense magnetic activity,
and faculae, bright spots indicating active magnetic regions, provide valuable
insights into magnetic field dynamics (Hathaway, D. H., 2022).
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2. Solar oscillations

2.1 Basic hydrodynamic equations
This subsection aims to introduce a simple model for solar oscillations, derived
from basic hydrodynamic equations. Some technical steps are omitted from the
derivation to enhance clarity, but more detailed explanations, including all techni-
cal steps, can be found in the works of Kosovichev (2011), Christensen-Dalsgaard
(2002), and Korda (2020).

We commence by assuming the following (Kosovichev, 2011; Korda, 2020):

1. oscillation velocities v are much smaller than the sound speed cs, i.e. v
cs

≪ 1

2. adiabatic approximation

3. spherical symmetry

4. negligible magnetic forces and stresses

Then the set of governing equations consists of the equation of continuity repre-
senting a conservation of mass, Euler’s equation (equation of motion), adiabacity
equation and Poisson equation, written in this order:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1a)

ρ
dv

dt
= −∇ · P − ρg, (2.1b)

dP

dt
= c2

s

dρ

dt
, (2.1c)

∆Φ = 4πGρ, (2.1d)

where ρ(r, t) is a local density, v(r, t) local material velocity, P (r, t) local pressure
and Φ gravitational potential. The gravity acceleration g can be expressed as a
gradient of the gravitational potential, i.e. g = ∇Φ. For the total time derivative
of the material velocity vector, it holds that dv

dt
= ∂v

∂t
+ v · ∇v.

We consider small perturbations of velocity, density, and pressure from their
initial values corresponding to a spherically symmetrical star in hydrostatic equi-
librium: v0 = 0, ρ = ρo(r) and P = P0(r). Furthermore, we define a displacement
vector ξ(t) defined

v = dξ

dt
≈ ∂ξ

∂t
(2.2)
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Equations are further simplified by applying the so-called Cowling approximation,
which presumes that perturbations of the gravitational potential contribute only
minimally to the corrections of the theoretical oscillation frequencies and can thus
be neglected. Furthermore, the equations are expressed in spherical coordinates
and linearized. We encourage the reader to refer to Kosovichev (2011); Korda
(2020); Christensen-Dalsgaard (2002) for a more detailed explanation of these
steps.

The final set of linearized equations is as follows:

ρ′ + 1
r2

∂

∂r
(r2ρξr) + ρ

r
∇hξh = 0, (2.3a)

−ω2ρξr = −∂P ′

∂r
+ gρ′, (2.3b)

−ω2ρξh = −1
r

∇hP ′, (2.3c)

ρ′ = 1
c2

s

P ′ + ρN2

g
ξr, (2.3d)

where

N2 = g

(︄
1

γP

dP

dr
− 1

ρ

dρ

dr

)︄
(2.4)

is the Brünt-Väisälä (buoyancy) frequency, representing the frequency at which
a parcel of fluid would oscillate vertically when displaced from its equilibrium
position, and ω is the angular frequency of the periodic perturbations, i.e. oscil-
lations. Physical quantities marked by primes, e.g. P ′, in equations 2.3a - 2.3d
represent Eulerian perturbations of the said quantities, while their counterparts
without apostrophes denote initial unperturbed values.

The following boundary conditions are assumed:

1. zero displacement in the center, i.e. ξ(r = 0) = 0 (except the dipole modes)

2. the Lagrangian pressure perturbation at the surface is zero, i.e. δP (r =
0) = 0

3. the solution is regular at the Sun’s center (r = 0)

4. the solution is regular at the poles θ = 0, π

A solution of Eqs 2.3a – 2.3d is searched for in a separated form:

ρ′(r, θ, ϕ) = ρ′(r)f(θ, ϕ), (2.5a)

P ′(r, θ, ϕ) = P ′(r)f(θ, ϕ), (2.5b)
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ξr(r, θ, ϕ) = ξr(r)f(θ, ϕ), (2.5c)

ξh(r, θ, ϕ) = ξh(r)∇hf(θ, ϕ). (2.5d)

A non-zero solution exists for f(θ, ϕ) in a form of spherical harmonics Y m
l (θ, ϕ).

This leads to a transformed set of hydrodynamic equations

dξr

dr
− g

c2
s

ξr +
(︄

1 − S2
l

ω2

)︄
P ′

ρc2
s

= 0, (2.6a)

dP ′

dr
+ g

c2
s

P ′ +
(︂
N2 − ω2

)︂
ρξr = 0, (2.6b)

where S2
l = l(l+1)c2

s

r2 is the so-called Lamb frequency.

2.2 Internal waves
To derive a dispersion relation of the internal waves and their modes, we seek an
oscillatory solution to equations 2.6 in the JWKB form:

ξr = Aρ− 1
2 eikrr, (2.7a)

P ′ = Bρ
1
2 eikrr, (2.7b)

where A and B are constants and kr slowly varies with r. Then a general disper-
sion relation of internal waves can be found in a form (Kosovichev, 2011; Korda,
2020; Christensen-Dalsgaard, 2002):

k2
r = ω2 − ω2

c

c2
s

+ S2
l

c2
sω

2 (N2 − ω2), (2.8)

where

ωc = cs

2Hρ

(2.9)

is the acoustic cut-off frequency and

Hρ =
(︄

d ln ρ

dr

)︄−1

(2.10)

is called density scale height.

The waves can propagate only for cases when k2
r > 0. For k2

r < 0 the waves decay
exponentially, these are called evanescent waves.

9



2.2.1 Acoustic waves (p modes)
Acoustic waves, also called p modes, can penetrate deep into the star, with their
depth dependent on the Lamb frequency Sl. Modes with lower corresponding
Lamb frequencies penetrate deeper, and vice versa. Unfortunately, the low Sl

modes are challenging to detect due to their extended travel trajectory inside the
star. Therefore, only waves penetrating no further than the convection zone are
observable. An example of a p mode propagation is shown in Fig. 2.1.

It holds true for these waves that ω2 ≫ N2 which simplifies the general dispersion
relation of internal waves, Eq. 2.8, into the form

ω2 = k2c2
s + ω2

c , (2.11)

where k2 = k2
r + k2

h and kh =
√

l(l+1)
r

.

The lower turning point rlow is determined by the relation kr = 0. After substi-
tuting this relation into Eq. 2.11 we get the condition:

ω2 = ω2
c + L2c2

s

r2 = 0, (2.12)

where L2 = l(l+1). The lower turning point is located inside of the Sun, typically
in the convective zone, where ω ≫ ωc and can be expressed implicitly as

rlow = Lcs(rlow)
ω

. (2.13)

The upper turning point rup is bound to the cut-off frequency and exists where
ωc(rup) ≈ ω. The cut-off frequency ωc rises very rapidly near the solar surface.
Waves with ω < ωc are not able to react to changes in density and are reflected
back into interior. Therefore, it can be assumed

rup ≈ R⊙ (2.14)

2.2.2 Gravity waves (g modes)
Another type of wave is the so-called g mode, which propagates only in the inner
parts of the Sun without penetrating into the convective zone as shown in an
example in Fig. 2.1. G modes are low-frequency waves, so we can assume ω ≪ Sl

and the general dispersion relation 2.8 transforms into

ω2 = N2 cos2 θ, (2.15)

where θ is an angle between k and kh.

10



The condition of propagation for g modes is ω2 ≤ N2 with the lower turning
point satisfies ω2 ≪ N2 in the depth

rlow = Lcs(rlow)
ω

N(rlow)
ωc(rlow) . (2.16)

The upper turning point is where kr = 0, which corresponds to the condition

ω = N(rlow). (2.17)

Figure 2.1: An illustration of a propagation of p modes (left) and g modes (right)
in the Sun’s interior. Credit: di Mauro (2016).

2.2.3 Surface gravity waves (f modes)
On the surface, similarly to the surface of deep water, we can observe surface
gravity waves, or f modes. They are driven by buoyancy, and their propagation
is limited to the surface boundary, where the Lagrangian pressure perturbation
is approximately zero, i.e. δP ∼ 0.

The dispersion relation of the f mode is thus very simple:

ω2 = khg =

√︂
l(l + 1)
R⊙

GM⊙
R2

⊙
. (2.18)

The f mode is diagnostically very important as it can be easily fitted in the power
spectrum and Sun’s density can be determined from the fit.
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2.3 Observations
The propagation of various types of waves in helioseismology cannot be observed
directly; instead, indirect methods are essential. Traveling waves affect plasma
parameters, inducing phenomena such as local brightenings or Doppler shifts in
photospheric spectral lines. These effects are pivotal for interpreting helioseismic
waves, requiring a series of consecutive observations to understand their time
evolution.

The standard input data for helioseismology comprises a time series of Doppler-
grams (refer to Sec. 5.2). Although it’s feasible to use time series of intensity
measurements, Doppler velocities typically exhibit a higher signal-to-noise ratio,
resulting in the common exclusion of intensity measurements.

At present, three primary sources of helioseismic data exist: the ground-based
Global Oscillation Network Group (GONG) (Harvey et al., 1996), the Michelson
Doppler Imager (MDI) (Scherrer et al., 1995) aboard the Solar and Heliospheric
Observatory (SOHO) positioned at the L1 Sun-Earth Lagrange point, and the
Helioseismic and Magnetic Imager (HMI) (HMI, 2010) onboard the Solar Dy-
namics Observatory (SDO) (Pesnell, D. and Patel A., 2020; Pesnell et al., 2012),
orbiting the Earth on a heliosynchronous orbit.

The SDO represents the newest of these three sources and offers data of the
highest quality and resolution. A comparison between the resolutions of SOHO’s
MDI and SDO’s HMI is illustrated in Fig. 2.2. Additionally, a relatively recent
project, the Polarimetric and Helioseismic Imager (PHI), launched in 2020, aims
to provide data in the same Fraunhofer emission line as the HMI (Solanki et al.,
2020).

Figure 2.2: Comparison of line-of-sight magnetograms taken by SOHO/MDI (left)
and SDO/HMI (right). Both images were captured at 00:00:00 UT on 1 May 2010.
Credit: Xu et al. (2024).
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In the context of global helioseismology, it’s generally not feasible to neglect
the curvature of the Sun when examining the entire solar sphere. Therefore,
the signal is decomposed into spherical harmonics. In local helioseismology, the
typical procedure involves selecting a small region of the Sun and tracking it
within a co-rotation frame. This process yields a sequence of Dopplergrams, each
representing a snapshot of this area at different times. Subsequently, the Postel
azimuthal equidistant projection (refer to Sec. 5.3) is commonly applied, followed
by the Fourier transform.

The signal Φ(r, t), typically presented as a sequence of line-of-sight velocity Dopp-
lergrams, where r = (x, y), undergoes transformation to plane-parallel geometry
through the Fourier transform:

Φ(k, ω) =
∫︂

A
d2r

∫︂ T

0
dt Φ(r, t)e−i(k·r−ωt), (2.19)

where A represents the area of the observed surface, and T signifies the total
observation time. Here, k = (kx, ky) denotes the horizontal wave vector, while
ω stands for the angular frequency. The standard convention dictates that the
x coordinate is positive in the direction of solar rotation, and positive y points
north.

The power spectrum P (k, ω) is defined as

P (k, ω) = |Φ(k, ω)|2 . (2.20)

It clearly shows us the presence of oscillations which manifest themselves as res-
onances in the power spectrum as shown in Fig. 2.3.

The power spectrum contains information about various oscillation modes. To
distinguish between them, special filters are applied to the data. The two most
commonly used types of filters are ridge filters and phase speed filters. Ridge
filters, referred to as f and p1 – p4 hereafter, selectively isolate waves of a specific
mode, such as the f mode. These waves penetrate to different depths in the Sun,
scanning various internal regions, but their signal is stronger due to resonances.
Phase speed filters, referred to as td1 – td11 hereafter, select waves with a given
phase velocity, indicating waves that penetrate to the same depths. All filters,
both ridge and phase speed, applicable to a power spectrum, are depicted in Fig.
2.4. A table with parameters of phase speed filters can be found in (e.g. Gizon
and Birch, 2005; Couvidat and Birch, 2006).
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Figure 2.3: A power spectrum created from observations from SDO/HMI. The
surface gravity wave (f mode) and sound waves (p modes) are labeled in the plot
together with the resonance signal created by convection. The strong resonance
present at ν ≈ 3 mHz for low k is the five-minute oscillation discovered by
Leighton (1963).
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3. Helioseismology
Helioseismology encompasses a set of methods enabling us to examine the inner
composition and dynamics of the Sun through the analysis of solar oscillations.
Although not widely known to the public, it stands as one of the most successful
fields of astrophysics, as described by Buldgen (2019). Buldgen (2019) further
exemplifies this success by citing instances such as the determination of solar
photospheric helium abundance, typically inaccessible due to spectroscopic con-
straints, the localization of the base of the convective zone, and the demonstration
of the significance of microscopic diffusion in stellar radiative regions. Moreover,
since the dispersion relation of different types of waves depends on the condi-
tions along their trajectory, helioseismology allows us to determine subsurface
structures and conditions.

Modern helioseismology is divided into two main subfields: global and local he-
lioseismology. Global helioseismology focuses on studying large-scale features of
the Sun, such as the rotational profile. As this aspect is not the primary focus
of this work, we won’t delve into it further, but we encourage readers to explore
Buldgen (2019); Christensen-Dalsgaard (2002); Korda (2020) for more detailed
insights on this topic.

3.1 Local helioseismology
The second field of helioseismology concentrates solely on a specific region of the
Sun’s surface. The wave field within the chosen region is influenced by the prop-
erties of that particular area, both on the surface and beneath it. Consequently,
by analyzing the wave patterns in this local region, it becomes possible to deduce
local 3-D structures and dynamics beneath the surface (Christensen-Dalsgaard,
2002). However, the emphasis on a relatively small area of the solar disk re-
quires a much higher signal-to-noise ratio compared to global helioseismology,
thus underscoring the importance of high-precision measurements.

As mentioned in the sections about solar oscillations observations, Sec. 2.3, the
standard procedure used in all methods of local helioseismology involves selecting
a small region on the Sun’s surface and tracking it within a co-rotation frame,
i.e. the region does not move in time relative to the surface of the Sun. From the
practical point of view, this approach means that we select only some portion of
the data, based on the selected region, from each Dopplergram in a sequence.

One of the common methods in local helioseismology is the ring-diagram analysis.
In this method, a cut at a constant frequency ω is extracted from a 3-D power
spectrum P (kx, ky, ω), i.e., P (kx, ky, ω = const.). The ridges in the original power
spectrum appear as concentric circles with a center at (kx = 0, ky = 0). The ring
with the largest radius corresponds to the lowest-order observable mode for the
given frequency. If there are any local sound speed perturbations present in the
area, they will manifest themselves by altering the radius of the circles. Con-
versely, any flows will distort the circles, causing them to become non-concentric
or elliptical. An example of a ring diagram is illustrated in Fig. 3.1.
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Figure 3.1: A ring diagram created from a power spectrum of a 24 h observation
by SDO/HMI at a constant frequency ν = 4 mHz.

Another commonly used method is called time-distance helioseismology and is
discussed in the following section.

3.2 Time-distance helioseismology
The time-distance helioseismology described by Gizon and Birch (2005); Gizon
et al. (2010); Kosovichev (2011); Christensen-Dalsgaard (2002) aims to provide
information about the solar interior based measuring the travel-time τ of accoustic
(p modes) and surface gravity (f modes) waves propagating from point r1 to a
different point r2. The travel time is dependent on the conditions along the wave
trajectory such as density, sound speed and material flows.

Initially, the vigorous convection induces a minor perturbation in the background
stable conditions at point r1, which propagates as a wave, similarly to the trajec-
tory of light in geometrical optics. The increase in sound speed towards the solar
center causes the wave packet to deviate away from a normal line. Waves with
frequencies ω < ωc are bound by lower and upper turning points rlow and rup as
described in more detail in Sec. 2.2. Waves of higher frequencies escape into the
solar atmosphere.

A schematic representation of the time-distance method is shown in Fig. 3.2. It
illustrates sources of perturbations on the solar surface and the propagation of
waves through the solar interior, culminating in detection at the surface. Some
waves pass through anomalies, such as sound-speed perturbations or vector flows.
By comparing waves propagating through these anomalies with those that do not,
we can localize and quantify the given anomaly and its cause.
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Due to the greater spatial resolution of the method (compared to the ring-diagram
method mentioned earlier), the data are filled with more realization noise. The
primary source of noise is subsurface convection, which generates a plethora of
waves. To improve the signal-to-noise ratio, the signal undergoes temporal av-
eraging. Initially, the observed area is tracked with local angular velocity, and
the curvature of the Sun is typically neglected in local helioseismology. Subse-
quently, the data, often Dopplergrams (see Sec. 5.2), are remapped using the
Postel azimuthal equidistant projection (see Sec. 5.3) and filtered. In the Fourier
domain, a filter F (k, ω) selects waves with desired properties, typically targeting
supergranulation and granulation noises for removal. Due to distinct dispersion
relations of f and p modes, the signal of each wave type is processed separately.

For p modes, both ridge and phase-speed filters are employed. Ridge filters
utilize eigenvalues of the reference model, with filter width chosen to avoid sig-
nal from neighboring ridges. Phase-speed filters eliminate waves with identical
phase speeds, with deeper penetration corresponding to higher phase speeds. In
contrast, for f modes, only ridge filters are applied. The resulting filtered data
Ψ(k, ω) = F (k, ω)Φ(k, ω), with the composite filter (removing granulation + ei-
ther ridge filter or phase speed filter) being applied on the signal Φ(k, ω), serve
as input for subsequent processing.

Figure 3.2: (a) Measured cross-covariance function for SDO/MDI medium-degree
data as a function of separation distance and time lag. Positive values are white;
negative values are black. The observation duration is T = 144 days starting in
May 1996. (b) Example ray paths for acoustic wavepackets. In both a and b,
the blue lines correspond to single-skip ray paths, the red lines are for two-skip
ray paths, and the green lines are for three-skip ray paths. Credit: Gizon et al.
(2010).
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A standard method for determining travel times within the noise-filled signal
Ψ(k, ω) involves identifying similarities within the data, i.e. calculating the tem-
poral cross-covariance of the signal between two points in space and time (Gizon
and Birch, 2005):

C(r1, r2, t) = ht

T − |t|
∑︂
t′

Ψ(r1, t′)Ψ(r2, t′+t) ≈
∫︂ T

0
Ψ(r1, t′)Ψ(r2, t′+t) dt′ , (3.1)

where ht is the temporal sampling and T is the duration of observation. A visual
representation of the cross-covariance function is the time-distance diagram shown
in Fig. 3.2. The positive time lags are obtained from waves travelling from the
point r1 to r2 while the negative time lag arises from waves moving in the opposite
direction.

3.2.1 Travel times
In realistic applications, the cross-covariance function measured for two points
contains a large amount of realization noise due to the stochastic nature of solar
oscillations. Hence, it is almost impossible to measure the travel time of the waves
traveling between two individual pixels in the helioseismic observables. Usually,
some averaging is required. Most often, such averaging is applied both in time
and space. In time, cross-covariances are usually averaged over a time period T
larger than about 6 hours, with most results using averages over 8 or 24 hours.
To further improve the signal-to-noise ratio, it was first suggested by Duvall et al.
(1993) to average cross-covariance C(r1, r2, t) over points r2 that belong to the
annulus or quadrants centered at r1 with a distance ∆ = |r2 − r1|. For the study
of the waves traveling from the central point towards the surrounding annulus
and in the opposite direction, averaging over a full annulus is suitable. For the
investigation of the waves traveling in the direction parallel to the equator (east–
west), averaging over 90-degree quadrants of the annulus in the corresponding
direction is more suitable. In the methodology used in this study, quadrants were
replaced by sections of the annulus multiplied by the cosine (east–west direction)
or sine (south–north direction) of the horizontal polar angle. These geometries
constitute a smooth continuous transition from quadrant geometries.

For a given set of r1 and ∆, the cross-covariance function oscillates around a
characteristic travel time in both the positive and negative part of the time axis.
The fitting of the travel time is often performed by fitting the Gaussian wavelet,
enabling the evaluation of both the phase and group travel times, allowing for the
development of a phase of the wavelet during the wave propagation. In reality,
one fits the function

C+(t; r1, ∆) = A exp
[︂
−γ2(t − tg)2

]︂
cos[ω0(t − τ+)], (3.2)

where tg represents the group travel time and τ+ the positive phase travel time.
Parameters A and γ describe the amplitude and decay rate of the wavelet enve-
lope.
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An analogous equation may be written for a negative travel time. The time–
distance analysis relies on measurement and interpretation of the phase travel
times τ+ and τ−.

The fitting of the Gaussian wavelet is demanding and often fails due to the pres-
ence of noise. Therefore, alternative definitions of travel times were developed
that are more robust in the presence of noise. They stem from the fact that the
cross-covariance of the waves may be computed from the solar model by solving
the equations of the wave propagation. These cross-covariances represent some
sort of a reference for a spherically symmetrical 1-D quiet Sun. We may safely as-
sume that the changes to the cross-covariances caused by the perturbations of the
model will introduce a modification of the background-model cross-covariances.
Then, instead of fitting a 5-parameter Gaussian wavelet, we may use this refer-
ence cross-covariance as a template and perform only 1-parameter fitting in time.
Such an approach is used also in geoseismology (Zhao and Jordan, 1998) and for
the need of the time–distance helioseismology was devised by Gizon and Birch
(2002). Following the paper we refer to, these travel times are termed GB02
travel times henceforth.

Later, Gizon and Birch (2004) simplified this definition even further for the case
of very small perturbations. Such a robust definition allows the measurement of
travel times averaged over a short time (e.g., around T = 2 hours) and with a
large spatial resolution. According to the so-called GB04 definition, the travel
time may be computed as

τ±(r1, r2) = ht

∑︂
t

W±(∆, t)[C(r1, r2, t) − C0(∆, t)], (3.3)

where ht is a sampling in time, C0 represents the reference cross-covariance, and
the weighting functions W± are defined by

W±(∆, t) = ∓f(±t)∂tC
0(∆, t)

ht
∑︁

t′ f(±t′)[∂t′C0(∆, t′)]2
. (3.4)

Here the window functions f(±t) are used to separate positive and negative travel
times (waves travelling in an opposite direction) and are usually chosen as band-
pass filters keeping only cross-covariances around the first-skip arrival times of
the waves that would correspond to the values around ±tg from (3.2).

We note that both GB02 and GB04 definitions of the travel times result in a
travel time that is a mixture of both the group and phase travel times. It is
not straightforward to decouple the two. A proper choice of the reference cross-
covariance C0 is essential to minimize the contribution of the group travel time to
the results. In some cases, a reference cross-covariance coming from the forward
modeling does not have to be accurate enough. In those cases, a construction
of the reference cross-covariance as a spatial average of different realizations over
the field of view in the quiet-Sun regions may be a better choice.
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3.2.2 Travel-time sensitivity kernels
The travel times are quantities measured from the properties of helioseismic ob-
servables, such as Doppler shifts or intensities. As already discussed in previous
chapters, these travel times can be computed from the solar model using forward
modeling. Additionally, we mentioned that changes in the models with respect
to the reference lead to changes in the travel times.

It is straightforward, therefore, to switch from travel times τ to travel-time devi-
ations δτ with respect to the unperturbed travel time τ0:

δτ(r) = τ(r) − τ0(r). (3.5)

Let us consider that the solar model is fully described by a multidimensional vec-
tor of quantities Qα(x), where the index α lists the considered physical quantities.
These quantities may, for instance, be vector flows v, sound speed c, density ρ,
adiabatic exponent Γ, among others. The quantities Qα are functions of 3D spa-
tial coordinates and, in principle, also of time. However, we will only consider
stationary models in terms of the averaging over the observation interval T .

Similarly to the discussion of the travel times, we may split the values of the quan-
tities into the unperturbed background Qα

0 (x), which in most cases is represented
by the background solar model, and the perturbation qα(x).

To compute the linear adiabatic oscillations of the Sun, methodologies have been
available for a very long time (Lynden-Bell and Ostriker, 1967). Such a com-
putation is slow and expensive even when considering the computational power
of today’s computers. This approach is not viable when dealing with realistic
problems.

If we focus only on linear perturbations of the model, we may relate travel-time
deviations δτ with perturbations of the solar model qα by an equation.

δτa(r) =
∑︂

α

∫︂
⊙

d2r′ dz Ka
α(r′ − r, z) · qα(r′, z) + na(r) . (3.6)

The index a represents the so-called travel-time geometry and combines the choice
of the k − ω filter (see 2.3), point-to-annulus or point-to-quadrant averaging,
and the radius of the annulus ∆. Measured travel times are subject to random
realization noise na. The quantity Ka

α is termed a sensitivity kernel and represents
a function that ”translates” changes in the solar model into travel-time deviations.
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The assumption of small perturbations allows us to split the total travel-time
deviation into individual contributions by individual perturbers α. For example,
when considering model changes due to sound-speed perturbations δc2

c2
0

, density
changes δρ

ρ0
, pressure deviations δP

P0
, and flows v, equation (3.6) becomes:

δτa(r) =
∫︂

⊙
d2r′ dz

⎡⎣Kc2(r′ − r, z)δc2

c2
0

(r′, z) + Kρ(r′ − r, z)δρ

ρ0
(r′, z)+

+KP (r′ − r, z)δP

P0
(r′, z) +

3∑︂
i=1

Kvi(r′ − r, z)vi(r′, z)
⎤⎦+ na(r). (3.7)

In our study, we primarily focused on the flows v. It is important to note that
sensitivity kernels can similarly be derived and used for observable quantities
other than travel times. In the literature, we find kernels for frequency deviations
and even for cross-covariances. The latter case is referred to as full-waveform
sensitivity kernels.

Sensitivity kernel functions are calculated numerically using the background solar
model. Various approaches have been developed by different authors. The sim-
plest approximation ignores the finite-wavelength effects and assumes the prop-
agation of waves along their optimal rays. This ray approximation employs the
principles of geometrical optics (see Kosovichev and Duvall, 1997, and references
therein).

Finite-wavelength effects are considered by approximating wave propagation in
terms of scattering. Single-source sensitivity kernels were proposed and com-
puted, for example, by (Birch and Kosovichev, 2000). This approach was moti-
vated by similar methods used in geoseismology.

Unlike on Earth, there is never a single source of waves on the Sun. The waves
are excited by processes in granules that are randomly distributed across the
entire solar surface. Consequently, sensitivity kernels considering randomly dis-
tributed sources were proposed and developed by (Gizon and Birch, 2002). Later,
a linearized approach consistent with the definition of linearized travel times was
proposed by (Gizon and Birch, 2004). Gizon & Birch emphasized the importance
of incorporating data processing steps—not only the k − ω filtering but also an
accurate estimate of the telescope’s point spread function—into the calculation
of the kernels, ensuring they align with the measured travel times. For details of
the kernel calculation, we refer to (Burston et al., 2015).

21



4. Methodology
The aim of this thesis is to test the validity of velocity (flow) perturbation sensi-
tivity kernel integrals, numerically computed using the background solar model
(see Sec. 3.2.2 and literature therein), with a model-independent method. This
section provides an explanation of the method used and the methodology of its
execution. It is important to note that our method verifies only the validity of
the volume integral of the velocity (flow) sensitivity kernel. It does not provide
validation for volume integrals of other sensitivity kernels or the kernels them-
selves.

The first step of the method is to inject an artificial constant longitudinal flow
(velocity perturbation) v0 into data from observations. This is achieved by mov-
ing the selected region on the solar disk (see Sec. 3.1) relative to the surface
with a velocity equal to the injected constant velocity. Consequently, while in
all standard procedures of local helioseismology the region follows the Carrington
rotation to track the same area over time, in our case, the region moves faster
or slower than the Carrington rotation, depending on the sign of the injected
velocity.

This effectively means that to all perturbations qα mentioned in Eq. 3.6, an
additional perturbation v0 representing the constant injected velocity is added,
transforming the equation into

δτa(r) =
∑︂

α

∫︂
⊙

d2r′ dz Ka
α(r′ − r, z) · [qα(r′, z) − v0] + na(r) . (4.1)

The reason there is a minus sign in the term [qα(r′, z) − v0] is that we inject the
artificial flow by moving the coordinate frame. However, moving the frame in one
direction corresponds to an apparent flow of the same velocity but in the opposite
direction, similarly to watching a landscape passing by through the window of a
moving train. Eq. 4.1 can be rewritten as

δτa(r) =
∑︂

α

∫︂
⊙

d2r′ dz Ka
α(r′ − r, z) · qα(r′, z)

−
∫︂
⊙

d2r′ dz Ka
v (r′ − r, z) · v0 + na(r) , (4.2)

where Ka
v is the sensitivity kernel for a velocity (flow) perturbation. Since the

injected velocity is constant, i.e., each pixel of the frame moves with the same
velocity, the corresponding flow v0 is independent of position. Therefore, it is not
affected by the volume integral and can be taken out of it:

δτa(r) =
∑︂

α

∫︂
⊙

d2r′ dz Ka
α(r′ − r, z) · qα(r′, z)

− v0

∫︂
⊙

d2r′ dz Ka
v (r′ − r, z) + na(r) . (4.3)
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Further, an averaging over a central area is applied, transforming the Eq. 4.3
into the form

⟨δτa(r)⟩ =
⟨︄∑︂

α

∫︂
⊙

d2r′ dz Ka
α(r′ − r, z) · qα(r′, z)

⟩︄

−
⟨︃

v0

∫︂
⊙

d2r′ dz Ka
v (r′ − r, z)

⟩︃
+ ⟨na(r)⟩ . (4.4)

The first term on the right side of Eq. 4.4 can be viewed as a certain average
background travel time perturbation which is unaffected by the implanted veloc-
ity. The second term is independent of position, therefore the averaging won’t
affect it and it remains unchanged from before the averaging. The contribution
of the realization noise is negligible after the averaging due to its random nature.
Therefore, Eq. 4.4 can be written as

⟨δτa(r)⟩ = ⟨δτa
back(r)⟩ − v0

∫︂
⊙

d2r′ dz Ka
v (r′ − r, z). (4.5)

As one can conclude from Eq. 4.5, an average travel time perturbation in a se-
lected central area of the tracked region is directly proportional to the volume
integral of the velocity perturbation kernel with the injected velocity acting as a
constant of proportionality. Therefore, for each observation (sequence of Dopp-
lergrams, see Sec. 5.2) in one configuration (wave filter, annulus radius - see Sec.
5.5), we get a mean travel time perturbation as a linear function of the injected
velocity, with the volume integral of the velocity perturbation kernel acting as a
slope and the background perturbation as a vertical shift.

By repeating this process for various injected velocities, the set of average travel
time perturbations can be plotted against the set of injected velocities. The
volume integral of the velocity perturbation kernel can then be determined from
a linear fit. The injected velocity is a pre-determined constant value and the
average travel time perturbation is calculated from the observational data, in
other words, both quantities are model-independent, therefore the obtained value
of the volume integral is also model-independent.

By doing the same process for all wave filters (ridge filters f and p1 – p4, phase
speed filters td1 – td11) and various annulus radii, we obtain a set of model-
independent volume integrals of velocity perturbation kernels. We can then com-
pare them to integrals calculated from a model(s). That is done by plotting the
model-independent integrals against the model ones and fitting the dependency.
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5. Data analysis
This chapter aims to present the sources of data analyzed in this thesis and their
types, together with the commonly used projection technique (Sec. 5.2 – 5.3).
Furthermore, two data analysis pipelines that form the core of this work are
presented and explained in detail (Sec. 5.4 – 5.5).

5.1 Source of Data - SDO/HMI
All the data used and analyed in this thesis were measured by NASA’s Solar
Dynamics Observatory (SDO) launched on 11 February 2010. SDO provides the
following observations (quoted from Pesnell, D. and Patel A. (2020)):

1. Measure the extreme ultraviolet spectral irradiance of the Sun at a rapid
cadence

2. Measure the Doppler shifts due to oscillation velocities over the entire visible
disk

3. Make high-resolution measurements of the longitudinal and vector magnetic
field over the entire visible disk

4. Make images of the chromosphere and inner corona at several temperatures
at a rapid cadence

5. Make those measurements over a significant portion of a solar cycle to
capture the solar variations that may exist in different time periods of a
solar cycle

These observations are provided by SDO’s three main instruments shown on the
SDO spacecraft in Fig. 5.1 (Pesnell et al., 2012):

1. Helioseismic and Magnetic Imager (HMI): Measures solar magnetic fields
and provides data on the Sun’s interior structure and dynamics, aiding in
the study of solar variability and its effects on space weather.

2. Atmospheric Imaging Assembly (AIA): Captures high-resolution images of
the solar atmosphere across multiple wavelengths, providing insights into
various layers and phenomena such as flares and coronal loops.

3. Extreme Ultraviolet Variability Experiment (EVE): Monitors the Sun’s ex-
treme ultraviolet (EUV) radiation, crucial for understanding solar variabil-
ity and its impact on Earth’s atmosphere and climate.
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This suite of instruments observes the Sun continuously, generating approxi-
mately a terabyte of data each day. The instrument of particular interest for
this thesis is HMI, which studies oscillations and magnetic fields at the solar sur-
face. It covers the full solar disk at the 6173 Å Fraunhofer line with a resolution
of 1 arcsec. HMI is a successor to the Michelson Doppler Imager on the Solar
and Heliospheric Observatory (SOHO) and provides both Doppler images of the
Sun (Dopplergrams) as well as magnetograms (Pesnell et al., 2012; Pesnell, D.
and Patel A., 2020; HMI, 2010).

Figure 5.1: An image of SDO spacecraft with the main instruments HMI, AIA
and EVE highlighted. Credit: NASA SDO (sdo.gsfc.nasa.gov).

5.2 HMI Dopplergrams
A Dopplergram constitutes a representation of line-of-sight solar surface veloci-
ties derived from Doppler shift measurements of a Frauenhofer absorption line.
An exemplary Dopplergram is depicted in Fig. 5.2. The Sun’s rotation is dis-
cernible through the obvious brightness contrast between its left and right disc
regions. Additionally, a distinct ”cellular pattern,” stemming from supergranu-
lation, is evident within the image. HMI generates comprehensive Dopplergram
series throughout the day, with cadences of 45 seconds. Each Dopplergram is
captured with a resolution of 4096×4096. The entirety of HMI and AIA data, in-
cluding Dopplergrams, is archived and managed by the Joint Science Operations
Center (JSOC).
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HMI scans the FeI 617.3 nm photospheric absorption line and measures the in-
tensity across different polarization states. In the standard regime, a sequence of
filtergrams is obtained by scanning the spectral line at six wavelength positions,
each 7.6 pm apart, across various polarimetric states. The raw, unprocessed fil-
tergrams in polarized light constitute the level 0 series, which is available only
upon request. After undergoing flat-fielding and other calibration procedures,
primary filtergrams are stored as level 1 data, accessible from the JSOC. From
the level 1 data, various data products are computed, including Dopplergrams.

These Dopplergrams are stored within the series hmi.V 45s at JSOC and are
computed using a fast ”MDI-like algorithm”. This algorithm employs the Fourier
coefficients that describe the spectral-line shape I(λ) by a limited number of
values, specifically:

a1 = 2
T

∫︂ + T
2

− T
2

I(λ) cos
(︄

2π
λ

T

)︄
, (5.1)

b1 = 2
T

∫︂ + T
2

− T
2

I(λ) sin
(︄

2π
λ

T

)︄
, (5.2)

a2 = 2
T

∫︂ + T
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− T
2

I(λ) cos
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λ
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)︄
, (5.3)

b2 = 2
T

∫︂ + T
2

− T
2

I(λ) sin
(︄

4π
λ

T

)︄
. (5.4)

where T is the “period” of the line profile, empirically taken to be 6 times the
wavelength separation between 2 filters (hence T = 41.28 nm). When assuming
that the spectral line has a Gaussian profile

I(λ) = Ic − Id exp
[︄
−(λ − λ0)

σ2

]︄
, (5.5)

where Ic is the intensity of the neighbouring continuum, Id is the line depth, λ0
the nominal position of the line and σ is the line width, then the Doppler velocity
corresponding to the line shift may be computed as

vlos = dv

dλ

T

2π
atan

(︄
b1

a1

)︄
(5.6)

or from the second Fourier coefficients

vlos = dv

dλ

T

4π
atan

(︄
b2

a2

)︄
. (5.7)

The fraction dv
dλ

= 299792458.0/6173.3433 = 48562.4 ms−1/Å is derived from the
standard Doppler-shift formula.
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HMI instrument samples the iron line at only six points, the proper description of
the spectral line profile is not known. When assuming that the HMI transmission
profiles at the six positions are delta functions, the Fourier coefficients may be
approximated as

a1 ≈ 2
6

5∑︂
i=0

Ij cos
(︃

2π
2.5 − j

6

)︃
, (5.8)

b1 ≈ 2
6

5∑︂
i=0

Ij sin
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2π
2.5 − j

6

)︃
, (5.9)

a2 ≈ 2
6

5∑︂
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4π
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)︃
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b1 ≈ 2
6

5∑︂
i=0

Ij sin
(︃

4π
2.5 − j

6

)︃
, (5.11)

(5.12)

where Ij represents the intensity measured at the j-th spectral-line position.

Practically, the MDI-like algorithm utilizes the discrete approximation of the
first Fourier coefficients a1 and a2 of the FeI line to estimate the line-of-sight
velocity using formula (5.6). However, since the transmission profiles are not
delta functions, the Doppler velocity estimate is corrected using a set of correction
coefficients. This adjustment is conducted at the data center using a lookup table,
which was precomputed to numerically estimate the effects of certain assumptions
being violated (finite width of the transmission profiles, non-Gaussian spectral-
line profile, sparse sampling of the spectral line).

Filter transmission profiles are regularly measured and exhibit slow changes over
time. Consequently, another correction is applied to account for long-term vari-
ations in the derived values. The Doppler velocities are computed separately for
filter positions taken in the left circular polarized light and right circular polar-
ized light and are averaged at the final stage. The results are then stored in the
data series.
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Figure 5.2: A Dopplergram from 04/15/2024 acquired by SDO/HMI. Credit:
NASA SDO (sdo.gsfc.nasa.gov).

5.3 Azimuthal equidistant (Postel) projection
The azimuthal equidistant projection is classified as a map projection that pre-
serves both distance and direction from the central point of projection to any
other point on the map. The projection is equidistant, meaning all distances
measured from the central point to all other points on the map are accurately
represented. This makes it valuable for applications requiring accurate distance
measurements from a specific location such as navigational charts, meteorologi-
cal maps, and astronomical charts. Postel projection also preserves main circles
on the sphere, hence it is appropriate for the time–distance analysis with the
point-to-annulus and point-to-quadrant averaging geometries.

While the azimuthal equidistant projection excels in preserving distances from
the central point, it inevitably introduces distortion in other map properties.
Notably, this projection sacrifices accuracy in shape, area, and scale, especially
as one moves away from the central point of projection (Snyder and Voxland,
1989) as shown in Fig. 5.3. As a result, the further away from the central point,
the greater the distortion becomes. However, within the vicinity of the central
point, the azimuthal equidistant projection offers an accurate representation of
distances and directions, making it invaluable for localized mapping and analysis
(Snyder, 1997).
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Figure 5.3: Azimuthal equidistant (Postel) projection centered in Earth’s north
pole (right) and a distortion map of the projection (left). Credit: Snyder and
Voxland (1989).

The rectangular coordinates for the azimuthal equidistant projection for a given
sphere radius R, latitude ϕ and longitude λ are (Snyder and Voxland, 1989;
Neacsu M., 2024):

x = Rk′ cos ϕ sin (λ − λ0) , (5.13)

y = Rk′ [cos ϕ0 sin ϕ − sin ϕ0 cos ϕ cos (λ − λ0)] , (5.14)

where ϕ0 and λ0 are latitude and longitude of the center of projection, c is the
angular distance from the center and c and k′ follow (Snyder and Voxland, 1989;
Neacsu M., 2024):

k′ = c

sin c
, (5.15)

cos c = sin ϕ0 sin ϕ + cos ϕ0 cos ϕ cos (λ − λ0) . (5.16)

5.4 Tracking pipeline
The tracking pipeline is responsible for preparing datacubes passed into the travel-
time pipeline described in Sec. 5.5. In addition to traditional steps such as select-
ing the local area, applying the azimuthal equidistant projection, and creating
the datacube in FITS format with a correct header, this pipeline offers an addi-
tional feature specific to this work: implanting artificial velocities by moving the
selected area at a predefined speed. This is a crucial feature used in determining
the model-independent velocity kernels as explained in Chap. 4, Methodology.
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Since this is not part of standard pipelines for datacube preparation, our own
solution was necessary.

At a high level, the tracking pipeline performs the following:

1. Prepare the folder structure together with all necessary configuration files
(both for the datacube creation step and for the subsequent travel-time
pipeline) based on the input configuration (JSOC DRMS queries, data
PATHs, projection origins, implanted velocities).

2. (OPTIONAL) Download data (Dopplergrams) from JSOC. This step is
unnecessary when the required data are already downloaded.

3. Create a datacube for each combination of DRMS query and velocity and
save it in the form of a FITS file into its designated folder prepared in step
1.

These three steps are implemented as three separate pipelines (scripts) so the
user has the ability to check the outcome of each step before proceeding, which is
essential for steps 1 and 2 as their successful execution is vital for a correct run of
the datacube pipeline in step 3. Moreover, the pipelines in steps 2 and 3 are op-
timized both for running on a local machine and on a cluster with a PBS/Torque
job management system (for our use-case, a small cluster in Ondřejov observa-
tory was utilized). The reason for the cluster optimization is the higher time
demands of these pipelines. In the case of the downloading pipeline, it is because
of the usually large amount of data to be downloaded (one 24-hour observation
results in approximately 33 GB of data). For the datacube pipeline, the reason
is computational time, where a 24-hour observation took around 25 minutes to
be computed on the Ondřejov setup, and computational power demand where
each 24 datacube blocks 1 CPU core and takes up to around 10 GB of RAM.
This would require the jobs to be run sequentially on most local machines while
on most clusters, where RAM is usually not an issue, more jobs can be run
concurrently leading to saving considerable amounts of time.

A high-level flowchart of the folder structure preparation pipeline is shown in Fig.
5.4. Initially, the configuration is loaded. This configuration contains DRMS re-
quest strings, a path to the data (if already downloaded), origin latitudes and
longitudes in Carrington coordinates, lower and upper limits for implanted ve-
locities, and the velocity sample count. The implanted velocities are randomly
sampled within the given velocity bounds. Subsequently, an iteration over all
requests occurs, where for each request, we check if its data are already down-
loaded. If not, a new folder is prepared for the data and the request is stored
in a helper file that will be used as an input for the following data download
pipeline. Then, for the given request, we iterate over all injected velocities, and
for each (request, velocity) pair, a new folder structure for the final datacube is
prepared, along with all necessary configuration files for the tracking pipeline and
the travel-time pipeline.
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Figure 5.4: High-level flowchart of the folder preparation pipeline. It contains
two nested iterations; the outter one over all provided DRMS requests and the
inner one over all randomly sampled injected velocities.
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The data download pipeline (step 2 in the initial enumeration of this section) is
needed only in case some data provided in the configuration of the folder structure
preparation pipeline are not yet downloaded. In that case it is expected that the
respective helper file is non-empty and contains JSOC DRMS requests for the
data to be downloaded. The process is then shown in Fig. 5.5. First, there is an
assert check for non-emptiness of the helper file. If the file indeed contains some
data an iteration over each request in the file occurs. For each request, a DRMS
download query is created and executed and the downloaded date, Dopplergrams
in FITS format, are stored to the folder specified in the config. After a successful
download the request entry is remove from the helper file.

Start

Request and data 
folder paths from 

helper file

Is input 
non-empty

Take next 
(request, 

data folder 
path) pair

Yes

Exception 
message

No

End

Download 
data based 
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Remove 
(request, 

folder path) 
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Is next pair 
available?

Yes

End

No

Figure 5.5: A high-level flowchart of the data download pipeline. It serves as
an optional middle step between the folder preparation pipeline and the tracking
pipeline in cases where not all Dopplergrams are present on the local storage.
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The last and arguably the most important part of the process is the tracking
pipeline depicted in Fig. 5.7. Its job is to convert a series of Dopplergrams (in
our case, 6-hour observations were used) into a datacube containing data from
the tracked area with an additional velocity perturbation from the artificially
implanted velocity of the tracked area. The pipeline starts by reading a config-
uration JSON file created in the folder structure preparation pipeline (step 1).
This configuration file contains the following parameters:

• A path to the folder containing the data (Dopplergrams)

• Projection origin in Carrington coordinates (this origin is applied to the
frame in the middle of the time series while the rest are shifted according
to the implanted velocity and time difference from the middle frame)

• The shape of the tracked area in pixels (consequently, the shape of each
output frame in pixels); value used for all projections: [512, 512]

• Time step between consecutive Dopplergrams in seconds; value used for all
projections (given by the observation): 45 s

• Scaling of the output frame in heliographic degrees per pixel; value used for
all projections: [0.12, 0.12]

• Radius of the Sun in megameters (necessary for a correct projection); value
used for all projections: 696.0 Mm

• Artificial (implanted) longitudinal velocity in meters per second

• Filename for the output datacube FITS file

First, the pipeline lists all the FITS files present in the provided data folder (we
implicitly presume that all Dopplergrams are in FITS format as it is a common
standard), sorted by the date of observation encoded in the name of each file.
Then, an empty array with dimensions (t, x, y) = (file count, x shape from config,
y shape from config) is created. This array will eventually contain the projected
data from the tracked area. Further, an iteration over the sorted files occurs.
In each iteration, the origin of the projection for the selected frame is computed
based on the implanted velocity and the time difference between the frame and
the middle frame. Then, data from the file are read, and only the part inside
the tracked area – a rectangle given by its shape and scaling from the config – is
selected, and the Postel projection is applied to this data. This process is shown
in Fig. 5.6. In order to avoid blank pixels that might appear as a result of the
projection, all NaN values are replaced by the median of all non-empty values. As
a last step for a given frame, a quadratic surface is subtracted to remove the effect
of solar rotation from the data. This process is repeated for each Dopplergram,
while all projected tracked area frames are appended to the output array. After
the iteration is complete, the output array (datacube) is saved into a new FITS
file with a name specified in the initial configuration file.

33



Figure 5.6: Left: HMI Dopplergram in helioprojective coordinates with the area of
selection highlighted in green. Right: Selected area in Carrington and Stonyhurst
coordinates after application of the Postel projection.
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Figure 5.7: High-level flowchart of the tracking pipeline. It lists all FITS files
(containing Dopplergrams) present in the provided folder path, sorted by date
encoded in their name, and iterates over them. In each iteration a shift, deter-
mined by the injected velocity and time difference between the frame and central
frame, is applied to the origin; tracked area is selected and the Postel projction
is applied on it. Further, NaN values are replaced by a median of all values and
quadratic surface is subtracted from the data, removing the effect of solar rota-
tion. The processed frame is appended to a datacube array. After the iteration
is complete, the datacube array is stored in a new FITS file.
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5.5 Travel-time pipeline
In general, measurements of helioseismic travel times consist of three consecutive
steps. The travel-time pipeline operated on the data-processing computer cluster
at the Astronomical Institute of the Czech Academy of Sciences in Ondřejov is
no exception.

First, the input datacube—the output of the tracking pipeline—is detrended over
time, and a mean frame (average of the frames over time) is subtracted. This
step removes existing large-scale trends in the observations, such as the residual
signal from the differential rotation and stable velocity features, like most of the
signal from solar supergranules.

Next, the detrended datacube is apodized in both space and time. This is nec-
essary because subsequent calculations are performed in Fourier space, which
implicitly assumes periodic boundary conditions that are not met in reality.
Apodization with a smooth function at the edges helps to mitigate this issue.
The apodization is applied to 5% of the pixels and frames at the boundaries.

Then, the datacube is transformed to Fourier space. We obtain a datacube with
the same dimensions but with axes (kx, ky, ω), where kx and ky represent the
horizontal components of the wave vector, and ω represents the angular frequency.
Representing the datacube in Fourier space is convenient for applying various
k − ω filters. During this step, plots of the data power spectrum are created for
potential later visual inspection.

After preprocessing the input datacube, filtering is performed simply by multi-
plying the Fourier representation of the datacube with a constructed travel-time
filter. Following the literature on the subject, both ridge filters and phase-speed
filters are applied. The result of this task is a filtered datacube, one for each k−ω
filter.

These filtered datacubes are inputs for the travel-time measurements procedure.
This task may be divided into several consecutive sub-steps. First, a spatial
averaging filter representing the travel-time measurements geometry is applied.
In this study, we only considered annulus filters with a radius corresponding to
the distance of cross-correlated points. For studying the travel-time integrals,
the geometry considering the propagation of the waves in the east-west direction
was the most significant. This is mimicked by an annulus with a Gaussian lateral
profile, multiplied by the sine of the horizontal phase angle. The observations
to the west of the central point are weighted positively, and those to the east
negatively. This geometry is sensitive to the flows in the east-west direction.
Spatial averaging over the annulus increases the signal-to-noise ratio compared
to hypothetical point-to-point measurements.

The signal at the central point is then cross-correlated with the signal averaged
over the (weighted) surrounding annulus. The map of cross-covariances (for a
series of time lags with critical sampling) is stored. Then, the travel times that
minimize the cross-covariance of the signals at the given point are measured.
In reality, positive and negative travel times are computed separately (positive
travel times indicate the travel of waves from the central point to the surrounding
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annulus, whereas negative travel times represent the opposite direction). It is
noted in the literature (Burston et al., 2015) that differences between these two
travel times are most sensitive to the flows. Both positive and negative travel
times are stored separately in the output files.

The above-described workflow was implemented in a pipeline coded in the MAT-
LAB language. Each of the three steps is represented in a separate module.
MATLAB allows for the compilation of the code into binaries, which can then be
executed in the compute cluster environment. The workflow was adapted to be
used within a PBS/Torque job management system running at a small compute
cluster in Ondřejov. It involves proper allocation of resources given the size of the
input datacube and also processes obvious job dependencies within consecutive
steps. The code is versatile and uses a text-based configuration file to implement
various options that might be useful for different tasks. This includes potential
further spatial averaging to reduce random noise, different definitions of travel-
time measurements, and the possible selection of a reference cross-covariance in
the case of linearized travel-time definitions.
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6. Results
Despite being primarily a stepping stone for obtaining the main results presented
later, building the tracking pipeline, as detailed in Sec. 5.4, was one of the
pivotal aspects of this work. The pipeline enables users to download data (Dopp-
lergrams) from JSOC, open them, and create datacubes that serve as inputs for
the standard travel-time pipeline described in Sec. 5.5. A feature essential for
our objectives, which is absent in similar pipelines, is the capability to inject a
constant longitudinal velocity flow into the data. This pipeline is implemented in
Python using libraries such as SunPy, Astropy, and DRMS, and is available in the
GitHub repository https://github.com/YoungMasterGandalf/thesis-work.

The practical part of this work can be described surprisingly succinctly, given
that the methodologies and pipelines used have already been elaborated upon in
previous chapters. We initiated the process by selecting a few days of observations
with minimal magnetic activity. This is crucial because, as mentioned in Sec.
3.2.2, our analysis assumes only the presence of small perturbations. During
periods of high magnetic activity, the likely inclusion of one or more sunspots in
the tracked area would violate this assumption.

All observational data used in this work, consisting of a series of Dopplergrams
captured by the SDO’s HMI instrument, were utilized as input data. The config-
urations of these Dopplergram sequences are detailed in Table 6.1. Other obser-
vation configurations were employed during the testing of the tracking pipeline
and the overall process described in Chap. 4, Methodology; however, these were
not listed as they were not part of the final batch of data presented in the results.

Table 6.1: Dopplergram configurations utilized in this thesis. T represents the
observation time in hours, while ∆T denotes the cadence (the time between
two consecutive frames) in seconds. Origin lon./lat. are Carrington coordinates
of the projection origin of the middle frame in the sequence. The number of
datacubes corresponding to the provided Dopplergram sequence (# datacubes)
is determined by the number of injected velocities for the given configuration.
Date Origin lon. (◦) Origin lat. (◦) T (h) ∆T (s) # images # datacubes
03/12/2017 280 0 6 45 482 54
05/12/2017 200 0 6 45 482 74
08/13/2017 40 0 6 45 482 75
10/08/2017 30 0 6 45 482 75
11/03/2017 40 0 6 45 482 75
12/01/2017 40 0 6 45 482 75
03/26/2018 310 0 6 45 482 75
01/20/2019 315 0 6 45 482 75
01/20/2019 315 −20 6 45 482 63
01/20/2019 315 20 6 45 482 75

38

https://github.com/YoungMasterGandalf/thesis-work


Configuration files and folder structures were created by running the prepara-
tion pipeline shown in Fig. 5.4. For each combination of observation date and
projection origin, 75 datacube configurations were prepared, each with a dif-
ferent injected velocity. These velocities were randomly sampled from the se-
quence −500, −499, ..., 499, 500 ms−1. The data were subsequently downloaded
from JSOC using the pipeline depicted in Fig. 5.5. As a result, 600 datacube
configurations were prepared at 0◦ latitude, 75 at 20◦ latitude, and 75 at −20◦

latitude.

Next, the tracking pipeline (Fig. 5.7) and the travel-time pipeline were run
synchronously for each configuration. Synchronous execution means that the
travel-time pipeline commenced only after the completion of the tracking pipeline,
as it relies on the datacubes generated by the tracking process as input. The
execution was managed in batches on the Ondřejov Observatory compute cluster
to avoid overloading the job management system. Each batch corresponded to
one observation date, encompassing 75 injected velocities. The discrepancy in the
number of datacubes shown in Tab. 6.1 arises because some jobs unexpectedly
failed, most likely due to errors in the cluster’s job management system. However,
the number of failed jobs was not substantial enough to significantly compromise
the quality of the validation, leading us to proceed with the successfully processed
data. Ultimately, 578 datacubes at 0◦ latitude were generated and processed by
the travel-time pipeline, along with 63 at −20◦ latitude and 75 at 20◦ latitude.
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Each datacube processed by the travel-time pipeline yields, among other out-
puts, travel-time perturbation maps for various filters and annulus radii. The
combinations of filters and annulus radii, expressed in pixels, include:

• Ridge filters:

– f: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] (px)

– p1: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] (px)

– p2: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] (px)

– p3: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] (px)

– p4: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] (px)

• Phase speed filters:

– td1: [2.5, 3.4, 4.2, 5.1, 6] (px)

– td2: [4.2, 5.1, 6, 6.8, 7.7] (px)

– td3: [6, 7, 7.9, 8.9, 9.9] (px)

– td4: [9.9, 10.8, 11.6, 12.4, 13.3] (px)

– td5: [13, 15, 17, 18, 20] (px)

– td6: [18, 19, 21, 22, 24] (px)

– td7: [22, 23, 25, 27, 29] (px)

– td8: [26, 28, 29, 31, 33] (px)

– td9: [30, 32, 34, 35, 37] (px)

– td10: [35, 36, 38, 39, 41] (px)

– td11: [39, 40, 42, 44, 46] (px)

We continued with the validation process as outlined in Chap. 4, Methodology.
For each filter and geometry, we created plots comparing mean travel-time per-
turbations against injected velocities. Examples of these plots, generated from
datasets originating at 0◦ latitude for various modes and geometries, are displayed
in Fig. 6.1.
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Figure 6.1: Mean travel-time perturbation around center vs. injected velocity
plots created from the dataset with the latitude of the tracked area origin equal
to 0◦ and the following configurations: f mode, e-w geometry, ∆ = 10 px (top); p3
mode, e-w geometry, ∆ = 15 px (middle); td11 (phase speed filter), e-w geometry,
∆ = 46 px (bottom).
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A distinct separation is evident in the data, particularly for modes that penetrate
deeper into the Sun. Each plot appears to showcase a series of linear relation-
ships with similar slopes but vertically offset from each other. This phenomenon
is attributed to each line representing data from a different observation date for
the specified configuration. It has been documented by several researchers (Basu
and Antia, 2019; Li et al., 2013; Mordvinov and Plyusnina, 2000, and others)
that the solar rotation is not constant but varies periodically over time. Any de-
viation in solar rotation from the Carrington rotation contributes to the average
background perturbation term discussed in Eq. 4.5. This factor varies across
different observation dates and configurations. Notably, this issue does not af-
fect the datasets at latitudes 20◦ and −20◦, as these were derived from a single
observation date.

Fitting data with such inherent variability is problematic, as it may lead to a
biased trend. To address this, we segregated the dataset by observation dates and
generated the same plots for all configurations, but separately for each observation
date. A new set of example plots, derived from the dataset dated 01/20/2019 at
0◦ latitude, is illustrated in Fig. 6.2.
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Figure 6.2: Mean travel-time perturbation around center vs. injected velocity
plots created from a single observation date, 01/20/2019, tracked area origin
latitude equal to 0◦ and the following configurations: f mode, e-w geometry,
∆ = 10 px (top); p3 mode, e-w geometry, ∆ = 15 px (middle); td4 (phase speed
filter), e-w geometry, ∆ = 9.9 px (bottom).
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For each configuration (filter and annulus radius), we obtained eight slopes and
their corresponding errors from eight observation dates. To derive a single slope
per configuration, we calculated the weighted averages of the slopes and their er-
rors for each observation date using the formula outlined in (Taylor and Thomp-
son, 1982):

xwav =

∑︁
i

wixi∑︁
i

wi

, (6.1)

where the sums are over all observation dates, i.e., i = 1, ..., 8, and the weights
wi are reciprocal values of the corresponding uncertainties

wi = 1
σ2

i

. (6.2)

The final uncertainty of the weighted average xwav is

σwav = 1∑︁
i

√
wi

, (6.3)

where again i = 1, ..., 8.

The datasets at latitudes 20◦ and −20◦ were primarily processed to test the
effect of differential rotation on the resulting data. Similar to the variable solar
rotation observed on different dates, the differential rotation velocities at lower
and higher latitudes were not expected to alter the slopes of the graphs, but
rather to introduce an additional vertical shift. This hypothesis was confirmed,
as illustrated in Figures 6.3, 6.4, and 6.5.
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Figure 6.3: Mean travel-time perturbation around center vs. injected velocity
plots created from a single observation date, 01/20/2019, for the configuration: f
mode, e-w geometry, ∆ = 10 px. The difference in configurations was the tracked
area origin latitude: 0◦ (top), −20◦ (middle), 20◦ (bottom).
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Figure 6.4: Mean travel-time perturbation around center vs. injected velocity
plots created from a single observation date, 01/20/2019, for the configuration:
p3 mode, e-w geometry, ∆ = 15 px. The difference in configurations was the
tracked area origin latitude: 0◦ (top), −20◦ (middle), 20◦ (bottom).
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Figure 6.5: Mean travel-time perturbation around center vs. injected velocity
plots created from a single observation date, 01/20/2019, for the configuration:
td4 (phase speed filter), e-w geometry, ∆ = 9.9 px. The difference in configura-
tions was the tracked area origin latitude: 0◦ (top), −20◦ (middle), 20◦ (bottom).
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The final step of our validation method, as outlined in 4, Methodology, involved
comparing the slopes of the linear regressions from all graphs with the volume
integrals of velocity perturbation kernels for corresponding filters and geometries,
as calculated from the models. As explained in the aforementioned chapter,
specifically in Eq. 4.5, these slopes represent the same quantity obtained through
a model-independent method. The results for the primary dataset at 0◦ latitude
are displayed in Fig. 6.6.
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Figure 6.6: Volume integrals of velocity perturbation kernels obtained from lin-
ear regression slopes (model independent) vs. volume integrals of the velocity
perturbation kernels calculated from forward modelling. The data were obtained
from the dataset containing 8 observation dates with the origin latitude of the
tracked area equal to 0◦ for various ridge and phase speed filters.

The data were then organized and plotted with filters of the same type grouped
together, specifically, {p1, ..., p4} grouped as p modes and {td1, ..., td11} as td
modes. The results of this grouped filters are displayed in Fig. 6.7.

Similar results were obtained for the 20◦ and −20◦ datasets and are shown in Fig.
6.8.

48



200 150 100 50 0
Velocity kernel integral (model)

0

50

100

150

200

250

Ve
lo

cit
y 

ke
rn

el
 in

te
gr

al
 (e

xp
er

im
en

t)

f mode filter
p mode filter
td filter (constant phase velocity)
Linear fit (slope = 0.93 ± 0.03)

Figure 6.7: Volume integrals of velocity perturbation kernels obtained from lin-
ear regression slopes (model independent) vs. volume integrals of the velocity
perturbation kernels calculated from forward modelling. The data were obtained
from the dataset containing 8 observation dates with the origin latitude of the
tracked area equal to 0◦ for various ridge and phase speed filter groups.
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Figure 6.8: Volume integrals of velocity perturbation kernels obtained from linear
regression slopes (model independent) vs. volume integrals of the velocity pertur-
bation kernels calculated from models. The data were obtained from the dataset
containing 8 observation dates with the origin latitude of the tracked area equal
to −20◦ (top) and 20◦ (bottom) for various ridge and phase speed filter groups.
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7. Discussion
The principal findings of this thesis are presented in Figures 6.6 and 6.7. The
results demonstrate that the volume integrals of the velocity perturbation sensi-
tivity kernels, obtained using our proposed model-independent method, align well
with those calculated from models for ridge filters f and p1 – p4. This alignment
is underscored by the slope of the linear fit: −0.93 ± 0.03, and further solidified
by Pearson’s correlation coefficient (Pearson, 1895) for these filters, which stands
at ρf/p = −0.999, indicating a strong linear correlation. Conversely, the results
for the phase speed filters t1 – t11 do not exhibit a similar correlation; the vol-
ume integrals of the sensitivity kernels show very little similarity to their model
counterparts, as evidenced by Pearson’s coefficient ρtd = −0.198, suggesting vir-
tually no linear correlation. The negative sign in both the slopes and correlation
coefficients arise from the chosen sign convention of the injected velocity. This
velocity, featured in Figures 6.1, 6.2, 6.3, 6.4, and 6.5, represents the velocity
of the frame which artificially induces a flow of the same magnitude but in the
opposite direction, as detailed in Chap. 4.

These findings lead to the conclusion that phase speed filtering may yield un-
reliable results, a notion previously suggested by other researchers by observing
inconsistencies in their inversions (Švanda, 2015; DeGrave and Jackiewicz, 2015).

Further discussion in this chapter explores various factors that might potentially
influence the results, demonstrating that they either had no effect or were appro-
priately accounted for.

7.1 Injected velocity flow vs. real flow
One potential question concerns whether the injected longitudinal velocity truly
results in an artificial flow within the data. To address this, ring diagrams were
constructed. As detailed in Sec. 3.1 and supported by the literature (Christensen-
Dalsgaard, 2002; Kosovichev, 2011), the presence of a horizontal flow in the
tracked area is indicated in the ring diagram by a distortion of the ring pat-
tern—specifically, the rings will not be concentric if any horizontal flow is present.
A ring diagram for a test configuration with an injected velocity of v0 = 500 m/s
compared to a one with no injected velocity is shown in Fig. 7.1. It qualitatively
demonstrates the presence of a horizontal flow, as evidenced by the horizontal
distortion of the rings visible in the bottom diagram.
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Figure 7.1: Ring diagrams created from power spectra of a 24-hour observation
at ν = 4 mHz. The upper diagram corresponds to a dataset with no injected
velocity resulting in all rings being concentric circles. The bottom diagram was
created from a dataset with an injected horizontal velocity v0 = 500 m/s resulting
in the visible horizontal distortion of the rings.

A direct comparison of the horizontal velocity with the injected one is also pos-
sible. In the Dopplergrams, the indication for the large-scale convective cells of
supergranulation (Rincon and Rieutord, 2018) are clearly visible. The super-
granular structures therefore can be used to determine the horizontal flow field
on the solar surface (e.g. Švanda et al., 2006, and the follow-up papers). Such
goal may be achieved by applying the method of local correlation tracking (LCT;
November, 1986) to Dopplergram datacubes.
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Figure 7.2: Comparison of the implanted velocity and the horizontal velocity
determined from the manipulated datacubes using a LCT algorithm.

The local correlation tracking algorithm searches for the optimal displacement
that minimises the differences of the floating spatial windows capturing slowly
evolving features in the time sequence. Knowing the sampling of the cross-
correlated frames, the detected displacement may be converted to the horizontal
velocity vector.

The results of the testing of our pipeline are shown in Fig. 7.2. The measured sur-
face horizontal velocities obviously very well correspond to the implanted velocity,
thereby validating the performance of the tracking pipeline.

7.2 Observation times
Another tested factor was the observation time. Initially, 24-hour sequences were
examined during the testing phase of the tracking pipeline. After confirming
the stability and expected functionality of the pipeline, 6-hour sequences were
employed as inputs, and the outcomes were compared. Since the results obtained
from the 24-hour sequence inputs were identical to those from the 6-hour sequence
inputs, we opted to utilize 6-hour sequences for the primary data batch to expedite
processing.

7.3 GB02 vs. GB04
Differences between GB02 and GB04 are detailed in Sec. 3.2.1 and further ex-
plored in (e.g. DeGrave et al., 2014). Initially, the tracking pipeline was exclu-
sively tested using GB04, as it requires less computational time for the specified
task compared to GB02. However, GB02 demonstrates better stability in non-
linear regions, particularly for higher flow velocities (DeGrave et al., 2014).
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This non-linear behavior is evident in e.g., Fig. 6.5, where the outer values clearly
deviate from a linear trend. Consequently, all regressions were conducted within
the linear velocity range of (−300, 300) m/s. Since the regressions were confined
to this linear region, there was no significant difference between using GB02 or
GB04 in terms of the final results. Nevertheless, due to its superior stability,
GB02 was selected for the main processing run.

7.4 Differential rotation
Considering the size of the tracked area, which has dimensions of 512×512 pixels
and a scaling of 0.12 ◦/px, results in a roughly 60◦×60◦ spherical rectangle, it is
essential to evaluate the potential effects of differential rotation. As previously
discussed in Chap. 6, Results, we hypothesized that the discrepancy between the
actual solar rotation at the given location and the Carrington rotation applied
would only manifest within the background perturbation term, as outlined in Eq.
4.5.

This assumption was tested by comparing the mean travel-time perturbation
versus injected velocity plots for identical observation dates and configurations
across different latitudes of the tracked areas’ origins. The results are depicted
in Figures 6.3, 6.4, and 6.5. As observed, the linear dependence remains consis-
tent across all latitudes for the specified configurations, while only the intercept
varies. Thus, differential rotation manifests solely as a vertical shift in these
dependencies, thereby not affecting the overall results presented.

7.5 Reference cross-covariance
The significance of selecting an appropriate reference cross-covariance C0 was
briefly discussed in Sec. 3.2.1, with the primary objective being to minimize the
contribution of the group travel time to the results. It was also noted that in some
instances, the reference cross-covariance derived from the forward model might
not be sufficiently accurate. This issue arose during our work. Initially, in the
testing phase, the travel-time pipeline consistently used a cross-covariance that
had been pre-calculated from forward modeling. Similar to the GB02 versus GB04
discussion, this approach is advantageous in terms of computational efficiency.

However, the resulting data, after evaluating all other potential influences detailed
in this chapter, were demonstrably incorrect. It became clear that in our case, the
pre-calculated cross-covariance was not sufficiently precise. Additionally, there
might have been a secondary source of inaccuracy related to the injected flows.
Without systematic flows, the point of wave emergence is centered within a given
pixel. However, the introduction of a systematic flow might slightly shift the
emergence point, causing an overlap with neighboring pixels. Both of these issues
were addressed by constructing the cross-covariance for each travel-time pipeline
setting as a spatial average over the field of view in the selected region. Such an
averaging to obtain the reference cross-covariance is not novel and is being used
quite often in the community.
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Conclusion
This thesis investigated the feasibility of a model-independent approach to de-
termine the volume integrals of velocity perturbation kernels using travel-time
measurements from helioseismic data. The core methodology involved inject-
ing a controlled longitudinal flow into Dopplergrams datacubes and subsequently
analyzing the resulting travel-time perturbations.

The key findings are summarized in Figures 6.6 and 6.7. The results demonstrate
a strong correlation between the volume integrals of velocity perturbation kernels
derived from the model-independent method and those calculated from forward
models for ridge filters (f and p1–p4). This is supported by the linear fit slope of
−0.93±0.03 and a Pearson’s correlation coefficient of ρf/p = −0.999 (the negative
signs are consequences of the chosen convention). In contrast, the phase speed
filters (td1 – td11) exhibited a weak correlation (ρf/p = −0.198) between the
two sets of volume integrals, suggesting that phase speed filtering might not be
a reliable approach for this purpose.

These findings align with prior research suggesting potential issues with phase
speed filtering. The discussion chapter further explores potential influencing fac-
tors and demonstrates that they were either negligible or adequately accounted
for. Additionally, ring diagrams and an LCT algorithm confirmed the presence
of an artificial flow within the data due to the injected velocity.

In conclusion, this thesis tested the validity of volume integrals of velocity per-
turbation kernels with a model-independent method. The method showed high
correlation with model kernels for ridge filters f and p1 – p4. On the other hand,
strong inconsistencies were observed for phase speed filters, td1 – td11, showing
almost no correlation with model kernels. This results suggest that there might
be issues in kernel calculation methods employed by various models.
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