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Introduction
In 1968, Roiter proved the first Brauer-Thrall conjecture, [22]. He showed that
a finite-dimensional algebra A over an arbitrary field has an infinite number of
pairwise non-isomorphic indecomposable representations (i.e., A is representation-
infinite) if and only if it has indecomposable representations of arbitrarily high
composition length (i.e., A is of unbounded representation type). Other, better-
known proofs of the conjecture exist today. See, for example, [3, Chapter VI.2.].

The idea behind Roiter’s proof was to show that for each finite-dimensional
algebra A of bounded representation type, there exists an order-preserving function
f assigning a natural number to indecomposable modules of finite length, refining
the composition length. Moreover, the value on the image of an epimorphism is
bouned by the values on direct summands of the domain (dual to the first part of
the main property).

Gabriel, in his 1972 report, [5], inspired by the Roiter’s proof, defines the Roiter
measure for modules of finite length. In 1979, Auslander and Smaløwrote that their
“effort to explain [Roiter’s result] . . . in terms of the technics and ideas developed
by Auslander and Reiten in connection with almost split sequences and irreducible
morphisms” was “the original impetus” for their work presented in [4], establishing
a general definition of preprojective and preinjective modules over any artin alge-
bra. The relationship between the Roiter measure and Auslander-Reiten theory
was extensively studied in the late 2000s by Bo Chen, e.g., [11], [7] and [6]. It was
also studied in the work of Ringel, [19], and Krause, [14]. Some of these results are
gathered in Section 1.6.

Gabriel’s definition does not assume algebras to be of bounded representation
type, but the main property is proved under this assumption. There is a footnote
in [5] saying that Ringel showed that the assumption is unnecessary. In [19], Ringel
speculates that this restriction to the representation-finite algebras was why the
Roiter measure was ignored in the 20th century. Indeed, most literature from the
last two decades discusses representation-infinite algebras. A notable exception is
[11].

The measure is now known under the name the Gabriel-Roiter measure, first
coined by Ringel in his 2005’s article [21]. Ringel extends Gabriel’s definition to
arbitrary modules. Krause utilised this in the study of the Ziegler spectrum, [12].
Other authors ignored this extension to infinitely-generated modules.

Ringel’s article gives three new proofs of the first Brauer-Thrall conjecture.
However, it should be noted that the Gabriel-Roiter measure does not satisfy the
properties of the function f from Roiter’s proof, see Example 14. Ringel also defines
the Gabriel-Roiter comeasure. This comeasure does not appear in later literature,
but unlike the standard Gabriel-Roiter measure, this comeasure can be used as a
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function f for Roiter’s proof.
Ringel also defines a Gabriel-Roiter filtration, a sequence of indecomposable

submodules witnessing the Gabriel-Roiter measure of a given indecomposable mo-
dule and a related concept of a Gabriel-Rotier submodule. Results in [11] suggest
that Gabriel-Roiter filtrations and submodules can be promising objects of study.
See also subsection 2.1.3.

Despite the historical connection with artin algebras, the idea behind the
Gabriel-Roiter measure is purely combinatorial. Krause formalised this in his 2007
article [13]. The importance of Krause’s approach for this thesis lies in the idea
that one does not need to derive the Gabriel-Roiter measure from the composition
length of a module but rather from any length function, see Section 1.3. Chapter
2 studies these alternative Gabriel-Roiter measures. They have been only scarcely
investigated in the literature. Still, most of the early results about the standard
Gabriel-Roiter measure hold for alternative Gabriel-Roiter measures with only mi-
nor modifications of proofs needed, see Sections 1.4 and 1.5, or [14] for more details.
Section 2.2 shows cases when the generalisation fails.

This thesis studies the Gabriel-Roiter measure of indecomposable finite-length
K-linear representations of finite acyclic quivers. Results in Chapter 2 hold over a
general field. The third Chapter requires K to be algebraically closed.

The first chapter gathers well-known results from the representation theory
needed for the rest of the thesis. The chapter also serves as an introduction to the
theory of the Gabriel-Roiter measure, formulating its basics, illustrating them on
examples and discussing its relation to the Auslander-Reiten theory.

Chapter 2 consists of new theoretical results about alternative Gabriel-Roiter
measures with a particular interest in thin representations. An algorithm for calcu-
lating GR measures of thin representation of quivers whose underlying graph is a
tree is given in Subsection 2.1.2. The main theoretical result is Theorem 38. While
this setting may seem restrictive, it is sufficient for examples and counterexamples
in Chapter 1. Also, the main results about lengths of Gabriel-Roiter filtrations can
be proved in this setting, see Theorem 43.

The last chapter calculates the standard Gabriel-Roiter measure for all finite-
dimensional indecomposable representations of Ã3 with one source and one non-
adjacent sink. It also illustrates some known results about the Gabriel-Rotier me-
asure in this example.

3



1. Preliminaries and examples
This chapter aims to define the Gabriel-Roiter measure and to discuss some of its
basic properties. Some well-known results from the representation theory needed
in the rest of the thesis are gathered. Most of the chapter is compilatory, with
some results presented in a slightly greater generality and some examples provided
to illustrate the theory.

The first section gathers some general results about modules over rings. We
also define the concept of an abelian length category. We will not use abelian len-
gth categories in later sections. However, it is the original setting where the GR
measure was defined [5], and many results of Krause from [13] and [14] are for-
mulated in this setting. The second section discusses quivers, their representations
and associated integral forms.

The third section gives a combinatorial definition of the Gabriel-Roiter measure
based on [13]. The fourth section then defines further terminology, formulates some
basic properties and provides examples.

In the remaining two sections, well-known results about representations, in
particular parts of the Auslander-Reiten theory, are presented in the context of
their relation to the Gabriel-Roiter measure.

1.1 Rings, modules and abelian categories
This section gathers well-known results about rings and their modules used throu-
ghout the next. The abelian length category is defined in Subsection 1.1.1. The
primary source for this chapter is [1].

By a ring, we mean an associative unital ring. In later sections, we will only
write module for short instead of right (unital) module. The composition of maps
A

f−→ B
g−→ C is denoted by gf . The unique one-element right R-module, the zero

module, is denoted by 0. For each right R-module M , its submodules, partially
ordered by inclusion, form a complete lattice, [1, Prop. 2.5.], denoted by (M,≤).

A right R-module M is noetherian if (M,≤) is noetherian, i.e., there is no
infinite strictly ascending chain in (M,≤). Dually, M is artinian if (M,≤) is ar-
tinian, i.e., there is no infinite strictly descending chain in (M,≤). A module is
finite-length if it is both noetherian and artinian. We denote the category of the
right finite-length R-modules by mod-R.

A ring R is right artinian if it is artinian as a right R-module. By the Akizuki-
Hopkins-Levitzki theorem, [1, Thm. 15.20.], a right artinian ring is necessarily
noetherian as a right R-module.
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A right R-module M is finitely generated if there is a natural n and an R-
epimorphism ϕ : Rn → M . The category of finitely generated right modules is
known to be essentially small. All finite-length modules are finitely generated.
Hence also mod-R is essentially small. We denote the set of isomorphism classes
of finitely-generated right R-modules by [mod-R].

The class of artinian and the class of noetherian right modules are closed under
finite direct sums and factors [1, Cor. 10.13., Prop. 10.12.]. In particular, a right
R-module, for R artinian, is finite-length if and only if it is finitely generated.

The center of a ring R is a subring consisting of elements commuting with all
elements of R. A ring A is an artin algebra if its center is artinian and A is finitely
generated as a module over its center. Artin algebras are artinian as rings.

A right R-module is finite-length if it has a composition series [1, Prop. 11.1.],
i.e., there is a natural number n and a sequence of submodules

0 = M0 ⊊M1 ⊊ · · · ⊊Mn = M,

such that for any i < n the factor module Mi+1/Mi is simple. By the Jordan-Hölder
theorem, [1, Thm. 11.3.], all composition series are equivalent in the sense that if
we have another composition series

0 = N0 ⊊ N1 ⊊ · · · ⊊ Nm = M,

then m = n and for each i < n there is j < m such that Mi+1/Mi
∼= Nj+1/Nj.

This n is called the composition length of M , denoted by |M | throughout the text.
A non-zero right R-module M is indecomposable if for any two right modules

N,N ′ such that N ⊕ N ′ = M either N = 0 or N ′ = 0. Otherwise, M is de-
composable. An artin algebra A is indecomposable if it is indecomposable as right
A-module.

We denote the full subcategory of right indecomposable R-modules by ind-R.
Some authors use ind-R for a set of representatives of indecomposable modules.
We use [ind-R] instead.

Any artinian right R-module M can be decomposed as a finite direct sum of
indecomposable modules

M ∼= M1 ⊕ · · · ⊕Mn Mi ∈ ind-R.

If M is also noetherian, thus finite-length, then, by the Krull-Schmidt theorem [1,
Thm. 12.9.], this decomposition is unique up to permutation of summands and
isomorphism. This means that if we have a decomposition

M ∼= M ′
1 ⊕ · · · ⊕M ′

m M ′
i ∈ ind-R,

then m = n and for each i ≤ n there is j ≤ m such that Mi
∼= M ′

j.
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A right module M is simple if (M,≤) = {0,M}. If R is a right artinian ring,
there are up to an isomorphism only finitely many simple right modules, [3, Prop.
I.3.1.]. A direct sum of all simple submodules of a module M is called the socle of
M , denoted by soc M . If soc M is a simple module, M is called uniform. Module
N ≤ M is maximal if M/N is simple. The intersection of all maximal modules is
called the radical of M , denoted by rad M .

A sequence
ϵ 0→ K

i−→ L
p−→M → 0

in mod-R is a short exact sequence if i is a monomorphism, p is an epimorphism
and Im(i) = Ker(p). The monomorphism i splits if it admits a left inverse in
mod-R. The monomorphism i splits if p has a right inverse. The exact sequence ϵ
splits if i splits. If ϵ splits, then Im(i) is a direct summand of L.

A module P ∈ mod-R is projective if any short exact sequence 0 → K →
L → P → 0 in mod-R splits. A module I ∈ mod-R is injective if any short exact
sequence 0→ I → L→M → 0 in mod-R splits.

1.1.1 Abelian length categories
The treatment of the abelian category here is based mainly on [2, Appendix A.1.].

A category C is called additive if it has all finite direct products, the zero object,
and all hom-sets are equipped with the structure of an abelian group.

An additive category C is abelian if each morphism f : X → Y admits a kernel
i : Ker f → X, cokernel p : Y → Coker f and the induced morphism f̄ : Coker i→
Ker p is an isomorphism.
Example. For a ring R, the category right R-modules is abelian.

Category ind-R is not abelian. For f : N →M ∈ ind-R, neither the kernel nor
coker needs to be indecomposable.
Remark. By Corollary 17, if f is a GR-inclusion, then both kernel and cokernel
are indecomposable.

In some sense,mod-R is a canonical example. By the Freyd-Mitchell Embedding
theorem, for any essentially small abelian category C, there exists a ring R such
that C is essentially equivalent to a full subcategory of mod-R. This equivalency
preserves kernels and cokernels, see [17].

This theorem implies that the Jordan-Hölder theorem and the Krull-Schmidt
theorem hold in essentially small abelian categories. This allows us to define a
length of an object in an abelian category. An essentially small abelian category
is an abelian length category if all objects have finite length.
Example. For a ring R, the category mod-R is an abelian length category.
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1.2 Path algebras and representations of quivers

This section defines quivers, their representations and associated integral forms.
We formulate some classical results that will allow us to identify the representations
with modules over finite-dimensional algebras. This is the setting in which most
of the thesis is set.

The first two parts are based on [2]. The treatment of integral forms is based
mainly on lecture notes by Krause, [15], but many results presented here can also
be found in [2, Chapter VII]. Results in [2] and [15] are formulated and proven
over an algebraically closed field. Sometimes, this assumption is unnecessary, and
the more general results are cited from [3, Chapter III.1].

Let K be a field. A ring A is a K-algebra if an isomorphic copy of K is contained
in the center of A. We say that A is finite-dimensional if it has finite dimension
as a vector space over K. All finite dimensional algebras are artin algebras.

Note that we can concern ourselves only with right modules. Any right A-
module can be viewed as a left Aop-module, where Aop denotes the opposite algebra
of the algebra A = (A,+,−, ·, 0, 1) defined by signature Aop := (A,+,−, ∗, 0, 1)
where a ∗ b := b · a for any two elements a, b from A, [2, Sections 1.1., 1.2].

From now on, we will always say A-module instead of a right A-module. As
with the general rings, (ind-A) mod-A denotes the category of (indecomposable)
finite-length A-modules.

1.2.1 Path algebras
A quiver Q is a quadruple (Q0, Q1, s, t) where Q0 is a set of vertices, Q1 a set of
arrows and s, t are two maps Q1 → Q0 mapping an arrow to its source and target,
respectively. All quivers in this text are assumed to be finite, i.e., the sets Q0 and
Q1 are finite. Vertices are always considered to be assigned numbers from 1 to
|Q0|.

By Q̄, we denote the underlying graph of Q obtained from Q by forgetting the
orientation of arrows. Q̄ is an unoriented graph, possibly with loops and multiple
edges. A quiver Q is connected if the graph Q̄ is connected.

A quiver Q′ is a subquiver of Q if Q′
0 ⊆ Q0, Q′

1 ⊆ Q1 and the source and the
target map ofQ′ are restrictions of the source and the target map onQ respectively.
For a set of vertices V ⊆ Q0 the full subquiver induced by V is given by Q′

0 := V
and

Q′
1 := {α | α ∈ Q1; t(α) ∈ V ∧ s(α) ∈ V }.

A vertex i ∈ Q0 is called a sink (source) if there is no arrow α such that
s(α) = i (t(α) = i).
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A seqence of arrows α1, . . . , αn is a path of length n > 0 if t(αi) = s(αi+1) for
every i < n. The vertex s(α1) is the source of a path and t(αn) the target of a path.
We also consider trivial paths ei for each i ∈ Q0, also called stanionary paths.
A non-trivial path with the target equal to the source is called cycle. A quiver
without cycles is acylic.

For a field K, a path algebra KQ is the K-vector space with a basis consisting
of paths in Q. The product of two paths is their concatenation if the target of the
first path is the source of the second path and zero otherwise. By [3, Prop. III.1.1],
the path algebra KQ is a well-defined K-algebra. It is finite-dimensional if and
only if Q is acylic. An algebra KQ is connected (as an algebra) if and only if Q is
connected.

An algebra is hereditary if every submodule of a finitely-generated projective
module is projective. There are numerous other equivalent characterisations of
hereditary algebras. See, for example, [2, Thm. VII.1.4.]. A characterisation that
is the most important for our purposes is given by the following theorem. The first
part follows from [3, Prop. III.1.4], the second from [2, Thm. VII.1.7.].
Theorem 1. Let Q be an acylic quiver and F a field.

(1) The path algebra FQ is hereditary.
(2) Let K be an algebraically closed field and A a hereditary K-algebra.
Then there exists a quiver QA such that mod-A and mod-KQA are equivalent

as categories.

1.2.2 Representations of quivers
For a quiver Q and field K, the category of K-representations of Q is defined,
and its equivalence with mod-KQ is formulated. The subsection is concluded by
several observations that will be useful throughout the text.

For a quiver Q and a field K, a K-linear representation M of Q consists of a
collection of finite-dimensional K-vector spaces Ma for each a ∈ Q0 and a collection
of K-linear structural maps Mα : Ms(α) → Mt(α) for each α ∈ Q1. We refer to M
simply as a (K-)representation (of Q). Because we assume Q0 to be finite, K-
representations are finite-dimensional as vector spaces over K.

Representations, together with morphisms, have a structure of an abelian len-
gth category. If we have two K-linear representations M and N of a quiver Q, a
morphism ϕ : M → N is a collection of maps (ϕa)a∈Q0 such that for each arrow
α ∈ Q1 the following diagram commutes

Ns(α)
Nα−−−→ Nt(α)↑⏐⏐⏐ϕs(α)

↑⏐⏐⏐ϕt(α)

Ms(α)
Mα−−−→ Mt(α)

.
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For an acyclic quiver Q, the category of K-linear representations of a quiver Q
is equivalent to the category mod-KQ, [3, Thm. III.1.5.]. Furthermore, there is a
canonical equivalence preserving simple, projective, injective and indecomposable
objects and exact sequences, [3, Prop. III.1.8].

Whenever it is convenient, we shall view this equivalence as an identification.
Note that a morphism ϕ : M → N between two representations is a monomorphism
(isomorphism) if and only if all K-linear maps ϕa : Ma → Na are monomorphisms
(isomorphisms).

For a K-representation M of a quiver Q the vector

dim(M) = [dimK(M1), dimK(M2), . . . , dimK(M|Q0|]

is called a dimension vector of M . Two isomorphic representations have the same
dimension vector. A representation is called thin if dim(M) ∈ {0, 1}|Q0|.

A K-representation M of a quiver Q is indecomposable if the ring of endo-
morphisms, End M , is local. That means that for any ϕ ∈ End M , either ϕ is
invertible or id − ϕ is. By [2, Cor. 4.8.], this is equivalent with saying that M is
indecomposable as a KQ-module.

For simplicity, we will say that a representation N is a subrepresentation of M,
denoted by N ≤M , if there is a monomorphism from N to M . If ϕ : N →M is a
monomorphism, then ϕ(N) is a subrepresentation of M in the standard sense and
ϕ(N) ∼= N .

Definition 1. Let Q be a quiver, K field and M ∈ mod-KQ.
We define support of M, supp(M) for short, as the subquiver Q′ ⊆ Q such that

Q′
0 := {a | a ∈ Q0; Ma ̸= 0} Q′

1 := {α | α ∈ Q1; Mα ̸= 0}

We end this subsection with several simple observations used extensively in the
rest of the thesis.

Let K be a field and Q an acyclic quiver, then simple representations of KQ
are in bijection with vertices of Q via i ↦→ s(I), where S(i) is defined by setting
S(i)b := 0 for b ̸= i and S(i)i := K, [2, Lemma III.2.1.].

Lemma 2. If M is an indecomposable representation, then supp(M) is connected.

Unsurprisingly, the opposite is not true. Consider the one-vertex quiver without
arrows. Then all non-zero representations have connected support, but there is (up
to isomorphism) only one indecomposable representation.

Lemma 3. Let Q be a quiver, K a field and ϕ : N → M a monomorphism in
mod-KQ.

Then for any arrow α such that s(α) ∈ supp(N), t(α) /∈ supp(N) and t(α) ∈
supp(M), the linear map Mα is not injective.
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In the second chapter, Lemma 35 strengthens this lemma to characterise subre-
presentations of indecomposable thin representations.
Proof. For such α ∈ Q1 and Mα, consider the following commutative diagram

Ms(α)
Mα−−−→ Mt(α)↑⏐⏐⏐ϕsα

↑⏐⏐⏐0

0 ̸= Ns(α)
Nα−−−→ 0

with Ns(α) and Ms(α) non-zero. Then by the commutativity, Mα ◦ ϕs(α) = 0. Equi-
valently Im(ϕs(α)) ⊆ Ker(Mα). The map Mα cannot be injective. Otherwise, we
would have ϕs(α) = 0, which contradicts ϕ being a monomorphism.

1.2.3 Integral forms and Gabriel’s theorem
We define the Euler form of the quiver and the associated quadratic form. They
will be helpful in calculations in the third chapter. We conclude with Gabriel’s
theorem, characterising representation-finite path-algebras in terms of the under-
lying graph of their quiver. The formulation here is not Gabriel’s original version
but an expanded version based on the lecture notes of Krause, [15].

For any natural n, there is the following partial order on Zn

(x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn)⇐⇒ xi ≤ yi ∀i ≤ n.

A vector X ∈ Zn is said to be positive if X > (0, 0, . . . , 0).
For a graph G = (V,E) with V = {1, 2, . . . , n}, there is an associated integral

quadratic form qG : Zn → Zn defined as:

qG(x1, x2, . . . , xn) =
∑︂

1≤i≤n
x2
i −

∑︂
1≤i≤j≤n

dijxixj,

where dij is the number of edges between vertices i and j.
To a quiver Q we assign a quadratic form qQ := qQ̄. One can determine positive

(semi)definiteness of qQ based on the type of Q̄, [2, Prop. VII. 4.5.].

Proposition 4. Let Q be an acyclic, connected quiver.
(1) qQ is positive definite if and only if Q̄ is a Dynkin graph.
(2) qQ is positive semidefinite but not positive definite if and only if Q̄ is a

Euclidean graph.

10



Example. A path on n vertices is a Dynkin graph An.
A cycle with n+ 1 vertices is a Euclidean graph Ãn

The full list of Dynkin and Euclidean graphs can be found in [15, Chapter 4.2]
(under the name diagrams) or in [20, Chapter 1.2]. If Q̄ is Dynkin (Euclidean)
graph, we say that Q is a quiver of Dynkin (Euclidean) type. If there is n such that
Q̄ is (An) Ãn we say that Q is of type (An) Ãn. If Q is of Dynkin or Euclidean
type, non-zero vectors X ∈ Zn such that q(X) ≤ 1 are roots.

For a quiver Q with Q0 = {1, 2, . . . , n} the integral bilinear Euler form of the
quiver is defined as

⟨X, Y ⟩ =
∑︂
i∈Q0

xiyi −
∑︂
α∈Q0

xs(α)yt(α)

For each quiver Q of a Euclidean type, there exists a unique positive vector δ
such that ⟨δ, δ⟩ = 0. This vector is called the minimal radical vector. The value
⟨X, δ⟩ is called the defect of a vector X. The defect of a representation is defined
as the defect of its dimension vector.
Example. The minimal radical vector for Ãn is [1, 1, . . . , 1].

An indecomposable representation of a Euclidean quiver is preprojective if it
has a negative defect, regular if it has zero defect and preinjective if it has a
positive defect. In [3] and [2], decomposable preprojective, regular and preinjective
representations are considered. We, like [15], use the terms more restrictively as
most of the thesis is interested only in indecomposable representations.

An algebra A is (representation-finite) representation-infinite if [ind-A] is (fi-
nite) infinite. We now state the classical Gabriel’s theorem. The formulation used
here is based on [15, Thm 5.1.1., Thm. 5.3.].

Theorem 5 (Gabriel). Let Q be an acyclic, connected quiver and K an algebrai-
cally closed field.
(1) If Q is of a Dynkin type, then the algebra KQ is representation-finite and
X ↦→ dim(X) induces a bijection between isomorphism classes of indecomposable
representations of Q and positive roots of qQ.
(2) If Q is of a Euclidean type, then the algebra KQ is representation-infinite and
X ↦→ dim(X) induces a bijection between isomorphism classes of preprojective and
preinjective representations of Q and positive roots of qQ with a non-zero defect.
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1.3 Definition of the Gabriel-Roiter measure
This section defines the Gabriel-Roiter measure. While the previous two sections
focused only on the theory necessary for the rest of the thesis, this section gives
a broader treatment of the subject. Despite being historically tied to the study of
artin algebras and abelian length categories, the basic idea behind the Gabriel-
Roiter measure is combinatorial. Shortly after Ringel reintroduced the Gabriel-
Roiter measure in [21], Krause published a combinatorial treatment, [13], giving
rise to alternative Gabriel-Roiter measures.

The combinatorial definitions are illustrated on quivers partially ordered by
a subquiver relation. See Section 2.1 for their connection to the Gabriel-Roiter
measure. Module-theoretic examples are used too, including the Gabriel-Roiter
comeasure.

The primary source for this section [13] with aid from [14]. I found no published
results about alternative Gabriel-Roiter measures except for these two articles. In
Chapter 2, new results concerning alternative Gabriel-Roiter measures are presen-
ted.

1.3.1 Length functions
Definition 2. Let (S,≤) and (T,≤) be two partially ordered sets.

Then l : S → T is a length function on (S,≤) if for any x, y ∈ S it satisfies
(L1) x < y implies l(x) < l(y)
(L2) l(x) ≤ l(y) or l(x) ≥ l(y)
(L3) {l(x′) | x′ ∈ S; x′ ≤ y} is finite.

If (T,≤) is isomorphic to (N,≤), then (2) and (3) are always satisfied.
Example. For a ring R and M ∈ mod−R, recall (M,≤) from Subsection 1.1. The
composition length is a length function on (M,≤).
Example. Let R be a ring. We define a relation ↪→ on ([ind-R]) [mod-R]. If for
two (indecomposable) modules M and N there is a monomorphism N →M , then
[N ] ↪→ [M ].

Then ([ind-R], ↪→) and ([mod-R], ↪→) are partially ordered sets, and the com-
position length is a length function.
Example. Consider the set [Q] of all isomorphism classes of quivers. We define
relation ≤Q. For two quivers, Q′, Q, if Q′ is a full subquiver of Q, then [Q′] ≤Q [Q].

Then the number of vertices is a length function on ([Q],≤Q).
Example. For a ring R, we define a relation ↞ on [ind−R]. If there is an epimor-
phism M → N , then [N ] ↞ [M ].

The composition length is a length function on ([ind−R],↞).

12



Definition 2 allows for numerous length functions on modules, but we only
consider those respecting short exact sequences.

Definition 3. Let R be a ring. A function l : mod-R → R+ ∪ {0} is said to be a
length function on mod-R if the following two conditions hold:

(l1) l(M) = 0 if and only if M = 0.
(l2) If 0 → K → L → M → 0 is a short exact sequence, then l(L) = l(M) +

l(K).

Example. For a ring R, the composition length is a length function on mod-R.
Example. For a field K and a K-algebra A, the K-dimension of a representation
is a length function on mod-A.

Lemma 6. Let R be a ring and l a length function on mod-R.
(1) The function l is uniquely determined by its values on simple modules.
(2) The function l induces a length function on ([mod-R], ↪→) and ([ind-R], ↪→).

Proof. The first part follows from the Jordan-Hölder theorem. Let

0 = M0 ⊊M1 ⊊ · · · ⊊Mn = M

be a composition series for a module M . Then

l(M) =
∑︂

0≤i<n
l(Mi+1/Mi).

As for the second part, we set l([M ]) = l(M). The axiom (L3) holds because a
finite-length module has only finitely many submodules. Axiom (L2) holds because
the codomain of l is a totally ordered set.

If [N ] ↪→ [M ] and [N ] ̸= [M ], then there is a monomorphism f : N → M and
the factor M/f(N) is a non-zero module. By (l2) we have

l(M) = l(N) + l(M/f(N)).

The axiom (L1) then follows from (l1).

1.3.2 Chains and lexicographical order
Let (S,≤) be a partially ordered set. A subset X ⊆ S is a chain in S if the partial
order ≤ restricted on X is a total order.

13



Example. Let R be a ring and consider ([mod-R], ↪→). Any sequence of submodules
M1 ⊊ · · · ⊊Mm−1 ⊊Mm = M induces a chain.

It also induces chain [M/Mm−1] ↞ [M/Mm−2] ↞ · · ·↞ [M/M1] in ([ind-R],↞)
if the factor modules are indecomposable.
Example. Any subset of a totally ordered set is a chain.

For a finite chain X, max(X) (min(X)) denotes the maximum (minimum)
of X. We use the convention that

max(∅) < x < min(∅) ∀x ∈ S.

Definition 4. Let (S,≤) be a partially ordered set.
We denote the set of finite chains in S by Ch(S).
For x ∈ S, all finite chains terminating with x are denoted by Ch(S, x).

Definition 5. Let (S,≤) be a partially ordered set.
We define the lexicographical order on Ch(S) by

X ≤ Y ⇔ min(Y \X) ≤ min(X \ Y ).

A lexicographical order is a total order.

Example 7. Consider a partially ordered set (N,≤).
A set A ⊆ N can be interpreted as an infinite countable word wA ∈ {0, 1}N,

where the i-th coordinate of wA is 1 if and only if i ∈ A.
By [19, Lemma 1.], the set Ch(N), ordered by lexicographical order, embeds

into R+ ∪ {0} via the order-preserving map

r(A) =
∑︂
i∈A

1
2i .

∆
Example. Let R be a ring and M ∈ mod-R.

Then Ch([mod-R],M) consists of all sequences of nested submodules of M
terminating with M . For a non-simple M , there are several maximal objects with
respect to the inclusion of chains, namely all the composition series.

Maximal objects, with respect to inclusion, in Ch([ind-R],M) are indecom-
posable filtrations, see Definition 8.

Definition 6. Let l : (S,≤)→ (T,≤) be a length function.
To each chain, the chain of lengths is assigned via

X = (x1 ≤ x2 ≤ · · · ≤ xn) ↦−→ l(X) = (l(x1) ≤ l(x2) ≤ · · · ≤ l(xn)).

The length function l also induces a chain length function

S → Ch(T ) : x ↦−→ l∗(x) := max{l(X) | X ∈ Ch(S, x)}.

14



This means that for each x ∈ S, we consider the maximal chain of lengths (with
respect to lexicographical order) of finite chains terminating in x. There might be
multiple chains with the maximal chain of lengths.
Example. Let R be a ring and l the composition length. Then functions l and l∗

are equivalent on [mod-R], with l∗(M) = {1, 2, . . . l(M)}.
Example. Similarly, for ([Q],≤Q), functions |Q0|∗ and |Q0| are equivalent.

Consider now a subset C of [Q] induced by connected quivers. If Q′ is a subqui-
ver of Q such that all arrows with the source in Q′ have the target in Q′, we say
[Q′] ≤C [Q].

Then |Q0|∗ differs from |Q0|. When Q is a tree, there is a connection between
|Q0|∗ and the Gabriel-Roiter measure. See section 2.1.2.

Definition 7 (The Gabriel-Roiter measure). For a ring R, consider the partially
ordered set ([ind-R], ↪→). Let l be a length function on mod-R and let l∗ be the
induced chain length function on [ind-R].

If M ∈ ind-R we define the Gabriel-Roiter measure of M , with resepct to l as

µl(M) := l∗([M ]).

If a module M ∈ mod-R is decomposable, then µl(M) is defined as the maximal
Gabriel-Roiter measure of an indecomposable summand of M .

The Gabriel-Roiter measure will respect to the composition length will be called
standard Gabriel-Roiter measure, denoted by µ(M)

We often write just GR measure to shorten the notation. By the Krull-Schmidt
theorem, the GR measure of a decomposable module is well-defined. The GR
measure of a finite direct power of a module is the same as that of the original
module.

Ringel’s definition of the standard GR measure motivates the extension to
decomposable modules, [21, Cor. 1.]. The GR measure of decomposable modules
is rarely discussed in the literature. Krause ignores them completely.

Krause found the following axiomatisation of chain length functions.

Theorem 8. Let l : (S,≤)→ (T,≤) be a length function.
Then there exists a map µ : S → U such that for any x, y ∈ S
(1) If x ≤ y then µ(x) ≤ µ(y).
(2) If µ(x) = µ(y) then l(x) = l(y).
(3) If ∀x′ < x : µ(x′) < µ(y) and l(x) ≥ l(y) then µ(x) ≤ µ(y).
Moreover, any function µ′ : S → U ′ satisfying the above condition, is equivalent

to µ, i.e., µ(x) ≤ µ(y) if and only if µ′(x) ≤ µ′(y).
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Proof. All the conditions are satisfied by l∗, [13, Prop. 1.5.]. A special case for a
GR measure follows from Proposition 15. Krause proved the uniqueness of such a
function, [13, Thm. 1.7.].

Example. For a ring R, consider the partially ordered set ([ind-R],↞). Let l be
the composition length.

Then l∗ corresponds to the Gabriel-Roiter comeasure, defined by Ringel in [21].
The comeasure defined in [19] differs, and it looks like it cannot be described

as a chain length function.
We end with a recursive definition. It can be useful for calculations, see Example

29 and Chapter 2. It was first formulated by Krause, [14, Section 1.4.].

Proposition 9. Let R be a ring R and l a length function on mod-R.

µl(M) = max{µl(N) | N ⊊M ; N ∈ ind-R} ∪ {l(M)} for M ∈ ind-R

1.4 Basic properties of the GR measure
This section aims to define the terminology associated with the Gabriel-Roiter
measure and formulate some basic properties. These concepts are illustrated on
representations of quivers of type An. Proofs are omitted as they follow directly
from the algorithm in Subsection 2.1.2. From now on, unless stated otherwise, all
modules are considered to be right finite-length modules.

We start with some basic examples observed by Gabriel in [5].

Example 10. Let R be a ring and M ∈ ind-R.
(a) µ(M) = {1} if and only if M is simple.
(b) µ(M) = {1, 2} if and only if |M | = 2.
(c) µ(M) = {1, 2, 3} if and only if |M | = 3 and M has a simple socle.
(d) µ(M) = {1, 3} if and only if |M | = 3 and |soc M | = 2.

∆
Any non-zero finite-length module M has a non-zero socle, thus 1 ∈ µ(M). For

the standard GR measure, we can generalise (a) by saying that µ(M) = {1} if
and only if M is semisimple, i.e., if M = soc M . It is not true for the general GR
measure. Take two indecomposable modules M1 and M2 with compositions lengths
one and two, respectively, such that µl(M1) = {1} and µl(M2) = {2, 3}. Then by
the definition µl(M1 ⊕ M2) = µl(M1) = {1} but M1 ⊕ M2 is not a semisimple
module.

We add two more examples by Ringel from [19]. They were given without proof.
Bo Chen proves the second one in [10].
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Proposition 11. Let R be a ring and M ∈ ind-R of length n > 1.
(1) µ(M) = {1, n} if and only if soc M is its unique maximal ideal.
(2) µ(M) = {1, 2, . . . , n} if and only if M is uniform.

The assumption that M is indecomposable is indeed necessary. Take two in-
decomposable modules Nt and Ns with GR measures {1, t} and {1, s} where
1 < t ≤ s. Then µ(N1 ⊕N2) = {1, t}, however N1 ⊕N2 has two maximal submo-
dules.
Proof. Part (2) holds for general GR measure, see Proposition 42.

To prove (1), assume µ(M) = {1, n} and take M ′, some maximal submodule
of M . Then |M ′| < n and 1 ∈ µ(M ′) ≤ {1, n}. Hence µ(M ′) = {1}, so it is a
semisimple module. If there is a simple submodule S ≤M that is not included in
M ′, then S ∩M ′ = 0 hence by maximality of M ′ we have M ′ ⊕ S ∼= M , but this
is in contradiction with M being indecomposable. So a maximal submodule of M
is necessarily its socle.

For the opposite direction, take an indecomposable submodule I ⊊ M . Be-
cause M is noetherian, there is a maximal submodule containing N , and by our
assumptions on M , it is its socle. Hence I is simple.

Definition 8. Let R be a ring, M ∈ ind-R, and l be a length function on mod-R.
By an indecomposable filtration of M , we mean a chain of indecomposable

submodules
I : I1 ⊊ I2 ⊊ · · · ⊊ Im−1 ⊊ Im = M,

such that I1 is simple and if there is an indecomposable module I and a number
j < m such that Ij ⊆ I ⊆ Ij+1 then either I = Ij or I = Ij+1.

The indecomposable filtration is called a Gabriel-Roiter filtration, or a GR
filtration for short, if

{l(I1), . . . , l(Im)} = µl(M)

Any chain of indecomposable submodules can be refined into an indecomposa-
ble filtration. As shown in the next example, a module can generally have inde-
composable filtrations of different lengths.

The term Gabriel-Rotier filtration was proposed by Ringel in [21]. He observed
that a module has a GR filtration if and only if it is indecomposable. The following
example shows that there might be more GR filtrations for a given module. For
thin representations, any indecomposable filtration is a GR-filtration for some GR
measure, see Theorem 38. Example 40 shows that this generally does not hold.

Example 12. Let K be a field and consider the following quiver

1← 2← 3→ 4← 5→ 6→ 7.
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Let M be the thin representation with dimK(M) = 7 and all structural maps equal
to identities. The standard GR measure of M is {1, 2, 4, 7} as witnessed by two
GR filtrations

S(1) ⊊ K
1←− K ← 0→ 0← 0→ 0→ 0 ⊊ K

1←− K
1←− K

1−→ K ← 0→ 0→ 0) ⊊M

S(7) ⊊ 0← 0← 0→ 0← 0→ K
1−→ K ⊊ 0← 0← 0→ K

1←− K
1−→ K

1−→ K ⊊M.

There are two more indecomposable filtrations of M .

S(4) ⊊ K
1←− K

1←− K
1−→ K ← 0→ 0→ 0) ⊊M

S(4) ⊊ 0← 0← 0→ K
1←− K

1−→ K
1−→ K ⊊M

∆
Note that a GR-filtration need not be longer than an indecomposable filtration.

Suppose we define a length function l by letting l(S(4)) = 1 and l(S) = 2 for any
simple modules S non-isomorphic with S(4). In that case, the two indecomposable
filtrations from the above example become GR filtrations.

Definition 9. Let R be a ring, M ∈ ind-R, and l be a length function on mod-R.
An indecomposable submodule N ⊊M is called a GR submodule of M if

µl(M) = µl(N) ∪ {l(M)}.

A momomorphism N ′ ϕ−→M is called a GR-inclusion if ϕ(N ′) is a GR submo-
dule of M . The cokernel of a GR inclusion is called a GR factor.

By Corollary 17, a GR factor is always an indecomposable module. The chain
of submodules is a GR filtration if and only if any inclusion of two consecutive
members is a GR inclusion. In particular, the factor of two consecutive members
of GR-filtration is indecomposable.

Example 13. The previous example shows that GR factors need not be isomorphic.
The two GR factors corresponding to the last two members of GR filtrations are

0← 0← 0→ 0← K
1−→ K

1−→ K

K
1←− K

1←− K → 0← 0→ 0→ 0

∆

Example 14. The relationship between the GR measure of a module and its factor
is complicated. In the previous example, GR factors have GR measure {1, 2, 3}.
Strictly higher than the original module’s GR measure {1, 2, 4, 7}.

On the other hand, there exist many simple GR factors, see Proposition 46.

∆
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Proposition 15 (Basic properties of GR measure). Let R be a ring, l a length-
function on mod-R, M,N ∈ ind-R.

(GR1) If N ⊆M then µl(N) ≤ µl(M).
(GR2) If µ(M) = µ(N) then l(M) = l(N).
(GR3) If l(N) ≤ l(M) and µl(M ′) < µl(N) for all M ′ ⊊M .
Then µl(M) ≤ µl(N)
This formulation of basic properties is based on [13], but similar claims ap-

pear in [5]. We will use (GR1) and (GR2) throughout the text without explicitly
mentioning them. Note the similarity to the statement of Theorem 8.
Proof. (GR1) Any GR filtration of N can be extended into an indecomposable
filtration of M . (GR2) is trivial. To prove (GR3), consider a GR filtration

M1 ⊊M2 ⊊ · · · ⊊Mm−1 ⊊M.

We define a new set
S := {l(Mi) | i < m} ∪ {l(N)}.

Because µl(Mi) ≤ µl(N) for every i < m, we have S ≤ µl(N). So it is enough to
prove that µl(M) ≤ S. Because

µl(M) = µl(Mm−1) ∪ l(M),

the conclusion follows from l(N) ≤ l(M).

We now formulate the main property of the GR measure. It was first proved by
Gabriel, [5]. Our formulation is based on Krause’s version, [13, Prop. 3.2.]. Both
Gabriel’s and Krause’s versions discuss length categories.
Proposition 16 (Main property of the GR measure). Let R be a ring, l a length
function on mod-R. Let X, Y1, . . . , Yn ∈ ind-R such that X ≤ ⊕Yi. Then

µl(X) ≤ max
1≤i≤n

µl(Yi).

In the case of equality, X is a direct summand of ⊕Yi.
We can now prove that the GR factors are indecomposable modules. It was

first observed by Ringel, [21, Cor. 2., Cor. 3.], for the standard GR measure. The
proof presented here is closely based on Ringel’s.
Corollary 17. Let R be a ring, l a length function on mod-R, M ∈ ind-R and
let an indecomposable module N be a GR submodule of M .

(1) Let T be a proper submodule of M containing N .
Then µl(T ) = µl(N) and N is a direct summand of T .
(2) The GR factor M/N is indecomposable.
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Proof. (1) Because N is a GR submodule, T has to be decomposable. If µl(N) <
µl(T ), then, by definition, T has an indecomposable direct summand with the GR
measure strictly higher than µl(N). This contradicts N being a GR submodule of
M . The second part follows from the main property.

(2) Suppose there is a decomposition M/N = Q1 ⊕ Q2. Let T1 and T2 be
the preimages of Q1 and Q2 in the canonical projection M → M/N . Clearly
T1 ∪ T2 = M If Q1 and Q2 are non-zero modules we have N ⊊ T1 ⊊ M and
N ⊊ T2 ⊊ M . By (1), non-zero modules N1 and N2 exist such that N ⊕N1 = T1
and N ⊕N2 = T2. Because T1 ∩ T2 = N we see that N1 ∩N2 = 0, hence

M = N ⊕N1 ⊕N2.

This is in contradiction with the indecomposability of M . Thus either Q1 or Q2
have to be the zero module, and M/N is indecomposable.

Remark. There are other results about the standard GR measure whose proofs can
be almost verbatim used as proofs for general GR measures, e.g., Proposition 22
and Example 23. Also, Ringel’s partition of mod-R, Theorem 21. Other statements
cannot be generalised, e.g., Proposition 11, as explained by Theorem 43.

As another consequence of the main property, we get a family of rings with an
upper bound for a GR measure.

Corollary 18. Let R be a ring such that there is a module C such that for any
M ∈ mod-R there exists a natural number n and a monomorphism ϕ : M ↪→ Cn.

Then for any length function l on mod-R, GR measures on mod-R are bounded
by µl(C).

In particular, artin algebras satisfy the assumptions of the above corollary.
Proof. Take M ∈ mod-R and consider a monomorphism ϕ : M ↪→ Cn. By the
definition, µl(Cn) = µl(C), and by the main property µl(Im(ϕ)) ≤ µl(Cn).

In general, such an upper bound need not exist.

Example 19. Consider the Jordan quiver, i.e., the quiver given by one ver-
tex and one arrow, and an algebraically closed field K. The indecomposable K-
representations of Q are given by pairs (p, λ) and consist of a vector space Kp and
a multiplication by the Jordan block of dimension p with a parameter λ ∈ K. They
are pairwise non-isomorphic, [15, Thm. 9.2.1.].

The standard GR-measure of representation given by (p, λ) is then {1, 2, . . . , p}.

∆
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1.5 Artin algebras
This section aims to gather basic results about artin algebras used in the rest
of the thesis and to comment on them from the perspective of the GR measure.
However, some results often hold for an arbitrary artinian ring. We conclude this
section with Ringel’s partition of the category of representations of artin algebras.
We omit definitions of projective covers and injective envelopes as they are used
only in this section. Details can be found, for example, in [2, Chapter I]. This is,
together with [21, Section 4.], the primary source for this section, but some results
are cited from [3] and [16] for greater generality.

1.5.1 Projective and injective modules
Projective representations

If R is a right artinian ring, there are up to an isomorphism only finitely
many projective right modules, corresponding to the projective covers of simple
modules, [3, Cor. I.4.5.]. The projective cover of S(i) is denoted by P (i). See [2,
Lemma III.2.4.] for a combinatorial description of P (i) and rad P (i) in the case
where R is a finite-dimensional algebra over an algebraically closed field.

If A is artin algebra and P is an indecomposable projective module, GR sub-
modules are direct summands of rad P , see Example 23.
Injective representations

If R is an artinian ring, there are up to an isomorphism only finitely many
injective modules, corresponding to the injective envelopes of simple modules, [16,
Thm. 3.61.]. The injective envelope of S(i) is denoted by I(i). See [2, Lemma
III.2.6.] for a combinatorial description of I(i) in the case when R is a finite-
dimensional algebra over an algebraically closed field.

An injective module over any ring R is uniform if and only if it is indecomposa-
ble [16, Thm. 3.52.]. Proposition 11 shows that the GR measure of an injective
indecomposable representation I is {1, 2, . . . , |I|}. Because any direct summand of
an injective module is injective, [1, Prop. 18.2], we conclude that the GR-measure
of any injective module is of form {1, 2, . . . ,m}, where m is a maximal length of a
direct summand.

Unsurprisingly, not all modules with this GR measure are injective. Take, for
instance, non-injective simple modules. However, for an artin algebra A, if n is
maximal such that there exists a module M ∈ ind−A with µ(M) = {1, 2, . . . , n},
then M is injective, see [21, Section 4].

It turns out that a similar claim holds for any GR measure, as shown by the
following theorem by Krause, [13, Thm. 3.3.], originally stated for abelian length
categories.
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Theorem 20. Let R be a ring and let I ∈ ind-R.
Then I is injective if and only if there exists a length function on mod-R such

that µl(I) is the maximum of {µl(M) |M ∈ mod-R}.

As seen in Example 19, the maximal GR measure might not exist for a given
length function on mod-R. But for an injective R-module I, we may define l as
follows: let S be the (simple) socle of I, then set l(S) = 1, and l(S ′) = 2 for any
simple representations S ′ not isomorphic with I.

1.5.2 Ringel’s partition of mod-A
The following theorem is due to Ringel [21, Thm 2.]. Proof for a general GR
measure is due to Krause, see [14, Section 4.]. The take-off part and landing part
of the theorem give two proofs of the Brauer-Thrall conjecture. Example 19 shows
that the theorem does not hold for general rings.

Let us fix a ring R and a length function l on mod-R. We say that a set
S ∈ R+ is a GR measure on A if there is M ∈ ind−A such that µl(M) = S. A GR
measure S on A is of finite-type if there exists, up to isomorphism, only finitely
many indecomposable representations with such measure.

Theorem 21. Let A be a representation-infinite artin algebra.
Then for i ∈ N, there exists finite-type GR measures I i and Ii on A such that

I1 < I2 < I3 < . . . < I3 < I2 < I1.

Furthermore, for any other GR-measure I on A, inequality It < I < I t holds for
every t ∈ N.

Definition 10. Let A be a representation-infinite artin algebra.
The measures It for t ∈ N are called take-off meausures. A module with such

measure is called a take-off module. The full subcategory of mod-A consisting of
take-off modules is the take-off part.

The measures I t for t ∈ N are called landing. A module with such measure
is called a landing module. The full subcategory of mod-A consisting of landing
modules is the landing part.

The remaining nontrivial measures are called central measures. A module with
such measure is called a central module, inducing the central part of mod-A.

As shown in Section 3.6, some central measures are finite-type while others
not.
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1.6 The Auslander-Reiten Theory
The purpose of this section is two-fold. It prepares the ground for calculations in
Chapter 3. It also comments on the relationship between the A-R theory and the
GR measure. This has been a recurring theme in the study of the GR measure
in the last two decades. Especially the cases of path algebras KQ, where K is
algebraically closed and Q̄ is of either Dynkin or Euclidean type.

It is well-known that the A-R theory can be developed for general artin al-
gebras, see [3]. We focus on path algebras over an algebraically closed field. The
calculations of GR measures can often be based only on the dimension vectors of
representations.

To avoid unnecessary repeating of well-known facts, the following treatment
of the Auslander-Reiten theory takes several shortcuts. The Auslander-Reiten
translate τ is not defined as a functor. The method to calculate dim(τ(M)) for a
given non-projective representation M of a hereditary algebra is explained using
reflections, [15, Chapter 3]. Almost split sequences are not defined, but the thesis
uses that they exist and are exact.

Throughout this section, Q is always a finite acyclic quiver, and K is an al-
gebraically closed field. Occasionally, some facts are formulated in a more general
setting. The primary sources for A-R theory are [2] and [15]. The results about the
GR measure are taken primarily from [6]. All three sources discuss algebras over
an algebraically closed field.

.

1.6.1 Irreducible morphisms
This section defines irreducible morphisms and shows how to find an irreducible
morphism with a given codomain. The irreducible monomorphisms play a vital role
in the calculations of the GR-measure. However, the relationship between these
two concepts is more nuanced.

Definition 11. Consider a morphism ϕ : X → Y in mod-KQ.
We say that ϕ is an irreducible morphism if it has neither left nor right inverse

and if there is a factorisation of ϕ as X f−→ Z
g−→ Y in mod-A, then either g has a

right inverse or f has a left inverse.
Suppose further that X, Y are indecomposable. By Irr(X, Y ), we denote the

K-linear space of irreducible morphisms from X to Y .

By [15, Lemma 6.2.1.], an irreducible morphism is either a monomorphism or
epimorphism but not an isomorphism. By [2, lemma IV.1.6.], Irr(X, Y ) has a
structure of a finite-dimensional K-vector space for any X, Y ∈ ind-A.

We start with [11, Prop. 3.5.(5)].
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Proposition 22. Let N i−→M be a GR-inclusion in mod-KQ.
If all irreducible maps to M are monomorphism, then i is irreducible.

Remark. The above observation holds for any GR measure on mod-A. The proof
is the same as for the standard GR measure. In this text, the general version is
used only in Examples 23 and 29.

In general, a GR inclusion is not given by an irreducible morphism. The validity
of the following example will be clear from Subsection 1.6.3.
Example. Let N ⊊M be a GR-inclusion in mod-KQ such that M is a non-simple
preinjective or non-simple quasi-simple module. Then the GR inclusion is not an
irreducible morphism.

Applying the previous proposition, we get characterisations of GR-submodules
of projective modules. It was first observed, without proof, for finite-dimensional
algebras in [10]. This example also shows that an irreducible monomorphism need
not be a GR inclusion.

Example 23. Let A be artin algebra and P ∈ ind-A a projective module.
If X is a domain of an irreducible morphism i : X → P , then X is isomorphic

to a direct summand of rad(P ), [3, Cor. V.1.6., Thm.V.5.3.].
In particular, i is not an epimorphism. Because all irreducible morphisms to

P are monomorphisms, GR inclusions are irreducible monomorphisms, and GR
submodule has to be a direct summand of rad(P ).

We see that M ⊆ P is a GR-submodule of P if and only if M is a direct
summand of rad(P ) with the maximal GR measure.

∆
The dimension of the K-vector space Irr(X, Y ) for X, Y ∈ ind-A can be calcu-

lated using the Coxeter functor C+. From [2, Lemma VII.5.8.], follows that in the
setting of this section, the Auslander-Reiten translate of a non-projective module
Y is isomorphic to C+(Y ). The full definition of Coxeter functor can be found,
for example, in [2, Chapter VII.5]. It is enough to calculate dim(C+(Y )) for our
purposes. The dimension vector can be calculated using reflections of dimension
vectors. The following treatment is based on [15, Chapter 3].

Given a quiver Q and a sink i ∈ Q, we get a new quiver σi(Q) by reversing all
arrows with the target i. An ordering of vertices Q0 = [n] is admissible if for any
j ≤ n, the vertex j is a sink in quiver σj−1σj−2 . . . σ2σ1Q. In particular, the quiver
σnσn−1 . . . σ2σ1Q is well-defined and equal to the original quiver Q.

Recall the Euler form ⟨, ⟩ on Q from Subsection 1.2.3. It induces a symmetric
integral bilinear form

Zn × Zn → Zn (x, y) = ⟨x, y⟩+ ⟨y, x⟩.
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For i ∈ Q the reflextion with respect to i is defined as

σi : Zn → Zn σi(X) = X − 2(X, ei)
(ei, ei)

ei,

where ei is the i-th coordinate vector. With this terminology, we can now formulate
how to calculate the dimension vector of C+(M). The proof follows from [15, Thm
3.3.5., Prop. 3.4.3.].

Proposition 24. Let M be a non-projective indecomposable K-representation of
a quiver Q with an admissible ordering Q0 = {1, 2, . . . , n}. Then

dim(C+(M)) = σn . . . σ2σ1(dim(M))

For n ≥ 1 and M ∈ ind-A, the module Cn(M) is a module obtained from M by
aplying the functor C+ n-times. If there exists n such that Cn(M) is projective,
then M is preprojective. If there exists an injective module I and n such that
Cn(I) ∼= M , then M is preinjective. Note that these modules C+(M) and I are
necessarily indecomposable [2, Prop. 2.10.].

We can now formulate how to calculate dimK(Irr(X,M)) for non-projective
indecomposable modules, using [2, Thm IV.3.1. and prop IV.4.2.].

Proposition 25. Let M ∈ ind-KQ be a non-projective module.
Then there exists exact an almost split sequence

0→ C+(M)→ N →M → 0.

For a module X ∈ ind-KQ, an irreducible morphism from X to M exists if and
only if X is isomorphic to a direct summand of N . The dimension of Irr(X,M)
equals the multiplicity of isomorphic images of X in an indecomposable decomposi-
tion of N .

We have not defined almost split sequences. But as we will see later, when we
need them for the calculations of GR measures, it is enough to know that they are
exact. It follows from [2, Prop. IV.1.2.], that they are, up to isomorphism, uniquely
determined by their end term.

1.6.2 The Auslander-Reiten quiver of an algebra
This subsection defines the Auslander-Reiter quiver of a path algebra KQ, where
K is algebraically closed and Q is acyclic. Definition for an arbitrary artin algebra
can be found in [3, Chapter VII]. Example 29 shows how to use an A-R quiver to
calculate the GR measure of modules if KQ is representation-finite.
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Definition 12. For an algebra A = KQ, the Auslander-Reiten quiver Γ(A), or
A-R quiver for short, is a quiver defined by the following data:

Vertices of Γ(A) are isomorphism classes [X] of modules in ind-A.
Let [N ], [M ] be vertices in Γ(A) corresponding to modules N,M ∈ ind-A. The

arrows [N ] → [M ] are in bijective correspondence with a basis of the K-vector
space Irr(N,M).

Usually, we will identify vertices of Γ(A) with indecomposable modules. Saying
a vertex N for N ∈ ind-A, instead of vertex [N ]. When the algebra is clear from
the context, we will only write Γ.

Let us fix X ∈ ind-A. By Example 23, for a projective indecomposable module
P , the number of arrows between X and P in Γ(A) equals the number of direct
summands of rad(P ) isomorphic to X. By Theorem 25, for a non-projective M ∈
ind-A, the number of arrows between X and M in Γ(A) equals the number of
direct summands of N isomorphic to X, where N is the module from the almost
split sequence

0→ C+(M)→ N →M → 0.

The following proposition, [15, Prop. 7.3.4.], gives a formula for the number of
arrows between preprojective vertices.

Proposition 26. Let r, s ∈ N and P (i) and P (j) two projective KQ-modules.
Then the number of arrows from [Cr(P (i))] to [Cs(P (j))] is equal to
(1) Number of arrosws from i to j in Q if r = s.
(2) Number of arrows from j to i in Q if r = s+ 1.
(3) zero otherwise.

If A is representation-finite indecomposable algebra, then the GR measures
of indecomposable modules can be calculated directly from Γ(A) thanks to the
following theorem, [3, Thm. VI. 1.4.]. We present it in a greater generality than
needed for this section because it implies the first Brauer-Thrall conjecture.

Theorem 27. Let A be an indecomposable artin algebra and C a component of
Γ(A) such that the lengths of objects in C are bounded.

Then A is representation-finite and Γ(A) = C.

We immediately see that for an indecomposable artin algebra A, the quiver
Γ(A) is connected if and only if A is representation-finite. In this case, any mono-
morphism X → Y in ind-A is a sum of compositions of irreducible morphisms, [2,
Cor. IV. 5.6]. Furthermore, there are never multiple arrows between two vertices,
[2, Prop. IV. 4.9.], and no loops. This gives us the means to calculate GR measures
using the A-R quiver.
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Lemma 28. Assume KQ tobe representation-finite and let X ⊊ Y for X, Y ∈
ind-A be a GR-inclusion.

Then there is a path from X to Y in Γ(A) starting with a monomorphism.

In principle, this gives a method to calculate all the GR measures for any
indecomposable representation of a quiver of a Dynkin type.

Example 29. The quiver

is an orientation of a Dynkin graph D4. By Gabriel’s theorem, each indecom-
posable representation is determined by its dimension vector. We denote the inde-
composable representation with the dimension vector [a, b, c, d] by R(a, b, c, d).

The associated integral quadratic form of Q is

qQ(x1, x2, x3, x4) = (x1 − 1/2x3)2 + (x2 − 1/2x3)2 + (x4 − 1/2x3)2 + 1/4x2
3 = 1.

There are twelve indecomposable representations (up to isomorphism). Eleven
thin representations and the representation R(1, 1, 2, 1). We now calculate Γ(KQ).
Recall that S(i) is the simple representation with dimension vector ei. In the non-
simple vertices, we write the dimension vector of a corresponding representation:

We see from Γ(KQ) that S(3) does not inject into any other module. On the
other hand, there is a path, starting with a monomorphism, from the module S(1)
to R(0, 1, 1, 0), but S(1) is not a submodule of R(0, 1, 1, 0). We see that such a path
is only a necessary but not sufficient condition. In total, irregardless of the chosen
length function, the modules of length two have only one GR submodule.

The quiver Γ(KQ) shows that only modules S(1), S(2) and S(4) can be submo-
dules of a module of length three or four. All three inject into R(1, 1, 1, 1). For the
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standard GR measure, they are all GR submodules. For other measures, it depends
on their length.

For each representation R of length three, S(i), i ∈ {1, 2, 4} injects into R if
and only if dim(S(i)) ≤ dim(R). This gives two possible GR submodules. Note
that here, GR inclusions are not irreducible morphisms.

Finally, all irreducible morphisms with codomain R(1, 1, 2, 1) are monomor-
phisms. By Proposition 22, the GR inclusion is an irreducible monomorphism. All
three modules of length three are GR submodules for the standard GR measure.

∆
Other methods for the calculation of GR measures exist. In Section 2.1.2, we

present an algorithm to calculate GR measures of thin representations for quivers
whose underlying graph is a tree.

1.6.3 A-R quiver and Ringel’s partition of mod-A
For an artin algebra A, there are two partitions of the category ind-A. Take-off,
central and landing modules following Theorem 21 by Ringel. The A-R quiver
Γ(A) gives partition in preprojective, regular and projective modules.

We compare these two partitions. Bo Chen studied the case when Q is of
Euclidean type in [6]. The description of Γ(A) is based on [20].

Throughout this section, a quiver Q is always of an Euclidean type with an
acyclic orientation, K is algebraically closed, and A denotes the path algebra KQ.
By Gabriel’s theorem, A is representation-infinite.

If the algebra A is connected, then the full subquiver of Γ(A) consisting of
preprojective (preinjective) modules is connected, [3, Prop VII.1.11.]. A non-zero
morphism with a preinjective domain (preprojective codomain) has a preinjective
codomain (preprojective domain).

For general artin algebras, Ringel proved that landing modules are preinjective,
[21, Thm.4.]. Section 3.6 shows that a preinjective module can also be central.
There is a stronger result for quivers of type Ãn, [9, Thm 5.7., Thm. 5.8.]

Theorem 30. Assume Q to be of type Ãn and consider KQ.
(1) All preinjective modules are landing modules if and only if n is odd and Q

has a source-sink orientation, i.e., any vertex of Q is either a source or a sink.
(2) If a preinjective central module exists, then there are infinitely many iso-

morphism classes of preinjective central modules.

Bo Chen proved dual for quivers of Euclidean type. Any preprojective module
is then a take-off module ([6, Thm. 4.4.]. Section 3.6 shows that regular take-off
modules exist for some algebras.
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Components of Γ(A) containing regular modules are called tubes. Let T be a
tube. For each module X in T , a unique irreducible monomorphism with domain
X exists. A module X ∈ T is quasi-simple if there is no irreducible monomorphism
with codomain X. The number of quasi-simple modules is the rank of the tube,
denoted R. For quivers of Euclidean type, then r is a finite number. If for a tube
T its rank is equal to one, the tube is called homogenous, the unique quasi-simple
module H ∈ T is called homogenous simple, and there is a unique sequence of
irreducible monomorphisms

H = H1 → H2 → H3 → H4 → . . .

The modules Hi are called homogenous (regular). If Q is of Euclidean type, there
are infinitely many homogenous tubes. The GR measure does not distinguish be-
tween homogenous tubes, [6, Cor. 4.5.].

Proposition 31. Let δ be the minimal radical vector for Q.
Then for each i > 1, the module Hi contains Hi−1 as the unique GR-submodule.

In particular
µ(Hi) = µ(H1) ∪ {2δ, 3δ, . . . , iδ}.

If the rank r of a tube T is greater than one, then the tube is called exceptional.
We will also call its modules exceptional. Note that the word exceptional module
can have different meanings in literature.

For a fixed exceptional tube T , of rank r, we denote the quasi-simple excep-
tional modules by X1, X2, . . . , Xr. Quasi-simple modules are determined by their
dimension vector. It is possible to choose the ordering of quasi-simple modules in
T such that that

C+(Xi) ∼= Xi+1 (mod r).

For each exceptional quasi-simple module Xi there exists a unique seqence of
irreducible monomorphisms

Xi = Xi[1]→ Xi[2]→ Xi[3]→ . . .

Section 3.6 shows that a GR submodule of an exceptional module can be pre-
projective. The following lemma gives a criterion when the above monomorphism
is a GR inclusion, [6, Lemma 4.8. (2)].

Lemma 32. Let H1 be a homogenous simple module, and X be a quasi-simple
module of rank r such that µ(X[r]) ≥ µ(H1).

Then for i ≥ r, the irreducible monomorphism X[i] ↪→ X[i + 1] is a GR
inclusion
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2. Alternative GR measures
This chapter gathers original results about alternative Gabriel-Roiter measures.
Thin K-representations of quivers whose underlying graphs are trees are of par-
ticular interest. For simplicity, we will call these quivers trees. This includes, among
others, all quivers of a Dynkin or a Euclidean type except for the type Ãn. The
presented results also apply in cases where the quiver is not a tree, but the support
of a representation is. Results in this chapter do not assume any properties of the
field K, except for Example 40.

In this setting, thin representations are, up to isomorphism, determined by their
dimension vector, irregardless of the representation type of a quiver. This allows
us to describe representations and their subrepresentations in terms of quivers and
subquivers, see Subsection 2.1.1 for details. The assumption that a given quiver
is a tree is necessary. Sections 3.3 and 3.4 illustrate that there are numerous non-
isomorphic thin representations for quivers of type Ãn

This transition from representations to subquivers enables a simple combina-
torial procedure for finding GR-filtrations of such indecomposable thin represen-
tation. The procedure works for any GR measure, see Subsection 2.1.2. Subsection
2.1.3 shows that any indecomposable filtration is a GR filtration for some GR
measure. This result is not true for general indecomposable representations as
demonstrated by Example 40.

The last section is concerned with changes in the length of a GR filtration when
the length function is changed. Even in the case of representations of quivers of
type An, one can get various lengths as shown by Proposition 43.

2.1 Thin representations
Recall that a K-representation M of a quiver Q is thin if dimK(Ma) ≤ 1 for every
a ∈ Q0. For quivers of type An, all indecomposable representations are thin. Bo
Chen observed that for any indecomposable representation of a Dynkin quiver, the
first two terms of any GR filtration are thin, with the second one having a length
at most four, [10, Prop 2.4.4.]. Also if N ↪→ M is a GR-inclusion and N,M are
indecomposable representations of Ãn, the GR-factor M/N is thin, [7, Thm 4.1.].
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2.1.1 Basic properties of thin representations
This subsection prepares grounds for the study of GR measures of thin represen-
tations. Presented results allow us to focus on subquivers rather than represen-
tations. I assume that the results in this subsection are not novel. However, in the
literature, I have consulted, they were not given in sufficient generality. A special
case of Lemma 34 for quivers of type An follows from [18, Thm. 1.2.].

Definition 13. Let Q be a quiver, Q′ its subquiver and M ∈ mod-KQ.
We say that an arrow α ∈ Q1 is incident with Q′ if s(α) ∈ Q′

0 or t(α) ∈ Q′
0.

Let M be a thin representation of a quiver Q and consider the structural map
Mα for α ∈ Q1. If its domain or codomain is trivial, it is the zero map. If not, it is
an isomorphism by Shur’s lemma [1, Lemma 13.3.]. Lemma 34 shows that we can
assume all those isomorphisms to be identities. Given this, we denote by R(Q′) the
thin representation with the support Q′, such that all structural maps are either
zero morphisms or identities.

Lemma 33. Let M be a thin representation of a quiver Q such that supp(M) is
a tree.

Then M is indecomposable.

Proof. Without the loss of generality, we may assume that supp(M) = Q. For a
contradiction, suppose we have a decomposition M = N ⊕ N ′ such that N ̸= 0
and N ′ ̸= 0.

Because Q is a tree, there is a unique α ∈ Q1 such that Q1 is a disjoint union
of supp(N)1, supp(N ′)1 and {α}. Furthermore, Q0 is a disjoing union of supp(N)0
and supp(N ′)0.

Suppose that s(α) ∈ supp(N). Because M is thin and supp(M) is connected
support, Mα is injective. By Lemma 3, we have a contradiction with N being a
subrepresentation of N

The following lemma allows us always to assume that maps Mα are either zero
maps or identities. The case for representations of quivers of Dynkin type follows
from Gabriel’s theorem.

Lemma 34. Let M be a thin indecomposable representation of a quiver Q. Suppose
that Q is a tree and let N be the thin representation R(supp(M)).

Then N ∼= M .

Proof. Without the loss of generality, we may assume that supp(M) = Q. We
work by induction on n := |Q0|. The case n = 1 is trivial.

31



For n > 1, we assume that the vertex n is a leaf, i.e., only one arrow is inci-
dent with n. We denote this arrow by α. We define a new indecomposable thin
representation M ′. The support of M ′ is the full subquiver of Q given by vertices
Q0 \ {n}. For each α ∈ supp(M ′) we set M ′

α := Mα.
By induction, there is an isomorphism ϕ′ : R(supp(M ′) ∼= M ′.
We now construct an isomorphism ϕ : N →M . We consider two cases.

Either n = t(α):

. . .

. . .

K
a−−−→ K↑⏐⏐⏐b ↑⏐⏐⏐ϕn

K
1−−−→ K

or n = s(α):

. . .

. . .

K
a←−−− K↑⏐⏐⏐b ↑⏐⏐⏐ϕn

K
1←−−− K

.

Becuase ϕ′ is isomorphism, b ̸= 0 and because M is indecomposable, a ̸= 0. In
the case n = t(α), we choose ϕn to be the multiplication by ab. In the second case,
the multiplication by b/a.

A subrepresentation of a thin representation is also thin. The following lemma
allows us to describe subrepresentations of a given representation only in terms of
their support graphs.
Lemma 35. Let Q be a quiver and let M,M ′ be thin representations of Q such
that supp(M ′) is a subquiver of supp(M). Further, assume that supp(M) a tree.

Then M ′ is a subrepresentation of M if and only if all arrows with the source
in supp(M ′) have the target also in supp(M ′).

In particular, the simple representation S(i) is a subrepresentation of M if and
only if i is a sink in supp(M).
Proof. All non-zero maps are injective. The forward implication then follows from
Lemma 3. In the other direction, let us define ϕ : M ′ → M by setting ϕa as the
identity map if a ∈ supp(M ′)0 and the zero map otherwise. This is a well-defined
morphism. There are three possible cases to check.

Ms(α)
Mα−−−→ Mt(α)↑⏐⏐⏐ϕs(α)

↑⏐⏐⏐ϕt(α)

M ′
s(α)

M ′
α−−−→ M ′

t(α)

:
K

id−−−→ K↑⏐⏐⏐id ↑⏐⏐⏐id
K

id−−−→ K

K
id−−−→ K↑⏐⏐⏐0

↑⏐⏐⏐id
0 0−−−→ K

0 0−−−→ 0↑⏐⏐⏐0

↑⏐⏐⏐0

0 0−−−→ 0

By Corollary 17, if we have a GR-inclusion N ⊊M , then the factor is indecom-
posable. We can easily calculate the factor M/N for thin representations. Becuase
dim(N) + dim(M/N) = dim(M), the support of M/N is the full subquiver of
supp(M) induced by the set of vertices supp(M)0 \ supp(N)0.
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2.1.2 Calculating GR-measure for thin representations
In this subsection, Q denotes a tree quiver, and K denotes an arbitrary field.
Further, let l be a length function on mod-KQ and M an indecomposable thin K-
representation of Q. Without the loss of generality, we assume that supp(M) = Q.

We define a weighted quiver Ql by assigning a weight l(Si) to every vertex
i ∈ Q0. For a subquiver Q′ of Q, the l-weight of Q′ with respect to l is defined as∑︁
i∈Q′

0
l(Si). Recall that a length function l in mod-A is determined by its values on

simple modules. So we can also define a length function on mod-KQ by a weighted
quiver.

In this subsection, we present an algorithm for how to calculate µl(M) working
only with the weighted quiver Ql.

Let S = (M1, . . . ,Mm) be a chain of subrepresentations of a representation M .
Following Definition 6, l(S) := (l(M1), . . . , l(Mm) is the chain of lenghts.

Recall that a GR-filtration is an indecomposable filtration with a maximal
chain of lengths (with respect to the lexicographical order). For each simple subre-
presentation, we find an indecomposable filtration starting with the given simple
subrepresentation with the maximal chain of lengths. From these filtrations, those
with a maximal chain of lengths are GR-filtrations.

If the function l is not constant on all simple subrepresentations, we can con-
sider only filtrations starting with simple representations with minimal l-length.
Initial step

Let us start with a fixed simple subrepresentation S(s) where s is some sink in
supp(M) = Q. If S(s) = M , we are done.

Otherwise, we consider the set Q(s) containing minimal (with respect to the
inclusion) subquivers of Q from the following set

{Q′ | s ∈ Q′
0; R(Q′) ≤M} \ {s}.

For each arrow incident with s, there is one minimal element of this set.
Example. If s is a sink in a quiver of type An and not one of its endpoints, we
search to the left until we hit the first right-pointing arrow (not incident with s)
or until we reach the endpoint. And we also search to the right until we find the
first left-pointing arrow.

Then we find a subset Q(s)+ ⊆ Q(s) consisting of subquivers with minimal
l-weight. And for each Q′ ∈ Q(s)+ we build a two-element sequence ({s}, Q′).

If there is more than one minimal subquiver, we need to run the algorithm for
all of them, see Example 37.

Example 36. Consider the quiver

1→ 2← 3← 4→ 5← 6→ 7→ 8
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There are two minimal quivers containing sink 5.

2← 3← 4→ 5 5←→ 7→ 8
They both have the same weight with respect to the composition length but may

have different weights if we change the length function.
∆

Inductive step
Suppose we already have a sequence of subquivers S = ({s} ≤ Q1 ≤ · · · ≤ Qk).

We create new sequences, starting with S. By Q(S) we denote set of minimal
subquivers Q′ strictly containing Qk such that R(Q′) ≤ M . Then choosing the
subset Q(S)+ consisting of those minimal with respect to their l-weight.

Correctness
Observe that if

R({s}) ⊊ R(Q1) ⊊ · · · ⊊ R(Qk)
was an indecomposable filtration of R(Qk) and Q′ ∈ Q(S)+ then

R({s}) ⊊ R(Q1) ⊊ · · · ⊊ R(Qk) ⊊ R(Q′)
is an indecomposable filtration of R(Q′).

The algorithm gives several indecomposable filtrations of the input represen-
tation M , and we choose one with the maximal chain of lengths. The correctness
of the algorithm follows from the recursive definition of the GR measure, Propo-
sition 9.
Example 37. Consider the algebra KQ where

Q : 1→ 2← 3→ 4→ 5→ 6← 7← 8← 9→ 10
and let M := R(Q).

We will show the run of an algorithm starting with sink 6. Notice that there
are possible branching in the first few steps, but they give the same outcome.

M1 : 0 0−→ 0 0←− 0 0−→ 0 0−→ 0 0−→ K
0←− 0 0←− 0 0←− 0 0−→ 0

M3 : 0 0−→ 0 0←− 0 0−→ 0 0−→ K
1−→ K

1←− K
0←− 0 0←− 0 0−→ 0

M5 : 0 0−→ 0 0←− 0 0−→ K
1−→ K

1−→ K
1←− K

1←− K
0←− 0 0−→ 0

At this point, the algorithm branches once again. This time it gives different out-
comes. We first go to the left.

M6 : 0 0−→ K
1←− K

1−→ K
1−→ K

1−→ K
1←− K

1←− K
0←− 0 0−→ 0

M7 : K
1−→ K

1←− K
1−→ K

1−→ K
1−→ K

1←− K
1←− K

0←− 0 0−→ 0
M8 : K

1−→ K
1←− K

1−→ K
1−→ K

1−→ K
1←− K

1←− K
1←− K

1−→ K
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Resulting in the sequence S6 = {1, 2, 3, 4, 5, 7, 8, 10}. If we go the right, we get

M ′
6 : 0 0−→ 0 0←− 0 0−→ K

1−→ K
1−→ K

1←− K
1←− K

1←− K
1−→ K

M ′
7 : 0 0−→ K

1←− K
K−→ K

1−→ K
1−→ K

1←− K
1←− K

1←− K
1−→ K

M ′
8 = M8

Resulting in the sequence S ′
6 = {1, 2, 3, 4, 5, 7, 9, 10} < S6.

This difference is indeed important to the outcome of the algorithm. There are
two more sinks, vertices 2 and 10, giving sequences S2 = {1, 2, 6, 7, 8, 10} and
S10 = {1, 5, 6, 7, 9, 10}. Both S2 and S10 are strictly lesser than S6.

∆

2.1.3 Indecomposable filtrations
Theorem 38. Let K be a field, M a thin indecomposable representation of a tree
quiver Q. And let

R : R1 ⊊ R2 ⊊ · · · ⊊ Rm = M

be an indecomposable filtration of M .
Then there exists a length function l on mod-KQ such that R is a GR-filtration

for µl(M).

Thanks to the above theorem, propositions about GR filtrations and GR fac-
tors of indecomposable thin representations can often be easily generalised into
propositions about indecomposable filtrations. Example 40 shows that the claim
does not hold for general representation.

The idea of the proof is that we run a modified version of the algorithm from
the previous section. In each step, we adjust the length function so that algorithm
chooses R as a GR-filtration.
Proof. We build a series of length functions l1, . . . , ll such that for each i ≤ m, the
sequence R1 ⊊ · · · ⊊ Ri is a GR-filtration for µli(Ri) and for each vertex j ∈ Q0
not contained in supp(Ri), the weight of j is 1. Then we set l := lm.

For l1, we set the length of the simple representation R1 to be 1/2 and all other
simple representations to have length 1.

Suppose we have already constructed l1, . . . , li. Consider the set Q(Ri) of all in-
decomposable subrepresentations of M strictly containing Ri minimal with respect
to inclusion.

Observe that elements of Q(Ri) are in bijection with arrows incident with
supp(Ri) and the graphs supp(R/Ri) for each R ∈ Q(Ri) are pairwise disjoint.
This follows from the fact that Q is a tree, i.e., Q̄ contains no cycles.

35



Choose R minimal with respect to li(R/Ri) = |R/Ri|.
If Ri+1 = R then set li+1 := li.
If Ri+1 ̸= R then supp(Ri+1/Ri) and supp(R/Ri) are disjoint. For each simple

representation S(a) corresponding to a vertex a ∈ supp(Ri+1/Ri)0 we assign

li+1(S(a)) := |R/Ri|
|Ri+1/Ri|+ 1 .

For a /∈ supp(Ri+1)0 we set li+1(S(a)) := li(S(a)) = 1.
For simple representations corresponding to vertices of supp(Ri), we set their

new length to be their li-length divided by some fixed constant, chosen to be big
enough such that R1 ⊊ R2 ⊊ · · · ⊊ Ri is a GR-filtration for µli+1(Ri).

Example 39. Consider a quiver

Q : 1← 2→ 3← 4

and the representation M := R(Q) with the following indecomposable filtration

S(3) ⊊ (K 1←− K
1−→ K

0←− 0) ⊊M.

This is not a GR-filtration for the standard GR-measure {1, 2, 4}. We define a
length function

l1 : 1← 1→ 1/2← 1.

A GR-filtration for µl1(M) is same as for µ(M), that is

S(3) ⊊ (0 0←− 0 0−→ K
1←− K) ⊊M.

We define
l′1 : 1/3← 1/3→ 1/2← 1.

Both µ(M) and µl1 have only one GR filtration, namely

S(1) ⊊ (K 1←− K
1−→ K

0←− 0) ⊊M.

We have ensured that our desired representation is indeed the second element of
some GR-filtration, but we have changed the first member.

Finally, we define
l2 : 1/3← 1/3→ 1/4← 1.

∆
The assumption that the representation M is thin is necessary.
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Example 40. Recall the quiver from Example 29. There is a following inclusion

of the representation R(1, 1, 1, 1) into R(1, 1, 2, 1). This gives us the following
indecomposable filtrations

S(i) ↪→ R[1, 1, 1, 1] ↪→ R[1, 1, 2, 1],

for i ∈ {1, 2, 4}. But neither of these filtrations can be a GR filtration. As seen in
Example 29, a GR subrepresentation of R[1, 1, 2, 1] has to be of length three.

∆
In Example 29, we noticed that all GR inclusions for any GR measure are also

GR inclusion for the standard GR measure. This is not true in general.

Example 41. Recall Example 37. The thin indecomposable representation of len-
gth ten has only one GR filtration with respect to the composition length. But there
are two indecomposable filtrations whose penultimate member differs from the one
in the said GR filtration. By Theorem 38, these indecomposable filtrations are GR
filtrations for some length functions.

2.2 Lenght of a GR-filtration
In [19], Ringel formulates two dual examples. Suppose M an indecomposable
non-simple module. We might ask how many indecomposable modules are in
(M,≤). These are two extreme cases described in Proposition 11. Either all non-
zero submodules are indecomposable, then |µ(M)| = |M |. Or the opposite case,
|µ(M)| = 2, when only M itself and simple submodules are indecomposable.
Despite this duality, the first case holds for any GR measure as shown by Pro-
position 42, while the second case does not, as will follow from Theorem 43.

Recall that a module is uniform if it has a simple socle. This condition charac-
terises modules whose all non-zero submodules are indecomposable.
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Proposition 42. Let R be a ring and M ∈ ind-R.
The module M is uniform if and only if |µl(M)| = |M | for any length function

l on mod-R.

Proof. First, observe that a submodule N ⊆M has to be indecomposable. Suppose
that we have a decomposition N ∼= N1⊕N2. If N1 ̸= 0 ̸= N2, they have a nontrivial
socle. But then we have found at least two distinct (though possibly isomorphic)
simple submodules of M . The forward implication then follows from the Jordan-
Hölder theorem.

Set n := |M | and suppose n = |µl(M)|. Let

M1 ⊊M2 ⊂ · · · ⊊Mn−1 ⊊Mn = M

be a GR filtration of M . This filtration is also a composition series.
We prove by induction that all submodules Mi are uniform. All simple modules

are uniform, and so is M1. Now assume Mi−1 is uniform. If Mi does not have
a simple socle, it means that there is a simple submodule of Mi, let us call it
S, different from M1. Because soc Mi = M1, we have S ∩ Mi−1 = 0 and tgus
S ⊕Mi−1 = Mi hence a contradiction with Mi being indecomposable.

The following proposition explains that we can’t add similar examples to this list.
In particular, why part (1) of Proposition 11 is not true for a general measure.

Theorem 43. Let t be a positive integer such that t ≥ 4 and K be a field.
Then there exists a K-algebra A such that for any 1 < a < b < t there is

M ∈ ind-A and two length function k, l on mod-A such that |µk(M)| = a and
|µl(M)| = b.

Proof. For given t, we find a quiver Q of type An such that for any 1 < a < b < t,
a representation M of Q exists with the above properties.

We partition An, ensuring that for any such pair (a, b), there is a subpath Pa,b
of length a+ b− 1 and that two such subpaths, their intersection is either empty
or consists only of one vertex. This is possible for a high enough n.

We choose an orientation on An such that the endpoints of the subpaths are the
sinks. There is exactly one source in each subpath Pa,b—namely, the a-th vertex
of the path. The remaining vertices are neither sinks nor sources.

For a pair (a, b), we choose a thin representation M := R(Pa,b) There are two
simple subrepresentations Sa and Sb of M corresponding to two sinks. If we choose
l such that all simple representations have length 1 and l(Sb) = 2 then

µk(M) = {1, 2, . . . , a− 1, a+ b}.
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For l such that all simple representations have length 1 and l(Sa) = 2 we have

µl(M) = {1, 2, . . . , b− 1, a+ b}.

Example 44. For n = 5 the possibe pairs (a, b) are (2, 3), (3, 4) and (2, 4).
The proof of Proposition 42 suggests a quiver

1← 2→ 3→ 4← 5← 6→ 7→ 8→ 9← 10→ 11→ 12→ 13.

Consider the representation

M : 0← 0→ 0→ K ← K ← K → K → K → K ← 0→ 0→ 0→ 0.

Recalling lenght function l and k from the proof of the proposition, we get µk(M) =
{1, 2, 7} and µl(M) = {1, 2, 3, 7}.

∆
Fix a ring R. We might ask whether two length functions l, k on mod-R give

equivalent (in the sense of Theorem 8) GR measures. If l and k induce different
ordering of simple representations, the GR measures µl and µk are not equivalent.
The following example shows that even if l and k give the same ordering on simple
representations, they still can give rise to different GR measures.

Example 45. Consider the following orientation of An

Q : 1← 2→ 3→ 4← 5→ 6.

We define two different length functions on mod-KQ

l : 1← 2→ 2→ 2← 3→ 1

k : 1← 2→ 2→ 2← 5→ 1.
The ordering of the lengths of simple representations is the same for both length

functions. Set M := R(Q). Then

µl(M) = {1, 6, 8, 11}

µk(M) = {1, 7, 13}.
Not only are GR filtrations different, but also their lengths differ.

∆
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3. The GR measure for Ã3
This chapter describes all standard GR-measures for a representation-infinite con-
nected hereditary algebra A := KQ, where K is an algebraically closed field, and
Q is the following orientation of

GR measures for acyclic orientations of Ã1 and Ã2 were already calculated by
Ringel, [21]. Bo Chen calculated the GR measures for representations of Ã3 with
the source-sink orientation, [8].

The approach in this chapter is based mainly on findings in [8]. Some results
were later generalised for any quiver of a Euclidean type, [6], and are gathered in
Subsection 1.6.3.

Recall that in this thesis, by preprojective, regular or preinjective module, we
always mean an indecomposable module, see Subsections 1.2.3 and 1.6.3.

3.1 Dimension vectors of indecomposables
We begin by calculating dimension vectors of all indecomposable representations
of Q using Gabriel’s theorem. Used notation indicates which vector corresponds
to preprojective (P ), regular (R) or preinjective (I) modules.

We have the following quadratic form q : Z4 → Z4 given by the quiver Q
q(x1, x2, x3, x4) =

∑︂
i∈{1,2,3,4}

x2
i − x1x2 − x1x3 − x2x4 − x3x4.

We rewrite it as a sum of squares

q(x1, x2, x3, x4) = 1
2(x1 − x2)2 + 1

2(x1 − x3)2 + 1
2(x4 − x2)2 + 1

2(x4 − x3)2,

hence
q(x1, x2, x3, x4) = 0⇐⇒ x1 = x2 = x3 = x4.

We now investigate nonnegative vectors X such that q(X) = 1. For any arrow
ψ ∈ Q1, we need |xt(ψ) − xs(ψ)| ≤ 1 to ensure that 1/2(xa − xb)2 ≤ 1. If equality
|xt(ψ) − xs(ψ)| = 1 occurs, it happens for exactly two arrows.
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We differentiate two cases. If these two arrows are not adjacent, we have the
following vectors for a ≥ 0

Pα(a) = [a, a, a+ 1, a+ 1]; Pβ(a) = [a, a+ 1, a, a+ 1]
Iγ(a) = [a+ 1, a, a+ 1, a]; Iδ(a) = [a+ 1, a+ 1, a, a].

The other case is when three vector coordinates have the same value, and the
fourth differs by one. This gives us eight families of vectors

I1(a) = [a+ 1, a, a, a]; P1(a) = [a, a+ 1, a+ 1, a+ 1]
P4(a) = [a, a, a, a+ 1]; I4(a) = [a+ 1, a+ 1, a+ 1, a]
R+

2 (a) = [a, a+ 1, a, a]; R−
2 (a) = [a+ 1, a, a+ 1, a+ 1]

R+
3 (a) = [a, a, a+ 1, a]; R−

3 (a) = [a+ 1, a+ 1, a, a+ 1],

defined for a ≥ 0.
The minimal radical vector for Q is δ = [1, 1, 1, 1], so the defect of a vector is

δ(x1, x2, x3, x4) =
∑︂

i∈{1,2,3,4}
xi − x2 − x3 − 2x4 = x1 − x4.

3.2 Preprojective component
An indecomposable module is preprojective if its defect is −1. In this case, it means
that for a preprojective P such that dim(P ) = [x1, x2, x3, x4] we have x4 > x1. This
gives us families P1(a), P4(a), Pα(a) and Pβ(a) for non-negative a. By Gabriel’s
theorem, preprojectives are determined (up to isomorphism) by their dimension
vector. From now on, we denote preprojective modules by their dimension vectors.

We start with the four indecomposable projective modules:

µ(P4(0)) = {1}, µ(Pβ(0)} = µ(Pα(0)} = {1, 2}; µ(P4(1)) = {5, 2, 1}

We calculate µ(P4)(1) = P (1) using Example 23. We have the following decom-
position of radP (1), where the unspecified maps are zero.
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For quivers of type Ãn, GR inclusions between preprojective modules are gi-
ven by irreducible morphisms, as illustrated in the following. Firstly, we calculate
C+(P ) for all non-projective preprojective modules.

C+(P1(a)) = P4(a); C+(P4(a)) = P1(a− 2)
C+(Pα(a)) = Pβ(a− 1); C+(β4(a)) = Pα(a− 1)

The image is defined for all a for which the domain is not projective.
By Proposition 26, we know that for any preprojective P , the vertex [P ] has two

predecessors in Γ(A). With this in mind, we can calculate all irreducible morphisms
between preprojectives using Proposition 25, based on dimension vectors only.

For example, there is an AR-sequence

0→ P4(a)→M → P1(a)→ 0,

where
dim(M) = [2a, 2a+ 1, 2a+ 1, 2a+ 2].

Recall that an irreducible morphism with a preprojective codomain has a prepro-
jective domain, so M is isomorphic to a direct sum of two preprojective modules.
There are no loops in Γ(A), so neither of these summands can be P1(a) nor P4(a).
The only possibility then is

M ∼= Pα(a)⊕ Pβ(a).

The complete list of irreducible morphisms is

Pα(a)→ P1(a); Pβ(a)→ P1(a); Pα(a)→ P4(a+ 1); Pβ(a)→ P4(a+ 1);

P1(a)→ Pβ(a+ 1); P4(a)→ Pβ(a); P1(a)→ Pα(a+ 1); P4(a)→ Pα(a),

for all non-negative a. Note that the list also includes irreducible morphisms with
projective domains.

As witnessed by dimension vectors, none of the above irreducible morphisms
can be epimorphism. Hence, all irreducible morphisms in the preprojective com-
ponent are monomorphisms. This is true for any quiver Q of type Ãn. See, for
example, [6, Cor. 2.3.].

Recall that any non-zero morphism with a preprojective codomain has to have
a preprojective domain. Hence all irreducible morphisms with a preprojective codo-
main are monomorphisms. By Proposition 22, we conclude that all GR-inclusions
in the preprojective component are given by irreducible morphisms.

Due to symmetry, the non-projective preprojectives of an even length have
the same GR measure. Thus, the non-projective preprojectives of an odd length

42



have two GR-submodules, namely Pβ(a) and Pα(a) where a is maximal. Non-
projective preprojectives of even lengths 4a + 2 have only one GR-submodule,
namely P1(a−1). Measures µ(P1(a−1)) and µ(P4(a)) are the same except for the
maximal element.

In total, for a preprojective module P with length 4a+ 1, a ≥ 2, we have

µ(P ) = {1, 2, 3, 4 + 2, 4 + 3, 4 · 2 + 2, 4 · 2 + 3, . . . , 4(a− 1) + 2, 4(a− 1) + 3, 4a+ 1},

where for a = 1, it is the projective module P (1) with GR measure {1, 2, 5} and
for a = 0 it is the simple projective module P (4).

For a preprojective module P with an even length 4a+ 2, a ≥ 0, we have

µ(P ) = {1, 2, 3, 4 + 2, 4 + 3, 4 · 2 + 2, 4 · 2 + 3, . . . , 4(a− 1) + 2, 4(a− 1) + 3, 4a+ 2},

and for an odd length 4a+ 3, a ≥ 0, we have

µ(P ) = {1, 2, 3, 4+2, 4+3, 4·2+2, 4·2+3, . . . , 4(a−1)+2, 4(a−1)+3, 4a+2, 4a+3}.

3.3 Homogenous tubes
We now calculate GR measures of homogenous modules. It depends only on their
length. We start with an observation by Bo-Chen, [8, Prop. 3.2.].

Proposition 46. Let Q′ be a quiver of type Ãn, H1 be a quasi-simple homogenous
KQ′-module and X its GR-submodule.

Then H/X is a simple injective module.

There is only one simple injective module, namely I1(0) = S(1). We see that
dim(X) = P1(0), thus µ(H1) = {1, 2, 3, 4}. By Proposition 31, Hi is the unique GR
submodule of Hi+1 for i ≥ 1. We conclude that the GR measure of a homogenous
module H with composition length 4a is

µ(H) = {1, 2, 3, 4, 8, 12, . . . , 4a}.

3.4 Exceptional tubes
An indecomposable module R is regular if its defect is 0. In our case, the dimension
vector of R has the form dim(X) = [x1, x2, x3, x1]. This section calculates GR
measures for regular modules from exceptional tubes. We will call these modules
exceptional in this text.

Except for a few small cases, we do not need to specify the structure of modules.
We, however, end this section by giving descriptions of all exceptional modules. It
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will be useful in the next section. It will become clear that the exceptional module
E with q(dim(E)) = 1 is determined (up to isomorphism) by its dimension vector.
This is true for any quiver of a Euclidean type.

We use the following proposition. It is a special case of [20, Thm. 3.1.(3’)].

Proposition 47. Let X ∈ mod-A be a quasi-simple module from a tube of rank
2. Further suppose that X is thin, i.e., dim(X) ≤ [1, 1, 1, 1] = δ. Then

dim(X[j]) =

⎧⎨⎩ jδ j even,
(j − 1)δ + dim(X) j odd.

Regular thin representations X1, X2, Y1, Y2 are given by dimension vectors

dim(X1) = [0, 1, 0, 0]; dim(X2) = [1, 0, 1, 1]
dim(Y1) = [0, 0, 1, 0]; dim(Y2) = [1, 1, 0, 1].

By simple calculation, we get

C+(X1) = X2; C+(X2) = X1; C+(Y1) = Y1; C+(Y2) = Y1.

There are at most two exceptional tubes in Γ(A). Hence, X1, X2, Y1, Y2 is the
complete list of exceptional quasi-simple modules.

Firstly, we calculate GR-measures of X2[i] and Y2[i]. For i = 1, both modules
are quasi-simple. There are sequences of monomorphisms

S(4) ∼= P4(0) ↪→ Pα(0) ↪→ X2 = X2[1] ↪→ X2[2]

S(4) ∼= P4(0) ↪→ Pβ(0) ↪→ Y2 = Y2[1] ↪→ Y2[2],

where the middle inclusions follow from Lemma 35. This gives us

µ(X2[2]) = µ(Y2[2]) = {1, 2, 3, 4} ≥ {1, 2, 3, 4} = µ(H1).

By Lemma 32, for r = 2, the irredicble monomoprhisms X2[i] ↪→ X2[i+ 1] and
Y2[i] ↪→ Y2[i+ 1] are GR inclusions for i ≥ 2. For i > 0, we have

µ(X2[2i]) = µ(Y2[2i]) = {1, 2, 3, 4, 4 + 3, 4 · 2, 4 · 2 + 3, . . . , 4(i− 1), 4(i− 1) + 3, 4i}

µ(X2[2i+ 1]) = µ(Y2[2i+ 1]) = {1, 2, 3, 4, 4 + 3, . . . , 4(i−1), 4(i−1) + 3, 4i, 4i+ 3}.

We now calculate GR measures of modules X1[i]. The case for Y1[i] is similar.
For the rest of this section, we write X := X1. We calculate the GR measures of
X[2] and X[3]. The rest follows from irreducible morphisms X1[i] ↪→ X1[i+ 1].
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We show that µ(X[2]) = {1, 2, 4}. There is an inclusion

X[1] ∼= S(2) ↪→ X[2],

where dim(X[2]) = [1, 1, 1, 1]. By Lemma 3, we see that the structural map X[2]γ
is the zero map. It is then easy to check that neither of the four modules of length
three injects to X[2]. We get the following GR-filtration of X[2]

S(4) ↪→ Rα(0) ↪→ X[2].

By [9, Prop. 2.2. (c)], a GR-submodule of X[i + 1] is either a preprojective
module or X[i]. For module X[3], there is a monomorphism ϕ : P1(0) ↪→ X[3]

where ϕ3 and ϕ4 are identity maps and ϕ1 is the zero map. Vectors are con-
sidered to be row vectors. There is no preprojective module of lenght four and
µ(X[2]) < µ(P1(0)), so µ(X[3]) = {1, 2, 3, 5}.

Observe that for a preprojective module X[2] of length strictly more then five,
{1, 2, 3} ∈ µ(P ) and 4 /∈ µ(P ) and 5 /∈ µ(P ). We see that µ(X[3]) is bigger than
any GR measure of a preprojective module. Futhermore, X[3] injects into X[i] for
any i > 3. In summary, for i > 3 and a preprojective module P , we have

µ(P ) < {1, 2, 3, 5} = µ(X[3]) ≤ µ(X[i− 1]),

showin that P cannot be a GR-submodule of X[i]. Thus, X[i − 1] is the GR
submodule of X[i]. For i ≥ 2, we have

µ(X[2i]) = {1, 2, 3, 5, 8, 9, 12, . . . , 4(i− 1), 4(i− 1)1, 4i}

µ(X[2i+ 1]) = {1, 2, 3, 5, 8, 9, 12, . . . , 4(i− 1), 4(i− 1)1, 4i, 4i+ 1}.

As we have seen, it was enough to specify finitely many regular modules to
calculate all their GR measures. However, we need to specify the exceptional ones
for calculating GR measures of preinjective modules. When classifying exceptional
regular modules, we will use the GR measure to decide whether a module with
dimension vector iδ is homogenous. Other methods exist.
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We use the following notation: when the description of the map is omitted, it is
an identity map. A map ∗δ (δ∗) erases the first (last) coordinate of the vector, and
a map 0θ (θ0) adds zero at the beginning (end) of a vector. Jλ,a is the Jordan block
of dimension a with eigenvalue λ. Recall that J0,a(k1, . . . , ka) = (k2, . . . , ka, 0).

As for irreducible morphisms, if ϕ : N → M is a monomorphism between two
consecutive modules N,M , then ϕx is an identity map if Nx = Mx. If Nx = Ka

and Mx = Ka+1, then phix is the map θ0.
For a ≤ 1, the GR measure may differ, and not all modules are defined.
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It is worth justifying that the presented modules with dimension vector of
form iδ are indeed exceptional. Modules X1[2j] and Y1[2j], for j ≥ 1, cannot be
homogenous because they inject in the modules X1[2j + 1] and Y1[2j + 1]. This
would contradict the calculated GR measure of X1[2j + 1] and Y1[2j + 1].

Modules X2[2j] and Y2[2j], for j ≥ 1, cannot be homogenous because modules
X2[2j − 1] and Y2[2j − 1] inject into them. This would contradict the formula for
the GR measure of homogenous modules.

It remains to prove that the presented modules are indeed indecomposable. We
only verify the case when the dimension vector is a multiple of δ. The remaining
cases can be proven using the analogue of Lemma 49.

Recall, that if an endomorphism ring of a K-representation is local, then the
representation is indecomposable. Let E be one of the representations marked as
Xi[2a], Yi[2a], i ∈ {1, 2}. Take ϕ = (ϕ1, . . . , ϕ4) ∈ End E. Then all four maps ϕi
are equal because three structural maps of E are identity maps.

We can thus identify ring End E with the ring of matrices commuting with the
Jordan block matrix J0,a. Hence, End(R) is isomorphic to the ring R of matrices
polynomial in J0,a. There are two possibilities for a matrix A that is a power of J0,a.
It can be the zero matrix of dimension a. Or there is m ≤ a such that values aij
for i− j = m are 1, and the remaining entries are zeroes. In particular, R consists
of upper triangular matrices, with all elements on the main diagonal equal. Such
a matrix is invertible if and only if the value on the diagonal is non-zero. If the
matrix A is not invertible, then Id− A is. Hence the ring End E is local.

3.5 Preinjective modules
An indecomposable module is preinjective if its defect is 1. In this case, it means
that for a preinjective I such that dim(I) = [x1, x2, x3, x4] we have x4 < x1. This
gives us families I1(a), I4(a), Iγ(a) and Iδ(a) for non-negative a. By Gabriel’s
theorem, preinjectives are determined (up to isomorphism) by their dimension
vector. From now on, we denote preinjective modules by their dimension vectors.

Recall from section 1.5 that the GR-measure of an indecomposable injective
module I is {1, 2, . . . , |I|}. There are four indecomposable injective modules I1(0)
, Iδ(0), Iγ(0) and I1(1) with lengths with lengths 1, 2, 2 and 5 respectively.

For any quiver Q of type Ãn, all irreducible morphisms between preinjective
modules are epimorphisms, [6, Cor. 2.3.]. Recall that any map from a preprojective
module to a preinjective one factors through a direct sum of regular modules. We
see that all GR submodules of preinjective modules are regular modules. When
investigating possible regular GR submodules, it is enough to concentrate on only
a few thanks to the following theorem, [7, Thm. 4.1.].
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Theorem 48. Let Q′ be a quiver of type Ãn. Assume that N ⊊ M is a GR
inclusion in mod-KQ′.

Then M/N is an indecomposable thin representation.

We now list all indecomposable preinjective modules with their GR measures.
The proof that given modules are indeed indecomposable is left for the end of the
section. Whenever the structure map is not specified, it is an identity map. Maps
∗δ (δ∗) erase a vector’s first (last) coordinate, and θ0 adds 0 at the end of a vector.

We start with Iδ(a) with dimension vector [a+1, a+1, a, a] and a > 0. Consider
regular modules R with dim(R) ≤ dim(Iδ(a)). Maximal GR measure exists among
these modules, namely {1, 2, 3, 4, . . . , 4a−1, 4a}. It is the GR measure for modules
X2[2a] and Y2[2a]. There exists a monomorphism

ϕ : Y2[2a]→ Iδ(a) ϕx =

⎧⎨⎩θ0 x ∈ {1, 2},
id x ∈ {3, 4}.

The case with Iγ(a), for a > 0 is analogous. Exceptional module X2[2a] injects
into Iγ(a) via

Φ: X2[2a]→ Iγ(a) ϕx =

⎧⎨⎩θ0 x ∈ {1, 3},
id x ∈ {2, 4}.

In the similar way, X2[2a] injects into I1(a). If we switch maps α and β in I1(a),
we get an isomorphic preinjective module. Using identities and θ0, can inject Y2[2a]
into I1(a). We see that I1(a) has two GR submodules for a > 1.

It remains to investigate the case I4(a). Module I4(0) is thin. We can calculate
that its GR measure is {1, 3} using the algorithm from Section 2.1.2.
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Let us assume a ≥ 1 and let M be a GR submodule of I1(a). We know that
dim(I1(a)/M) ≤ δ hence M is either a regular module with dimension vector aδ
or one of the exceptional modules X1[2a+ 1] and Y1[2a+ 1].

The maps I4(a)α and I4(a)β are injective. If M injects into I4(a), then also Mα

and Mβ have to be injective. We see that neither X2[2a] nor Y2[2a] can inject into
I4(a).

Let H be the thin homogenous module such that all structure maps are iden-
tities. Module H injects into I4(a) via the morphism ϕ, where ϕ1 = ϕ2 = ϕ3 send
k ∈ K to an a copies of k and ϕ4 sends k to a+ 1 copies of k. Thus

{1, 2, 3, 4} = µ(H) ≤ µ(I4(a)) = µ(M) ∪ {4a+ 3}.

In particular, {1, 2, 3, 4} ⊆ µ(M). We see that M cannot be X1[2a+1] or Y1[2a+1].
We conclude that M is a homogenous regular module of length 4a.

We end this section by justifying that the presented modules are indeed inde-
composable and thus preinjective. Using the following lemma, we can identify the
ring of endomorphisms of given modules with the ring of diagonal matrices with
all values on the diagonal equal. Such a ring is isomorphic to the field K, hence
local.

Lemma 49. Let ϕ and ψ be two square matrices over a field K with dimensions
a and a+ 1, respectively. Further, suppose that the following squares commute:

Ka+1 δ∗−−−→ Ka↑⏐⏐⏐ψ ↑⏐⏐⏐ϕ
Ka+1 δ∗−−−→ Ka

Ka+1 ∗δ−−−→ Ka↑⏐⏐⏐ψ ↑⏐⏐⏐ϕ
Ka+1 ∗δ−−−→ Ka

.

(a) ϕ is equal to the principal submatrix obtained from ψ by removing the last
column and last row.

(b) ϕ is equal to the principal submatrix obtained from ψ by removing the first
column and first row.

(c) ψ is a diagonal matrix with all values on the diagonal equal.

Proof. Parts (a) and (b) follow directly from the two commuting squares. In the
last column of ψ, all but the last entry are zero (left square). Similarly, in the first
column of ψ, all but the first entry are zeroes (right square).
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3.6 Partition of mod-KQ
The take-off part of mod-A consists of preprojective modules, one simple injective,
two simple regular modules and exceptional modules X1[2], Y1[2], X2[1], Y2[1]. The
take-off measures are

{1}, {1, 2}, {1, 2, 5}, {1, 2, 4},
{1, 2, 3}, {1, 2, 3, 6}, {1, 2, 3, 6, 9},

{1, 2, 3, 6, 7}, {1, 2, 3, 6, 7, 10}, {1, 2, 3, 5, 6, 7, 10, 13},
{1, 2, 3, 6, 7, 10, 11}, {1, 2, 3, 6, 7, 10, 11, 14}, {1, 2, 3, 6, 7, 10, 11, 14, 17},

. . .

{1, 2, 3, 6, 7, . . . , 4a− 2, 4a− 1}, {1, . . . , 7, . . . , 4a− 2, 4a− 1, 4a+ 2},
{1, . . . , 4a− 2, 4a− 1, 4 + 2, 4a+ 5}, {1, . . . , 4a− 1, 4a+ 2, 4a+ 3}, . . .

The landing part consists of preinjective modules Iγ(a), Iδ(a) and I1(a) for
a > 0. For two preinjective modules I, J we have µ(I) ≤ µ(J) if and only if
|I| ≥ |J |. This holds for any acyclic quiver of type Ãn, [9, Prop. 5.3.].

The central part consists of three GR segments. We list them in ascending
order. The first two segments consist of the chain of subsets, so we only list the
first element and then the sequence of new elements. The first segment corresponds
to GR measures of modules X1[i] and Y1[i] for i ≥ 3, and the second corresponds
to X2[2] and Y2[2] and homogenous modules.

{1, 2, 3, 5} 8 9 12 . . . 4a− 3 4a 4a+ 1 4(a+ 1) . . .

{1, 2, 3, 4} 8 12 . . . 4a 4(a+ 1) 4(a+ 2) . . .

The third segment corresponds to the GR measures of the preinjective modules
I4(a), for a ≥ 1, and exceptional modules X2[i] and Y2[i] for i ≥ 3. Note that cen-
tral preinjective modules have smaller measures than infinitely many exceptional
modules. The segment is unbounded from both sides.

. . . {1, 2, 3, 4, 8, 12, . . . , 4a, 4a+ 3} . . . {1, 2, 3, 4, 8, 11}, {1, 2, 3, 4, 7}
{1, 2, 3, 4, 7, 8} 11 12 15 . . . 4(a− 1) + 3 4a 4a+ 3 . . .

Note that a central GR measure is not finite-type if and only if it corresponds to
modules with dimension vector iδ. There are three GR measures without a direct
predecessor: the trivial case {1}, the minimal central measure {1, 2, 3, 5} and the
measure {1, 2, 3, 4}.
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Conclusion
The standard GR measure, as defined by Gabriel in [5], has a straightforward
generalisation to modules of arbitrary length, as shown by Ringel in [21]. Krause
utilised it in his study of Ziegler closed subsets of the set of isomorphism classes of
indecomposable pure-injective A-modules for an artin algebra A. However, most
existing literature on the subjects deals only with finite-length modules.

This thesis studied the Gabriel-Rotier measure, as defined by Krause in 8, of
finite-dimensional representations of finite acyclic quivers. Particular attention was
paid to results that can be obtained combinatorially, working only with subquivers
and dimension vectors. This, among other considerations, motivated the choice of
Krause’s more general definition of the GR measure, despite staying in the setting
of [21]. It was shown that for a thin representation of a tree, any GR measure can
be calculated only by working with the quiver. There are some limitations to this
approach. Section 3.5 suggests that GR measures of preinjective representations
can generally only be calculated by referencing structural maps.

In Chapter 2, new theoretical results about alternative GR measures were pre-
sented. For a thin representation of a tree, any indecomposable filtration is a GR
filtration for some suitable choice of a length function, Theorem 38. In Section 2.2,
lengths of GR filtrations were studied. It was shown that while many results about
standard GR inclusions can be easily transformed for general GR measures, the
lengths of filtrations behave rather wildly, except for the trivial case of uniform
modules.

GR measures for various representations of quivers of type An were calculated
in Sections 1.4 and 2.2. GR measure for all indecomposable representations of the
orientation of D4 with three sinks and one source was calculated in Example 29.
In Chapter 3, the standard GR measure for all finite-dimensional representations
of Ã3 with one source and one non-adjacent sink was calculated. Similar methods
can be used for any quiver of type Ãn.
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(srp. 2008), s. 2891–2906. doi: 10.1016/j.jalgebra.2008.06.022.

[9] B. Chen. “The Gabriel-Roiter Measure for Ãn II”. In: Algebras and Repre-
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