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1 Introduction
As the web of data grows, more data publishers are inclined to publish their data

as 5-star linked open data [1]. Each star adds a further data quality requirement.
The 3-star data [2] were always prevalent as the published type of data. The
3 stars only state that the data must be structured in a non-proprietary open
format and available on the Web under an open licence. However, such data do
not contain global and unique identification and cannot contain references to other
data which is what the last two stars add. The fourth star states to denote things
uniquely and globally (e.g. URIs) to allow others reference the data. The fifth
star states to include links to related relevant data of others so that context is
created.

However, to make the data understandable to not only to the authors, the
meaning of certain URIs and links need to be defined. The term definitions
are defined in vocabularies. Therefore, it is important to reuse already defined
terms in existing vocabularies and not create new vocabularies (i.e. definitions)
immediately. However, there are still challenges in the process of transforming
data to linked data. One challenge can be to even find appropriate vocabularies for
representing the given data. Sometimes even deciding whether a found vocabulary
is even appropriate can be challenging due to the complexity of the vocabulary.
Therefore, there has been a lot of research done on the topic of representing data
using linked data and applications facilitate the process were created.

There are several existing applications (e.g. Linked Open Vocabularies [3] or
domain Bio Portal [4]) providing term or vocabulary search that are mostly based
on writing a text query where a user practically has to guess the right keyword(s)
to find suitable terms or vocabularies. An alternative option is to use one of the
standard web search engines. However, both ways require user to look at data to
think of a query, use it in external environment to find vocabularies and study if
matched vocabulary fits their use case.

Hence, the goal of this thesis is to propose an approach for facilitat-
ing the process of conversion of data to linked data by recommending
vocabularies and their terms based on user provided data in one envi-
ronment so that they do not have to shift between multiple ones. The
basic idea is to provide an environment that would let user semi-automatically
transform data to high-quality linked data. The user could combine interactive
manual updates of the data based on the data schema with automatic recommen-
dations. These recommendations would propose transformations of the schema
and data to aid user in the transformation to linked data.

The structure of the rest of the thesis is following. In Chapter 2 we analyze
the transformation of structured data to RDF as well as the existing methods and
tools for vocabulary recommendation and structured data to RDF transformation.
Based on this analysis, we propose our approach. In Chapter 3 we discuss the
design of the solution based on the proposed approach. Afterwards, we describe
the implementation of the solution in Chapter 4. In Chapter 5 we show how the
solution can be used for transformation of structured data to RDF. In Chapter 6
we conclude.
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1.1 Terms
Ontology, Vocabulary Ontology and Vocabulary terms are used interchange-

ably throughout the thesis and both represent a standard RDF vocabulary
described in RDFS or OWL.
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2 Analysis
In this chapter we analyze the process for converting structured data to RDF,

tools and methods that aim to improve it. Based on the analysis we present the
idea of our own approach. First, we showcase on real but simplified data how such
a conversion can be done using manual means with available tools (Section 2.1).
Then, we study the approaches for searching through linked data, recommending
vocabularies and transforming data to RDF in Section 2.2 and Section 2.3. Lastly,
we discuss our approach for facilitating the process of transforming data to linked
data in Section 2.4.

2.1 Motivating Example
In the motivating example, we take food product data and convert them to

RDF. The example data (shown in Figure 2.1) are taken from Open Food Facts
[5] non-profit organization providing information about food products including
ingredients, nutrition or environment impact of food production. Our example
data is about a noodle food product which has a name, countries where it is sold
and a shortened list of nutrients. The original data for each product have roughly
a thousand lines in expanded JSON format with many properties incomprehensible
to outside audience; therefore, it was substantially redacted.

Figure 2.1 Food Product Example Data

The manual approach of converting structured data to RDF is shown in
Figure 2.2. It consists of searching for suitable vocabularies, deciding whether
to reuse found vocabularies or create a new vocabulary and transforming data

9



to RDF. There could be additional steps such as publishing data on the web or
performing linking task which we do not discuss here.

Figure 2.2 Data to RDF Transformation Process

2.1.1 Vocabulary Search
We tried searching for vocabularies using Linked Open Vocabularies (LOV)

[3] and Google. We briefly describe each found vocabulary and its relevance to
our example data. Searching LOV with queries such as ”food” or ”carbohydrates”
yielded the following vocabularies. Longer queries were not effective.

SmartProducts Food Ontology (SPFOOD) [6] SPFOOD ontology defines
classes for food products, food courses, nutrients, recipes, food ingredients
and properties among them. While there are classes for product and nutrients
and properties to interlink them, there seems not be a clearly defined way
how nutrient values should be represented. For example, Carbohydrate term
is derived from Nutrients term but both of them or any their super class
have no properties for adding carbohydrates value or unit.

Food Ontology in OWL (FOWL) [7] FOWL is based on now unavailable
wine ontology. While it has many properties to describe wine products, it
lacks, for example, nutrients description; therefore, it is not fit for our use
case.

LIRMM Food Ontology [8] Somewhat popular vocabulary for food which is
not available but it is referenced in LOV, used to represent some observed
food data and mentioned in general. It seems as a good match for our food
example data based on partial information and observation, which is why it
is mentioned as a possible relevant candidate.

Queries for Google needed to be longer than for LOV and include words
such as ”vocabulary”, ”ontology”, ”RDF” or there would be no relevant result.
Moreover, more variations of queries and more result browsing was necessary
to find vocabularies (apart from FoodOn [9] which is one of the first matches
when searching for ”food ontology”). Searching Google yielded the following
vocabularies.

10



FoodOn [9] FoodOn vocabulary names all parts of animals, plants and fungai
bearing food for humans or domesticated animals. Moreover, it contains
any derived food products and processes used to make them. The primary
objective of this vocabulary is to describe food while describing food products
is secondary. Although we surmise that the vocabulary would cover the
example data, it is quite complex for such simple use case. Moreover, since
describing food products is secondary, finding representation for our food
product with nutrients is difficult in their documentation.

AGROVOC [10] AGROVOC is a multilingual thesaurus spanning the area of
interest of Food and Agriculture Organization of the United Nations. It
names food products, nutrients, ingredients and the structural composition
to great detail in multiple languages. There is similar issue to FoodOn that
it is complex. Furthermore, since it is a thesaurus, there is no prescribed
way how use defined terms. However, it makes sense provide links to it for
multilingual support.

Food Ontology [11] This vocabulary is designed for food products. It is based
on Good Relations [12] vocabulary. It describes terms for food products,
ingredients as well as nutrient values and nutrient units. It does not contain
much more but given our data it fits well. It is clear how our data should
be represented using this vocabulary.

Schema.org [13] Schema vocabulary certainly contains terms for products and
nutrition information. It is quite clear how our data should be represented
using our vocabulary.

We believe that spending non-trivial time browsing FoodOn, AGROVOC and
even SPFOOD might bring enough information to sufficiently represent our food
data. Since there were two vocabularies that clearly have terms to represent our
data with, we forwent such undertaking. Since Schema.org Energy1 or Mass2

terms used for nutrients specification have literal format of a value and an unit
separated by a space, we chose the second to last food ontology.

Figure 2.3 shows how the part of Food Ontology which is relevant to our
example data extends Good Relations. It defines subclass food:Food3 of class
gr:ProductOrService4 and properties for nutrients which are subproperties of
gr:quantitativeProductOrServiceProperty5. Nutrient values are then standardly
represented using Good Relations gr:QuantitativeValueFloat6 with units specified
using UN/CEFACT Common Codes [14].

The rest of example data is an identifier property which is represented by
schema:productID7 and sold-in-countries property which a new property vocabu-
lary term is created for for simplicity.

1https://schema.org/Energy
2https://schema.org/Mass
3http://purl.org/foodontology#Food
4http://purl.org/goodrelations/v1#ProductOrService
5http://purl.org/goodrelations/v1#quantitativeProductOrServiceProperty
6http://purl.org/goodrelations/v1#QuantitativeValueFloat
7https://schema.org/productID
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Figure 2.3 Food Ontology

2.1.2 Data Transformation
When suitable terms are known, the actual transformation to RDF can be

done. For example, adding JSON-LD context to create a JSON-LD format or
using transformation tools such as Easygen [15] or XSLT (using json-to-xml8).
Figure 2.4 shows the RDF representation for the food data.

Figure 2.4 Noodle Food Product in Food Ontology

2.1.3 Conclusion
In this subsection, we conclude the individual steps were taken to transform

the example data to RDF.
The example presented what a data publisher might have to do to publish

their data. As mentioned in the introduction, our aim is to make this process
easier. We had to formulate text queries somehow describing our data to either
LOV or Google to find any related vocabularies. It was necessary in both cases to
understand how to create queries to find relevant results (vocabularies). Possibly
more convenient approach would be to upload data to an application and it would
recommend vocabularies or their terms based on the given data.

8https://www.w3.org/TR/xslt-30/#json
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We found seven relevant vocabularies. After spending non-trivial time reading
the vocabularies (or their documentations if they had any), we ruled out all
vocabularies found using LOV. It was necessary to use a standard web search
engine such as Google to find suitable vocabularies for our use case. Investigating
whether vocabularies are suitable for a given use case can be quite demanding;
therefore, more focus on whether any vocabulary is suitable while recommending
it might serve decrease user’s investigation time and make the overall experience
more pleasant.

After suitable vocabulary terms were found, it was time to do the actual
transformation. It required having some non-trivial knowledge of transformation
tools or JSON-LD since input data were in JSON.

We had to use different software to search for vocabularies, then inspect them
manually and use different software for the transformation itself. It might again
be convenient to be able to perform all of the above within the confines of a single
software.

2.2 Existing Methods
In this section we discuss the existing methods for recommending vocabularies

or their terms. Since there are not many published methods for recommending
vocabularies, we include methods for searching through linked data which can
serve as a part of a recommendation method. While some of the manuscripts
summaries might seem somewhat too detailed with respect to the analysis chapter,
they are referenced from implementation parts of this thesis.

2.2.1 TermPicker
TermPicker [16] is a method for recommending vocabulary terms to reduce

term heterogeneity in published data. The method requires a partially modeled
data as an input and recommends types and properties based on how similarly
modeled data on Linked Open Data (LOD) cloud are already represented.

Schema Level Patterns

To capture how RDF data are modeled, the authors define Schema Level
Patterns (SLP). SLP is a triple of three sets ({sts}, {pts}, {ots}) where sts is a
set of subject types, ots is a set of object types and pts is a set of properties
linking subject resources (with sts subject types) to object resources (with ots
object types). The following SLP is created from the example data in Figure 2.5
which model a person who is also a chess player that knows another person who
is also a coach.

(
{foaf:Person, dbo:ChessPlayer},
{foaf:knows},
{foaf:Person, dbo:Coach}

)
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Figure 2.5 Example RDF data for modeling that a chess player knows a coach.

SLPs of RDF data can be generated using two hash tables. The former hash
table M1 contains a mapping from resources (i.e. subjects and objects) to the
set of their RDF types. The latter hash table M2 contains a mapping from
subject and object pairs to the set of all properties between them. SLPs are then
constructed by iterating over M2 using resource type information from M1.

Recommending Vocabulary Terms

TermPicker takes an input SLP which represents a part of the currently
modeled data and considers a recommendation candidate which can be any term
from LOD cloud that can be a part of any set in SLP (e.g. property or type).
TermPicker computes feature values for all candidates and subsequently ranks the
candidates by a ranking model.

There are five feature values. The first three are based on popularity of the
candidate in LOD cloud: a number of occurrences, a number of datasets with
the candidate, a number of datasets with the candidate’s vocabulary. The fourth
feature considers whether the candidate is from vocabulary present in the input
SLP. The last feature is called the SLP-feature and calculates how many SLPs in
all of SLPs in LOD cloud are supersets of the input SLP with the recommendation
candidate added to it. SLP A is a superset of SLP B if all sets of A are supersets
of the corresponding sets of B.

Training And Evaluation

The ranking model is based on Learning to Rank (L2R) [17] algorithms. These
algorithms are supervised machine learning algorithms aiming to create a ranking
model from a set of given features. The training and evaluation of various ranking
models is done via simulating term recommending.

A SLP from train data is taken and one or more terms are randomly extracted
from it to create an input SLP for training. The extracted terms serve as relevant
candidates for the input SLP. All other candidates are ignored. Therefore, a
L2R algorithm is provided with input data SLP and a set of recommendation
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candidates with all five features computed as well as relevance information to
train on. The evaluation is done using 10-fold leave-one-out.

The best performing algorithm in the evaluation was Random Forests L2R
algorithm.

2.2.2 Karma
Karma [18][19] is a system for semi-automatically creating mappings from

structured data to RDF in a target ontology. Initially, a user has to provide the
target ontology and source data. The whole process consists of three main steps:
Semantic Type Inference, Graph Construction and Source Model Refinement. At
any point the user can manually intervene to override some Karma’s decisions
which results in the system recomputing the steps with the user’s change. Note
that a column of data refers to an array of literals of a property of an entity (e.g.
a column in a relational database).

Semantic Type Inference

Karma automatically assigns a semantic type to each column of data based
on the semantic types learned from previous modeling sessions. A semantic type
captures the meaning of the column data. It is either an OWL class in case of
the column being an automatically generated database keys or a pair of a data
property and an OWL class for columns with meaningful data. The OWL class in
that case represents the domain of the data property.

If any assigned semantic type is incorrect for a column, the user can manually
set the correct semantic type from provided options from the target ontology for
the column. This action triggers the system to remember the assignment of the
correct semantic type along with the column data and use it in training to be
able to recognize the semantic type in future. Semantic types are trained using
Conditional Random Fields (CRF) [20].

Graph Construction

Once all semantic types are assigned, a graph representing all possible mappings
from the source data to the target ontology is constructed. First, a node is created
for each semantic type representing a column. Afterwards, the ontology is searched
through and nodes are created for all classes which there exists a path to a semantic
type for. These paths comprise of properties or isa relationships. The last step
revolves around adding links between nodes. A link is added between two nodes
if there is a datatype property, an object property or an isa relationship between
their corresponding classes in the target ontology.

Source Model Refinement

Since the graph represents all possible mappings, it must be refined by creating
a source model by selecting a subgraph connecting all semantic types. Karma uses
heuristic Steiner Tree algorithm variant [21] to find the minimal tree connecting
all semantic types. The minimal tree might not be the desired subgraph; therefore,
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Karma allows the user to specify some constraints on the algorithm in order to
change the tree to the desired state.

RDF Generation

When the user is satisfied with the found tree, they can instruct Karma to
generate the corresponding RDF.

2.2.3 Swoogle
Swoogle [22] is a search engine for Semantic Web Documents (SWD). A user

provides a keyword query and matching SWDs are returned in a ranked order.
SWDs are online documents containing semantic annotations (RDF) and having
references to other SWDs. SWDs are either classified as Semantic Web Ontologies
(SWO) or Semantic Web Databases (SWDB). A document is a SWO when it
defines a proportionally significant number of new terms or extends the definitions
of other terms. Otherwise it is classified as a SWDB.

For obtaining SWDs, Swoogle implements a web crawler which utilizes Google
to get documents with high probability of having RDF triples and then recursively
crawls other referenced SWDs. Since the crawler cannot parse all web documents,
it employs special heuristics for determining if a file is SWD (e.g. considering only
extensions such as ”.rdf”, ”.owl”, ”.n3”) and creating queries for Google in order
to skip parsing documents with no semantic annotations and obtaining as many
SWDs as possible.

Having crawled the SWDs, Swoogle uses a an inverted TF/IDF model with
standard cosine similarity to index any SWD. SWDs are indexed as bags of URIrefs
and n-grams.

Results for a query are ranked based on modified Google PageRank [23]
algorithm. Swoogle takes into account the kinds to links between SWDs and
treats them differently. What is important that the results are ranked by popularity
and SWOs are typically ranked higher than SWDBs since they are linked from
many other SWDs.

2.2.4 Falcons
Falcons [24] is a search engine for objects (i.e. entities with URI) as opposed to

aforementioned Swoogle which provides searches for SWDs. A user gives Falcons
a keyword query and Falcons provides a ranked list of objects along with a short
structured snippet showing corresponding literals and linked objects. Falcons does
class inferring for every object and tracks class hierarchies; therefore, query results
can be refined by user navigating class hierarchies.

Indexing

Falcons system implemented a crawler to obtain RDF data. The input URIs of
the crawler were either URIs of potential RDF documents acquired using Google
and Swoogle search engines as well as manually set URIs.
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Having obtained input RDF data, Falcons system creates for each object
with URI a virtual document that includes its local name obtained from its URI,
associated literals and textual descriptions of associated predicates and objects.

In order to more precisely define virtual documents, the authors of Falcons
work with a notion of RDF sentence. Two triples are b-connected if both contain
a common blank node. RDF sentence is a maximum subset of b-connected triples.
Virtual document of an object o then contains all local names of URIs of objects
and predicates as well as all literals which are part of RDF sentences where o is a
subject. All such local names and literals are weighted. The largest weights is
assigned to local names and literals of object o.

Virtual documents are then stored in an inverted index (terms to virtual
documents index) using Apache Lucene [25]. The authors do not mention the
exact configuration of the index, only that terms from virtual document with
different weights are indexed in different fields so that different weights can be
applied when queries arrive.

Querying

When a query arrives, relevant virtual documents are retrieved from the index
based on the query terms, which are considered in conjunction. Such virtual
documents are ranked based on the relevance to query and their popularity. Query
relevance is measured by the cosine similarity of the resulting virtual document
and the query. Popularity of a virtual document is measured by the number RDF
documents where the virtual document occurs. The final rank score is product of
both measures.

Rather than returning the virtual documents themselves to user, short snippets
are generated and returned to user instead. These shorts snippets consist of
Property Description Threads (PD-thread) which are paths leading from a virtual
document to either a literal or an object with URI. PD-thread path can contain
distinct blank nodes. For each virtual document to return to user, its PD-threads
are computed and ranked by their cosine similarity to query terms. Top three
PD-threads are then returned to user.

Refining Results

We mentioned that user can refine these results by navigating class hierarchies.
Falcons system actually creates another inverted index from classes to objects;
therefore, if any (sub or super)class is specified along with the keyword query, both
indices are searched and only the intersection of resulting objects (resp. virtual
documents) is considered for ranking. To create such an index, Falcons not only
considers explicit class assignment (e.g. ex:o a rdfs:Class) but computes implicit
reasoning by finding all superclasses for each class of an object.

2.2.5 Keyword Search over RDF Using Document-Centric
Information Retrieval Systems

The manuscript [26] whose name is in the heading discusses approaches for
keyword search through RDF data using a standard document-centric information
retrieval system. They also study how such system compares to dedicated keyword
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search systems for RDF. The authors pick Elasticsearch [27] as representative of
such a system. Their proposed method is similar to those aforementioned methods.
Index data using inverted index in Elasticsearch and when a keyword query comes,
use the index to find matching RDF data and return them ranked.

Basic Challenges of Keyword Search over RDF Data

The authors present the basic challenges of keyword search over RDF data.
First, the authors debate how to select Retrieval Unit which is what conceptually
represents an indexed document and is retrieved by search. There are three main
options: An Entity with URI, A Triple, A Subgraph.

Having entity as a retrieval unit can satisfy entity search information needs
which are related to retrieving one or more entities. Property as a retrieval unit
contains more information and can satisfy entity searches for a property of an
entity. A Subgraph is the most complex retrieval unit satisfying more complex
searches.

Second, the authors discuss how to index data based on chosen retrieval unit.
If the retrieval unit is an entity, its URI and properties can be indexed. If it is
a triple, its URIs and both subject and object properties can be indexed. For a
subgraph, the authors mention that an inefficient option is to index all subgraphs
of a given size. They also propose to index triples instead and select the triples
forming a subgraph of a given size during the retrieval process.

The last two challenges are weighting of index fields and ranking results.

Experiments

The authors perform a series of experiments on a DBpedia-Entity test collection
for entity search [28]. All experiment apart from the last one were run on a slightly
reduced version of the test collection. The authors do not perform experiments
with different retrieval units or different ways of ranking results. They choose a
triple to be a retrieval unit due to it being more informative than an entity and
being a simplest representation of a fact in RDF data. It is also quite flexible in
terms of structuring final results, for example, for using aggregation methods to
provide a ranked list of entities in an entity search.

Results are first ranked according their scores from Elasticsearch. The triples
are then grouped by entities (i.e. subject and object URIs) and these entities are
ranked by a discounted sum of its triples’ scores and returned.

While the chosen part of a triple indexed are different in experiments, the URI
is tokenized into keywords to get a local name and other parts of the URI and
indexed.

As for the configuration of Elasticsearch the authors choose for the following
experiments below the default unless stated otherwise in an experiment.

Field Separation Experiment The first experiment aimed to discover what
parts of a triple and how field separation influence the quality of results.
The authors created five different indices indexing only URIs of only subject,
only predicate, only object, the whole triple in one index field and the whole
triple where each URI was in separate fields. The best results were produced
when all fields were indexed and the single field index slightly outperformed
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the multi field index. The authors note that the index with only object
indexed outperformed the index where only subject was indexed. Moreover,
the performance of the index which indexed only property was exceedingly
low.

Field Weighting The experiment examines whether boosting the importance by
raising the weight of a field can improve performance. The authors took the
index which indexed the whole triple URIs into distinct fields and created
three indices with doubled doubled weights of only subject, only object and
both. Doubling the importance of a subject dropped the performance by
10% to the baseline with no weight doubling while doubling the importance
of an object slightly increased the performance. Therefore, the authors
concluded that object keywords were more useful than subject keywords for
the tested collection.

Extending Index In this experiment, the authors added fields to index con-
taining the values of properties of a subject and an object. The first index
included rdfs:label, the second rdfs:comment and the last all outgoing prop-
erties. All these indices had object weight doubled and were compared
to the index without property values with doubled object weight. Adding
rdfs:comment increased performance by 5% while adding all outgoing prop-
erty values slightly decreased performance. The index with rdfs:label had
the same performance as the index without property values which made
sense because labels of DBpredia are often the same as the local names in
URIs.

Similarity Model In this experiment, the authors compared the performance
of the different similarity models9 provided by Elasticsearch on their default
settings. The performance was measured on the best performing index
(i.e. index with double object weight and comments) with BM25, DFR, LM
Dirichlet and LM Jelinek Mercer similarity models. Models BM25, DFR
and LM Jelinek Mercer had similar performance with LM Jelinek Mercer
slightly outperforming the rest.

Comparison Experiment with DBpedia Specific Methods In the last ex-
periment, the authors compared the indices with different similarity models
to other external methods ran on the test collection. This experiment was
run on the full test collection. The best performing model was BM25 out of
the methods proposed by the authors and the authors claim that it was very
close in terms of performance to the best external method DBpedia-Entity-v2
SDM [28].

2.2.6 LOD Search Engine
LOD search engine [29] is, as the name implies, an engine for searching in a

large amount of RDF data. A user provides a keyword query and gets matching
triples in a ranked order. Apart from providing the query the user can choose
between Forward or Backward search method.

9https://www.elastic.co/guide/en/elasticsearch/reference/current/
index-modules-similarity.html
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Indexing

The data used in the paper are the Linked Open Data (LOD) cloud from
2014 10. The authors used the knowledge that the cloud was split into nine main
domains and identified 1014 distinct URIs related to the domains. These distinct
URIs were used to split the whole cloud to 1014 distinct files. These files were
loaded to Apache Lucene [25] to create an index. The main purpose of the index
is to for an input word return all files containing the word so that relevant files
can be quickly identified when a query arrives.

Querying

Each query is first processed using Brill’s tagger [30] to lemmatize it and each
lemmatized word is assigned a Part of Speech (POS). These POS tags are used
to create keywords used for searching in the index. Keywords are either single
words or phrases (multiple words). A phrase means adjacent two or more nouns,
adjectives or verbs.

Relevant files and their data are then retrieved based on these keywords which
are then further searched through to get relevant triples. This subsequent search
is done either with Forward or Backward search. Forward search returns triples
that contain given keywords in the subject of a triple. It is meant to be used when
user knows triple subject and is looking for associated objects. On the other hand
Backward searches objects and is meant to retrieve subjects.

Both search methods return all matched triples which are then ranked by
Domain and Triple ranking. Domain ranking ranks domains based on their the
number of matched triples. Triple ranking ranks triples in one domain based on
the number of occurrences of either subjects or objects. If Forward search was
performed, the number of objects linked to a given subject of a triple is counted to
rank the triple. The number of subjects is computed for Backward search instead.
The more occurrences, the higher rank a triple is given.

Evaluation

The engine was compared with Swoogle [22] and Falcons [24] using mainly
Precision, Recall and F-Measure. The authors claim that the LOD search engine
outperformed both significantly with respect to these measures.

2.3 Existing Tools
In this section we first study the existing software for a vocabulary search.

While that primarily means a vocabulary search, we include also catalogs with
RDF data which can also help user to represent their data using RDF. Afterwards,
we discuss the implementations of the methods from papers and whether they
are still usable. Lastly, we study tools for transformation of structured data to
RDF. While we touched on these topics in the previous section when discussing
the existing methods, we focus here more on the technical and user points of view.

10https://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/
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2.3.1 Vocabulary Search Software
In this subsection we describe the existing software for searching for vocabu-

laries and their terms.

Linked Open Vocabularies

LOV [3] provides vocabulary and term search based on an internal catalog
of curated vocabularies ranging from general purpose ones to domain specific.
Only vocabularies following best publishing practices and meeting the standards
of LOV can be added. These include, for example, URI stability and availability
as well as the quality of metadata and documentation. The search engine indexes
all vocabulary terms and provides a full-text search. The results ranking is
based on term popularity among datasets and on the category of term label
properties matched. For example, a match for rdfs:label is more important
than rdfs:comment.

Moreover, for data access LOV provides a SPARQL endpoint or data dump as
well as a public API of all the services provided in its user interface.

BioPortal

BioPortal (software [4], original paper [31]) software is a repository of biomed-
ical ontologies. It contains roughly a thousand biomedical ontologies which
comprehensive metadata are provided for. The following list includes the main
parts of metadata shown for each ontology:

• name, description, acronym, status

• category (domain)

• the number of visits on the BioPortal web page

• projects using the ontology

• the number of various terms such as classes and properties

• versioning and publishing information

• mappings to other ontologies

It also provides a user friendly browser of vocabulary terms as well as graph
visualizations of class relationships.

BioPortal provides the following services related to search.

Ontology Browser Ontology browser enables browsing of ontologies with filter-
ing capabilities based on the aforementioned metadata.

Class Search Class search is based on user providing a text input describing a
class (e.g. name, synonym, id) and optionally on a few advanced settings
such as filtering results by domain category or ontologies. Results are linked
to the aforementioned browser of vocabulary terms.
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Ontology Recommender Ontology Recommender [32] recommends ontologies
based on a list of keywords or an excerpt from a biomedical text. Ontologies
are ranked by a weighted sum of four criteria: Coverage, Acceptance, Detail
and Specialization. Coverage represents the extent of an ontology covering
the input data. Acceptance represents how well-known and trusted an
ontology is. It is computed partially from the number of its visits on the web
page. Detail represents the level of detail of ontology classes covering the
input data. Specialization represents how much an ontology is specialized
with respect to the domain of the input data. The user can manually
override default weights for these criteria to adjust the ranking.

BioPortal also offers API 11 to the aforementioned services and data for logged
users.

EMBL’s European Bioinformatics Institute Ontology Search

EMBL-EBI Ontology Search [33] software provides ontology and term search
on a catalog of hundreds of biomedical ontologies. Based on a brief evaluation
there is an ontology overlap with BioPortal. EMBL-EBI Ontology Search provides
a text input based search for ontology terms with an option to filter by ontologies.
No documentation of how the search is done was found.

Moreover, there is an ontology browser with an optional text input filter. The
software shows some metadata for each ontology such as numbers of terms, a
description, contributors, ontologies importing the ontology and ontologies the
ontology imports.

Similarly to BioPortal EMBL-EBI Ontology Search software contains a browser
for vocabulary terms with class relationship graph visualization, class hierarchies
and related terms.

2.3.2 Data Catalogs
Apart from software for searching for vocabularies it might useful for user to

browse a catalog of RDF data when transforming data to RDF. Finding similar use
case and seeing how such data are represented can be a way to find a vocabulary
to use. Or the user can find already published data they might link their data to
(e.g. countries, cities, organizations, ...).

Since there are many such catalogs, we only provide a few examples that will
be referenced later on in the thesis.

Czech National Open Data Catalog

Czech National Open Data Catalog hosted on Czech National Open Data
Portal [34] contains metadata records about open datasets in Czechia. It contains
both records registered directly into it and records of more local Czech catalogs.
Metadata records are specified using DCAT-AP-CZ [35]. The user might, for
example, want to reuse the URIs from the code list of Czech districts 12 or link to
them.

11http://data.bioontology.org/documentation
12https://data.gov.cz/dataset?iri=https%3A%2F%2Fdata.gov.cz%2Fzdroj%2Fdatov%

C3%A9-sady%2F00551023%2F04e0a699be153c780a0dde2c38dc3b13
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European Data Portal

European Data Portal [36] contains its own controlled datasets and metadata
records from national catalogs. For example, there are published code lists for
currencies13 and countries14.

2.3.3 Transformation Tools
We now survey the programs for transforming structured data to RDF. We

first list programs that support multiple formats of structured data and then list
programs supporting one format by the formats.

Karma

Karma [37] system and its underlying method for enabling creating mappings
from structured data to RDF in a target ontology was discussed in Subsection 2.2.2.
We now inspect the more practical aspect of the software mainly from the user
point of view. Any ontology that the user would like their data be represented
in must be loaded as a file to Karma. Karma supports loading source data from
relational databases, CSV, XML, JSON or spreadsheets. Figure 2.6 shows how
karma presents our example food JSON. It shows the hierarchical schema with the
food product being at the top. The literal values (columns) of the data are shown
below the hierarchical view. Above, Karma shows the initial model of the source
data (red nodes). Karma does not take the hierarchical structure into account
and instead considers the model to be only unconnected columns.

Figure 2.6 Food Data in Karma

The transformation workflow consists of clicking on the graph nodes and select-
ing properties going to or from these nodes. On clicking on a node, Karma shows
a dialog with recommended properties which the user can select. If recommending
properties are not fitting, the user can manually choose a property (and a source
or target class) from target ontology. This is how a graph of source data specified
using the target ontology terms is created.

Karma also provides quite rich data manipulation options. It is possible to
create new columns or transform an existing one by writing a python script which
has access to the value of all columns. Moreover, the user can split or merge
columns or even aggregate their data.

13https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http:
//publications.europa.eu/resource/dataset/currency

14https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http:
//publications.europa.eu/resource/dataset/country
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When user is satisfied with the created model, it can be exported to various
RDF formats.

Note that while the tool is actively maintained based from Github commit
history15, the documentation is quite dated.

Silk

Silk [38] framework is mainly focused on creating links between different RDF
datasets. Silk supports selecting which entities from two datasets to link using
simple SPARQL-like path language. To link two entities, user creates a pipeline
computing a single confidence value based on which these entities are linked or
not. The pipeline typically retrieves and optionally transforms related data of
both entities and compares them using a similarity metric.

While linking is a part of the process for publishing RDF data, we are more
interested in the transformation of data to RDF which comes before linking. Silk
supports loading data from a non-RDF source such as JSON. The user converts
such data to RDF by specifying object and value mappings. An object mapping
is used for creating a RDF resource and a property connecting it to already
created resources. A value mapping is used for creating literal properties and their
values for already added resources. A visual pipeline collecting, transforming and
aggregating data from various sources from the original data can be constructed
to compute literal values. Silk also provides an option to load vocabularies and
suggest terms from them. Moreover, URIs of resources can be generated by a
pattern.

While Silk is maintained based on its Github commit history16, a documenta-
tion for this entire transformation to RDF process is missing.

Linked Pipes ETL

Linked Pipes ETL [39] enables users to create general linked data transforma-
tion pipelines. A pipeline consists of interconnected components. There are the
following basic types of components.

Extractors Extractors are responsible for fetching data to a pipeline from ex-
ternal places. For example, data can be downloaded using HTTP GET or
loaded from a file system.

Transformers Transformers perform transformations on data in a pipeline.
These components are where user can transform structured data to RDF.
Tabular component transforms CSV to RDF in a standard generic way.
There is a component for adding a JSON-LD context to JSON file. For
XML, there is support for running XSLT scripts. Transformers also include
components capable of running SPARQL to transform data in a pipeline.

Quality Assessment Components Quality assessment components check if
data in a pipeline meet predefined criteria.

15https://github.com/usc-isi-i2/Web-Karma
16https://github.com/silk-framework/silk
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Loaders Loaders are responsible for loading data from a pipeline to external
locations such as a file system or a database.

The user creates a pipeline by assembling a visual graph of these interconnected
components. Linked Pipes ETL also offers more functionality such as sharing
component configurations among pipelines or allowing users to define custom
components.

Relational Databases to RDF

RDB to RDF Mapping Language (R2RML) [40] is a language for specifying
mappings from relational databases to RDF. These mappings can be specified in
RDF using R2RML custom vocabulary. A R2RML mapping is based on Triples
Map which is a rule which maps each row in a logical table to a set of RDF triples.
A logical table is a physical table, view or SQL query. Triples map consists of two
parts:

Subject Map Subject map specifies the subject of RDF triples generated from
one row.

Predicate-Object Maps Multiple Predicate-Object maps specify predicates
using Predicate Map and objects via Objects Map. Objects map can specify
a column name which literals are taken from. Object resources are specified
either by defining a join operation with another triples map or by creating
URIs as patterns of strings and columns.

Alternatively, user can use simpler Direct Mapping (DM) [41] to perform a
generic transformation from relational database to RDF without any need to
create mappings. However, the resulting RDF has no vocabularies used and all
URIs are based on names of tables and columns. Such RDF data typically need
further processing using, for example, SPARQL CONSTRUCT query.

CSV to RDF

Tarql [42] tool is capable of running SPARQL queries on CSV files. Namely,
SPARQL CONSTRUCT query can be used to transform CSV to RDF.

Alternatively, tools following the specification for a generic transformation of
tabular data to RDF [43] can be used to create RDF in a similar raw way as in
using Direct Mapping for relational databases. This generic transformation turns
rows into RDF resources and columns into their properties whose URIs are based
on column headers.

JSON to RDF

If source data are in JSON, no special tool is required to convert the data
to JSON-LD [44]. It is only necessary to specify JSON-LD Context so that the
original JSON file is interpretable as RDF. We only mention this option briefly
since we expect the reader to know JSON-LD serialization.
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XML to RDF

For completion on the main data formats, XML data can be transformed to
RDF by standard XSLT [45].

2.4 Proposed Approach
In the previous sections in this chapter, we studied the process of transforming

structured data to RDF. Now we propose our approach to improve the experience
of users undertaking such process. We identify the following three challenges
related to the process which we discuss below in detail. The first challenge is
that there is currently no single system which would let users transform data to
RDF while providing vocabulary recommendations from vocabularies unknown
to the users. The second challenge is that while the discussed recommendation
and search methods are quite general and can be used on any data, using them
can lead to a number of unusable term recommendations which require a user’s
manual investigation. The last challenge lies in that while all tools implement
only their proposed methods for search or recommendation, there is no software
that would support adding multiple methods out of the box.

These challenges with along our proposal how to resolve them are discussed
in the following subsections. Lastly, we summarize the proposals to convey our
approach in a more concise way.

2.4.1 Challenge One - No Single System for Transforming
and Recommending

Consider a user with some structured data which they want to transform
to RDF. If they know what vocabulary to represent the data in, they can use
interactive Karma [19] (see Subsection 2.3.3) software or any other transformation
tool to perform the transformation. However, when the user does not know a
target vocabulary, there is no tool which the user could load the data into and it
would recommend relevant target vocabularies (or their terms).

While both Karma and Silk [38] (see Subsection 2.3.3) provide term recom-
mendations when transforming the structured data, they only do so from known
vocabularies provided to the programs by the user. Other described transformation
tools are focused on completely manual transformation without taking account of
vocabularies.

In contrast, using vocabulary search tools such as LOV [3] or BioPortal [31]
web applications (see Subsection 2.3.1) requires the user to create keyword queries
based on the input data. While these tools curate the vocabularies and provide
advanced search capabilities, they are not capable of search based on structured
data nor provide transformations based on search results.

Moreover, sometimes using standard web search engine such as Google is
required to find the most relevant vocabulary as it was in our food example where
only Google found fitting vocabularies (see Subsection 2.1.1).
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Our System for Transforming and Recommending

To summarize, such user always needs to shift between a place where they
search for vocabularies and a place where they transform. Therefore, we aim to
provide a system which is capable of both recommending vocabularies based on
structured data and and data transformation.

In addition, while recommending vocabularies and their terms by itself is
useful and letting the user transform data manually, we consider a vocabulary
recommendation to also propose a way how transform the current version of data
and execute the transformation on user accepting it.

Rather than focusing on creating a recommendation which is capable of
transforming the whole data to the target vocabulary and which might not be
even feasible, we focus on smaller or even unit recommendations considering only a
part of the data. For example, we mean a recommendation which recommends to
set the URI of a property in the source structured data to a vocabulary property.

Figure 2.7 Transform Workflow

The whole process of data transformation is meant to be semi-automatic and
user guided. The workflow of the proposed system is shown in Figure 2.7. The
user loads structured data based on which a model is inferred that represents the
RDF representation of the loaded data. The model contains a schema capturing
the structure of the loaded data which is presented to the user. The system creates
recommendations suggesting transformations of the model such as recommending
to use vocabulary terms in a part of the model but it can even suggest structural
changes along with vocabulary terms. The user then interactively updates the
model until they are satisfied and export the desired representation of the loaded
structured data to RDF. The user can either update the model manually or use the
recommendations which are capable of automatically transforming the model. The
user can also just investigate the recommendations for recommended and related
terms and decide to add the terms manually. Chapter 5 contains an example
transformation of the food data from the motivating example (Section 2.1) using
the final implemented system. It contains screenshots and usage description;
therefore, it can provide a better understanding of the proposed transformation
environment.

Compared to Karma where the structure of the initial input data is not
considered for the initial model, we make the assumption that the original data
are represented in a conceptual structure mirroring to some extent the real world.
For example, we suppose that an object in JSON represents a concept and its
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JSON properties also relate to the concept. Therefore, the model contains a
schema accounting of the structure of the data.

2.4.2 Challenge Two - Many Recommended Terms
Consider a user in a process of transforming structured data to RDF and one

of discussed search methods (see Subsection 2.3.1) return matched vocabulary
terms to represent a part of their data. All of these methods are general and
can be used on any data. However, the discussed methods typically match many
results which are ranked using a collection of general purpose metrics such as
term popularity. Therefore, even terms that are ranked at the top might not be
the most relevant out of the matched results and a result investigation as well as
result browsing is often necessary. This was also the case for the example food
data transformation (see Subsection 2.1.1).

While this by itself might not be an issue when performing one search with
a specific keyword, recommending based on input data using possibly many
keywords searches would result in even more matched results. It seems infeasible
and inconvenient for the user to have to browse through many term options.

Recommending More Than Vocabulary Terms

Furthermore, the discussed vocabulary recommendation methods and tools
(Karma [19], TermPicker [16], LOV [3], BioPortal [31], ...) recommend only strict
vocabulary terms defined by RDFS or OWL or a similar ontology definition
vocabulary. However, recommending other terms for the representation of data is
also important. In the example food use case (see Section 2.1), the product had a
literal reference ”United States” to the country where it was sold. One possible
recommendation was to replace the literal with a code list value from European
Data Portal [36] (see Subsection 2.3.2). Another use case is linking to DBpedia
[46] resources representing real world entities. Not only do we want to support
recommending from code lists or DBpedia but also from all possible such sources.

Expert recommending

Instead of primarily using general recommendation methods generating many
recommendations, we propose to recommend based on many small recommenders
specific to a certain domain using expert domain knowledge to provide term
recommendations. Each recommender recognizes whether it can recommend
something from its domain and if not, it outputs nothing. Therefore, such
recommenders only produce results if they are fairly certain that the input data
are relevant to their domain. Each recommender also has access to RDF data (e.g.
LOD cloud) in preprocessing to extract whatever necessary data it needs.

This way of recommending also alleviates the other issue of recommending
only strict vocabulary terms. For example, there can be an expert recommender
for code lists which searched the whole LOD cloud for code lists and recommends
their values. The recommenders can even use the general search methods and
quickly limit the results based on their expert domain knowledge.

Obviously, this approach to recommending is only useful if there are recom-
menders of high-quality for the domains of the imported user data. Therefore, it
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is necessary to design a solution which enables adding new recommenders to the
system easily.

2.4.3 Challenge Three - No System for Multiple Methods
The discussed paper recommendation methods are usually implemented for

the evaluation of the said methods but not released with enough documentation or
maintained. Some prominent examples which are maintained are LOV [3], Karma
[37], Silk [38] or BioPortal [4]. But even then, they implement their method and
do not take account of other methods whose implementation could make their
service better.

Although we preferred to use the expert recommendation idea to these general
methods in the challenge two section, we do not dismiss their value. Therefore, we
expect the system to have support for adding such general purpose methods for
both a recommendation improvement and a method comparison. This goes in hand
with expert recommendations which are small self-contained recommendation
methods.

2.4.4 Summary
We stated three challenges related to transforming structured data to RDF

and our ideas for solving them. In this subsection we merge the presented ideas
to provide a summary of our approach based on which we can design our system
in the following chapter.

We start by summarizing Subsection 2.4.1. We propose to provide an interactive
environment (i.e. system) which a user can use to transform structured data
to RDF semi-automatically. The environment lets user import structured data
based on which their model representing their RDF representation is inferred.
The model contains a schema capturing the structure of the imported data as well
as the underlying imported data values that the user can browse. The model can
be exported to RDF. The user can manipulate the schema (i.e. the structure) and
add RDF artifacts (such as RDF types, resource and property URIs) to influence
how the data should be represented in exported RDF. This can either be done
manually or by using transformation recommendations. These recommendations
suggest how the parts of the model should be represented in RDF. They can be
used for automatically transforming the model based on the suggestions or for
searching for fitting vocabulary terms which the user can then use manually. The
workflow is captured in Figure 2.7.

How exactly recommendations work is discussed in Subsection 2.4.2. Recom-
mendations are generated by recommenders having some built-in expert domain
knowledge they use to produce recommendations for the specific domains. The
recommenders have access to the imported data as well as external RDF data
serving as a knowledge base (e.g. LOD cloud). The recommenders only produce
recommendations for the domain and if the imported data are outside it, they
produce nothing. Also, it is important that new recommenders can be added
fairly easily since they are typically small and domain focused.

Subsection 2.4.3 then specifies that we want our system to support creating
recommendations based on general purpose search or recommendation methods
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discussed in Section 2.2 and Subsection 2.3.1.
We identify the main functional components and design the system architecture

based on the described approach in the next chapter.
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3 Design
In this chapter, we design a system based on our proposed approach from

Analysis (Section 2.4). First we identify the main components of the system and
how they should interact with each other based on the proposed approach. Based
on these components we design the architecture of the system. Lastly, we look at
how to represent user’s structured data.

We iteratively analyze and design the system. Both the architectural and data
representation sections introduce the requirements based on which the architecture
or data representation are designed. These requirements are typically influenced by
some design decisions made in the previous sections or chapters; therefore, we do
not employ the classical approach of defining all system requirements beforehand.

3.1 Main Components
In this section, we identify the main components of the designed system based

our proposed approach Section 2.4 from Analysis. We consider a component to
represent a group of semantically related functionality without specified runtime
allocation.

The proposed approach proposes to create an interactive environment where
a user imports their structured data and lets the user manually or by using
transformation recommendations transform the data represented in an internal
model into a state from which the user can export RDF representing the data
using suitable vocabulary terms. There are two main components hidden. One
is the application providing the environment that the user interacts with which
we identify as the Editor component and the other is a component producing
the recommendations which we consider to be the Recommendation Provider
component.

When a user imports structured data to Editor, Editor transforms the data
into a model representing the RDF representation of the data containing the
aforementioned schema that captures the structure of the original data and
information about the original data. The model also contains RDF related
artifacts such as RDF types or URIs assignable to the data. The model’s design
is described in Section 3.3. The user then can iteratively make transformations of
the model such as changing the structure of the data, changing data values, adding
RDF types, assigning URIs and when they are satisfied, export to the desired
RDF. These transformations can be done manually or by using recommendations
that suggest how to transform the model. The user can investigate the any
recommendation to see what terms it recommends using, its description and visual
changes of the internal model. The user can either apply the recommendation
which means its suggested transformations are done or use the gathered information
from the recommendation and do the changes manually.

Recommendation Provider is responsible for creating transformation rec-
ommendations for the current version of the Editor model. Therefore, when
recommendations are requested, the current Editor data (e.g. the model or a
structure derived from it) must be given to Recommendation Provider. The com-
ponent consists of smaller recommenders responsible for creating recommendations
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that are based on expert knowledge or on general-purpose search or recommenda-
tion methods. We also mentioned that each recommender can use external RDF
data as a knowledge base to create recommendations. It can precompute any
kind of index from these data to later use it to create recommendations for the
Editor data. To bring more clarity to what a recommender can be, we define the
following types of recommenders based on what kind of input they use along with
recommender examples.
Editor Data & Expert Knowledge This kind of recommender uses only the

Editor data and some built-in expert domain knowledge to create recom-
mendations. We include example below.
Suppose that in the imported structured data there is a country specific
date string such as "DD.MM.YYYY" for Czechia which does not conform to
xsd:dateTime. A recommender for czech dates could recognize czech date
time string and provide recommendations for their transformation to a
format compatible with xsd:dateTime.
A recommender does not need to work on the level of literal value change but
can be capable of transforming a part of the Editor data, even transforming
the structure. Such example can be recommending terms from a certain
vocabulary as such Food Ontology [11] used in the motivating example
(Section 2.1). It has predicates for nutrient information of a food product
(e.g. carbohydrates). A recommender then could try to find nutrient
information strings using simple or advanced text similarity in the Editor
data and if any part of the data matched, it would provide recommendations
for transforming that part of data to the Good Relations [12] model that
Food Ontology is based on for adding quantitative properties along with
any nutrition predicates from Food Ontology.
An even more complex example that works on the whole Editor data could
be a recommender that is capable of detecting statistical data and provides
recommendation for transforming them to a Data Cube [47] model.

Editor Data & RDF Data This type of recommender produces recommen-
dations for any Editor data independently of the data domain using the
external RDF data (e.g. LOD cloud) preprocessed to some kind of index. It
can, for example, be based on a general recommendation or search method
discussed in Analysis (Section 2.2). We again include example below.
An example of such a recommender is a recommender that preprocesses the
external RDF data to a full-text index. Then, when it receives the Editor
data, it finds the best matches between the index and the Editor data. It
can then recommend to represent the matched Editor parts by vocabulary
terms used by the matched data from the index.
Another example is a recommender that when recommendations are re-
quested, it uses the LOV [3] public API to perform search for RDF terms
in LOV vocabularies based on the received Editor data and subsequently
creates recommendations based on the top results.
While these recommenders can change the structure of the Editor data, they
typically only recommend predicate or type URIs along with description of
why they are recommended.
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Editor Data & RDF Data & Expert Knowledge The last type of recom-
mender uses both an index created from external RDF Data and expert
knowledge. We again include examples below.
An example of such a recommender is a recommender for code lists. There
is a code list for currencies published by Publications Europa Portal 1. If
this code list is provided to the code list recommender, then it can compare
the currency codes from the code list to literals in the Editor data when
recommendations are requested. If there are literals matching codes, the
recommender can suggest to replace the literals with the well-known URIs
of the codes.
Another example is a recommender that saves triple that contain RDFS
vocabulary terms from any RDF data provided to the recommender. The
recommender could then compare the Editor data with the saved triples
and produce recommendations assigning RDF types or property URIs to
matched parts of the Editor data.

We mention that these recommenders can process external RDF data and create
supporting structures for recommending. It is not clear what these RDF data are,
where they are taken from, how they are processed and when recommenders have
access to them.

One option is that RDF data can be collected by crawling (such as in Swoogle
- Subsection 2.2.3 - or in Falcons - Subsection 2.2.4) and then provided to all
recommenders (of the second and third type that require external RDF data)
either before the system is live or when the system is running to update their
recommendation data structures. This approach makes us search for the data to
use.

An alternative to this approach is to create a catalog where RDF data can
be uploaded. The catalog would then notify recommenders of new RDF data.
This approach is used in LOV [3] where they curate the uploaded vocabularies.
Moreover, RDF data can be sent to the catalog in a standard and efficient way
using RDF dataset vocabularies such as DCAT or VOID. There are many external
catalog services that provide dataset records; therefore, it is a quite elegant way
to get inputs to out system.

If we compare the options in terms of data quality, there are no guarantees
in the case of the crawler unless we explicitly implement data quality filtering
functionality. In the catalog approach the responsibility for providing high-quality
data is on the user uploading the data to the catalog. Moreover, the quality can
be offloaded to the external catalogs that curate their datasets. Therefore, we can
choose which catalogs we trust to use their data.

Comparing the crawling and catalog approaches in terms of handling data
updates favours the catalog. Again the catalog could rely on the external catalogs
tracking updates or on dataset metadata to check update dates. Therefore, it
would refetch only dataset data for changed datasets. In the crawling approach,
the crawler would need to retrieve all data again and compare them against the
last crawled version (or just update all system data). We choose the catalog
approach for the aforementioned reasons as well as it being less complex solution in

1https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http:
//publications.europa.eu/resource/dataset/currency
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terms of implementation. Since the Recommendation Provider would have many
responsibilities, we define a component Catalog that is responsible for managing
datasets. If a dataset is uploaded, it stores it and notifies all recommenders that
there is a new dataset they can process.

Each defined recommender (and thus Recommendation Provider) recommend-
ing based on external RDF data still does two tasks - process external RDF
(dataset data) to create internal structures for recommending and provide rec-
ommendation based on the Editor data. If these tasks are combined in one
component, then the produced internal structure is likely to be heavily optimized
for the recommendation task. However, splitting each task into a component
forces the RDF processing task to create a well-defined structure that can be
reused by other recommenders.

Therefore, we replace Recommendation Provider from the main components
by a group of Recommender components and a group of Analyzer components.
Analyzer performs the processing of datasets producing analysis (i.e. the originally
called internal structures). The analysis are well-defined and not tightly connected
to a recommender. Recommender does the recommending task. We prefer to call
them a group of components instead of creating one component for the whole group
since we then can reason based on the individual Recommenders and Analyzers.

Recommender can be dependent on analysis of one and more Analyzers. This
solution is also more flexible, since new Analyzers can be added using some already
existing analysis definition to seamless make its analysis usable in Recommenders
using the analysis definition. And new Recommender can be added and use
already defined Analyzers and analyses created by them.

3.2 Architecture
In this section we design the architecture of the system based on the identified

main components. We first specify the goals based on which we evaluate any pro-
posed architectures. Then we explore iteratively various simplified architectures
and arrive at the one fitting the requirements the most. We subsequently take the
chosen simplified architecture and remove simplifications to derive the final archi-
tecture based on which the system is implemented. The simplifications typically
concern communication between one and more components or communication
with databases whose exact description would unnecessarily complicate the idea
of the simplified architectures.

We model all architectures in the C4 model [48]. The terminology is slightly
different from other models. Components are static blocks of related functionality
encapsulated by a well-defined interface. Containers are runtime deployable units
that execute codes or store data. Containers typically consist of components.

Note that when we mention the term dataset in the following sections, we
mean a DCAT dataset not the actual data which would be a distribution in the
DCAT terminology.

3.2.1 Architecture Design Goals
We develop the simplified architectures based on the four main defined com-

ponents. Editor lets users interactively transform structured data to RDF and
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requests recommendations from Recommenders. Recommender takes the Editor
data as an input, optionally fetches any required analyses from Analyzers and
produces recommendations. Analyzers create analyses based on RDF data inserted
into Catalog in the form of DCAT datasets. Note that terms Recommenders and
Analyzers mean the groups of all Recommender or Analyzer components.

The goal is to find an simplified architecture that supports the following.

• Adding new Recommender or Analyzer is possible and fairly easy.

• Multiple Recommenders can use analyses of multiple Analyzers.

• While Recommenders are closely knit to Editor and its data format, analyzers
analyze any RDF data to infer knowledge that may be useful in other
applications. Therefore, a minor goal is to be able to reuse analyzers in
different contexts.

• Very subjective implementation simplicity.

3.2.2 Catalog Monolith With RDF Triplestore Architec-
ture

Perhaps the simplest architecture is to group the main components in a single
container and have only one store for all kinds of data. The architecture in
Figure 3.1 groups Catalog, Analyzers and Recommenders into a single container
named Catalog whose main function is to let administrators upload datasets for
analysis and provide recommendations for Editor. Any data used by Catalog is
stored in a RDF triplestore.

Figure 3.1 Catalog Monolith Container View

Having the three main components in one container does not mean that
the respective functionality is interlinked in a black box. Instead, the Catalog
container contains Dataset Uploader, Analyzers and Recommenders components
as shown in Figure 3.2). Dataset Uploader receives any uploaded dataset by a
user, retrieves its data and saves both in the triplestore. Afterwards, it notifies
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Analyzers that new data were uploaded, where they are in the triplestore (e.g.
identified by graph URIs) and that they are ready to be analyzed. Each Analyzer
then accesses the uploaded data in the triplestore and performs analysis whose
results (i.e. analyses) the Analyzer saves in the triplestore as well. While all these
different kinds of data (datasets, their data, analyses) are saved in different RDF
graphs, they contain links among them. For example, an analysis can have a link
to the data created from or the dataset it is meant for.

Recommender components are responsible for providing recommendations to
Editor. Each Recommender takes the Editor data as input, optionally fetches
analyses from the triplestore and produces recommendations as output.

Figure 3.2 Catalog Monolith Component View

Architecture Evaluation

We first consider the single storage being a RDF triplestore and then the
monolithic nature of the architecture. The RDF graph model in a triplestore
is quite powerful for representing any kind of information. Each analyzer can
choose an arbitrary graph structure of analyses it produces and can link and reuse
original data instead of having to store them which would be necessary if another
database type such as a relational database was used to store analyses. Moreover,
graph databases can store the data close to conceptual reality as opposed to
other types of databases which can restrict the structure of the data such as to
relational tables. Since analyses are in the RDF database, a recommender can
write SPARQL queries to access multiple types of analyses and convert them to
its desired output even in the query.

While relying heavily on RDF is highly flexible, adding a new analyzer or
recommender requires knowing SPARQL and writing non-trivial SPARQL queries.
Based on personal experience, the result of SPARQL - bindings or triples - also
requires some grouping and merging work to convert it into a suitable structure
usable from code in comparison to retrieving simple JSON documents from a
document database. Therefore, the complexity is shifted onto the programmers
of analyzers and recommenders making adding new analyzers or recommenders
difficult.

Another problem with the single triplestore is that any dataset data or analyses
must be in RDF. In the presented workflow, we cannot consume non-RDF datasets.
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Furthermore, if we want to recommend using a full text search or using the
discussed TermPicker (Subsection 2.2.1), we would need to somehow fit their
recommendation support structures (i.e. analyses) in RDF or add data stores in
a custom way not represented in the architecture.

For these reasons we might want to split the catalog storage and analysis
storage which we consider in the next presented architecture.

Now we consider the catalog monolith and how it fits out predetermined goals.
There the main advantages lies in its (runtime) simplicity and deployment. The
main disadvantage of the approach is that a new analyzer or recommender must
be statically included. Therefore, it must be implemented in the same language
as the rest of the code or use language bindings which increases the difficulty of
adding new analyzers or recommenders. Moreover, reusing analyzers and their
analyses is not readily possible apart from including and referencing the Analyzer
components in code.

Hence, we shift to more runtime architecture approaches.

3.2.3 Recommender Container Architecture
This architecture is based on the proposed architecture changes for the mono-

lithic architecture. The previous Catalog monolith container is split into new
containers - Catalog container and a group of Recommender containers. Since
we found having a single RDF triplestore non-optimal, we consider a triplestore
only for datasets and separate stores for analyses. This architecture is shown in
Figure 3.3. Catalog provides API for uploading datasets which are forwarded to
each Recommender container and saved in Dataset Triplestore. A Recommender
container fetches dataset data and analyses them. Created analyses are saved in
Recommendation Analyses Store. Not to lose track of which analysis was created
for which dataset, provenance about each analysis such as who created it and
where it is located is sent back to Catalog.

Figure 3.3 Recommender Architecture Container View

Similarly to before, Editor requests recommendations from Recommender
containers which use Recommendation Analyses Store containers to get analyses.
There is a group of containers for analyses stores since each Recommender might
have different requirements for storing analyses. While most could be satisfied
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with a key value store or a document store, there may be a need to store data, for
example, in an information retrieval system.

Since a Recommender container has both analyze and recommend responsi-
bilities, it consists of Analyzer and Recommender component which handle their
corresponding responsibilities (see Figure 3.4).

Figure 3.4 Recommender Component View

Architecture Evaluation

We evaluate the presented architecture. Let us reiterate the main issues
identified in Catalog Monolith Architecture. We could not add an analyzer or a
recommender in a language independent way and all analyses were required to
be stored in RDF. That also implied that each recommender retrieving analyses
would have to retrieve the analyses from the triplestore typically using SPARQL
and do some processing of the query results to get a structure suitable for doing
the actual recommending. Despite the approach being flexible and powerful, we
opt to make implementing new analyzers and recommenders simple.

These issues are now resolved. A new analyzer or recommender can be added
implemented in any language added as a runtime container. Analyses also do not
have to be stored in RDF and an analyzer creator can choose to store analyses in
existing stores or add a new analysis store.

Another benefit is that the cataloging functionality is in a runtime container
designed for cataloging datasets which makes it simpler to understand and imple-
ment. Moreover, the cataloging part can be replaced by connecting an existing
external catalog application to the Recommender containers. Or there does not
even have to be a catalog to begin with and the administrator can directly send
datasets to Recommender containers to get analyses for them. However, the entire
Recommender containers would have to be taken for such use cases which might
be inelegant if the main focus is to get analyses to be used in different contexts.

Even if no such reuses were considered, coupling both analyzer and recom-
mender functionality in one container is a bit incomprehensible when adding
either a recommender or an analyzer. For example, there can be an already
mentioned recommender for recommending converting dates in czech format to
a xsd:dateTime compatible format. This recommender does not require any
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analysis or analyzer implementation. Should the resulting container have an
analyzer producing always no analyses?

What about implementing an analyzer for multiple recommenders? Should
there be a Recommender container with an empty recommender that does nothing?
Should the analyzer be coupled to one recommender that uses the analyzer’s
analyses? In that case the other recommenders using the same analyses would be
tied indirectly to the recommender as well.

While at least partial answers to these questions can be found on a technical
level by, for example, providing guidelines how such things should be done, they
cannot be reflected in the proposed architecture. We want to solve this issue on
an architectural level; therefore, we discuss one last architecture where no such
problem occurs.

3.2.4 Analyzer Container Architecture
In this architecture we build on top of Recommender Container Architecture

and resolve its discussed problem of coupling analyzer and recommender function-
ality together in one runtime container. Therefore, we have a group of Analyzer
containers which perform analyses and save them in Analyses Stores as well as a
group of Recommender containers which can retrieve said analysis from the stores
and provide recommendations for Editor. This architecture is shown in Figure 3.5.
The rest is the same as before in Recommender Container Architecture; hence,
we skip further description.

Figure 3.5 Analyzer Architecture Container View
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We now evaluate the architecture in terms of our given goals to make sure
there are no major issues. New analyzers and recommenders can be added by
adding a runtime container implementing analyzer or recommender well-defined
API using a language of preference. It is clear that adding only an analyzer
or recommender is supported. Recommenders are not coupled to analyzers but
rather to their specified types of analyses; therefore, they can use the analyses
of multiple analyzers of their choice. Moreover, since analyzers are completely
split off of Editor and are standalone containers, they can be reused in different
contexts. This flexibility adds, however, some runtime complexity in terms of
communication and deployment.

To sum up, this architecture supports the main defined goals with the trade-
off of having increased runtime complexity in comparison to the architectures
discussed before.

3.2.5 Final Architecture
In this section, we derive the final architecture of the system. All of the

previous architectures were focused on how to represent the main components
and on the high-level communication among them. While drafting architectures
on such a level is useful for presenting the main ideas, the drafts are too high-
level to present the complete picture from which the system can be implemented.
Therefore, we delve deeper and arrive at the final architecture based on which we
implemented our system.

We first identify the vague places in Analyzer Container Architecture, where
more detail is necessary to describe how it should work without relying on
ambiguous simplifications, and propose our solutions. Then we showcase the
whole architecture.

Communication between Catalog and Analyzers

In Analyzer Container Architecture, Catalog sends datasets to Analyzers in
order to get dataset analyses. It is not clear how exactly the communication
happens. Based on the brief explanation it seems the Catalog must know of
all Analyzers and send a request to each. However, knowing the addresses of
Analyzers and handling communication with all of them should not be Catalog’s
responsibility. Therefore, we introduce a container named Analyzer Manager with
such responsibility. It provides an endpoint that accepts datasets and on accepting
its requests, the manager sends the datasets to all Analyzers. Catalog then only
needs to send datasets to Analyzer Manager.

Each analyzer can run analysis of a dataset for a significant amount of time.
Moreover, requesting analyses of many datasets at once (such as uploading a
large DCAT catalog) can throttle the performance and memory consumption.
Therefore, there is a queue for each Analyzer from which the Analyzer retrieves
datasets to analyze. An item in such a queue is called an analysis job and it
contains one dataset among other things discussed later.

One question still remains. How does Analyzer Manager keep track of available
Analyzers? There are dynamic and static solutions. An example of a dynamic
solution is to have Analyzers register to Analyzer Manager at runtime. An
example of a static solution is to have analyzer queue locations be a part of the
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configuration of Analyzer Manager. We choose the static configuration approach
for the sake of simplicity.

Sending Analysis Provenance

In Analyzer Container Architecture, we mentioned that each Analyzer container
sends analysis provenance to Catalog. The provenance includes information about
the analyzed dataset, the analysis creator or the URI of the analysis for retrieving
it. It can be sent to Catalog when Analyzer has analyzed a dataset and stored
it. Since each analyzer can run for long time and we employ queues to submit
datasets to analyze, the provenance information cannot be sent as a response to
Catalog sending datasets to analyze.

Hence, analyzer sends provenance to Catalog in a separate request after creating
analysis. We could include the Catalog address in configuration and hardcode
sending provenance. However, there may be another pieces of information that
analyzer can send to not only Catalog. For example, if Catalog does not receive
any analysis provenance for a dataset, it can be due to various reasons. Either
the dataset contains no suitable data for analysis or the analyzer crashed and
subsequently a potential analysis was lost. Or we could send information about
when analysis of a dataset was started.

Therefore, we consider the notion of sending general notifications. Catalog
can pass a list of notification requirements along with datasets to Analyzer
Manager. An example of such a requirement could be that Catalog wants to
receive provenance in PROV Ontology [49] when analysis is done. Each such
requirement must contain the address of the target and when the notification
should be sent. These requirements are passed to the analyzer queue along with
datasets. Then, when an analyzer is done, it reads the requirements and sends
analysis done notifications.

Communication between Editor and Recommenders

Editor requests recommendations from multiple Recommenders; therefore,
it needs to know their locations. This is a similar problem as sending datasets
to multiple Analyzers and we employ a similar solution. We create a container
Recommender Manager whose responsibility is to keep track of Recommenders
and provide an endpoint for requesting recommendations from all Recommenders.
Recommender addresses are a part of the manager configuration similarly to how
analyzer queues are part of the configuration of Analyzer Manager. No queues are
used in this case since recommendations are demanded from user and should be
provided as soon as possible. To summarize, Editor needs to only communicate
with Recommender Manager to get recommendations from all Recommenders.

Storing and Retrieving Analyses

In Analyzer Container Architecture, each Analyzer stored its analyses in a
analysis database of its choice and each Recommender requiring analyses retrieved
them from the databases. Instead of requiring each Analyzer and Recommender
to access databases directly using special clients and know where each analysis
should be stored, we add a container Analyses Store that is responsible for storing
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analyses and retrieving them as well as providing standard HTTP endpoints
for these operations. In background, it can manage multiple databases no one
else has access to. At the cost of more runtime complexity this solution ensures
that adding analyzers and recommenders means focusing largely on their main
responsibility and not having to resolve implementation details related to storing
analyses.

The only exception is when the essence of an analyzer or a recommender
is dependent on a external system such as recommending based on full-text
search using an information retrieval system such as Elasticsearch [27]. However,
analyses from such an analyzer are still always sent to Analyses Store describing,
for example, the full-text index name that a recommender should use.

Architecture Presentation

Having discussed the vague parts of Analyzer Container Architecture, we
present the final architecture. We take the introduced containers from this
subsection and include them in Analyzer Container Architecture to provide a
clear summary of the architecture. No new containers or concepts are added.

Figure 3.6 Final Architecture of the System

The architecture is shown in Figure 3.6. There are two main workflows -
uploading datasets to Catalog in order to analyze them and requesting recom-
mendations from Editor. A system administrator uploads DCAT datasets to
Catalog which stores them and sends them to Analyzer Manager. Notification
requirements for sending analysis provenance to Catalog are sent along with the
datasets. Analyzer Manager then parses and validates the request and all datasets
are subsequently added to all analyzer queues named Analysis Job Queues in the
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figure. Afterwards, Analyzer Manager immediately sends response to Catalog
that datasets were submitted for analysis.

Each Analyzer then retrieves and analyzes datasets from its corresponding
queue. It saves any resulting analyses by sending them to Analyses Store which
stores them in a persistent storage. Once the analyses are stored, the Analyzer
sends their provenance based on received notification requirements.

The other workflow starts with User requesting recommendations via Edi-
tor. Editor sends a request to Recommender Manager which in turn requests
recommendations from all Recommenders in its configuration. Recommenders
can get analyses from Analyses Store and return recommendations in response to
Recommendation Manager which groups all recommendations and subsequently
returns them to Editor.

3.3 Structured Data Representation
In this section, we discuss how to represent input structured data by a model

which would represent their RDF representation. We first define what we consider
the structured data to be. Then we list requirements based on which we design
the model. Then we follow with the design of the model. Then we split the model
functionality into static components and present the component view.

3.3.1 Structured Data Definition
We already mentioned that we help a user transform structured data to

RDF. However, we did not define what exactly we consider the structured data
to be. Knowing exactly what we aim to support is crucial when designing its
representation that is used throughout the system. Therefore, we explicitly state
what the structured data mean in the context of our application.

Simply said, we consider anything that can be converted to one or more JSON
files structured data that can be loaded to Editor and transformed to RDF. That
means hierarchical data consisting of arrays, objects with properties and literals.
The common formats such as XML, CSV or JSON are the target. Graph data
would have to be split into blocks of hierarchical data and loaded by itself and
subsequently joined in Editor by for example using a join mapping.

3.3.2 Representation Requirements
We present the requirements that we have for the representation of the input

data (i.e. model). Based on the architecture (Subsection 3.2.5) the data are
used in Editor and Recommender containers. Editor is meant to be a JavaScript
frontend application.

• The model captures the structure of the input data in a schema so that the
user can view the structure and make structural changes on all underlying
data.

• The model supports adding and manipulating resource URIs, RDF types,
language tags or data types to literals.
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• The model supports structural changes and value changes.

• The model can be stored as a state in Editor.

• The model must be serializable and deserializable or convertable to such
a data structure since it is sent between Editor and Recommenders when
recommendation are requested.

• The user can interactively change the model; therefore, support an efficient
integration with history (undo/redo) functionality.

• Transformation of large data to RDF must be supported. For example, large
data that would be unwieldy to work with due to them overflowing memory
and slowing performance.

3.3.3 Representation Model Design
In this subsection, we design the model based on the specified requirements.
Since the input data can be quite large and might no fit in memory or at least

significantly slow performance, we split the model into two parts - schema and
instances (of the schema). Schema represents the structure of the input data
without any raw data values while instances represent the raw data. Therefore,
schema is small and can always be kept in memory. It can be always presented to
the Editor user in full to let them browse and change data structure. Instances
(of schema) represent the potentially large data structure with data values that
does not necessarily need to be kept in memory and is materialized on demand.

We continue with the design of schema and of instances separately.

Schema

Schema captures the schema of the structure of the input data. We mentioned
that the input data consists of arrays, objects with properties and literals. If there
are no arrays, we deem that the schema representing the structure of the data
should structurally mirror the data. If there are arrays, consider the example
below. There is a root object with property products targeting an array of objects.
These objects then represent food products and they can have different properties
such as the latter having property vegan. Note that the there are also different
properties in objects targeted by properties nutriments. If schemas were created
for the product objects in the array, they would be different. The former would
contain carbohyrates_100g in nutriments while the latter energykcal_100g
in nutriments.
{

"products": [{
"product_name": "Thai peanut noodle",
"countries": "United States",
"nutriments": { "carbohydrates_100g": 71.15 }
}, {
"product_name": "Pasta",
"countries": [ "United States", "Canada" ],
"vegan": true,
"nutriments": { "energykcal_100g": 300.0 }
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}]
}

We define the schema of the array to be a schema created by merging the
schemas of all array elements by including all of their objects and properties.
The schema of the example data could have the following structure. <Literal>
term represents that there are only literals in the corresponding position in the
underlying data.
{

"products": {
"product_name": <LITERAL>,
"countries": <LITERAL>,
"vegan": <LITERAL>,
"nutriments": {

"carbohydrates_100g": <LITERAL>,
"energykcal_100g": <LITERAL>

}
}

}

The schema consists of three different elements - objects, properties and literals.
We define Entity Set to be an object in such a schema. It conceptually represents
a set of objects in the input data at the same position as it is in the schema. Such
objects are then named Entities. We define Literal Set to be represent a place of
<Literal> in the schema which represents the set of literals at the corresponding
position in the data. Lastly, we define Property Set corresponding to a property
in the schema which represents the set of properties at the corresponding position
in the data.

This presented schema structure can be encoded in multiple ways. We discuss
these ways with respect to the requirements (Subsection 3.3.2). A straightforward
solution is to represent exactly as it is shown above by having a tree of objects
representing entity sets where its properties are property sets. This representation,
however, does not allow storing anything else in the objects outside the structure
of the data.

If the model is to be converted to RDF, it needs to support adding URIs to
data objects and properties, assigning RDF types to objects, adding language
tags or types to literals. While the schema is not suitable for storing individual
entity URIs, language tags or data types, it is the place to set something for
all underlying entities of entity sets or properties of property sets. All such
entities might share the same RDF types and all such properties might share
URIs. Therefore, the straightforward representation is not suitable.

To solve this issue, we create explicit interfaces for the schema elements as
shown below. All of the elements contain id to be referencable. As we discussed, it
is possible to set URIs for all properties of a property set and types for all entities
of an entity set.
interface EntitySet {

id: string;
types: string[];
properties: PropertySet[];

}
interface LiteralSet { id: string; }
interface PropertySet {
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id: string;
uri?: string;
value: EntitySet | LiteralSet;

}

This representation of a data schema suffers, however, when something, for
example, a property set URI of property set A is changed. If we want to keep
versions of the schema for undo and redo operations as we mention in the require-
ments, then we have to store a copy of the schema and then update the URI in A
in case all of the objects are mutable. If they are immutable, then a new property
set A' with the updated URI must be created from A. This new property set
must be added to properties fields of entity sets that contained A and A must be
deleted from them. Therefore, new entity sets with updated properties must be
created. However, the old entity set objects were contained in value of property
sets which must be subsequently changed. It is also necessary to handle a graph
schema which could recursively update schema indefinitely in a circle. Therefore,
a simple change requires copying of possibly the entire schema.

Hence, we need to introduce less coupling between entity sets and property
sets. Instead of entity sets and property sets containing objects, they can contain
only ids of other entity sets or property sets. If a property set or entity set is
updated then, its id stays the same. It is only necessary to create the new updated
object and other objects automatically point to the new objects. However, the
old and the new object have the same id. Therefore, we need to remember which
objects are in the current schema which are old. We solve this by storing all
property sets, entity sets and literals set in one object which defines a version
of the schema. The new schema representation can be seen below. Note that
to be more general about the content of the schema, we say it consist of items
and relations between items. Items then are entity and literal sets. Relations are
property sets.
interface EntitySet {

id: identifier;
types: string[];
properties: PropertySet[];

}
interface LiteralSet { id: string; }
interface PropertySet {

id: identifier;
uri?: string;
value: EntitySet | LiteralSet;

}
interface RawSchema {

items: { [key: identifier]: EntitySet | LiteralSet };
relations: { [key: identifier]: PropertySet };

}

If something changes in the presented schema, the items and relations of RawSchema
only need to be shallow copied (e.g. using spread operator) to a new schema
object and updated or new items or relations just have to be set in the items or
relations object maps which overwrites their old versions by default. Therefore,
the integration with undo and redo operations is fairly easy.

We did not consider more object oriented representation for two reasons. First,
the schema must be somehow stored as a state and storing classes with functions in
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states is not recommended. Another reason is that the schema is shared between
Editor and Recommenders; therefore, using simple objects makes serialization and
deserialization straightforward.

The schema is not large even for large data since it only captures the structure;
therefore, no special handling is done.

We encapsulate the internal structures of the schema (i.e. RawSchema) and
provide an interface for accessing the schema. Schema can be transformed only
by using transformation objects. Its endpoint accepts an array of transforma-
tion objects and returns a transformed version of the schema. This is useful
for implementing undo/redo operations on top of the schema since many small
update operations can be merged to one operation. Another advantage is that
Recommenders can send recommendations containing only defined schema trans-
formations instead of an internal schema state. Note that the interface also needs
to provide the raw internal state of data so that Editor can store it as a state.

Instances

Instances represent the original data. Since the structure of the data is
represented by the schema, it is not necessary to handle it here. Instances need to
remember for each entity its properties and its values. It should be also possible to
add language tags or data types to literals and URIs to entities. The representation
could be done using the same structure as was used in schema - having an entity
object with properties linking to either literal values or other entities.

However, performing a the same conceptual transformation in the instances
can be more difficult than in the schema. For example, changing a property set
source to a different entity set requires updating all old and new source entities
while the update in schema is done only one new and old entity set. Basically, the
transformation done for schema would be repeated here for every entity. Since
implementing transformations in this representation is quite complex, we choose
instead to rely on schema representing structures and implement more column
database approach and perform operations not on single entities or properties but
on arrays of entities or properties.

For each property set with its source entity set, we store an array of properties.
Each property contains an array of literals and an array of indices of entities
of the target entity set. Moving a property set transformation is then easy to
implement in the representation. It is only required to move the literal and entity
arrays to be under the new source entity set. As for entities, we need to be able
to assign URIs to them. The representation in code is shown below. The keys of
the objects are IDs from schema which is entity set id for representing entities
and a combination of source entity set id and property set for properties.
interface Literal {

value: string;
type: string;
language?: string;

}
interface Property {

targetEntities: number[];
literals: Literal[];

}
interface RawInstances {
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entities: { [key: identifier]: {uri?: string}[]; };
properties: { [key: identifier]: Property[] };

}

Each change in instances then again requires to shallow copy entities and properties
object maps in RawInstances to create a new version of the instances and set
new entity arrays or property arrays in the object maps.

Now we discuss the rest of the requirements. Using the same arguments as in
schema this representation can be used to store the state as well as it is easily
serializable. Similar argument can be made with the history since copying the
instances requires only shallow copying the root objects in RawInstances and
then immutable changes can be done locally by setting array of properties or array
of entities.

The remaining requirement to fulfill is supporting transformations of large
data. We actually design two different solutions. The transformations work the
same way as for schema. There are transformation objects passed to instances
based on which transformation is done on a shallow copied instances object. The
simple solution is to have the instances API asynchronous. The actual data can
then be stored somewhere on a server and only a proxy can be part of the editor.

The other solution is a clever definition of transformation operations. The
idea is that the user can upload only example data with the same structure and
therefore the same schema as the full data. They could then perform the entire
transformation on the example data and export all transformations. Then the
exported transformations could be run on the original large large data. Therefore,
it is necessary to define transformations in a way not dependent on any set number
of entities or properties or on any references to another entity by its index in the
list of the entities of its entity set. For example, if a new property set is created
between two entity sets, the property mapping between underlying source and
target entities must be defined. A simple definition is to list the pairs of entities to
be linked by a property. However, the pairs would contain only properties between
the entities in the example which would not work when run on large data. Instead,
a mapping must be specified based on some rules so that the transformation can
be run on any data with the same schema. For example, a join, preservation,
one-to-one mapping options.

3.3.4 Data Model Component View
In the last subsection, we discussed that the model representing the structured

data is split into a schema and instances. We discussed mainly the low level
representation. In this subsection we discuss how the model and related features
are split into components. We summarize communication among the components
and their main interfaces.

Both schema and instances are encapsulated into their own components that
provide API for querying, transforming, exporting and loading. The API for
schema is synchronous since we expect the schema to be small and sent whole
if needed elsewhere while the API for instances is asynchronous. Export means
producing the desired RDF representation.

The loading functionality means creating a schema and instances. Creating
schema and instances separately from the structured data would require a syn-
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chronization between both the loading algorithms so that they work the same way
for shared areas such as an id assignment. Therefore, there is a component Parse
whose function is to parse the input structured data into a tree data structure
that contains both the structure (i.e. schema) of the data and the actual data
values. Schema and Instances component then supports loading (i.e. creating)
schema and instances from this tree.

There is also a component Transform providing transformations for both
schema and instances. While both Schema and Instances components support
transformations as we discussed it before, if one conceptual transformation is done
across both schema and instances, separate different transformations objects must
be created for both schema and instances and the user (e.g. UI code in this case or
a recommender) is responsible for that the correct transformation is done in both.
Since transformation creation is an important part of many places in Editor and
Recommenders, we do not want to burden these places with synchronization of the
states of schema and instances. Moreover, the code for common transformation
such as moving a property set in both schema and instances is always the same,
so there would be a code duplication.

Therefore, we the component Transform that provides factory methods creating
schema and instance transformations together for various conceptual transfor-
mations such as updating literals or moving properties. Note that one such one
conceptual transformation can consist of multiple schema transformations and
multiple instance transformations. The correct synchronization of schema and
instances is then done by this component and consumers need only to call the
factory methods to create desired transformations objects.

These components are shown in Figure 3.7. Unsuprisingly, Transform is needs
to access schema and instances to create their transformation and both Schema
and Instances are loaded from a tree structure that is created by Parse. Instances
does not include the structure of the structured data and is dependent on the
ids from of the corresponding schema that it stores its data under. Therefore, it
needs access to Schema.

Figure 3.7 Data Model Component View
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4 Implementation
This chapter describes the implementation of system based on the performed

analysis Chapter 2) and design (Chapter 3) decisions. In the introduction of the
chapter, we discuss the implementation overview and the system project structure.
Which sections the chapter contains is presented at the end of the overview.

The entire system is written in TypeScript (TS) and managed as a monorepo
using Turborepo [50] on Github1. Below we show the main parts of the repository.
Each container mentioned in architecture is a Node.js project under in apps
directory apart from Editor which is a frontend application. Each piece of
reusable code used from multiple apps such as mentioned components for data
representation are a TS project under packages directory.

repository
apps...............................................Runtime Containers

analysis-store
analyzer-manager
analyzers
catalog
editor
recommender-manager
recommenders

packages..................................Reusable Static Components
analyzer
instances
parse
recommender
schema
transform

databases.........................................Database Containers
package.json
turbo.json.................................Monorepo Task Definitions
compose.yaml............................................Deploy Script

This chapter contains the following sections. First, we discuss the technology
stack that is shared among many system projects in Section 4.1. Then we describe
the projects. We discuss the packages which are mainly code libraries used
throughout the system in Section 4.2. Afterwards, in Section 4.3 we discuss
the backend applications (i.e. servers). Then we discuss Editor in Section 4.4.
Implemented analyzers are listed in Section 4.5 followed by Section 4.6 listing all
implemented recommenders. Lastly, we include user documentation in Section 4.7
and deployment instructions in Section 4.8.

4.1 Technology Stack
In the system there are many technologies, tools, framework and libraries that

we use. Individual projects (i.e. packages, apps) use the same libraries; therefore,
1https://github.com/georgeus19/klofan
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we list the most used libraries in this section.

TypeScript The whole system is implemented in TypeScript since much func-
tionality such as the model for representing structured data in RDF is used
both on backend and frontend. Moreover, we also needed to create many
lightweight servers.

Turborepo Based on the architecture design, it was clear that the system would
contain many servers that need to share code; therefore, we decided to
structure the project as a monorepo and use Turborepo [50] monorepo
manager.

Express The architecture contains many runtime lightweight server containers;
therefore, we chose to use Express [51] framework for building the servers.
Express is a minimalist and unopinionated framework web framework for
Node.js for which there are many available plugins to customize its behaviour.

Zod With many runtime containers communicating with each other using HTTP
there is a need for validation of the data in requests. Zod [52] is a TypeScript
framework for validation of data that does static type inference; therefore,
it can convert the validated object with typescript typing and no casting is
necessary.

Lodash Lodash [53] is a library that provides rich operations on top of arrays,
collection and objects. It is used typically for processing the results of
SPARQL SELECT queries since the results typically contain values for the
searched data in multiple result rows (bindings) which need to be grouped,
filtered and made unique.

Formidable Formidable [54] is a Node.js module for parsing form data which is
useful in endpoints that accept files in requests to get the file data.

Axios Axios [55] is promise based HTTP Client for Node.js and browser which
is used whenever any backend code needs to send a HTTP request.

Winston Winston [56] is a universal logging library that supports multiple
transports. A transport is where logs are stored. It can be for example a
console or a database.

N3 N3 [57] is a JavaScript library for parsing and writing RDF data to and from
files as well as storing RDF data in memory efficiently. It implements the
RDF.js [58] specification for handling RDF in JavaScript.

Communica Communica [59] is an RDF graph querying framework. It offers
querying various sources such as a in-memory store or a file using SPARQL.

Jest Jest [60] is a JavaScript testing framework supporting TypeScript. Any unit
tests are implemented using this framework.
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4.2 Packages
Packages are projects meant to be reused in other parts of the system. There

are configuration projects, for example, for setting the TS configuration or the
ESlint configuration. We discuss the most important TS library projects that are
reused by many applications in the system below.

4.2.1 Analyzer
Analyzer library is a library for helping implementing new analyzers. An

analyzer consumes its analysis job queue to receive analysis jobs. Each analysis
job includes a DCAT dataset to analyze and a list of notification requirements.
The analyzer inspects the dataset for suitable a DCAT distribution and gets the
data. It then analyzes the data and produces analysis which it stores to Analyzer
Store. It also needs to send any notifications from the received list of notification
requirements such as analysis provenance.

This library aims to make the implementation of new TypeScript analyzers
easier. The library provides a function runAnalyzerServer that starts an analyzer
server that automatically consumes analysis job queue for new jobs and on analysis
completion it stores any found analyses in Analyzer Store automatically as well
as sends analysis provenance. It mainly requires a function that takes a dataset
as an input and returns analyses.

The library also defines the dataset data interfaces in which the analyzer gets
datasets in. It also provides function for retrieving dataset data in a desired
distribution.

Lastly, the library provides interfaces for analyses that analyzers produce.
There is an interface for all types of analyses that analyzers produce. If an analyzer
needs a new type, it should add a new analysis into the library. Each analysis
typically contains an id, a type, provenance information and its internal data.
The only provenance representation currently supported is in PROV Ontology
[49]. The provenance of an analysis contains link to the dataset created from and
to the creator (i.e. the analyzer). The provenance also represents the analysis
using URI that is dereferenceable to get the whole analysis object.

Note that analyzers using the aforementioned function for consuming datasets
and storing resulting analyses typically also do not have to fill in analysis id or
provenance fields in returned analyses. They are filled in automatically if left
without values.

4.2.2 Instances
Instances library implements the Instances component defined in Subsec-

tion 3.3.4. When user uploads structured data, a model is inferred from them
that the user can update to transform the data iteratively to RDF. One part of
the model is instances that represent the data values using entities, properties
and literals. An entity represents an object and contains properties with values
of entities of literals. The representation of model in general and instances is
described in Subsection 3.3.3).

This library contains all instances related logic. That includes the internal
representation. The interfaces of the library is asynchronous. There is a main
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interface that represents the instances of a model which the following API.
interface Instances {

// To enable storing instances in state.
raw(): unknown;
// Query instances
entities:(entitySet): Promise<Entity[]>
properties(entitySet , propertySet): Promise<Property[]>
// Transform instances by producing new instances
// with applied transformations.
transform(transformations: Transformation[]): Promise<Instances >;

}

It provides a raw version of data so that they can be stored as a state on frontend.
Querying API provides a way to get entities of entity sets and properties of property
sets (see Subsection 4.2.5 for information about entity sets and property sets).
The transformation API is based on transformation objects that are provided
to the transform method which returns a new version of instances with applied
changes defined by the passed transformation objects. The current version of the
instances in unchanged.

There is also a function for exporting the instances to RDF which produces the
desired RDF and a function for loading instances from a tree structure produced
by the Parse (Subsection 4.2.3) library that is capable of parsing structured data.

4.2.3 Parse
Parse library implements the Parse component (Subsection 3.3.4). The library

provides a function that parses structured data into a hierarchical tree that
contains both the structure (i.e. schema) of the data where nodes contain the
values that occur in the corresponding place in data. What is the structure of
the data is described in Subsection 3.3.3. Both Instances (Subsection 4.2.2) and
Schema (Subsection 4.2.5) libraries contain load functions that take this tree and
produce instances and schema data structures.

Supported input formats are currently JSON and CSV.

4.2.4 Recommender
Recommender library is a library for helping creating new recommenders. A

recommender exposes a HTTP endpoint that accepts the Editor schema and
instances and returns recommendations. It may fetch analyses from Analysis
Store (Subsection 4.3.1) if it requires them. The library defines a recommendation
interface for the recommendation data that is sent from recommenders to Editor
(Section 4.4). Its simplified definition containing the main fields is below.
interface Recommendation {

transformations: Transformation[];
description: string;
category: string;
recommendedTerms?: string[];
related?: { name: string; link: string }[];

}

It contains a list of transformation that can be applied on the editor model (i.e.
schema and instances) to transform it to a new model using the recommended
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transformations. Each recommendation should contain a description describing
the main idea of the suggested changes, category to give a broader idea what the
recommendation is about and recommended and related terms for the user to
investigate.

Another important functionality the library provides is a function to create
and run a whole recommender server. The simplified signature of the function is
below.
function runRecommenderServer: (

recommend: (editorData: { schema: Schema; instances: Instances })
=> Promise<Recommendation[]>

)
}

It takes a function as an argument that accepts the editor model and returns rec-
ommendations. The function runRecommenderServer creates an Express HTTP
server with one endpoint that provides recommendation based on the editor data.

4.2.5 Schema
Schema library implements the Schema component defined in Subsection 3.3.4.

When user uploads structured data, a model is inferred from them that the user
can update to transform the data iteratively to RDF. One part of the model is
schema that captures the structure of the data. Schema consists of items - entity
sets and literal sets - and relations - property sets. An Entity set represents an
array of entities/objects at a given position in the data. A literal set represents
an array of literals at a given position in the data. A property sets represents a
list of properties at a given position in the data. A more detailed explanation can
be found in Subsection 3.3.3.

This library contains all logic related to only schema. That includes its internal
representation. There is one main interface that represents the schema of a model
with the following API.
interface Schema {

// Get raw data for state purposes.
raw:() => RawSchema
// Query schema
// entitySets(), entitySet(ID), propertySet(ID)
// Transform schema - get new schema
transform: (transformations: Transformation[]) => Schema;

}

It provides a raw version of the data so that they can be stored as a state on
frontend. The querying API provides a way to gen entity sets, property sets and
literal sets. The transformation API is based on transformation objects provided
to transform method which returns a new version of schema with applied changes
defined by the passed transformation objects. The current version of schema in
unchanged.

The library also contains a function for loading (i.e. creating) the schema from
a tree structure produced by the Parse Subsection 4.2.3 library that is capable of
parsing structured data.
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4.2.6 Transform
Transform library implements the Transform component defined in Subsec-

tion 3.3.4. This library tries to mitigate bugs related to not having schema and
instances synchronized. It provides factory methods creating conceptual transfor-
mations which return transformations for both schema and instances so that after
applying these transformations in both schema and instances, they are in sync.

4.3 Servers
In this section we describe the applications that implement the runtime

containers defined in Subsection 3.2.5 that represent backend servers apart from
analyzers and recommenders that are described in their own sections. The servers
are typically HTTP servers communicating with each other using HTTP.

4.3.1 Analysis Store
Analysis Store application is a server implementing the Analyses Store container

(Subsection 3.2.5). Its main purpose is to store analyses and provide access to
them by their id or their type. All analyses are currently internally stored in
MongoDB. It has the following endpoints.

Upload Analyses Endpoint that accepts an array of analyses to store (see
Subsection 4.2.1 for more information about analyses). This endpoint is
typically used by an analyzer creating analysis. Analyzer Store on receiving
such request replaces all analyses in the database for the given combination
of dataset and analyzer.

Get Analysis by ID Endpoint that accepts analysis ID in path and returns the
given analysis.

Get Analysis by Type HTTP Get endpoint that return all stored analyses of
given types.

4.3.2 Analyzer Manager
Analyzer Manager application is a HTTP server implementing Analyzer Man-

ager container (Subsection 3.2.5); therefore, it provides an endpoint for uploading
datasets which are then forwarded to analyzer queues. All analyzer queues are
implemented using Redis queues.

The request data must be in multipart/form-data format containing an array
RDF files and an array of notification requirements. Any DCAT datasets are
retrieved and paired with the notification requirements and pushed to all analyzer
queues.

4.3.3 Catalog
Catalog application implements the Catalog container (see Subsection 3.2.5).

Therefore, its main responsibility is to manage storing and uploading datasets
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for analysis. Catalog uses a Virtuoso triplestore database [61] to store uploaded
datasets along with received analysis provenance from analyzers.

The catalog supports dataset upload by SPARQL Graph Store HTTP Protocol
[62]. The protocol is implemented by creating a proxy using http-proxy-middleware
library [63] forwarding requests to Virtuoso which supports the protocol. If
Virtuoso responds with success, the uploaded RDF is sent to Analyzer Manager
along with a notification request for sending analysis provenance to Catalog.

4.3.4 Recommender Manager
Recommender Manager project implements a server representing Recommender

Manager. The server has a single HTTP GET endpoint for recommending based
on Editor data. It accepts Schema and Instances which are subsequently forwarded
to all configured recommenders. Then, it collects individual recommendations
from recommenders and sends them back as a response.

4.4 Editor
Editor is an interactive frontend react single page editor application for semi-

automatically transforming the structured data to RDF. Editor heavily relies
on Schema, Instances, Transform and Parse packages (Section 4.2) for working
with structured data. For the best idea of what features Editor provides, see the
example of transforming of food data to RDF in Editor.

Since Editor is an app with rich user interface, we first provide a brief overview
of the interface to show the main editor functionality and what kind of visual
elements there are. We also list the available actions a user can do in Editor.
Then we describe how its implemented.

4.4.1 User Interface
In this subsection we provide an overview of Editor user interface and list any

actions users can perform using the user interface. Editor consists of four main
visual elements: Diagram, Manual Actions Pane, Manual Actions Header and
Recommendations Pane. They are shown in Figure 4.1 which shows the interface
after importing food data similar to the data in Motivating example (Section 2.1)
but with more food products. Diagram shows the schema of the data (schema is
described briefly in Subsection 4.2.5 or in more detail in Subsection 3.3.3) in an
interactive draggable graph (i.e. diagram). If a node is clicked, the entity detail is
shown on the right in Manual Actions Pane as in the figure Manual Actions Header
provides the main menu for what user can do manually. As can be seen in the
figure, there are auto layouting options for Diagram, Undo/Redo, Import/Export
of data and transformations option such as creating new property sets.

All detailed view for any actions is shown on the right in Manual Actions
Pane. There is currently shown the detail of entity set for products. It can be
seen that there are listed its property sets and it is possible to set their names or
URIs as well as move them to a different entity set. Lastly, Recommendations
Pane is shown on the left containing lists of suggested recommendations. The
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Figure 4.1 Entity Set Detail

Detail and Difference views can be shown upon clicking the corresponding buttons.
Accepting recommendation means performing its transformation.

Figure 4.2 shows what the Difference View looks like for a recommendation
that recommends code list values for Europa country code list. It contains two
diagrams, one for the current state and one for the state if the recommendation
is applied. In both cases, the user can click on nodes, their content and edges
in the diagram to show how the values change. The recommendation suggests
transforming the literal values of countries to code list URIs. On to top, there are
shown the literal values of countries literal property set and the new countries
entity set pointing to new entity sets containing the code list URIs (Editor supports
prefixes; therefore, we created a prefix countries for the URI base for convenience).

Figure 4.2 Code List Recommendation Difference View
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Available User Actions In User Interface

We also include a list of actions that user can do in Editor.

• Move Property Set - for both literal and entity property sets

• Create Property Set - for both literal and entity property sets

• Create Entity Set

• Set instances URIs based on pattern

• Auto layout diagram - vertical, horizontal, radial and force layouts

• Undo/Redo any operation done by user and applied recommendation

• Set prefixes that appear when showing or setting URIs

• Import structured data

• Export all transformations done on the last imported structured data

• Import transformations to be done on the data

• Export Instances, Schema in RDF

• Delete entity sets and property sets

• Update literal values of property sets

• Set type or language to literals

• Set URIs, names to entity sets and property sets, Set type to entity sets

• Browse schema and instances

• Browse recommendations

– View diagram schema difference view and browse entity and property
recommended changes

– View recommendation descriptions

State Management

Having described the user interface and listed the available user actions, we
describe what data are stored as a state and how the state is managed. A state is
a data structure that describes the application at any point in time and serves as
a data source for the application. Editor stores the following data as a state.

• Schema and Instances created from imported structure data

• Diagram graph created and updated based on Schema

• Information about what operation is open in Manual Actions Pane

• Suggested recommendations
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• History of changes to provide undo/redo

• Information about shown help box

It is quite important to keep the mentioned state data consistent with each other.
The data can be partially dependent on one another and changing only one can
put other data into an inconsistent state. Moreover, it is also important from
which UI components are the data used and changed, since that components also
need to update the data dependent on the changed data; therefore, they need
access to them.

We briefly list the dependencies. If Schema changes, then Diagram must be
updated. If a user updates either Schema and Instances manually in Manual
Actions Pane, then again Schema, Instances and Diagram must be updated and
the pane might be closed. Clicking on the diagram node triggers an entity set
detail pane open in Manual Actions Pane. If some transformation operation is
open in the pane, the entity set detail must not be opened. There are also options
for displaying a help window when more complex interactions are required from a
user. Moreover, history needs to know the valid synchronized data states. Only
recommendations are used from a single UI component - Recommendations Pane.
Still, recommendations are dependent on Schema, Instances and Diagram which
are needed to be shown in a recommendation Difference View. Moreover, the
recommendation logic transforms them when a recommendation is accepted (i.e.
applied).

Not only need the main visual components the data but they need to trigger
complex operations on top of them. An example is a Diagram auto layout or
a structured data import both provided by Manual Actions Header. Therefore,
Schema, Instances, Diagram, History, and Information about Manual Operations
data and transformation operations on top of them need to be accessible to
practically all visual components.

All the data apart from the recommendations are manipulated in one custom
global hook useEditor providing custom conceptual functions so that no visual
components need to handle any state synchronization. The hook consists of a
composition of smaller hooks for each area of functionality (e.g. Diagram). The
provided functions are split by their domain but all of them respect the global
state. The functions are available to the rest of the application using React
Context. The simplified signature of useEditor is shown below.
useEditor: () => {

history: { undo, redo },
schema: Schema,
instances: Instances ,
diagram: {

nodes: SchemaNode[],
edges: SchemaEdges[],
nodePositioning: { layoutNodes }

},
manualActions: { showMoveProperty , showEntitySetDetail , hide },
help: { showHelp , hideHelp },
updateSchemaAndInstances

}

Since the recommendations are not used in the manual part of Editor, they
are stored in a separate state. There is also a custom hook useRecommendations
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that provides any logic related to fetching recommendations, computing data for
Difference View and other recommendation related things. It is again passed to
the components working with recommendations by React Context.

4.4.2 Technology Stack
We list the main libraries the editor uses. It also uses the general libraries

mentioned in the technology stack of this chapter (Section 4.1).

Vite Editor is bundled using Vite [64] which is a build tool that provides bundling
and a development server with hot module replacement.

Tailwind CSS Any layouting and styling is done by using library Tailwind CSS
[65].

Reactflow Reactflow [66] is a diagramming library providing diagram function-
ality a customizable React component. We utilize it to create all diagrams
and their interactive capabilities such as dragging.

Elkjs Elkjs [67] is a port of Java Elk library [68] which provides graph layouting
algorithms. It is used for the layouting of the main schema diagram.

React Error Boundary React Error Boundary [69] library implements an error
boundary component that catches rendering errors and enable handling the
errors, for example, with custom UI components informing user that an
error happened and providing solutions to handling the errors (e.g. undo
the last step) that user can choose from.

React Viewport List React Viewport List [70] library provides a list component
that renders only list items that would be actually visible. When user scrolls,
the behaviour is the same as having rendered all list items. The main feature
of the library in comparison to similar virtual list libraries is that it supports
dynamic sizes of items. Instances can be quite large and when rendering
just hundreds of items next to a diagram makes the diagram drag operation
lag. This situation happens quite often for example in entity set detail or
when browsing recommendation difference view; therefore, we employ this
library in these places.

4.5 Analyzers
In this subsection, we list all implemented analyzers (i.e. applications imple-

menting Analyzer containers from Subsection 3.2.5) and provide a brief description
of how the implemented analyzers work. Any analyzer consumes its analysis job
queue to receive analysis jobs. Each analysis job includes a DCAT dataset to
analyze and a list of notification requirements. The analyzer inspects the dataset
for suitable a DCAT distribution and gets the data. It then analyzes the data
and produces analysis which it stores to Analyzer Store. It also needs to send any
notifications from the received list of notification requirements such as analysis
provenance.
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Basically the only thing that is different for each analyzer is the logic for
creating analyses based on RDF data. The rest is the same and the Analyzer
package (Subsection 4.2.1) can be used to handle it.

4.5.1 SKOS Codelist Analyzer
SKOS Codelist Analyzer detects code lists in dataset data and creates a code

list analysis for each detected code list. The detection is done using SPARQL. A
code list means a SKOS concept scheme of concepts that contain literal codes at
least using skos:notation and link to the scheme using skos:inScheme.

Each produced analysis typically contains a code list IRI, a code list name and
then a list of codes (i.e. SKOS concepts). Each code contains its IRI, its name
and an array of literal values that represent the code. These values can be any
standard code notations, labels or any derived strings related to the code.

4.5.2 SKOS Concept Scheme Analyzer
SKOS Concept Scheme Analyzer is similar to SKOS Codelist Analyzer but it

focuses on finding general concepts schemes and produces analyses representing
concept schemes.

It detects concepts schemes that contain concepts linked to the scheme using
skos:inScheme but no skos:notation is required. Other SKOS terms such as
skos:broader are also detected.

Each produced analysis then contains a scheme with a list of concepts that
have fields for hierarchical SKOS properties such as skos:broader.

It uses SPARQL and it is very slow; therefore, it is turned off by default.

4.5.3 Elasticsearch Triple Analyzer
Elasticsearch Triple Analyzer combined with Elasticsearch Triple Recom-

mender (Subsection 4.6.3) implement recommending based on a full-text index
in Elasticsearch. It is inspired by the search methods mentioned in the analysis
chapter (Chapter 2) - namely by the manuscript about using Elasticsearch for
search in linked data [26], Swoogle [22] and Falcons [24].

The analyzer part builds the index. Based on [26], the index indexes dataset
triples as virtual documents. Each virtual document contains fields for IRI, local
names of all IRIs of the triple and a field for literal value if triple’s object is literal.
Moreover, rdfs:comment value of the subject and object of a triple are added to
two fields as well. We employ a custom tokenization and filtering on these fields
such as using n-gram for local names based on the mentioned manuscripts.

If the same dataset is uploaded multiple times, the virtual documents of the
dataset from previous analysis are overwritten. Each produced analysis contains
an index name where the corresponding dataset data were loaded into.

4.5.4 Type Map Analyzer
Type Map Analyzer creates for each dataset an analysis representing a map of

resources (i.e. IRI) to their RDF types.
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4.5.5 RDFS Vocabulary Analyzer
RDFS Vocabulary Analyzer recognizes RDFS vocabulary terms (rdfs:Class,

rdf:Property) in dataset data and creates vocabulary analyses. A vocabulary
analysis contains vocabulary class and property terms as well as their hierarchy
(i.e. rdfs:subClassOf, rdfs:subPropertyOf).

4.5.6 Simple OWL Vocabulary Analyzer
Simple OWL Vocabulary recognizes some basic OWL vocabulary terms (i.e.

owl:Class, owl:DatatypeProperty, owl:ObjectProperty) and creates the same
type of analysis as RDFS Vocabulary Analyzer.

4.6 Recommenders
In this section we list all implemented recommenders (i.e. applications im-

plementing Recommender containers from Subsection 3.2.5) and of how the
implemented recommenders work. A recommender exposes a HTTP endpoint
that accepts the Editor schema and instances and returns recommendations. It
may fetch analyses from Analysis Store (Subsection 4.3.1) if it requires them.

Recommender package (Subsection 4.2.4) contains the data interfaces for
recommendations, functionality for running who HTTP server and for retrieving
datasets. The implemented recommenders heavily use the package and basically
differ only in their logic that creates recommendations from the Editor data.

4.6.1 CodeList Recommender
Codelist Recommender creates recommendations that recommend linking to

code list IRIs. It retrieves all code list analyses (currently only produced by
SKOS Codelist Analyzer) which contain code list values as well as IRIs. The
recommender tries to match the code values to literals in Editor instances. A
recommendation transforming the literals to links to code IRIs is created for every
match.

4.6.2 Czech Date Recommender
Czech Date Recommender tries to find czech date pattern "DD.MM.YYYY" and

suggests updating the values to "YYYY-MM-DD" with type xsd:dateTime.

4.6.3 Elasticsearch Triple Recommender
Elasticsearch Triple Recommender recommends based on analyses from Elas-

ticsearch Triple Analyzer, Type Map Analyzer, RDFS Vocabulary Analyzer and
Simple OWL Vocabulary Analyzer (see Section 4.5 for more details about the
analyses and analyzers). Elasticsearch Triple Analyzer builds a full-text index on
RDF triples. This recommender tries to match search sources to triples in the
index. Supported search sources are currently entity sets and property sets. The
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matching is done using Elasticsearch cross_field2 query with boosted fields for
objects based on [26].

The matches only give matching triples that need to be transformed into useful
recommendations. The matched triples do not necessarily contain vocabulary
terms or interesting IRIs such as code list codes’ IRIs. Hence, we use type and
vocabulary analyses to get vocabulary terms (classes, properties) based on which
are created recommendations for setting RDF types or URIs.

4.6.4 Food Ontology Recommender
Food Ontology Recommender provides recommendations for the nutrient

parts of Food Ontology [11]. The model of the vocabulary is explained in the
motivating example in Subsection 2.1.1. First, It finds property sets modeling a
nutrient value based on string comparison. For all found property sets, it creates
a recommendation that transforms the found nutrient property set and nutrient
values to the Food Ontology representation. This type of recommendation is used
in Use Case (Chapter 5) for a better explanation.

4.6.5 Uncefact Unit Recommender
This recommender tries to find units (e.g. kg, g) in literals of Editor instances.

For each such unit found, it suggests transforming the units to a standardized
UN/CEFACT codes [14].

4.7 User Documentation
In this section we describe the user documentation. There are four main

entrypoints to the system. The main one is the transformation of structured data
to RDF in Editor (Section 4.4). We do not discuss the transformation process
here since there is a detailed use case for transforming food product data to RDF
in Chapter 5. The main user interface is also described directly in the editor
section (Section 4.4).

The other entrypoints that are actually discussed in this section are uploading
dataset for analysis in Subsection 4.7.1, adding a new analyzer in Subsection 4.7.2
and adding a new recommender in Subsection 4.7.3.

4.7.1 Uploading Datasets for Analysis
Uploading datasets for analysis is done through Catalog app (Subsection 4.3.3)

which supports SPARQL Graph Store HTTP Protocol [62] on endpoint /rdf-
graph-store. Since Catalog proxies all requests to Virtuoso [61], the support
is as complete as Virtuoso’s3. That, for example, means that some responses
might have not spec compliant return codes. Catalog app typically runs on URL
specified by CATALOG_URL environment variable.

2https://www.elastic.co/guide/en/elasticsearch/reference/current/
query-dsl-multi-match-query.html

3https://vos.openlinksw.com/owiki/wiki/VOS/VirtGraphUpdateProtocol
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The protocol allows update and fetch RDF graph data in RDF Graph store
using HTTP. We only highlight the main features that are used to upload, update
and retrieve datasets.

Uploading a dataset can be done using HTTP POST or HTTP PUT request
on /rdf-graph-store endpoint. Datasets are uploaded as a RDF files to either
a default graph or a graph specified by URI. Using HTTP PUT request replaces
the graph content while HTTP POST adds the data to the graph. Note that
in our case specifying the default graph option results in Catalog generating a
random graph URI that the RDF data are placed in. The generated graph URI
is then returned in response header Graph-URI. Uploaded RDF data are sent to
Analyzer Manager that retrieves DCAT datasets which are then analyzed.

The RDF data can sent in multipart/form-data under name res-file other-
wise Virtuoso fails. Alternatively, it can be done using curl [71] program as shown
below. Graph data can be retrieved using HTTP GET (also shown below).
# Add datasets to a random graph.
curl

--verbose
--url "http://{catalog-domain:port}/rdf-graph-store?default"
-X POST
-T {dcat-dataset-file}

# Add datasets to graph {URI}.
curl

--verbose
--url "http://{catalog-domain:port}/rdf-graph-store?graph={URI}"
-X POST
-T {dcat-dataset-file}

# Update graph {URI} with new datasets.
curl

--verbose
--url "http://{catalog-domain:port}/rdf-graph-store?graph={URI}"
-X PUT
-T {dcat-dataset-file}

# Get graph {URI}.
curl

--url "http://{catalog-domain:port}/rdf-graph-store?graph={URI}"

If one dataset is submitted multiple times, its older analyses are overwritten
with new ones.

Browsing Catalog Data

Virtuoso also provides a SPARQL endpoint outside the context of Catalog
which administrator can use to browse datasets and related analysis provenance.
Virtuoso’s URL is set in VIRTUOSO_URL environment variable. The SPARQL
endpoint would then be available at {VIRTUOSO_URL}/sparql/.

Analysis provenance is specified using the PROV ontology [49]. The provenance
data represent an analysis as prov:Entity. Its IRI is dereferenceable and leads
to the full analysis content. Analysis is connected to the prov:Activity that
generated it using prov:wasGeneratedBy. The activity is linked to the analyzed
dataset using prov:used and to the analyzer that created the analysis using
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prov:wasAssociatedWith.

4.7.2 Adding Analyzer
One of the main design goals was to make adding new analyzers straight-

forward. What an analyzer does is described, for example, in Subsection 3.2.5
or in Subsection 4.2.1. In this subsection, we provide instructions how to add
a new TypeScript analyzer. We first describe the project setup, then how an
analyzer can be built in code. Lastly, we show what needs to be set in the system
configuration to run the new analyzer.

We recommend to use the TypeScript language for implementing new analyzers
since much helper functionality needed by all analyzers is already provided by
Analyzer library (Subsection 4.2.1). Alternatively, it is possible to create an
analyzer in any language that implements consumption of a Redis queue and
the (HTTP) communication between the analyzer and the other servers it has
to communicate with. That mainly includes communication with Analysis Store
(Subsection 4.3.1) and sending analysis provenance.

Project Setup

We need to create a new project in directory apps/analyzers. The best way
is to copy one of the existing projects and change the project name. If that is not
desired, there are three main things to set up. We need the following dependencies
in package.json.
{
"dependencies": {

"@klofan/analyzer": "*",
"@klofan/config": "*",

},
"devDependencies": {

"@klofan/typescript -config": "*",
"typescript": "^5.0.2"

}
}

Package @klofan/analyzer (Subsection 4.2.1) contains analysis definition and
functionality for building an analyzer server. Package @klofan/config provides
checking that environment variables are correctly specified and access to them.
Package @klofan/typescript-config contains TypeScript configuration to ref-
erence in tsconfig.json such as below.
{

"extends": "@klofan/typescript -config/base.json",
"compilerOptions": {

"rootDir": "./src",
"outDir": "./dist",

},
"include": ["src/**/*"],

}
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Building Analyzer Server

With the new project set up, we start building the analyzer. We use the
described function from Analyzer library in Subsection 4.2.1 that creates a full
analyzer server. We can see a mock implementation of an analyzer below. It is
only required to retrieve a queue name and a port from the system configuration
and then to implement a function that accepts a DCAT dataset and produces
internal analyses. An internal analysis differs from the standardly used term
analysis in that it is not required to assign ID to the returned analysis or its
provenance which is done for us by the runAnalyzerServer function.
import { DcatDataset ,fetchRdfData } from '@klofan/analyzer/dataset';
import { runAnalyzerServer } from '@klofan/analyzer/communication';
import { createLogger } from '@klofan/config/logger';
import { Quad } from '@rdfjs/types';

const logger = createLogger();
const QUEUE_NAME = // <- Configuration
const PORT = // <- Configuration

const analyzeFunction =
async (dataset: DcatDataset): Promise<InternalAnalysis[]> => {

const quads: Quad[] = await fetchRdfData(dataset);
const analyses: InternalAnalysis[] = // <- Quads
return analyses;

}

// Run server only if QUEUE_NAME is set.
if (QUEUE_NAME) {

runAnalyzerServer(analyzeFunction , {
port: PORT,
jobQueue: QUEUE_NAME ,
analyzerIri: 'http://example.com/analyzer',
logger: logger,

});
}

Note that although an analyzer does not need to be a server, runAnalyzerServer
for convenience creates additionaly a simple HTTP server with a single endpoint
that accepts datasets and returns analyses using the provided analyzeFunction.

Configuration

We now discuss what to add to the system configuration so that the analyzer
can be run. A pair of environment variables for the analyzer queue and port must
be set. The queue environment variable must have prefix ANALYZERS_ and suffix
_QUEUE. File @klofan/config/src/env/server.ts contains a Zod [52] schema
for the valid environment variables. The new variables must be added - copy and
rename how it is done for a different analyzer.

The environment variables can then be retrieved the following way and plugged
in the code shown above.
import { SERVER_ENV } from '@klofan/config/env/server';

const QUEUE_NAME = SERVER_ENV.ANALYZERS_{NEW_ANALYZER_NAME}_QUEUE
const PORT = SERVER_ENV.ANALYZERS_{NEW_ANALYZER_NAME}_PORT
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4.7.3 Adding Recommender
One of the main design goals was to make adding new recommenders straight-

forward. A recommender is a server with a single endpoint that accepts the Editor
schema and instances and returns recommendations. In this subsection we provide
instructions how to add a new TypeScript recommdender. We first describe the
project setup, then how a recommender can be built in code. Lastly, we show
what needs to be set in the system configuration to run the new recommender.

We recommend to use the TypeScript language for implementing new recom-
menders since much helper functionality needed by all recommenders is already
provided by the Recommender library (Subsection 4.2.4). Alternatively, it is
possible to create a recommender in any language that implements the (HTTP)
communication between between the recommender and the other servers it needs
to communicate with. This is mainly Recommender Manager (Subsection 4.3.4)
that sends requests to recommenders’ endpoints to get recommendations.

Project Setup

To add a new recommender, we need to create a new project in directory
apps/recommenders. The best way is to copy an existing recommender project
and change the project name. If the prefferred option is to create a project
from scratch, there are two things to set up. The following dependencies in
package.json are typically necessary for any recommender.
{

"dependencies": {
"@klofan/analyzer": "*",
"@klofan/config": "*",
"@klofan/instances": "*",
"@klofan/transform": "*",
"@klofan/recommender": "*",
"@klofan/schema": "*",
"@klofan/server-utils": "*",

},
"devDependencies": {

"@klofan/typescript -config": "*"
"typescript": "^5.0.2"

}
}

Packages @klofan/instances (Subsection 4.2.2), @klofan/transform (Subsec-
tion 4.2.6) and @klofan/schema (Subsection 4.2.5) provide functionality for work-
ing with Editor data. Package @klofan/config validates configured environment
variables and gives access to them. Package @klofan/analyzer (Subsection 4.2.1)
contains analysis interfaces in case the new recommender is to recommend based
on analyses. Package @klofan/recommender (Subsection 4.2.4) provides the rec-
ommendation interface and functionality for building a recommender server. The
other important thing to set up is tsconfig.json. An example working setup is
below.
{

"extends": "@klofan/typescript -config/base.json",
"compilerOptions": {

"rootDir": "./src",
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"outDir": "./dist",
},
"include": ["src/**/*"],

}

Building Recommender Server

With the project setup, we can build a recommender. @klofan/recommender
package (Subsection 4.2.4) provides a function that creates a full recommender
server. There is a mock implementation of a recommender below. It is only
required to retrieve a port and request limit from the system configuration and
implement a function that accepts the editor schema and instances and returns
recommendations.
import { runRecommenderServer } from '@klofan/recommender/server';
import { getAnalyses } from '@klofan/recommender/analysis';
import { Analysis } from '@klofan/analyzer/analysis';
import { createLogger } from '@klofan/config/logger';

const logger = createLogger();
const PORT = // <- Configuration
const REQUEST_LIMIT = // <- Configuration

const recommendFunction = async ({
schema,
instances ,

}): Promise<Recommendation[]> => {
const analyses: Analysis[] =

await getAnalyses(['code-list-analysis'], { logger });
const recommendations: Recommendation[] = // <- schema + instances
return recommendations;

}

// Run server only if PORT is set
if (PORT) {

runRecommenderServer(recommendFunction , {
port: PORT,
requestLimit: REQUEST_LIMIT ,
logger: logger,

});
}

Configuration

We now discuss what to add to the system configuration so that the recom-
mender can be run. A pair of environment variables for the recommender port
and URL must be set. The URL environment serves for Recommender Manager
(Subsection 4.3.4) to know how to send requests to the new recommender. The
URL environment variables must have prefix RECOMMENDERS_ and suffix _URL. File
@klofan/config/src/env/server.ts contains a Zod [52] schema which validates
set environment variables. These two new environment variables must be added to
the schema. There are already ports and URLs for other recommenders; therefore,
copy how it is done for one of them.
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We also showed that request limit needs to be retrieved from the system
configuration. It is already set under RECOMMENDER_REQUEST_LIMIT.
import { SERVER_ENV } from '@klofan/config/env/server';

const PORT = SERVER_ENV.RECOMMENDERS_{NEW_RECOMMENDER_NAME}_PORT;
const REQUEST_LIMIT = SERVER_ENV.RECOMMENDER_REQUEST_LIMIT;

4.8 Deployment
In this section, we discuss the development and production deployment. We

first need to describe the configuration of the system. Then we discuss the
production deployment and development deployment.

4.8.1 Configuration
The runtime configuration of the system is done using environment variables.

The list of used environment variables can be found in data/example/dev-env
for the development configuration and in data/example/docker-env for the
production configuration. These files can be used as they are without any further
configuration needed.

We still provide an overview of the environment variables for a possible
customization. The environment variables can be split into three groups - general,
analyzer and recommender environment variables.

General Environment Variables

Environment variables in the general group define ports and URLs of all
databases and apps apart from analyzer and recommenders. Note that the port
must match the port in the corresponding URL. It also possible to set size request
limits for individual apps. The probably three most configurable environment
variables are the following.
# Timeout for fetching dataset data in milliseconds
ANALYZER_GET_DATASET_DATA_TIMEOUT=5000
# Timout for sending notifications in milliseconds
# Value 0 means no timeout
NOTIFICATION_TIMEOUT=0
# Base when creating IRIs e.g. for provenance activity
BASE_IRI=http://example.com/

Analyzer Environment Variables

This group of environment variables specifies analyzer ports and analysis job
queue names. The queue environment variable name must have prefix ANALYZERS_
and suffix _QUEUE. By using this pattern Analyzer Manager knows the names of
the queues to send analysis jobs to.

Recommender Environment Variables

This group of environment variables specifies recommender ports and URLs.
The port and the port in the corresponding URL must be the same. The URL
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environment variable name must have prefix RECOMMENDERS_ and suffix _URL. By
using this pattern Recommender Manager knows URLs of recommenders to which
they forward recommendation requests.

4.8.2 Production
There is a docker compose file compose.yaml in the root of the repository.

It contains all required databases and apps defined as services. The data of
each database are persisted as a docker volume defined in its compose file in
databases/{db}/compose.yaml. The following commands can be executed to
run the system.
# Run all these commands from the repository root

# Copy configuration for production
# - must be in the root dir and named '.docker-env'
cp ./data/example/docker-env ./.docker-env

# Build images
sudo docker compose --env-file .docker-env build --no-cache

# Run system
sudo docker compose --env-file .docker-env up

Note that the environment file is passed to docker compose and also MUST be
in the root of the repo with name .docker-env.

Running New Analyzer

Running a new analyzer in production requires adding a service into the
compose.yaml file in the root of the repository.

The service needs to have a port and some additional environment variables to
give to the specified dockerfile. Provide the configured port environment variable
as port and add default port - take the highest number of analyzer default ports
and add one. The additional environment variables are APP_PROJECT_NAME and
APP_DIRECTORY. Paste the template below to the compose.yaml as a new service
and fill out the squared brackets.
{new-analyzer -name}:

build:
context: ./
dockerfile: backend-dockerfile.dockerfile

restart: always
environment:

APP_PROJECT_NAME: {analyzer -project-name}
APP_DIRECTORY: analyzers/{analyzer -project-directory}

env_file: .docker-env
ports:

- "${{conf-port}:-{inc-port}}:${{conf-port}:-{inc-port}}"

Running New Recommender

Running a new recommender in production requires adding a service to the
compose.yaml file in the root of the repository.
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This new service must have set exposed port and a few environment variables
for Dockerfile. The template of the service is shown below. When something
is in curly brackets, that means to substitute its value. conf-port means the
configured recommender port and inc-port is a default port that must be set as
unique among the services. The convention for the value of the inc-port is to
take the maximum default port of recommender services and increment it by one.
{new-recommender -name}:

build:
context: ./
dockerfile: backend-dockerfile.dockerfile

restart: always
environment:

APP_PROJECT_NAME: {recommender -project-name}
APP_DIRECTORY: recommenders/{recommender -project-directory}

env_file: .docker-env
ports:

- "${{conf-port}:-{inc-port}}:${{conf-port}:-{inc-port}}"

4.8.3 Development
The system is run in development using Turborepo [50] to run apps and docker

compose to run databases. The following commands describe how to run the
system in development.
# Run all these commands from the repository root

# Copy configuration for development
# - must be in root dir and named '.env'
cp ./data/example/dev-env ./.env

# Run databases in using docker
sudo docker compose -f db-compose.yaml --env-file .env up

# Wait until databases are running

# Install dependencies
npm ci # or npm install

# Run services in dev mode
npm run dev

Note that the environment file is passed to docker compose and also MUST be
in the root of the repo with name .env.

If new analyzers or recommenders are added, npm install must be run from
the repository root to have Turporepo notice the new applications. It then runs
them automatically if their configuration is set correctly.

71



5 Use Case
In this chapter we illustrate how the system is used to handle its main

functionality - enabling the transformation of structured data to RDF in an
interactive environment while suggesting transformation recommendations. We
take the food data used in Motivating Example (Section 2.1) and showcase in
the form of a tutorial how to transform them to RDF using our system, namely
Editor application.

Before the tutorial begins, the system must be deployed locally. Therefore, in
Section 5.1 we link deploy description and provide the datasets based on which
recommendations are done and which; therefore, must be loaded into the system
before any step in the tutorial is done.

Once the system is running, the tutorial can be done. It consists of three main
parts described in separate sections. First, we describe the input data we later
load to Editor in Section 5.2. Then, in Section 5.3 we show how Editor is used to
transform the data to RDF using screenshots from Editor. Lastly, we provide the
result RDF data in Section 5.4. We run Editor in Firefox.

5.1 Deploy System Locally and Upload Datasets
In this section we describe how the system can be locally deployed and which

datasets should be loaded to it to be able to reproduce the steps in the upcoming
tutorial.

5.1.1 Deploy System Locally
The system can be deployed using docker compose1. The exact details are

discussed in Subsection 4.8.2.

5.1.2 Upload Datasets
The datasets needed for the tutorial are saved at data/example/catalog.ttl

from the root of the repository. If Catalog is running on its default port 7000,
the datasets can be uploaded by running the following command (shorten it to
one line or add backslash on line ends) from the repository root.
curl

--verbose
--url "http://localhost:7000/rdf-graph-store?default"
-X POST
-T data/example/catalog.ttl

Note that one of the datasets is a code list of countries that has around 2MB and
if the network is slow, it may fail to be fetched and analyzed due to a timeout.
Therefore, if there is a different number of recommendations related to code lists
than in the screenshots during the tutorial, run the command again. Running the
command again makes any newly created analyses overwrite the ones created in

1https://docs.docker.com/compose/
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previous runs, hence; there is no data duplication. If there are still no recommen-
dations for the countries code list, set ANALYZER_GET_DATASET_DATA_TIMEOUT
environment variables to a higher number than default 5000. It sets the timeout
in milliseconds for the request fetching dataset data.

5.2 Input Data
In this first tutorial section, we describe the input structured data to load to

Editor. The data are the same food data as in Motivating Example (Section 2.1)
with the exception of having not one food product but three in order to show how
data with multiple instances (e.g. arrays with more than one element) can be
manipulated and browsed in Editor.

The data are available at data/example/food3.json from the repository root
and they are also shown below. There is a global array of some objects that
contain a property product linking to a food product object. Each food product
object has an identifier, name, list of countries where it is sold and its nutrient
information. The data are from OpenFoodFacts [5] and we kept the original
structure shown below.
[

{
"product": {

"_id": "0737628064502",
"product_name": "Thai peanut noodle kit",
"countries": ["United States"],
"nutriments": {

"carbohydrates_100g": 71.15,
"carbohydrates_unit": "g",
"energy-kcal_100g": 385.0,
"energy-kcal_unit": "kcal"

}
}

}, {
"product": {

"_id": "0737628064503",
"product_name": "Snickers bar",
"countries": ["Canada", "Czechia"],
"nutriments": {

"carbohydrates_100g": 90.15,
"carbohydrates_unit": "g",
"energy-kcal_100g": 383.0,
"energy-kcal_unit": "kcal"

}
}

}, {
"product": {

"_id": "0737628064504",
"product_name": "Milka chocolate",
"countries": ["Canada", "Czechia"],
"nutriments": {

"carbohydrates_100g": 52.15,
"carbohydrates_unit": "g",
"energy-kcal_100g": 343.0,
"energy-kcal_unit": "kcal"

}
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}
}

]

5.3 Transformation
In this section we present how the whole transformation of the food data to

RDF can be done in Editor in the form of a work along tutorial. There are Editor
screenshots showing the Editor states as we perform actions in Editor. They are
listed chronologically from top to bottom. While the screenshots are referenced
as figures by numbers, the reference typically points the closest figure above or
below the reference point. The text on the following pages might end prematurely
with blank space filling the rest of a page so that texts for multiple screenshots
are not hoarded next to each other with figures following in the next pages.

We start by opening Editor on localhost/index.html. Figure 5.1 shows the
initial state of Editor with no data after opening it.

Figure 5.1 Initial State

We use the Import button in the header on the top of the page and upload
the file with the food product data described in the previous section located at
{repository}/data/example/food3.json. The import functionality currently
supports uploading JSON and CSV files.

The import produces some boxes and arrows that are stacked on top of each
other. We hover on the Auto Layout button and choose horizontal layout
which layouts the boxes and arrows as shown in Figure 5.2 (the pane on the right
should not be visible nor the yellow coloring). The rest of the options layout the
boxes using different algorithms. Alternatively, we can manually drag and drop
the boxes to create the desired layout.

Now each box and arrow is visible; therefore, we can explain what they mean
and how to view the original data. Each box represents an object or an array
of objects at a given position in the input JSON file. For example, the box
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product represents the array of three products or the box nutriments represents
the three nutrient objects linked to each product object using the nutriments
property. If a food product object contained an array of two nutrient objects in
the nutriments property, then the nutrient box would represent four objects.
Note that the arrow between the boxes (from product to nutriments) has name
nutriments. All of the arrows were created from properties to other objects.
The other properties containing a literal value (e.g. string or number) are listed
directly in the boxes such as product containing product_name.

The original data can be viewed by clicking on the boxes. For example, we
click on product and a pane on the right should appear as in Figure 5.2. The
pane has several drop-down sections that expand/shrink when clicked on. They
are identified by the black triangles. We also close the properties drop-down by
clicking it. There are a few terms such as Entities that will be explained in due
time.

Figure 5.2 Product Detail

The original data are visible under the Entities drop-down. We can see the
literal values of product objects in the read-only inputs with blue backgrounds.
The inputs with pink backgrounds represent how the object references another
one. For example, the visible input is for the nutriments property that points
to the corresponding nutrient object in the original data. That is represented
with value nutriments.0 which means that the nutrient object is the first object
(indexed at 0) in the array of nutrient objects represented by nutriments box.

To summarize, the diagram of boxes and arrows represents the structure of the
data where boxes are arrays of objects (or single objects) and arrows represent their
relationships. We provide a specialised terminology used throughout Editor so
that we do not have to use terms such as boxes and arrows which represent mainly
the visual representation. Terms Entity, Literal, Property represent original data.
Terms Entity Set, Literal Set and Property Set describe the data structure.

Entity Entity corresponds to an object within a box of objects (i.e. an object
in the original data). The content of the drop-down Entities is a visual
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representation of entities. Each entity can have its specific URI set.

Literal Literal represents a literal value (e.g. string, number) - the input with a
blue background.

Property Property is created from an object property from the original data.
Each property points to either a literal or an entity.

Entity Set Entity Set corresponds to the described box. It represents a set of
entities. An entity set also contains property sets. For example, product in
the diagram is an entity set.

Literal Set Literal Set corresponds to a set of literals where the literals are
values of properties with the same name for the entities of the same entity
set. For example, a set of product names.

Property Set Property Set corresponds to the described arrow - a set of prop-
erties. The value of property set is either a literal set or an entity set. All
of the properties in a property set point to literals or entities of the value
of the property set. For example, both nutriments and product_name are
property sets.

Entity sets and property sets are shown in the diagram. Entities, properties
and literals can be viewed in the pane on the right in the Entities section. Any
transformation operation a user can do is based on these terms. Note that even if
we say that the defined terms represent the original data, the original uploaded
data are converted to the described model and not preserved. Another terms used
further in the tutorial are nodes which represent the diagram boxes (resp. entity
sets) and edges which represent diagram arrows (resp. entity property sets).

Currently, if we exported the data to RDF, each entity would be represented
by a blank node and some example property URIs based on property set names
would be used to represent their properties. Therefore, one of the goals of the
transformation is to assign URIs to both entities and properties. Setting a property
set URI makes all its properties have the set URI when transformed to RDF.
Entity URIs can be set in two ways. Either we can set an entity set URI which
results in entities using the URI as a base to create their URIs or we can set
entity URIs explicitly. We also typically want to set RDF types to entities which
is done by adding a type to an entity set in the EntitySet pane (currently shown
in Figure 5.2). Moreover, we typically want to change the structure of the data
and add language tags or types to literals. How all of these manual actions are
done along with some additional features is described in the rest of the section.

Now that we described how Editor works with data, we can start the actual
transformation to RDF. Editor supports the concept of recommendations. A
recommendation provides a suggestion on how to transform the data in Editor.
For example, it can recommend to change the structure of the data represented
in the diagram or change literal values. We try to see first if there are any
recommendations available by clicking on the Get Recommendations button on
the left pane called Recommendations. Note that this operation can take some
time. We did not implement messaging the user that recommendations are being
fetched since it is done instantly for us. The outcome is shown on Figure 5.3.
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Figure 5.3 Recommendations Fetched

The Recommendations pane in Figure 5.3 shows a list of suggested transfor-
mation recommendations. The recommendations can either be expert or general
each displayed when its tab is open. Both types work the same way in Editor.
Expert recommendations should be more targeted to a use case while general
recommendations are more general-purpose. Rather than describing recommenda-
tions and their features in text, we click on the Description button of the first
recommendation to view what the recommendation does. The outcome is shown
in Figure 5.4.

Figure 5.4 Country Code List Recommendation Description View

Figure 5.4 shows the description view layout and content on an example of
a code list recommedation suggesting to use code URIs from the code list in
Related section. Each recommandation description typically contains three sec-
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tions: Description, Recommended Terms and Related. The first is Description
which provides some information about what each recommendation suggests.
Recommended Terms section contains a list of URIs that the recommendation sug-
gests using. Related section contains links to concepts mentioned in Description
and any related terms. All URIs are clickable for dereferencing.

The description view is meant to provide an overview about the recommen-
dation and provide links to terms that the user can investigate and decide if
they want to use them. For more detailed information about suggested data
transformation, we click on the corresponding Diff button yellowed in Figure 5.5
to get a difference view of the recommendation.

Figure 5.5 Code List Difference View - codeSet Entity Set Detail

Figure 5.5 shows the difference view of the recommendation. There are two
diagrams with exactly the same meaning (i.e. showing data structure) as the main
diagram from before. The left diagram shows the state of data as they are now.
The right side diagram shows the state were we to transform the data according
to the recommendation. The red entity sets and property sets represent changes
between the two states. Any nodes and edges in the diagrams can be clicked on
to view their data. A yellow color is used for the currently selected (i.e. clicked)
diagram elements whose detail is shown above the corresponding diagram. In the
figure, the product entity set contains changes as well as its property countries.
We see that in the new state there is a new entity set codeSet and entity property
set countries while the original literal property set countries is missing.

To get to the same screen as is portrayed in the figure, we click on codeSet
which results in a pane appearing above the diagram which shows what the added
entity set represents and what entities it contains. We see that its entities are
countries and their URIs correspond to the URIs of Publications Europa country
code list2.

2https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http:
//publications.europa.eu/resource/dataset/country
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We investigate the changes further by clicking on countries in both diagrams
(Figure 5.6).

Figure 5.6 Code list Difference View - countries Property Sets

Figure 5.6 shows the difference between the original literal property set
countries and the new entity property set countries. We can see that the coun-
tries represented originally by literals such as "United States" are represented
by entities representing countries with well-known URIs such as country:USA3.

We deem that representing countries using well-known URIs is better than
using literals; therefore, we click on the Accept button of the recommendation
which triggers the suggested transformation to be done on our data. With some
manual layouting and by clicking on the newly created codeSet entity set node,
we get the view presented by Figure 5.7. In the figure there are URIs represented
using a prefix. It was not done automatically. Instead, we manually added a
prefix for the code list after applying the recommendation.

3https://publications.europa.eu/resource/authority/country/USA
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Figure 5.7 Applied Country Code List Recommendation

Adding a prefix can be done by clicking on the Prefixes button in the top
header and filling out the Add Prefix form to get the view as in Figure 5.8.
The prefixes are then used instead of the full URIs whenever any URI is shown.
Moreover, when setting URIs manually in inputs, available prefixes are suggested
in a drop-down and user can write the usual prefix syntax to set URIs. After
creating the prefix, the Editor should be the same as in Figure 5.7 after clicking
again on codeSet entity set node.

Figure 5.8 Country Code List Prefix Added

We continue with the transformation of data. We click on the button Get
Recommendations again to get recommendations. Note that the code list recom-
mendations are not present since our data not longer contain country literals.
The topmost recommendation has category Nutrients. Since our data contain
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nutrient information we investigate the recommendation and click on Diff to
view its difference view (Figure 5.9 without the detail panes on the top).

Figure 5.9 Carbohydrates Nutrient Recommendation Difference View

Figure 5.9 shows the difference view for the topmost recommendation that
suggests how to represent the data about carbohydrates. We can see that the
carbohydrates value and unit property sets are recommended to be moved to
a separate entity set. We click on the new entity set with the carbohydrates
property sets and on the nutriments node as shown in the figure (our Editor
view should be the same now as in the figure).

By comparing the detail panes, we see that _carbohydrates entity set contains
type QuantitativeValueFloat4 from Good Relations [12] vocabulary and that
the literal for unit changed from "g" to "GRM".

When we click on the property carbohydrates that points to _carbohydrates,
we can see that its URI is set to carbohydratesPer100g5 from Food Ontology
vocabulary [11]. Clicking on literal property sets of _caborhydrates shows that
they also have URIs from Good Relations vocabulary.

Since we do not have to know these vocabularies, we investigate further by
clicking on the Description button of the recommendation which results in Editor
showing a description view shown in Figure 5.10.

4http://purl.org/goodrelations/v1#QuantitativeValueFloat
5http://purl.org/foodontology#carbohydratesPer100g
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Figure 5.10 Carbohydrates Nutrient Recommendation Description

Figure 5.10 provides of a brief explanation of the recommendation for Food
Ontology vocabulary and provides links for the recommended and related terms.
We can either trust the recommendation and accept it or investigate the links.
The investigation yields that Food Ontology (food prefix) is based on Good
Relations (gr prefix) and that there is a type food:Food that is a subclass of
gr:ProductOrService. Moreover, we find out that nutrition properties should be
added to a resource with food:Food type. The model of Food Ontology is described
in the Motivating Example (Subsection 2.1.1. We accept the recommendation
and add prefixes for both vocabularies. The types of _carbohydrate and URIs
of its properties are accessible in its detail pane that is shown when the node is
clicked on (Figure 5.11).

Figure 5.11 Editor After Carbohydrate Recommendation with Prefixes
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We continue by again clicking on the Get Recommendations button and select
the new topmost nutrient recommendation’s difference view. If it does not look
like in Figure 5.12, then use the other nutrient recommendation (there should be
two). It is similar to the previous carbohydrate recommendation but for the other
property sets related to energy.

Figure 5.12 Editor Energy Nutrient Recommendation Difference View

We accept the recommendation the get the Editor diagram view as in Fig-
ure 5.13 without the right pane. Note that the diagram does not show property set
names but rather prefixed URIs if property sets have URIs and the corresponding
prefixes are set. Based on our investigation we know that the nutrient properties
should origin in a food product entities. Currently, their origin is the nutriments
entity set. Therefore, we want to move them to the product entity set. We start
by clicking on nutriments showing its detail (Figure 5.13).
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Figure 5.13 Editor after Nutrient Recommendations

Then, we click on the Move button under the section Properties for the
property set (and its underlying properties) carbohydrates. The right pane
changes and Move PropertySet pane appears. We click on the section Original
Mapping and get to the same state as is shown in Figure 5.14 without the bottom
diagram having any edges (i.e. arrows).

Figure 5.14 Move Carbohydrates Property Sets

Figure 5.14 shows how property sets and their properties are moved from one
source or target entity set to another. The section Original Mapping represents
how the properties between source and target entities are linked (mapped) which
is represented by the diagram. The section New Mapping allows us to specify a
new source or a new target or both. We click on the button Select next to the
Source and click on the product node. By doing this the source is set to product
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as it is shown in the figure. The target remains the same. We also need to specify
how the properties between the selected source’ and target’ entities are mapped.

There are generally six options out of which only the four are available in this
case. The Manual option lets us drag edges manually. However, if we only loaded
some small example data and we potentially want to run the same transformations
on larger data in future (executed transformations can be exported and imported),
using the manual option is not feasible. The other options are suitable even for that
purpose since they provide a rule based mapping to the underlying transformation
algorithm. Mapping options OneOne, OneAll, AllOne are simple and work as
one would expect. The Join mapping provides an option to map entities based
on inner join of literal properties of the source and target. The option that we
actually need in this scenario is named Preserve. The preserve option checks
that the original and new sources have the same number of entities as well as
that the original and new targets have the same number of entities. If so, it
copies the mapping based on the original mapping shown in the diagram above.
Both nutriments and product have both three entities and there is the property
set nutriments between them which assigns each product one entity (i.e. the
mapping is one to one). Therefore, we use the preserve option by clicking on the
Preserve button and scroll down to click on the Ok button.

We also move the property set food:energyPer100g to product which gives
us the diagram shown in Figure 5.15.

Figure 5.15 Editor After Move Carbs and Energy to Food

We now see that nutriments entity set is useless and we delete it. We click
on it and click on the section Operations in the right pane. There should be a
button Delete in the section Operations that is shown in Figure 5.15. We click
on it and the nutriments entity set along with all associated property sets are
deleted.

The nutrients properties (property sets) are now connected to the product
entity set. We know that the sources of these properties should have types
food:Food. So we click on product and click on Add Type and write food:Food
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into the appeared input and hit enter. The end result is shown in Figure 5.16.
Adding a type to an entity set means that all underlying entities will have the
type in the final RDF.

Figure 5.16 Added Food Type

We have yet to set URIs to the product literal property sets _id and
product_name. We do it manually to show how it is done. When we did
our investigation of Food Ontology while deciding whether to apply the car-
bohydrates recommendation, we found that gr:ProductOrService can have a
property gr:name defining a product name and that gr:ProductOrService is the
same as schema:Product which has a schema:ProductID property for defining a
product ID.

Therefore, we click on product to open its detail and write the URIs in the
corresponding property sets’ inputs. The end result is shown in Figure 5.17.
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Figure 5.17 Editor Add Schema ProductID

We are almost done. We delete root. Then, we need to assign URIs to the
product entities, assign language tags and set the URI of the countries property
set. We start by setting URIs of product properties. We click on the Uris button
in the header and the right pane should change to Update Entity Uris. There
we click on Select and then on product. We can now set the URI pattern that
is applied to all entities. We can compose it of text strings and literal property
values. The inputs can be dragged over each other to change the ordering. We fill
out the pattern according to how it is done in Figure 5.18. Below, we can see the
entities’ URIs. Then we click on Ok to set the URIs.

Figure 5.18 Set Food Product URIs

We continue by assigning language tags. The only literals that need a language
tag set are literals of the property set gr:name. We click on product again and
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click on the Update button next to the property set gr:name. We should be able
to see the pane Update Literals (Figure 5.19). We write en to the input for
Language and click on Ok to set the language tag en to all literals.

Figure 5.19 Set Language Tag for Product Names

Finally, we need to set the URI of the countries properties. We click on
product and fill in http://example.com/soldInCountries to the URI input for
the property set countries (Figure 5.20). We can scroll the pane to check that
language tags, URIs and the URI for countries are set correctly.

Figure 5.20 Set Countries Property

The only thing left to do now is to export the data to RDF. We click on Export
and choose Instances. The Export Instances pane should appear (Figure 5.21).
It validates all URIs and provides options to set URIs for all entity sets. Since the
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URIs for product and codeSet are set directly on entities and the other entities
should be blank nodes which is the default, we can click on Ok. A TTL file with
the RDF is downloaded to our file system.

Figure 5.21 Export to RDF

We are at the end of the tutorial. Editor also supports Undo and Redo
operations for convenience.

5.4 Final RDF Data
The produced RDF is shown below. We include a manually prettified version

and only the first food product.
@prefix schema: <https://schema.org/> .
@prefix food: <http://purl.org/foodontology#> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.com/> .
@prefix ex-food: <http://example.com/food> .

ex-food:0737628064502 a food:Food ;
schema:productID "0737628064502" ;
gr:name "Thai peanut noodle kit"@en ;
ex:soldInCountries

<http://publications.europa.eu/resource/authority/country/USA> ;
food:carbohydratesPer100g [

a gr:QuantitativeValueFloat ;
gr:hasValueFloat "71.15"^^xsd:double ;
gr:hasUnitOfMeasurement "GRM"

];
food:energyPer100g [

a gr:QuantitativeValueFloat ;
gr:hasValueFloat 385 ;
gr:hasUnitOfMeasurement "K51"

].
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6 Conclusion
The goal of the thesis was to propose a semiautomatic approach which combines

search for vocabulary terms based on user data with the actual data transformation
to help user represent structured data in RDF and implement its proof-of-concept
implementation.

We first presented the issues encountered when representing structured data in
RDF on a food product example from Open Food Facts [5]. We then analyzed the
existing methods for recommendation and search of vocabulary terms. We also
surveyed the existing software for vocabulary search and transformation of struc-
tured data to RDF. Based on the analysis, we identified the three challenges of the
contemporary approaches and proposed our own approach to help users represent
structured data in RDF. The approach is based on creating a model from the
input structured that represents their RDF representation and user interactively
transforming the model either manually or using recommendations to create the
desired RDF representation. The recommendations suggest transformations of
the model. They are primarily generated by recommenders with a built-in domain
knowledge that recommending for specific domains. However, the approach also
supports recommending based on general vocabulary term recommendation and
search methods.

Afterwards, we identified the main components in the approach based on which
we designed a system architecture. We also designed the model representation.
We then implemented the system based on the approach and the design decisions
made.

Lastly, we showed that the system can be successfully used to transform the
food product data from example to RDF. However, the limitation of the approach
is the number of supported domains which recommendation are created for. If
a large part of user data is outside the supported domain, then the user must
transform the data manually or rely on recommendations from the more general-
purpose methods. However, that is also why the significant part of the design was
focused on the addition of new expert recommenders being easy.
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