
MASTER THESIS

Bc. Peter Lakatoš

Collision Avoidance in Computer Games

Department of Software Engineering

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this master thesis on my own, and only with the cited
sources, literature and other professional sources. I understand that my work
relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright
Act, as amended, in particular the fact that the Charles University has the right to
conclude a license agreement on the use of this work as a school work pursuant to
Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

First, I would like to thank my supervisor, Mgr. Jakub Gemrot, Ph.D., for always
finding time for a discussion, detailed feedback, and continuous encouragement
that motivated me during working on this thesis. My appreciation also goes to
my second supervisor, Juraj Blaho, for his valuable insights on this topic, without
which this thesis would not exist.

My deepest gratitude goes to my parents and the rest of my family for their
endless support, without which I would not be able to go through my studies.

Title: Collision Avoidance in Computer Games

Author: Bc. Peter Lakatoš

Department: Department of Software Engineering

Supervisor: Mgr. Jakub Gemrot, Ph.D., The Department of Software and Computer
Science Education (KSVI)

Abstract: Collision avoidance for autonomous agents has been a widely researched
topic for the past couple of decades. Modern solutions act as purely reactive
techniques that create various problems, such as agents being stuck in various
scenarios. The aim of this thesis was to explore a new way of solving collision
avoidance for humanoid agents using genetic algorithms to search local space
multiple steps ahead of the current simulation state.
The application is capable of running multiple predefined test scenarios and logging
the results of each run. The application provides two possible ways of seeing the
results, either visually observing the scenario run or plotting the results logged by
the application.
The overall design of the application is general enough to allow simple modification
to existing scenarios or creation of new ones. It is also possible to modify an
existing genetic algorithm with new operators with minimal effort.
The results show that even though various configurations of the implemented
genetic algorithm perform similarly, there are some outstanding winners that might
bring an alternative possibility to the already existing collision avoidance methods.

Keywords: Collision avoidance, Genetic algorithms, Agents

Název práce: Vyhýbání se kolizím při pohybu agentů v prostředí počítačových her

Autor: Bc. Peter Lakatoš

Katedra: Softwarové a datové inženýrství

Vedoucí bakalářské práce: Mgr. Jakub Gemrot, Ph.D., Katedra softwaru a výuky
informatiky (KSVI)

Abstrakt: Vyhýbanie sa kolíziám autonómnych agentov je za posledných niekoľko
desaťročí predmetom rozsiahleho výskumu. Aktuálne riešenia fungujú ako čisto
reaktívne techniky, ktoré majú za následok niekoľko problémov, ako napríklad
uviaznutie agentov v rôznych situáciách. Cieľom tejto práce bolo preskúmať novú
metódu riešenia vyhýbania sa kolíziám pre humanoidných agentov za pomoci
genetických algoritmov, ako spôsob prehľadávania lokálneho priestoru niekoľko
simulačných krokov dopredu.
Aplikácia je schopná spustiť viacero preddefinovaných testovacích scenárov a zaz-
namenať výsledky každého behu. Aplikácia takisto umožňuje sledovať výsledky
dvoma rozličnými spôsobmi, buď vizuálne pozorovať beh testovacieho scenára,
alebo vykresliť zaznamenané výsledky v podobe grafov.
Celkový dizajn aplikácie je dostatočne obecný na to, aby umožňoval jednoduché
modifikácie existujúcich testovacích scenárov, alebo vytvorenie úplne nových. Tak-
isto je možné modifikovať existujúci genetický algoritmus pomocou nových operá-
torov s minimálnym úsilím.
Výsledky ukazujú, že aj keď rôzne konfigurácie implementovaného genetického algo-
ritmu fungujú podobne, existujú niektoré konfigurácie vyčnievajúce z davu, ktoré
by mohli priniesť alternatívnu možnosť k už exitujúcim metódam na vyhýbanie sa
kolíziám.

Klíčová slova: Vyhýbanie sa kolíziám, Genetické algoritmy, Agenti

Contents

Introduction 9

1 Introduction 9
1.1 Background and Motivation . 9
1.2 Problem statement . 10

2 Collision avoidance 11
2.1 Modern state-of-the-art methods 11

2.1.1 Velocity obstacles . 11
2.1.2 Reciprocal velocity obstacles 13
2.1.3 Optimal reciprocal collision avoidance 15

2.2 Problems with state-of-art methods 17
2.2.1 Oscillation . 17
2.2.2 Corner problem . 18

3 Genetic algorithms 20
3.1 General overview . 20

3.1.1 Representation . 21
3.1.2 Selection . 22
3.1.3 Crossover . 23

3.2 Rolling horizon . 23
3.3 Related work . 24

3.3.1 EVOR: An Online Evolutionary Algorithm for Car Racing
Games . 24

3.3.2 Rolling Horizon Evolution versus Tree Search for Navigation
in Single-Player Real-Time Games 25

4 Implementation overview 27
4.1 Technical overview . 27
4.2 Simulation . 27

4.2.1 Class diagram . 27
4.2.2 Game loop definition . 28
4.2.3 Agents update . 30
4.2.4 Parallelisation . 30
4.2.5 Scenarios . 31
4.2.6 SimulationManager . 32

4.3 Interfaces and types . 33
4.3.1 Agent . 34

6

4.3.2 Genetic algorithm . 34
4.3.3 Scenario . 36

4.4 Agents . 37
4.5 Third party code . 38

5 Solution overview 39
5.1 Agent overview . 39
5.2 Basic genetic algorithm . 42
5.3 Initial implementation . 43

5.3.1 Individual representation . 43
5.3.2 Initialisation . 45
5.3.3 Mutation and cross operators 45
5.3.4 Fitness and selection functions 46

5.4 Initial implementation improvements 46
5.4.1 Initialisation . 46
5.4.2 Mutation and cross operators 47
5.4.3 Fitness functions . 48

5.5 Current solution . 48
5.5.1 Individual representation . 50
5.5.2 Initialisation . 50
5.5.3 Mutation operators . 53
5.5.4 Cross operator . 56
5.5.5 Fitness functions . 56
5.5.6 Selection . 62

6 Evaluation 64
6.1 Design . 64

6.1.1 StraightLine . 64
6.1.2 SmallObstacle . 64
6.1.3 CornerSingle . 65
6.1.4 OppositeAgents . 66
6.1.5 OppositeMultipleAgents . 67
6.1.6 OppositeCircleAgents . 67
6.1.7 NarrowCoridorsOppositeNoNavmeshScenario 68
6.1.8 NarrowCorridorOpposite . 69
6.1.9 Hyperparameters . 70

6.2 Results . 71
6.2.1 Baseline . 71
6.2.2 Hyperparameter sweeps . 72
6.2.3 Experiments . 76

6.3 Discussion . 96

7

6.3.1 OppositeCircleAgents - PathDuration 96
6.3.2 NarrowCoridorsOppositeNoNavmeshScenario -

PathDuration . 97
6.3.3 StraightLine - PathLength 98
6.3.4 OppositeAgents - FramesInCollision 98
6.3.5 CornerSingle - CollisionCount 98
6.3.6 SmallObstacle - CollisionCount 100
6.3.7 NarrowCoridorOpposite - GaTimes 101
6.3.8 OppositeMultipleAgents - PathJerk 101
6.3.9 Additional observations . 102
6.3.10 Results summary . 103

7 User documentation 105
7.1 Application . 105
7.2 Configuration change . 107
7.3 Plotting the graphs . 108

8 Future work 110
8.1 Differential evolution . 110
8.2 Preferred velocity . 110
8.3 Other individual representation . 110
8.4 Tuning of hyperparameters . 110

Conclusion 111

Bibliography 112

List of Figures 114

List of Tables 117

List of Abbreviations 118

A Unity dictionary 119

B Hyperparameter sweeps’ ranking 120

C Attachments 129

8

1 Introduction
Collision avoidance has been the broad area of study for the past several decades.

We can see its application in numerous fields, such as robotics, or in a virtually
simulated environments like computer games.

In virtually simulated environments, we often have to deal with very diverse
conditions and circumstances. In some situations, we might need to simulate
hundreds of agents, while in others there are only several of them. We also need to
take into account the possibility of external factors, such as players. Proper collision
avoidance algorithm must take into account all these elements, as it provides not
only correct functionality but also more realistic immersion.

Currently, there is no bulletproof solution that is error-free in every possible
scenario. Many modern state-of-the-art methods act as purely reactive techniques,
which might result in unnatural behaviour of the agents and break the overall
immersion for the player.

The aim of this thesis is to explore some less commonly used techniques for
solving collision avoidance for humanoid agents using genetic algorithms.

1.1 Background and Motivation
This thesis will focus on virtually simulated environments, such as computer

games with humanoid agents. This means that agents will have human-like
limitations on their physical traits such as size, speed, and acceleration.

Collision avoidance is part of the agent navigation process. For the navigation
process to occur, each agent needs to have a destination. After that, agents first
plan their paths (which usually results in the shortest path) and then navigate
along that path. The collision avoidance algorithm should react to static as well as
dynamic obstacles (such as other agents) during navigation. Navigation eventually
means setting the velocity for the agent at each simulation step. This velocity is
often the result of the collision avoidance algorithm. Each agent has its preferred
velocity, which usually follows directly the pre-planned path. The resulting velocity
during navigation might deviate from the agent’s preferred velocity because of
the need to avoid obstacles. The search for this velocity can also be viewed as a
multi-objective optimisation problem, as it needs to satisfy multiple criteria. For
example, it needs to be as close as possible to the agent’s preferred velocity and
should also avoid as many obstacles as possible. The other way to look at this
problem is to search the local space area to find the most sufficient velocity among
all other velocities that will move the agent closer to the destination. To find a
solution, we can use genetic algorithms, as they have proved to be successful in

9

this domain of problems.

1.2 Problem statement
Modern state-of-the-art collision avoidance algorithms use purely reactive tech-

niques, which often results in unrealistic behaviour of agents. Some examples of
such behaviour might be that agents always prefer the shortest path possible, which
might result in overcrowding in narrow corridors, moving too close to the walls
(often referred to as wall-hugging), and getting stuck.

This thesis aims to explore possible solution to these problems, using genetic
algorithms as a local space search algorithm that will explore viable paths that an
agent can take to successfully navigate to the destination. The metrics that will be
used to evaluate the quality of possible paths are the following:

1. How far from destination would the agent be at the end of a given path.

2. How many steps would it take for the agent to reach the destination, if moving
along a given path.

3. Number of collisions on a given path.

4. How smooth a given path is in terms of jerk-cost.

We have the following requirements for this thesis:

(R1) Implement collision avoidance algorithm using genetic algorithm.

(R2) Provide multiple scenarios and perform experiments to test the implemented
collision avoidance algorithm.

(R3) Run experiments on multiple configurations of the implemented genetic
algorithm.

(R4) The metrics defined for the evaluation of the path are captured and saved
from the experiments.

(R5) The experiments are visually observable in simulation.

(R6) The results of the experiments are captured, analysed, and discussed in the
form of graphs.

10

2 Collision avoidance
In this chapter, we first go through the modern state-of-the-art collision

avoidance methods, such as Velocity Obstacles (VO), Reciprocal velocity Ob-
stacles (RVO), and Optimal reciprocal collision avoidance (ORCA) in Section 2.1.
Then we look at the common problems associated with these methods in Section 2.2

2.1 Modern state-of-the-art methods
In this section we first explain the collision avoidance algorithm called Velocity

obstacles (also referred to as VO) introduced by Fiorini and Shiller (16). Then,
we show the iteration of this algorithm called Reciprocal velocity obstacles (also
referred to as RVO), which is among the most widely used collision avoidance
algorithms. The idea behind both of these algorithms is that agents are independent
and decentralised, meaning that they are making their own decisions based purely
on observation of other agents. At the end of this section we explain another
iteration of VO called Optimal reciprocal collision avoidance (also referred to as
ORCA).

2.1.1 Velocity obstacles
In this method, we assume an environment consisting of an agent A and a

moving obstacle B, both of circular shape. We also assume that for both the agent
and the obstacle, we know their corresponding positions and velocities. Let va

represent the velocity of the agent A, and vb represent the velocity of the obstacle
B. As stated in the paper by Fiorini and Shiller (16), to compute VO, we first need
to map B into the Configuration Space of A, by reducing A to the point Â and
expanding B by the radius of A to B̂. We then define the Collision Cone CCA,B

(Figure 2.1) consisting of the relative velocities between Â and B̂ that collide with
each other. It can be formulated as follows:

CCA,B = {vA,B | λA,B ∩ B̂ ̸= ∅}

where vA,B is the relative velocity of Â with respect to B̂ and λA,B is the line of
vA,B.

11

Figure 2.1 Collision cone CCA,B. From Motion Planning in Dynamic Environments
Using Velocity Obstacles, by Fiorini and Shiller (16)

To modify this into absolute velocities, we can translate CCA,B by vB, which is
done by the Minkowsi sum. This defines the Velocity Obstacle set V O (Figure 2.2)
as following:

V O = CCA,B ⊕ vB

Figure 2.2 Velocity Obstacle set V O. From Motion Planning in Dynamic Environments
Using Velocity Obstacles, by Fiorini and Shiller (16)

12

If the agent selects a velocity outside the set V O, it will avoid collision with the
obstacle. To generalise this method for multiple obstacles, B1...Bn, we calculate
the union of the corresponding velocity obstacles sets (Figure 2.3) as follows:

V O =
n⋃︂

i=1
V OBi

Figure 2.3 Velocity Obstacle set V O for obstacles B1 and B2. From Motion Planning
in Dynamic Environments Using Velocity Obstacles, by Fiorini and Shiller (16)

The velocity obstacle algorithm is not perfect and has some drawbacks (which
will be more closely described in Section 2.2). The most serious one is that it may
produce trajectories that are not smooth and result in oscillating agents. Therefore,
Berg, Lin, and Manocha (17) presented the new iteration called Reciprocal velocity
obstacles, which will be described in Section 2.1.2.

2.1.2 Reciprocal velocity obstacles
The idea behind the reciprocal velocity obstacles method is simple. Instead of

agents selecting their velocities out of their corresponding V O sets, they now share
responsibility. We explain this principle analogously as presented in the paper
A survey on Velocity Obstacle paradigm presented by Vesentini, Muradore and
Forini (18).

Consider two agents A and B facing each other and moving in opposite directions.
The agent A moves with velocity vA such that vA ∈ V OA,B and the agent B moves
with velocity vB such that vB ∈ V OB,A. Both agents decide to use Velocity obstacle

13

algorithm to avoid each other. The agent A selects a new velocity vA−new = vA + w,
where w ∈ R2 such that vA−new /∈ V OA,B. The agent B achieves the same by
selecting vB−new = vB +w, vB−new /∈ V OB,A. Both of the new selected velocities are
not optimal in terms of how distant they are from the agents’ preferred velocities.
To reach the optimal solution, agents now share the responsibility of avoiding
each other, meaning that each agent will go halfway to the side only as much
as necessary to ensure that they avoid each other. For agent A, this means that
instead of calculating vA−new = vA + w, it selects vA−new = vA + w

2 . The same
applies to agent B. We define the reciprocal velocity obstacle set RV OA,B for the
agent A as following:

RV OA,B = {vA−new | 2vA−new − vA−new ∈ V OA,B}

Definition for the agent B is analogous. For agents to successfully avoid each other,
they both must select a velocity outside of their RV O sets. Geometrically, the
RV OA,B cone can be represented as the V OA,B cone translated by vA+vB

2 , which is
shown in Figure 2.4.

Figure 2.4 The geometrical representation of RV OA,B. From A survey on Velocity
Obstacle paradigm, by Vesentini, Muradore and Forini (18)

To generalise this method among multiple agents we use approach presented
by Vesentini, Muradore and Forini (18), by considering the agents A1...An such
that each agent has its preferred velocity vAi−pref and goal destination dAi

. For
the agent Ai to avoid collision, we select a new velocity such that

vAi−new = argmin
v /∈RV OAi

∥ v − vAi−pref ∥2

where RV OAi
is given by

14

RV OAi
=

n⋃︂
j ̸=i

RV OAi,Aj

2.1.3 Optimal reciprocal collision avoidance
Optimal reciprocal collision avoidance (referred to as ORCA) presented by Berg,

Guy, Lin and Manocha (19) is another iteration of collision avoidance based on the
Velocity obstacles.

Consider two agents A and B with their current velocities vA and vB respectively.
As described in the paper A survey on Velocity Obstacle paradigm presented by
Vesentini, Muradore and Forini (18), based on the Velocity obstacles method from
Section 2.1.1, we can construct the V Oτ

A,B cone that denotes all velocities of the
agent A that cause a collision with the agent B within a time horizon τ > 0.
Formally, it is defined as the following:

V Oτ
A,B ≜ {v | ∃t ∈ [0, τ], tv ∈ D(xB − xA, rA + rB)}

where xA, rA and xB, rB are positions and radii of the agents A and B respectively,
and D is a disc with a center in xB − xA with radius equal to rA + rB. This is
shown in Figure 2.5.

15

Figure 2.5 The geometrical representation of V Oτ
A,B, r = rA + rB with the center in

c = xB − xA. From A survey on Velocity Obstacle paradigm, by Vesentini, Muradore and
Forini (18)

If agents A and B collide before time τ , then vA,B = vA − vB ∈ V Oτ
A,B. We

can define the vector w that originates in vA,B and ends at the closest point of the
cone δV Oτ

A,B as follows:

w = (argmin
v∈δV Oτ

A,B

∥ v − vA,B ∥2) − vA,B

Lastly, we denote n as the normal vector facing in direction w at point vA,B + w ∈
δV Oτ

A,B. We can define a set of collision-free velocities for the agent A as the
half-plane with the origin at vA + w

2 and the direction of w. Formally, this is written
as following:

ORCAτ
A,B ≜ {v | (v − (vA + w

2)) ∗ n ≥ 0}

Definition for the agent B is analogous. The geometric representation can be seen
in Figure 2.6

16

Figure 2.6 The geometrical representation of ORCAτ
A,B and ORCAτ

B,A. From A
survey on Velocity Obstacle paradigm, by Vesentini, Muradore and Forini (18)

To generalise this method among multiple agents we use approach presented by
Vesentini, Muradore and Forini (18), by considering the agents B1...Bm, then the
set of collision-free velocities for the agent A is defined as

ORCAτ
A,B ≜ D(0, vmax

A) ∩
m⋂︂

i=1
ORCAτ

Ai,Bi

where D(0, vmax
A) is disc with centre in the origin and radius size of the maximum

reachable agent speed. Then, the agent’s A collision-free velocity is defined as

vnew
A = argmin

v∈ORCAτ
A

∥ v − vpref
A ∥2

2.2 Problems with state-of-art methods
In this section, we present some of the most common problems among state-of-

the-art methods.

2.2.1 Oscillation
Oscillation is one of the most well-known problems among velocity obstacle-

based algorithms. It is mostly present in the standard Velocity osbtacle algorithm.

17

This behaviour happens in the scenario, when two or more agents are facing each
other and heading the opposite direction. Once the agent detects a collision between
them, none of them expects the other one to cooperate. Therefore, both customise
their velocities to face away from each other. In the next step, they detect that they
can both return to their previous velocities as they are closer to their preferred ones,
returning them to the colliding state. We refer to this behaviour as an oscillation,
and it can be seen in Figure 2.7.

Figure 2.7 Visual representation of two agents oscillating. From Reciprocal velocity
obstacles for real-time multi-agent navigation, by Berg, Lin and Manocha (17)

This problem was partially solved by the RVO method, where we expect the
cooperation of other agents. We can still see the oscillating movement if the agents
do not agree on the passing side. We refer to this as reciprocal dances.

2.2.2 Corner problem
This problem is specific to the ORCA algorithm. We take this example from

Game AI Pro 3: Collected Wisdom of Game AI Professionals, by Steve Rabin (20).
Usually, collision avoidance algorithms presume that agents have a straight path to
the destination they should follow. This is often not the case in real-world scenarios,
where agents often need to navigate around corners to reach their destination.
During that corner navigation, agents typically change their preferred direction
each frame. Consider an obstacle near the corner as shown in Figure 2.8. For
agents to be able to successfully navigate around that corner, they will at some
point need to change their passing side with that obstacle. Due to the nature of
the ORCA algorithm, this change is not allowed. Therefore, agents often travel too
far from their desired trajectory or simply become stuck in the corner.

18

Figure 2.8 Visual representation of the corner problem for the ORCA algorithm. From
Game AI Pro 3: Collected Wisdom of Game AI Professionals, by Rabin (20)

19

3 Genetic algorithms
In this chapter, we give a brief overview of Genetic algorithm (GA) and its

applications. We start with a general overview and an example usage in Section 3.1
and then we explain how genetic algorithms can be used in real-time applications
in Section 3.2. Lastly, we present a brief overview of the use of genetic algorithms
in path navigation in Section 3.3.

3.1 General overview
Genetic algorithms are a subarea of a larger algorithmic group called Evolu-

tionary algorithms. Genetic algorithms are widely used in the domain of global
optimisation problems and local space search. They are inspired by biological
evolution (hence the name), as they are using mechanisms such as mutation, recom-
bination, and selection. We can see the steps of the genetic algorithm in Figure 3.1.
We will go through each step and explain it in more detail in the following sections.

20

Figure 3.1 Steps of genetic algorithm. From A Genetic Algorithm to Increase the
Throughput of the Computational Grids, by Reza Entezari-Maleki, Ali Movaghar (14)

3.1.1 Representation
The first step of each genetic algorithm is to identify the search space and create

an individual representation.
In our case, the search space could be various paths that the agent can take to

reach its destination. Our individual could then be represented as a single path,
such that each path would consist of multiple segments of different sizes, which
connect to each other under different angles. Individuals consist of the so-called
genoms. In our path representation, one genome would correspond to one path
segment.

Initialisation

Initialisation should happen once at the beginning of the algorithm and is used
to create individuals. The group of individuals is called the population. Initialisation

21

can be random or more complete. If we have some constraints on the individuals,
it is generally a good idea to adapt the initialisation method to incorporate them
so that we create only valid individuals.

If we keep the example from previous Section 3.1.1 with individual being the
agent’s path, one constraint could be the length of given path.

Evaluation

The evaluation part is crucial from an overall evolution perspective. It is used
to evaluate how good each individual in the population is. As a measurement,
we use the property called fitness which is expressed by a numeric value, and the
methods that calculate these fitness values are called fitness functions. In case of
more complicated individuals, it is possible to have multiple fitness functions that
evaluate different aspects of the individual. At the end of the evaluation, these
fitness values usually need to be combined into a single fitness property. That can
be done using various techniques, such as calculating the weighted sum of all fitness
values.

Genetic algorithms usually aim at maximising the fitness values of individuals,
meaning that individuals with higher fitness are considered to be better and are
more likely to be selected into the next population. It is also possible to have
fitness functions that aim at minimisation of the fitness value, but it needs to be
consistent across the entire genetic algorithm.

Continuing on our example from the previous Section 3.1.1, we could have one
fitness function evaluating how many collisions the agent encounters on its path.
The other fitness function might evaluate the length of the path. Notice that in
each of the examples we are aiming for minimisation; fewer collisions and shorter
paths.

3.1.2 Selection
Selection is used to select individuals with leading fitness values and create a

new population consisting of these individuals. This should ensure convergence
towards better solution. There are multiple types of selection methods with different
properties. Among the most common are, for example, roulette wheel selection and
elitist selection.

Roulette wheel selection

In roulette wheel selection, we select an individual with a certain probability
based on its fitness. This type of selection works if we maximise the fitness values
of individuals and do not have negative fitness values. The probability for selecting

22

individual i is calculated as follows:

pi = fi∑︁n
k=0 fk

,

where fi is fitness value of individual i.

Elitist selection

Elitist selection is taking a predetermined number of individuals (less than the
population size) that has the best fitness and moving them to the next population.

3.1.3 Crossover
Crossover, also sometimes called recombination, is one of two ways to create

a new population. The crossover is a binary operator in genetic algorithms, that
is, it takes two individuals (also referred to as parents) and create a single new
individual. This operator is executed with predetermined probability. The selection
of a concrete probability is then part of the tuning of the parameters of the genetic
algorithm, which can lead to different results depending on the configuration. There
are a couple of types of crossovers, based on how much information is taken from
which parent. One of the most basic crossover types is the uniform crossover.
This crossover is iterating over the parents’ genoms and choosing one with equal
probability.

The uniform crossover operator for our example from Section 3.1.1 could look
like iterating over parents’ segments, selecting the segment from one parent (with
same probability for both parents) and connecting these segments into a newly
created path.

Mutation

Mutation is the second method of creating a new population. It is usually a
unary operator, which means that it takes one individual and modifies him into a
new one. It can also create a completely new individual without any input. This
operator is also executed with certain probability that can be modified depending
on the configuration. Mutation is used to maintain diversity in our solution.

The mutation operator for our example from Section3.1.1 could look like iterating
over individual’s genoms (path segments) and randomly modifying their size.

3.2 Rolling horizon
As mentioned in this chapter, genetic algorithms are used for optimisation

problems. Solving these problems usually takes a significant amount of time.

23

Therefore, it is less usual to use genetic algorithms in real-time applications, where
we have time constraints on the maximum run time of the algorithm (which
are usually tens or hundreds of milliseconds at most). We use "Rolling horizon
evolutionary algorithms" approach presented by Perez, Samothrakis, Lucas, and
Rohlfshagen as stated in the paper "an agent will evolve a plan in an imaginary
model for some milliseconds, acts on the (real) world by performing the first action
of its plan and then evolves a new plan repeatedly (again in a simulation based
manner) until the game is over" (15) . This means that we let the algorithm run
for small amount of time, collect results and apply them until the algorithm runs
again. This happens repeatedly until the simulation is over.

If we map it to our agent’s path example from Section 3.1.1, we would run
the algorithm to obtain the agent’s path and then navigate agent along that path.
Navigation would happen until we run the algorithm again, which would give us
another path that would replace the path from the previous run.

3.3 Related work
In this section, we review key concepts of some papers that tackle similar

problems as agent’s navigation and solve them using evolutionary algorithms.

3.3.1 EVOR: An Online Evolutionary Algorithm for Car
Racing Games

First paper is EVOR: An Online Evolutionary Algorithm for Car Racing Games,
by Nallaperuma, Neumann, Bonyadi, and Michalewicz (21). The idea behind
this paper is to use an evolutionary algorithm to simulate a car by calculating its
trajectory.

The idea is to train a controller that then navigates the vehicle. An individual in
EA represents the acceleration, brake, and steering values. The individual consists
of multiple heterogeneous genes with different ranges; therefore, standard crossover
cannot be applied. As a mutation operator, the standard uniform mutation was
selected. The algorithm runs indefinitely, receiving updates from sensors about a
new car state, calculating new optimised state, and then converting results back to
the values that are applied to the car.

Acceleration and brake in the individual are represented as a single float value
in range -1 to 1, where positive numbers represent acceleration and negative values
represent brakes. For steering, the floating point variable is used again, now in the
continuous range -90 to 90.

The model of the track is represented as segments of lines perpendicular to the
heading direction of the original track.

24

The fitness function is calculated using the track segments. For each track
segment that intersects the calculated trajectory, the fitness function is incremented
if their intersection point lies within the track boundaries. The fitness calculation
also takes into account the current velocity of the car, checks for possible collisions
with the track, and modifies the fitness accordingly. Fitness is also adjusted
according to collisions with other cars. If the collision is detected with another
car and that car’s velocity is less than the car the algorithm is controlling, it is
registered as a potential collision, and the fitness value is decreased.

The mutation for this algorithm is the standard uniform mutation. For the
steering genom, it generates a random value from the continuous range -90 to 90.
For the acceleration genom, it generates a random value from the continuous range
-1 to 1.

3.3.2 Rolling Horizon Evolution versus Tree Search for
Navigation in Single-Player Real-Time Games

Second paper is Rolling Horizon Evolution versus Tree Search for Navigation
in Single-Player Real-Time Games, by Perez, Samothrakis, Lucas, and Rohlfsha-
gen (15).

This paper compares various techniques such as Monte Carlo Tree Seach and
Evolutionary algorithm in the problem known as Physical Travelling Salesman
Problem.

The Physical Travelling Salesman Problem is a single player game where the
player navigates the ship and needs to collect several waypoints scattered around
the map full of obstacles. The player is supposed to collect all waypoints in as little
time as possible. There are six actions for navigating the ship: acceleration (which
can be either on or off), and steering (which is either left, right, or straight).

The evolutionary algorithm in this paper uses the rolling horizon approach
presented in Section 3.2. It also uses the concept of the so-called macro-actions.
As already mentioned, the player has six different actions available to navigate the
ship. Macro-action is defined as the repetition of the same action for a predefined
number of steps. Individuals are represented as a group of macro-actions with fixed
length that is defined by the experimental setup. One population consists of 10
individuals that are randomly initialised. The algorithm uses the elitist approach,
which means that it will promote the best two individuals to the next generation.

The mutation modifies only one of the inputs encoded in the individual (either
acceleration or steering). Mutating the acceleration is performed by flipping its
value from on to off or vice versa. The steering mutation is performed by changing
the left or right values to the straight value, while mutation of the straight value is
changed to the left or the right value with the same chance. The algorithm also runs

25

the tournament selection of size 3 to select individuals for the uniform crossover.
There is also a second version of the algorithm in which neither tournament nor
crossover operators are used.

Evaluation is done based on:

1. Distance and state (visited or unvisited) parameters of the next two waypoints
in the route.

2. The time spent since the beginning of the game.

3. Collisions in the current step.

And the final value is calculated as the addition of following:

1. Distance points - we define reward for distance rdw as 10000 − dw where dw

is distance to the waypoint w. If the first waypoint is not visited, it is set to
rd1, otherwise it is set to rd1 + 10000.

2. Visited waypoints - the number of visited waypoints (of the next two),
multiplied by a rewarding factor which is equal to 1000.

3. Time spent - set to 10000 minus the time spent during the game.

4. Collisions - penalisation of -100 if a collision is detected in this step.

26

4 Implementation overview
In this chapter, we go through the technical implementation of our solution.

We focus mainly on the supporting architecture of our solution, which runs the
whole program. A more in-depth explanation of the GA solution is described
in the following chapter 5. We will mention some specific Unity-related terms,
which explanation can be found in the Unity dictionary attachment A. First, we
go through the technical overview of our application, introducing the reader to our
engine choice and where the source codes are located (Section 4.1). Then we explain
core simulation-related things such as fundamental classes present in simulation,
game loop, agents’ updates and its parallelisation, and scenarios management
(Section 4.2). After that in Section 4.3, we give an overview of the most important
interfaces and types in our solution. In the following Section 4.4 we look more
closely into our agents’ definition. In Section 4.5, we mention the usage of the
third-party code in our solution.

4.1 Technical overview
To run the whole simulation, we decided to use Unity Engine (1). This is due

to its availability, effective learning curve, and community support. We are using
Unity version 2022.3.7f1. As a version control system, we decided to use modern
state-of-the-art git, more specifically github. All source codes for this project can
be found in Attachments C and are publicly available at
https://github.com/lakatop/UnityNavigation. It is still an ongoing project,
but for the purposes of this thesis, we use branch BezierIndividual_only and
all the source codes described below are captured under the v1.0.0 tag.

4.2 Simulation
In this section, we go through the core aspects of our simulation.

4.2.1 Class diagram
First, we show the simplified class diagram of the most important classes present

in the simulation, which can be seen in Figure 4.1

27

Figure 4.1 Class diagram of the most important classes in the simulation

The main class responsible for running the entire simulation is
SimulationManager. Then, we have two main interfaces, IBaseAgent for agents
and IScenario for scenarios. Then, we have abstract class BaseAgent for core
definitions of agents methods, and derived class BasicGAAgentParallel for our
concrete agent representation. From the IScenario interface we derive every
concrete scenario. Each of these are described more closely later in this section.

4.2.2 Game loop definition
Unity as an engine has its own game loop defined. We use SimulationManager

to define our own sub-game loop that is responsible for managing scenarios and
updating agents. The sequence diagram of this game loop is visible in Figure 4.2.
It is done inside the Update function that is called by Unity on each frame and
has 2 main parts:

1. Managing scenarios - loading new scenario, checking whether scenario is
finished (all agents arrive at their destination) and clearing resources from
the previous scenario.

28

2. Managing objects inside the simulation (done inside the RunSimulation
method) - managing resources related to the quadtree (more details described
in Section 4.5), calling updates on agents (described in next Section 4.2.3).

Figure 4.2 Game loop sequence diagram

29

4.2.3 Agents update
The RunSimulation method is also a place where we call updates on all agents

present in the simulation. This is done for each frame using two methods
OnBeforeSimulation and OnAfterSimulation. Currently, we are iterating the
list of all our agents, calling OnBeforeUpdate and after that we again iterate over
the same list and call OnAfterUpdate. These two methods are currently close to
each other because we do not have anything else to update. However, the design
of our solution is ready to be used in more complex cases, where you would first
schedule the GA jobs inside the OnBeforeUpdate method (using parallelisation
described in Section 4.2.4 below), then update the rest of the simulation, and after
that apply the results in the OnAfterSimulation method.

4.2.4 Parallelisation
In this section, we describe the idea behind parallelisation and why we decided

to use it. Unity has built-in parallelisation support called Job system (2). The
workflow is as follows:

1. Create a C# struct that implements a IJob interface. This interface forces
us to implement the Execute method which will be run when the job is
scheduled.

2. Schedule a job - this is done by executing Schedule method on our struct.
The Schedule method returns a JobHandle. The job is then scheduled to
run on a separate thread.

3. We can optionally call Complete method on our obtained JobHandle from
previous step. This will force Unity to finish the execution of the scheduled
job and will not continue execution on the main thread until the job is done.

We already mention in Section 4.2.3 that we schedule a separate GA job for each
agent in its OnBeforeUpdate function. During scheduling, we store JobHandle of
a given job in the _gaJobHandle data member. Later in the OnAfterUpdate we
call the Complete method on a _gaJobHandle to ensure that our GA algorithm
will stop execution before reading the results.

In addition to this, we also used Unity’s Burst compiler (3), which is an improved
compiler to produce highly optimised native code using LLVM. This provided us
with a significant performance boost. Without parallelisation, we would have to
wait for each agent to sequentially run its GA algorithm and block the main thread.
Using a parallelisation approach significantly improved our performance. This
allowed us to run our genetic algorithm in multi-agent scenarios, whereas same
scenarios without a parallelisation had noticeable performance problems.

30

Using Unity jobs has one downside from an implementation point of view. It
allows us to use only Unity native collections (4) inside the struct methods that
are executed. This means that we need to handle their memory allocation and
deallocation (which is done by calling the Dispose method on given collection and
is part of many interfaces described later in Section 4.3). It also means that in
most cases we need to pre-allocate memory for collections that are used inside the
GA.

4.2.5 Scenarios
Scenarios are classes used to define agents objectives. Each scenario in our

solution has its own Unity scene (5). This scene contains following:

• Walkabe platform - a cuboid with a NavMeshSurface component with
Walkable property. Each of these platforms have baked navmesh

• Static obstacles - cuboids with a NavMeshModifier component with Not
Walkable property. Some of these obstacle may not be registered in the
navmesh

• SimulationManager - empty object with SimulationManager script attached.

• Camera and lightning - Unity’s default camera and light

The last thing that needs to be present in the simulation are agents. Each
scenario class is responsible for populating the SimulationManager’s _agents
list with appropriate objects and setting them up. This should be done in the
SetupScenario method.

SetupScenario

This methods takes reference to SimulationManager’s _agents list so it can mod-
ify it and changes will be reflected in SimulationManager class as well. It populates
the list with the appropriate objects. All our scenarios use BasicGAAgentParallel.
Then it sets their destination and forward vectors to point in the direction of that
destination. Lastly, it setups the logger class of a given agent with the following:

• Agent id

• Scenario name

• Start time - for this we use Unity’s Time.realtimeSinceStartupAsDouble (6)

31

After the scenario is finished, SimulationManager is responsible for calling
ClearScenario method. This method is used to set additional detail to agents’
loggers (the end time of scenario), to create a corresponding csv file if it does not
exist already, and log the results.

More about concrete scenarios and their purposes is described in Section 6.1.

4.2.6 SimulationManager
The main class responsible for running the entire simulation is SimulationManager.

Its main responsibilities are the following:

1. Holding all relevant data to the simulation.

2. Defining our game loop (described previously in Section 4.2.2).

3. Managing agents in the simulation (described earlier in Section 4.2.3).

4. Loading of scenarios.

5. Transforming scenario objects into a new form that is representable inside
NativeQuadTree that is explained in more detail in Section 4.5). This process
is explained in Section 5.5.5.

Data relevant to simulation

The SimulationManager class is implemented as a singleton, therefore it can
store data persistently during the whole simulation. The most significant data that
this class holds are the following:

1. _agents - list of all agents present in the simulation.

2. _obstacles - list of all obstacles present in the current scenario (more in
depth explanation of scenarios is in previous Section 4.2.5).

3. _scenarios - list of all the scenarios that will be simulated. We describe
scenarios more closely in previous Section 4.2.5.

4. _platform - AABB2D bounds representing walkable platform in the current
scenario. We explain AABB2D bounds in Section 4.5.

5. _quadTree - represents quadtree that we use to represent objects in space
(more in Section 4.5).

6. agentUpdateInterval - determines how often agents run a new GA.

7. _updateTimer - temporary Time.deltaTime accumulator.

32

Scenarios management

Each frame we check the status of our current scenario, to see if we should
continue updating agents or stop the scenario. We know that the scenario is finished
once all agents are at their destination. If the scenario has not started yet, we need
to set its resources by doing the following:

1. Creating agents and setting their destination.

2. Registering a static obstacles present in a scenario - these are the objects
with NavMeshModifier component set to Not Walkable.

3. Registering walkable platform - it is the object with NavMeshSurface com-
ponent. This is done to set bounds to our _quadTree.

4. Transforming obstacles to objects representable inside _quadTree (more
described in Section 4.5).

Clearing the scenario then consists of the following steps:

1. Calling ClearScenario method defined by IScenario interface (more closely
described in next Section 4.3).

2. Destroying all agents objects present in the simulation and clearing the
_agents list.

3. Clearing the remaining resources related to obstacles and their _quadTree
representation, as well as disposing _quadTree itself.

4.3 Interfaces and types
In this section, we go through the interfaces and most important structures

present in our solution and describe their key parts. We can divide them into three
following categories:

1. Agent related

2. Genetic algorithm related

3. Scenario related

33

4.3.1 Agent
Agent-related interfaces define actors and actor-related behaviours in our simu-

lations. The main interface is IBaseAgent and the most important parts of it are
the following:

1. OnBeforeUpdate - This method is called every simulation frame. It is a place
where the agent should do the preparation before there is an update on the
rest of the simulation. We use it for scheduling the GA job that will run
concurrently on the other thread (more details are given in Section 4.2.4).

2. OnAfterUpdate - This method is called every simulation frame at the end
of our game loop defined in SimulationManager. It is a place where the
agent should update its position. We use it to stop the GA job triggered in
OnBeforeUpdate and apply the results.

3. SetPosition - This method should be used to set agent’s position.

4. SetForward - This method should be used to set agent’s forward vector.

5. id - This property should be used to set or get agent’s unique identifier.

6. pathPlanningAlg - This property is used to run the path planning algorithm
provided by the built-in NavMeshAgent.

4.3.2 Genetic algorithm
First, we need to define structures that represent the individual and the popu-

lation, which is crucial for every genetic algorithm.

Structures

The first structure we describe represents the GA individual -
BezierIndividualStruct and has the following fields:

1. Initialize - method used for initialisation and resource allocation.

2. Dispose - method used for clearing the resources.

3. fitness - float data member that represents the overall fitness of the
individual.

4. bezierCurve - BezierCurve data member that represents the individual’s
path as a cubic Bezier curve.

34

5. accelerations - float list that represents accelerations/decelerations of the
individual on its path.

More in depth explanation on how we use given properties of the individual is in
Section 5.5.1. As already mentioned, we use our internal structure BezierCurve
to represent the cubic Bezier curve. It has the following fields:

1. points - Vector2 list representing control points of the curve.

2. Initialize - method used to initialise resources.

3. CreateInitialPath - method used to define bezier curve by setting its
control points.

4. EvaluateQuadratic - helper method used to evaluate the quadtratic bezier
curve.

5. EvaluateCubic - method used to evaluate the cubic bezier curve.

6. Dispose - method used to clear resources.

The next important structure that we present is to represent the population. It
is a simple structure called NativeBezierPopulation with the following fields:

1. population - list of BezierIndividualStruct representing given popula-
tion.

2. Dispose - method used to clear resources.

Interfaces

All of the interfaces described in this section are generic, and are designed
to be used with a structure that represents the GA individual as a parameter.
The first interface that we define in this category is the IParallelPopulation<T>,
which defines the interface for the population. It has an important method that we
need from every population, and that is Dispose, which should be used to clear
resources.

One of the most important interfaces is the IParallelPopulationModifier.
We use this to define interface for all operators related to the GA (e.g. initialisation,
selection, mutation, crossover, fitness). It contains the following methods:

1. ModifyPopulation - This method takes reference to an array of individuals
and modifies the array accordingly. For example, for initialisation, we use it to
iterate over dummy individuals and modify their parameters to form a proper
population (we cannot allocate resources on spot because of parallelisation
restrictions described in 4.2.4).

35

2. GetComponentName - This method should return the name of the component
that implements it. It is used for logging the configuration of the whole GA.

3. Dispose - This method should be used to clear any resources related to the
component that implements it.

Lastly, we have the IGeneticAlgorithmParallel interface used for the genetic
algorithm. It has the following fields:

1. iterations - property that should defined how many iterations the GA
should preform.

2. populationSize - property that should define how big is the population that
the GA will run on.

3. SetResources - Method that can be used for setting additional resources to
the algorithm.

4. GetResults - Method that can be used for returning the resulting velocity
of the GA.

Because this interface is designed purely for the GA that will run in parallel using
Unity jobs, we do not need any additional method in the interface for defining
where the algorithm itself should run, because it is a good practice to run it inside
the Execute method (described in Section 4.2.4).

4.3.3 Scenario
For scenarios we use the IScenario interface with the following fields:

1. SetupScenario - method that should be used to create agents present in the
scenario and set their destination.

2. ClearScenario - method that should be called when the scenario ended.
The scenario should do its last logic and cleanup in this function. We use it
to log the results of a given scenario.

3. runCounter - property defining how many times given scenario should run
before simulation will move on to the next scenario.

36

4.4 Agents
Our solution currently uses the BasicGAAgentParallel class that is derived

from the main abstract class BaseAgent that implements the IBaseAgent inter-
face (the most important parts of the agent’s interface is described in previous
Section 4.3.1). The two main functions of each agents are OnBeforeUpdate and
OnAfterUpdate.

OnBeforeUpdate

This method is used to check whether the agent reached the destination and
scheduling the new collision avoidance algorithm.

As the first thing in this function, we update the _updateTimer variable by
Time.deltaTime. We use the _updateTimer to keep track of how often we run
the GA. We then check whether we arrived at the destination and, if so, we set the
agent’s velocity to zero. If it is time to run GA, we first determine our destination
(it can change because of the destination skipping feature that is explained later in
Section 5.1) by calling the CheckToSkipDestination method and then we use the
parallelism (described in Section 4.2.4), to schedule a new GA job.

OnAfterUpdate

This method is used to stop the running GA job (if there is any) and apply
results.

Firstly, we check whether there is a job scheduled. If so, we know that the GA
was (or maybe still is) running, so we order it to stop and obtain the resulting
velocity (we refer to this as nextVel). We then calculate the next position of the
agent as nextVel * Time.deltaTime and the next forward vector and update
the agent accordingly. Lastly, we check whether we are in a range of setting the
next destination from our path planning algorithm.

Path planning

Path planning is one of the two main parts of navigating the agent to the
destination (we describe this more closely in Section 5.1). To execute the path
planning algorithm, we use Unity’s built-in component NavMeshAgent that is
attached to Unity’s object representing our agent. For this to work, each of our
scenarios (more described in Section 4.2.5) consists of a walkable platform that has
the baked in navmesh. We run the CalculatePath method that creates a path
object holding the list of inter-destinations called corners (for more details refer
to Section 5.1).

37

4.5 Third party code
As we described earlier in Section 4.2.4, we use Unity jobs for executing our

genetic algorithm. As also mentioned in previous Section 4.2, we use a quadtree
data structure to store objects’ positions in the space. These positions are stored
as points in a 2D plane. To avoid implementing the entire data structure with its
functionality in Unity native collections, we used an existing implementation that
is available in the NativeQuadtree repository on GitHub (7). From the provided
implementation, we use the following:

1. NativeQuadTree<T> - generic quadtree data structure. We use our internal
TreeNode structure (described later in this section) as a type parameter.

2. AABB2D - shortcut for axis-aligned bounding box represents a structure that
defines one rectangle in space. Implementation comes with simple Contains
and Intersects functions that test whether one AABB2D box is fully contained
in another or whether it intersects, respectively.

To incorporate the NativeQuadTree into our solution, we defined TreeNode
struct. This struct represents object stored in our quadtree and has the following
properties:

1. staticObstacle - boolean flag whether object is static obstacle or whether
it repesents an agent.

2. agentIndex - field is valid only if the given object represents an agent. Stores
an agent’s id.

3. stepIndex - field is valid only if the given object represents an agent. Stores
the ordinal number of the agent’s step (explained in more detail in Sec-
tion 5.5.5).

As an initial bounds for our quadtree, we use our walkable platform object in
the scenario. In this way, we ensure that we can represent the position of each of
our objects inside the simulation.

38

5 Solution overview
In this chapter, we review the concepts of our solution. This is done from

the perspective of genetic algorithms. Before that, we need to explain the main
properties of the agent in Section 5.1. In the same section, we explain the basics of
agent navigation. This is done to provide context to the reader. We then focus
more closely on the specific parts of the basic generic algorithm in Section 5.2. After
that, we introduce the initial implementation of our solution and then briefly sum
up various improvements that we tried in Section 5.3 and Section 5.4 respectively.
Lastly, we focus more deeply on the current solution that had the best results
(Section 5.5).

5.1 Agent overview
Various parts of our agent’s representation are closely linked to the choice of

engine. Since we use Unity, our measurements are tied to its units. According to
the documentation (12) 1 Unity unit is equal to 1 meter. We refer to these units
as f or float units.

In our simulation, we represent the agent’s body as a capsule because we are in
a 3D space, but our GA is designed for a 2D space. Therefore in algorithm, we
represent our agent as a circle on a 2D plane with the following properties:

1. Agent has a diameter equal to 0.5f.

2. Agent has a forward vector describing the direction in which the agent is
heading.

3. Agent has maximum speed of 5f/s, meaning he can travel 5.0 float units per
second at most.

4. Agent has acceleration/deceleration of 2f/s, meaning agent can change its
speed (either up or down) by 2 float units per second.

5. Agent is configured to have paths calculated by the GA to be of the maximum
size of 17.5f and have at most 7 segments (more in depth description of the
agent’s path and its segments is in section 5.5.1).

6. Agent has its destination that he is trying to reach.

A visual representation of our agent is shown in Figure 5.1. We can also see
the red arrow connected to the body of the agent capsule. This arrow represents
the agent’s forward vector.

39

Figure 5.1 Visual representation of agent’s body and its forward vector inside Unity

Navigating the agent towards its destination consists of two parts, Path Planning
and Path following. To give a better understanding of how navigation works, we
present the basic pseudo-algorithm of the game loop that demonstrates how many
applications implement this behaviour. It can be seen in Algorithm 1.

40

Algorithm 1 Basic gameloop

1: function GameLoop
2: while true do ▷ Endless loop
3: for all agent in agentsList do ▷ Iterate over agents in simulation
4: if agent.destination changed then
5: agent.CalculatePath() ▷ Perform path planning
6: end if
7:
8: if agent.position == agent.destination then
9: continue ▷ Agent is in its destination

10: end if
11:
12: agent.CalculateNewVelocity() ▷ Path following
13: agent.UpdatePosition() ▷ Update agents position by new velocity
14: agent.UpdateForward() ▷ Update agents heading direction
15: end for
16: end while
17: end function

As described in Algorithm 1, basic game loop iterates over all agents present
in the simulation and updates them. It detects whether the agent has a new
destination set and, if so, it recalculates the agent’s path (lines 4-6) by applying
Path planning algorithm. It then checks whether the agent is at its destination,
and, if so, moves on to updating the next agent (lines 8-10). After all checks
have been completed, it starts working on updating the agent’s position. First,
the new velocity that will be applied is calculated (line 12). This part is usually
some sort of collision avoidance algorithm, which calculates the most appropriate
velocity that should be applied in the next steps, taking into account various
predefined metrics such as speed or number of collisions. This can be solved using
modern state-of-the-art methods such as RVO or ORCA (which were explained
in Chapter 2), or we can apply our genetic algorithm (which is explained later in
Section 5.5). After the calculation of the new velocity, the result is applied to the
agent, which includes updating its velocity and heading (lines 13-14).

Path planning

In this section we explain in more detail how our solution performs path planning.
Path planning is done to plan the path that avoids the obstacles marked in the
navmesh. This might result in numerous inter-destinations captured in a list called
corners. The agent’s final destination is then the last element of mentioned corners

41

list. This path planning algorithm runs once when we set the destination to the
agent. During navigation, we try to navigate the agent gradually through all of
the inter-destinations until we reach the end of the corners list. During navigation,
we implement something we call destination skipping.

Destination skipping Navigating gradually through inter-destinations has its
disadvantages. The first main problem is that the inter-destination might get
blocked by some dynamic obstacle that was not there during the path planning,
resulting in the agent not being able to complete its entire path, even though in
reality it cannot only reach one of the inter-destinations. The second problem is
that our solution is designed to navigate the agent so that its velocity at destination
is zero, which is not really necessary when we want to continue moving along the
path. That is why we implement the Destination skipping. What it eventually
does is to allow the agent to skip inter-destination and navigate towards the
following destination in the corners list. The agent has defined a property called
maxSkipDestinations which defines how many inter-destinations can the agent
skip. Skipping is performed if maxSkipDestinations is greater than zero, and
the agent is closer to the inter-destination than the agent’s maximum path length.
This should reasonably prevent the above-mentioned problems.

Collision avoidance

To perform collision avoidance, we run the genetic algorithm described in
Section 5.5. The result of this GA is the velocity that is then applied to the agent.

5.2 Basic genetic algorithm
In this section, we describe the workflow of a basic GA. This is done via

a pseudo-algorithm (see Algorithm 2) and shows the whole process of how we
create and modify population throughout the generations. The implementation
of individual parts of this GA with additional details is described in Section 5.3.
What we can see in Algorithm 2 is that first we initialise the population (line 2
in Algorithm 2). Then perform a predetermined number of iterations in which
we calculate fitness, select the best individuals for the next population, and apply
operators (lines 5-11 in Algorithm 2.) After all iterations, we calculate the fitness
of the individual once again and then select the overall winner (lines 14-15 in
Algorithm 2), which is the individual with the highest fitness.

42

Algorithm 2 Genetic algorithm

1: function Execute
2: popInitialisation(pop) ▷ Initialise population
3:
4: for i = 0; i < iterations; i++ do
5: fitness(pop) ▷ Calculate fitness
6: selection(pop) ▷ Perform selection
7:
8: // Apply crossover operator(s)
9: cross(pop) ▷ Crossover operator

10: // Apply mutation operator(s)
11: mutation(pop) ▷ Mutation operator
12: end for
13:
14: fitness(pop) ▷ Calculate fitness
15: SetWinner() ▷ Set the overall winner of GA
16: end function

5.3 Initial implementation
This section concludes the initial setup of our GA including individual represen-

tation (5.3.1), population initialisation (5.3.2), operators (5.3.3), and fitness and
selection functions (5.3.4).

The initial implementation was done in the form of the basic genetic algorithm
described more closely in the previous Section 5.2.

5.3.1 Individual representation
General idea was to represent one viable agent’s path as one individual. Each

path is divided into segments. Each segment represents one step of the agent. This
is captured in Figure 5.2. We understand one step as a path agent will follow before
the next run of the GA. The end point of the first segment of the selected path
represents the place where the agent will be before re-executing GA. By having
multiple segments in each path, we are predicting the overall agent’s movement
multiple steps ahead. To represent a segment, we decided to use two components:

1. Size - length of the segment represented as a float value.

2. Rotation - relative rotation to the previous segment (or agent’s forward vector
in case of the first segment) in degrees represented as a float value.

43

The whole path can then be stored in a List data structure. In addition, each
individual also contains its fitness value, also represented as float.

Figure 5.2 Visual representation of individual as an agent’s path

The problem with this approach was that many paths were not heading toward
the destination and the agents got off track. Another problem was that the paths
were often unrealistic and had high jerk cost (which can be interpreted as the rate
of change with respect to the object’s acceleration over time), as we can see in
Figure 5.3. The solution to this problem will be described in Section 5.5.1 as it
fundamentally changes the GA.

44

Figure 5.3 Example of possible agent’s paths

5.3.2 Initialisation
Initialisation was random for each segment taking in consideration following

constraints:
1. Size of one segment can be from 0 to maxAgentSpeed * updateInterval,

where maxAgentSpeed is maximum agent’s speed and updateInterval is
interval how often the GA is run.

2. Rotation can range from -30 to 30 degrees.

5.3.3 Mutation and cross operators
For the crossover, we chose the uniform crossing for both size and rotation.

Each crossover created two offsprings.
We also implemented a crossover that was calculating the mean of its parents.

The operator was iterating over the population, selecting pairs of individuals next
to each other, and creating the first offspring. The second offspring was created
by randomly selecting one of the parents and one random individual from the
population.

The mutation was to randomly change the size of the segment taking into
account the initialisation constraints described in 5.3.2.

45

5.3.4 Fitness and selection functions
With fitness, we focused on the two most relevant metrics, the distance from the

destination and the number of collisions. The distance from destination is calculated
as the length of a straight line from the current position to the destination, without
taking into consideration any obstacles. The resulting fitness was then calculated
as 1

distanceToDestination , or 0 if we collide in any of the path segments.
As a selection, we implemented basic roulette wheel selection.

5.4 Initial implementation improvements
In this section, we explain some improvements made to the initial implementa-

tion described in 5.3 to enhance its usability.

5.4.1 Initialisation
The basic initialisation described in 5.3.2 had two major problems. The first

was that its starting rotation range was too low, making it difficult for agents to
reach the destination that was not in front of them. The second problem was that
any subsequent segment rotation was, on the other hand, too high, making the
paths seem unrealistic, as we can see in Figure 5.4.

Figure 5.4 Example of possible agent’s paths

46

To fix this, we introduced two new initializations:

Globe initialisation

To fix the problem of agents not being able to effectively change direction of
their travel, we introduced the Globe initialisation. This initialisation took
the first segment of each individual in the population and evenly distributed them
in a 360-degree rotation so that each segment would have the same gap between
them. Each subsequent rotation in the segment was at max 30 degrees. This fixed
the problem of agents not being able to reach destinations that were not in front of
them, but unfortunately introduced a new problem: agents were able to completely
change direction after each run of the GA.

Kinetic-friendly initialisation

To fix the first problem that agents cannot reach the destination that is not in
front of them, but also the problem introduced by the Globe initialisation, we
introduce the Kinetic-friendly initialisation. This initialisation took the
first segments of each individual, similar to the Globe initialisation, but its rotation
range was reduced to 120 degrees. Each subsequent segment rotation was also
limited to 15 degrees. This was our final initialisation in the current representation.

5.4.2 Mutation and cross operators
The problem with mutation until this point was that the mutation was purely

random (selecting a random number from the appropriate range) and did not
aim to improve the solution smartly. To introduce more smart and deterministic
mutations, we added the following two:

Even circle mutation

This mutation detected that the agent is in reach of its destination and created
a path from the current location of the agent to the destination. This was done
either by straight line to the destination (if the difference between agent’s forward
rotation and straight line to destination was not bigger than 15 degrees) or by
creating an arc of a circle that would evenly distribute velocities such that the
agent would end up at its destination.

Greedy circle mutation

This was a modification of the previous Even circle mutation with one small
change: the velocities in the circle arc were not evenly distributed, but used the

47

maximum agent’s speed and then slowing before the destination.
These mutations were eventually dropped because of an unusual circular path

that looked unnatural in the end.

5.4.3 Fitness functions
The problem with the previous fitness function was that it was too punishing

when it comes to collisions. To better incorporate collisions and the overall distance
of the segments from the agent’s destination, we implemented an improved version
of the basic fitness described in 5.3.4:

Continuous fitness

Initial fitness value was calculated as
distanceToDestination2 and then for each subsequent segment we calculated the
position of the agent at the end of the segment and subtracted

• distanceToDestination2 ∗ 2 if agent is colliding

• distanceToDestination2 if agent is not colliding

5.5 Current solution
In this section, we describe the current solution that gives us the best results.

First, we show the improved version of our GA in the form of a pseudo-algorithm
(see Algorithm 3). All of the methods mentioned in this pseudo-algorithm are more
closely described later in this section. All source codes related to these methods
can be found in Attachments C in the GeneticAlgorithm folder.

48

Algorithm 3 Genetic algorithm

function Execute
popInitialisation(pop) ▷ Initialise population

for i = 0; i < iterations; i++ do
jerkFitness(pop) ▷ JerkCost fitness
collisionFitness(pop) ▷ Collision fitness
endDistanceFitness(pop) ▷ EndDistance fitness
ttdFitness(pop) ▷ TimeToDestination fitness

ranking.CalculateRanking(
jerkFitnesses, collisionFitnesses, endDistanceFitnesses, ttdFitnesses,
jerkFitness.weight, collisionFitness.weight, endDistanceFitness.weight,
ttdFitness.weight

) ▷ Perform z-score normalisation and weighted sum
ranking.WriteFitness(pop) ▷ Write resulting fitnesses to the individuals

selection(pop) ▷ Perform selection

cross(pop) ▷ Crossover operator
controlPointsMutation(pop) ▷ ShuffleControlPoints mutation
smoothMutation(pop) ▷ SmoothsAcc mutation
shuffleMutation(pop) ▷ ShuffleAcc mutation
clampVelocityMutation(pop) ▷ ClampVelocity mutation
straightFinishMutation(pop) ▷ StraightFinish mutation

end for

jerkFitness(pop) ▷ JerkCost fitness
collisionFitness(pop) ▷ Collision fitness
endDistanceFitness(pop) ▷ EndDistance fitness
ttdFitness(pop) ▷ TimeToDestination fitness

ranking.CalculateRanking(
jerkFitnesses, collisionFitnesses, endDistanceFitnesses, ttdFitnesses,
jerkFitness.weight, collisionFitness.weight, endDistanceFitness.weight,
ttdFitness.weight

) ▷ Perform z-score normalisation and weighted sum
ranking.WriteFitness(pop) ▷ Write resulting fitnesses to the individuals

SetWinner() ▷ Set the overall winner of GA
end function

49

5.5.1 Individual representation
As already mentioned, the problem with the previous individual representation

described in Section 5.3.2 was that many paths were not heading toward the
destination and the agents got off track. Another problem was that the paths were
often unrealistic and jerky. To fix all of the above problems, we decided to have a
completely new representation of the individual. Each individual still represents a
path, but now its encoded as a cubic Bezier curve starting from the agent’s current
position and ending at the agent’s destination. We have chosen a Bezier curve
representation because they are an industry standard in game development.

Another problem with representing segments as pairs of size and rotation was
that it was easier to fall into situations that do not respect the kinetic laws. For
example, we could get into a situation of rapid change in the agent’s velocity going
from its maximum speed to zero in one step. To prevent this behaviour, we defined
the agent’s maximum acceleration value, which describes how much a given agent
can change its velocity in one step. Due to the Bezier curve, we no longer need the
rotation for segments, since the path is already defined, and instead of size of the
segment, we started keeping track of the agent’s acceleration between the segments.
It is encoded as a floating value in the range [−1, 1] where −1 means deceleration
at maximum capacity and 1 means acceleration at maximum capacity (concrete
values are described in Section 5.1).

The resulting path is a piecewise linear approximation of the Bezier curve,
where the size of the segment denotes the length of the curve between the start
and end point of the given segment.

The final representation of the individual in code is described in more detail in
Section 4.3.2

5.5.2 Initialisation
The implementation of initialisation was similar to our previous approach

described in 5.4.1 in the sense of an even distribution. The cubic Bezier curve is
defined by 4 points:

1. startPoint - initial/starting point of the curve

2. endPoint - final/ending point of the curve

3. C1 - first control point

4. C2 - second control point

The startPoint and the endPoint are well defined in each individual, because they
are agent’s current position and agent’s destination respectively as mentioned in

50

5.5.1. The control points then describe the curvature of the spline. To create
an even distribution among the population, we keep the same gap between each
individuals’ C1 points and C2 points, respectively. All C1 points then create one
collinear group, and similarly, all C2 points create a second collinear group. We
can see an example population of 50 individuals in figure 5.5, where green lines
represents given individuals and purple capsule is the agent.

Figure 5.5 Initialisation example of popoulation of 50 individuals

To provide a reasonable rotation angle in the first segment, we use trigonometric
functions to calculate the position of the control points. The position of the C1
point is more closely related to the agent’s forward vector, while the position of
the C2 point is determined on the (startPoint − endPoint) vector.

Control points for each individual are created as follows:

• C1

1. Place C1 point on the same position as startPoint
2. Calculate quadDistance = (endP osition−startP osition).magnitude

4

3. Translate C1 in direction of agent’s forward vector multiplied by
quadDistance

4. Create a line perpendicular to the agent’s forward vector. C1 will be
placed on this line.

5. Using trigonometric functions, calculate how much we can translate
C1. We want to achieve that angle between the agent’s forward vector
and the (C1 − startPoint) vector will not be greater than 30 degrees.
In most scenarios, this should suffice to ensure that the agent cannot
turn more than 30 degrees in a single step. Define the angle α that we
want to have as the resulting angle. We can use the tangent function to
calculate how much we can translate C1 on the perpendicular line as
follows: maxTranslateLength = tan (α) ∗ quadDistance. Now we can
translate C1 into the perpendicular line by maxTranslateLength

51

Figure 5.6 Bezier individual visualisation

• C2 - steps are analogous to the creation of C1, but instead of using the agent’s
forward vector, we use the (startPoint − endPoint) vector.

For better understanding of the creation of control points described in 5.5.2, we
can see the visual creation of the individual where α = 30° on the figure 5.6

We achieve an even distribution of individuals pictured in 5.5 by following steps:

1. First individual is always created with α = 30°. We calculate
maxTranslateLength identically to the calculation described in 5.5.2.

2. We want to create individuals with identical curvatures on both sides, so we
calculate subFactor = (maxT ranslateLength∗2)

populationSize
.

52

3. We then iterate over the population and create individuals, but in each step
we subtract subFactor from maxTranslateLength.

We are aware of some edge cases where the constraint on the agent’s turning
angle is not met. One of the situations can be when an agent’s forward vector is
facing in the opposite direction to the agent’s destination. Then it can happen that
the overall segment size is so large in length that the resulting velocity vector has
a rotation range greater than 30 degrees. These situations are currently neglected.

5.5.3 Mutation operators
In this section, we will describe the mutation operators that we implement.

Before that, we need to describe the velocity clamping technique that is used by
some of those operators.

Velocity clamping

This technique is used to determine the maximum velocity the agent can have by
its default setting (described in Section 5.1) to be able to decelerate to 0 velocity at
its destination. First, we need to understand that we can only change the velocity
in discrete intervals every time an algorithm is run. By default settings, the GA
is run each 0.5 seconds, the agent’s maximum velocity is 5f/s, and the agent can
accelerate/decelerate 2f/s by each run of the GA. Since we are operating in the
GA’s intervals, we need to divide both velocity and acceleration/deceleration by
half (because the GA is run twice a second). The example of deceleration can be
the following:

• Agents current velocity in the GA is 2.1f/s

• It takes 3 steps for him to decelerate to 0. If we want to use maximum
deceleration for each step, it would look like the following:

1. Agent’s velocity is 2.1f/s, he decreases his velocity to 1.1f/s

2. Agent’s velocity is 1.1f/s, he decreases his velocity to 0.1f/s

3. Agent’s velocity is 0.1f/s, he decreases his velocity to 0

If we want to determine the distance that agent will travel in the previous
example 5.5.3, we would sum agents velocities:

2.1 + 1.1 + 0.1 = 3.3

53

We can create a general formula for calculating how much distance will agent travel
if each step he decelerates by 1f/s:

D = n

2 [2a0 − (n − 1)]

where n is number of terms and a0 is the first term. From this we can express a0
as follows:

a0 = D

n
+ n − 1

2
The last thing we need to determine is the number of terms based on the velocity
of the agent. This is equal to the number of steps that the agent needs to be able
to decelerate to 0. We know that at the agent’s maximum speed 2.5f/s it takes 3
steps and the overall distance of 4.5f to decelerate to 0. Therefore, with distances
greater than 4.5f we can automatically assume that the agent can go at full speed
and still be able to decelerate. Now we need to determine the steps for distances
less than 4.5f . These are presented in Figure 5.10:

Destination distance to deceleration steps table
Destination distance Deceleration steps
[0 − 1] 1
(1 − 3] 2
(3 − 4.5] 3

Figure 5.7 Table describing relation between destination distance and deceleration
steps

StraightFinish mutation

This mutation aims to create a completely new individual with the following
properties:

1. The Bezier curve has a shape of straight line directly to the agent’s destination

2. In each step, it aims to use maximum possible velocity (calculated by the
velocity clamping method explained in 5.5.3) agent can have at a given
position

First, we check for the constraint of not exceeding the 30 degree rotation in
a single step by comparing the angle between the agent’s forward vector and the
(destination − agentPosition) vector. If this angle is greater than 30 degrees, we
are not performing any mutation. Otherwise, we create a new individual with the
properties mentioned above and replace last individual in the population by this
newly created one.

54

ClampVelocity mutation

The idea of this mutation is to check the first segment in individual and clamp
its velocity if it exceeds the maximum velocity (calculated by the velocity clamping
method explained in 5.5.3) that the agent can have in its current position to
still be able to decelerate to 0 velocity at the destination. The crucial part of
this mutation is to calculate the path length, which is done by estimating the
length of the Bezier curve and then using a piecewise linear approximation of
the given curve to divide it into multiple segments and summing up the length
of these segments. The estimation of the Bezier curve is calculated as follows:
estimatedLenght = |C1−startP oint|+|C2−C1|+|endP oint−C2|+|endP oint−startP oint|

2
The number of segments is then calculated as

CeilToInt(estimatedLength * 10)

SmoothAcc mutation

This mutation aims to reduce the overall jerk of the path by sudden changes
in the agent’s accelerations/decelerations. It iterates through the individual’s
acceleration array, takes adjacent pairs, computes their average, and writes the
result back to both of these acceleration units.

ShuffleAcc mutation

This mutation brings randomness into solutions, which is important for space
search algorithms. It iterates over an individual’s acceleration array and randomly
changes its values (in the appropriate range, which is [−1, 1] as described in 5.3.1).

ShuffleControlPoints mutation

This mutation brings another random element into the solutions, changing the
positions of the control points (in an appropriate space, taking into consideration
the conditions we defined in the Initialisation subsection 5.5.2). The workflow of
mutation is as follows:

1. We calculate the halfDistance = (endP osition−startP osition).magnitude
2 which is

equivalent of quadDistance from initialisation section 5.5.2, but we increased
the range from 1

4 to 1
2 .

2. We randomly generate a number in the range of [0 − halfDistace) that we
call upDistance - this is basically our new quadDistance.

3. Appropriate maxTranslateLength (defined in initialisation section 5.5.2) is
calculated based on upDistance

55

4. We randomly generate number in range
[−maxTranslateLength, maxTranslateLength) that we call
sideDistance – this is basically our new maxTranslateLength

5. We calculate new positions of both C1 and C2 based on these values and
assign them to the selected individual

5.5.4 Cross operator
The overall solution relies on mutation operators rather than crossover. It does

not make much sense to use many smart crossover operators, so we created one
to again introduce some more variability and randomness into our solution. This
crossover might create individuals who do not have control points on the same
side, creating curvature that resembles the letter "S". To do so, we implement it as
a uniform crossover operator for the control points’ coordinates of both selected
parents.

5.5.5 Fitness functions
In this section, we explain how we calculate the resulting fitness of each indi-

vidual. One main difference from previous solutions described in 5.3.4 is that now
we are using multiple fitness functions (each evaluating different aspects of the
individual) rather than one complex fitness function. We also need to note that
in our implementation of GA, we aim to minimise all our fitness functions. Using
multiple fitness functions means that we need to combine these multiple fitness
values into a single score. For that we use z-score normalisation and weighted sum,
more closely described later in this section. Before we get into concrete fitness
functions, we need to explain how we detect collisions of our individuals, since
it is a key functionality in some of the fitness functions. We then also explain
one of the core principles in every fitness function, which is dealing with an agent
overshooting its distance.

Collision detection

To keep the positions of all objects present in the scenario, we use NativeQuadTree
(explained in Section 4.5). This quadtree is shared among all agents in the simula-
tion and is created from scratch every time the agents are about to perform their
GAs. We also need to track agents’ future positions. The design of this algorithm
was meant to be independent of communication with other agents (because they
might implement other collision avoidance algorithms or even be controlled by a
human player); therefore, future positions are approximations. We calculate them
as follows:

56

1. We take agent’s current position, forward vector, velocity, and simulation’s
updateInterval.

2. We keep this metrics as they are and calculate where the agent will be in the
following n steps, where n is equal to path segments in agent’s configuration
described in 5.1. These positions are then added to the quadtree with
their corresponding stepIndex (field of the TreeNode struct explained in
Section 4.5), which is the ordinal number of the step.

3. We fill in gaps between calculated positions (to be able to query them from
the quadtree). We take into consideration the agent’s radius and place points
next to each other evenly spaced with the space size of 2 ∗ agentRadius.

To capture static obstacles (such as walls) in the quadtree, we represent them
in the same way as agents. The idea is that each obstacle is the same as a group
of static agents standing next to each other in a given area. We are filling these
obstacles the same way as we were filling gaps between agents’ steps. This is to
capture the total number of collisions that would occur if agents try to cross the
solid obstacle. The visual representation can be seen in Figure 5.8 below. The
centre of the black circles represents the positions stored in the quadtree, and the
circle radius is the same as the agent’s radius.

Figure 5.8 Static obstacle representation in quadtree (note: The circles in the lateral
obstacles are not centred due to the camera angle)

The final collision detection is done in following steps:

57

1. Take current agents position and define bounding box for the quadtree query
(we use 5fx5f sized box)

2. Retrieve all surrounding points from quadtree that are in bounding box with
a center in current agent’s position

3. Check all retrieved points whether they do not represent current agent. If
yes, do not count it as a collision

4. Generally, if the distance between agent’s current position and given point is
less than 2 ∗ agentRadius, we know that these collide. But with other agents,
we need to check the condition on stepIndex as well. This is necessary to
do, because we may collide with other agent’s position but in a different step
- therefore, collision would not happen. If their stepIndex match, we count
it as a collision.

Destination overshooting

With any path creation algorithm, there is always a risk of creating a path
that will overshoot the destination, telling the agent to continue even after passing
the destination mark. In our fitness functions, we incorporated penalisation for
overshooting the distance. The reason is that if an agent exceeds its distance, it
needs to decelerate, turn around, and return to the destination. The overshoot can
be detected if we get to the destination (or close to it) and one of the two following
is true:

1. Agent will not be able to decelerate to 0 when arriving to the destination

2. There are still some non-zero inputs in accelerations array that are telling
agent to apply some other velocity than 0 that would eventually position him
off target.

Due to the nature of our solution, we know that all paths are passing through the
destination (because the Bezier curve’s last point is destination). Therefore, if we
detect an overshoot in our solution, the resulting vector agent applies is calculated
as (destination− currentPosition)∗velocity, where the velocity is calculated from
the overshooting acceleration. Before counting it as a real overshoot, we first detect
by our velocity clamping algorithm 5.5.3 whether the agent’s velocity at a given
moment is less than the maximum velocity for proper deceleration to 0. If true,
we do not count it as an overshoot, because we are counting on several of our
mutations to be able to clamp the velocity.

58

EndDistance fitness

This fitness function is responsible for evaluating the first metric that we
defined in Section 1.2. Its main purpose is to evaluate how close the agent is to
the destination. This is done by taking the agent’s final position on his path and
calculating the straight-line distance between that position and destination. We
take this destination as a result of fitness. In case of overshoot, we do following:

1. Calculate distance to destination from agents position before overshooting
(we refer to this as distanceToDestination)

2. Calculate the length of the path after passing the destination with agent de-
celerating by its maximum possible deceleration, we refer to that as traveled.

3. The resulting fitness is calculated as

distanceToDestination + (traveled ∗ 2)

TimeToDestination fitness

This fitness function is responsible for evaluating the second metric defined
in Section 1.2. Its main purpose is to track how many steps the agent takes to
reach the destination. If the agent does not end at destination, the resulting fitness
value is the length of its path. In case of overshooting the destination, we do the
following:

1. We mark down how many steps agent already made and one more for crossing
the destination. We refer to this as pathSize

2. Similar to what we did in EndDistance fitness when overshooting, we calculate
how many steps it would take agent to stop completely after crossing the
destination. We refer to this value as afterDestinationPathSize

3. The resulting fitness is calculated as

pathSize + (afterDestinationPathSize ∗ 2)

Collision fitness

This fitness function is responsible for evaluating the third metric defined in
Section 1.2. Its main purpose is to evaluate the path based on how many collisions
it contains. To place greater emphasis on collisions that occur earlier in the path,
we use the following decay function:

e−0.5∗(stepIndex−0.5)

59

where stepIndex is the ordinal number of the segment (and eventually refers to the
same stepIndex that we used in the collision avoidance Section 5.5.5) This decay
function can also be seen in Figure 5.9

Figure 5.9 Collision decay function

We then iterate over each step of the agent’s path, calculating the number of
collisions in a given step and multiplying it by our decay function. The resulting
fitness is then the sum of these values across the whole path.

JerkCost fitness

This fitness is responsible for evaluating the fourth metric defined in Section 1.2.
Its main purpose is to evaluate the path based on its jerk value. In physics, the
jerk is defined as the third derivative of positions. We can think of it as the rate of
change with respect to the object’s acceleration over time. To calculate the jerk
value, we do the following:

1. First, we create an array representing agent’s velocities. We do this by
calculating the current agent’s path segments (this is done by piecewise linear
approximation of the Bezier curve as mentioned in 5.5.1). From that we get
the agent’s starting and ending position for each segment.

2. We iterate over positions from the first step, always taking the current
position (we refer to this as currentPosition) and the previous position (we
refer to this as previousPosition). We then subtract previousPosition from
currentPosition which results in velocity vector that we store in separate
array (we refer to this as velocityArray).

3. We iterate over velocityArray the same way we iterated over positions and
again subtract current velocity from previous one. This results in acceleration
vector which we store in another array (we refer to this as accelerationArray).

60

4. Finally, we iterate over accelerationArray and subtract previous acceleration
from the current one, which gives us jerk that we again store in separate
array (we refer to this as jerkArray).

5. We then calculate the sum of square magnitude of all jerk vectors, divide it
by count of the jerk vectors, and take the square root of that value. This
value is then our resulting fitness.

We can see that velocityArray is the same size as our individual’s acceleration
array (defined in Section 5.5.1). In case of overshoot, we similarly to EndDistance
fitness do the following:

1. Calculate the agent’s velocities in full deceleration until it reaches velocity 0.

2. Calculate the agent’s velocities as he would return straight back to the
destination in evenly distributed steps of size 1f.

3. Fill in the rest of velocityArray with calculated velocities (velocityArray is
of fixed size, so not all of them might fit).

Z-score normalisation

All our previously calculated fitness values are in a different range of values. If
we want to use a weighted sum described below, we need to normalise these values.
To do so, we use the z-score normalisation. This is mainly because it does not
require specific range boundaries, such as the minimum or maximum. We have four
arrays of fitnesses holding fitness values for every individual, each for one fitness
function. For each of these arrays, we do the following:

1. We start with an array of fitnesses, referred to as fitnessV alues.

2. We calculate the average of values stored in fitnessV alues, which we call
averageF itness.

3. We calculate the squaredSum variable, which is done by iterating over all
elements of fitnessV alues and calculating
squaredSum+ = (averageF itness − fitnessV alues[i])2, where
fitnessV alues[i] is ith element of fitnessV alues array.

4. We then calculate the variance = squaredSum
fitnessV alues.Length

.

5. Next, we calculate the standard deviation stdDev =
√

variance.

61

6. If stdDev is equal to 0, all normalised values are 0, else we create a new array of
normalised values normF and fill it by iterating over fitnessV alues and calcu-
lating normF [i] = fitnessV alues[i]−average

stdDev
, where normF [i] and fitnessV alues[i]

are ith element in normF and fitnessV alues arrays respectively.
This gives us four separate normF arrays of normalised fitness values, each for

one fitness function. We then use these normF arrays later in the weighted sum
described below in this section.

Weighted sum

As a result of the normalisation of the z-score (described earlier in this Section),
we have four arrays of normalised fitness values, which contain fitness values for
each agent. This means that we still have four separate fitness values for each
agent. To be able to compare individuals between each other, we decided to use a
weighted sum method, which will combine these four fitness values into one that
we will use as the overall fitness of the individual. Weighted sum is a technique
how to assign weight to each fitness value respectively. Each fitness function has
a defined weight, how much should it affect the resulting fitness. Our baseline
solution (defined in Section 6.2.1) has the following weights:

Fitness weights in the baseline solution
Fitness function Weight
Collision fitness 0.5
EndDistance fitness 0.2
JerkCost fitness 0.2
TimeToDestination fitness 0.1

Figure 5.10 Table describing weights of our fitness functions in the baseline solution

It is considered good practice to use weights such that their sum is equal to 1.
The resulting fitness for each individual using the weighted sum is then calculated
as follows
resultingF itness = normF1 ∗ w1 + normF2 ∗ w2 + normF3 ∗ w3 + normF4 ∗ w4
where normF{n} is the normalised value of the nth fitness and w{n} is the weight
of the nth fitness.

5.5.6 Selection
As a resulting selection algorithm, we decided to use the elitist approach. This

means that for each selection we decide on a number of individuals that will survive
to the next generation. To do so, we do the following:

62

1. Choose number of individuals that will be taken to the next generation (we
refer to this number as n), which is usually half of the population.

2. Sort individuals array in ascending order (we refer to this array as
individualsArray).

3. We iterate over individualArray and do the following individualArray[i] =
individualArray[i%n], meaning we override individuals that are pass the
limit by individuals starting from the beginning of the individualArray.

63

6 Evaluation
This chapter consists of three parts, design, results, and discussion. In the

design Section 6.1 we go through the design of various scenarios thatwere imple-
mented to test our implementation. In the same section, we also describe what
hyperparameters were selected for the experiments in given scenarios. In the next
Section 6.2 we present our baseline setup of hyperparameters, what sweeps across
these hyper-parameters we performed, and what the results are. Lastly, we leave
some space for discussion in Section 6.3.

6.1 Design
In this section, we first review the prepared scenarios that we use for the

evaluation of our solution.

6.1.1 StraightLine
This scenario is used to evaluate how the agent handles the simple use case

where the path should be a straight line to the destination. We expect the agent
to go directly to the destination. The entire scene consists only of a walkable
platform without obstacles. The agent starts at position [0,0] and its destination
is set at [0,40]. We should note that in all scenarios, the starting forward vector
of the agent is calculated as (destination − startPosition).normalized, which, in
other words, means that the agent always heads in the direction of its destination.
Unity’s dedicated scene for this scenario in our solution is called StraightLineScene.

6.1.2 SmallObstacle
This scenario is used to test the use case when there is a small obstacle in the

agent’s way that is not registered in navmesh. The agent starts at position [0,0] and
its destination is set at [0.40] as in the previous StraightLineScene scenario. The only
difference is that, approximately in the middle between agent’s start position and
its destination, we placed a cube of size 3x3 units that is not registered by navmesh.
This should test whether the agent will avoid collision with a static obstacle using
our genetic algorithm. We can see the initial layout in Figure 6.1. Unity’s dedicated
scene for this scenario in our solution is called SmallObstacleScene.

64

Figure 6.1 Initial layout of the SmallObstacleScene

6.1.3 CornerSingle
In this scenario, the agent is forced to reach the destination by passing near the

corner of the static obstacle. This obstacle is registered in navmesh, which means
that the agent’s interdestinations will be at the corners of the obstacle. We are
trying to observe whether the agent avoids a typical problem in this use case, such
as wall hugging. The agent starts at position [-40,20] and its destination is set to
[-40,30] and between them there is a static obstacle which starts at the edge of
a walkable platform, forcing the agent to bypass the obstacle from one side only.
We can see the layout of the scene in Figure 6.2. Note that the agent is heading
towards the destination at the start, so he first needs to turn in the direction of the
corner, which will most likely put him in the position closer to the wall. Unity’s
dedicated scene for this scenario in our solution is called CornerScene.

65

Figure 6.2 Initial layout of the CornerScene

6.1.4 OppositeAgents
This scenario is a classic example presented by multiple state-of-the-art collision

avoidance algorithms. We have two agents that are 30 units (for units explanation,
refer to Section 5.1) apart and facing each other. Each of the agents has a destination
set on the opposite side. This results in agents moving towards each other to reach
their destinations. The concrete coordinates for the first agent are the start position
at [0, -20] and the destination at [0,30], whereas for the second agent it is the
start position at [0,20] and the destination at [0,-30]. This scenario should test two
important things, whether the agents avoid collision with each other and whether
they will not start oscillating. Unity’s dedicated scene for this scenario in our
solution is called OppositeScene.

Figure 6.3 Initial layout of the OppositeScene

66

6.1.5 OppositeMultipleAgents
This scenario is basically the same as the OpositeScene scenario but on a larger

scale. Instead of having two agents facing each other, we now have ten agents, five
on each side. The agents are placed right next to each other without any additional
space between them. Concrete coordinates can be found in the source codes (see
Attachments C) inside the Scenarios folder in
OppositeMultipleScenario.cs. This scenario should test for collisions and os-
cillations the same as the previous OpositeScene scenario, making it harder for
agents because now they also have other agents moving next to them, as well
as multiple agents opposite them. We can see the initial layout of the scenario
in Figure 6.4. Unity’s dedicated scene for this scenario in our solution is called
OppositeMultipleScene.

Figure 6.4 Initial layout of the OppositeMultipleScene

6.1.6 OppositeCircleAgents
This scenario is the next iteration of the previous OppositesMajorScene scenario

and is also a typical test use case in other collision avoidance algorithms. Agents are
placed on the arc of the circle with the same spacing between them and destinations
that are on the opposite side of the circle. In this scenario, we use 10 agents and
a circle with a radius of 10 units. This scenario should test mostly for collisions
among the agents, making it exceptionally hard because, in theory, all of their ideal
paths have a single intersection point in the centre of the circle. This means that
agents need to quickly adapt to others to successfully move to their destination
with as few collisions as possible. In our solution, each agent handles its path
separately, therefore we expect some collision might occur. The initial layout can
be seen in Figure 6.5. Unity’s dedicated scene for this scenario in our solution is
called OppositeCircleScene.

67

Figure 6.5 Initial layout of the OppositeCircleScene

6.1.7 NarrowCoridorsOppositeNoNavmeshScenario
This scenario is the next iteration of the SmallObstacleScene scenario, but it

increases difficulty on multiple levels. It consists of 10 agents facing each other
similar to the OppositeMultipleScene scenario, but the agents have some space
between them. Each agent has a destination set to on the opposite side. There
are also multiple static obstacles not registered in the navmesh between the agents
that form narrow corridors and give agents multiple choices on how to get to the
destination. This scenario tests another common problem with collision avoidance
algorithms, namely navigating through the same corridor (because it creates the
shortest path to the destination), leading to more collisions, rather than selecting a
different route. We can see the initial layout in Figure 6.6. Unity’s dedicated scene
for this scenario in our solution is called NarrowCorridorNoNavmeshOpposite.

68

Figure 6.6 Initial layout of the NarrowCorridorNoNavmeshOpposite

6.1.8 NarrowCorridorOpposite
This scenario is a variation of the previous NarrowCorridorNoNavmeshOpposite

scenario, with a small difference. Now, there is only one narrow corridor and
agents are forced to navigate through it (because there are no other paths to the
destinations). This gives less space for collision avoidance since agents are no longer
able to select a different route. The initial layout is shown in Figure 6.7. Unity’s
dedicated scene for this scenario in our solution is called NarrowCorridorOpposite.

69

Figure 6.7 Initial layout of the NarrowCorridorOpposite

6.1.9 Hyperparameters
Our solution provides us with multiple configuration options. Changing these

options might have an impact on the overall results. We call these options hyper-
parameters. For this thesis, we selected the following hyperparameters:

1. ShuffleControlPoints mutation probability

2. SmoothAcc mutation probability

3. ShuffleAcc mutation probability

4. StraightFinish mutation probability

5. UniformCross crossover probability

6. Collision fitness weight

7. EndDistance fitness weight

70

8. JerkCost fitness weight

9. TimeToDestination fitness weight

10. Population size

11. Number of iterations of the GA

Each of these hyperparameters is in a numeric form, and modifying its value
might impact the overall performance of our solution. In the following sections, we
present experiments that we run to evaluate this impact. We will focus mainly on
the metrics of a good path that we defined in the Introduction Section 1.2.

6.2 Results
In this section, we first go through our default hyperparameters configuration,

which we refer to as baseline. Then we present the setup of experiments and their
results.

6.2.1 Baseline
We refer to the baseline as the default configuration of our solution. It is in the

form captured in the table in Figure 6.8

Baseline configuration table
Hyperparameter Value

ShuffleControlPoints mutation probability 0.3
SmoothAcc mutation probability 0.9
ShuffleAcc mutation probability 0.3

StraightFinish mutation probability 1
UniformCross crossover probability 0.1

Collision fitness weight 0.5
EndDistance fitness weight 0.2

JerkCost fitness weight 0.2
TimeToDestination fitness weight 0.1

Population size 100
Number of iterations of the GA 20

Figure 6.8 Table describing value of hyperparameters in the baseline configuration.

From our baseline configuration we can observe the following:

71

• We put high emphasis on collision, since they take 50% of our overall individual
fitness. In the second place, we have the path length, because it is the
combination of both EndDistance and TimeToDestination fitnesses (which
takes 30% of total individual fitness). The JerkCost fitness is last, because
thanks to our individual representation as a Bezier curve, we have secured
that paths will not be so jittery, therefore its main check is for sudden
acceleration/deceleration changes.

• We rely highly on mutations to modify our individual in the best way possible.

• We have a pretty high number of individuals in the population and a bit less
iterations.

In the following section, we describe sweeps that we performed across the
hyperparameters to determine their impact on the overall solution.

6.2.2 Hyperparameter sweeps
To determine how various hyperparameters affect the overall solution, we

perform various sweeps across their values. We then run experiments (for more
details, refer to Section 6.2.3) with these modified values to collect data and see
what their impact is. We divide sweeps that we performed into two following
categories:

1. Non-dependent - these are hyperparameters that can change their value
independently on others. This category contains mutation and crossover
probabilities, population size, and number of GA iterations.

2. Dependent - these hyperparameters are in dependent relation with others,
meaning that if we change one value, we need to also modify some other
hyperparameter for our solution to work correctly. This category contains
fitness weights, because, as mentioned in Section 5.5.5, sum of their values
should be 1.

Sweeps are performed on one hyperparameter at the time, while other hy-
perparameters have values presented in the Baseline Section 6.2.1. Sweeps for
non-dependent hyperparameters are presented in the table in Figure 6.9, where on
the left side we have the name of the hyperparameter, and on the right side is an
array of values used for sweep (first value in the array is the baseline value).

72

Sweeps for the non-dependent hyperparameters
Hyperparameter Sweep array

ShuffleControlPoints mutation probability [0.3, 0.6, 0.9]
SmoothAcc mutation probability [0.9, 0.6, 0.3]
ShuffleAcc mutation probability [0.3, 0.6, 0.9]

StraightFinish mutation probability [1, 0.6, 0.3]
UniformCross crossover probability [0.1, 0.3, 0.6]

Population size [100, 50, 20]
Number of iterations of the GA [20, 10, 5]

Figure 6.9 Table describing sweeps across the non-dependent hyperparameters

As mentioned above, dependent sweeps require a change among all dependent
values. To capture the configuration of the sweep, we came up with an encoding
from which it is easier to tell what kind of sweep it represents. As we know, the
dependent hyperparameters are the weights of the fitness functions. The sweep
configuration is then encoded as the starting letter of the name of the fitness
function, followed by its weight, divided by underscores. The baseline configuration
can be then encoded as C05_E02_J02_T01, where:

1. C05 represents the Collision fitness function and its weight 0.5

2. E02 represents the EndDistance fitness function and its weight 0.2

3. J02 represents the JerkCost fitness function and its weight 0.2

4. T01 represents the TimeToDestination fitness function and its weight 0.1

We can see all the configurations of our dependent sweeps with their explanation
in the table in Figure 6.10, where on the left side we have the encoded configuration
and on the right side explanation of what it encodes.

73

Sweeps for dependent hyperparameters
Configuration Weight values

C05_E03_J01_T01

Collision fitness weight 0.5
EndDistance fitness weight 0.3

JerkCost fitness weight 0.1
TimeToDestination fitness weight 0.1

C07_E02_J005_T005

Collision fitness weight 0.7
EndDistance fitness weight 0.2
JerkCost fitness weight 0.05

TimeToDestination fitness weight 0.05

C03_E05_J01_T01

Collision fitness weight 0.3
EndDistance fitness weight 0.5

JerkCost fitness weight 0.1
TimeToDestination fitness weight 0.1

C02_E07_J005_T005

Collision fitness weight 0.2
EndDistance fitness weight 0.7
JerkCost fitness weight 0.05

TimeToDestination fitness weight 0.05

C015_E005_J04_T04

Collision fitness weight 0.5
EndDistance fitness weight 0.3

JerkCost fitness weight 0.1
TimeToDestination fitness weight 0.1

C015_E04_J04_T005

Collision fitness weight 0.15
EndDistance fitness weight 0.4

JerkCost fitness weight 0.4
TimeToDestination fitness weight 0.05

C02_E005_J005_T07

Collision fitness weight 0.2
EndDistance fitness weight 0.05

JerkCost fitness weight 0.05
TimeToDestination fitness weight 0.7

C025_E025_J025_T025

Collision fitness weight 0.5
EndDistance fitness weight 0.3

JerkCost fitness weight 0.1
TimeToDestination fitness weight 0.1

Figure 6.10 Table describing sweeps across the dependent hyperparameters

The idea behind each sweep is the following:

1. C05_E03_J01_T01 - this configuration is relatively close to the baseline.
Half the emphasis is put on the collisions, followed by the path length, and

74

putting jerk cost at the end. Motivation here is to try to keep the overall
balance between collisions and path length while slightly prioritising the
collisions.

2. C07_E02_J005_T005 - this configuration is putting even more focus on
the collisions, but still leaving the path length in the second place and even
less focus on the jerk cost. The relationship between collisions and the path
length is now more unbalanced. Motivation here is to test how much the
given disbalance disrupts the overall behaviour and time it takes the agent
to get to the destination.

3. C03_E05_J01_T01 - in this configuration, we switch the priority to the
path length, putting collisions focus on the second place and still keeping
the jerk cost on the third. Motivation is to observe whether there will be a
notable increase in the agent’s collision count.

4. C02_E07_J005_T005 - this configuration is similar in imbalance to the
C07_E02_J005_T005, but now we switch the collisions with the path length.
The jerk cost is still third. Motivation is to find out whether the agent gets
faster to the destination while still keeping a reasonable amount of collisions.

5. C015_E005_J04_T04 - this configuration switch focusses more on the jerk
cost. We can see that the path length still has slightly more importance.
This is because we believe that paths cannot be purely focused on jerk cost
because that would not necessarily lead agents effectively to their destinations.
Motivation is to observe what happens when there is a greater focus on the
jerk cost.

6. C015_E04_J04_T005 - this configuration is almost the same as
C015_E005_J04_T04, but we changed the weights of the path length
fitnesses. Motivation is the same as in C015_E005_J04_T04, but now we
are trying it with a different path length fitness.

7. C02_E005_J005_T07 - here we are again changing the weights of the
path length fitnesses, but now with the C02_E07_J005_T005 configuration.
Motivation is to test whether a greater focus on the TimeToDestination
fitness could present better results than focussing on the EndDestination
fitness.

8. C025_E025_J025_T025 - in this configuration we are not prioritising any
fitness, setting the same weight to all of them. Motivation is to test an even
distribution of focus and the resulting behaviour.

75

6.2.3 Experiments
In this section, we describe the experiments that were performed to evaluate

our solution and how we visualised the results. Each experiment consists of running
each configuration on each scenario described through Section 6.1.1 to Section 6.1.8
20 times. The only exception to this is the baseline solution, which we run twice
(which is equal to running each scenario 40 times). These runs created logs that are
described in Section 6.2.3 and from these logs we created graphs to visualise the
data (described in the same section). We use the violin plot for data visualisation
(complete guide on how to interpret violin plots is available on Atlassian page (22)).
This is mainly because it allows us to see the overall distribution of the data and
various peaks. It is also easier to compare these distributions among multiple
configurations. Each violin plot is accompanied with box plot for us to more easily
see ends of the first and third quartile, as well as median shown by white strip.

The experiments were conducted in a macOS Ventura version 13.4.1 laptop
with an Apple M1 chip.

Logging and graph creation

In this section, we first describe an important part of our solution, logging. It
is used mainly to obtain the relevant data from the simulation in order to evaluate
our solution. We log data per agent in the specific scenario.

The logging is performed in the csv file format. An entry in a file can be
interpreted as the path properties of an agent. The file has the following columns:

1. PathLength - number of segments in the path.

2. PathDuration - duration in seconds how long it took the agent to go from
start to its destination.

3. CollisionCount - number of collisions agent had during moving along the
path.

4. FramesInCollision - how many frames the agent spent in collision during
moving along the path.

5. PathJerk - JerkCost value of the whole path (for JerkCost calculation refer
to the Section 5.5.5).

6. GaTimes - How long (in milliseconds) it took from scheduling the GA to
collecting results.

Data are collected after each GA run on each agent separately. To differ among
various logs of different configurations of our GA solution, we store them in separate

76

folders. The names of these folders encode the current configuration of our GA (to
understand the following metrics, refer to Section 5.5) and have the following form:

CPM − SMM − SHM − CLM − STM − UC − CF − EF − JF − TF − PS − IT

where the abbreviations mean the following:

1. CPM - probability of ShuffleControlPoints mutation

2. SMM - probability of SmoothAcc mutation

3. SHM - probability of ShuffleAcc mutation

4. CLM - probability of ClampVelocity mutation

5. STM - probability of StraightFinish mutation

6. UC - probability of Uniform crossover

7. CF - weight of the Collision fitness

8. EF - weight of the EndDistance fitness

9. JF - weight of the JerkCost fitness

10. TF - weight of the TimeToDestination fitness

11. PS - population size

12. IT - number of iterations of the GA

To store the logs, we do the following:

1. Create a directory in the form of encoded configuration

2. Create a specific folder inside the configuration directory for each scenario in
the form of a scenario name

3. Log each agent in a separate csv file in the form
agentId.csv where agentId is the id of a given agent

The resulting path is then of the form
configuration_encoding/scenario_name/agent_id.csv.

If we run the scenario with the same configurations in the past, we simply
append the results to already created csv files.

77

Each configuration directory also contains the configuration file config.txt, which
consists of the complete breakdown of the configuration encoding with concrete
values.

For better visual interpretation of our logged data, we created a plotting.ipynb
python script (see Attachments C), that transforms the csv files into a graph
representation. For data manipulation, we use the Pandas library (8). For graph
creation, we use both Matplotlib (9) and seaborn (10) python libraries.

In order to have graphs that are easier to read, we changed the names for
configurations composed of non-dependent hyperparameters. Instead of dashed-
separated encoding (explained earlier in this section), we now use the shorter name
of the hyperparameter and its sweep value separated by underscore. Mapping of
the shortcuts is the following:

• ShuffleControlPoints mutation probability = cpMut

• SmoothAcc mutation probability = smoothAccMut

• ShuffleAcc mutation probability = shuffleMut

• StraightFinish mutation probability = straightFinish

• UniformCross crossover probability = controlCross

• Population size = popSize

• Number of iterations of the GA = iterations

The whole script is in Jupyter notebook (11) form for more structured code.
The script is divided into multiple cells. We now describe the most important ones.

The third cell is used to plot the data for each scenario in each GA configuration.
As already mentioned, for graph visualisation, we use the violin plot. The result is a
single graph for each column of our logging csv file, in every configuration-scenario
combination. We can see an example plot for PathLength values in OppositeAgents
scenario (scenario is explained in previous Section 6.1.4) with modified ShuffleAcc
mutation probabilty in Figure 6.11.

78

Figure 6.11 Example plot for PathLength values in OppositeAgents scenario with
modified ShuffleAcc mutation probability

The fourth cell is used to plot the data for scenario-column combination, where
on the x-axis we have different configurations. In this way, we can compare various
configurations and their results. The example of this plot is shown in Figure 6.12.
It shows various configurations in the OppositeAgents scenario (for more details,
refer to Section 6.1.4) regarding the PathLength values.

79

Figure 6.12 Example configurations plot for PathLength values in OppositeAgents
scenario

As we can see in Figure 6.12, the configurations plot contains a lot of data. For
that reason, we implemented the fifth cell, where we divide configurations into two
groups; based on the hyperparameters’ dependency. These two groups are then
plotted separately, while keeping the same colour encoding (for easier navigation).
An example of these graphs can be seen in Figure 6.13.

(a) Configurations composed of the non-dependent hyperparameters

80

(b) Configurations composed of the dependent hyperparameters

Figure 6.13 Configurations comparison of the PathDuration entry in the OppositeCir-
cleAgents divided into two groups based on hyperparameters’ dependency

How to read graphs

As described in Section 6.2.3, our logs store the following data (to which we
refer as graph data):

1. PathLength

2. PathDuration

3. CollisionCount

4. FramesInCollision

5. PathJerk

6. GaTimes

Our plotting script (described in Section 6.2.3) then visualises each entry from
the graph data for each scenario separately. It is capable of creating two types of
graphs:

1. Configuration-centric graphs - this is the visualisation just for one configu-
ration. It creates separate graphs for each entry in the graph data in each
scenario. The title of each graph contains the configuration name and the

81

scenario name separated by a dashed line. An example of such a graph
visualising the PathLength entry for the shuffleMut_09 configuration in the
OppositeAgents scenario is presented in Figure 6.14.

2. Configuration compare graphs - It creates separate graphs for each entry in the
graph data in each scenario, but now the graph contains all the configurations
(the configuration name is in comparison to the baseline solution). The
violin plots for these configurations are sorted in ascending order based on
their mean value (meaning that configurations more to the left are better).
The title of each graph contains the name of the scenario and a concrete
entry of the graph data separated by a dashed line. An example of a graph
visualising the PathLength entry in the OppositeAgents scenario can be seen
in Figure 6.15. You may notice that the C015_E005_J04_T04 configuration
is missing in this graph (and in any subsequent graphs as well). The reason
is explained in Section 6.3.

Figure 6.14 PathLength entry for shuffleMut_09 in the OppositeAgents scenario

82

Figure 6.15 Configurations comparison of the PathLength entry in the OppositeAgents
scenario

In the following sections, we show several plots. We focus mainly on configu-
ration comparison graphs since they provide us with more information about the
differences between them. Showing the plot with every configuration present might
not be ideal; therefore, we present the plots in groups of three. The first plot will
consist of every configuration to get an overall idea of the order. The next plot will
consist only of configurations composed of dependent hyperparameters along with
the baseline solution, and the third plot will have baseline solution with comparison
of other configurations composed of non-dependent hyperparameters. Note that if
the order of some configurations is not consistent across plots, it means that they
have the same mean value, in which case we do not have control over ordering.

As we do not want to overwhelm this thesis and its reader with many plots, we
show only a small subset of generated graphs. The rest of the plots can be found
in the Attachments C to this thesis. For more readability, we divide the plots into
the following three categories:

1. Path length - plots related to the path length. These are reflected in Path-
Length and PathDuration entries from our graph data.

2. Collisions - plots related to agents’ collisions. These are reflected in Colli-
sionCount and FramesInCollision entries from our graph data.

3. Other metrics - plots related to remaining metrics. These are reflected in
PathJerk and GaTimes entries from our graph data.

83

Path length

We start with a graph visualising the PathDuration entry in the OppositeCir-
cleAgents scenario. This can be seen in Figure 6.16

(a) Comparison of all the configurations

(b) Configurations composed of the non-dependent hyperparameters

84

(c) Configurations composed of the dependent hyperparameters

Figure 6.16 Configurations comparison of the PathDuration entry in the OppositeCir-
cleAgents

Next, we can see plots for the PathDuration entry in the NarrowCoridorsOppo-
siteNoNavmeshScenario in Figure 6.17.

(a) Comparison of all the configurations

85

(b) Configurations composed of the non-dependent hyperparameters

(c) Configurations composed of the dependent hyperparameters

Figure 6.17 Configurations comparison of the PathDuration entry in the NarrowCori-
dorsOppositeNoNavmeshScenario

Last of the Path length section is the PathLength entry in the StraightLine
scenario, which can be seen in Figure 6.18.

86

(a) Comparison of all the configurations

(b) Configurations composed of the non-dependent hyperparameters

87

(c) Configurations composed of the dependent hyperparameters

Figure 6.18 Configurations comparison of the PathLength entry in the StraightLine

Collisions

This section starts with the visualisation of the FramesInCollision entry in the
OppositeAgents scenario. It is present in Figure 6.19.

(a) Comparison of all the configurations

88

(b) Configurations composed of the non-dependent hyperparameters

(c) Configurations composed of the dependent hyperparameters

Figure 6.19 Configurations comparison of the FramesInCollision entry in the Oppo-
siteAgents

Second visualisation consists of CollisionCount entry in CornerSingle scenario
and can be seen in Figure 6.20

89

(a) Comparison of all the configurations

(b) Configurations composed of the non-dependent hyperparameters

90

(c) Configurations composed of the dependent hyperparameters

Figure 6.20 Configurations comparison of the CollisionCount entry in the CornerSingle

Next, we continue with the CollisionCount entry but in the SmallObstacle. The
results are shown in Figure 6.21

(a) Comparison of all the configurations

91

(b) Configurations composed of the non-dependent hyperparameters

(c) Configurations composed of the dependent hyperparameters

Figure 6.21 Configurations comparison of the CollisionCount entry in the SmallOb-
stacle

92

Other metrics

In this section we first show in Figure 6.23 visualisation of the GaTimes entry
in NarrowCoridorOpposite.

(a) Comparison of all the configurations

(b) Configurations composed of the non-dependent hyperparameters

93

(c) Configurations composed of the dependent hyperparameters

Figure 6.22 Configurations comparison of the GaTimes entry in the NarrowCorri-
dorOpposite

Lastly, we show visualisation of PathJerk entry in OppositeMultipleAgents in
Figure

(a) Comparison of all the configurations

94

(b) Configurations composed of the non-dependent hyperparameters

(c) Configurations composed of the dependent hyperparameters

Figure 6.23 Configurations comparison of the PathJerk entry in the OppositeMulti-
pleAgents

95

6.3 Discussion
In this section, we go one visualisation after, look at the results and interpret it

the way we see it.
Before that, we need to explain why the configuration C015_E005_J04_T04

is missing in the resulting plots. This is because agents were unable to complete
some scenarios in a reasonable time. The example scenario is StraightLine. Since
the agent in this scenario is at the beginning 40 units away from its destination, he
put the most emphasis on the JerkCost fitness value. This resulted in the agent
slowly wandering around its start position since it did not want to disturb the
JerkCost value by accelerating. This is why we decided to omit this configuration
from the overall experiments.

6.3.1 OppositeCircleAgents - PathDuration
We can see in Figure 6.16a that the performance of the configurations is relatively

similar to each other.
Configurations that perform worse compared to the baseline are generally those

that lower the quality of the solution. We can see that these are all configurations
that reduce the population size or the number of iterations of the GA. This can
have some impact due to the algorithm not having enough viable individuals or
not being able to iterate to better solution before it ends. We can also see that
smoothAccMut_03 performed worse than the baseline. This mutation is expected
to balance accelerations/decelerations of the agent, keeping him on a similar speed
during his path navigation. In this configuration, mutation is executed a lot less than
usual (0.9 probability), which might result in irregular accelerations/decelerations
and therefore even higher path duration time.

On the other hand, configurations C02_E07_J005_T005 and
C03_E05_J01_T01 perform better with a noticeable difference. Something these
configurations have in common is a relatively low Collision fitness weight. It might
be worth taking a look at the FramesInCollision entry in this scenario to see if these
configurations do not prefer the better path duration but neglect collisions. We
can see the configurations comparison for this entry in Figure 6.24. Although the
configurations seem to have a similar distribution, we can see that configurations
C02_E07_J005_T005 and C03_E05_J01_T01 are among the worst performers.
One more observation that can be done, is that the C02_E005_J005_T07 config-
uration is among the best performers in both FramesInCollision and PathDuration
entries, even though it puts higher emphasis on TimeToDestination fitness and a lot
less on Collision fitness. This might be due to the fact that circle on which agents
are positioned is relatively small in diameter - 20 units. Therefore, agents might be
able to construct paths that end directly at destination in the early beginnings of

96

their navigation. These paths can then have the same TimeToDestination fitness
value, therefore preferring the ones with fewer collisions.

Figure 6.24 Configurations comparison of FramesInCollision entry in OppositeCir-
cleAgents

6.3.2 NarrowCoridorsOppositeNoNavmeshScenario -
PathDuration

We can again see in Figure 6.17a that the configurations perform similarly.
Another observation we might have is that in almost every configuration there is a
tiny percentage of runs that produced bad results. This indicates that some agents
are stuck for a while and only then reach the destination. When the experiments
were run, we were able to observe that behaviour in some cases in this concrete
scenario. Unfortunately, it is due to the nature of our solution. Sometimes an agent
gets in a position where he is really close to some wider obstacle and is heading
towards that obstacle. If in this case the destination is on the other side of a given
obstacle, all paths that the agent produces result in an almost immediate collision.
Therefore, the agent might prefer small steps that do not cause collisions, which
results in him moving slowly around the obstacle. The agent eventually reaches
the point where he is able to find a path without any collisions and continues its
navigation more efficiently.

We can see in Figure 6.17a that there are again some leading configurations
that do not exhibit this behaviour. We are talking mainly about
C02_E07_J005_T005, C025_E025_J025_T025, and C03_E05_J01_T01. We

97

can see that they again have less emphasis on collisions, but put relatively high
focus on path length with a combination of the entries EndDistance and the
TimeToDestination, which might help them overcome this stuck issue.

6.3.3 StraightLine - PathLength
As we can see in Figure 6.18a all configurations perform relatively the same.

There is a small exception if we look at the C015_E04_J04_T005 configuration.
We can see that it has some noticeable percentage of runs that performed worse
than average. This is most likely due to similar reason why the configuration
C015_E005_J04_T04 was skipped (for more details, see beginning of Section 6.3).
The C015_E04_J04_T005 configuration is mainly focused on the path length,
but it has almost the same weight as the JerkCost fitness. Since in the StraightLine
scenario the agent is at the beginning 40 units away from the destination, the
TimeToDestination fitness values will be the same, leaving the EndDestination
and the JerkCost fitness values equally important. This might result in the agent
having slower starts, which then leads to longer paths.

On the other hand, if we look at the top 3 leading configurations, which
are C02_E005_J005_T07, C02_E07_J005_T005, and C025_E025_J025_T025
respectively, we can see that they all put relatively small emphasis on the Collision
fitness, which is not really important in this scenario since there are no other agents
or obstacles, therefore leaving extra space to more appropriate fitnesses.

6.3.4 OppositeAgents - FramesInCollision
As we can see in Figure 6.19a, almost all configurations have a mean value of

FramesInCollision equal to zero. We can also observe small peaks among most of
the configurations, but these are at most of value 12. Twelve frames in collision is
a really small amount of time, so we can almost certainly say that these were not
head-on collisions. It was most likely a tight pass that resulted in a collision.

If we look at the last three configurations, which are C02_E07_J005_T005,
C03_E05_J01_T01 and C015_E04_J04_T005, we can see that they all put small
attention to Collision fitness. Therefore, it is not surprising that they are not
achieving the best results in this scenario.

6.3.5 CornerSingle - CollisionCount
As presented in Figure 6.20a, we can see that most of our configurations have

a mean value of the collision count of at least one. Contra-inductively, if we
look at how the worst configuration (C02_E005_J005_T07) performed in the
FramesInCollision entry (Figure 6.25), we can see that it has the best results. It

98

has approximately 50 frames in collision as a mean value. If we divide this value
by two (because of the two collisions), we get about 25 frames per collision. This
is probably just a small corner cut for each collision. Furthermore, if we look at
Figure 6.26, we can see that configuration C02_E005_J005_T07 is also the best
in the PathDuration entry. So, even though it has the most collisions, it might not
be the worst configuration for this given scenario.

Figure 6.25 Configurations comparison of FramesInCollision entry in CorneSingle

99

Figure 6.26 Configurations comparison of PathDuration entry in CornerSingle

6.3.6 SmallObstacle - CollisionCount
We can see in Figure 6.21a that our configurations are divided mainly into two

groups, those with a mean equal to zero and those with a mean equal to one (and a
small group with a mean value equal to 0.5). If we look at Figure 6.27 which shows
comparison of FramesInCollision entry among configurations, we see that the vast
majority of the configurations have a mean value below twenty. This indicates that
collisions in this scenario are really insignificant, and most likely similar to what
we saw in the CornerSingle scenario, they might be just a small corner cut.

100

Figure 6.27 Configurations comparison of FramesInCollision entry in SmallObstacle

6.3.7 NarrowCoridorOpposite - GaTimes
Data presented in Figure 6.23a are not surprising. We see that many config-

urations share the same values, except for the configurations that either lower
the population size or the iterations of the GA. This is logical, since both reduce
computational time needed for algorithm to finish.

6.3.8 OppositeMultipleAgents - PathJerk
We can see in Figure 6.23a that the configurations share similar data. Un-

surprisingly, the best configuration is C015_E04_J04_T005 since it places the
greatest emphasis on the JerkCost fitness among other configurations. We can
also see that configurations with lower Collision fitness weight also have lower
values of JerkCost. This might be a side effect of not avoiding collisions so often,
leading to less sudden changes in velocity. If we look at Figure 6.28 which shows
CollisionCount in this scenario, we see that these configurations are among the
worst performers.

101

Figure 6.28 Configurations comparison of CollisionCount entry in OppositeMulti-
pleAgents

6.3.9 Additional observations
In this section, we describe some of our additional observations that are not

directly visible from the plots. We made these observations primarily while running
the baseline configuration.

We start with a common problem in collision avoidance algorithms, that is,
agents’ oscillations. As explained in Section 2.2.1, this problem is most visible if
agents are moving in opposite directions. In our solution, we have not encountered
agents oscillating. They might not steer in opposite directions on first try, but they
are not repeatedly returning to their previous directions.

The second observation we made was in the SmallObstacle scenario, where we
noticed that the agent has more human-like behaviour. It starts to notice the
obstacle quite early and adjust the steering. Once it passes the point where there
is no direct collision with the obstacle, it heads to the destination in a more direct
line.

Another observation worth mentioning that we had was in the NarrowCoridor-
sOppositeNoNavmeshScenario. We noticed that some agents are selecting routes
that go completely around the narrow corridors, resulting in fewer agents being
stuck and less collisions.

102

6.3.10 Results summary
In this section, we give a brief comparison between the configurations. To do

so, we performed a ranking based on the data selected from the experiments. As
already mentioned in the previous section 6.2.3, in the configuration comparing
graphs, the configurations are sorted according to their mean value. We assign a
rank to each configuration based on its order. The configurations with a better
mean value (in graphs, those are more to the left) have a lower rank, starting from
1. This gives us a matrix of ranks for each configuration in every scenario-graph
data combination. We then calculate the average ranking for each configuration to
determine their order. The final results are presented in the table in Figure 6.29.

Hyperparameter sweeps’ mean ranking
Hyperparameter sweep Mean ranking
C07_E02_J005_T005 9.75
C03_E05_J01_T01 9.77

C02_E07_J005_T005 10.0
shuffleMut_06 10.31
shuffleMut_09 10.56

popSize_20 10.77
baseline 10.79

popSize_50 10.88
C025_E025_J025_T025 11.17
C02_E005_J005_T07 11.19

controlCross_03 11.23
C05_E03_J01_T01 11.35

cpMut_06 11.48
cpMut_09 11.67

iterations_10 11.73
smoothAccMut_06 11.79
controlCross_06 11.94

iterations_5 12.23
C015_E04_J04_T005 12.48

smoothAccMut_03 13.06
straightFinish_06 13.65
straightFinish_03 15.21

Figure 6.29 Table showing mean ranking of hyperparameter sweeps, sorted in ascending
order.

From the results presented in Figure 6.29 we can see that many configura-

103

tions perform similarly, but there is a noticeable difference between the first
(C07_E02_J005_T005) and the last configuration (straightFinish_03). Therefore
we consider the configuration C07_E02_J005_T005 to achieve the best results in
our experiments and be the overall winner among our configurations.

Due to the size of the ranking matrix, we do not present it here, but it can be
found in the form of a table in Attachments B.

104

7 User documentation
In this chapter, we first describe in Section how to obtain the source codes

for our solution and run the application. Then in Section 7.2, we explain how to
change the configuration of the genetic algorithm. Lastly, in Section 7.3 we describe
how to create new plots.

7.1 Application
You can find the source codes for our solution in the Attachments C in folder

UnityNavigation-BezierIndividual_only, or directly on github address
https://github.com/lakatop/UnityNavigation/tree/BezierIndividual_only
under the v1.0.0 tag.

The next thing that our application needs to run is the Unity engine (1) of
version 2022.3.7f1.

The complete step-by-step instructions are as follows:

1. Download and install Unity from the following site
https://unity.com/downloadhow-get-started

2. Create the Unity account if you do not have one, and sign in to Unity Hub.

3. Install Unity Editor via Unity Hub.

4. Add our solution project via the "Add" button. To do so, select the
UnityNavigation-BezierIndividual_only folder. At this point, you might see
little warning in our project in the "Editor version" column, as shown in
Figure 7.1. This means that you do not have the correct Unity version. If this
is the case, click on the warning button. This should open a new window with
the missing version listed as shown in Figure 7.2. Make sure that you have
version 2022.3.7f1 selected and click the "Install version 2022.3.7f1" button.

5. Open the project.

6. Open the StraightLineScene scene by navigating to the Scenes folder inside
the editor and double clicking on the StraightLineScene file.

7. Check that inside the Jobs menu you have Enable Compilation checked and
everything else unchecked. This will enable parallelism.

8. Optionally, turn on Gizmos to see the debug view.

105

9. Click on the play button.

Figure 7.1 Incorrect Unity Editor version warning

106

Figure 7.2 Warning window to install correct version of Unity Editor

After completing the instructions above, you should see simulation running and
the first StraightLineScene scenario is started. The simulation will progressively
run each scenario in the same order in which they are defined in Section 6.1.

Each scenario will run once, and after the last scenario, the application will
stop. The current configuration of the genetic algorithm is the baseline (defined in
Section 6.2.1). We explain how to change the configuration in Section 7.2.

7.2 Configuration change
To change the configuration from the baseline, open the Director.cs file inside

the GeneticAlgorithm folder from the Attachments C.
In the table below in Figure 7.3, we list the mapping between the hyperparame-

ters and their code variables.

107

Mapping of the hyperparameters to their code variables
Hyperparameter Code variable

Population size populationSize

Number of iterations of the GA iterations

StraightFinish mutation probability mutationProb inside
ga.straightFinishMutation struct

ShuffleAcc mutation probability mutationProb inside
ga.shuffleMutation struct

SmoothAcc mutation probability mutationProb inside
ga.smoothMutation struct

ShuffleControlPoints mutation probability mutationProb inside
ga.controlPointsMutation struct

Collision fitness weight weight inside
ga.collisionFitness struct

EndDistance fitness weight weight inside
ga.endDistanceFitness struct

JerkCost fitness weight weight inside
ga.jerkFitness struct

TimeToDestination fitness weight weight inside
ga.ttdFitness struct

Figure 7.3 Table of mappings between hyperparameters and their code variables

If you want to change the scenario runs, open the SimulationManager inside
the Managers folder from the Attachments C. Locate the CreateScearios method
and change the values in the scenario constructor accordingly.

After changing the configuration, save the file edits and open the application. It
should automatically rebuild with the new changes. After the rebuild, click on the
play button, and you should see the simulation running with the new configuration.

7.3 Plotting the graphs
You can see the already created plots inside the Plotting/Runs folder in the

Attachments C. The folders with plots are following:

• ConfigComparePlots - contains plots comparing every configuration.

• DependentComparePlots - contains plots comparing dependent hyperparame-
ters configurations.

108

• NonDependentComparePlots - containt plots comparing nondependent hyper-
parameters configurations.

• ScenarioPlots - contains a folder for each configuration with the corresponding
plots for each scenario.

For graph creation, we renamed the folders according to the mappings described
in Section 6.2. This mapping is also captured in the run_names.txt file inside the
Plotting folder in the Attachments C.

To create new graphs, you can run the plotting script more closely described in
Section 6.2.3. You also need to make sure that your Plotting/Runs folder contains
only folders with configuration logs (without folders of already generated plots).

109

8 Future work
In this chapter we present the parts of our solution that could be reiterated and

improved on and what could be the future focus.

8.1 Differential evolution
Differential evolution is a method first introduced by Storn and Price (13) and

is used for global optimisation in continuous space. As presented in the study (13),
"the basic strategy employs the difference of two randomly selected parameter
vectors as the source of random variations for a third parameter vector." Where
vectors are perceived as our individuals.

This method is highly effective and could potentially also be used to find the
best individual in our solution. It would be interesting to try to incorporate the
differential evolution into the next iterations of our solution.

8.2 Preferred velocity
In some of the modern collision avoidance algorithms, there is a possibility

to define the preferred velocity of an agent. This is useful mainly in cases with
multiple interdestinations where we do not want an agent to stop completely. This
possibility would be a good later addition to our solution.

8.3 Other individual representation
The Bezier curves are not flawless. The main problem is that if we want to

determine position on a spline, we need to use a piecewise linear approximation.
This comes off as a bit cumbersome and might also have some performance impact.
It might be a good idea to explore some other individual encodings using different
types of splines with more appropriate attributes.

8.4 Tuning of hyperparameters
Based on the results of our experiments in Section 6.2.3, the next step would

be to use these results and create a new baseline solution with more tuned hyper-
parameters to maximise correctness. Probably the best method would be to use
Pareto optimisation and find a Pareto-optimal configuration.

110

Conclusion
The overall result of this thesis is a functional genetic algorithm that serves as

a local space search algorithm to explore viable paths that successfully navigate
an agent to its destination, while taking into account all the quality path metrics
defined in Section 1.2.

Now, we go through the defined requirements of this thesis and describe how
we completed them:

(R1) (Implement collision avoidance algorithm using genetic algorithm.) – ful-
filling this objective is described throughout Chapter 4, where we describe
implementation details, and Chapter 5, where we describe solution overview
of our genetic algorithm.

(R2) (Provide multiple scenarios and perform experiments to test the implemented
collision avoidance algorithm.) – meeting this objective is describe in Chap-
ter 6, where we present experiments that were run to test our solution.

(R3) (Run experiments on multiple configurations of the implemented genetic
algorithm.) – achieving this requirement is described in Section 6.2, where
we describe multiple sweeps performed on our algorithm which created new
configurations.

(R4) (The metrics defined for the evaluation of the path are captured and saved
from the experiments.) – fulfilling this objective is described in Section 6.2.3
where we describe logging performed by our solution.

(R5) (The experiments are visually observable in simulation.) – meeting this
objective is described in Section 6.1 where we present scenarios prepared for
the experiments, as well as in Chapter 7 where we describe how to setup and
run simulation that contains these scenarios.

(R6) (The results of the experiments are captured, analysed, and discussed in the
form of graphs.) – fulfilling this requirement is described in Section 6.2.3
where we present plots created from data captured in experiments, and
Section 6.3 where we analyse and discuss these results.

111

Bibliography
[1] Unity Engine. https://unity.com/.

[2] Unity Engine - Jobs system. https://docs.unity3d.com/Manual/
JobSystem.html.

[3] Unity Engine - Burst compiler. https://docs.unity3d.com/Packages/com.
unity.burst@0.2/manual/index.html.

[4] Unity Engine - Collections package . https://docs.unity3d.com/Packages/
com.unity.collections@2.4/manual/index.html.

[5] Unity Engine - Scenes. https://docs.unity3d.com/Manual/
CreatingScenes.html.

[6] Unity Engine - Time property - realtimeSinceStartupAsDouble. https://docs.
unity3d.com/ScriptReference/Time-realtimeSinceStartupAsDouble.
html.

[7] Github repository - NativeQuadTree . https://github.com/marijnz/
NativeQuadtree.

[8] Python library - Pandas . https://pandas.pydata.org/.

[9] Python library - Matplotlib . https://matplotlib.org/.

[10] Python library - Seaborn . https://seaborn.pydata.org/index.html.

[11] Jupyter notebook . https://jupyter.org/.

[12] Unity Engine - Scale and units . https://docs.unity3d.com/2019.2/
Documentation/Manual/BestPracticeMakingBelievableVisuals1.html.

[13] Storn, Rainer; Price, Kenneth (1995). "Differential evolution — a simple
and efficient scheme for global optimization over continuous spaces". https:
//cse.engineering.nyu.edu/~mleung/CS909/s04/Storn95-012.pdf.

[14] Reza Entezari-Maleki, Ali Movaghar. "A Genetic Algorithm to Increase the
Throughput of the Computational Grids". http://sina.sharif.ac.ir/
~movaghar/IJGDC_Entezari.pdf.

112

https://unity.com/
https://docs.unity3d.com/Manual/JobSystem.html
https://docs.unity3d.com/Manual/JobSystem.html
https://docs.unity3d.com/Packages/com.unity.burst@0.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.burst@0.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.collections@2.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.collections@2.4/manual/index.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/ScriptReference/Time-realtimeSinceStartupAsDouble.html
https://docs.unity3d.com/ScriptReference/Time-realtimeSinceStartupAsDouble.html
https://docs.unity3d.com/ScriptReference/Time-realtimeSinceStartupAsDouble.html
https://github.com/marijnz/NativeQuadtree
https://github.com/marijnz/NativeQuadtree
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/index.html
https://jupyter.org/
https://docs.unity3d.com/2019.2/Documentation/Manual/BestPracticeMakingBelievableVisuals1.html
https://docs.unity3d.com/2019.2/Documentation/Manual/BestPracticeMakingBelievableVisuals1.html
https://cse.engineering.nyu.edu/~mleung/CS909/s04/Storn95-012.pdf
https://cse.engineering.nyu.edu/~mleung/CS909/s04/Storn95-012.pdf
http://sina.sharif.ac.ir/~movaghar/IJGDC_Entezari.pdf
http://sina.sharif.ac.ir/~movaghar/IJGDC_Entezari.pdf

[15] Diego Perez, Spyridon Samothrakis, Simon Lucas, and Philipp Rohlfsha-
gen (2013). "Rolling horizon evolution versus tree search for navigation in
single-player real-time games". https://dl.acm.org/doi/10.1145/2463372.
2463413.

[16] Fiorini, Paolo; Shiller, Zvi (1998). "Motion Planning in Dy-
namic Environments Using Velocity Obstacles". https://
citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
d8315aaef1544046a184f7ad8252cf1de0def800.

[17] J. Van Den Berg, M. Lin, D. Manocha (2008). "Reciprocal velocity obsta-
cles for real-time multi-agent navigation". https://gamma.cs.unc.edu/RVO/
icra2008.pdf.

[18] Vesentini, Federico; Muradore, Riccardo; Fiorini, Paolo. (2024). "A sur-
vey on Velocity Obstacle paradigm".. https://www.researchgate.net/
publication/377989774_A_survey_on_Velocity_Obstacle_paradigm.

[19] J. Van Den Berg, S.J. Guy, M. Lin, D. Manocha (2009). "Reciprocal n-body col-
lision avoidance". https://gamma.cs.unc.edu/ORCA/publications/ORCA.
pdf.

[20] Rabin, Steve (2017). "Game AI Pro 3: Collected Wisdom of Game
AI Professionals". https://www.gameaipro.com/GameAIPro3/GameAIPro3_
Chapter19_RVO_and_ORCA_How_They_Really_Work.pdf.

[21] Nallaperuma, Sam; Neumann, Frank; Bonyadi, Mohammad reza; Michalewicz,
Zbigniew. (2014). "EVOR : An Online Evolutionary Algorithm for Car Racing
Games". https://www.researchgate.net/publication/261361821_EVOR_
An_Online_Evolutionary_Algorithm_for_Car_Racing_Games.

[22] Atlassian - A complete guide to violin plots. https://www.atlassian.com/
data/charts/violin-plot-complete-guide.

113

https://dl.acm.org/doi/10.1145/2463372.2463413
https://dl.acm.org/doi/10.1145/2463372.2463413
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d8315aaef1544046a184f7ad8252cf1de0def800
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d8315aaef1544046a184f7ad8252cf1de0def800
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d8315aaef1544046a184f7ad8252cf1de0def800
https://gamma.cs.unc.edu/RVO/icra2008.pdf
https://gamma.cs.unc.edu/RVO/icra2008.pdf
https://www.researchgate.net/publication/377989774_A_survey_on_Velocity_Obstacle_paradigm
https://www.researchgate.net/publication/377989774_A_survey_on_Velocity_Obstacle_paradigm
https://gamma.cs.unc.edu/ORCA/publications/ORCA.pdf
https://gamma.cs.unc.edu/ORCA/publications/ORCA.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter19_RVO_and_ORCA_How_They_Really_Work.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter19_RVO_and_ORCA_How_They_Really_Work.pdf
https://www.researchgate.net/publication/261361821_EVOR_An_Online_Evolutionary_Algorithm_for_Car_Racing_Games
https://www.researchgate.net/publication/261361821_EVOR_An_Online_Evolutionary_Algorithm_for_Car_Racing_Games
https://www.atlassian.com/data/charts/violin-plot-complete-guide
https://www.atlassian.com/data/charts/violin-plot-complete-guide

List of Figures

2.1 Collision cone CCA,B. From Motion Planning in Dynamic Environ-
ments Using Velocity Obstacles, by Fiorini and Shiller (16) 12

2.2 Velocity Obstacle set V O. From Motion Planning in Dynamic
Environments Using Velocity Obstacles, by Fiorini and Shiller (16) . 12

2.3 Velocity Obstacle set V O for obstacles B1 and B2. From Motion
Planning in Dynamic Environments Using Velocity Obstacles, by
Fiorini and Shiller (16) . 13

2.4 The geometrical representation of RV OA,B. From A survey on
Velocity Obstacle paradigm, by Vesentini, Muradore and Forini (18) 14

2.5 The geometrical representation of V Oτ
A,B, r = rA+rB with the center

in c = xB − xA. From A survey on Velocity Obstacle paradigm, by
Vesentini, Muradore and Forini (18) 16

2.6 The geometrical representation of ORCAτ
A,B and ORCAτ

B,A. From
A survey on Velocity Obstacle paradigm, by Vesentini, Muradore and
Forini (18) . 17

2.7 Visual representation of two agents oscillating. From Reciprocal
velocity obstacles for real-time multi-agent navigation, by Berg, Lin
and Manocha (17) . 18

2.8 Visual representation of the corner problem for the ORCA algorithm.
From Game AI Pro 3: Collected Wisdom of Game AI Professionals,
by Rabin (20) . 19

3.1 Steps of genetic algorithm. From A Genetic Algorithm to Increase
the Throughput of the Computational Grids, by Reza Entezari-Maleki,
Ali Movaghar (14) . 21

4.1 Class diagram of the most important classes in the simulation . . . 28
4.2 Game loop sequence diagram . 29

5.1 Visual representation of agent’s body and its forward vector inside
Unity . 40

5.2 Visual representation of individual as an agent’s path 44
5.3 Example of possible agent’s paths 45
5.4 Example of possible agent’s paths 46
5.5 Initialisation example of popoulation of 50 individuals 51
5.6 Bezier individual visualisation . 52
5.7 Table describing relation between destination distance and decelera-

tion steps . 54

114

5.8 Static obstacle representation in quadtree (note: The circles in the
lateral obstacles are not centred due to the camera angle) 57

5.9 Collision decay function . 60
5.10 Table describing weights of our fitness functions in the baseline solution 62

6.1 Initial layout of the SmallObstacleScene 65
6.2 Initial layout of the CornerScene . 66
6.3 Initial layout of the OppositeScene 66
6.4 Initial layout of the OppositeMultipleScene 67
6.5 Initial layout of the OppositeCircleScene 68
6.6 Initial layout of the NarrowCorridorNoNavmeshOpposite 69
6.7 Initial layout of the NarrowCorridorOpposite 70
6.8 Table describing value of hyperparameters in the baseline configuration. 71
6.9 Table describing sweeps across the non-dependent hyperparameters 73
6.10 Table describing sweeps across the dependent hyperparameters . . . 74
6.11 Example plot for PathLength values in OppositeAgents scenario

with modified ShuffleAcc mutation probability 79
6.12 Example configurations plot for PathLength values in OppositeAgents

scenario . 80
6.13 Configurations comparison of the PathDuration entry in the Oppo-

siteCircleAgents divided into two groups based on hyperparameters’
dependency . 81

6.14 PathLength entry for shuffleMut_09 in the OppositeAgents scenario 82
6.15 Configurations comparison of the PathLength entry in the Oppo-

siteAgents scenario . 83
6.16 Configurations comparison of the PathDuration entry in the Oppo-

siteCircleAgents . 85
6.17 Configurations comparison of the PathDuration entry in the Nar-

rowCoridorsOppositeNoNavmeshScenario 86
6.18 Configurations comparison of the PathLength entry in the StraightLine 88
6.19 Configurations comparison of the FramesInCollision entry in the

OppositeAgents . 89
6.20 Configurations comparison of the CollisionCount entry in the Cor-

nerSingle . 91
6.21 Configurations comparison of the CollisionCount entry in the Smal-

lObstacle . 92
6.22 Configurations comparison of the GaTimes entry in the NarrowCor-

ridorOpposite . 94
6.23 Configurations comparison of the PathJerk entry in the Opposite-

MultipleAgents . 95

115

6.24 Configurations comparison of FramesInCollision entry in Opposite-
CircleAgents . 97

6.25 Configurations comparison of FramesInCollision entry in CorneSingle 99
6.26 Configurations comparison of PathDuration entry in CornerSingle . 100
6.27 Configurations comparison of FramesInCollision entry in SmallObstacle101
6.28 Configurations comparison of CollisionCount entry in OppositeMul-

tipleAgents . 102
6.29 Table showing mean ranking of hyperparameter sweeps, sorted in

ascending order. 103

7.1 Incorrect Unity Editor version warning 106
7.2 Warning window to install correct version of Unity Editor 107
7.3 Table of mappings between hyperparameters and their code variables108

116

List of Tables

B.1 Hyperparameter sweeps’ rankings across all scenarios. Sorted in
ascending order across columns based on their mean value. 121

117

List of Abbreviations
VO Velocity Obstacles
RVO Reciprocal velocity Obstacles
ORCA Optimal reciprocal collision avoidance
GA Genetic algorithm

118

A Unity dictionary
In this chapter, we list Unity-related terms that we use in the thesis. Their

explanation can be found on the Editor Manual page
https://docs.unity3d.com/2022.3/Documentation/Manual/, or on the Unity
Scripting Reference page
https://docs.unity3d.com/ScriptReference/.

• NavMesh – a mesh created by Unity to define walkable areas and obstacles
to perform path finding.

• NavMeshSurface – component for building and enabling a NavMesh surface
for one agent type.

• NavMeshModifier – modifier for affecting the NavMesh generation.

• NavMeshAgent – component attached to unit to allow navigation using
NavMesh.

• Walkable property – property of NavMeshModifier, setting area type to
walkable.

• Not walkable property – property of NavMeshModifier, setting area type to
not walkable.

• Scene – set of assets that contain game or application.

• Time – interface to get information about time from Unity.

119

B Hyperparameter sweeps’
ranking

In this chapter, we present all hyperparameter sweeps’ rankings across all
scenarios. It is captured in table B.1.

120

Table B.1 Hyperparameter sweeps’ rankings across all scenarios. Sorted in ascending
order across columns based on their mean value.

(a) Part 1
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- C07_E02_J005_T005 C03_E05_J01_T01 C02_E07_J005_T005

Mean 9.75 9.771 10.0
straightLine - PathLength 6 5 2

straightLine - PathDuration 3 5 2
straightLine - CollisionCount 15 17 18

straightLine - FramesInCollision 15 17 18
straightLine - PathJerk 4 9 21
straightLine - GaTimes 5 21 19

smallObstacle - PathLength 8 3 1
smallObstacle - PathDuration 6 4 2
smallObstacle - CollisionCount 2 19 20

smallObstacle - FramesInCollision 4 21 20
smallObstacle - PathJerk 10 3 2
smallObstacle - GaTimes 5 21 18

oppositeMultipleAgents - PathLength 10 1 2
oppositeMultipleAgents - PathDuration 6 2 1
oppositeMultipleAgents - CollisionCount 16 20 22

oppositeMultipleAgents - FramesInCollision 18 21 22
oppositeMultipleAgents - PathJerk 16 2 3
oppositeMultipleAgents - GaTimes 7 10 21
oppositeCircleAgents - PathLength 6 2 1

oppositeCircleAgents - PathDuration 6 1 2
oppositeCircleAgents - CollisionCount 7 20 21

oppositeCircleAgents - FramesInCollision 6 19 21
oppositeCircleAgents - PathJerk 19 22 21
oppositeCircleAgents - GaTimes 15 16 22

oppositeAgents - PathLength 9 2 4
oppositeAgents - PathDuration 5 2 4
oppositeAgents - CollisionCount 19 21 22

oppositeAgents - FramesInCollision 18 21 22
oppositeAgents - PathJerk 12 15 5
oppositeAgents - GaTimes 5 22 19

narrowCoridorsOppositeNoNavmeshScenario - PathLength 17 2 1
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 9 3 1
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 21 5 3

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 22 2 1
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 11 3 1
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 6 18 21

narrowCoridorOpposite - PathLength 14 1 2
narrowCoridorOpposite - PathDuration 7 1 2
narrowCoridorOpposite - CollisionCount 5 2 1

narrowCoridorOpposite - FramesInCollision 6 3 1
narrowCoridorOpposite - PathJerk 6 2 3
narrowCoridorOpposite - GaTimes 9 8 6

cornerSingle - PathLength 5 4 3
cornerSingle - PathDuration 5 4 3
cornerSingle - CollisionCount 13 3 15

cornerSingle - FramesInCollision 3 6 2
cornerSingle - PathJerk 21 17 18
cornerSingle - GaTimes 5 21 18

121

(b) Part 2
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- shuffleMut_06 shuffleMut_09 popSize_20

Mean 10.312 10.562 10.771
straightLine - PathLength 10 4 17

straightLine - PathDuration 9 6 12
straightLine - CollisionCount 5 4 7

straightLine - FramesInCollision 5 4 7
straightLine - PathJerk 6 3 13
straightLine - GaTimes 12 16 1

smallObstacle - PathLength 9 6 20
smallObstacle - PathDuration 8 7 19
smallObstacle - CollisionCount 7 6 3

smallObstacle - FramesInCollision 9 8 7
smallObstacle - PathJerk 8 14 17
smallObstacle - GaTimes 14 19 1

oppositeMultipleAgents - PathLength 7 6 20
oppositeMultipleAgents - PathDuration 8 7 20
oppositeMultipleAgents - CollisionCount 8 6 1

oppositeMultipleAgents - FramesInCollision 13 10 5
oppositeMultipleAgents - PathJerk 21 18 6
oppositeMultipleAgents - GaTimes 20 16 1
oppositeCircleAgents - PathLength 9 8 22

oppositeCircleAgents - PathDuration 9 7 22
oppositeCircleAgents - CollisionCount 11 9 1

oppositeCircleAgents - FramesInCollision 11 8 4
oppositeCircleAgents - PathJerk 12 14 1
oppositeCircleAgents - GaTimes 20 14 1

oppositeAgents - PathLength 7 6 20
oppositeAgents - PathDuration 6 8 18
oppositeAgents - CollisionCount 3 10 11

oppositeAgents - FramesInCollision 5 9 15
oppositeAgents - PathJerk 4 18 20
oppositeAgents - GaTimes 16 14 1

narrowCoridorsOppositeNoNavmeshScenario - PathLength 7 5 14
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 15 6 7
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 9 15 1

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 8 11 5
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 5 7 20
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 15 17 1

narrowCoridorOpposite - PathLength 7 12 20
narrowCoridorOpposite - PathDuration 8 9 18
narrowCoridorOpposite - CollisionCount 18 21 8

narrowCoridorOpposite - FramesInCollision 10 20 15
narrowCoridorOpposite - PathJerk 12 17 19
narrowCoridorOpposite - GaTimes 17 18 1

cornerSingle - PathLength 8 11 21
cornerSingle - PathDuration 7 10 21
cornerSingle - CollisionCount 20 2 7

cornerSingle - FramesInCollision 11 20 22
cornerSingle - PathJerk 9 2 3
cornerSingle - GaTimes 17 19 1

122

(c) Part 3
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- baseline popSize_50 C025_E025_J025_T025

Mean 10.792 10.875 11.167
straightLine - PathLength 16 18 3

straightLine - PathDuration 16 18 4
straightLine - CollisionCount 14 6 20

straightLine - FramesInCollision 14 6 20
straightLine - PathJerk 5 16 8
straightLine - GaTimes 7 3 22

smallObstacle - PathLength 15 17 5
smallObstacle - PathDuration 15 14 5
smallObstacle - CollisionCount 8 1 22

smallObstacle - FramesInCollision 5 1 22
smallObstacle - PathJerk 6 19 21
smallObstacle - GaTimes 7 3 20

oppositeMultipleAgents - PathLength 14 19 4
oppositeMultipleAgents - PathDuration 13 17 4
oppositeMultipleAgents - CollisionCount 7 4 19

oppositeMultipleAgents - FramesInCollision 9 6 17
oppositeMultipleAgents - PathJerk 14 7 4
oppositeMultipleAgents - GaTimes 8 3 22
oppositeCircleAgents - PathLength 13 19 5

oppositeCircleAgents - PathDuration 14 18 5
oppositeCircleAgents - CollisionCount 15 2 14

oppositeCircleAgents - FramesInCollision 13 2 5
oppositeCircleAgents - PathJerk 7 3 17
oppositeCircleAgents - GaTimes 7 4 21

oppositeAgents - PathLength 17 15 5
oppositeAgents - PathDuration 15 10 7
oppositeAgents - CollisionCount 9 7 18

oppositeAgents - FramesInCollision 7 4 19
oppositeAgents - PathJerk 13 21 6
oppositeAgents - GaTimes 7 3 12

narrowCoridorsOppositeNoNavmeshScenario - PathLength 11 13 3
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 10 8 2
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 13 2 20

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 10 3 14
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 13 21 8
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 7 3 22

narrowCoridorOpposite - PathLength 16 22 3
narrowCoridorOpposite - PathDuration 14 20 3
narrowCoridorOpposite - CollisionCount 12 14 4

narrowCoridorOpposite - FramesInCollision 12 22 4
narrowCoridorOpposite - PathJerk 10 20 4
narrowCoridorOpposite - GaTimes 7 3 13

cornerSingle - PathLength 10 20 6
cornerSingle - PathDuration 9 20 6
cornerSingle - CollisionCount 6 16 1

cornerSingle - FramesInCollision 8 14 5
cornerSingle - PathJerk 13 12 22
cornerSingle - GaTimes 7 3 20

123

(d) Part 4
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- C02_E005_J005_T07 controlCross_03 C05_E03_J01_T01

Mean 11.188 11.229 11.354
straightLine - PathLength 1 8 7

straightLine - PathDuration 1 10 7
straightLine - CollisionCount 19 13 16

straightLine - FramesInCollision 19 13 16
straightLine - PathJerk 22 2 19
straightLine - GaTimes 18 14 20

smallObstacle - PathLength 4 7 2
smallObstacle - PathDuration 1 9 3
smallObstacle - CollisionCount 12 10 15

smallObstacle - FramesInCollision 13 6 16
smallObstacle - PathJerk 18 13 11
smallObstacle - GaTimes 15 16 22

oppositeMultipleAgents - PathLength 5 11 3
oppositeMultipleAgents - PathDuration 5 10 3
oppositeMultipleAgents - CollisionCount 17 12 18

oppositeMultipleAgents - FramesInCollision 4 3 19
oppositeMultipleAgents - PathJerk 22 13 5
oppositeMultipleAgents - GaTimes 9 17 11
oppositeCircleAgents - PathLength 4 11 3

oppositeCircleAgents - PathDuration 4 10 3
oppositeCircleAgents - CollisionCount 4 16 17

oppositeCircleAgents - FramesInCollision 1 17 10
oppositeCircleAgents - PathJerk 20 11 18
oppositeCircleAgents - GaTimes 19 11 18

oppositeAgents - PathLength 3 8 1
oppositeAgents - PathDuration 1 9 3
oppositeAgents - CollisionCount 6 12 16

oppositeAgents - FramesInCollision 8 13 12
oppositeAgents - PathJerk 22 8 7
oppositeAgents - GaTimes 17 13 20

narrowCoridorsOppositeNoNavmeshScenario - PathLength 16 10 4
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 20 13 4
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 12 18 22

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 17 19 21
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 22 4 15
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 8 12 19

narrowCoridorOpposite - PathLength 5 8 4
narrowCoridorOpposite - PathDuration 4 12 5
narrowCoridorOpposite - CollisionCount 19 17 13

narrowCoridorOpposite - FramesInCollision 14 13 9
narrowCoridorOpposite - PathJerk 22 11 8
narrowCoridorOpposite - GaTimes 11 16 20

cornerSingle - PathLength 1 13 2
cornerSingle - PathDuration 1 13 2
cornerSingle - CollisionCount 22 8 10

cornerSingle - FramesInCollision 1 9 4
cornerSingle - PathJerk 19 4 20
cornerSingle - GaTimes 9 13 22

124

(e) Part 5
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- cpMut_06 cpMut_09 iterations_10

Mean 11.479 11.667 11.729
straightLine - PathLength 14 9 19

straightLine - PathDuration 11 8 19
straightLine - CollisionCount 11 10 9

straightLine - FramesInCollision 11 10 9
straightLine - PathJerk 17 14 15
straightLine - GaTimes 6 17 4

smallObstacle - PathLength 19 10 18
smallObstacle - PathDuration 20 10 18
smallObstacle - CollisionCount 17 18 13

smallObstacle - FramesInCollision 18 17 12
smallObstacle - PathJerk 20 4 5
smallObstacle - GaTimes 6 17 4

oppositeMultipleAgents - PathLength 16 8 17
oppositeMultipleAgents - PathDuration 12 11 14
oppositeMultipleAgents - CollisionCount 9 15 3

oppositeMultipleAgents - FramesInCollision 2 1 8
oppositeMultipleAgents - PathJerk 11 9 12
oppositeMultipleAgents - GaTimes 6 19 4
oppositeCircleAgents - PathLength 14 12 18

oppositeCircleAgents - PathDuration 13 12 16
oppositeCircleAgents - CollisionCount 19 18 8

oppositeCircleAgents - FramesInCollision 20 18 14
oppositeCircleAgents - PathJerk 5 6 8
oppositeCircleAgents - GaTimes 5 10 3

oppositeAgents - PathLength 18 14 13
oppositeAgents - PathDuration 13 16 11
oppositeAgents - CollisionCount 1 8 14

oppositeAgents - FramesInCollision 1 6 10
oppositeAgents - PathJerk 9 10 19
oppositeAgents - GaTimes 6 11 4

narrowCoridorsOppositeNoNavmeshScenario - PathLength 19 8 18
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 19 18 16
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 14 19 7

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 13 18 16
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 9 10 17
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 5 16 4

narrowCoridorOpposite - PathLength 11 6 18
narrowCoridorOpposite - PathDuration 11 6 16
narrowCoridorOpposite - CollisionCount 9 6 10

narrowCoridorOpposite - FramesInCollision 7 5 18
narrowCoridorOpposite - PathJerk 7 5 14
narrowCoridorOpposite - GaTimes 12 22 4

cornerSingle - PathLength 15 14 17
cornerSingle - PathDuration 14 15 17
cornerSingle - CollisionCount 9 11 4

cornerSingle - FramesInCollision 10 7 16
cornerSingle - PathJerk 11 14 6
cornerSingle - GaTimes 6 12 4

125

(f) Part 6
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- smoothAccMut_06 controlCross_06 iterations_5

Mean 11.792 11.938 12.229
straightLine - PathLength 13 11 20

straightLine - PathDuration 15 13 20
straightLine - CollisionCount 2 12 8

straightLine - FramesInCollision 2 12 8
straightLine - PathJerk 7 11 10
straightLine - GaTimes 13 15 2

smallObstacle - PathLength 11 12 21
smallObstacle - PathDuration 11 12 21
smallObstacle - CollisionCount 4 16 14

smallObstacle - FramesInCollision 3 15 10
smallObstacle - PathJerk 12 7 9
smallObstacle - GaTimes 12 13 2

oppositeMultipleAgents - PathLength 12 9 22
oppositeMultipleAgents - PathDuration 15 9 19
oppositeMultipleAgents - CollisionCount 14 11 2

oppositeMultipleAgents - FramesInCollision 12 7 16
oppositeMultipleAgents - PathJerk 17 8 15
oppositeMultipleAgents - GaTimes 15 18 2
oppositeCircleAgents - PathLength 16 10 20

oppositeCircleAgents - PathDuration 19 11 20
oppositeCircleAgents - CollisionCount 10 13 5

oppositeCircleAgents - FramesInCollision 7 12 16
oppositeCircleAgents - PathJerk 13 4 9
oppositeCircleAgents - GaTimes 17 12 2

oppositeAgents - PathLength 10 12 21
oppositeAgents - PathDuration 19 12 17
oppositeAgents - CollisionCount 5 13 2

oppositeAgents - FramesInCollision 11 14 2
oppositeAgents - PathJerk 17 2 14
oppositeAgents - GaTimes 15 18 2

narrowCoridorsOppositeNoNavmeshScenario - PathLength 12 9 20
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 11 14 12
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 8 17 4

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 7 15 12
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 14 6 18
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 14 20 2

narrowCoridorOpposite - PathLength 9 10 21
narrowCoridorOpposite - PathDuration 13 10 17
narrowCoridorOpposite - CollisionCount 11 15 7

narrowCoridorOpposite - FramesInCollision 8 11 21
narrowCoridorOpposite - PathJerk 15 9 18
narrowCoridorOpposite - GaTimes 14 19 2

cornerSingle - PathLength 9 12 19
cornerSingle - PathDuration 11 12 18
cornerSingle - CollisionCount 12 14 17

cornerSingle - FramesInCollision 19 13 21
cornerSingle - PathJerk 15 7 5
cornerSingle - GaTimes 15 16 2

126

(g) Part 7
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- C015_E04_J04_T005 smoothAccMut_03 straightFinish_06

Mean 12.479 13.062 13.646
straightLine - PathLength 22 12 15

straightLine - PathDuration 22 14 17
straightLine - CollisionCount 1 3 22

straightLine - FramesInCollision 1 3 22
straightLine - PathJerk 1 18 20
straightLine - GaTimes 10 9 11

smallObstacle - PathLength 22 14 13
smallObstacle - PathDuration 22 16 13
smallObstacle - CollisionCount 21 9 5

smallObstacle - FramesInCollision 19 11 2
smallObstacle - PathJerk 1 16 15
smallObstacle - GaTimes 8 10 11

oppositeMultipleAgents - PathLength 21 13 15
oppositeMultipleAgents - PathDuration 22 18 16
oppositeMultipleAgents - CollisionCount 21 5 10

oppositeMultipleAgents - FramesInCollision 20 14 11
oppositeMultipleAgents - PathJerk 1 10 20
oppositeMultipleAgents - GaTimes 5 14 13
oppositeCircleAgents - PathLength 7 21 15

oppositeCircleAgents - PathDuration 8 21 15
oppositeCircleAgents - CollisionCount 22 3 12

oppositeCircleAgents - FramesInCollision 22 3 15
oppositeCircleAgents - PathJerk 2 16 10
oppositeCircleAgents - GaTimes 6 13 8

oppositeAgents - PathLength 22 16 11
oppositeAgents - PathDuration 22 20 14
oppositeAgents - CollisionCount 20 17 15

oppositeAgents - FramesInCollision 20 17 16
oppositeAgents - PathJerk 1 11 3
oppositeAgents - GaTimes 21 9 8

narrowCoridorsOppositeNoNavmeshScenario - PathLength 6 22 15
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 5 22 17
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 10 6 16

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 4 6 20
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 2 12 16
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 13 11 10

narrowCoridorOpposite - PathLength 19 15 13
narrowCoridorOpposite - PathDuration 22 21 15
narrowCoridorOpposite - CollisionCount 3 20 16

narrowCoridorOpposite - FramesInCollision 2 16 17
narrowCoridorOpposite - PathJerk 1 16 13
narrowCoridorOpposite - GaTimes 5 15 21

cornerSingle - PathLength 22 7 16
cornerSingle - PathDuration 22 8 16
cornerSingle - CollisionCount 18 21 5

cornerSingle - FramesInCollision 17 12 18
cornerSingle - PathJerk 1 10 8
cornerSingle - GaTimes 14 11 10

127

(h) Part 7
Sweeps ranking across scenarios

Scenario names / Mean Sweeps values
- straightFinish_03

Mean 15.208
straightLine - PathLength 21

straightLine - PathDuration 21
straightLine - CollisionCount 21

straightLine - FramesInCollision 21
straightLine - PathJerk 12
straightLine - GaTimes 8

smallObstacle - PathLength 16
smallObstacle - PathDuration 17
smallObstacle - CollisionCount 11

smallObstacle - FramesInCollision 14
smallObstacle - PathJerk 22
smallObstacle - GaTimes 9

oppositeMultipleAgents - PathLength 18
oppositeMultipleAgents - PathDuration 21
oppositeMultipleAgents - CollisionCount 13

oppositeMultipleAgents - FramesInCollision 15
oppositeMultipleAgents - PathJerk 19
oppositeMultipleAgents - GaTimes 12
oppositeCircleAgents - PathLength 17

oppositeCircleAgents - PathDuration 17
oppositeCircleAgents - CollisionCount 6

oppositeCircleAgents - FramesInCollision 9
oppositeCircleAgents - PathJerk 15
oppositeCircleAgents - GaTimes 9

oppositeAgents - PathLength 19
oppositeAgents - PathDuration 21
oppositeAgents - CollisionCount 4

oppositeAgents - FramesInCollision 3
oppositeAgents - PathJerk 16
oppositeAgents - GaTimes 10

narrowCoridorsOppositeNoNavmeshScenario - PathLength 21
narrowCoridorsOppositeNoNavmeshScenario - PathDuration 21
narrowCoridorsOppositeNoNavmeshScenario - CollisionCount 11

narrowCoridorsOppositeNoNavmeshScenario - FramesInCollision 9
narrowCoridorsOppositeNoNavmeshScenario - PathJerk 19
narrowCoridorsOppositeNoNavmeshScenario - GaTimes 9

narrowCoridorOpposite - PathLength 17
narrowCoridorOpposite - PathDuration 19
narrowCoridorOpposite - CollisionCount 22

narrowCoridorOpposite - FramesInCollision 19
narrowCoridorOpposite - PathJerk 21
narrowCoridorOpposite - GaTimes 10

cornerSingle - PathLength 18
cornerSingle - PathDuration 19
cornerSingle - CollisionCount 19

cornerSingle - FramesInCollision 15
cornerSingle - PathJerk 16
cornerSingle - GaTimes 8

128

C Attachments
.

UnityNavigation-BezierIndividual_only
Assets

Scripts – folder containing source codes to the solution
Docs – folder containing documentation generated by doxygen
Packages– Unity packages
Plotting

plotting.ipynb – script to generate plots
Runs – folder containing logs and generated plots
runs_names.txt – file containing mapping between folders and
their corresponding configurations

ProjectSettings – Unity project settings
tex – source codes of the thesis text in LATEX
thesis.pdf – text of the thesis

129

	Introduction
	Introduction
	Background and Motivation
	Problem statement

	Collision avoidance
	Modern state-of-the-art methods
	Velocity obstacles
	Reciprocal velocity obstacles
	Optimal reciprocal collision avoidance

	Problems with state-of-art methods
	Oscillation
	Corner problem

	Genetic algorithms
	General overview
	Representation
	Selection
	Crossover

	Rolling horizon
	Related work
	EVOR: An Online Evolutionary Algorithm for Car Racing Games
	Rolling Horizon Evolution versus Tree Search for Navigation in Single-Player Real-Time Games

	Implementation overview
	Technical overview
	Simulation
	Class diagram
	Game loop definition
	Agents update
	Parallelisation
	Scenarios
	SimulationManager

	Interfaces and types
	Agent
	Genetic algorithm
	Scenario

	Agents
	Third party code

	Solution overview
	Agent overview
	Basic genetic algorithm
	Initial implementation
	Individual representation
	Initialisation
	Mutation and cross operators
	Fitness and selection functions

	Initial implementation improvements
	Initialisation
	Mutation and cross operators
	Fitness functions

	Current solution
	Individual representation
	Initialisation
	Mutation operators
	Cross operator
	Fitness functions
	Selection

	Evaluation
	Design
	StraightLine
	SmallObstacle
	CornerSingle
	OppositeAgents
	OppositeMultipleAgents
	OppositeCircleAgents
	NarrowCoridorsOppositeNoNavmeshScenario
	NarrowCorridorOpposite
	Hyperparameters

	Results
	Baseline
	Hyperparameter sweeps
	Experiments

	Discussion
	OppositeCircleAgents - PathDuration
	NarrowCoridorsOppositeNoNavmeshScenario - PathDuration
	StraightLine - PathLength
	OppositeAgents - FramesInCollision
	CornerSingle - CollisionCount
	SmallObstacle - CollisionCount
	NarrowCoridorOpposite - GaTimes
	OppositeMultipleAgents - PathJerk
	Additional observations
	Results summary

	User documentation
	Application
	Configuration change
	Plotting the graphs

	Future work
	Differential evolution
	Preferred velocity
	Other individual representation
	Tuning of hyperparameters

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Unity dictionary
	Hyperparameter sweeps' ranking
	Attachments

