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1 Introduction 

This chapter explains the main goals of the Master thesis, the problems it 

tries to solve, and the motivation behind it all. 

1.1 Background 

In computer graphics industries such as data visualization or 3D modeling, 

Level of Detail (LoD) is a technique used to optimize rendering time and 

computational and memory requirements. The main idea is that objects positioned 

further away from the observer (/virtual camera) can be represented in lower detail 

than objects closer to it. This is simply because the further away the object is from 

the camera, the smaller its projection on the screen. This does not apply to all 

projections (such as orthographic), but it does apply to perspective projection, which 

is the most common in computer graphics applications. 

1.2 Motivation for the thesis 

LoD can be achieved through numerous approaches, each with advantages 

and disadvantages. These must be thoroughly analyzed for the specific use case, 

requirements, and constraints. 

The end goal of this thesis is both the selection and implementation of 

rendering optimization technique suitable for, but not only, FataMorgana – an 

AR/VR (augmented/virtual reality) platform for remote collaboration developed by a 

smaller start-up company Pocket Virtuality. 

1.3 Problem statement 

AR and VR headsets are notorious for requiring more computational power 

than traditional rendering to standard screen for several reasons: 

1. There is a need to render the same content to both eyes but from 

slightly different positions (stereo rendering). 

2. While users of standard computer applications (such as video games, 

3D modeling software, …) can be satisfied with rendering 25-30 

frames per second (FPS), a wearer of a VR headset needs at least 60 

FPS to avoid motion sickness. 
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3. Latency also has to be considered. Motion sickness can occur if it 

takes longer than 20-25ms from head movement to the new frame 

being displayed in the headset (Hou, et al., 2004) (Wilson, 2016). 

4. Displays in VR headsets are placed mere centimeters away from the 

eyes. Therefore, they should provide higher resolution to keep 

visible pixels per degree as high as possible and make viewed images 

sharper. 

Reasons 2, 3, and 4 also applies to AR headsets but are not so strict due 

to the constantly visible real environment. However, most AR headsets 

(such as Microsoft HoloLens) are portable, which means they cannot 

utilize the powerful hardware of desktop PCs (like connected VR headsets 

can). They are also expected to last at least a few hours on an embedded 

battery and be lightweight and sleek. All this results in most AR headsets 

having performance comparable to modern smartphones. 

Therefore, using LoD is especially beneficial for AR/VR applications. 

1.4 Overview of the FataMorgana platform 

FataMorgana is an enterprise software system developed by Pocket 

Virtuality. Its purpose is to provide an easy way for training and remote assistance, 

mainly for industry (manufacturing, energy, maintenance, …). 

There are numerous separate parts in this system. The best way to describe 

them is through a typical workflow. It starts with getting all the required 3D models 

of the scene, tools, etc. If a 3D model is unavailable, the scene can be scanned using 

a 3D scanner or Microsoft HoloLens AR headset. A server-side app, FMBrain, 

merges scene data from various sources. Then, a desktop program called FMStudio 

can be used to create scenarios for training, adjust models, see people using 

HoloLens in real-time in the correct place relative to the model, communicate with 

them, etc. 
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Figure 1 FMVoyager displaying additional information including maintenance steps, over 

the real environment. Courtesy of Pocket Virtuality 

A client app on HoloLens called FMVoyager allows communication back to 

FMStudio and other FMVoyager users. Besides that, it shows steps in case of 

training, markers in the real world with text/image info, avatars of other HoloLens 

users (in case they are connected remotely), and more (see Figure 1). FMVoyager 

runs on Microsoft HoloLens and various VR devices. 

This whole process, from the scanning of the environment to displaying the 

result in AR/VR, is depicted in Figure 2. 
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Figure 2 A simplified overview of a typical workflow in the FataMorgana platform. It starts 

with HoloLens, Leica, and other devices scanning the environment, which is then fused in FMBrain, 

adjusted and utilized in FMStudio, before being displayed in AR/VR headsets using FMVoyager. 

1.4.1 Problem in terms of FataMorgana 

Models imported into the FataMorgana system are huge CAD models with 

hundreds of millions of triangles. It is not rare that even the tiniest parts of these 

models, such as screws and nuts, are fully modeled to the smallest detail. 

These models are not optimized for low-power portable devices such as 

Microsoft HoloLens. But they also cause problems on VR headsets, where rendering 

is significantly more expensive and demanding than a single 2D display. 

Besides that, these models might be in various formats – not just typical 

triangle meshes. This project aspires to fix the issue of rendering large and complex 

scenes in systems such as FataMorgana. 
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1.5 Scope and limitations of the research 

Optimization of rendering is a very complex, broad, and long-studied topic. 

Research of existing techniques in this project was bounded by techniques applicable 

to input models in various formats (not only meshes) that were reasonably scalable 

and novel (for a more detailed list of requirements, see Chapter 2.2). Many older 

techniques were researched but primarily only as a necessity for understanding newer 

research based on them. 

The field of rendering optimization is still very active. Therefore, it is good to 

note that several newer techniques were presented while this project was being 

worked on. Some of them might be mentioned later in this text, but it is out of this 

project's scope to keep up with all possible new techniques. 

This project should not be used as a meta-analysis of rendering 

optimization techniques since many research papers were thrown away right away 

after reading the abstract and realizing they do not meet the constraints of this 

project. Such papers will most probably not be mentioned in this project. 

1.6 Structure of the thesis 

Right after this introductory chapter (1), there is an analysis of various 

LoD techniques (2) followed by a more detailed description (3) of the technique 

that was chosen as the best for this case. 

Then, the implementation process (4) is described, which, besides other 

things, also includes the reasoning behind chosen technologies and libraries. The 

whole architecture (5) is described in the next chapter. That is followed by a chapter 

with implementation highlights (6), such as reasoning for selecting low-level 

algorithms and approaches. 

At the end, there is a presentation of results (7), discussion (8), standard 

conclusion (9), references (10), lists of figures (11) and abbreviations (12), and 

lastly, attachments (13). 
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2  LoD techniques analysis 

Dozens of LoD techniques were researched throughout the history of 

computer graphics. This chapter will explain different approaches to LoD, compare 

them, and defend the selection of the LoD technique, which was implemented as the 

second part of this thesis. 

2.1 LoD in general 

Computer games were probably the first part of the computer graphics 

industry that used LoD. This is due to their nature of displaying large and detailed 

scenes in real time and high frame rates on consumer-grade devices of various 

power. 

The most basic approach to LoD is to create several polygonal meshes 

representing the same object manually but with varying number of polygons (see 

Figure 2). This follows the basic principle – if the object is far away, the low-poly 

version of mesh is displayed, and vice versa. 

 

Figure 3 Comparison of different LoD levels on the Stanford bunny model. Source: 

YouTube0F

1 

2.1.1 Parameters for selection of LoD level 

Distance from camera to model in a scene is the most common, easily 

available, and very reliable way to select which LoD level of the mesh should be 

used for an object in a scene. 

                                                 

1 https://www.youtube.com/watch?v=mIkIMgEVnX0 

https://www.youtube.com/watch?v=mIkIMgEVnX0
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Figure 4 Illustration of the angle between gaze vector and vector to rendered object. 

However, it is not the only parameter for this selection. The angle between 

the user’s gaze vector and the object (depicted as φ in Figure 4) is also a usable 

parameter. Suppose the angle between the gaze vector from the camera center and 

the line from the camera center to the object is large. In that case, it means the object 

is in the observer's peripheral vision, and therefore, it does not require such a detail 

compared to an object in the middle of the camera. The human eye's anatomy shows 

fewer rods and cones on the retina's periphery, which results in fewer stimuli 

available compared to the middle. 

 

Figure 5 Depiction of the principle of foveated rendering. Source: Article “Foveated 

Rendering on the VIVE PRO Eye” on LinkedIn1F

2 by Chris O'Connor from ZeroLight 

                                                 

2 https://www.linkedin.com/pulse/foveated-rendering-vive-pro-eye-chris-o-connor/ 

https://www.linkedin.com/pulse/foveated-rendering-vive-pro-eye-chris-o-connor/
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Since users can look anywhere on a standard monitor and due to the general 

lack of any widely used eye-tracking system, this is not usable in most common 

scenarios. Seeing models of lower quality on the edges of the monitor might look 

uncanny. This changes with modern AR/VR headsets, which can track the user’s 

gaze using internal cameras. The technique in which the user’s gaze direction is used 

to optimize rendering is called foveated rendering (see Figure 4). 

Foveated rendering is not restricted to only displaying low-poly models in the 

area of peripheral vision. Such an area is also a good candidate for utilization of 

lower quality (but faster) shaders or even calling shaders less often than every frame. 

The second-mentioned technique is usually referred to as variable rate shading. 

A good system would consider both distance and angle to the rendered model 

in selecting the LoD level. 

There are other parameters for selecting LoD level, but they might be too 

subjective to particular cases or software. One of them could be a priority of the 

object. If software is used to, for example, present a car, the environment around it 

can be rendered in lower resolution. 

On battery-powered devices, it might be a good idea to lower the rendering 

quality to keep the device running longer. Lower rendering quality also leads to 

lower thermal output of portable devices. This might be desired when the device 

gets overheated, e.g., due to the influence of the environment. 

2.1.2 Continuous and discrete LoD 

No matter how the importance of the model is calculated (distance to camera, 

angle, …), it is usually a continuous value. The camera can move closer to a model 

by a small amount, and the LoD system has to react somehow to this scenario. 

If only a discrete amount of LoD models is available, changing from one 

level to another might cause undesirable visual effects, referred to as “popping”. 

Advanced systems can utilize techniques to mask this transition. Such approaches are 

for example: 

• Alpha Blending - One LoD level decreases in opacity, and the other 

increases, as seen in Figure 5. This requires both LoD levels of the model to 

be rendered simultaneously, even though only for a relatively short transition 

time. 
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Figure 6 A blending for transition between 2 LoD levels. Source: Wikipedia - Popping 

(computer graphics)2F

3 

• Geomorphing - Directly changing mesh from one model to another is 

another technique (see Figure 6). Real-time geomorphing can be 

computationally expensive.  

 

Figure 7 An illustration of geomorphing for transition between 2 levels of detail. Wikipedia - 

Popping (computer graphics)3 

Other techniques for more continuous LoD can include, for example, 

adjusting the amount of rendered points/surfels in very small steps. This approach 

usually scales very well. 

Discrete LoD is a traditional approach for this problem, as first presented by 

(Clark, 1976). In comparison, the term continuous LoD is sometimes called 

“progressive LoD” after (Hoppe, 1996). 

2.1.3 Polygons vs. surfels vs. points 

Manual creation of sets of polygonal meshes requires a lot of artists' time. 

Naturally, this led to the development of automated systems to simplify polygonal 

meshes. These algorithms usually involve some kind of clustering of neighboring 

vertices while trying to maintain the overall shape of the 3D model. Information 

about neighbors for each vertex is essential, and in case of its absence, expensive 

                                                 

3 https://en.wikipedia.org/wiki/Popping_(computer_graphics) 

https://en.wikipedia.org/wiki/Popping_(computer_graphics)
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pre-processing is required. Even after that, manual fixes and adjustments of meshes 

are often needed. 

These disadvantages led to the analysis of other approaches to LoD, such as 

the use of points and surfels. 

Points are usually handled as sets, referred to as “point clouds”. Their 

rendering is cheap and a good alternative to low-poly meshes. However, gaps 

between points must be handled by calculating an adequate size for each point. 

Moreover, visual effects such as shadows are often problematic to achieve. 

More generalized primitives to points are so-called surfels (as first defined in 

(Pfister, et al., 2000)), from “surfel” = surface element. They are usually represented 

as points with associated sizes and normal vectors (their orientation). Visually, they 

can be rendered as oriented circles, ellipses, squares, or other planar primitives 

positioned in 3D space. 

2.2 Criteria used for selection of LoD technique 

As briefly mentioned in Chapter 1.5, there are several requirements for the 

selection of the LoD technique for this project: 

1. Input format – Many formats of input models are already used in the 

FataMorgana system. And there are expected to be only more in the 

future. This is not just about various formats for 3D meshes but also 

non-standard representations such as output from 3D scanners and 

similar devices. 

2. Scalability – Support for devices with strongly varying performance 

is critical since this technique is expected to be used on low-power 

standalone headsets such as HoloLens or Meta Quest, but also on 

powerful desktop PCs. Continuous LoD is a good candidate to fulfill 

this requirement. 

3. Novelty – It is important to check how old the specific research is. 

The older it is, the higher the probability that newer research that 

improves it exists. On the other hand, if there is no progress in the 

field for a long time, it might mean it is a dead end, and research is 

focused on different techniques. In both cases, checking any newer 

research referencing these old ones is a good idea. 
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2.3 Review of relevant literature 

The following subchapters contain brief descriptions, advantages, and 

disadvantages of researched techniques. Not all researched papers/articles are 

mentioned here. Some of them were found not to be relevant enough even to mention 

them as potential techniques. 

2.3.1 Image-based rendering 

Other than LoD, several techniques for optimizing rendering based on 

simplification of rendered scene were also considered - for example, image-based 

rendering and sprites. 

These approaches somewhat resemble LoD because they show simplified 

versions of objects when they are too far from the camera. But instead of simplifying 

meshes, they show 2D images in 3D space, sometimes called imposters or 

billboards. 

Most, if not all, simple image-based techniques suffer from low quality and 

visual artifacts. Several methods and data structures were created to address these 

issues. One of the most known are Layered Depth Images (LDI) described in 

(Shade, et al., 1998), later extended into structures such as LDI Tree (Chang, et al., 

1999) and Layered Depth Cube (Lischinski, et al., 1998). 

However, these techniques are rarely used nowadays due to a significant lack 

of quality and the generally complex nature of structures. Research in this field has 

not advanced anywhere in the last 20 years. 

2.3.2 Progressive meshes 

One of the older techniques for LoD is called progressive meshes. It was 

first described in (Hoppe, 1996). In simple terms, progressive mesh is a data 

structure containing the simplified version of input mesh and hierarchy of decimation 

operations, which lead to this simplified representation. Then, to get a better-quality 

mesh, these decimation operations are applied in reverse. 

There were several attempts to implement this technique on GPU, such as 

(Hu, et al., 2009) and (Derzapf, et al., 2012). 

It offers very good granularity of quality. On the other hand, disadvantages 

include higher memory consumption and, most importantly, strict requirements for 
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input mesh. Not only does the input have to be a polygonal mesh, but it also has to 

contain information about the connectivity of neighboring vertices. 

2.3.3 Point clouds 

The point-cloud-based LoD methods have a significant advantage in final 

rendering since the rendering of points is cheap. The resulting quality can vary, but 

it should not be a huge concern since points would be used only on objects far from 

the camera. Alternatively, advanced blending of points with polygonal meshes 

could be utilized (Cohen, et al., 2001). 

The notable disadvantage is the significantly more complicated handling of 

shadows, occlusion culling, and other techniques primarily developed for polygonal 

meshes. Also, converting polygonal mesh to a point cloud requires a suitable 

sampling method. However, sometimes data are already in the form of the point 

cloud, such as output from 3D scanners. 

LoD techniques based on point clouds focus on the 

decimation/simplification of a set of points. This includes, for example (Pajarola, 

2003) or (Shi, et al., 2011), where k-means clustering is used. This simplification 

process creates multiple versions of the same point cloud with coarser and coarser 

details. 

A good simplification process for point clouds should consider the model's 

properties, such as curvature. More points should be preserved in high curvature 

places (compared to flat areas) since that usually signals more detail. This is done by, 

for example (Pauly, et al., 2002). 

Even though the rendering of points is cheap, the whole rendering process 

might be challenging. This is because output is usually represented as complex 

hierarchies (such as point-octree), which need to be handled during rendering time - 

increasing complexity and performance hit for rendering. 

2.3.4 Surfels 

Surfels as rendering primitive were first introduced by (Pfister, et al., 2000). 

Since then, several techniques for their rendering and use in LoD have been 

presented. 
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For example, a combination of surfels and billboards (image-based 

impostors) in a hierarchical LoD structure was proposed (Holst, et al., 2007). This 

structure can also be combined with triangle-based LoD structures. 

 

Figure 8 Model of Stanford Bunny consisting of varying amount of Blue Surfels. Note that 

the size of the surfels is not representative of actual rendering. Source: (Jähn, 2013) 

A significantly simpler LoD structure with a sampling of meshes was 

introduced in (Jähn, 2013) as Blue Surfels. Thanks to complex sampling, the 

resulting structure for rendering is a simple 1D array of surfels. The renderer 

decides how many surfels (how large prefix of this array) should be rendered based 

on LoD parameters. This can be seen in Figure 7. The sampling process itself was 

later described in more detail in (Brandt, et al., 2019) [Visibility-Aware Progressive 

Farthest Point Sampling on the GPU] and rendering with LoD selection in (Brandt, et 

al., 2019) [Rendering of Complex Heterogenous Scenes using Progressive Blue 

Surfels]. Blue surfels are explained in more detail in Chapter 3. 
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Gaussian splats 

 

Figure 9 Comparison of Gaussian splats (left) and opaque squares (right). Source: (Coconu, 

et al., 2002) 

Similar to surfels (or even their version) are primitives commonly referred to 

as Gaussian splats. As the name suggests, they use Gaussian distribution – more 

specifically, this distribution is used for the gradient of the alpha channel from the 

center of the splat to its edges. This technique blends splats with others around 

them to create a more natural look compared to opaque surfels. 

However, this comes with higher rendering complexity due to alpha blending 

and non-standard depth testing. This was attempted to be solved using the old A-

buffer technique (Carpenter, 1984), z-offsetting (Rusinkiewicz, et al., 2000), or 

complex hierarchical structures enabling rendering in paint order like the painter’s 

algorithm does (Coconu, et al., 2002). 

An increase in quality using Gaussian splats compared to primitive opaque 

surfels can be seen in Figure 8. 
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EWA filtering 

Another technique trying to improve opaque surfels is called Elliptical 

Weighted Average (EWA) surface splatting (Ren, et al., 2002). It does require 2 

render passes, however. 

2.3.5 Virtualized geometry 

A novel approach to LoD is virtualized geometry, with the most famous 

example being Nanite3F

4. This system takes polygonal mesh on input and breaks it 

down into hierarchical clusters of triangle groups. These clusters are then swapped 

on the fly to provide varying levels of detail. 

 

Figure 10 Nanite and its clustering of triangles. Source: Nanite – A Deep Dive presentation 

at SIGGRAPH 20214F

5 

It provides a considerable performance boost, which makes it possible to 

display models with a very high number of triangles. Besides that, it also compresses 

the mesh itself, resulting in lower memory requirements. 

It does have several drawbacks, however. First, it is implemented only in 

Unreal Engine 4 - though there will undoubtedly be other implementations soon. 

                                                 

4 https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/ 

5 https://www.highperformancegraphics.org/slides22/Journey_to_Nanite.pdf 

https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine/
https://www.highperformancegraphics.org/slides22/Journey_to_Nanite.pdf
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The Unity version of Nanite was crowdfunded through Indiegogo5F

6. At the time of 

writing, Nanite works only with DirectX 12 (and PlayStation 5 and Xbox Series S|X, 

but those are irrelevant to this project). 

Other drawbacks include no support for double-sided faces, Android, and 

mobile chips (including Meta Quest), which means it might not support HoloLens 

either. Nanite also does not work with all materials and translucent objects. It works 

poorly with long thin objects (hair, grass, vegetation in general, etc.) and can be 

used only on static meshes. 

Many rendering techniques are not currently supported by Nanite. The most 

important one (for this project) is the lack of support for stereo rendering. 

2.3.6 Micro-Meshes 

A technique called Micro-Mesh, developed and recently shown by Nvidia6F

7, is 

based on splitting each triangle of the base mesh into micro-triangles. These micro-

triangles are later displaced to create a highly detailed model. Thanks to these micro-

triangles, this technique offers an inherit continuous LoD – the number of rendered 

micro-triangles for each base triangle can be adjusted on the fly through blended 

decimation. 

 

Figure 11 A visualization of conversion from input model to Micro-Mesh. Source: 

(Maggiordomo, et al., 2023) 

Unlike Nanite, this technique works on animated meshes. Micro-triangles 

can also be easily generated on the fly, for example, for procedurally generated 

meshes. However, this requires the latest generation of GPUs – more specifically, 

GPUs ray-tracing capabilities are needed for the native generation of micro-meshes 

                                                 

6 https://www.indiegogo.com/projects/the-unity-improver-nano-tech#/ 

7 https://developer.nvidia.com/rtx/ray-tracing/micro-mesh 

https://www.indiegogo.com/projects/the-unity-improver-nano-tech%23/
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh


17 

 

(Maggiordomo, et al., 2023). Same as Nanite, Micro-Meshes can also compress the 

original mesh to a fraction of its original size. 

This approach's disadvantages include the necessity for the latest generation 

of GPUs. Micro-meshes also requires input to be in the form of a polygonal mesh. 

Non-standard meshes or meshes with errors might cause problems for this 

algorithm. This includes, for example: open edges, non-manifold surfaces, 

overlapping UVs for textures, and similar. This will likely improve soon since 

research in this field is very new and active. 

2.4 Discussion of analyzed techniques 

The previous chapter reviews many relevant LoD techniques based on stated 

criteria. It discusses their advantages, disadvantages, and limitations. 

There are also depictions of research trends for LoD algorithms. As can be 

seen, image-based LoD algorithms and progressive meshes went into the background 

of research, while the industry focused on Micro-Meshes and virtualized geometry. 

The introduction of Nanite was a giant leap forward in a field where only 

minor progressive improvements were made in the last years. Its implementation into 

industry-level game engines such as Unreal Engine will surely bring more focus 

into this area of research. 

Based on this literature analysis and considering all the advantages and 

disadvantages, selecting the LoD algorithm for this project was relatively easy. This 

selection is discussed and justified in the next chapter. 

2.5 Justification for the chosen technique 

The selected LoD technique, hereinafter referred to as “Blue Surfels”, fulfills 

all requirements set in Chapter 2.2. It brings even something extra to the table. This 

algorithm provides scalable LoD with extreme granularity, is novel, and is prepared 

to work with inputs in arbitrary format. Plus, there is a source code available. As a 

bonus, it is also tested with VR headsets. 

On a more personal note, using a rasterization pipeline in a very non-

standard way and compute shaders (basically a GPGPU) is an exciting topic for me. 

This is not a crucial decision factor. It is still motivating to explore such an exciting 

approach to graphics hardware. 
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2.5.1 Hybrid remote rendering 

The extremely high granularity and output format of the Blue Surfels 

algorithm allow for something that can be referred to as hybrid remote rendering. 

“Remote” in this case means that the hard work (conversion of input model 

to surfels) is done on a powerful machine (server). This is then sent to a low-power 

device (client). 

“Hybrid” refers to the fact that the client still has to render something 

(surfels in this case), unlike traditional remote rendering where the server sends only 

final RGB images (and optionally depth maps). Rendering surfels is, however, still 

significantly cheaper than rendering huge models with millions of triangles. There 

are also no complex structures and computations used for rendered primitives – only 

a single 1D array of surfels. 

High granularity and an iterative approach to Blue Surfels allow the server to 

send more and more surfels gradually as they become available. Or, as there is more 

bandwidth for that – surfels can be sent one by one, and they still provide an 

improvement individually to the rendered scene on the client device. That allows to 

use this technique even with very slow and bad connection. 

For example, sending huge models through a slow internet connection might 

not be possible. Sending only a part of the 3D model is not practical (and might not 

be possible at all, depending on the format of the 3D model). On the other hand, 

sending just a few Blue Surfels is way better than having no model at all (or 

having only a placeholder, for example, in the form of a bounding box). 

It is worth noting that no matter what type of remote rendering is used, some 

things should be rendered locally – such as hands. They usually require very little 

computational power (low triangle count and simple shading), their geometry and 

position change every frame, and they should be as low latency as possible while 

being resistant to problems caused by networks. 
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3 Blue Surfels 

This chapter talks about Blue Surfels algorithm as presented by 

• Claudius Jähn (from DeepL GmbH, Cologne, Germany), 

• Sascha Brandt, 

• Matthias Fischer, 

• and Friedhelm Meyer auf der Heide (the last 3 are from Heinz Nixdorf 

Institute, Paderborn University, Germany) 

in these 3 papers: 

• Progressive Blue Surfels (Jähn, 2013), 

• Rendering of Complex Heterogenous Scenes using Progressive Blue Surfels 

(Brandt, et al., 2019), 

• and Visibility-Aware Progressive Farthest Point Sampling on the GPU 

(Brandt, et al., 2019). 

More specifically, the first part of this chapter describes the working of this 

algorithm as presented in 3 papers. This should be a replacement for reading all 

these papers – at least for a high-level understanding of the algorithms used in this 

project.  

The second part of this chapter mentions the existing implementation of the 

Blue Surfels algorithm into the university’s rendering platform. It also provides 

arguments on why a complete rewrite of the algorithm was required. 

3.1 Overview of papers 

All aforementioned research papers talk about the same problem from 

different views. The main idea of the algorithm, as mentioned in Chapter 2.3.4, is 

the uniform sampling of a 3D model to create a surfel representation of it. These 

surfels are ordered in a 1D array in a way that rendering longer and longer prefix 

results in more details while maintaining the uniformity of rendered surfels’ 

distribution. 

3.1.1 The origins 

The first mentioned paper, Progressive Blue Surfels (Jähn, 2013), is a 

concise introduction to this problem. Most of the mentioned processes and 
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algorithms are described on a very high level. Others are very primitive versions of 

algorithms with notes that they should be improved/replaced in future work. No 

benchmarks, comparisons, or analyses are provided. 

Since the other 2 papers cover and build upon everything in this paper, it is 

irrelevant to this project. 

3.1.2 Rendering 

Rendering of Complex Heterogenous Scenes using Progressive Blue 

Surfels (Brandt, et al., 2019) paper does mention progressive sampling, but only the 

significantly simplified version. It consists of a greedy permutation (maximization 

of the minimal closest distances between neighboring surfels) with a heuristic to 

make it faster while keeping the sampling quality reasonably good. 

The main focus of this paper is the actual rendering of surfels. This includes 

primarily calculation of array prefix length for desired surfel size. Subsequently, 

another formula shows how to calculate surfel size based on the rendering time of 

the last frame. An amount of rendered surfels (array prefix length) is expected to be 

updated as often as every single frame. 

The rest of the paper consists of performance benchmarks and a quality 

comparison of rendered surfels to baseline mesh rendering. 

3.1.3 Sampling 

The last paper, Visibility-Aware Progressive Farthest Point Sampling on 

the GPU (Brandt, et al., 2019), is the most important one since it describes an 

advanced sampling process with blue noise characteristics (more in the next 

chapter). 

Note that this sampling algorithm is different and especially significantly 

more advanced than the one briefly mentioned in the previously discussed paper. 

Besides the detailed description of the algorithm, this paper also contains a 

very deep analysis of results, including differential domain analysis, timings 

compared to reference algorithm, statistics, etc. There is also a comparison of various 

values for algorithm parameters. 

No rendering algorithms are discussed in this paper. There are only 

mentions of LoD as one of the applications for the sampling algorithm. 
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3.2 Sampling algorithm 

This whole project is based on the advanced sampling process described in 

the Visibility-Aware Progressive Farthest Point Sampling on the GPU (Brandt, et al., 

2019) paper. Therefore, this chapter is dedicated to description of this algorithm as 

presented in the paper. 

The overall goal of this sampling algorithm is to sample the visible surface of 

the 3D model so that the resulting samples have blue noise characteristics for every 

prefix of the output sequence of samples. 

“Blue noise” in this context means that samples are distributed uniformly (in 

spatial dimension) with low regularity (no visible patterns). In computer graphics, 

blue noise is also frequently used for applications such as dithering, as can be seen in 

(Ulichney, 1988). 

All this is done with a focus on utilizing the highly parallel architecture of 

modern GPUs, gaining a huge performance advantage compared to CPU-only 

algorithms. 

Note that this algorithm, as presented in the paper, is not one-to-one 

compared to the algorithm actually implemented in this project. Also, parts of the 

algorithm in the following subchapters are mentioned in a relatively high-level 

approach since low-level workings are explained in detail in the rest of this thesis. 

Similarly, implementation-specific details are excluded from this chapter. 

The following flow-diagram in Figure 12 shows overview of individual 

stages of algorithm and main loop. It also illustrates how compute and rasterization 

pipelines are utilized in a “zig-zag” manner. 
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Figure 12 A flow-diagram representing individual stages of the whole algorithm. Orange 

stages use compute shaders and green ones run on rasterization pipeline (vertex, geometry, and 

fragment shaders). 

3.2.1 Rasterization 

The algorithm starts with an input model being rasterized from various 

directions/views – originally, pre-generated positions of cameras on the sphere 

around the input model are used. 

This resembles deferred rendering since the result of rasterization is a set of 

G-buffers. Specifically, 3 buffers containing position, normal, and color for each 

pixel. This can be seen in Figure 13. G-buffers are stored as layered textures, where 

each layer corresponds to 1 camera. 
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No representation of the original input model is used in the algorithm from 

this point onward. 

 

Figure 13 Rasterization of the object from several directions (left) and storage of results into 

various G-buffers (right). Source: (Brandt, et al., 2019) 

3.2.2 Initial sample selection 

After rasterization, 1 random sample is selected from G-buffers. Sample, in 

this case, means a reference to a valid (= non-background) pixel of G-buffer texture. 

This is not a reference to a particular pixel but rather a position of pixel applicable to 

all G-buffers since each G-buffer represents different parameters of the same 

rasterized object. 

This sample is stored in a sequence of samples S. 

3.2.3 Sample format 

Each sample is represented as a single 64-bit float. The sample radius is 

stored in the 32 most significant bits, while the rest is used for texture coordinates. 

These coordinates are stored in the format of 12:12:5:3 bits as follows: 

• 2 x 12 bits for UV coordinates, 

• 5 bits for the texture layer, 

• and the last 3 bits for the MIP level. 

Having the 32 most significant bits represent a sample radius (while the 

whole sample is a single 64-bit float) has one significant advantage – easy sorting. 

The progressive nature of output is achieved by sorting of the samples by the 

decreasing sample radius. Therefore, this format allows a simple comparison of just 

these 32 bits of each sample to get correctly sorted output. Radix sort is ideal for 
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cases like this. Furthermore, the whole 64-bit number is directly comparable using a 

single compare operation. 

Invalid samples are stored as a 64-bit representation of the number 0. This is 

also a default value for the whole sequence S. 

3.2.4 Main loop 

After the initial sample is selected, the algorithm's main loop starts. It loops 

until no more samples can be extracted or the desired number of samples is 

generated (one of the input parameters). 

 

Figure 14 Simplified visualization of a single main loop iteration: from drawing of Voronoi 

diagram, extraction of the farthest samples, and elimination using Poisson disks. The right-most 

picture represents an updated Voronoi diagram used for the next loop iteration. Source: (Brandt, et al., 

2019) 

Voronoi diagram 

For each camera view, a discrete 3D Voronoi diagram is calculated. 

The idea is that each sample in sequence S acts as a Voronoi site (a generator 

for Voronoi cell). A disk is rasterized (directly on layers of G-buffers; for details, 

see Chapter 3.2.5) for each sample. The distance to the Voronoi site is subsequently 

written into the depth buffer. This utilizes a highly optimized depth buffer to assign 

a given pixel to the closest sample, creating a Voronoi diagram. This algorithm is 

based on (Ip, et al., 2013). 
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Figure 15 G-buffers for Voronoi diagram algorithm stage. Each shade of red in the left 

picture represents a single Voronoi cell. The right picture then depicts the distance of each pixel from 

its Voronoi site on a scale of black (nearest) to red (farthest). The centers of the black blobs are the 

Voronoi sites. Used model: Stanford Bunny8 

The output of this stage consists of 2 G-buffers. One stores the ID of the 

Voronoi cell for each pixel (left picture in Figure 15). This ID corresponds to the 

sample’s index in sequence S, which the Voronoi cell was created from. The second 

G-buffer stores the distance to the closest Voronoi site (right picture in Figure 15). 

The left-most part of Figure 14 shows Voronoi cells created from samples, 

while the right-most picture shows a Voronoi diagram with an additional cell 

created. The diagram with the added cell is used in the next loop iteration. 

Farthest sample extraction 

When the Voronoi diagram is created, it is time to find each cell's locally 

farthest discrete point (pixel of G-buffer). This can be seen in the second picture in 

Figure 14. This farthest point becomes a sample. And since each initial sample from 

the sequence S creates exactly 1 new sample, the total number of samples is 

doubled. 

This also means that the corresponding new sample for each site is at a 

strictly defined index in sequence S. For the initial sample with index i, the new 

sample’s index would be (m + i), where m is the current number of samples in S. 

                                                 

8 https://graphics.stanford.edu/data/3Dscanrep/ 

https://graphics.stanford.edu/data/3Dscanrep/
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The farthest point is extracted in a single pass of a compute shader. G-buffers 

(containing Voronoi cell ID and distance to site) from the previous algorithm part are 

used. An atomic max operation is performed to select a sample with the largest 

distance to its Voronoi site. This sample is then written into sequence S at index (m 

+ i), as mentioned above. 

Conflict removal 

Not all new samples extracted from Voronoi cells are usable. For example, if 

multiple new samples are too close to each other – this can be seen in the second 

and third picture of Figure 14. Of 3 new samples (turquoise circles), 2 are rejected as 

being too close to the remaining one. 

 This “conflict removal” is done by rasterizing Poisson disks (similarly to 

disks used to create the Voronoi diagram) for each new sample. The disk’s radius is 

equal to the distance from the new sample to the Voronoi site it from created from. 

When overlapping disks appear, the one with the largest radius wins. This 

is illustrated in the third picture of Figure 14. The selection of the disk with the 

largest radius is done using a depth buffer – the same way as with the distance to the 

Voronoi site in the “Voronoi diagram” part of this algorithm, just with different clear 

value and comparison function for the depth test. 

Once indices of Poisson disks are written into the G-buffer, a compute shader 

is used to go through new samples in sequence S and mark them invalid if the 

neighbor’s Poisson disk overlaps them. 

Compact and sort 

The previous part of the algorithm causes gaps of invalid samples in 

sequence S. Furthermore, new valid samples are not sorted. To achieve progressive 

sampling, sorting by decreasing the sample radius is required. A “compact and sort” 

algorithm is performed to fix these issues. 

Thanks to the format of samples (both valid and invalid; see Chapter 3.2.3), 

compacting (removal of gaps) and sorting can be done effectively on GPU using 

parallel radix sort. The inner working of this sorting algorithm is directly based on 

(Satish, et al., 2009). 

After sequence S is compacted and sorted, a count of valid samples is 

updated. This number is needed to decide whether to quit or continue the main 

algorithm loop. 
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3.2.5 Rasterizing disks 

 

Figure 16 Process of rasterization of disks for purposes of Voronoi diagram. Vertex shader 

creates a point for each sample (using G-buffers), geometry shader creates a triangle from each point, 

and fragment shader discards fragments, leaving only an inscribed circle behind. The right-most 

pictures show resulting G-buffers – they are analogous to Figure 15. Source: (Brandt, et al., 2019) 

Both Voronoi diagram creation as well as conflict removal using Poisson 

disks require the rasterization of disks. This is done using the standard rasterization 

pipeline of modern GPUs. The process can be seen in Figure 16, while a more 

detailed description is available in the rest of this chapter. 

Vertex shader 

The sequence of samples S is used as a vertex buffer. Vertex shader takes 

each sample, and based on texture coordinates stored in it, position and normal 

vector are read from G-buffers. These parameters are passed to the next stage. 

Geometry shader 

Geometry shader takes each sample as a point and creates an equilateral 

triangle, whose inscribed circle: 

• has center at the sample’s position, 

• rotation perpendicular to the sample’s normal vector, 

• and radius identical to the sample’s radius. 

Fragment shader 

Lastly, the fragment shader discards all fragments that are further away from 

the inscribed circle center than the circle radius, leaving only fragments 

representing the circle. A similar process is also visualized in Figure 17. 
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3.2.6 Output 

The very important notable thing about this algorithm is the form of its 

output. It consists of a single 1D array of samples. These samples are arranged in a 

way that any prefix of this array creates a progressive sampling of the input model. 

For an illustration of this, see Figure 8. As a result of that, the rendering itself can be 

done in a single draw call – just with a variable prefix length. 

The number of rendered samples (prefix length) depends on general 

parameters for selecting the LoD level – for more details, see Chapter 2.1.1. It is 

important to note that the output of this algorithm is usable as continuous LoD with 

extreme granularity. Prefix length can be increased/decreased by as little as a single 

sample in each frame without processing overhead. Only the surfel size has to be 

updated. Fortunately, this value is the same for all the surfels at a single draw call, 

and its calculation is computationally trivial. 

Samples can be easily converted to surfels as part of preprocessing or 

rendered directly. Direct real-time rendering of samples is less convenient since it 

requires having all relevant G-buffers bound, and reading from them will result in 

unnecessary performance hit. 

3.3 Existing implementation 

PADrend7F

9 (Platform for Algorithm Development and Rendering) is a 

software system for virtual walkthroughs in 3D scenes developed at Heinz Nixdorf 

Institute, University of Paderborn, Germany. Authors of Blue Surfels papers 

implemented surfel generator and renderer as a plugin into this system. 

The whole implementation is written in a combination of EScript and C++. 

EScript (different from eScript, a scripting version of Erlang) is a scripting language 

for controlling C++ applications explicitly developed for PADrend. The use of this 

language and the fact that implementation is very tightly integrated into PADrend 

were good reasons to completely rewrite the implementation rather than use the 

existing one and try to adjust it. 

PADrend’s implementation of Blue Surfels also uses OpenGL as a graphics 

API. This API is rather old, lacks options for deep optimization, and its support 

                                                 

9 https://www.padrend.de/ 

https://www.padrend.de/
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will only worsen in the upcoming years. It is understandable to use OpenGL in an 

academic environment since it is easy to learn, use by students, and prototype ideas 

quickly. But there are better alternatives for professional applications nowadays. 

The lack of comments and documentation also did not favor using the 

existing implementation. 

Therefore, a decision to completely rewrite this program was made. Papers 

describing Blue Surfels were good enough to write a new implementation from 

scratch. The existing implementation code was still used in a few places as a 

reference, especially the shaders. The architecture of CPU code was created 

completely from scratch without any influence from the existing implementation. 
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4 Implementation process 

The implementation process, from the selection of software, testing 

hardware, and integration into FataMorgana, as well as a discussion of technical 

difficulties, are all presented in this chapter. 

4.1 Selected technologies 

This subchapter discusses the reasons for this project's technologies - IDE, 

programming language, APIs, libraries, etc. For a quick summarization of the 

following subchapters, skip to Chapter 4.1.8. 

4.1.1 Programming language 

No critical computationally intensive part of this project is performed on the 

CPU. Therefore, the selection of CPU programming language was not crucial and 

came down to support for the binding library for selected graphics API (more in 

Chapter 4.1.5), ease of use, and compatibility with the rest of the FataMorgana 

system. 

C/C++ is the best for working with all relevant graphics APIs without the 

need for any binding library. 

C# was chosen mainly due to its simplicity (both in writing code and setting 

up a project with multiple files) but most importantly due to the ease of integration 

into FataMorgana. The core of this system is written in C#, and therefore, any 

interoperability is as easy as possible. 

The version of .NET in the FataMorgana system is frequently updated to the 

most modern and stable version available. It also has minimal impact on 

interoperability between projects. Due to all these reasons and the fact that newer 

versions of .NET frequently bring a lot of useful and relevant improvements (for 

example, into C# language), it was decided that this project will be written using 

.NET 6 - the latest stable version at the time of the beginning of this project. Once 

.NET 7 was released in a stable version, the project was upgraded to it. 
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4.1.2 Development environment 

Visual Studio comes up naturally as the #1 IDE for working with any C# 

project, especially larger ones (which might require profiling and other features 

unavailable in Visual Studio Code and similar IDEs). Therefore, the selection of IDE 

was easy. 

4.1.3 Source control 

Git was selected as source control software simply because the FataMorgana 

project is already hosted in a Git repo. 

To make work on this project possible, even after I left Pocket Virtuality, the 

project was moved from the company’s Git repo to a private one. A simple remote or 

clone change was impossible since the company’s repo contained all FataMorgana 

projects. Project files had to be copied manually. This led to the loss of Git history, 

but it did not cause any issues. 

4.1.4 Graphics API 

The selection of graphics API in an application like this is crucial since most 

of the computation is performed on GPU, and the differences between available 

APIs are enormous. If single-purpose and non-Windows graphics APIs are excluded 

(such as Metal for Apple products and PSGL for Sony PlayStation), there are only so 

many options. 

OpenGL 

OpenGL10 is multiplatform, easy to use (at least as far as graphics APIs 

go), but rather old. The Khronos Group (the group behind OpenGL) is increasingly 

shifting focus to their newer API called Vulkan. Therefore, support for it is lacking 

behind and is not expected to improve. Besides that, OpenGL does not support low-

level optimizations and techniques that modern APIs offer. 

Vulkan 

Vulkan11 is modern and multiplatform graphics API. Its advantage is the 

ability to optimize code on a very low level by providing graphics driver (precisely, 

                                                 

10 https://www.opengl.org/ 

11 https://www.vulkan.org/ 

https://www.opengl.org/
https://www.vulkan.org/
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Vulkan runtime in this case) as much information about provided data structures and 

operations as possible. Vulkan also allows programmers to utilize the multithreaded 

nature of modern computers fully. Its main disadvantages are a steep learning 

curve, lack of proper tutorials/troubleshooting guides, and hard-to-read official 

documentation. 

DirectX 

DirectX12 is a graphics API with almost 30 years of history. It is developed 

by Microsoft and works only on Microsoft products, such as Xbox gaming consoles 

and Windows OS. The most commonly used major version nowadays are 11 and 12. 

In the case of DirectX, versioning is very misleading – while differences between 

DirectX 9, 10, and 11 are substantial, the core concept is still the same, and 

programmers can quickly adapt to newer versions. The difference between versions 

11 and 12 is almost the same as the difference between OpenGL and Vulkan. 

DirectX 12 works on entirely different core principles and exposes many low-level 

features, similarly to Vulkan. 

Translation layers/emulators 

Translation layers and emulators, which allow users to play games written in 

graphics API not supported on their system, are improving. A massive boom in 

this field was recently caused by the popular Steam Deck gaming console, which 

runs on a Linux-based operation system called Steam OS. This naturally required a 

good emulator since most games are written in DirectX. However, these emulators 

are still far away from being perfect. 

Decision process 

Initially, DirectX 11 seemed like the best candidate for graphics API for this 

project because it is already extensively used in the FataMorgana system, so various 

libraries could be reused in other projects. Besides that, DirectX 11 is relatively 

widespread, with many tutorials for it. 

Unfortunately, in the middle of development, DirectX 11 proved unusable 

because it does not support one critically required instruction in compute shader 

– atomic max on 64-bit floating-point numbers. Workarounds, such as locks and 

                                                 

12 https://learn.microsoft.com/en-us/windows/win32/directx 

https://learn.microsoft.com/en-us/windows/win32/directx
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memory barriers, were considered and tested, but the performance hit was too big (by 

several orders of magnitude) – see Chapter 6.14. 

The usage of CUDA or other similar GPU-driven libraries for high-

performance computing was also considered. Still, interoperability between these 

libraries and graphics API causes performance bottlenecks and general problems 

with development and troubleshooting. 

Graphics APIs that support this critical atomic operation are OpenGL, Vulkan 

(through extension), and DirectX 12. The use of OpenGL was quickly dismissed due 

to a lack of low-level optimization and a gradual loss of support. Choosing either 

Vulkan or DirectX 12 meant completely rewriting existing code and no benefit of 

sharing libraries with existing projects from the FataMorgana system. Also, both 

APIs are more or less equally difficult to learn, and none of them were used by any 

employees of Pocket Virtuality before. One significant decision parameter was 

multiplatform support. Vulkan is the winner in this aspect as well whole decision 

process for graphics API. 

Windows 10 does support DirectX 12; however, it is not the version that 

supports atomic max on 64-bit floats. To get this functionality, it is required to use 

DirectX 12 with Feature Level 12.2 and Shader Model 6.6. This requires WDDM 

2.9, which is technically possible to use in Windows 10 but only in builds available 

through Dev Channel. Builds in Beta and Release Preview Channels were not usable. 

A few development builds of Windows 10 with support for WDDM 2.9 were tested, 

but they were all very unstable and generally unusable for everyday work. Moreover, 

selecting Dev or Beta Channel as Windows Insider in Windows 10 nowadays forces 

installation of Windows 11. Getting Windows 10 with all the required features 

through normal means is impossible. This would further limit usable platforms in 

case DirectX 12 was chosen. 

The new dedicated Intel Arc GPUs are also worth considering in the 

equation. These GPUs are based on entirely new architecture, and the focus was 

obviously on new graphic APIs such as DirectX 12 and Vulkan. There are known 

issues with support and performance in games running older versions of DirectX and 

OpenGL as they are internally translated/emulated. 
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4.1.5 Graphics API binding library 

Vulkan’s API is written natively in C language. This means that a binding 

library for C# was required. Binding libraries are low-level enough (at least between 

C# and C/C++) not to cause significant performance bottlenecks. And since all of the 

performance-critical work is computed in shaders on GPU, usage of binding library 

compared to native calls to C API does not hurt the final performance of this 

application in any noticeable way. 

There are 2 major C# binding libraries for Vulkan. Vortice and Silk.NET. 

Other libraries, such as vk and VulkanCore, have not been in active development 

for several years and, therefore, were ignored. 

Vortice is developed primarily by a single person with few contributors. 

Silk.NET, on the other hand, is officially developed under the umbrella of the .NET 

Foundation. This means significantly more contributors, more end users, and more 

frequent releases. Both libraries' quality and ease of use seemed to be more or less 

the same, and both are open-source projects with the same licenses (MIT). Due to 

these advantages of Silk.NET over Vortice, the final decision was made to use 

Silk.NET as a binding library. 

While the project was still developed in DirectX 11 (which also offers only 

native C-based API), SharpDX was used as a binding library from C#. This choice 

was made purely from the standpoint of SharpDX being already used in 

FataMorgana. Otherwise, using this binding library is not recommended, as it was 

abandoned in 2019. Silk.NET would probably be a good alternative as it offers all 

the above advantages and provides DirectX bindings. However, no further research 

was done in this field as it was irrelevant. 

4.1.6 Shader language 

There are 2 major shading languages: GLSL, used in OpenGL, and HLSL, 

used in DirectX. Vulkan, however, relies only on low-level shader code 

representation called SPIR-V. There are compilers for both GLSL and HLSL into 

SPIR-V. The decision between GLSL and HLSL unlimitedly boils down to personal 

preference since the vast majority of extensions are supported. That is, unless the 

shader code is supposed to be shared with OpenGL or DirectX, which was not the 

case. 
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GLSL was chosen primarily for personal preference and partially due to the 

availability of a better GLSL to SPIR-V compiler plugin for Visual Studio. 

4.1.7 Graphics debugger 

The selection of a graphics debugger was not straightforward and required a 

bit of trial and error. This was mostly due to high demands for support of advanced 

features and extensions. 

Visual Studio Graphics Debugger is great for quickly inspecting the 

rendering process and results but lacks advanced tools. But most importantly, it 

does not support Vulkan. However, it was used when the project was written in 

DirectX 11. 

Regarding actual graphics debuggers (not just profilers) that support Vulkan, 

there are only 2 options: RenderDoc and Nvidia Nsight Graphics. Both are 

advanced, and both were used to some extent. However, RenderDoc appeared to be 

more suitable for debugging most of the cases in this project. Some advanced tools 

needed for this project's development include a step-by-step shader debugger and the 

ability to work with layered textures. RenderDoc fully supports both. Besides that, it 

is also open-source, with great support from the community and the creator. 

RenderDoc API 

Graphics debuggers usually expect the standard structure of the rendered 

frame – 1 or more Draw/Compute commands with Present command denoting the 

end of frame (tells GPU that the current frame can be presented to the screen). 

However, this project uses a rasterization pipeline in a very unusual way – it works 

iteratively and completely off-screen with no Present command involved. 

To properly debug situations like this, RenderDoc provides API that (besides 

other features) allows apps to mark the start and end of rendered frames. In this 

project, a single iteration of the algorithm acts more or less as a single frame and was 

set this way. 

4.1.8 Recapitulation 

To summarize previous subchapters, selected technologies are as follows: 

• Development environment: Visual Studio (standard solution with 

projects) and Git 
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• Languages: C# for CPU side and GLSL for shaders 

• Graphics API: started in DirectX 11 but later changed to Vulkan 

through the Silk.NET binding library 

• Graphics debugger: primarily RenderDoc, a bit of Nvidia Nsight 

Graphics 

4.2 Dependencies 

Using this project as part of a commercial product leads to limitations in 

selecting dependencies. More specifically, licensing, probability for long-term 

support, and development stability (how probable are large breaking changes to 

API) had to be considered. 

4.2.1 FataMorgana 

Plans to use DirectX 11 to get the option to share some of the libraries with 

the FataMorgana system could not be fulfilled. Also, there was no code using Vulkan 

in this ecosystem. Due to these reasons, there are absolutely no dependencies on the 

FataMorgana system, and this project can currently be used as a standalone. 

4.2.2 Libraries 

All external dependencies are managed through NuGet packages since it is 

the easiest and most straightforward way to add 3rd party libraries to C# projects. 

These packages include: 

• CjClutter.ObjLoader – loader library for .obj files (containing 3D 

mesh data), 

• CommandLineParser – simple utility library to help with parsing 

command line arguments, 

• Evergine.Bindings.RenderDoc – C# binding for RenderDoc API, 

• Silk.NET – various packages related to C# binding to Vulkan API or 

working with graphics APIs in general, more specifically: 

o Maths – math library used for standard graphics APIs 

operations such as vectors, matrices, etc., 
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o Vulkan, Vulkan.Extensions.EXT, Vulkan.Extensions.KHR 

– Vulkan binding itself and bindings to 1st party KHR 

(Khronos) and 3rd party EXT extensions, 

o Windowing, Windowing.Common, Windowing.Glfw, 

Windowing.Sdl – packages related to the windowing system 

used by Silk.NET, 

• SpirVTasks – a small utility tool that adds tasks into Visual Studio 

for automatic compilation of GLSL shaders into SPIR-V. 

Vulkan frameworks 

There are several libraries and frameworks specifically made for Vulkan. 

However, this project does not use any of them. The decision to write everything 

from scratch and use pure Vulkan was made to have complete and low-level access 

to everything needed. 

Also, most of these frameworks are designed for standard rendering. This 

project uses Vulkan in a highly non-standard approach; therefore, finding a 

framework that would provide everything needed for this project was deemed 

problematic, especially since it would have to be comfortably usable from C#. 

Licensing 

All aforementioned 3rd party packages are distributed under the MIT License. 

This license permits both private and commercial use, modifications, as well as 

distribution of code using these libraries. Therefore, there is no issue with using these 

packages in commercial systems such as the FataMorgana. 

4.3 Integration into FataMorgana 

As mentioned in Chapter 4.2.1, this project has no dependencies on any 

existing part of the FataMorgana system. It can work entirely independently. 

Integration of this project into FataMorgana (or any other similar system) still 

requires much work. This consists mainly of the workflow to select a model, split it 

(if necessary), convert it, call this project to generate surfels, and save surfels. 

Neither the rendering of surfels (see 6.8) nor the selection of the correct number of 

surfels to render (or the original mesh) are complex. 

The only parts of this project that need to be adjusted based on the system 

around it, are input and output formats. 
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4.3.1 Input 

Not only can mesh input be in many different formats, but the input does not 

have to be a mesh at all. Output from a 3D scanner or similar device can be used as 

input to this project. This is further discussed in Chapter 6.6. Transfer of input can be 

done in various ways as well – as a file on disk/database, a pointer (/handle) to 

memory on CPU or GPU, etc. 

4.3.2 Output 

The same applies to an output. It can be saved to a file or transferred to GPU 

memory for maximum performance advantage. Vulkan offers interop functionality 

for the vast majority of graphics APIs, which could save unnecessary copying. But 

again – it is highly dependent on an external system using this project. 

Creating a universal system for handling input and output in as many ways 

as possible is a long-term commitment whose usefulness heavily depends on the 

number of external systems using this project. This algorithm was created primarily 

with just a single external system in mind. 

4.3.3 Conclusion 

The actual integration into the FataMorgana system is outside this project's 

scope. It was planned to be done shortly after this project was finished. However, 

these plans have now changed since I no longer work for Pocket Virtuality at the 

time of writing. Therefore, integration into FataMorgana and other works related to it 

will have to be done by another company employee.  

4.4 Testing hardware 

All development and testing were done primarily on desktop PC running 

Windows 11 and the following configuration: 

• AMD Ryzen 9 3900X, 

• 32 GB RAM (3600 MHz), 

• Nvidia GeForce RTX 3070 Ti (8 GB of dedicated GPU memory). 

All relevant software, such as OS, Vulkan SDK, and GPU drivers, were kept 

reasonably up-to-date during development. 
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4.4.1 AMD and Nvidia 

Besides the aforementioned main testing Nvidia GPU, this project was also 

tested on a dedicated AMD graphics card. More specifically, AMD Radeon RX 

6600. This testing was brief and done only to check changes in the behavior of 

Vulkan drivers from different GPU vendors. 

As for the result, no differences between AMD and Nvidia graphics cards 

were encountered in program output. There was also no difference in 

errors/warnings/debug messages produced by AMD and Nvidia drivers. 

4.4.2 Limitations of AMD cards 

The AMD card used for testing is modern but very low-end (the cheapest 

previous generation AMD card available in shops at the time). This caused 3 

problems. 

Firstly, this application requires 1 queue (capable of graphics, compute, and 

transfer operations) for generating surfels and another one (with graphics, transfer, 

and presentation capabilities) for debug renderer. 

AMD Radeon RX 6600 supports a single queue capable of graphics 

workload (“GRAPHICS_BIT”). Therefore, using a debug renderer on this AMD 

card was impossible. For comparison, the Nvidia RTX 3070 Ti supports 5 different 

queue families of various capabilities, each containing up to 16 queues (28 queues in 

total across all families). Surprisingly, AMD card does not support more than a 

single queue. 

The second issue was the maximum number of views for multiview 

rendering (a property called “maxMultiviewViewCount” in Vulkan Hardware 

Capability Viewer). While the tested Nvidia card supports up to 32 views (plenty for 

sampling cameras), the AMD card supports a mere 6 views. 

Lastly, this AMD card does not support 64-bit unsigned integers 

(VK_FORMAT_R64_UINT) in any buffers, therefore not even in the vertex buffer, 

which is required by the application. However, even though standard Vulkan 

validation layers threw an error regarding the lack of support for this format, 

everything worked fine. One can only assume that the GPU driver must have used a 

fallback behavior for this case. Still, this should be avoided in general. Not only can 

it cause undefined behavior or crashes, but a fallback strategy will most likely cause 
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reduced performance. If needed, this issue could be solved using other 64-bit 

format and casting. Radeon RX 6600 does support 64-bit signed floating-point 

numbers (R64_SFLOAT) for vertex buffers. 

After more research, these limitations showed up to be more of an issue of 

AMD rather than low-end vs high-end cards. For example, the exactly same issues 

occur between competing cards of comparable price, Nvidia RTX 3050 and AMD 

RX 7600. While Nvidia offers 32 multiview views and plenty of fully-equipped 

queues, AMD offers only a fraction of that. 

Strangely, the same limitations occur in the best consumer-grade AMD cards 

of the current generation, such as RX 7900 XTX. Its maxMultiviewViewCount is 

only 6, and while it offers 9 queues in total, there is still only a single fully equipped 

queue available. It is also the only queue with essential graphics capabilities. 

4.5 Encountered technical issues 

Vulkan has a handy feature called API layers. These small programs 

intercept calls to Vulkan functions before they reach the GPU driver. Layers can be 

used for profiling, validation, and similar things. Vulkan SDK contains the Vulkan 

Configurator app, which provides many different layers – everything from 

validation of synchronization, thread safety, and object lifetime to hardware-specific 

performance suggestions. 

Standard validation layers were turned on throughout the development to 

catch issues immediately. Unfortunately, some edge cases are undetected even with 

all available 1st party validation layers turned on. And with GPU programming being 

notorious for complex troubleshooting, resolving some issues took considerable time. 

4.5.1 Device Lost error 

One such issue was the hard crash of an application with nothing but a 

“Device Lost” error provided by Vulkan. This issue is extremely difficult to debug 

since it gives no additional information. 

Khronos acknowledges this and recently added a way for GPU driver 

manufacturers to specify what caused the Device Lost error. This can be done 

through extensions VK_EXT_device_address_binding_report and 
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VK_EXT_device_fault. These extensions were not available before the problem 

was resolved. 

Nvidia provides an SDK for collecting GPU crash dumps. Unfortunately, it 

is available only for C/C++. Therefore, other methods were tested before trying to 

call this SDK from C# code (which might be very difficult or even impossible due to 

the nature of this low-level SDK). 

After some trial and error, it was discovered that this problem was most 

probably caused by the Nvidia driver (specifically, version 512.15). It also 

happened only on testing laptop but not desktop PC. Since newer drivers seemed to 

fix this issue, it was not investigated further. 

4.5.2 Attempted to read or write protected memory error 

Another issue, most probably caused by the faulty driver, resulted in throwing 

an “Attempted to read or write protected memory” error when trying to create a 

pipeline using the vkCreateGraphicsPipelines command. Validation layers 

reported no other errors, nor was there a more detailed description of why this error 

was thrown. 

This issue was even more baffling since the call to this command was at the 

beginning of the whole program run - in a phase of setting up devices, pipelines, 

command buffers, etc. No actual work was being done on GPU yet. This error also 

seemed to depend on the number of views for multi-view rendering (internally 

ImageArrayLayersCount variable). 

Fortunately, this issue occurred only in drivers 522.25 and 526.47. No other 

drivers produced this error message. 

4.5.3 Gaps in results 

The more serious issue, however, was causing gaps in the resulting array of 

surfels. Meaning that there were surfels with all parameters set to 0 (default value) 

in the middle of the resulting array. This started to happen after several iterations of 

the algorithm (at least the first few thousand surfels in the output array were correct). 

The algorithm was internally designed the way this should not happen and was 

therefore considered a faulty output. 
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Investigation of this issue involved Nvidia drivers released in the last several 

months from when this issue was detected. Both Game Ready and Studio drivers and 

Beta versions of drivers were tested. 

A weird behavior was detected - drivers from 512.15 up to 516.40 expressed 

the same problem with gaps in output, but driver version 516.59 caused differences 

in reading the same buffer from RenderDoc and directly from code (by copying this 

buffer to CPU memory where it could be read the standard way). Later driver 

versions did not have this issue but still produced incorrect output. All available 

drivers up to 516.94 were tested. 

This all seems like undefined behavior, so the investigation was re-focused on 

a different approach. In the end, problems with incorrect output were caused by an 

incorrectly set memory barrier – something that is usually detected by validation 

layers, but this time, it was not. 
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5 Architecture 

This chapter explains the architecture of the whole app. That includes: 

• organization of the source code, 

• class hierarchy (inheritance, base classes, interfaces, …), 

• functionality and usage of most classes/structs and their 

properties/methods, 

• and rationale behind implementation decisions.  

5.1 Organization of solution, projects, and folders 

The root folder of this project contains: 

• FMsurfelsDebugTools folder 

o everything related debug tools project 

o for more info, see Chapter 6.9 

• FMsurfelsDirectX folder 

o abandoned DirectX version of the main project and everything 

related 

▪ this project is not part of any solution anymore 

• FMsurfelsVulkan folder 

o Vulkan version of the main project and everything related 

• Master Thesis folder 

o this Master Thesis document and its assets 

• FMsurfels.sln file 

o solution which contains projects FMsurfelsVulkan and 

FMsurfelsDebugTools projects 

o does not contain the FMsurfelsDirectX project anymore 

• <miscellaneous files such as gitignore and Directory.Build.props> 

All C# project files are in the roots of their respective folder trees. They are 

all self-contained – without cross references or dependencies. 

FMsurfelsVulkan folder further contains Program.cs with an entry point 

(method Main), class diagrams (generated in Visual Studio; mainly to provide 

pictures for this document), and a hierarchy of folders containing the rest of the 
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source code. With few exceptions, each class/struct has its own .cs file named after 

it. 

The majority of folders are named after the classes/interfaces they contain. 

For example, the Buffer folder contains BufferBase.cs file (+ files with specific 

classes inheriting directly from it), Staged Storage Buffers subfolder (with 

StagedStorageBufferBase.cs inheriting from BufferBase class; + more 

classes inheriting now from StagedStorageBufferBase), and so on. 

Most of this chapter is organized similarly, with subchapters and subtitles as 

the aforementioned folder hierarchy. 

5.2 Main method 

The entry point for the whole program is the Main method in the 

Program.cs file. 

5.2.1 Options 

The first thing the Main method does is the parsing of command line 

arguments from string[] args parameters. 

Options class represents a collection of program parameters used for that. It 

uses the Command Line Parser Library for CLR and NetStandard installed from 

the NuGet package. This library provides an easy way to specify options, their 

default values, whether they are required, and other useful features using 

straightforward attributes. It then takes care of actual parsing in the Main method. 

These options are used to specify: 

• input OBJ file, 

o path to a file used as an input, 

• dimensions of sampling viewports, 

o size of sampling camera viewport in pixels 

o in general, values between 512x512 and 2048x2048 seems to 

have an ideal quality to performance ratio with 1024x1024 

being a default value 

• maximum number of surfels, 

o upper limit of surfels to be generated 
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o there is no guarantee that this many surfels will be generated 

since the algorithm will finish also when no more surfels can 

be extracted from the model 

o depends extremely on the model itself and the requirements 

of the external system using this algorithm 

o expected to be in orders of thousands up to hundreds of 

thousands for big models 

o a default value of 10 000 seems like a golden mean for debug 

purposes 

• number of views, 

o number of cameras to use for the Sampling stage 

o limited by the value of maxMultiviewViewCount from 

VkPhysicalDeviceMultiviewProperties and 

VkPhysicalDeviceLimits.MaxImageArrayLayers 

o a default value is 16, while the minimum should not be lower 

than 6 (to keep decent quality), and most GPUs nowadays are 

limited by maxMultiviewViewCount being 32 (see 

Chapter 4.4.2 for more details) 

• and debug options 

o whether to use surfel renderer 

o file path for output PLY file with surfels 

o options related to RenderDoc API, such as file path for 

capture files. 

None of these options are mandatory to specify in the command line 

argument since they all have default values. 

5.2.2 Setup 

After parsing, the Main method sets up instances of 2 important classes: 

SurfelGenerator and VulkanAppBase. The second mentioned one is actually 

an abstract class. The concrete selected implementation is based on the value of 

Options.UseDebugRenderer. 

• If true, SurfelRenderer is used to show debug visualization of 

surfels. 
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• If not, BasicVulkanApp is created instead. 

In either case, SurfelGenerator uses this created VulkanAppBase to 

get everything needed from Vulkan – Instance, Device/PhysicalDevice, 

Queues, CommandPool, AllocationCallbacks, … 

Both SurfelGenerator and VulkanAppBase are initialized solely 

using options parsed from the command line (or their default value). 

5.2.3 Run 

The actual run of the algorithm from the perspective of the Main method is 

relatively simple. It calls Run methods on both SurfelGenerator and 

VulkanAppBase. These methods return Tasks, which are then waited for using 

Task.WaitAll method. 

5.2.4 End 

If Options.OutputPlyFileName property is specified, 

SurfelGenerator saves generated surfels into PLY file on disk. 

After that, the only remaining thing to do before the program exits is proper 

disposal of instances of both SurfelGenerator and VulkanApp. 

5.3 Vulkan Apps 

At the core of this application is a hierarchy of “Vulkan App” classes. These 

classes were developed with the intention of providing a flexible Vulkan backend 

for the majority of applications. The whole hierarchy might seem too generic and 

broad. The reason is that such a system of classes could be used in any other project 

requiring Vulkan in the company. 

Base class 

As with most complex classes in this project, there is an abstract base class at 

the bottom of this hierarchy - VulkanAppBase. It takes care of all core things 

Vulkan requires, such as initialization of Instance, choosing PhysicalDevice, 

creating (logical) Device, Queues, CommandPool, etc. It also checks and enables 

desired device and instance extensions as well as layers. And, of course, it ensures all 

of this is appropriately disposed of (using an IDisposable interface). It is 
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expected that many methods of VulkanAppBase will be overridden by classes that 

inherit from it; therefore, they are marked as virtual. 

There is no rendering done in this class. There are also no calls to any other 

Vulkan commands. This adds flexibility since it allows the creation of various apps 

on top of this class – be it standard rendering or non-standard ones like this 

project. 

This class also does not take care of creation or management of windows or 

even swapchain. No windows and swapchains mean no need for a present Queue. 

Therefore, this class can be used on platforms that do not support this type of 

Queue. 

5.3.1 Render-less Vulkan App 

The simplest implementation of the aforementioned base class is 

BasicVulkanApp. It provides a way to check for device features easily. This class 

is directly used by SurfelGenerator in case there is no need for a debug 

renderer. 

Same as VulkanAppBase, this class still does not do any work after 

initialization. It belongs to the render-less branch of Vulkan Apps. Its Run method 

returns Task.CompletedTask. BasicVulkanApp is just used to provide all 

core Vulkan objects ready and initialized for whatever system above it needs 

them. 

5.3.2 Renderers 

There are 3 renderer classes in total. 2 of which are abstract and 1 concrete. 

This might seem unnecessarily complex, but it creates a foundation for various 

renderers – both off-screen and on-screen/window renderers. 

RendererBase 

The branch of rendering Vulkan Apps starts with the RendererBase 

class. Like all Vulkan Apps, it too inherits from VulkanAppBase. On top of that, it 

takes care of initializing and providing renderer-related Vulkan objects such as 

Viewport, graphics Pipeline (with color blending, input assembly, rasterizer, 

…), RenderPass but also DepthBuffer, and DescriptorPool. 
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Unlike BasicVulkanApp, this class is actually expected to do something 

besides the initialization of Vulkan objects. Its Run method calls MainLoop, and it 

even provides the GetMainRenderCommands method, which calls Vulkan 

commands for binding of Pipeline, DescriptorSets, vertex/index buffers, 

and finally calls CmdDraw/CmdDrawIndexed. 

WindowedRendererBase 

WindowedRendererBase then extends RendererBase with properties 

and methods required for managing the window and its surface. Thanks to the 

Silk.NET.Windowing namespace, the managing of windows is platform-

independent. 

Besides inheriting from RendererBase, it also implements the 

IPresentQueueProvider interface (adds present Queue). This class does not 

take care of just surface-related Vulkan objects KhrSurface and SurfaceKHR, 

but also synchronization objects (Semaphores and Fences) used to signal which 

Framebuffer is being presented and which is being rendered to. This is needed 

since the WindowedRendererBase class supports advanced present modes 

(chosen by a class inheriting from this base class). In older graphics APIs, these 

present modes are referred to as double/triple buffering. Present modes in Vulkan 

are significantly more complicated – the important part is that they require multiple 

Framebuffers. 

Lastly, WindowedRendererBase handles all work related to 

Swapchain. This includes its creation, disposal, and, very importantly, a re-creation 

of the swapchain in case of an error. Such an error might be, for example, 

KhrSwapchain.AcquireNextImage method returning 

Result.ErrorOutOfDateKhr, which usually indicates that the window was 

resized. 

Note – Swapchain class mentioned in this part is not directly a Vulkan 

object but rather a custom class (for more details, see Chapter 5.3.3). 

SurfelRenderer 

SurfelRenderer class extends WindowedRendererBase with 

everything needed for debug rendering of surfels. This includes setting up correct 

shaders (Surfels.vert/.geom/.frag files), camera, WindowControl, and 
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various parameters for surfels such as their radius and length of prefix of surfels 

array to draw. 

These parameters for surfels and cameras must be transferred from CPU to 

GPU. Therefore, SurfelRenderer also sets up Uniform Buffers with descriptors 

for them (SurfelParametersUbo and SimpleMatricesUbo). 

The non-trivial part of SurfelRenderer is a calculation of the length of 

the surfel array (RenderableSurfelsBuffer) prefix to render. The calculation 

is done through the ChangeSurfelRadius method 

(ChangeSurfelRadiusCallback in case of a call from WindowControl). 

Calculations themselves are based on Chapter 4.1 from (Brandt, et al., 2019). 

SurfelGenerator itself has to call the 

SetExampleMedianMinimumDistance method to set the value of the 

exampleMedianMinimumDistance variable based on minimal distances 

between surfels. This is done only once at least <examplePrefixLength> 

surfels are inside of RenderableSurfelsBuffer. 

 

Figure 17 Rendering of surfel from surfel sample. A surfel sample (a single point) is passed 

from the vertex buffer to the vertex shader, the geometry shader creates an equilateral triangle out of 

it, and the fragment shader discards fragments outside of its inscribed circle (red fragments). Blue 

fragments represent the final surfel drawn as a circle. 

When these calculations are done, RenderableSurfelsBuffer is set as 

a vertex buffer, and the appropriate amount of surfels from it is rendered. Vertex 

shader does nothing but transfer color, normal, and world position (from 

RenderableSurfelsBuffer acting as a vertex buffer) to geometry shader. It 

then draws an equilateral triangle whose inscribed circle is a surfel - color, normal, 

and world position are taken from the vertex buffer, while the radius is taken from 

SurfelParametersUbo (it is a constant for all surfels in a single draw call). The 

fragment shader subsequently discards fragments of the triangle that are not part of 
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its inscribed circle and sets simple Lambertian shading for easier visual inspection of 

debug visualization. The whole process can be seen in Figure 17. 

A similar process is used for the rasterization of disks to create a Voronoi 

diagram and a Poisson disk conflict removal, as mentioned in Chapter 3.2.5. 

SurfelRenderer is used mainly as a debug renderer and is not expected 

to be used directly by an external program using this application. 

5.3.3 Vulkan Apps Miscellaneous 

This subchapter explains the purpose of some miscellaneous classes directly 

related to Vulkan Apps. 

Swapchain 

Even though it might sound like that, this is not directly a Vulkan object. 

Swapchain class does include instances of both Vulkan KhrSwapchain and 

SwapchainKHR but also everything else related to swapchain, such as Images 

themselves (with ImageViews, dimensions/Extent2D, and their Format) and 

also Framebuffers. 

This class creates all of these Vulkan objects and properly disposes them. It 

also provides a way to acquire the next image and queue it for presentation. All 

including error handling. 

The Swapchain class is directly used only by the 

WindowedRendererBase class. 

VulkanException 

This is a bare class inheriting from System.Exception. The vast majority 

of internal code throws this exception instead of System exceptions. It is helpful for 

future expansion, such as logging errors. Note – almost all error throws in this 

application are meant to be fatal for the application and should result in immediate 

program termination or hard reset at best. 

QueueFamilyIndices 

A struct called QueueFamilyIndices holds indices to the Queue family 

to use for all graphics, present, and compute Queues. This is directly used by 

mostly VulkanAppBase and Swapchain. Indices held by this struct correspond 
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to an array of QueueFamilyProperties returned from the 

GetPhysicalDeviceQueueFamilyProperties Vulkan method. 

Besides holding these indices, it also provides methods for checking whether 

all indices are set for a particular case: 

• Normal case when all 3 families are required, 

• or windowless case when the present Queue family is not needed. 

WindowControl 

The purpose of the WindowControl class is to handle callbacks from 

keyboard/mouse button presses and cursor movement to translate/zoom camera. 

This results in the possibility of moving in the debug window as in any 3D program. 

It also provides a way to adjust the size of displayed surfels. 

 

Figure 18 Key bindings for debug viewer. Source of vector art: Vecteezy8F

13 

Controls are currently hardcoded to the industry standard of WASD for 

forward/backward/sideways movement and Q and E for camera up/down movement. 

Additionally, the X and C keys are used to increase/decrease the surfel radius, and 

the reset of the camera to its default position is done using the R key. 

Shift key is then used to speed up all translations. Holding down the right 

mouse button and subsequent cursor movement rotates the camera around the pivot. 

The mouse scroll wheel's functionality is used to translate the camera alongside its 

forward vector (primitive “zoom”). 

The whole key binding scheme is illustrated in Figure 12. 

                                                 

13 https://www.vecteezy.com/vector-art/4931862-keyboards-computer-with-black-and-white-

style-vector-illustration and https://www.vecteezy.com/vector-art/9866961-mouse-icon-vector-mouse-

icon-vector-illustration 

https://www.vecteezy.com/vector-art/4931862-keyboards-computer-with-black-and-white-style-vector-illustration
https://www.vecteezy.com/vector-art/4931862-keyboards-computer-with-black-and-white-style-vector-illustration
https://www.vecteezy.com/vector-art/9866961-mouse-icon-vector-mouse-icon-vector-illustration
https://www.vecteezy.com/vector-art/9866961-mouse-icon-vector-mouse-icon-vector-illustration
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There are known issues with this system in extreme cases. However, it 

works well enough for its purpose – simple camera movement in the debug window. 

Therefore, there is little to no incentive to improve these window controls 

furthermore. This also applies to customizable bindings for keys/mouse actions, 

movement speeds, etc. 

All callbacks are currently handled through the GlfwWindowing class 

from Silk.NET. This is a windowing system selected for modern Windows OS. 

Unfortunately, Silk.NET does not provide a platform-independent way to handle 

these callbacks. And since all development is done on Windows 10/11, this one is 

used and hardcoded in the WindowControl class. In case it is required, it will not 

be too difficult to add support for the SdlWindowing system as well. 

This class is directly used only by the SurfelRenderer class. 

5.4 Stages 

Stages are the most essential part of the CPU code of this project. They take 

care of creating and managing Framebuffer, RenderPasses, 

FramebufferAttachment, Pipeline, CommandBuffer, and synchronization 

objects for one part of the algorithm. The main program loop is directly calling 

Draw/Dispatch methods on stages to submit their CommandBuffers into the 

Queue – this is the end of all work in CPU code prior to work in shaders on GPU. 

The base class for all stages, StageBase, is used mainly to create the 

skeleton for its implementations and a few standard methods, such as calls to dispose 

of Vulkan objects. 

There are 2 very distinct types of stages: 

• compute stages, calling compute shaders, 

• and G-buffer stages, used for rendering into G-buffers (off-screen 

render targets). 

5.4.1 Compute stages 

Base class 

ComputeStageBase is an abstract class for all stages used to call compute 

shaders. That is why it contains compute-shader-specific variables such as sizes of 

workgroups. 
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Besides that, it can directly create a shader stage (an instance of 

PipelineShaderStageCreateInfo; not related to “stages” in terms of this 

project) since there is always only a single shader in a compute pipeline, unlike a 

graphics pipeline, which can contain a varying number of shaders. 

Before main loop 

One of the simpler compute stages is ChooseFirstSampleStage, which 

needs mainly texture with sampled world positions, and SurfelSamplesBuffer, 

where it writes the very first sample. Its shader is relatively simple but with a small 

caveat mentioned in Chapter 6.3. 

Inside of main loop 

ExtractFarthestSamplesStage is the first compute stage to be called 

right after G-buffer VoronoiStage inside the main program loop. For each view, it 

creates 1 new sample (written into SurfelSamplesBuffer) from the farthest 

pixel in each Voronoi cell. 

Right after G-buffer PoissonStage, RemoveCloseSamplesStage is 

called. Its purpose is simple – invalidate new samples (in 

SurfelSamplesBuffer) that are too close to each other. This is done by going 

through all new samples created in the last iteration of 

ExtractFarthestSamplesStage and checking whether the pixel they were 

created from is covered by the Poisson disk of another sample. In case it is, their 

sample in SurfelSamplesBuffer is invalidated by writing 0 in its place (more 

specifically 64-bit representation of 0). 

The next compute stage, CompactAndSortStage, is the most complex 

one. This stage actually consists of 6 mandatory phases (LocalSort, 

ComputeHistogramAndOffsets, ScanHistogram, ScanBlock, and 

Scatter) and 1 optional phase (TestElementsOrder) used only for debugging 

and validation purposes. All these phases run one after another. They are all 

contained in a single CompactAndSort.comp shader (for discussion on why it is 

in a single shader and not multiple ones, see Chapter 6.2.1). Algorithms in this 

shader are based on (Satish, et al., 2009). In short, it fixes gaps of invalid samples 

created by the previous stage and then sorts the new samples by decreasing the 

radius (to achieve progressiveness of samples). Sorting is done using parallel radix 

sort since it is ideal for sorting by only the 32 most significant bits representing 
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radius in the surfel sample and not the whole 64-bit number. Plus, parallel radix sort 

can be effectively implemented in a compute shader. 

And lastly, a simple CountNewSamplesStage is called. As the name 

implies, its shader counts a number of new valid samples added in this algorithm 

iteration after removing close samples, sorting, and compacting them in 

SurfelSamplesBuffer. 

Others 

The only remaining compute stage to mention is ConvertSurfelsStage. 

It is one of the simpler compute stages as its task is to convert surfels represented in 

the form of SurfelSample (data and indices to data in textures, all packed in a 

single 64-bit number) into the form of RenderableSurfel (data ready for 

straightforward rendering). These representations of surfels are discussed in more 

detail in Chapter 5.10.1. ConvertSurfelsStage is the most flexible stage 

regarding the order of execution in code. Based on the specific needs of the system 

using this algorithm, ConvertSurfelsStage can be called only at the very end 

of the main algorithm or, for example, each nth iteration. In other words, it is 

expected to be called only when the outside system requires the actual output from 

this algorithm – be it partial or final output. 

5.4.2 G-buffers stages 

The standard forward rendering pipeline consists of 1 framebuffer and 1 

depth buffer. On the other hand, this algorithm uses several framebuffers as outputs 

from a single stage and reuses them as input to the following stages. This approach is 

more similar to deferred rendering, which uses several G-buffers to capture various 

information about the scene at a given pixel (diffuse color, specular color, normal 

vector, …). That is why the term “G-buffer” is also used in this algorithm, and it 

refers to render target with arbitrary information (not just the color) for pixels. 

Framebuffer attachment 

In the most general view, attachments in Vulkan refer to images with 

additional information on how to use them as input or (more commonly) output. 

Output attachments are equivalent to render targets – images containing color (color 

buffer), depth/stencil (depth buffer), or any other relevant information for the pixel 

we write into in fragment shader. 
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To make work with attachments easier, FramebufferAttachment class 

was created. It is used to hold a reference to Image itself (together with 

ImageMemory and ImageView) but also other relevant information such as 

ClearValue, attachment-specific structs AttachmentDescription 

(information on sampling used, load/store operation, layout, and others) and 

AttachmentReference, and others. 

Base class 

Abstract GBuffersStageBase class holds information and functions used 

by all G-buffers stages (they inherit from it). This includes (but is not limited to) the 

creation of RenderPass, Framebuffer objects (out of 

FramebufferAttachments, which it also provides a way to create), Pipeline, 

CommandBuffer, and other objects required for a single pass of rendering using 

rasterization to multiple off-screen render targets (G-buffers). Each 

FramebufferAttachment (more specifically, the Image this 

FramebufferAttachment refers to) is created with a number of layers 

corresponding to a number of cameras. Subsequently, RenderPass is created with 

multiview rendering enabled (VK_KHR_multiview) to utilize the capabilities of 

modern hardware (see Chapter 6.13 for more details about layered rendering). 

Before main loop 

There is only a single G-buffers stage before the start of the main program 

loop: SamplingStage. It is technically the same as the first pass of deferred 

rendering – it renders the scene (from several cameras at once) into several off-

screen G-buffers (layers of their Images). This is depicted in Figure 13. In this case, 

these G-buffers contain: 

• color, 

• normal vector, 

• and the absolute world position for each pixel. 

Its shaders are similarly straightforward. SamplingStage is the only stage that 

rasterizes a scene from its polygonal representation. This fact makes the algorithm 

even more versatile since there is no need for representation of the scene as long as 

we have the aforementioned G-buffers as inputs (for more details, see Chapter 6.6). 
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Inside of main loop 

The very first stage called in the main loop is VoronoiStage. Its job is to 

assign each pixel of the “rendered scene” to the Voronoi cell created from surfel 

samples (the sample acts as a Voronoi site). It does not directly use rendered scene 

but only the texture of absolute world positions retrieved from the SamplingStage 

(or another system able to provide it). Internally, it works on surfel samples in 

packed form (as 64-bit floats) bound as its vertex buffer. These samples are 

unpacked to get radius and texture coordinates, which are used to sample texture 

with world positions. With this information, the geometry shader creates an 

equilateral triangle from each sample so that its inscribed circle has a center and 

radius based on data passed from the vertex shader. The fragment shader is then 

used to discard all fragments outside of the aforementioned inscribed circle (see 

Figure 16). Besides that, the fragment shader also calculates the distance of a 

fragment to its Voronoi site and stores it in a G-buffer, together with the unique ID 

of the Voronoi cell. Distance to the Voronoi site also has one important role – it is 

assigned as the fragment’s depth (gl_FragDepth system variable). This 

technique assures that the fragment is assigned to its closest Voronoi site, therefore 

creating a valid (discrete) Voronoi diagram. Such a diagram can be seen on the left-

most and right-most pictures of Figure 14. 

Right between ExtractFarthestSamplesStage and 

RemoveCloseSamplesStage is the last G-buffers stage called PoissonStage. 

It works only on newly added surfel samples instead of all of them like the previous 

G-buffers stage. Its CPU-side code is very similar to VoronoiStage, and 

therefore, it inherits from it. Besides overriding a few properties (depth buffer clear 

value and comparison operation), it changes FramebufferAttachments. More 

specifically, it uses just 1 FramebufferAttachment – to output the ID of the 

Poisson disk for each pixel. It even uses exactly the same vertex and geometry 

shaders. Only the fragment shader is slightly different. Instead of writing the 

distance to the site into the depth buffer, it writes the radii of the new surfel sample 

(equal to the distance to their Voronoi site) in there. This results in larger Poisson 

disks virtually overdrawing smaller ones (see the third picture in Figure 14), which 

affects ID written into the render target for a specific fragment. 
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RemoveCloseSamplesStage later uses these IDs to determine which new 

samples should be removed (invalidated) and which should be kept. 

5.5 Surfel Generator 

The heart of the whole algorithm is a class called SurfelGenerator. As 

the name suggests, it is the place where surfels are generated. This is done by 

running stages (calling either Draw or Dispatch methods) in the correct order and 

with the proper parameters. 

Before that, SurfelGenerator has to create and initialize all these stages, 

as well as all supporting objects such as buffers, sampling cameras, rasterizer, 

descriptions, etc. To do this, it utilizes VulkanAppBase passed as an argument into 

SurfelGenerator.Initialize method. 

SurfelGenerator also provides various supporting structs for the creation 

of VulkanAppBase. These include ApplicationInfo, 

PhysicalDeviceFeatures, validation layer names, instance extensions, and 

others. 

5.5.1 Main loop 

After the initialization of SurfelGenerator, the outside class (in this 

case, Program.Main) just has to call the async Task Run() method, which 

starts the MainLoop method. 

This method first calls SamplingStage to populate G-buffers for positions, 

normals, and colors and then ChooseFirstSampleStage to select the first 

sample, which is used as a base for VoronoiStage. This is done before the actual 

loop. 

After this, the while loop begins – until a number of samples is larger 

than the MaxSurfelsCount parameter or no new samples can be created in an 

iteration of the loop. 

One iteration of the loop starts with a call to VoronoiStage, followed by a 

call to dispatch of ExtractFarthestSamplesStage for each view, 

PoissonStage, and RemoveCloseSamplesStage. In this order, the only 

remaining mandatory stages to call are CompactAndSortStage and 

CountNewSamplesStage. The last mentioned is needed to obtain both the total 
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number of samples and the number of new samples from this iteration (both are used 

to check whether the loop should continue with more iterations). 

The call to ConvertSurfelsStage can be made at the end of the while 

loop whenever we want new surfels to display. This does not have to be every 

iteration of the loop and will heavily depend on the actual final usage of the program. 

5.5.2 Synchronization between stages 

There is a call to QueueWaitIdle between each and every call to a stage. 

Since each subsequent stage is entirely dependent on the end of work of the previous 

stage (and only a few, if any, pipeline stages can be run in parallel), this was found to 

be the easiest and the least problematic solution. 

While more sophisticated approaches using Semaphores/Fences exist, 

they are significantly more challenging to set up correctly. Both 

GBuffersStageBase.Draw and ComputeStageBase.Dispatch methods 

fully support the use of these synchronization objects. Currently, there are unused 

parameters with default null values for all parts of SubmitInfo (various 

Semaphores, wait stages, Fences, …). 

This could be one of the potential improvements in this program. However, it 

is expected that performance gain from this approach would not be significant. 

It is important to note that the approach with QueueWaitIdle is also more 

flexible since it does not depend on stages, it is in between. The same cannot be said 

about other mentioned synchronization objects. 

5.5.3 Graphics debuggers 

Each iteration of the loop (and the short part before the loop) calls RenderDoc 

API to set the start and end of the frame through 

RenderDocHelperFunctions. This is needed since there are no standard 

“frames” in this algorithm (most graphics debuggers consider the end of the frame 

to be a call to a “present” method or similar). But 1 iteration of this loop was found 

to be ideal for “frame” in terms of RenderDoc. 
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5.6 Buffers 

Vulkan already contains a class called Buffer. However, it is used only as 

an opaque handle without any properties/methods. Buffers in computer graphics are 

used for a vast variety of features/algorithms and come in many shapes, forms, and 

ways of usage. Therefore, it was necessary to create a hierarchy of classes that 

primarily encapsulate the Buffer handle and everything else related to it, such as 

DeviceMemory and various flags (BufferUsageFlags and 

MemoryPropertyFlags), but also provide methods for easier work. 

DepthBuffer 

Even though the name might suggest it, the class DepthBuffer does not 

contain a Vulkan Buffer object but rather an Image (among others). Therefore, it 

does not share any functionality or predecessors (interfaces or base classes) with the 

rest of the classes with “buffer” in its name. Since the name “depth buffer” is well 

established in computer graphics and Image class can be considered a 2D Buffer 

with additional functionality such as sampling, it should keep this name. 

Regarding the purpose of this class, it is a wrapper around stuff related to 

depth buffering/Z-buffering. This includes, most importantly, Image itself, 

CompareOp, methods to find supported formats, and a straightforward way to create 

structs used for FramebufferAttachments (AttachmentDescription and 

AttachmentReference) and the creation of pipeline 

(PipelineDepthStencilStateCreateInfo). 

Base class 

BufferBase class serves as a base class for all other buffer classes (except 

for the aforementioned DepthBuffer). It encapsulates the Vulkan Buffer class 

together with DeviceMemory, flags, and getters used to retrieve the total size of the 

buffer and the number of elements in it. An element is a class set as a type T since 

BufferBase<T> is a generic class. 

This class also takes care of the disposal of allocated Vulkan classes using a 

standard IDisposable interface. 

StagingBuffer 

Staging buffers, in general, are used as a middleman between memory on 

the CPU (host visible) and Buffers completely stored on the GPU (device local). 
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Of course, this does not apply to all architectures, but in general (especially on 

standard desktop computers), it provides a significant performance benefit. 

Data is first copied from CPU memory (an array, for example) to the staging 

buffer, and then the staging buffer is copied to the final device local buffer. This 

technique is extensively used throughout this application to get as much performance 

as possible. VulkanHelperFunctions provide the 

UpdateBufferUsingStagingBuffer method to do exactly this. 

The StagingBuffer class inherits from BufferBase and overrides 

default BufferUsageFlags to ones used by all staging buffers: 

TransferSrcBit and TransferDstBit to make work with staging buffers 

easier. 

This class also restricts generic type T to unmanaged. This is required since 

System.Buffer.MemoryCopy is used to copy data from CPU-only memory to 

the staging buffer, and it requires a pointer to data (using a fixed keyword). Until 

C# 11, trying to get a pointer to a managed type resulted in an error. In C# 11, doing 

so will result in only a warning (CS8500) but still should not be used to avoid any 

issues. Besides, T being unmanaged is not a huge restriction in this case. Having a 

string, array, or other collection as a single element in a buffer makes very little 

sense. Custom structs with all fields being unmanaged are still considered 

unmanaged themselves, which replaces the need for having a custom class as an 

element of a buffer. 

StagingBuffer is primarily used by Staged Storage Buffers (see Chapter 

5.6.3) but can also be used outside of them. 

5.6.1 Interfaces 

There are 2 main buffer-related interfaces: IDataBuffer and 

IIndexBuffer. They serve as a set of minimal requirements for specific cases. 

IDataBuffer requires just a Buffer object and the number of elements in 

it. This is, for example, all that the renderer needs to bind the vertex buffer 

(CmdBindVertexBuffers) and draw it (CmdDraw). 

IIndexBuffer inherits from IDataBuffer and adds a requirement to 

declare IndexType. A renderer then uses this to bind it 

(CmdBindIndexBuffer). 
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5.6.2 Uniform Buffers 

Uniform Buffers (frequently referred to as UBO = Uniform Buffer Object) 

are buffers that are relatively fast to access (in general, faster than Storage Buffers 

but slower than Push Constants), but they are read-only for a shader and cannot 

hold much data (usually from 16 to 64 kB on the most GPUs; still significantly 

more than Push Constants). 

Most of the Uniform Buffers in this project are small enough to be converted 

to Push Constants to get even slightly faster access. However, changing the Push 

Constant's value requires re-recording the whole CommandBuffer, which is not 

needed in the case of Uniform Buffer. Therefore, overall performance gain would be 

negligible. Also, working with Uniform Buffers is more comfortable and easier than 

Push Constants. 

Base class 

UboBase abstract class serves as a base class for all UBO classes. It provides 

DescriptorType, DescriptorBufferInfo, and BufferUsageFlags, as 

well as methods for updating data in these buffers using a CommandBuffer. It 

inherits from a BufferBase class. 

Specific UBO classes 

Most final UBO classes are relatively simple – they just declare structs used 

inside and set it as their type T since the UboBase<T> class is generic. 

Structs can range from simple ComputeUbo (containing viewIndex used 

in several compute shaders) and SurfelParametersUbo (holding surfel radius 

for SurfelRenderer) through SortParametersUbo (with several variables 

used in CompactAndSort shader) up to SimpleMatricesUbo and 

MatricesUbo. The last 2 mentioned contain structs with standard 4x4 model, 

view, projection, and modelViewProjection matrices used by various 

shaders. Compared to SimpleMatricesUbo, MatricesUbo has arrays of all of 

these matrices (except for the model matrix) – 1 set of matrices in arrays (at the 

same index) for each camera view. 
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5.6.3 Staged Storage Buffers 

Storage Buffers in Vulkan are the most flexible buffers. They can be both 

read and written to in shaders, and they can hold a huge amount of data. As a 

limitation, they are rather slow to access. 

The word “staged” in the full name of these buffers refers to the fact that they 

contain an instance of the StagingBuffer class to improve overall performance 

on most architectures while still allowing writing and reading from these buffers on 

the CPU side. 

Base classes 

Abstract StagedStorageBufferBase class inherits from BufferBase 

(and also IDataBuffer interface). On top of that, it adds an instance of 

StagingBuffer<T> with everything related to it: the creation of this buffer, the 

update of the main buffer using this staging buffer, and its disposal. The 

StagedStorageBufferBase constructor also requires a Queue instance to copy 

data from the staging buffer to the main buffer. 

There is one additional abstract class between 

StagedStorageBufferBase and some of the final classes: 

ReadableDataBufferBase. As the name suggests, it adds functionality to read 

data on the CPU from the main buffer using the staging buffer through the T[] 

GetData() method. The StagedStorageBufferBase class itself does not 

offer this functionality because it requires an additional usage flag for the main 

buffer (BufferUsageFlags.TransferSrcBit) and could cause unnecessary 

performance hit. 

CompactAndSort buffers 

Similarly to Uniform Buffers, many Staged Storage Buffer classes just 

declare the structs they contain and add overloads of methods for easier creation, 

update, and data retrieval based on their structs. 

Examples of such simple classes are ones used for CompactAndSort 

shader: BoundsBuffer, HistogramBlockSumBuffer, HistogramBuffer, 

SamplesCountsBuffer, and OrderedTestBuffer. 

Surfel buffers 

More complex buffers in the same category are related directly to surfels. 
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The first one is RenderableSurfelsBuffer, which is used for debug 

visualization in SurfelRenderer. Compared to other buffer classes, it adds 

functionality to export data to PLY format for debug purposes, and its usage flags 

are extended by BufferUsageFlags.VertexBufferBit. 

The second surfel-related buffer is probably the most important buffer in the 

whole application – SurfelSamplesBuffer. As an addition, it provides methods 

for getting testing data (both precalculated/deterministic and random). And same as 

RenderableSurfelsBuffer, it is used as a vertex shader, which is reflected in 

its usage flags. 

Structs for both of these buffers (RenderableSurfel and 

SurfelSample) are explained in detail in Chapter 5.10.1. 

Rasterization buffers 

The last 2 remaining Staged Storage Buffers are simply called just 

IndexBuffer and VertexBuffer. As names suggest, they are directly used for 

rasterization in the SamplingStage. 

Since Vulkan’s IndexType does not provide much flexibility (it technically 

supports only 16 or 32-bit unsigned integers for standard rasterization), 

IndexBuffer straightaway sets its generic type parameter T to 32-bit uint. A 

change to 16-bit ushort won’t be problematic in case this performance/memory 

advantage is required. But ~65k indices (accessible through ushort) is rarely 

enough. Therefore, it was deemed unnecessary even to consider this option. 

To enable as broad support for vertex formats as possible, VertexBuffer 

uses byte as its generic type parameter T. This moves the responsibility of 

providing correct vertex format to IMesh with its byte[] 

GetVertexBufferArray() method (for more info, see Chapters 5.10.2 and 

5.11) and subsequently the selection of corresponding shader. 

Both of these buffers also set appropriate usage flags: 

BufferUsageFlags.IndexBufferBit and VertexBufferBit, 

respectively. 

5.7 Constants 

Vulkan uses the concept of Specialization Constants to change the values of 

constants in halfway-compiled SPIR-V shaders before they are bound to the pipeline 
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stage, as seen in Figure 13. This is a great way to easily adjust simple values in 

shaders with virtually no performance overhead – unlike Push Constants and various 

buffers. 

 

Figure 19 Illustration of how specialization constants are set in the shader compilation 

pipeline. Source: Vulkan Specialization Constants presentation by Mike Bailey from Oregon State 

University9F

14 

This technique is used in DimensionsConstants.inc file, which is 

included in several shaders. It provides constants for a maximum number of views 

and dimensions of the viewport. 

To make use of Specialization Constants easier, several classes were 

developed. An IShaderConstants interface is at the bottom of this hierarchy, 

with broader ShaderConstantsBase inheriting this interface. Together, they 

provide the final class with as many automatically calculated values as possible. For 

example, SpecializationMapEntry[] can be automatically created thanks to 

C# reflection. The final class then only needs to set actual data struct containing 

constants and provide an implementation for a method to get 

                                                 

14 https://web.engr.oregonstate.edu/~mjb/vulkan/Handouts/SpecializationConstants.4pp.pdf 

https://web.engr.oregonstate.edu/~mjb/vulkan/Handouts/SpecializationConstants.4pp.pdf
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SpecializationInfo – that is the only struct required by Vulkan itself for the 

creation of the pipeline shader stage. 

5.8 Descriptors 

The concept of descriptors (descriptor sets, layouts, pools, …) in Vulkan is 

somewhat convoluted and complex. The descriptor is usually either an image or a 

buffer with additional information. For an image, this additional information 

(besides ImageView itself) would be ImageLayout and Sampler. And for a 

buffer, the descriptor contains its size and offset. 

Descriptors are always grouped into descriptor sets. 

Descriptor set layouts provide a description for these sets – saying what type 

of descriptor is at which binding index and which shader stages it is used in. This 

layout is bound to the pipeline. 

Later, a descriptor set (containing references to actual buffers and images) is 

used in a call to command buffer. Of course, any descriptor set that fits the 

descriptor set layout can be used with that pipeline. This is illustrated in Figure 20. 

 

Figure 20 Visualization of relations between descriptors, descriptors sets, descriptor set 

layouts, and descript pool. Source: Article “Vulkan Shader Resource Binding” on Nvidia Developer 

website15 

                                                 

15 https://developer.nvidia.com/vulkan-shader-resource-binding 

https://developer.nvidia.com/vulkan-shader-resource-binding
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5.8.1 Descriptors Manager 

DescriptorsManager with several helper classes was implemented with 

the sole purpose of making the use of descriptors more comfortable. This class 

creates DescriptorSetLayout, DescriptorPool (used to allocate 

descriptors), and DescriptorSet. Finally, it updates the DescriptorSet using 

WriteDescriptorSet (makes sure descriptor objects point to actual data such as 

Buffers or Images). 

This solution to wrap the whole concept of descriptors lacks flexibility in 

some cases (such as creating multiple descriptor sets for a single layout or more 

efficient use of a descriptor pool). But it is easy to use (compared to raw handling of 

sets, layouts, etc.) and should be adequate for most cases. Most importantly, it is 

more than enough for use in this project. 

5.8.2 Descriptor Set Elements 

To actually do all this work, DescriptorsManager needs info about 

descriptors to use in the first place. This is provided as 

IEnumerable<IDescriptorSetElement>. In this case, “descriptor set 

element” refers to a single “descriptor” (or “descriptor object” as called in some 

literature). On top of that is the base class DescriptorSetElementBase, which 

implements methods for getting WriteDescriptorSet and 

DescriptorSetLayoutBinding. 

The most interesting classes for the final implementor are 

BufferDescriptorSetElement and SamplerDescriptorSetElement. 

As names imply, they are descriptors for buffers and samplers. In Vulkan, it is 

technically possible to have a descriptor only for Sampler or image (ImageView 

with ImageLayout). But the most common case is to use 

DescriptorType.CombinedImageSampler, which combines the sampler and 

image into one descriptor. It is also the easiest way to deal with it. 

One more class deriving from IDescriptorSetElement is UboBase 

(for details about his class, see Chapter 5.6.2). It is a particular case since it does not 

inherit from DescriptorSetElementBase. Instead, it internally holds a 
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reference to BufferDescriptorSetElement – that is also how it implements 

the IDescriptorSetElement interface. 

Constructors of all these final classes are as simple as possible. Just provide 

the necessary info for descriptors, and everything else is deduced from the ordering 

of IEnumerable<IDescriptorSetElement> that goes to the constructor of 

the DescriptorsManager class. 

5.9 Cameras 

Camera classes (deriving from the ICamera interface) have 2 tasks: 

calculate and provide projection and view matrices. 

Extrinsics/View matrix 

The calculation of the view matrix is based on extrinsics of the camera - 

position, direction/target vector, and orientation (represented by an up vector in this 

case). Since extrinsics are not dependent on the type of camera, they are handled in 

the abstract CameraBase class through SetExtrinsics methods. 

Intrinsics/Projection matrix 

Intrinsics (required for projection matrix) depend on camera type and, 

therefore, are handled by the final classes – CameraOrthographic and 

CameraPerspective. Respectively, they are set using SetIntrinsics 

methods. 

A perspective camera is used for debug viewer since that is how human 

vision works and is the most common way to display 3D data naturally. 

On the other hand, an orthographic camera is an ideal candidate for the 

sampling process. It projects parts of a 3D scene the same, whether in the center of 

the camera view or on the edge. This type of camera also ignores the distance of 

parts of the scene from the camera. The only thing that matters is whether the scene 

is in front of the camera or behind it. Due to the nature of the placement of cameras 

(see Chapter 6.1), the whole model is always in front of each orthographic camera 

used for sampling. The width and height of these cameras are also set to always 

capture the entire model. 

For a comparison of perspective and orthographic projections, see Figure 15. 
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Figure 21 An illustration of the difference between perspective and orthographic projections. 

Source: StackOverflow question “From perspective picture to orthographic picture” by Raph Schim11F

16 

5.10 Elements 

Structs and interfaces in FMsurfelsVulkan.Elements namespace are 

used directly in vertex buffers. To make serialization into buffers easier: 

• they are actually C# structs and not classes, 

• all data is in the form of fields (and properties are used only as getters 

into these fields), and 

• FormatAttribute is used to mark these fields with 

Silk.NET.Vulkan.Format. 

They consist of various vertices for sampled mesh and 2 structs used for 

surfels. 

5.10.1 Surfels 

Two structs for the representation of surfels are needed since they have 

significantly different internal representations and are used for different tasks. 

They also do not share any interface, even though naming might suggest so. 

                                                 

16 https://stackoverflow.com/questions/36573283/from-perspective-picture-to-orthographic-

picture 

https://stackoverflow.com/questions/36573283/from-perspective-picture-to-orthographic-picture
https://stackoverflow.com/questions/36573283/from-perspective-picture-to-orthographic-picture
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RenderableSurfel is the more straightforward of these two. It is used for 

rendering into a debug viewer. That is why its simple internal structure is 

represented by just position, normal vector, and color. 

The significantly more important and more complex one is the 

SurfelSample. Internally, it is represented as a single ulong (64-bit unsigned 

integer) containing packed data for UV texture coordinates, texture layer index, 

and radius. The exact format is (U, V, layer, radius) with 13:13:6:32 bits, 

respectively. In this packed form, texture coordinates and layer index are uint 

values, while radius is float. Note that this is slightly different from the format 

used in (Brandt, et al., 2019) and described in Chapter 3.2.3. 

To make utilization of this struct easier, the SurfelSample class contains 

methods for packing and unpacking its data into separate values. These helper 

methods are currently used only for debugging since the actual “instances” of these 

structs are all created and manipulated solely on the GPU side in shaders. 

Conversion from SurfelSample to RenderableSurfel happens in the 

ConvertSurfels stage through a compute shader to make it as efficient as 

possible. This means there is no need to copy buffers from GPU to CPU memory 

and back. 

5.10.2 Vertices 

Interfaces 

As a base for vertices structs, there are 2 simple interfaces. IVertex 

providing nothing but position – useful for simple operations such as calculation of 

bounding boxes. And IObjParsableVertex providing a static method to parse 

vertex out of the .obj file. This is needed since different types of vertices have 

different properties and, therefore, are parsed from .obj in different ways. Parameters 

for IObjParsableVertex.ParseFromObj method (group, face, and face 

vertex index) are generic enough to interpret this vertex in any way .obj files allow. 

Specific structs 

For the actual structs used for the representation of vertices, there are 

ColorVertex and TextureVertex. Both contain position and normal vector, 

and either color or texture coordinates. It looks like this: 
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public readonly record struct ColorVertex 

    : IVertex, IObjParsableVertex<ColorVertex> 

{ 

    [Format(Format.R32G32B32Sfloat)] 

    private readonly Vector3D<float> position; 

 

    [Format(Format.R32G32B32Sfloat)] 

    private readonly Vector3D<float> normal; 

 

    [Format(Format.R32G32B32Sfloat)] 

    private readonly Vector3D<float> color; 

 

    public ColorVertex( 

        Vector3D<float> position, 

        Vector3D<float> normal, 

        Vector3D<float> color); 

 

    public ColorVertex( 

        float x, float y, float z, // position 

        float nx, float ny, float nz, // normal vector 

        float r, float g, float b); // color 

 

    public static ColorVertex ParseFromObj( 

        LoadResult result, 

        Group group, 

        Face face, 

        int faceVertexId) 

    { 

        return new ColorVertex(...); 

    } 

} 

 

These structs are actually record structs – which removes the hassle of 

manually implementing the whole IEquatable<T> interface. 

These structs for vertices are used primarily for debugging and 

demonstration purposes. Therefore, there was no incentive to merge these structs 

into more generic ones capable of holding various formats vertices. Besides color 

and texture, this could be various colors (ambient, diffuse, specular), material 

parameters/coefficients, illumination model, displacement and bump maps, etc. 

Implementing such a system is significantly outside of the scope of this work. 
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5.11 Meshes 

Interface 

The IMesh interface is at the bottom of the hierarchy for mesh-related 

classes. It specifies the used PrimitiveTopology (most commonly 

TriangleList for standard triangular meshes), methods for getting AABB (axis-

aligned bounding box) used for camera placement, and most importantly, methods 

for retrieving vertex and index buffer arrays. 

The only part of the algorithm that directly uses meshes is 

SamplingStage. 

Base class 

Abstract MeshBase class (implementing IMesh) was created to make 

working with meshes easier. It fully implements AABB-related methods. This is 

done thanks to its generic type being restricted to IVertex, whose only requirement 

is getter for a position. MeshBase also provides convenient Lists for vertices and 

indices, which enables the implementation of GetVertexBufferArray and 

GetIndexBufferArray from the IMesh interface. 

Specific classes 

TriangularMesh class then fully specifies PrimitiveTopology and 

further restricts its generic type to IObjParsableVertex, which makes it 

possible to implement the LoadFromObj method. This is mainly for debug reasons 

since it is expected to transfer meshes in different ways and formats based on the 

architecture of the external program that would use this app. 

However, as mentioned, the IMesh interface is all that is needed, and it is 

generic enough to enable easy implementation from the external program. 

The last mesh-related class is TestingMesh. It directly inherits from 

TriangularMesh, sets its generic type parameter to ColorVertex, and provides 

static Lists of testing vertices and indices. This makes it possible to test meshes 

without any external factors and settings. Therefore, it minimizes potential errors 

caused by parsed external files. 
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5.12 Helper functions 

There are several static classes containing helper methods that were not 

suitable to be anywhere else and could be made static. 

MathHelperFunctions 

One of the simple ones is MathHelperFunctions. The majority of math-

related operations on vectors and such are handled using the Silk.NET.Maths 

namespace. There was still a need to implement other methods, such as conversion 

between coordinate systems (spherical to cartesian and vice versa), and this class 

seems ideal for these methods. 

MiscHelperFunctions 

MiscHelperFunctions is reserved for general-purpose methods that 

are too small and unique to be placed into a separate helper class but are still needed 

to be called from various parts of the code. 

RenderDocHelperFunctions 

RenderDocHelperFunctions class is used to simplify work with 

RenderDoc API, especially using IDebugProvider (see 5.13). It also takes care 

of the interpretation of C-style results from calls to this API. 

VulkanHelperFunctions 

A similar but way more complex helper class is 

VulkanHelperFunctions. It was created with a job to simplify tasks related to 

work with Vulkan which could be called from more than one place and therefore 

were not suitable to be placed directly into the caller class. These tasks include 

creating and updating buffers, images, commands, pipelines, handling memory and 

allocations, and others. 

It also takes care of error handling – processing 

Silk.NET.Vulkan.Result and throwing exceptions in case the negative result 

of a call to the Vulkan function is non-recoverable. VulkanHelperFunctions 

could be considered a mini framework for Silk.NET Vulkan library since most of 

these functions would be useful in any program accessing Vulkan through Silk.NET, 

not just this one. 



73 

 

This is not an uncommon approach when it comes to Vulkan. Monado17, an 

open-source OpenXR runtime, uses a similar class with helper functions for the most 

common Vulkan functions. 

ObjParsingHelperFunctions 

Another class with wrapper-like helper functions is 

ObjParsingHelperFunctions. It is used to simplify parsing of the most 

common properties (such as position, normal, and color) from the ObjLoader 

library as well as calculating normal vectors in case they are missing. 

ElementsHelperFunctions 

The second helper class closely associated with elements is 

ElementsHelperFunctions. It helps to generate Vulkan structures such as 

VertexInputAttributeDescription and 

VertexInputBindingDescription out of elements (various surfels and 

vertices). 

To do that as easily as possible, it utilizes C# reflection and custom attribute 

FormatAttribute to denote data fields of elements structs with 

Silk.NET.Vulkan.Format. An example is the Vector4D<float> color 

field in RenderableSurfel being marked with 

Format.R32G32B32A32Sfloat. 

It might seem like this could be even more automated since Vector4D 

shows there should be 4 elements, and <float> could be clearly used to determine 

that individual parts are 32-bit floats. However, it is not as straightforward for all 

types – for example, the difference between R8G8B8A8SNorm, 

R8G8B8A8Sscaled, R8G8B8A8Sint, and R8G8B8A8Srgb cannot be deduced 

from C# type alone. It could easily lead to unintended behavior. Also, there are over 

300 Vulkan formats; therefore, making this conversion at least somewhat reliable 

would still require several orders of magnitude more work than just setting simple 

attributes such as [Format(Format.R32G32B32A32Sfloat)] to each field. 

                                                 

17 https://monado.dev/ 

https://monado.dev/
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5.13 Providers 

Various calls to Vulkan API require a lot of different Vulkan objects, most of 

which are constant for the whole duration of the application run. This includes Vk 

(does not exist in the pure C version of Vulkan API; it is just a way to provide global 

functions in C#), Instance, Device/PhysicalDevice, 

AllocationCallbacks, and others. This results in passing many parameters 

from one class to another. To make code more readable, flexible, and shorter, a 

system of providers was created. 

Providers are classes that implement one of the provider interfaces. These 

interfaces require an implementation of getters for the aforementioned Vulkan 

objects. As a result, classes implementing these provider interfaces can then be 

passed as parameters to other classes. 

The list of provider interfaces is following: 

• IMinimalVulkanProvider 

o groups together aforementioned Vulkan objects 

• IDebugProvider 

o  gives access to ExtDebugUtils (Vulkan debug utilities) 

and instance of RenderDoc (from Evergine namespace) 

• IComputeQueueProvider, IGraphicsQueueProvider, and 

IPresentQueueProvider 

o provides access to instances of compute, graphics, and present 

queues, respectively 

• IStandardProvider 

o only groups together IMinimalVulkanProvider and 

IDebugProvider 

The class that implements all of these (except for 

IPresentQueueProvider) is VulkanAppBase. Higher in the class hierarchy 

is then WindowedRendererBase, which adds IPresentQueueProvider to a 

list of interfaces it implements. Since VulkanAppBase is the backbone of 

everything Vulkan-related (initialization of all these Vulkan objects), it is 

straightforward for it to provide easy access to all these objects. 

Reference to VulkanAppBase can be passed even deeper in the method 

call hierarchy without a need to store references to all these Vulkan objects 
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individually in each class on the way to the final API call. As an example, 

VulkanHelperFunctions.CreateBufferAndMemory method takes 

IMinimalVulkanProvider as one of its parameters. Then it takes whatever it 

needs from this provider and passes it whole to other methods it calls. Some Vulkan 

objects from this provider interface will be redundant, but it keeps the code cleaner 

and provides no performance hit since everything is passed as a reference anyway. 

These interfaces make it easier to replace VulkanAppBase or extract 

initialization of these Vulkan objects elsewhere if needed. 

This approach also makes it possible to check what exactly the passed-in 

provider is and behave accordingly. For example, as mentioned, the 

CreateBufferAndMemory method takes IMinimalVulkanProvider as a 

parameter. But then it calls the AssignDebugNameConditional method to 

assign debug names for just the created buffer and memory. This method takes just 

IMinimalVulkanProvider as one of its parameters. But if this passed 

IMinimalVulkanProvider is also IDebugProvider, its ExtDebugUtils 

method is used to assign a debug name. This makes switching between debug and 

non-debug (release) versions of providers possible. 

The approach to encapsulate several core Vulkan objects is quite common. 

For example, Monado has a class vk_bundle containing a similar collection of 

objects. However, it is less flexible since it contains only a single queue. 

5.14 Consumers 

Directly related to the aforementioned providers is the 

MinimalVulkanConsumerBase class. This class provides a mechanism to 

simplify code for classes that need to store an instance of 

IMinimalVulkanProvider and easily access its properties. To do that, the 

class can inherit from MinimalVulkanConsumerBase, assign 

IMinimalVulkanProvider to its property (through the constructor of 

MinimalVulkanConsumerBase), and get direct access to the underlying 

properties of this provider through getters from MinimalVulkanConsumerBase. 

For example, instead of accessing MinimalVulkanProvider.CommandPool, it 

can be accessed directly through CommandPool. 
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This mechanism exists only to make code a bit shorter and cleaner. Since 

classes in C# cannot inherit from more than 1 class, this might cause inconvenience 

if a large refactor of classes is done in the future. It does not cause any known issues 

right now. MinimalVulkanConsumerBase could be changed from class to 

interface, solving the problem with single-class inheritance. However, that would 

cause a loss of the base constructor, which forces inheriting classes to set 

MinimalVulkanProvider. 

Also, this class and the whole mechanism can be removed without directly 

affecting the system of providers. 
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6 Implementation highlights 

This chapter mentions and analyzes some of the most critical decisions in 

architecture and low-level implementation. It contains a detailed comparison of 

various approaches/algorithms for the problem and a justification for the chosen 

solution. 

6.1 Camera placement algorithms 

A small number of cameras (a few dozen at max) used for sampling in the 

first stage must be placed around the sampled 3D model. The most universal 

solution without the need to analyze actual mesh is to place cameras around it 

uniformly. For example, on the surface of a sphere around the whole mesh. 

Cameras, in this case, would be all pointed into the center of this sphere. 

Several algorithms for uniform placement (in this case, same as sampling) 

on the sphere were tested. Placement is calculated only once per model, so the speed 

of actual calculation is not critical. 

6.1.1 Hand-picked values 

Using saved hand-picked values for placement is probably the simplest 

solution, but it lacks flexibility with a varying number of cameras. 

6.1.2 Spherical coordinate system 

The standard cartesian coordinate system is unsuitable for dealing with 

coordinates in a sphere and on its surface. For cases like this, the spherical 

coordinate system is a great candidate. It is specified by 3 numbers: a distance from 

the sphere center, polar angle, and azimuthal angle (see Figure 16). Based on ISO 

convention12F

18, these variables are referred to as r, θ, and φ, respectively. 

                                                 

18 ISO 80000-2:2019 Quantities and units - Part 2: Mathematics 

https://www.iso.org/standard/64973.html
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Figure 22 Spherical coordinate system illustration. Source: Wikipedia - Spherical coordinate 

system13F

19 

Since cameras are supposed to be placed on the surface of a sphere, distance 

r is fixed. However, a uniformly random setting of θ and φ coordinates does not 

result in uniformly distributed samples. And even worse, with few cameras, results 

are highly unpredictable. An additional check for the quality of samples and their 

eventual re-calculation would be required. 

6.1.3 Fibonacci sphere 

One of the solutions for the even distribution of samples on the surface of a 

sphere is called the Fibonacci sphere (sometimes referred to as the Fibonacci 

lattice). The algorithm for its calculation is fully deterministic, and the result is 

uniform (see Figure 17). 

                                                 

19 https://en.wikipedia.org/wiki/Spherical_coordinate_system 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
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Figure 23 An example of a Fibonacci sphere (left) and one of the spirals it was generated 

from (right). Source: (Munguba, et al., 2021) 

A visible pattern in samples will appear with a high number of samples. 

However, when working with a number of samples on the order of tens (as used in 

this application), the resulting sampling looks random enough while being nicely 

evenly distributed. 

Since the Fibonacci sphere algorithm perfectly meets all requirements for 

sampling on the sphere and is very easy to implement, it was chosen for the final 

implementation. 

6.1.4 Implementation 

Internally, the SamplingCamerasGenerator class takes care of 

calculating positions for ICameras. GeneratorTechnique enum then provides 

the ability to choose which technique should be used: 

RandomPolarCoordinates, FibonacciSphere, or DEBUG. The last one is 

just a set of hand-picked values used solely as a deterministic set for debugging 

purposes. 

6.2 Organization of shaders 

The majority of shaders used in this project are short and straightforward 

enough to be contained in a single file each. 

The only shared functions between shaders are in PackUnpack.inc and 

DimensionsConstants.inc files. The first mentioned contains macros for 
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packing and unpacking uint into ivec3 containing texture coordinates (U and V 

coordinates and texture layer index). The second mentioned contains constants for 

the width and height of the viewport in pixels and the maximum number of views 

available. 

6.2.1 Compact and Sort stage 

The only exception to short and more-or-less self-contained shaders is the 

compute shader for the Compact and Sort stage. It consists of 6 phases that run one 

after another. 

Quite a few shared functions, constants, and bindings exist between them. 

Therefore, the problem with the division of this large shader arose. 

• Splitting phases each into their file would cause chaos with shared 

parts of code, which would have to be added using the #include 

directive. 

• The other option is to use the so-called “ubershader” – put 

everything into one big shader file and handle it one of the following 

ways. 

o Usage of GLSL shader subroutine (conceptually similar to 

function pointers in C) would be ideal for this case. 

Unfortunately, SPIR-V shaders do not support this 

functionality. 

o Vulkan supports setting the shader's entry-point (PName 

variable in PipelineShaderStageCreateInfo struct). 

However, this does not work for GLSL shaders, which 

mandate the use of the void main() function as an entry-

point. 

o Both glslangValidator and glslc (GLSL/HLSL to SPIR-V 

compilers) support the setting of --source-entrypoint 

parameter, which specifies GLSL/HLSL entry-point. Even 

though glslangValidator seems to log an error when a function 

other than main is used with this parameter, it does seem to 

work. However, this would require compiling a shader once 

for each phase – just with different entry-points. It would 
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ultimately lead to an increased memory footprint and a more 

complex build process. 

▪ Besides that, no matter how various entry-points would 

be achieved, each phase would now require its own 

pipeline and bind it before the phase is called. Even 

though the added complexity of code and performance 

hit would probably be minor, it is good to consider 

them. 

o The most straightforward way is to compile a single copy of 

the shader the standard way with the main function and use 

branching (if/else or switch) to call the appropriate method to 

handle phases. Plus, since this branching is based on the Push 

Constant (whose value is pre-recorded in the command 

buffer), it can be very effectively optimized, and a call to the 

main function with branching would be equivalent to directly 

calling the phase function as an entry-point. And even in case 

this optimization is not utilized by the graphics driver, the 

performance hit is expected to be relatively insignificant. One 

of the drawbacks is the potential bug-prone missing 

association between phase indices and actual phases. The only 

link between these in CPU and GPU codes is a new Push 

Constant (uint), and any change to the order of phases has to 

be adjusted in several places. However, this is a usual issue 

when writing CPU and GPU code (shaders). 

Due to its simplicity and relatively few drawbacks, the last option 

(ubershader with the main function as a single entry-point and switch statement) 

was selected for the organization of compute shader for the Compact and Sort stage. 

6.3 Operation atomicExchange vs. atomicMax 

The task of the compute shader for the Choose First Sample stage is to select 

the first sample for the rest of the algorithm. It does not matter which pixel is 

selected for the first sample as long as it is valid. The body of the shader looks like 

this: 
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const ivec3 textureUVW = ivec3(gl_GlobalInvocationID.xy, 0); 

const vec4 worldPosition = texelFetch(worldPositionsTexture, 

textureUVW, 0); 

 

if (worldPosition.w > 0) // pixel is valid 

{ 

    atomicMax(sharedPackedSampleCoordinate, 

        packCoordinate(textureUVW)); 

} 

 

This compute shader goes through pixels of worldPositionsTexture 

(at layer 0, since it does not matter which layer is chosen) and checks which pixel has 

a value of W coordinate non-zero. This is sufficient and the only condition for a 

pixel to be considered valid; therefore, it can be chosen for the first sample. 

Next, the shader needs to pack the coordinates of this pixel and set shared 

uint sharedPackedSampleCoordinate to its value. After proper 

synchronization of invocations using barriers, this shared variable is written into the 

global array surfelSamples.samples[0] by locally first invocations (it does 

not matter which specific invocation is used) of each workgroup. 

The interesting part is the actual setting of the 

sharedPackedSampleCoordinate variable. This variable is shared between all 

invocations within a single workgroup. Atomic operations are the best candidates 

for this since they do not require manual synchronization between invocations. 

Based on the operation's name alone, atomicExchange might seem ideal 

for this task. However, using atomicMax instead provides one very good advantage 

– result reproducibility. 

Scheduling of workgroups is entirely up to the driver, and individual 

invocations in each workgroup would call atomicExchange operation in a 

different order, resulting in different results (different first samples) for each 

application run. Function atomicMax ensures the same result regardless of the 

scheduling of workgroups and invocations. This is great for debugging purposes. 

And since the Choose First Sample stage is called only once at the beginning of the 

algorithm run and the performance difference between these 2 atomic operations is 

negligible, atomicMax is used even outside debug runs. 
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The same mechanism is used at the end of this shader – at the place where 

locally first invocations of each workgroup set the global value of 

surfelSamples.samples[0] equal to sharedPackedSampleCoordinate 

(packed into surfel sample). Usage of function atomicMax will result in the same 

value in surfelSamples.samples[0] each algorithm run, regardless of 

workgroup scheduling. 

Of course, it should be noted that atomicMax, in this case, acts as 

atomicExchange only because the sharedPackedSampleCoordinate 

variable is set to 0 at the beginning of the shader run, and all valid packed 

coordinates are represented as positive non-zero numbers. 

The same technique with the same context is used in the 

ExtractFarthestSamples compute shader. 

6.4 Unsafe code 

Due to the nature of Silk.NET, it is impossible to avoid using unsafe C# code 

in this project. This essentially means using raw asterisk pointers (such as void*). 

This is used only when necessary due to undelaying API. Some parts of code also 

require using IntPtr or nint to store pointers (for example, to call 

Marshal.StructureToPtr method). 

Handling and management of raw global memory could not be avoided 

either. This is, for example, when chaining several structs using void* PNext of 

Vulkan structs. PNext is a pointer to the next Vulkan struct, which is used to add 

information, for example, using extensions. Almost all Vulkan structures contain this 

field, which leads to the possibility of chaining as many structs as needed.  

Unfortunately, in C#, this is problematic due to the automatic garbage 

collector, which does not know that the pointer is still used by some void*. To fix 

this, Silk.NET offers the method SilkMarshal.Allocate method (and its 

counterpart SilkMarshal.Free) to allocate global memory. This memory can 

then be populated using Marshal.StructureToPtr. This is precisely what 

VulkanHelperFunctions.StructToGlobalMemory method does. 

Working with global memory results in extra care needed to be taken by a 

programmer to avoid memory leaks. This is especially true for C# where unsafe 

code and memory leaks in general are very rare. 
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6.5 Sampling colors 

Right now, the Sampling stage directly takes only a single sample of color 

for a given fragment. In some rare cases, this might cause graphical issues such as 

aliasing (see Figure 18). 

 

Figure 24 An example of an aliasing in computer graphics caused by insufficient sampling. 

Source: Spatial Antialiasing - Presented by Tiger Giraffe14F

20 

An easy way to improve it would be to take multiple samples from each 

fragment and average them. This can usually be hardware accelerated since the same 

technique has been used for MSAA (multisample anti-aliasing) in games and other 

software for many years. 

Another more advanced approach would be to take multiple samples not just 

from a given fragment but from neighboring fragments as well. This is more 

difficult to implement and will result in significantly higher performance hit. 

                                                 

20 https://mielliott.github.io/index.html 

https://mielliott.github.io/index.html
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Figure 25 An example of a CAD model. Source: “Car Engine” model by Mahtabalam Khan 

published on GrabCAD Community website15F

21 

However, it is essential to consider what data type is expected to be sampled. 

For the case of this project and the whole FataMorgana platform, the most common 

3D models on input are CAD models. They usually have uniform colors and very 

few places to cause aliasing since textures are rarely used (see Figure 19 for an 

example). Therefore, it was decided that improvements in the color sampling process 

have low priority and are outside this project's scope. 

6.6 Replacement of Sampling stage 

As mentioned in Chapter 5.4.2, the Sampling stage is the only stage that 

works with an actual mesh representation of the scene. All other stages work with 

G-buffers containing color, normals, and positions for pixels generated in the 

Sampling stage. 

This means the Sampling stage can be easily replaced with anything else that 

can provide these attributes. This could be, for example, a 3D scanner, 

photogrammetry system, ray-tracer, or even some novel neural-network-based 

                                                 

21 https://grabcad.com/library/car-engine-8 

https://grabcad.com/library/car-engine-8
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techniques such as NeRF (Mildenhall, et al., 2020) or Gaussian splatting (Kerbl, et 

al., 2023). 

Note that the camera's position with a depth map (more prevalent for some 

of these techniques) instead of the actual positions of pixels is also sufficient since 

world positions can be calculated from them. 

6.6.1 FMBrain 

One specific system that could replace the Sampling stage is FMBrain. This 

project was created in Pocket Virtuality as part of the FataMorgana platform. 

The purpose of FMBrain is a production of high-quality meshes created by 

the combination of data from various sources: 

• low-quality meshes provided by HoloLens sensors, 

• photos periodically captured from HoloLens main RGB camera, 

• point clouds from 3D scanners (such as Leica BLK 360), 

• and potentially others. 

It contains a photogrammetry pipeline for processing those photos and 

works with colors, normals, and positions for pixels. The exact outputs of the 

Sampling stage. Therefore, this would be the first candidate for replacement of this 

stage if needed. 

6.7 Nullable warnings 

Novel C# versions bring features for mitigating errors caused by null 

references. This is mainly in the form of static analysis done by the compiler and 

can be turned on per file (#nullable enable preprocessor directive) or for a 

whole project (<nullable>Enable</nullable>). 

It is recommended to write new code with this feature enabled. However, as 

this project shown, it is not always possible or beneficial enough. 

Since the majority of the work of this program is done on the GPU side, 

occasional null checks in CPU code will not cause a noticeable performance hit. 

The vast majority of Silk.NET Vulkan API consists of structs that are not 

nullable. They can be made nullable using StructType? notation (shorthand for 

Nullable<StructType>). But most of these Silk.NET structs are just wrappers 

around its single field public ulong Handle. This works like an opaque 



87 

 

“pointer” for Vulkan API. If the Handle = 0, it is considered an equivalent of a 

null pointer, and use of it in API calls will, in most cases, throw an exception or 

return an error result. 

The compiler’s static analysis, of course, does not check for the value of 

Handle; therefore, it would still miss a lot of possible runtime errors caused by a 

null reference. 

6.7.1 MemberNotNull attribute 

Attributes MemberNotNull and MemberNotNullWhen could help, but 

unfortunately, they do not play nicely with inheritance. More specifically, using 

these attributes in such cases results in “Warning CS8776: Member '<member from 

base class>' cannot be used in this attribute”. This problem is still being worked on, 

as seen in GitHub issue #5653116F

22 for the Roslyn compiler. 

Another problem with the MemberNotNull attribute is that it does not seem 

to work nicely with method calls. Imagine this code: 

 

DescriptorsManager decriptorsManager; 

 

void Initialize() 

{ 

    CreateDescriptorsManager(); // creates decriptorsManager 

    CreatePipeline(); // the inside of this method does not know that 

descriptorsManager is not null 

} 

 

Then we create the IsInitialized property and AssertIsInitialized 

method like this: 

 

[MemberNotNullWhen(true, nameof(descriptorsManager))] 

bool IsInitialized { get; set; } = false; 

 

void AssertIsInitialized() 

{ 

    if (!IsInitialized) 

    { 

        <handle error> 

    } 

} 

                                                 

22 https://github.com/dotnet/roslyn/issues/56531 

https://github.com/dotnet/roslyn/issues/56531


88 

 

 

After all this, it might seem like the following code for the CreatePipeline 

method should be able to detect whether descriptorsManager is null or not: 

 

void CreatePipeline() 

{ 

    AssertIsInitialized(); 

 

    pipelineLayout = VulkanHelperFunctions.CreatePipelineLayout( 

descriptorsManager.DescriptorSetLayout,…); 

} 

 

If static analysis for nullability is turned on, a warning saying that 

“descriptorsManager may be null here” in a call to CreatePipelineLayout 

appears. This warning can be removed only by copying the whole body of the 

AsserIsInitialized method directly inside of the body of 

CreatePipeline. The call to AssertIsInitialized (as in the code example 

above) is insufficient. This would, naturally, result in a lot of copied code, which is a 

bad practice. 

Various other static analyzers for nullability included in Visual Studio 

require much work before being fully usable. 

6.7.2 API call and out parameter 

Furthermore, changing these Vulkan structs to nullable would break 

compatibility with almost all API calls. Let’s say we have this code: 

 

private Queue queue; 

 

void SetQueue() 

{ 

    Vk.GetDeviceQueue(…, out renderingGraphicsQueue); 

} 

 

Changing Queue to Queue? is not compatible with out parameter of 

Vk.GetDeviceQueue method. And majority of these structs are created exactly 

this way – as out parameter instead of a return value (which is reserved for 

Result). This problem can be fixed by introducing a new method-local variable 

and assigning it to a class variable queue. Still, it would add boilerplate code for 

each of these API calls, making the code less readable. 
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6.8 Rendering of surfels 

SurfelRenderer is used only for debug visualization of generated 

surfels. It is still a good demo of how easy it is to draw these surfels. The process it 

uses is explained in detail in Chapter 5.3.2. 

This chapter talks about rendering primitives that can be used for rendering 

surfels and their blending with each other and polygonal meshes. 

6.8.1 Shape of surfels 

Surfels can be rendered as various shapes using several techniques. 

Circles 

Using a geometry shader to create a triangle, which is then “cut” into a 

circle in a fragment shader (as SurfelRenderer does), is not the only possible 

technique to render surfels. And also, it is not always the best. For example, the 

hardware architecture on Microsoft HoloLens 2 causes the geometry shader to be 

very slow. 

Squares 

One of the alternative approaches would be to render a simple square. This 

does not require a non-standard approach with geometry shader. However, without a 

geometry shader, there would have to be 4 vertices for every surfel in the vertex 

buffer instead of just a single vertex. Which translates into more data stored and 

more work for the vertex shader. 

Point sprites 

Older graphics APIs such as DirectX 9 and OpenGL support so-called point 

sprites. They are a generalization of points as primitives. The primary use for them 

was particle systems. However, since they support the setting of size and color, they 

could be an alternative to the aforementioned approaches. 

Modern graphics APIs do not offer this functionality anymore. Therefore, it 

was not investigated further. It is possible that this technique was never intrinsic to 

GPU hardware and was just emulated using a geometry shader and subsequent 

discarding of fragments similar to the rendering of surfels as circles mentioned 

above. 
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Squarkle 

Azure Remote Rendering supports native rendering of point clouds. Each 

point is rendered as a squarkle – a combination of square and circle. This technique 

results in space coverage almost as good as a square, but it keeps the precision of a 

circle. 

Unfortunately, no more information was provided or found. It might be a 

good idea to keep that in mind and later check papers describing this technique in 

more detail. 

Using squarkles for rendering was mentioned in the Azure Remote Rendering 

presentation for Mixed Reality Dev Days 202217F

23. 

6.8.2 Transition between surfels and original mesh 

One of the more advanced techniques required for high-quality rendering in 

the final product would be a transition between surfels and the original representation 

of mesh when the model gets close enough to the camera. 

To prevent ugly “popping” during the transition, both mesh and surfels of 

the same models could be rendered simultaneously, and alpha blending would be 

used to transition between them smoothly. This is, however, strongly dependent on 

the external system – primarily its rendering pipeline and representation of the 

original mesh. 

6.8.3 Blending between surfels 

Alpha blending could also be used for nicer blending between surfels 

themselves. They could be rendered opaque in the center and progressively more 

transparent toward the edges – similar to Gaussian splats (mentioned in Chapter 

2.3.4). 

This technique was used in several older approaches to rendering surfels. 

However, surfels in those cases were usually significantly larger than those in this 

algorithm. Therefore, it is possible that this approach would bring little to no visual 

improvement in most cases. What it would definitely bring is, however, the 

rendering complexity. Whenever objects with transparency are rendered, they need 

                                                 

23 https://youtu.be/R6SoCL25nCY?feature=shared&t=1980 (timestamp 33:00) 

https://youtu.be/R6SoCL25nCY?feature=shared&t=1980


91 

 

to be rendered in an ordered manner (back-to-front). Using alpha values also means 

no early depth tests, resulting in another impact on performance. 

6.9 FMsurfelsDebugTools 

Part of the FMsurfels solution is the project called 

FMsurfelsDebugTools. It is a tiny project consisting of a single Program.cs 

file with all code being just in the Main method. 

Its only purpose is to provide a simple command line tool to decompose a 

surfel sample packed in ulong (64-bit unsigned integer) into its parts – texture 

coordinates (2 uint values), layer index (uint), and radius (float). 

Even though it is relatively simple, it is still robust regarding input parsing, 

and it correctly displays errors instead of just throwing an exception and shutting 

down. 

6.10 Shared texture in Voronoi stage 

The last 2 lines of the fragment shader for the Voronoi stage look like this: 

 

outDistance = distanceToSite / bounds.maxDistance; 

gl_FragDepth = distanceToSite / bounds.maxDistance; 

 

and the question might be – why not share 1 texture between the depth buffer and G-

buffer of distances (outDistance) since both are assigned the same value? 

The answer is that the G-buffer of distances is read in the shader in the next 

stage. For that, its Image needs to be in the ShaderReadOnlyOptimal layout. 

Depth buffer, on the other hand, requires the use of 

DepthStencilAttachmentOptimal layout. The transition between these 2 

ImageLayouts back and forth in each algorithm iteration might be too big of an 

overhead (depending on architecture and drivers). Added complexity to code is also 

to be considered – ImageLayout transition must be done through 

CommandBuffer. 

The gain from sharing one texture would be just a little saved memory. And 

almost no processing time (initialization and disposal of 1 of the textures) would be 

saved because of all the new wasted time on ImageLayout transitions. 
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6.11 Disposal of Vulkan objects 

All classes creating Vulkan objects also dispose of them to prevent memory 

leaks. This is done through Vk.Destroy… methods. To make this more 

manageable, System.IDisposable interface is fully implemented on all relevant 

classes. 

While IDisposable requires only the implementation of a single void 

Dispose() method, the reality is a bit more complicated (primarily due to classes 

with inheritance). 

In the end, the whole implementation of C# Dispose Pattern (for needs of 

this project) for a single ExampleClass class looks like this: 

 

protected bool disposed = false; 

 

public void Dispose() // required by System.IDisposable interface 

{ 

    Dispose(true); 

 

    GC.SuppressFinalize(this); 

} 

 

protected virtual unsafe void Dispose(bool disposing) 

{ 

    if (disposed) 

    { 

        return; 

    } 

 

    Vk.Destroy…(…, Allocator); 

 

    <other IDisposable classes>?.Dispose(); 

 

    disposed = true; 

} 

 

~ExampleClass() // destructor 

{ 

    Dispose(false); 

} 
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6.12 Multiple GPUs 

One of the considered performance improvements is the use of multiple 

GPUs. This could be done in several ways. 

It is important to note that this algorithm is not real-time, unlike games. 

Therefore, these approaches to utilize multiple GPUs are not strictly related to 

technologies such as SLI or CrossFire used for synchronized cooperation of GPUs. 

Also, both SLI and CrossFire have seen a significant loss of interest in the last years 

in the consumer market. The only remaining useful technology for this is NVLink, 

which is focused more on enterprise solutions. 

6.12.1 Per-model basis 

Utilizing multiple GPUs on a per-model basis would mean that each sampled 

model is processed on a different GPU. Since each processing means a new and 

independent run of this program, there would be no issues related to memory 

conflicts and synchronization. It also means there is no need for tight cooperation of 

GPUs using aforementioned technologies such as SLI or CrossFire. However, this 

approach would have to be fully implemented in external application. 

The only change in this program would be an added way to select a desired 

GPU from the outside. That is relatively easy to do. 

6.12.2 Inside of algorithm 

The second approach to utilizing multiple GPU would be to modify this 

program by splitting the load. This would require extensive changes to the 

algorithm as well as handling of synchronization of memory and states. Doing this 

correctly for an arbitrary number of GPUs is a very complex task and significantly 

out of this project's scope. 

Since each run of the algorithm (for a single model) is expected to be 

relatively fast, it is doubtful whether this approach would bring any significant 

advantage. 

6.12.3 Conclusion 

Based on the aforementioned analysis of 2 approaches to utilize multiple 

GPUs, it is pretty easy to see that “per model basis” is easier to implement in 
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general, less prone to issues with synchronization, less dependent on other 

technologies, and last but not least it would probably bring more significant 

performance advantage. 

This is still just an initial analysis – at best, it is a starting point for one of the 

future improvements/additions. 

6.13 Layered rendering 

Layered rendering refers to a technique when one render call results in writes 

to more than 1 layer of framebuffer/render target. This technique was initially used 

for cube-based shadow mapping and cube environment maps – instead of rendering 

scene 6 times per cube map, it can be rendered in a single pass. A more novel use of 

this technique is rendering for stereo displays, such as AR/VR headsets, stereo 

projectors/monitors, CAVE systems, etc. 

Layered rendering is heavily utilized in this project (in G-buffer stages) to 

extract as much performance as possible. 

There are 2 main approaches to layered rendering: 

• Geometry shader instancing – This technique uses geometry shader to 

create multiple copies (instances) of each primitive it processes. The 

aforementioned example with cube maps can render the whole scene 3-4 

times faster than independent draw calls (Stenning, 2014, page 319). Its 

primary disadvantage is that the number of instances has to be set in 

compile time right in the shader as an attribute. It is possible to re-

compile the whole shader with a new constant at runtime, but that 

significantly increases the complexity of the build process and is not very 

flexible. 

• Multiview rendering – A more flexible approach is using multiview 

rendering. In Vulkan, this is provided by the VK_KHR_multiview 

extension. It allows to set a number of instances right at the time of 

calling the draw call. It also does not require a geometry shader, 

which would be an unnecessary bottleneck in cases where a geometry 

shader is not used for anything else. 
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Due to the disadvantages and worse flexibility of geometry shader instancing, 

multiview rendering was selected as a better candidate for layered rendering 

in this project. 

6.14 Alternative for atomic operations 

As mentioned in Chapter 4.1.4, DirectX 11 lacks an essential operation for 

this project – atomic max on 64-bit floats. There were attempts to work around this 

issue using mutex. 

For evaluation purposes, 2 shaders were created to do essentially the same 

max operation on 1D texture containing uint values: 

• One shader used atomic operation (InterlockedMax), and its code 

looked like this: 

 

RWTexture1D<uint> SimpleSurfelSamples : register(u0); 

 

[numthreads(THREADSX, THREADSY, THREADSZ)] 

void ExtractFarthestPointCS( 

    uint groupIndex : SV_GroupIndex, 

    uint3 groupId : SV_GroupID, 

    uint3 groupThreadId : SV_GroupThreadID, 

    uint3 dispatchThreadId : SV_DispatchThreadID) 

{ 

    uint coord = (groupThreadId.x * dispatchThreadId.y * groupId.z * 

groupIndex) % 1000; 

 

    InterlockedMax(SimpleSurfelSamples[coord], groupIndex); 

} 

 

• The second one, significantly more complicated, uses mutex and active 

waiting. Compared to the aforementioned shader, this one adds mutex in 

the form of 1D texture: 

 

RWTexture1D<uint> SimpleSurfelSamples : register(u0); 

 

and changes the body of ExtractFarthestPointCS function 

accordingly: 
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bool keepWaiting = true; 

 

while (keepWaiting) 

{ 

    uint originalValue; 

    // try to set the mutex to 1 

    InterlockedCompareExchange(Mutex[coord], 0, 1, originalValue); 

 

    if (originalValue == 0) 

    {   // nothing was locked (previous entry was 0) 

 

        // do actual work 

        if (groupIndex > SimpleSurfelSamples[coord]) 

        { 

            SimpleSurfelSamples[coord] = groupIndex; 

        } 

 

        // unlock mutex 

        InterlockedExchange(Mutex[coord], 0, originalValue); 

 

        // exit loop 

        keepWaiting = false; 

    } 

} 

 

The result of the performance evaluation of these 2 shaders was undoubtedly 

in favor of atomic operation. While that shader took around 0.16ms (average of 10 

runs), the version of the shader with mutex took 1551ms on average. That is several 

orders of magnitude slower. The standard deviation in both cases was small and did 

not play a role in the results. 

This shows that using mutex instead of atomic operations in shaders would 

result in a considerable performance hit. Therefore, the use of DirectX 11 was not 

feasible. 
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7 Results 

This chapter talks about the concrete results of the project as a whole – both 

the research and the implementation part. It consists mainly of discussions of 

contributions in various ways and to various parties, as well as the project's current 

state. 

7.1 Research 

The first part of this thesis consisted of research for adequate LoD technique. 

Chapter 2 went through various rendering optimization approaches, compared state-

of-the-art LoD algorithms, and justified the selection of Blue Surfels for the second 

part of this thesis. 

This research should not be considered a meta-analysis of LoD algorithms 

since it was constrained by the requirements for this project. However, it is still 

extensive, detailed, and up-to-date enough to help others get an overall idea of 

where research in the field of LoD is and even how it got there all the way from the 

first papers. 

7.2 Improvements compared to existing implementation 

The second part of this project, the implementation of the selected LoD 

technique, is far more than just a copy of the existing implementation of Blue 

Surfels. 

First of all, this project replaced deprecated OpenGL with modern Vulkan. 

Besides the utilization of modern technologies, Vulkan also provides the most 

possibilities for future improvements and the best performance gain. All that while 

keeping multiplatform support similar to that provided by OpenGL. 

The result of this project is a completely independent executable unit with 

no 1st party and only a minimum of (carefully selected) 3rd party dependencies. This 

is unlike the existing implementation, which relies heavily on university renderer 

PADrend and is not prepared for compilation on other platforms other than Linux. 

Even the compilation on Linux is not without issues. 

The important part is also significantly more readable, organized, and 

documented code. This is a notable disadvantage of the existing Blue Surfel 
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implementation. It looks like a typical research paper implementation – as long as it 

works and is implemented quickly, it is fine. There were no expectations of 

programmers using it other than authors themselves. 

7.3 State of the project 

The algorithm implemented for the purpose of this project is a type of 

algorithm that can be extended and improved for years. Naturally, it was 

impossible to include all of them in this project at the time of submission for the 

purpose of the thesis. However, some of these potential improvements are 

mentioned all around this thesis text. 

The code's architecture is designed to be easily extensible in the future. 

Future work on this project was always expected since the code was developed 

partially for the company Pocket Virtuality. 

Nonetheless, the submitted code for this thesis is fully functional from the 

beginning to the end. More specifically, the program takes an .obj file on the input 

and produces a surfel representation of it. 



99 

 

 

Figure 26 A debug renderer window displaying a sampled car model in the form of surfels 

(10k in total). 

The submitted code also includes an interactive debug renderer (see Figure 

24) for easy visualization of the result. 

Command line arguments provide a way to adjust the inner workings of the 

surfel generator as needed. 

The main part of future work would be an external system around this 

program. Such a system would take care of the calls to the program (setting its 

inputs and parameters) and then handle produced outputs. However, it is expected 

that this external system would be extremely dependent on the platform into which it 

should be integrated. Therefore, it was outside of this project’s scope. 

7.3.1 Conclusion 

The submitted version of this project’s program: 
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• supports all the essential parts, 

• is fully functional, 

• improved the original implementation of Blue Surfels in several 

aspects, 

• and is architecturally prepared for future extensions and 

improvements. 

This all seemed like a reasonable scope for the needs of this Master's thesis. 

7.4 Presentation of results 

This subchapter presents 2 selected 3D models – sampled and rendered as 

surfels using a debug renderer. 

A lot of various 3D models were tested during the development. Two of them 

were selected for presentation of results. These models are sufficiently different in 

size, proportions, and overall shape to represent the most common use cases well. 

7.4.1 Car 

The car model was selected because it has a uniform cuboid-like shape with 

mostly curved surfaces (both convex and concave). Its mesh is pretty low-poly 

(~3.6k faces) for such an object. 

 

Figure 27 A 3D model of a car viewed as a triangular mesh rendered in MeshLab24 on the 

left and the debug renderer visualizing the same model as sampled surfels on 2 right pictures. There 

are 10k surfels in both right pictures, just with varying sizes for easier visualization. 

Firstly, Figure 27 shows a comparison of triangular mesh and surfels. Both 

surfel representations contain the same number of surfels, only the surfel size is 

different. Note that the middle picture from this figure is not representative of the 

                                                 

24 https://www.meshlab.net/ 

https://www.meshlab.net/
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intended final usage. The size of the surfels should always be selected so there are no 

gaps compared to the original mesh. 

Also, rendering 10k surfels instead of the original mesh, which has only 3.6k 

faces, would make very little sense. This is only for demonstrative purposes. The 

sampling of an ultra-high-poly version of the same car model would produce a very 

similar set of surfels for rendering, making surfel representation more useful. 

On the other hand, Figure 28 shows that even a few hundred surfels are 

enough to approximate the car model relatively well. 

Again, such low numbers of surfels would be used only in case the model is 

really far from the camera. Usually, the size of the surfel would be selected so that its 

projection in the worst-case scenario is a few pixels on the screen. In these pictures, a 

single surfel is notably projected to thousands of pixels, if not more. The more 

realistic visualization is in Figure 29. 

Nonetheless, this demonstrates the effect of varying numbers of surfels 

(even in extremes) on visual quality and recognizability compared to the original 

model. 
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Figure 28 The same model of car rendered using a varying number of sampled surfels 

(number in the bottom right corner of each picture). From unusably low 60 surfels, through decently 

usable (at high distance from camera) hundreds of surfels, all the way up to 10 000 surfels. 
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Figure 29 Comparison of the same models (same surfel counts) as in Figure 28. Displayed 

horizontally (upper right corner), there are all models next to each other scaled down to the same size 

(to simulate large distance from the observer). Vertically, each model is scaled to match the same 

surfel size (based on the most upper left model). 
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7.4.2 Crane 

The second model selected for the presentation of results is a crane. 

Compared to the car model, the crane: 

• is significantly less uniform, 

• has marginally more polygons – about 130k, compared to less than 4k 

polygons used for car model, 

• consists of mostly sharp edges (and very few curved surfaces), 

• contains challenging parts such as long thin rods and cables 

(pendants) 

 

Figure 30 Model of crane composed of 100 all the way up to 100k surfels (number in the 

corner of each picture). The bottom right picture shows an original triangular mesh (~130k faces) 

rendered in MeshLab. 
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This model poses a great challenge with its very low uniformity and long, 

thin parts. Pendants, diagonal cables connecting the middle tower peak with the 

horizontal jib and counterjib, are a dominant part of any crane and are very 

important in its recognition. But they are also thin and, therefore, generally 

challenging for most LoD techniques. 

As Figure 30 shows, even versions with an extremely low number of surfels 

(a few hundred) preserve these pendants very well, making the object easily 

recognizable as a crane from a distance. 

It is important to note that these surfel representations show artifacts in the 

form of high contrast between neighboring surfels. This is partially due to the very 

primitive lighting model (Lambertian shading) used in the debug renderer but also 

because surfels appear way too big in low-surfel-count versions. This is an 

unrealistic scenario used only for demonstration purposes. Techniques such as EWA 

filtering (see Chapter 2.3.4) would greatly help this problem. 

 

Figure 31 A close-up of the back platform on the crane from Figure 30. It contains pictures 

of both the original mesh rendered in MeshLab and the debug renderer using 3k, 12k, and all 100k 

surfels. The number of surfels refers to the total number on a whole crane, not just a visible part. 

Figure 31 shows a close-up of a platform on a crane’s counterjib. This spot 

was chosen to show challenging parts of the model, such as various rods and 

railings, in more detail. And as this figure shows, this technique can reconstruct even 

meshes like this one pretty well. 
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Low surfel counts (thousands of surfels) are not very usable in this scenario, 

but they would not be used in such a close-up anyway. In some cases, it might be a 

good idea to split such a big model as this crane into multiple parts and let each part 

handle the LoD level independently. This would make sense if an external program 

expected a camera to be located, for example, at the bottom platform of the crane 

(where original mesh or at least high surfel count should be used) and distant parts 

(top of the crane) could be rendered using just a few surfels. 

7.4.3 Render times 

 

Figure 32 Dependency of number of rendered surfels and time for a single draw call 

(vkCmdDraw) in microseconds. Tested in debug renderer on a model of the crane. Times are 

calculated as an average of 5 independent frames, captured and analyzed using RenderDoc (Nvidia 

Nsight Graphics reported similar times). Measured standard deviations were insignificantly small. 

Time to render the model is linearly dependent on number of surfels it is 

made of, as can be seen on Figure 32. This was tested in the debug renderer with no 

optimizations such as frustum or occlusion culling and with standard depth test 

enabled. 

As can be seen, rendering very small amounts of surfels (the lowest tested 

number was ~150) is not effective since there is an overhead of about 10μs for a 

render call itself. For a comparison, rendering 1000 surfels took only 2μs longer, and 

rendering 6000 surfels took, on average, an additional 2μs. From that point onward, 

the change is more or less proportional. 
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7.4.4 Conclusion 

The previous subchapters and their figures showed that this technique of 

mesh sampling has good results on both concave and convex curved surfaces, as 

well as surfaces with sharp edges. Moreover, generally challenging meshes such as 

long, thin rods/ropes are handled correctly as well. 

Different homogeneity of the input model does not pose a problem for this 

sampling technique either. However, depending on the scenario, big models such as 

an example crane might need to be split into multiple parts, and each part sampled 

independently. 

Limitations such as graphical artifacts were acknowledged and explained, 

and a solution for them was proposed. 

Figure 28 together with Figure 30 show that as low as few hundreds of 

surfels can create a representation of a model which is good enough in case it is 

viewed from a relatively long distance. This, with the results presented in Figure 32, 

shows that these sampled models are adequate for LoD needs. 

For example, rendering a single model consisting of 10k surfels (because it is 

close to the camera) is equivalent to rendering 10 instances of the same model, each 

consisting of 1k surfels (since they are further away). Naturally, this example does 

not consider other optimization techniques, rendering approaches, overheads, etc. 

7.5 Other uses of the project 

The result of this project is not only an improved implementation of Blue 

Surfels. The critical part is also an extensive foundation for Vulkan-based 

applications/renderers. 

As can be seen throughout the whole of Chapter 5, there was a strong focus 

on scalable and extensible architecture. Evidence of that is deep hierarchies of 

classes, from the most abstract one, through generic implementation (great as a base 

for other projects), all the way to concrete classes used for this project. 

The minimal amount of 3rd party dependencies also helps with the use as a 

base for other projects. Besides that, these 3rd party libraries were carefully selected 

with regard to licenses (so there are no issues with commercial use) and probability 

for long-term support. 
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7.6 Limitations 

The following subchapters discuss some of the largest limitations of this 

project in its current state, with justification for the lack of these features. 

7.6.1 Input format 

This project, in its current state, has very strict limitations related to the 

format of input. 

First of all, only .obj files are supported. This format for chosen for its 

(relative) simplicity of its implementation using 3rd party libraries and widespread 

access to free data. However, as mentioned, this is not very useful for the final 

implementation. Any external program using this project would have to implement 

its own import of models. 

It is not possible to implement fully universal system for all cases. Not only 

it can be any format (even proprietary one) but it can be imported in various ways 

(as a pointer to CPU memory, file on drive, handlers to vertex and index buffers on 

GPU, etc.). 

Not to mention that input might not be in the form of 3D model at all. 

Skipping sampling stage and providing sampled data from different system (such 

as 3D scanner) is a valid strategy. And again, creating universal system for this case 

would be extremely time consuming and irrelevant to the goals set for this project. 

Second of all, even though .obj format is relatively simple, supporting it 

fully is not easy. There is far more than just positions and colors. Full support for 

.obj files would have to handle various colors (ambient, diffuse, specular), 

illumination models (reflections, …), bump and displacement maps, and much 

more. 

With all that, a surprisingly high number of .obj files available online are not 

fully correct. There are often invalid values and missing MTL files with materials. 

Handling all of this is outside of the scope of this project. 

The complexity of the full support is also one of the reasons the results 

presented in previous subchapters are all greyscale. Finding adequate and interesting 

.obj files with the correct colors and materials is not an easy task. However, the 

general support for handling of color in the rest of the algorithm was tested and 

worked without any issues. 
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7.6.2 Sampling of model interior 

Currently, the sampling stage samples the input model only on its surface. 

In many cases, this is good enough. However, as mentioned in (Brandt, et al., 2019), 

some models would benefit from being sampled from inside as well. 

This can be achieved using techniques such as depth peeling. In the context 

of this project, depth peeling would work on the principle of sampling topmost layer 

from each direction several times, while rejecting samples already sampled in the 

previous iteration. This would result in sampling deeper and deeper layer each 

time. 

But all of this comes with a cost of higher complexity. Not only 

computational but also a complexity of decision making on which models should 

be sampled in depth and, especially, how deep should the sampling go. 

More about depth peeling approaches in general can be found in, for example, 

(Bavoil, et al., 2008) or (Liu, et al., 2009). 

7.7 Contributions to 3rd party software 

This project works with several unusual techniques, such as the non-standard 

use of rendering pipeline and rare formats. This caused several issues with 3rd party 

software. These issues were adequately reported, which led to their fix. 

7.7.1 RenderDoc 

RenderDoc having an active community and creator came in handy when 

several issues were discovered in this graphics debugger. 

More specifically, there was a lack of support for using both geometry 

shaders and multi-view rendering simultaneously. This caused buggy behavior of 

GUI (such as missing output in panels) and lack of any form of notification18F

25. 

The second case was improper handling of packing of vector consisting of 

two 32-bit numbers into 64-bit and vice versa (unpackUint2x32 and related 

methods) in shader debugger. 

                                                 

25 GitHub issue: https://github.com/baldurk/renderdoc/issues/2595 

https://github.com/baldurk/renderdoc/issues/2595
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The last encountered issue was also related to 64-bit numbers, which are rare 

in standard rasterization pipelines. The usage of 64-bit numbers in the vertex 

buffer (when read in the vertex shader) caused the crash of RenderDoc. 

All these issues led to proper bug reports and were quickly fixed by the 

creator. 

7.7.2 Visual Studio 

As part of the development of this project, a bug in Visual Studio was 

discovered and reported, which led to its successful fix19F

26. This was a minor bug in 

IEnumerable Visualizer (debug window for IEnumerable classes). It involved 

an incorrect row index being displayed for selected rows. Before it was discovered, 

this bug caused several inconveniences since this feature was crucial in early 

development and debugging. 

                                                 

26 https://developercommunity.visualstudio.com/t/IEnumerable-Visualizer-row-index-does-

no/10130331 

https://developercommunity.visualstudio.com/t/IEnumerable-Visualizer-row-index-does-no/10130331
https://developercommunity.visualstudio.com/t/IEnumerable-Visualizer-row-index-does-no/10130331
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8 Discussion 

This chapter contains a few miscellaneous topics that would not fit anywhere 

else. These topics are usually just extensions and thoughts on top of the whole 

project. 

8.1 Selection of models for conversion to surfels 

Not all models are suitable for conversion using this algorithm. This chapter 

discusses it, mainly from the point of the FataMorgana system. 

CAD models are great candidates for conversion. They usually contain a 

considerable number of triangles, have uniform colors (and rarely any textures – 

see Figure 19), and are mostly static. Even if there are animations, it is usually just a 

simple translation/rotation of parts of the mesh and no morphing of the mesh itself. 

Therefore, this technique could be used as long as separate static sub-models are 

converted separately. 

On the other hand, a scanned environment from HoloLens is not the best 

candidate for this. It is usually low-poly; therefore, the performance advantage of 

surfels would be relatively small. And, more importantly, these meshes are 

constantly changing (as the physical scene changes) and improving (with finer and 

finer detail). 

The more complicated is the decision of whether to convert the environment 

scanned using 3D scanners such as Leica BLK360. Output from such scanners can 

vary in size a lot depending on the device and settings. Also, it depends on the usage 

of the scanner itself. If the environment is scanned once and remains static after that, 

conversion to surfels could be used. But if the 3D scanner is still used to gradually 

improve and extend existing scans (similar to the case with HoloLens), it might be 

wise to wait with conversion. 

8.2 Small triangle draw efficiency 

Rasterizing many triangles smaller than 2x2 pixels is extremely ineffective. 

This applies to the vast majority of standard modern GPU architectures. The authors 
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of Nanite realized this27 when working on their rendering optimization algorithm, 

which is based on rendering a huge number of small triangles. Their research 

concluded that primitive and mesh shaders could help, but software rasterization 

was still several times faster than standard GPU rasterization. Besides Nanite, similar 

work was presented in (Kenzel, et al., 2018). 

The rendering of surfels outputted from the algorithm presented in this thesis 

could pose the same challenges. Software rasterization is not easy to implement 

effectively with all the required features, such as depth tests. 

Moreover, hardware rasterization is still more effective for large triangles. 

This means that the selection process between software and hardware rasterization 

needs to be implemented. Additional care must be taken to prevent pixel cracks 

between these 2 rasterizers. 

                                                 

27 

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf 

(starts at page 80) 

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
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9 Conclusion 

Rendering for AR/VR devices is especially demanding. There are many 

rendering optimization techniques, each with its advantages and disadvantages. 

Therefore, the first goal of this project was to research and find an adequate 

LoD algorithm for the needs of the FataMorgana platform. The second goal was to 

implement this algorithm with potential improvements and additions. 

9.1 Research 

The first part of this project, a research, consisted of an extensive review of 

existing literature in the field of rendering-optimization techniques, mostly based on 

the LoD approach. The focus was on: 

• novelty – which usually means good performance and modern hardware 

utilization compared to older techniques, 

• scalability – since the algorithm should help with the rendering of huge 

scenes in a vast range of devices, from powerful desktop computers to 

low-power standalone AR/VR headsets, 

• and the support for input format – which is expected to be not only in 

the form of a triangular mesh but also a point cloud from a 3D scanner 

and other non-standard representations. 

Based on the stated criteria, the best candidate for the LoD-based algorithm 

was selected to be a technique called Blue Surfels, as presented in (Brandt, et al., 

2019). 

9.2 Implementation 

The use of an aging OpenGL graphics API, a lack of documentation, and a 

very strong coupling to its base rendering platform prevented the existing 

implementation of Blue Surfels from being used directly for this project's needs. 

Therefore, it was decided that it would be a better idea to completely rewrite 

the existing program from scratch. This enabled the use of modern, multiplatform 

Vulkan API instead of OpenGL. Its main benefits are the ability for low-level 

optimization and full utilization of modern GPUs. 
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Besides that, while rewriting the whole algorithm, a great deal of focus was 

spent on creating an extensible and scalable architecture. The result is a mini 

framework consisting of a complex but flexible hierarchy of classes and many 

helper methods. This framework could be easily used as a base for (almost) any 

Vulkan-based application. 

Although several aspects of this project and implementation decisions were 

influenced by its being primarily developed for Pocket Virtuality, it does not 

directly depend on any proprietary technology or code developed by this company. 

Also, only a minimum number of carefully selected 3rd party libraries were used. 

9.3 Results 

An extensive comparison of related literature was conducted. As a result, 

the Blue Surfels algorithm was selected as best suited for the case. This algorithm 

was completely rewritten and improved in several ways, such as the utilization of 

modern technologies and improved readability and organization of code. 

The resulting code, created as a part of this thesis, supports all essential parts 

of Blue Surfels algorithm. The structure of the code enables easy implementation of 

extensions for the future work. The important part is that the code is fully 

functioning from import of the model, through setting up parameters, all the way to 

producing expected output. 

Besides the sampling algorithm itself, a debug renderer was created as a part 

of this project as well. 

9.3.1 Limitations 

An implementation part of this thesis is a type of project that can be extended 

for years. Therefore, it was important to set reasonable limitations and treat several 

potential improvements as being out of the project’s scope and a future work. 

This includes, for example, an input format being restricted to .obj files. In 

the case of the final implementation into an external system, inputs will heavily 

depend on the said system. Implementing this universally is very difficult and time 

consuming. 

The other limitation is graphical artifacts in the debug renderer. This is due 

to its simplistic nature and intended purpose (a debugging of surfel placement). Its 
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rendering is not representative of an expected rendering in the external system. 

Various techniques can be implemented to improve this. 

In its current form, sampling of the model is done only on its surface. Blue 

Surfels project also implemented a depth peeling algorithm for sampling inside of 

the model. This does benefit some specific models. However, due to its 

implementation complexity and relatively small output enhancement for models 

expected in the FataMorgana platform, this was deemed to be outside the project’s 

scope. 

The external system using this project is also responsible for splitting input 

models as necessary, setting up desired parameters, and managing the whole LoD 

selection process. 

9.3.2 Bug fixes in 3rd party software 

A lot of non-standard techniques were used in this project. This led to the 

discovery of several software bugs in a graphics debugger called RenderDoc. These 

bugs were further investigated (thanks to the open-source nature of this software) and 

properly reported, which led to their fix. The same goes for a GUI bug in Visual 

Studio. 
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12 List of abbreviations 

• nD (1D, 2D, 3D) – n-dimensional 
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• CAD – Computer-Aided Design  

• CAVE – Cave Automatic Virtual Environment (recursive acronym) 

• CLR – Common Language Runtime 

• CPU – Central Processing Unit 
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• FM – FataMorgana 

• FPS – Frames Per Second 

• GLFW – Graphics Library Framework 

• GLSL – OpenGL Shading Language 

• GPU – Graphics Processing Unit 

• GPGPU – General Purpose GPU 

• GUI – Graphical User Interface 

• HLSL – High-Level Shading Language 

• IDE – Integrated Development Environment 

• KHR – Khronos 

• LDI – Layered Depth Image 

• LoD – Level of Detail 
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• OS – Operating System 
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• SDL – Simple DirectMedia Layer 
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• TBD – To Be Done (if you are seeing this anywhere else in the final 

document, something went wrong) 

• UBO – Uniform Buffer Object 

• VK – Vulkan 

• VR – Virtual Reality 

• WDDM – Windows Display Driver Model 
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13 Attachments 

13.1 Attachment 1 - Source code 

This thesis’s first and only attachment is an archive file containing source 

code. This includes all 3 projects: FMsurfelsVulkan, FMsurfelsDebugTools, and 

abandoned FMsurfelsDirectX. The first 2 are accessible through the FMsurfels.sln 

solution file. For more details about the organization of files, see Chapter 5.1. 

As a bonus, there are ClassDiagram<1,2>.cd files under the 

FMsurfelsVulkan folder. A component called "Class Designer" for Visual Studio 

must be installed to open them. (This is an official component installed through 

Visual Studio Installer, not an extension.) These files contain a hand-picked and 

carefully arranged set of the classes/structs with their most important properties and 

methods. 

For the testing purposes, see OBJ files in FMsurfelsVulkan/Models 

folder and ObjFileName command line argument (-i or –-inputFileName). 


