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Introduction
Self-similar processes are processes whose distribution is invariant under a suitable
scaling of time and space. The most prominent class of self-similar processes is
the family of fractional Brownian motions. The fractional Brownian motion,
parameterized by the Hurst parameter H ∈ (0, 1), is a Gaussian self-similar
process with stationary increments, which, for H ∈ (1

2 , 1), exhibits long-range
dependence.

The Rosenblatt process, indexed by the Hurst parameter H ∈ (1
2 , 1), is a

stochastic process that arises as a limit of normalized sums of long-range depen-
dent random variables in the so-called Non-central limit theorem ([1, 2]). It is a
self-similar, long-term memory process with stationary increments, but, contrary
to the fractional Brownian motion, it is not Gaussian. As such, it poses a suit-
able alternative as a model to the fractional Brownian motion in cases where the
system shows some clear signs of non-Gaussianity.

In [3], it has been established that for the p-variation of the fractional Brow-
nian motion ZH,1, it holds

n−1∑︂
i=0

|ZH,1
tn
i+1

− ZH,1
tn
i

|p P−−−→
n→∞

⎧⎪⎪⎨⎪⎪⎩
0, p > 1

H
,

T E|ZH,1
1 | 1

H , p = 1
H

,

∞, p < 1
H

,

(1)

where {tn
i }n

i=0 is a suitable sequence of partitions of interval [0, T ] whose mesh
tends to zero. Later on, for H ∈ (1

2 , 1), this result has been extended by
Guerra and Nualart [4] to 1/H-variation of stochastic integral with respect to
the fractional Brownian motion, where the stochastic integral is defined as the
divergence-type integral in the framework of the Malliavin calculus. In partic-
ular, they showed that the 1/H-variation of the integral

∫︁ ·
0 us dZH,1

s is equal to
cH

∫︁ T
0 |us|1/H ds, where cH = E|ZH,1

1 |1/H .
On the other hand, it has been shown (see [5, Proposition 2.3]) that for the

1/H-variation of the Rosenblatt process ZH,2, we have
n−1∑︂
i=0

|ZH,2
tn
i+1

− ZH,2
tn
i

|
1
H

P−−−→
n→∞

T E|ZH,2
1 |

1
H . (2)

Similar to the fractional Brownian motion, one can use the Malliavin calculus to
define a stochastic integral with respect to the Rosenblatt process (see e.g. [6]).
In view of (1), (2), and the common properties of the fractional Brownian motion
and Rosenblatt process, this brings up the question whether we can expect a
result similar to the one by Guerra and Nualart also for stochastic integrals with
respect to the Rosenblatt process.

The thesis consists of four chapters. Chapter 1 contains a summary of basic
notions of Malliavin calculus such as the Malliavin derivative, divergence operator
and multiple integral. In Chapter 2, we introduce the fractional Brownian motion
and Rosenblatt process in the more general context of the Hermite processes and
derive some of their properties. In Chapter 3, we use the Malliavin calculus to
first construct an integral with respect to the Hermite process for deterministic
integrands. Subsequently, we extend this definition and develop a stochastic
integral with respect to the fractional Brownian motion and Rosenblatt process.
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The majority of the original work lies in Chapter 4. Based on the techniques
used by Guerra and Nualart in [4], we show that for a suitable class of integrands
the stochastic integral with respect to the Rosenblatt process

∫︁ ·
0 us dZH,2

s has a
finite 1/H-variation of the form

CH

∫︂ T

0
|us|

1
H ds,

where CH = E|ZH,2
1 |1/H .
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1. Malliavin calculus
The Malliavin calculus (also known as the stochastic calculus of variations) is
an infinite-dimensional differential calculus on a Gaussian space. Originally de-
veloped by Paul Malliavin [7] to obtain a probabilistic proof of the Hörmander
theorem, the theory found an extensive application in other areas (e.g. in prob-
abilistic approximations [8] or in anticipating stochastic calculus [9, Chapter 3]).

In this chapter, we summarize some basic notions and results of the Malliavin
calculus which will be useful for the goals of this thesis. For an exhaustive expla-
nation of the topic, we refer to [8, 9, 10]. The majority of the mentioned results
will be stated without proofs; for the proofs, consult the reference accompanying
each result.

1.1 Wiener-Itô chaos decomposition
We start by introducing the notion of an isonormal Gaussian process which plays
the role of random noise in the presented theory. Throughout the whole text,
we will be working on a complete probability space (Ω, F ,P). Consider a real
separable Hilbert space with inner product ⟨·, ·⟩H .

Definition 1.1. A family of random variables W = {W (h), h ∈ H} defined on
(Ω, F ,P) is said to be an isonormal Gaussian process if W is a centered Gaussian
family such that E(W (h)W (g)) = ⟨h, g⟩H for all h, g ∈ H.

It is easy to show that the mapping h ↦→ W (h) is linear. Also, given a real
separable Hilbert space H, one can always construct a probability space and
a Gaussian family {W (h), h ∈ H} satisfying the conditions of Definition 1.1 (see
[8, Proposition 2.1.1]).

The isonormal Gaussian process encodes a large class of random objects. For
instance (see [8, Example 2.1.5]), any centered Gaussian process with covariance
function R is an isonormal Gaussian process indexed by Hilbert space H, which is
defined as the closed span of indicator functions with respect to the inner product⟨︂

1[0,t], 1[0,s]
⟩︂

H
= R(t, s).

Another (and for the purposes of this thesis the most important) example is
the isonormal Gaussian process which arises from the Wiener process.

Let (Wt)t∈J be a Wiener process (here, J can be an arbitrary bounded or
unbounded interval, in most cases either R or [0, T ] for some T > 0), that is,
(Wt)t∈J is a centered, continuous Gaussian process with the covariance function

R(s, t) = 1
2 (|s| + |t| − |s − t|) , s, t ∈ J.

Then (Wt)t∈J can be associated with an isonormal Gaussian process indexed by
the Hilbert space L2(J) in the following way. For any a, b ∈ J, a < b, we set

W (1[a,b)) = Wb − Wa.
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Denote E1 the space of functions of form

h(t) =
m−1∑︂
i=0

ai1[si,si+1)(t), (1.1)

where m ∈ N, ai ∈ R and si ∈ J such that [si, si+1) are disjoint intervals. For
h ∈ E1 of the form (1.1), we set

W (h) =
m−1∑︂
i=0

aiW (1[si,si+1)). (1.2)

Then we have

E(W (h))2 =
m−1∑︂
i=0

a2
iE[W (1[si,si+1))]2 =

m−1∑︂
i=0

a2
i (si+1 − si) =

∫︂
J

h2(t) dt = ∥h∥2
L2(J).

(1.3)
Since the space E1 is dense in L2(J), then, by (1.3), the mapping h ↦→ W (h)
can be extended to an isometry between L2(J) and a subspace of L2(Ω) (see [5,
Section 1.1.1]) which we will denote by H1. We will also denote this isometry by
W (h) or by ∫︂

J
h(s) dWs.

This isometry is called the Wiener integral with respect to the Brownian motion
(or simply the Wiener integral if there is no risk of confusion).

Consequently, the family {W (h), h ∈ L2(J)} is an isonormal Gaussian process,
as it is clearly centered and Gaussian (since any W (h) is a L2(Ω)-limit of jointly
Gaussian random variables of form (1.2)) and for any h, g ∈ L2(J) it holds

EW (h)W (g) = ⟨f, g⟩L2(J) .

In what follows, we will only consider the case of the isonormal Gaussian
process given by the Wiener integral. Note, however, that all of the following
theory can be generalized to the case of arbitrary isonormal Gaussian process.
Definition 1.2. For n ∈ N0, the n-th Hermite polynomial Hn is defined by
H0(x) = 1 and

Hn(x) = (−1)n ex2
2

dn

dxn
e− x2

2 , x ∈ R.

For n ∈ N0, we will denote by Hn the closed linear subspace of L2(Ω, F ,P)
generated by the random variables {Hn(W (h)), h ∈ L2(J), ∥h∥L2(J) = 1}. The
space Hn is called the n-th Wiener chaos. Clearly H0 = R is the subspace of
constants and H1 = {W (h), h ∈ L2(J)} is the subspace of Gaussian random
variables. The Wiener chaos provide an orthogonal decomposition of the space
L2(Ω, FW ,P). Here, by FW , we denote the σ-algebra generated by the Wiener
process (Wt)t∈J .
Theorem 1.1 (Wiener-Itô chaos decomposition, [8, Theorem 2.2.4]). The space
L2(Ω, FW ,P) admits the following orthogonal decomposition:

L2(Ω, FW ,P) = ⊕∞
n=0Hn.

In particular, any F ∈ L2(Ω, FW ,P) can be represented as

F = EF +
∞∑︂

n=1
Fn,

where Fn ∈ Hn and where the sum converges in L2(Ω).

5



1.2 Malliavin derivative
In this section, the notion of derivative of random variables in L2(Ω) is intro-
duced. Since we do not impose any conditions on the topological structure of the
probability space, the derivative is defined in a weak sense. Consider a space of
“smooth” random variables

S =
{︂
F = f

(︂
W (h1), . . . , W (hm)

)︂
, m ∈ N, f ∈ C∞

p (Rm), hi ∈ L2(J)
}︂

, (1.4)

where C∞
p (Rm) denotes the space of infinitely continuously differentiable functions

f : Rm → R such that f and all its partial derivatives have at most polynomial
growth, that is,

C∞
p (Rm) =

{︂
f ∈ C∞(Rm) : ∀k ∈ N0 ∃α, β ∈ (0, ∞) :

|f (k)(x)| ≤ α(1 + |x|β) ∀x ∈ R
}︂
.

Note that the space S is dense in Lp(Ω) for any p ∈ [1, ∞).
Let F ∈ S be of the form as in (1.4) and n ∈ N. Then the n-th Malliavin

derivative of F is defined as the element of L2(Ω; L2(Jn)) given by

Dn
x1,...,xn

F =
m∑︂

i1,...,in=1

(︂
∂n

i1,...,in
f
)︂ (︂

W (h1), . . . , W (hm)
)︂
hi1(x1) . . . hin(xn).

The n-th Malliavin derivative can also be viewed as an element of L2(Ω × Jn) or
L2(Jn; L2(Ω)), since by Fubini theorem we have

E
∫︂

Jn
|gs|2 ds =

∫︂
Jn×Ω

|g|2 d(λn ⊗ P) =
∫︂

Jn
E|gs|2 ds

and so the three spaces are isomorphic.
The following proposition allows us to extend the definition of the Malliavin

derivative to a larger class of random variables.
Proposition 1.2 ([8, Proposition 2.3.4]). Let p ∈ [1, ∞) and n ∈ N. Then the
operator Dn : Lp(Ω) ⊃ S → Lp(Ω; L2(Jn)) is closable; i.e., whenever there is a
sequence {Fk} ⊆ S such that Fk −→ 0 in Lp(Ω) and DnFk −→ η in Lp(Ω; L2(Jn))
for some η , then η = 0 a.s.
Definition 1.3. For p ∈ [1, ∞) and n ∈ N, the Sobolev-Watanabe space Dn,p is
defined as the closure of S with respect to the norm

∥F∥Dn,p =
(︂
E|F |p + E∥DF∥p

L2(J) + . . . + E∥DnF∥p
L2(Jn)

)︂ 1
p

=
(︄
E|F |p + E

(︃∫︂
J

|DxF |2 dx
)︃ p

2
+ . . . + E

(︃∫︂
Jn

|Dn
xF |2 dx

)︃ p
2
)︄ 1

p

.

We additionally set D0,p = Lp(Ω) and ∥F∥D0,p = ∥F∥Lp(Ω).
Due to Proposition 1.2, the operator Dn can be consistently extended to the

space Dn,p. Moreover, from the form of the norm of Sobolev-Watanabe space and
the usual embedding of Lp(Ω) spaces we have the following embedding

Dn,p ↪→ Dm,q, (1.5)

whenever m ≤ n, q ≤ p.
What follows is one of the chain rules for the Malliavin derivative.
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Proposition 1.3 ([8, Proposition 2.3.7]). Let φ : R → R be a continuously
differentiable function with bounded derivative. Suppose that F ∈ D1,p for some
p ∈ [1, ∞). Then φ(F ) ∈ D1,p and

Dφ(F ) = φ′(F )DF.

The chain rule can also be applied to other classes of functions such as Lips-
chitz functions (see [8, Proposition 2.3.8]) or continuously differentiable functions
with derivatives of polynomial growth (see [10, Proposition 3.3.2]).

The Malliavin derivative possesses a local property.

Proposition 1.4 ([9, Proposition 1.3.16]). Let F ∈ D1,1 be a random variable
such that F = 0 almost surely on some set A ∈ F . Then DF = 0 almost surely
on A.

Remark 1.1. The notion of the Malliavin derivative can be extended to Hilbert
space-valued random variables. Let V be a real separable Hilbert space and set

S(V) =

⎧⎨⎩F =
m∑︂

j=1
Fjvj, m ∈ N, Fj ∈ S, vj ∈ V

⎫⎬⎭ . (1.6)

For F ∈ S(V) of form (1.6), the n-th Malliavin derivative is defined by

DnF =
m∑︂

j=1
(DnFj) ⊗ vj,

where ⊗ denotes the tensor product between two Hilbert spaces. Similarly as
for the real-valued random variables the operator Dn is closable from S(V) to
Lp(Ω; L2(Jn) ⊗ V) and consequently can be extended to the space Dn,p(V) which
is defined as closure of S(V) with respect to the norm

∥F∥Dn,p(V) =
(︂
E∥F∥p

V + E∥DF∥p
L2(J)⊗V + . . . + E∥DnF∥p

L2(Jn)⊗V

)︂ 1
p .

An embedding similar to (1.5) also holds for the spaces Dn,p(V).

1.3 Divergence operator
The divergence operator δ is defined as the adjoint of the Malliavin derivative. In
the case of the isonormal Gaussian process indexed by L2(J), the operator can
be interpreted as a stochastic integral. In fact, it can be shown that on processes
adapted to the filtration generated by the Wiener process (Wt)t∈J , the divergence
operator coincides with the standard Itô integral.

Let n ∈ N and denote by Dom δn the subset of L2(Ω; L2(Jn)) consisting of
processes u for which there is a constant c ∈ (0, ∞) such that

|E ⟨DnF, u⟩L2(Jn) | =
⃓⃓⃓⃓
E
∫︂

Jn
(Dn

t F )ut dt

⃓⃓⃓⃓
≤ c∥F∥L2(Ω). (1.7)

for every F ∈ S. Then for any u ∈ Dom δn, by virtue of (1.7), the linear operator

F ↦→ E ⟨DnF, u⟩L2(Jn)
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is continuous from (S, ∥ · ∥L2(Ω)) to R and so it can be extended to a linear
operator from L2(Ω) to R. According to the Riesz representation theorem, there
is a unique element of L2(Ω), which we will denote δn(u), satisfying the relation

EFδn(u) = E ⟨DnF, u⟩L2(Jn) (1.8)

for every F ∈ S. This allows us to state the following definition.

Definition 1.4. Let u ∈ Dom δn. Then δ(u) is the unique element of L2(Ω)
characterized by (1.8) for every F ∈ S. The operator δn : Dom δn → L2(Ω) is
called the divergence operator of order n and we talk about the set Dom δn as the
the domain of δn.

Remark 1.2. The divergence operator is clearly, as the adjoint of closed linear
operator Dn, also closed and linear. By taking F = 1 in (1.8), we obtain Eδn(u) =
0 for any u ∈ Dom δn. Moreover, it can be shown (e.g. [8, Remark 2.5.3]) that
L2(Jn) ⊆ Dom δn and δ(g) = W (g) for any g ∈ L2(J). Hence we see, that the
divergence operator coincides with the Wiener integral for deterministic processes.

The following proposition allows us to factor out scalar random variables in
the divergence operator.

Proposition 1.5 ([9, Proposition 1.3.3]). Let F ∈ D1,2 and u ∈ Dom δ such that
Fu ∈ L2(Ω; L2(J)). Then Fu ∈ Dom δ and

δ(Fu) = Fδ(u) − ⟨DF, u⟩L2(J) ,

provided that the right-hand side belongs to L2(Ω).

The next proposition provides a large class of processes which belong to Dom δ
as well as a formula for the covariance of two divergences.

Proposition 1.6 ([9, Proposition 1.3.1]). The space D1,2(L2(J)) is included in
Dom δ. Moreover, for any u, v ∈ D1,2(L2(J)), we have the equality

E
(︂
δ(u)δ(v)

)︂
= E

∫︂
J

usvs ds + E
∫︂

J

∫︂
J

DxuyDyvx dx dy. (1.9)

Note that the space D1,2(L2(J)) can be identified with the space L2(J ;D1,2)
since

∥g∥2
D1,2(L2(J)) = E∥g∥2

L2(J) + E∥Dg∥2
L2(J2)

= E
∫︂

J
|gs|2 ds + E

∫︂
J

∫︂
J

|Dxgs|2 dx ds

=
∫︂

J

(︃
E|g2

s | + E
∫︂

J
|Dxgs|2 dx

)︃
ds

=
∫︂

J
∥gs∥2

D1,2 ds

= ∥g∥2
L2(J ;D1,2).

Similar to the Malliavin derivative, the divergence also has a local property.

Proposition 1.7 ([9, Proposition 1.3.15]). Let u ∈ D1,2(L2(J)) be a stochastic
process such that u = 0 almost surely on some set A ∈ F . Then δ(u) = 0 almost
surely on A.

8



Now we state the so-called Meyer inequalities which identify spaces between
which the operator δn is bounded.

Theorem 1.8 (Meyer inequalities, [8, Theorem 2.5.5]). For any n, m ∈ N0, n ≥
m and p ∈ [1, ∞), the operator δm is bounded from Dn,p(L2(Jm)) to Dn−m,p, that
is, there is a finite positive constant cm,n,p such that

∥δm(u)∥Dn−m,p ≤ cm,n,p∥u∥Dn,p(L2(Jm)), u ∈ Dn,p(L2(Jm)).

Remark 1.3. Similar to the Malliavin derivative, the definition of the divergence
δn can be extended to processes with values in a Hilbert space. Again, let V
be a real separable Hilbert space and set Dom δn to be the space of processes
u ∈ L2(Ω; V ⊗ L2(Jn)) for which there is a finite positive constant c such that

|E ⟨DnF, u⟩V⊗L2(Jn) | ≤ c∥F∥L2(Ω;V),

holds for all F ∈ S(V). Then, for u ∈ Dom δn, we define δn(u) as the unique
element of L2(Ω; V) satisfying the equality

E ⟨F, δn(u)⟩V = E ⟨DnF, u⟩V⊗L2(Jn)

for every F ∈ S(V).
The construction in Remark 1.3 allows us to interpret the symbol δn as the

n-fold composition of δ. Choose g ∈ L2(Jn). Then, using the fact that the space
L2(Jn) can written as L2(Jn−m) ⊗ L2(Jm) for any 0 < m < n, we have that
δm(g) is the unique element of L2(Ω; L2(Jn−m)) chosen as in Remark 1.3 with
V = L2(Jn−m). In addition, we can write

δn(g) = δn−m(δm(g)), g ∈ L2(Jn). (1.10)

In fact the relation (1.10) also holds for any g ∈ Dom δn.
Remark 1.4. As mentioned at the beginning of the section, the divergence opera-
tor can be viewed as an extension of the Itô integral as these two objects coincide
for adapted square integrable process but the divergence is defined for a larger
class of processes.

Indeed, let L2
FW ([0, T ] × Ω) be space of processes in L2([0, T ] × Ω) that are

adapted to the canonical filtration of the underlying Wiener process (Wt)t∈[0,T ].
Then we have (see [9, Proposition 1.3.11]) that L2

FW ([0, T ] × Ω) ⊆ Dom δ and for
u ∈ L2

FW ([0, T ] × Ω) it holds

δ(u) = (Itô)
∫︂ T

0
us dWs.

1.4 Multiple integrals
By L2

s(Jn) we will mean the elements of L2(Jn) which are symmetric functions.

Definition 1.5. Let n ∈ N and f ∈ L2
s(Jn). Then the n-th multiple integral of

f , In(f), is defined by In(f) = δn(f).

9



In view of Section 1.1 and Remark 1.3, it is clear that I1(f) = W (h), i.e.,
I1(f) is the Wiener integral of f . The next result shows the orthogonality of
multiple integrals of different orders.

Proposition 1.9 ([8, Proposition 2.7.5]). Let m, n ∈ N. Then for f ∈ L2
s(Jm)

and g ∈ L2
s(Jn), we have

EIm(f)In(g) =

⎧⎨⎩m! ⟨f, g⟩L2(Jm) , m = n,

0, m ̸= n.

The n-th multiple integral connects the space L2
s(Jn) to n-th Wiener chaos.

Theorem 1.10 ([8, Theorem 2.7.7]). Let f ∈ L2(J) be such that ∥f∥L2(J) = 1.
Then for any n ∈ N we have

Hn(W (f)) = In(f⊗n),

where f⊗n(x1, . . . , xn) = f(x1)f(x2) . . . f(xn). In particular, the linear operator
In provides an isometry from (L2

s(Jn), 1√
n!∥ · ∥L2(Jn)) to the n-th Wiener chaos

(Hn, ∥ · ∥L2(Ω)).

According to Theorem 1.10, any random variable Y of the form Y = In(f)
belongs to the n-th Wiener chaos. Moreover, the following result shows that
arbitrary moment of Y can be estimated by its second moment (or, in other
words, within a fixed Wiener chaos, all Lp(Ω)-norms are equivalent).

Theorem 1.11 ([8, Theorem 2.7.2]). Let p ∈ [1, ∞), n ∈ N and let Y be a
random variable with the form Y = In(f) for some f ∈ L2

s(Jn). Then there
exists a finite positive constant cn,p such that

∥Y ∥Lp(Ω) ≤ cn,p∥Y ∥L2(Ω). (1.11)

Proof. The case p ∈ [1, 2] follows immediately with cn,p = 1 from the standard
embedding of Lp(Ω) spaces. Now let p > 2. According to the Meyer inequalities
(Theorem 1.8), there is a finite positive constant ĉn,p such that

∥In(f)∥Lp(Ω) = ∥δn(f)∥D0,p ≤ ĉn,p∥f∥Dn,p(L2(Jn)).

As f is deterministic, we have ∥f∥Dn,p(L2(Jn)) = ∥f∥L2(Jn). In view of Proposition
1.9, we obtain

∥In(f)∥Lp(Ω) ≤ ĉn,p∥f∥L2(Jn) = ĉn,p√
n!

∥In(f)∥L2(Ω).

An explicit form of the constant cn,p can be obtained by an alternative proof
which appeals to the hypercontractivity of Ornstein-Uhlenbeck semigroup (see
[8, Corollary 2.8.14]). As an example, for any random variable Y living in the
second Wiener chaos, we have

∥Y ∥Lp(Ω) ≤ (p − 1) ∥Y ∥L2(Ω).
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Remark 1.5. Given f ∈ L2
s(Jn), the n-th multiple integral In(f) can be rewritten

as an iterated Itô stochastic integral via a procedure similar to the construction
of Wiener integral in Section 1.1. We summarize the main steps below, for a more
detailed construction see [8, Exercise 2.7.6] and [5, Section 1.2.1] (or [11] for the
original construction by Itô).

Let En be a set of elementary functions f : Jn → R, that is, a set of functions
with form

h(t1, . . . , tn) =
m∑︂

i1,...,in=1
ai1,...,in1Ai1 ×...×Ain

(t1, . . . , tn), (1.12)

where m ∈ N, Ai ⊆ J are disjoint finite intervals, and ai1,...,in = 0 whenever two
indices are the same. Recall that for Ai = [a, b], we defined W (Ai) = Wb − Wa.
For h ∈ En of form (1.12), we define

În(h) =
m∑︂

i1,...,in=1
ai1,...,inW (Ai1) · . . . · W (Ain).

Then it can be shown that În is a linear operator that satisfies the isometry
relation

EÎn(h)Îm(g) =

⎧⎨⎩n! ⟨h, g⟩L2(Jn) , n = m,

0, n ̸= m,

for each h ∈ En and g ∈ Em. Since the space En is dense in L2
s(Jn), the operator

În can be extended to a linear operator from L2
s(Jn) to L2(Ω). This extension is

usually denoted by ∫︂
Jn

h(t1, . . . , tn) dWt1 . . . dWtn

and called the multiple Wiener-Itô integral of order n. One can then show that
the multiple integral In coincides with the multiple Wiener-Itô integral of order
n. In case J = [0, T ], since the integrands are symmetric functions, we can also
express the integral as an iterated integral in the classical Itô sense

In(h) = n! (Itô)
∫︂ T

0

∫︂ t1

0
. . .
∫︂ tn−1

0
h(t1, . . . , tn) dWtn . . . dWt2 dWt1 .

11



2. Fractional processes
As we mentioned in the introduction, we will be mainly interested in two par-
ticular cases of fractional processes, namely in the fractional Brownian motion
and Rosenblatt process. However, for the purpose of deriving numerous common
properties of these two processes, it will be advantageous to view them as two
special examples of the class of processes called Hermite processes.

2.1 Hermite processes
In this section, the class of Hermite processes is introduced and we derive (or
at least mention) some of their properties. The presentation of the topic in this
section is based mainly on [5, 12, 13] and for more information on the theory of
self-similar processes we refer to them.

The class of Hermite processes originally arose as a class of limiting processes
in the so-called Non-central limit theorem. This theorem, extending the result
of Rosenblatt [14], was independently proved by Taqqu [1], and Dobrushin and
Majòr [2]. Let us briefly sketch the result.

Assume g : R → R to be a function such that Eg(N) = 0 and E[g(N)]2 < ∞,
where N ∼ N(0, 1). Any such function can be expanded into the basis of Hermite
polynomials

g(x) =
∞∑︂

j=0
cjHj(x),

where cj = 1
j!E(g(N)Hj(N)) (see [8, Proposition 1.4.2], but it really is a con-

sequence of Theorem 1.1 had we assumed the underlying isonormal Gaussian
process to be indexed by the real line, see [9, Example 1.1.1]). Define

q = min{j : cj ̸= 0}.

We usually refer to number q as the Hermite rank of g. Note that the Hermite
rank of g is always at least 1 since we assumed Eg(N) = 0.

Let {ξn}n∈N0 be a stationary Gaussian sequence such that ξ0 ∼ N(0, 1) and

E[ξ0ξn] = n
2H−2

q L(n),

where H ∈ (1
2 , 1), q is a Hermite rank of g and L is a slowly varying function,

that is, a positive function satisfying

lim
x→∞

L(ax)
L(x) = 1

for every a > 0. Then the Non-central limit theorem states that the sequence of
partial sums

1
nH

⌊nt⌋∑︂
j=1

g(ξj)

converges in distribution, as n → ∞, to a stochastic process living in the q-th
Wiener chaos. This limiting process is called the Hermite process of order q with
the Hurst parameter (or self-similarity index) H.

12



We will, however, define the Hermite process by means of a more explicit
representation. By (x)+ = max{0, x}, we denote the non-negative part of x.
Definition 2.1. Let (Wt)t∈R be a two-sided Wiener process. The Hermite process
(ZH,q

t )t≥0 of order q with Hurst parameter H ∈ (1
2 , 1) is defined by

ZH,q
t = c(H, q)

∫︂
Rq

(︄∫︂ t

0

q∏︂
i=1

(u − yi)
−( 1

2 + 1−H
q )

+ du

)︄
dWy1 . . . dWyq , t ≥ 0,

where c(H, q) is a normalizing constant such that E
(︂
ZH,q

1

)︂2
= 1.

From the fact that the Hermite process of order q is defined as the q-th multiple
integral, we immediately obtain that the process is centered and (by Theorem
1.10) that it lives in the q-th Wiener chaos.

In case q = 1, the process is called the fractional Brownian motion, in case
q = 2, the resulting process is called the Rosenblatt process.

Let us now compute a covariance function of ZH,q
t (and, as a by-product, an

explicit formula for c(H, q)). First, for t ≥ 0 and y1, . . . , yq ∈ R, denote by LH,q
t

the kernel

LH,q
t (y1, . . . , yq) = c(H, q)

∫︂ t

0

q∏︂
i=1

(u − yi)
−( 1

2 + 1−H
q )

+ du.

Then clearly ZH,q
t = Iq(LH,q

t ) and by virtue of Proposition 1.9, we can write

EZH,q
t ZHq

s = EIq(LH,q
t )Iq(LH,q

s ) = q!
⟨︂
LH,q

t , LH,q
s

⟩︂
L2(Rq)

,

provided that LH,q
t ∈ L2(Rq) for every t ≥ 0. Making use of the Fubini theorem

and identity (A.1) with a = −
(︂

1
2 + 1−H

q

)︂
, we can write

EZH,q
t ZHq

s = q!
∫︂
Rq

LH,q
t (y1, . . . , yq)LH,q

s (y1, . . . , yq) dy1 . . . dyq

= q! c(H, q)2
∫︂
Rq

⎛⎝∫︂ t

0

∫︂ s

0

q∏︂
i=1

(u − yi)
−( 1

2 + 1−H
q )

+

× (w − yi)
−( 1

2 + 1−H
q )

+ du dw

⎞⎠ dy1 . . . dyq

= q! c(H, q)2
∫︂ t

0

∫︂ s

0

⎛⎝∫︂
Rq

q∏︂
i=1

(u − yi)
−( 1

2 + 1−H
q )

+

× (w − yi)
−( 1

2 + 1−H
q )

+ dy1 . . . dyq

⎞⎠ du dw

= q! c(H, q)2
∫︂ t

0

∫︂ s

0

(︄∫︂
R
(u − y)

−( 1
2 + 1−H

q )
+ (w − y)

−( 1
2 + 1−H

q )
+ dy

)︄q

du dw

= q! c(H, q)2
∫︂ t

0

∫︂ s

0

(︃∫︂ u∧w

−∞
(u − y)−( 1

2 + 1−H
q )(w − y)−( 1

2 + 1−H
q ) dy

)︃q

du dw

= q! c(H, q)2B

(︄
1
2 − 1 − H

q
,
2 − 2H

q

)︄q ∫︂ t

0

∫︂ s

0

(︃
|u − w|

2H−2
q

)︃q

du dw

= q! c(H, q)2B

(︄
1
2 − 1 − H

q
,
2 − 2H

q

)︄q ∫︂ t

0

∫︂ s

0
|u − w|2H−2 du dw,
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where B denotes the beta function (see Definition A.2). As there is the equality

H(2H − 1)
∫︂ t

0

∫︂ s

0
|u − w|2H−2 du dw = 1

2
(︂
t2H + s2H − |t − s|2H

)︂
, (2.1)

we obtain

EZH,q
t ZHq

s = q! c(H, q)2 B
(︂

1
2 − 1−H

q
, 2−2H

q

)︂q

H(2H − 1) · 1
2
(︂
t2H + s2H − |t − s|2H

)︂
.

In particular, LH,q
t ∈ L2(Rq) for every t ≥ 0 and at time t = s = 1, we have

E(ZH,q
1 )2 = q! c(H, q)2 B

(︂
1
2 − 1−H

q
, 2−2H

q

)︂q

H(2H − 1) ,

so, in order for the normalization condition to hold, we must set

c(H, q)2 = H(2H − 1)
q!B

(︂
1
2 − 1−H

q
, 2−2H

q

)︂q .

2.1.1 Basic properties of Hermite processes
Recall that stochastic process (Xt)t≥0 is H-self-similar if there is H ∈ (0, 1) such
that the processes (Xat)t≥0 and (aHXt)t≥0 have the same finite-dimensional dis-
tributions for every a > 0. We say that process (Xt)t≥0 has stationary increments
if for every t ≥ s ≥ 0

Xt − Xs
d= Xt−s,

where d= denotes equality in distribution.
It can be shown that Hermite process (ZH,q

t )t≥0 of an arbitrary order q is H-
self-similar and has stationary increments. This result is mainly the consequence
of the form of kernel LH,q

t and the fact that the Wiener process is a 1
2 -self-similar

process (see e.g. [13, Theorem 1.2.1]) with stationary increments.

Proposition 2.1 ([5, Proposition 2.2]). The Hermite process (ZH,q
t )t≥0 is H-self-

similar and has stationary increments.

In fact, every non-trivial finite-variance H-self-similar process X with station-
ary increments must necessarily have covariance function of the form

R(s, t) = EX2
1

2
(︂
t2H + s2H − |t − s|2H

)︂
.

Indeed, assuming t ≥ s, we can write

XtXs = 1
2
(︂
X2

t + X2
s − (Xt − Xs)2

)︂
and thus, in view of stationarity of increments and H-self-similarity, we have

EXtXs = 1
2
(︂
EX2

t + EX2
s − E(Xt − Xs)2

)︂
= 1

2
(︂
EX2

t + EX2
s − EX2

t−s

)︂
= EX2

1
2

(︂
t2H + s2H − (t − s)2H

)︂
.
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Then it suffices to note that every finite-variance H-self-similar process with
stationary increments is necessarily centered (see [13, Theorem 3.1.1]).

As an immediate consequence, the fractional Brownian motion is the only
(up to a multiplicative constant) Gaussian H-self-similar process with stationary
increments.

Another aftereffect of self-similarity and stationary increments is the regularity
of sample paths of the Hermite process. By these properties, for any p ≥ 1 and
t ≥ s ≥ 0 we obtain

E|ZH,q
t − ZH,q

s |p = E|ZH,q
t−s |p = |t − s|HpE|ZH,q

1 |p (2.2)

and so, according to the Kolmogorov-Čentsov theorem (e.g. [15, Theorem 2.8]),
the process ZH,q

t admits a modification with Hölder continuous sample paths of
order δ for every δ < H. Note that the p-th moment E|ZH,q

1 |p is indeed finite
thanks to Theorem 1.11.

As a final property, let us mention that the Hermite process (ZH,q
t )t≥0 exhibits

long-range dependence. What we mean by long-range dependence is the following.
Consider the sequence of increments

ξ(n) = ZH,q
n+1 − ZH,q

n , n ∈ N0.

Then from the form of the covariance function of Hermite process, we obtain

r(n) = Eξ(n)ξ(0) = E[ZH,q
1 (ZH,q

n+1 − ZH,q
n )]

= EZH,q
1 ZH,q

n+1 − EZH,q
1 ZH,q

n

= 1
2
(︂
1 + (n + 1)2H − n2H

)︂
− 1

2
(︂
1 + n2H − (n − 1)2H

)︂
= 1

2
(︂
(n − 1)2H + (n + 1)2H − 2n2H

)︂
.

Hence for large n, r(n) behaves as n2H−2 and therefore (since 2H − 2 > −1)
∞∑︂

n=1
r(n) = ∞. (2.3)

Property (2.3) is what we usually call long-range dependence (or long-term mem-
ory) of process ZH,q.

2.1.2 P -variation of Hermite process
Fix T > 0. Consider a dyadic partition {tn

i }2n

i=0 of the interval [0, T ], that is
tn
i = iT

2n . For a stochastic process X = (Xt)t∈[0,T ] and p > 0, we define random
variables

V p
n (X) =

2n−1∑︂
i=0

|Xtn
i+1

− Xtn
i
|p.

By p-variation of X, we mean the L1(Ω)-limit of V p
n (X) as n → ∞, provided

that this limit exists.
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In view of (2.2), we can write

EV 2
n (ZH,q) = E

2n−1∑︂
i=0

|ZH,q
tn
i+1

− ZH,q
tn
i

|2 = E|ZH,q
1 |2

2n−1∑︂
i=0

|tn
i+1 − tn

i |2H

=
2n−1∑︂
i=0

⃓⃓⃓⃓
⃓(i + 1)T

2n
− iT

2n

⃓⃓⃓⃓
⃓
2H

= T 2H2−n(2H−1) −−−→
n→∞

0.

We have shown that the Hermite process is a process of zero quadratic variation.
As a consequence the Hermite process is not a semimartingale. In general, we
have the following result about the p-variation of Hermite processes.
Proposition 2.2 ([5, Proposition 2.3]). Let p > 0. Then

V p
n (ZH,q) P−−−→

n→∞

⎧⎪⎪⎨⎪⎪⎩
0, p > 1

H
,

T E|ZH,q
1 | 1

H , p = 1
H

,

∞, p < 1
H

.

For the special case of the fractional Brownian motion, Proposition 2.2 was
originally proved by Rodgers [3].

Note, however, that the convergence in Proposition 2.2 is only in probability.
For our purposes we need the convergence in L1(Ω) at least for the case p = 1

H
.

Proposition 2.3. Let ZH,q be a Hermite process of order q. Then

V 1/H
n (ZH,q) L1(Ω)−−−→

n→∞
T E|ZH,q

1 |
1
H .

Proof. In view of Proposition 2.2, to ensure the convergence in L1(Ω) it suffices
to show that the sequence {V 1/H

n (ZH,q)}n∈N is uniformly integrable.
Let K > 0. By Hölder’s inequality, we obtain

EV 1/H
n (ZH,q)1{V

1/H
n (ZH,q)≥K} = E

2n−1∑︂
i=0

⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H 1{︃∑︁2n−1

i=0

⃓⃓⃓
ZH,q

tn
i+1

−ZH,q
tn
i

⃓⃓⃓ 1
H ≥K

}︃

≤

⎡⎣E(︄2n−1∑︂
i=0

⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H

)︄2⎤⎦
1
2 [︄

P
(︄2n−1∑︂

i=0

⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H ≥ K

)︄]︄ 1
2

Successively using the generalized Minkowski inequality (see [16, Theorem 202]),
self-similarity, and stationarity of increments yields⎡⎣E(︄2n−1∑︂

i=0

⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H

)︄2⎤⎦
1
2

≤
2n−1∑︂
i=0

(︃
E
⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 2
H

)︃ 1
2

=
2n−1∑︂
i=0

(︄
E
⃓⃓⃓⃓
ZH,q

(i+1)T
2n

− ZH,q
iT
2n

⃓⃓⃓⃓ 2
H

)︄ 1
2

=
2n−1∑︂
i=0

(︃
E
(︂
T H2−nH

⃓⃓⃓
ZH,q

i+1 − ZH,q
i

⃓⃓⃓)︂ 2
H

)︃ 1
2

=
2n−1∑︂
i=0

T 2−n
(︃
E
⃓⃓⃓
ZH,q

1

⃓⃓⃓ 2
H

)︃ 1
2

=
2n−1∑︂
i=0

T 2−n
(︂
E |Z1|

2
H

)︂ 1
2 = T

(︂
E |Z1|

2
H

)︂ 1
2

.
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As for the second term, by Markov’s inequality and same arguments as above,
we obtain

[︄
P
(︄2n−1∑︂

i=0

⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H ≥ K

)︄]︄ 1
2

≤

⎛⎜⎜⎝
∑︁2n−1

i=0 E
⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H

K

⎞⎟⎟⎠
1
2

=
√

T
(︂
E |Z1|

1
H

)︂ 1
2

√
K

.

Altogether,

lim
K→∞

sup
n∈N

E
2n−1∑︂
i=0

⃓⃓⃓
ZH,q

tn
i+1

− ZH,q
tn
i

⃓⃓⃓ 1
H 1{︃∑︁2n−1

i=0

⃓⃓⃓
ZH,q

tn
i+1

−ZH,q
tn
i

⃓⃓⃓ 1
H ≥K

}︃

≤ lim
K→∞

sup
n∈N

T
3
2
(︂
E |Z1|

2
H

)︂ 1
2

(︂
E |Z1|

1
H

)︂ 1
2

√
K

= 0.

2.2 Fractional Brownian motion
The fractional Brownian motion is defined as the Hermite process of order 1. In
words of Definition 2.1, the fractional Brownian motion ZH,1 of Hurst parameter
H ∈ (1

2 , 1) is given by

ZH,1
t = c(H, 1)

∫︂
R

(︃∫︂ t

0
(u − y)H− 3

2
+ du

)︃
dWy, t ≥ 0.

In view of Section 2.1.1, the fractional Brownian motion is H-self-similar, long-
range dependent process with stationary increments that admits a continuous
modification. Additionally, the fractional Brownian motion lives in the first
Wiener chaos and therefore must be a Gaussian process.

Thanks to the Gaussianity of the process, the fractional Brownian motion
could have been alternatively defined as a centered, Gaussian process with co-
variance function given by

R(t, s) = 1
2
(︂
t2H + s2H − |t − s|2H

)︂
.

It is well-known that, in this way, one can define the fractional Brownian motion
also for 0 < H < 1

2 .
In addition to properties from Section 2.1.1, we state a finite time interval

representation of the fractional Brownian motion. For H ∈ (1
2 , 1), consider the

function P H(t, s) given by

P H(t, s) =
(︃

s

t

)︃ 1
2 −H

(t − s)H− 3
2

+ , t, s ≥ 0. (2.4)

Then the fractional Brownian motion can be represented on a finite time interval
in terms of the function P H .
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Theorem 2.4 ([17, Corollary 3.1]). Let P H be a function given by (2.4) and let
(ZH,1

t )t∈[0,T ] be a fractional Brownian motion. Then the process

Y H,1
t = c(H, 1)

∫︂ T

0

(︃∫︂ t

0
P H(u, y) du

)︃
dWy, t ∈ [0, T ]

has the same distribution as ZH,1.

2.3 Rosenblatt process
The Rosenblatt process ZH,2 was defined as the Hermite process of order 2, which
was given by

ZH,2
t = c(H, 2)

∫︂
R2

(︃∫︂ t

0
(u − y1)

H
2 −1

+ (u − y2)
H
2 −1

+ du
)︃

dWy1 dWy2 , t ≥ 0.

From Section 2.1.1 it follows that it is a H-self-similar long-range dependent pro-
cess with stationary increments that admits a continuous modification. Contrary
to the fractional Brownian motion, the Rosenblatt process is not Gaussian.

The Rosenblatt process (or rather its distribution) first appeared in the paper
by Rosenblatt [14] as a counterexample to one of the central limit theorems. The
name “Rosenblatt process” was subsequently used by Taqqu in [18]. For more
detailed history and additional properties of the Rosenblatt process we refer to
[19].

Similar to the fractional Brownian motion, the Rosenblatt process can also be
represented on a finite time interval in terms of function P H .

Theorem 2.5 ([6, Proposition 1]). Let P H be a function given by (2.4) and let
(ZH,2

t )t∈[0,T ] be a Rosenblatt process. Then the process

Y H,2
t = c(H, 2)

∫︂
[0,T ]2

(︃∫︂ t

0
P

H+1
2 (u, y1)P

H+1
2 (u, y2) du

)︃
dWy1 dWy2 , t ∈ [0, T ]

has the same distribution as ZH,2.

Remark 2.1. The original proofs of the representations in Theorems 2.4 and 2.5
exploit the properties of the Wiener chaos the processes live in. In particular, the
distribution of a random variable in the first Wiener chaos is uniquely determined
by its variance and the distribution of a random variable living in the second
Wiener chaos is uniquely determined by its cumulants (see [5, Proposition 1.9]).

Alternatively, by using a regularization technique, one can obtain a finite time
interval representation of Hermite process of general order (see [20]) of the form

Y H,q
t = c(H, q)

∫︂
[0,T ]q

(︃∫︂ t

0
P H′(u, y1) . . . P H′(u, yq) du

)︃
dWy1 . . . dWyq , (2.5)

where
H ′ = 1 + H − 1

q
.
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3. Stochastic integration with
respect to fractional Brownian
motion and Rosenblatt process
We now turn to the task of constructing stochastic integrals with respect to the
fractional Brownian motion and Rosenblatt process. As we have seen in Section
2.1.2, neither of these processes are semimartingales, hence a different approach
to stochastic integration is required.

Let us first introduce some notation. By A ∝ B we mean that there is a finite
positive constant c such that A = cB. Similarly, by A ⪯ B we mean that there
is a finite positive constant c such that A ≤ cB.

3.1 Integration with respect to Hermite process
In order to motivate the construction of stochastic integral, we will first consider
the case of deterministic integrands. Since the construction is somewhat similar
for both the fractional Brownian motion and the Rosenblatt process we will again
consider the case of general Hermite process. The construction will closely follow
[21] but it will be translated to the setting of a finite time interval using the
representation from Remark 2.1.

Let H ∈ (1
2 , 1), q ∈ N, and consider the operator KH,q which is defined on set

of functions f : [0, T ] → R, takes values in the set of functions g : [0, T ]q → R
and is given by

KH,q(f)(y1, . . . , yq) = c(H, q)
∫︂ T

0
f(u)

q∏︂
k=1

P H′(u, yk) du

= c(H, q)
∫︂ T

0
f(u)

q∏︂
k=1

(︃
yk

u

)︃−( 1
2 − 1−H

q )
(u − yk)

−( 1
2 + 1−H

q )
+ du.

Clearly, from the representation (2.5), we have that

Y H,q
t =

∫︂
[0,T ]q

KH,q(1[0,t])(y1, . . . , yq) dWy1 . . . dWtq (3.1)

is a Hermite process of order q on [0, T ]. In the rest of the thesis, by ZH,q, we
will mean the Hermite process of order q given by (3.1). Let A be a space of
elementary functions with form

f(s) =
m−1∑︂
j=0

aj1[tj ,tj+1)(s), (3.2)

where m ∈ N, aj ∈ R and {tj}m
j=0 is a partition of interval [0, T ]. For f ∈ A of

form (3.2) the most natural choice for the integral is to set
∫︂ T

0
f(s) dZH,q

s =
m−1∑︂
j=0

aj

(︂
ZH,q

tj+1 − ZH,q
tj

)︂
.
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Then, in view of (3.1) and the linearity of operator KH,q, we have∫︂ T

0
f(s) dZH,q

s =
m−1∑︂
j=0

aj

(︂
ZH,q

tj+1 − ZH,q
tj

)︂

=
m−1∑︂
j=0

aj

∫︂
[0,T ]q

KH,q(1[tj ,tj+1))(y1, . . . , yq) dWy1 . . . dWtq

=
∫︂

[0,T ]q
KH,q

⎛⎝m−1∑︂
j=0

aj1[tj ,tj+1)

⎞⎠ (y1, . . . , yq) dWy1 . . . dWtq

=
∫︂

[0,T ]q
KH,q(f)(y1, . . . , yq) dWy1 . . . dWtq .

Therefore, a natural extension to a larger class of functions f would be to define
the integral by∫︂ T

0
f(s) dZH,q

s =
∫︂

[0,T ]q
KH,q(f)(y1, . . . , yq) dWy1 . . . dWtq .

However, in order to do so, we need to know for which f the right-hand side of the
definition above makes sense. Recall that the q-th multiple integral was defined
for symmetric functions from L2([0, T ]q). Thus we have to investigate for which
functions f : [0, T ] → R it holds KH,q(f) ∈ L2

s([0, T ]q). Introduce the space

HH =
{︂
f : [0, T ] → R : KH,q(f) ∈ L2

s([0, T ]q)
}︂

.

The space HH can be endowed with the norm

∥f∥HH
=
√︂

q! ∥KH,q(f)∥L2([0,T ]q), f ∈ HH .

By using the Fubini theorem and identity (A.2) with a = −
(︂

1
2 + 1−H

q

)︂
, the norm

∥ · ∥HH
can be expressed as follows:

∥f∥2
HH

= q!
∫︂

[0,T ]q
|KH,q(f)(y1, . . . , yq)|2 dy1 . . . dyq

= q! c(H, q)2
∫︂

[0,T ]q

⎛⎝∫︂ T

0
f(u)

q∏︂
k=1

(︃
yk

u

)︃−( 1
2 − 1−H

q )
(u − yk)

−( 1
2 + 1−H

q )
+ du

⎞⎠
×

⎛⎝∫︂ T

0
f(w)

q∏︂
k=1

(︃
yk

w

)︃−( 1
2 − 1−H

q )
(w − yk)

−( 1
2 + 1−H

q )
+ dw

⎞⎠ dy1 . . . dyq

= q! c(H, q)2
∫︂ T

0

∫︂ T

0
f(u)f(w)(uw)q( 1

2 − 1−H
q )

×
(︃∫︂ u∧w

0
y−2 ( 1

2 − 1−H
q )(u − y)−( 1

2 + 1−H
q )(w − y)−( 1

2 + 1−H
q ) dy

)︃q

du dw

= q! c(H, q)2
∫︂ T

0

∫︂ T

0
f(u)f(w)(uw)q( 1

2 − 1−H
q )

×
(︄

B

(︄
1
2 − 1 − H

q
,
2 − 2H

q

)︄
(uw)−( 1

2 − 1−H
q )|u − w|

2H−2
q

)︄q

du dw

= q! c(H, q)2B

(︄
1
2 − 1 − H

q
,
2 − 2H

q

)︄q ∫︂ T

0

∫︂ T

0
f(u)f(w)|u − w|2H−2 du dw

= H(2H − 1)
∫︂ T

0

∫︂ T

0
f(u)f(w)|u − w|2H−2 du dw.
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Hence, we showed that the space HH coincides with the space of functions
f : [0, T ] → R that satisfy

H(2H − 1)
∫︂ T

0

∫︂ T

0
f(u)f(w)|u − w|2H−2 du dw < ∞. (3.3)

The representation of the space HH via (3.3) allows us to endow it with the inner
product

⟨f, g⟩HH
= H(2H − 1)

∫︂ T

0

∫︂ T

0
f(u)g(w)|u − w|2H−2 du dw, f, g ∈ HH .

Denote
C(t, s) = 1

2
(︂
t2H + s2H − |t − s|2H

)︂
, s, t ∈ [0, T ].

We derived in Section 2.1 that C is the covariance function of Hermite process
ZH,q. For any f ∈ A of form (3.2), we have

⃦⃦⃦⃦
⃦
∫︂ T

0
f(s) dZH,q

s

⃦⃦⃦⃦
⃦

2

L2(Ω)
=

⃦⃦⃦⃦
⃦⃦m−1∑︂

j=0
aj

(︂
ZH,q

tj+1 − ZH,q
tj

)︂⃦⃦⃦⃦⃦⃦
2

L2(Ω)

=
m−1∑︂
i=0

m−1∑︂
j=0

aiajE
(︂
(ZH,q

ti+1 − ZH,q
ti

)(ZH,q
tj+1 − ZH,q

tj
)
)︂

=
m−1∑︂
i=0

m−1∑︂
j=0

aiaj (C(ti+1, tj+1) − C(ti+1, tj) − C(tj+1, ti) + C(ti, tj))

=
m−1∑︂
i=0

m−1∑︂
j=0

aiajH(2H − 1)
∫︂ ti+1

ti

∫︂ tj+1

tj

|u − w|2H−2 du dw

=
m−1∑︂
i=0

m−1∑︂
j=0

aiaj

⟨︂
1[ti,ti+1), 1[tj ,tj+1)

⟩︂
HH

=
⟨︄

m−1∑︂
i=0

ai1[ti,ti+1),
m−1∑︂
j=0

aj1[tj ,tj+1)

⟩︄
HH

= ∥f∥2
HH

,

where we used the identity (2.1). In particular, the space A is included in HH

and the mapping
f ↦→

∫︂ T

0
f(s) dZH,q

s

is an isometry from A to L2(Ω). One can show that the space of elementary
functions A is dense in HH (see [22]) and so the mapping

f ↦→
∫︂ T

0
f(s) dZH,q

s

can be extended to an isometry from HH to L2(Ω). We call this isometry the
Wiener integral with respect to the Hermite process ZH,q.

In what follows, we will not be working with the space HH . Instead we restrict
the integrands to a smaller class of functions. Namely, we restrict to the space
L

1
H ([0, T ]). The following proposition is based on [23, Lemma 1].
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Proposition 3.1. We have the following inclusion

L
1
H ([0, T ]) ⊆ HH .

In particular, the linear operator KH,q is bounded from L
1
H ([0, T ]) to L2([0, T ]q).

Proof. We have

∥KH,q(g)∥2
L2([0,T ]q) ∝ ∥g∥2

HH
⪯
∫︂ T

0

∫︂ T

0
|g(u)||g(w)||u − w|2H−2 du dw

∝
∫︂ T

0
|g(u)|

∫︂ u

0
|g(w)|(u − w)2H−2 dw du.

By Hölder’s inequality with p = 1
H

,
∫︂ T

0
|g(u)|

∫︂ u

0
|g(w)|(u − w)2H−2 dw du

≤
(︄∫︂ T

0
|g(u)| 1

H du

)︄H (︄∫︂ T

0

(︃∫︂ u

0
|g(w)|(u − w)2H−2 dw

)︃ 1
1−H

du

)︄1−H

.

The second factor on the right-hand side of the above inequality is, up to a mul-
tiplicative constant, equal to ∥I2H−1

0+ |g|∥
L

1
1−H ([0,T ])

, where I2H−1
0+ is the left-sided

fractional integral of order 2H − 1 (see Definition A.3). According to Theorem
A.2 with α = 2H − 1, p = 1

H
, and q = 1

1−H
we have

∥I2H−1
0+ |g|∥

L
1

1−H ([0,T ])
⪯ ∥g∥

L
1
H ([0,T ])

.

Altogether, we showed

∥KH,q(g)∥2
L2([0,T ]q) ∝ ∥g∥2

HH
⪯ ∥g∥2

L
1
H ([0,T ])

.

3.2 Stochastic integration with respect to the
fractional Brownian motion

We now turn to the definition of a stochastic integral with respect to the fractional
Brownian motion. In the previous section, we saw that for any function f ∈ HH ,
we can define the integral by∫︂ T

0
f(s) dZH,1

s =
∫︂ T

0
KH,1(f)(y) dWy

= c(H, 1)
∫︂ T

0

(︄∫︂ T

0
f(u)

(︃
y

u

)︃ 1
2 −H

(u − y)H− 3
2

+ du

)︄
dWy.

Recall that the multiple integral I1 was defined as the divergence operator δ,
which, in general, acted on stochastic processes u ∈ Dom δ. The stochastic
integral with respect to the fractional Brownian motion can then be defined in
terms of δ and the transfer operator KH,1.
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Definition 3.1. Let M ⊆ [0, T ] be an interval. A Borel measurable function
g : [0, T ] → L2(Ω) is said to be Skorokhod integrable with respect to the fractional
Brownian motion on M if KH,1(g1M) ∈ Dom δ. In such case, the Skorokhod
integral is defined by ∫︂

M
gs dZH,1

s = δ
(︂
KH,1(g1M)

)︂
.

In general, the Skorokhod integral is defined for stochastic processes g such
that KH,1(g) ∈ Dom δ, however, such class of processes is difficult to describe.
Hence we will only consider a suitable subspace of these processes. Such suitable
subspace is described by the following proposition which is based on [23].

Proposition 3.2. The operator
∫︁ T

0 (. . .) dZH,1 is bounded from L
1
H ([0, T ];D1, 1

H )
to L

1
H (Ω).

Proof. Let g ∈ L
1
H ([0, T ];D1, 1

H ). By Theorem 1.8, we have
⃦⃦⃦⃦
⃦
∫︂ T

0
gs dZH,1

s

⃦⃦⃦⃦
⃦

1
H

L
1
H (Ω)

=
⃦⃦⃦
δ
(︂
KH,1(g)

)︂⃦⃦⃦ 1
H

L
1
H (Ω)

⪯
⃦⃦⃦
KH,1(g)

⃦⃦⃦ 1
H

D1, 1
H (L2([0,T ]))

= E
⃦⃦⃦
KH,1(g)

⃦⃦⃦ 1
H

L2([0,T ])
+ E

⃦⃦⃦
|D(KH,1(g))

⃦⃦⃦ 1
H

L2([0,T ]2)
. (3.4)

Using Proposition 3.1 gives

E
⃦⃦⃦
KH,1(g)

⃦⃦⃦ 1
H

L2([0,T ])
⪯ E ∥g∥

1
H

L
1
H ([0,T ])

=
∫︂ T

0
E|gs|

1
H ds.

For the second term in (3.4), by linearity and closability of the Malliavin deriva-
tive, we can interchange KH,1 and D. Then from Proposition 3.1 and the gener-
alized Minkowski inequality it follows that

E
⃦⃦⃦
D(KH,1(g))

⃦⃦⃦ 1
H

L2([0,T ]2)
= E

⃦⃦⃦
KH,1(Dg)

⃦⃦⃦ 1
H

L2([0,T ]2)

= E
(︄∫︂ T

0
∥KH,1(Dxg)∥2

L2([0,T ]) dx

)︄ 1
2H

⪯ E
(︄∫︂ T

0
∥Dxg∥2

L
1
H ([0,T ])

dx

)︄ 1
2H

= E

⎛⎝∫︂ T

0

(︄∫︂ T

0
|Dxgs|

1
H ds

)︄2H

dx

⎞⎠ 1
2H

≤ E
∫︂ T

0

(︄∫︂ T

0
|Dxgs|2 dx

)︄ 1
2H

ds

=
∫︂ T

0
E∥Dgs∥

1
H

L2([0,T ]) ds.
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Summarized, we have

E
⃦⃦⃦
KH,1(g)

⃦⃦⃦ 1
H

L2([0,T ])
⪯ E

⃦⃦⃦
KH,1(g)

⃦⃦⃦ 1
H

L2([0,T ])
+ E

⃦⃦⃦
|D(KH,1(g))

⃦⃦⃦ 1
H

L2([0,T ]2)

⪯
∫︂ T

0
E|gs|

1
H ds +

∫︂ T

0
E∥Dgs∥

1
H

L2([0,T ]) ds

=
∫︂ T

0
∥gs∥

1
H

D1, 1
H

ds = ∥g∥
1
H

L
1
H ([0,T ];D1, 1

H )
.

A slightly more general approach to Skorokhod integrability with respect to the
fractional Brownian motion can be found in [9, Section 5.2].

3.3 Stochastic integration with respect to the
Rosenblatt process

A stochastic integral with respect to the Rosenblatt process can be defined simi-
larly as the integral with respect to the fractional Brownian motion. In Section
3.1, we defined the integral for deterministic integrands f ∈ HH by∫︂ T

0
f(s) dZH,2

s =
∫︂

[0,T ]2
KH,2(f)(y1, y2) dWy1 dWy2 .

Again, the stochastic integral with respect to ZH,2 can be defined via the diver-
gence δ2 and the transfer operator KH,2.

Definition 3.2. Let M ⊆ [0, T ] be an interval. A Borel measurable function
g : [0, T ] → L2(Ω) is said to be Skorokhod integrable with respect to the Rosenblatt
process on M if KH,2(g1M) ∈ Dom δ2. In such case, the Skorokhod integral is
defined by ∫︂

M
gs dZH,2

s = δ2
(︂
KH,2(g1M)

)︂
.

What follows is a Skorokhod integrability condition similar to Proposition 3.2.

Proposition 3.3. The operator
∫︁ T

0 (. . .) dZH,2 is bounded from L
1
H ([0, T ];D2, 1

H )
to L

1
H (Ω).

Proof. The proof follows similarly as the proof of Proposition 3.2. One uses
Theorem 1.8 to obtain⃦⃦⃦⃦
⃦
∫︂ T

0
gs dZH,2

s

⃦⃦⃦⃦
⃦

1
H

L
1
H (Ω)

=
⃦⃦⃦
δ2
(︂
KH,2(g1M)

)︂⃦⃦⃦ 1
H

L
1
H (Ω)

⪯ E
⃦⃦⃦
KH,2(g)

⃦⃦⃦ 1
H

L2([0,T ]2)
+ E

⃦⃦⃦
|D(KH,2(g))

⃦⃦⃦ 1
H

L2([0,T ]3)
+ E

⃦⃦⃦
|D2(KH,2(g))

⃦⃦⃦ 1
H

L2([0,T ]4)
.

Then it is enough to use Proposition 3.1 and the generalized Minkowski inequality
as in the proof of Proposition 3.2.

An alternative Skorokhod integrability condition for the Rosenblatt process can
be found in [6, Lemma 1].
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4. Variations of stochastic
integrals
By Proposition 2.3, we have

V 1/H
n (ZH,q) L1(Ω)−−−→

n→∞
T E|ZH,q

1 |
1
H . (4.1)

It is natural to ask whether the result (4.1) can be extended to Skorokhod integrals
introduced in Sections 3.2 and 3.3. For the fractional Brownian motion we have
the following result which was proved by Guerra and Nualart [4]. For n ∈ N0 we
denote Ln, 1

H = L
1
H ([0, T ];Dn, 1

H ).

Theorem 4.1. Let g ∈ L1, 1
H . Set Xt =

∫︁ t
0 gs dZH,1

s , t ∈ [0, T ], then

V 1/H
n (X) L1(Ω)−−−→

n→∞
cH

∫︂ T

0
|gs|

1
H ds,

where cH = E|ZH,1
1 | 1

H .

Proof. The proof follows in similar manner as the proof of Theorem 4.2 or see
[4] for the original proof for a slightly larger class of integrands.

Remark 4.1. For the fractional Brownian motion, it is possible to develop stochas-
tic integral even for the case 0 < H < 1

2 . For such integrals one can prove a
counterpart to Theorem 4.1 as was done by Essaky and Nualart [24].

In view of (4.1) and multiple common properties that the fractional Brownian
motion and Rosenblatt process share, it is not unreasonable to expect that a
statement similar to Theorem 4.1 should also hold for the Skorokhod integral
with respect to the Rosenblatt process. Indeed, for the Rosenblatt process ZH,2,
we have the following

Theorem 4.2. Let g ∈ L2, 1
H . Set Xt =

∫︁ t
0 gs dZH,2

s , t ∈ [0, T ], then

V 1/H
n (X) L1(Ω)−−−→

n→∞
CH

∫︂ T

0
|gs|

1
H ds,

where CH = E|ZH,2
1 | 1

H .

Our main goal in this chapter will be to prove Theorem 4.2. The proof will
be based on the techniques which were used in [4] to prove Theorem 4.1.

We start with a general inequality for a difference of variations of two stochas-
tic processes.

Lemma 4.3. Let X and Y be two stochastic processes such that EV 1/H
n (X) < ∞

and EV 1/H
n (Y ) < ∞ for all n ∈ N. Then for any n ∈ N, it holds that

E|V 1/H
n (X) − V 1/H

n (Y )|

≤
(︂
EV 1/H

n (X − Y )
)︂H

(︃(︂
EV 1/H

n (X)
)︂1−H

+
(︂
EV 1/H

n (Y )
)︂1−H

)︃
.
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Proof. Let [a, b] ⊂ R be an interval. We will show the inequality
⃓⃓⃓
|b|

1
H − |a|

1
H

⃓⃓⃓
≤ 1

H
|b − a|

(︂
|b|

1
H

−1 + |a|
1
H

−1
)︂

. (4.2)

We will consider two cases:
Case 1. Assume that the interval (a, b) does not contain zero. Consider a func-
tion f : [a, b] → R given by f(x) = |x| 1

H . Then, by the mean value theorem,
there is a ξ ∈ (a, b) such that

1
H

|ξ|
1
H

−1|b − a| =
⃓⃓⃓
|b|

1
H − |a|

1
H

⃓⃓⃓
.

From here it follows that⃓⃓⃓
|b|

1
H − |a|

1
H

⃓⃓⃓
= 1

H
|ξ|

1
H

−1|b − a| ≤ 1
H

|b − a|
(︂
|b|

1
H

−1 + |a|
1
H

−1
)︂

.

Case 2. Now assume that the interval (a, b) contains zero. By the mean value
theorem applied to function fb : [0, b] → R given by fb(x) = |x| 1

H , there is a
ξb ∈ (0, b) such that

|b|
1
H = 1

H
|ξb|

1
H

−1b.

Similarly, there is a ξa ∈ (a, 0) such that

−|a|
1
H = 1

H
|ξa|

1
H

−1a.

Altogether, we have
⃓⃓⃓
|b|

1
H − |a|

1
H

⃓⃓⃓
=
⃓⃓⃓⃓ 1
H

|ξb|
1
H

−1b + 1
H

|ξa|
1
H

−1a
⃓⃓⃓⃓

≤ 1
H

|ξb|
1
H

−1|b| + 1
H

|ξa|
1
H

−1|a|

≤ 1
H

(︂
|b|

1
H

−1 + |a|
1
H

−1
)︂

(|b| + |a|)

= 1
H

(︂
|b|

1
H

−1 + |a|
1
H

−1
)︂

(b − a)

= 1
H

(︂
|b|

1
H

−1 + |a|
1
H

−1
)︂

|b − a|.
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In view of (4.2), we obtain

E|V 1/H
n (X) − V 1/H

n (Y )| = E
⃓⃓⃓⃓
⃓
2n−1∑︂
i=0

|Xtn
i+1

− Xtn
i
|

1
H −

2n−1∑︂
i=0

|Ytn
i+1

− Ytn
i
|

1
H

⃓⃓⃓⃓
⃓

≤ E
2n−1∑︂
i=0

⃓⃓⃓
|Xtn

i+1
− Xtn

i
|

1
H − |Ytn

i+1
− Ytn

i
|

1
H

⃓⃓⃓

≤ 1
H
E

⎡⎣ 2n−1∑︂
i=0

|(Xtn
i+1

− Xtn
i
) − (Ytn

i+1
− Ytn

i
)|

×
(︂
|Xtn

i+1
− Xtn

i
|

1
H

−1 + |Ytn
i+1

− Ytn
i
|

1
H

−1
)︂ ⎤⎦

= 1
H
E

⎡⎣ 2n−1∑︂
i=0

|(Xtn
i+1

− Ytn
i+1

) − (Xtn
i

− Ytn
i
)|

×
(︂
|Xtn

i+1
− Xtn

i
|

1
H

−1 + |Ytn
i+1

− Ytn
i
|

1
H

−1
)︂ ⎤⎦

= 1
H
E
[︄2n−1∑︂

i=0
|(Xtn

i+1
− Ytn

i+1
) − (Xtn

i
− Ytn

i
)||Xtn

i+1
− Xtn

i
|

1
H

−1
]︄

+ 1
H
E
[︄2n−1∑︂

i=0
|(Xtn

i+1
− Ytn

i+1
) − (Xtn

i
− Ytn

i
)||Ytn

i+1
− Ytn

i
|

1
H

−1
]︄

.

Applying Hölder’s inequality with p = 1
H

on both of the terms yields

1
H
E
[︄2n−1∑︂

i=0
|(Xtn

i+1
− Ytn

i+1
) − (Xtn

i
− Ytn

i
)||Xtn

i+1
− Xtn

i
|

1
H

−1
]︄

+ 1
H
E
[︄2n−1∑︂

i=0
|(Xtn

i+1
− Ytn

i+1
) − (Xtn

i
− Ytn

i
)||Ytn

i+1
− Ytn

i
|

1
H

−1
]︄

≤ 1
H

(︄
E

2n−1∑︂
i=0

|(Xtn
i+1

− Ytn
i+1

) − (Xtn
i

− Ytn
i
)| 1

H

)︄H (︄
E

2n−1∑︂
i=0

|Xtn
i+1

− Xtn
i
|

1
H

)︄1−H

+ 1
H

(︄
E

2n−1∑︂
i=0

|(Xtn
i+1

− Ytn
i+1

) − (Xtn
i

− Ytn
i
)| 1

H

)︄H (︄
E

2n−1∑︂
i=0

|Ytn
i+1

− Ytn
i
|

1
H

)︄1−H

= 1
H

(︂
EV 1/H

n (X − Y )
)︂H

(︃(︂
EV 1/H

n (X)
)︂1−H

+
(︂
EV 1/H

n (Y )
)︂1−H

)︃
.

A special case of Lemma 4.3 where the stochastic processes are Skorokhod inte-
grals is described by the following lemma.
Lemma 4.4. Let g, h ∈ L2, 1

H and for t ∈ [0, T ] set

Xt =
∫︂ t

0
gs dZH,2

s , Yt =
∫︂ t

0
hs dZH,2

s .

Then we have the following estimate

E|V 1/H
n (X) − V 1/H

n (Y )| ≤ kH∥g − h∥
L2, 1

H

(︃
∥g∥

1−H
H

L2, 1
H

+ ∥h∥
1−H

H

L2, 1
H

)︃
,

where kH is a finite positive constant.
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Proof. Applying Lemma 4.3 gives

E|V 1/H
n (X) − V 1/H

n (Y )| ≤ 1
H

⎛⎝E 2n−1∑︂
i=0

⃓⃓⃓⃓
⃓
∫︂ tn

i+1

tn
i

(gs − hs) dZH,2
s

⃓⃓⃓⃓
⃓

1
H

⎞⎠H

×

⎡⎢⎣
⎛⎝E n−1∑︂

i=0

⃓⃓⃓⃓
⃓
∫︂ tn

i+1

tn
i

gs dZH,2
s

⃓⃓⃓⃓
⃓

1
H

⎞⎠1−H

+
⎛⎝E n−1∑︂

i=0

⃓⃓⃓⃓
⃓
∫︂ tn

i+1

tn
i

hs dZH,2
s

⃓⃓⃓⃓
⃓

1
H

⎞⎠1−H
⎤⎥⎦ .

From the boundedness of the Skorokhod integral (Proposition 3.3) it follows that

E
2n−1∑︂
i=0

⃓⃓⃓⃓
⃓
∫︂ tn

i+1

tn
i

gs dZH,2
s

⃓⃓⃓⃓
⃓

1
H

=
2n−1∑︂
i=0

⃦⃦⃦⃦
⃦
∫︂ T

0
gs1[tn

i ,tn
i+1](s) dZH,2

s

⃦⃦⃦⃦
⃦

1
H

L
1
H (Ω)

⪯
2n−1∑︂
i=0

⃦⃦⃦
g1[tn

i ,tn
i+1]

⃦⃦⃦ 1
H

L2, 1
H

=
2n−1∑︂
i=0

∫︂ T

0

⃦⃦⃦
gs1[tn

i ,tn
i+1](s)

⃦⃦⃦ 1
H

D2, 1
H

ds

=
2n−1∑︂
i=0

∫︂ T

0
E|gs1[tn

i ,tn
i+1](s)| 1

H ds +
2n−1∑︂
i=0

∫︂ T

0
E
(︄∫︂ T

0
|Dxgs1[tn

i ,tn
i+1](s)|2 dx

)︄ 1
2H

ds

+
2n−1∑︂
i=0

∫︂ T

0
E
(︄∫︂ T

0

∫︂ T

0
|D2

x,ygs1[tn
i ,tn

i+1](s)|2 dx dy

)︄ 1
2H

ds

=
∫︂ T

0
E|gs|

1
H ds +

∫︂ T

0
E
(︄∫︂ T

0
|Dxgs|2 dx

)︄ 1
2H

ds

+
∫︂ T

0
E
(︄∫︂ T

0

∫︂ T

0
|Dx,ygs|2 dx dy

)︄ 1
2H

ds

= ∥g∥
1
H

L2, 1
H

,

where in the second to last equality we used the local property of Malliavin
derivative (Proposition 1.4). This yields the desired inequality.

Let g ∈ L2, 1
H and set Xt =

∫︁ t
0 gs dZH,2

s , then from Lemma 4.4 (by choosing h = 0),
we obtain the estimate

EV 1/H
n (X) ≤ kH∥g∥

1
H

L2, 1
H

. (4.3)

Consider the space

D2, 1
H

b =
{︂
F ∈ D2, 1

H : F is bounded
}︂

.

Let UT be the space of bounded elementary processes, that is, the space of pro-
cesses of the form

u =
m−1∑︂
j=0

Fj1[sj ,sj+1),

where Fj ∈ D2, 1
H

b and {sj}m
j=0 is a partition of interval [0, T ]. We show that the

space UT is dense in L2, 1
H . We first prove the following auxiliary lemma.
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Lemma 4.5. Let g ∈ L2, 1
H , then for any interval [a, b] ⊆ [0, T ], the random

variable
∫︁ b

a gs ds belongs to D2, 1
H .

Proof. By the definition of the norm in D2, 1
H , we have⃦⃦⃦⃦

⃦
∫︂ b

a
gs ds

⃦⃦⃦⃦
⃦

1
H

D2, 1
H

= E
⃓⃓⃓⃓
⃓
∫︂ b

a
gs ds

⃓⃓⃓⃓
⃓

1
H

+ E
⃦⃦⃦⃦
⃦D

∫︂ b

a
gs ds

⃦⃦⃦⃦
⃦

1
H

L2([0,T ])
+ E

⃦⃦⃦⃦
⃦D2

∫︂ b

a
gs ds

⃦⃦⃦⃦
⃦

1
H

L2([0,T ]2)

For the first term, by Hölder’s inequality with p = 1
H

, we obtain

E
⃓⃓⃓⃓
⃓
∫︂ b

a
gs ds

⃓⃓⃓⃓
⃓

1
H

≤ E
(︄∫︂ b

a
|gs| ds

)︄ 1
H

≤ E
(︄∫︂ T

0
|gs|

1
H ds

)︄(︄∫︂ T

0
1

1
1−H ds

)︄ 1−H
H

= T
1−H

H E
∫︂ b

a
|gs|

1
H ds.

For the second term, by successively applying the generalized Minkowski and
Hölder inequality, it is readily seen that the following holds:

E
⃦⃦⃦⃦
⃦D

∫︂ b

a
gs ds

⃦⃦⃦⃦
⃦

1
H

L2([0,T ])
= E

⎛⎝∫︂ T

0

⃓⃓⃓⃓
⃓
∫︂ T

0
1[a,b](s)Dxgs ds

⃓⃓⃓⃓
⃓
2

dx

⎞⎠ 1
2H

≤ E

⎛⎝∫︂ T

0

(︄∫︂ T

0
|Dxgs|2 dx

)︄ 1
2

ds

⎞⎠
1
H

≤ E

⎡⎢⎣
⎛⎝∫︂ T

0

(︄∫︂ T

0
|Dxgs|2 dx

)︄ 1
2H

ds

⎞⎠H (︄∫︂ T

0
1

1
1−H ds

)︄1−H
⎤⎥⎦

1
H

= T
1−H

H E
∫︂ T

0

(︄∫︂ T

0
|Dxgs|2 dx

)︄ 1
2H

ds.

For the last term, by the same arguments as for the second term, we have

E
⃦⃦⃦⃦
⃦D2

∫︂ b

a
gs ds

⃦⃦⃦⃦
⃦

1
H

L2([0,T ]2)
≤ T

1−H
H E

∫︂ T

0

(︄∫︂ T

0

∫︂ T

0
|Dx,ygs|2 dx dy

)︄ 1
2H

ds.

Altogether, we obtain

⃦⃦⃦⃦
⃦
∫︂ b

a
gs ds

⃦⃦⃦⃦
⃦

1
H

D2, 1
H

⪯ E
∫︂ b

a
|gs|

1
H ds + E

∫︂ T

0

(︄∫︂ T

0
|Dxgs|2 dx

)︄ 1
2H

ds

+ E
∫︂ T

0

(︄∫︂ T

0

∫︂ T

0
|Dx,ygs|2 dx dy

)︄ 1
2H

ds = ∥g∥
1
H

L2, 1
H

and therefore
∫︁ b

a us ds ∈ D2, 1
H .

We can now prove the following.
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Lemma 4.6. The set UT is dense in L2, 1
H .

Proof. For g ∈ L2, 1
H , consider a sequence of processes {gm}m∈N

gm
t =

m−1∑︂
j=0

Gm
j 1[sm

j ,sm
j+1)(t), t ∈ [0, T ],

where {sm
j = jT

m
}m

j=0 is the uniform partition of interval [0, T ] and {Gm
j }m−1

j=0 is
defined by

Gm
j = 1

sm
j+1 − sm

j

∫︂ sm
j+1

sm
j

gs ds.

According to Lemma 4.5, we have that Gm
j ∈ D2, 1

H . Furthermore, we will show
that gm ∈ L2, 1

H and that we have the uniform bound ∥gm∥
L2, 1

H
≤ ∥g∥

L2, 1
H

. We
have

∥gm∥
1
H

L2, 1
H

= E
∫︂ T

0
|gm

s |
1
H ds +

∫︂ T

0
E∥Dgm

s ∥
1
H

L2([0,T ]) ds +
∫︂ T

0
E∥D2gm

s ∥
1
H

L2([0,T ]2) ds.

For the first term, using Hölder’s inequality gives

E
∫︂ T

0
|gm

s |
1
H ds = E

∫︂ T

0

⃓⃓⃓⃓
⃓⃓m−1∑︂

j=0
1[sm

j ,sm
j+1)(s) 1

sm
j+1 − sm

j

∫︂ sm
j+1

sm
j

gt dt

⃓⃓⃓⃓
⃓⃓

1
H

ds

=
m−1∑︂
j=0

∫︂ sm
j+1

sm
j

E
⃓⃓⃓⃓
⃓ 1
sm

j+1 − sm
j

∫︂ sm
j+1

sm
j

gt dt

⃓⃓⃓⃓
⃓

1
H

ds

≤
m−1∑︂
j=0

∫︂ sm
j+1

sm
j

E

⃓⃓⃓⃓
⃓⃓ 1
sm

j+1 − sm
j

(︄∫︂ sm
j+1

sm
j

|gt|
1
H dt

)︄H (︄∫︂ sm
j+1

sm
j

1
1

1−H dt

)︄1−H
⃓⃓⃓⃓
⃓⃓

1
H

=
m−1∑︂
j=0

∫︂ sm
j+1

sm
j

1
sm

j+1 − sm
j

E
∫︂ sm

j+1

sm
j

|gt|
1
H dt ds

=
m−1∑︂
j=0

E
∫︂ sm

j+1

sm
j

|gt|
1
H dt

= E
∫︂ T

0
|gt|

1
H dt

For the second term, successively using the generalized Minkowski inequality
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twice and Hölder’s inequality yields

∫︂ T

0
E∥Dgm

s ∥
1
H

L2([0,T ]) ds =
∫︂ T

0
E
(︄∫︂ T

0
|Dxgm

s |2 dx

)︄ 1
2H

ds

=
∫︂ T

0
E

⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓Dx

⎛⎝m−1∑︂
j=0

1[sm
j ,sm

j+1)(s) 1
sm

j+1 − sm
j

∫︂ sm
j+1

sm
j

gt dt

⎞⎠⃓⃓⃓⃓⃓⃓
2

dx

⎞⎟⎠
1

2H

ds

=
m−1∑︂
j=0

∫︂ sm
j+1

sm
j

E

⎛⎝∫︂ T

0

⃓⃓⃓⃓
⃓ 1
sm

j+1 − sm
j

∫︂ sm
j+1

sm
j

Dxgt dt

⃓⃓⃓⃓
⃓
2

dx

⎞⎠ 1
2H

ds

=
m−1∑︂
j=0

(sm
j+1 − sm

j )1− 1
H E

⎛⎝∫︂ T

0

⃓⃓⃓⃓
⃓
∫︂ sm

j+1

sm
j

Dxgt dt

⃓⃓⃓⃓
⃓
2

dx

⎞⎠ 1
2H

≤
m−1∑︂
j=0

(sm
j+1 − sm

j )1− 1
H E

⎛⎝∫︂ sm
j+1

sm
j

(︄∫︂ T

0
|Dxgt|2 dx

)︄ 1
2

dt

⎞⎠
1
H

≤
m−1∑︂
j=0

(sm
j+1 − sm

j )1− 1
H

⎛⎜⎝∫︂ sm
j+1

sm
j

⎛⎝E(︄∫︂ T

0
|Dxgt|2 dx

)︄ 1
2H

⎞⎠H

dt

⎞⎟⎠
1
H

≤
m−1∑︂
j=0

(sm
j+1 − sm

j )1− 1
H

⎛⎜⎝
⎛⎝∫︂ sm

j+1

sm
j

E
(︄∫︂ T

0
|Dxgt|2 dx

)︄ 1
2H

dt

⎞⎠H

(sm
j+1 − sm

j )1−H

⎞⎟⎠
1
H

=
m−1∑︂
j=0

∫︂ sm
j+1

sm
j

E
(︄∫︂ T

0
|Dxgt|2 dx

)︄ 1
2H

dt =
∫︂ T

0
E
(︄∫︂ T

0
|Dxgt|2 dx

)︄ 1
2H

dt.

As for the last term, by exactly the same arguments as for the second term, we
obtain

∫︂ T

0
E∥D2gm

s ∥
1
H

L2([0,T ]2) ds ≤
∫︂ T

0
E
(︄∫︂ T

0

∫︂ T

0
|D2

x,ygt|2 dx dy

)︄ 1
2H

dt,

from which we can conclude that ∥gm∥
L2, 1

H
≤ ∥g∥

L2, 1
H

and hence gm ∈ L2, 1
H .

Now, consider processes g ∈ L2, 1
H such that

t ↦→ gt

is a continuous mapping. We denote the class of such processes L2, 1
H

C . Then for
any g ∈ L2, 1

H
C , we have

∫︂ T

0
E|gs − gm

s |
1
H ds =

∫︂ T

0
E

⃓⃓⃓⃓
⃓⃓gs −

m−1∑︂
j=0

1[sm
j ,sm

j+1)(s) 1
sm

j+1 − sm
j

∫︂ sm
j+1

sm
j

gt dt

⃓⃓⃓⃓
⃓⃓

1
H

ds

=
∫︂ T

0
E

⃓⃓⃓⃓
⃓⃓m−1∑︂

j=0
1[sm

j ,sm
j+1)(s) 1

sm
j+1 − sm

j

∫︂ sm
j+1

sm
j

(gs − gt) dt

⃓⃓⃓⃓
⃓⃓

1
H

ds

≤ T sup
|t−s|≤ T

m

E|gt − gs|
1
H −−−→

m→∞
0
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and∫︂ T

0
E∥D(gs − gm

s )∥
1
H

L2([0,T ]) ds =
∫︂ T

0
E
(︄∫︂ T

0
|Dx(gs − gm

s )|2 dx

)︄ 1
2H

ds

=
∫︂ T

0
E

⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓Dxgs −

m−1∑︂
j=0

1[sm
j ,sm

j+1)(s) 1
sm

j+1 − sm
j

∫︂ sm
j+1

sm
j

Dxgt dt

⃓⃓⃓⃓
⃓⃓
2

dx

⎞⎟⎠
1

2H

ds

=
∫︂ T

0
E

⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓m−1∑︂

j=0
1[sm

j ,sm
j+1)(s) 1

sm
j+1 − sm

j

∫︂ sm
j+1

sm
j

Dx(gs − gt) dt

⃓⃓⃓⃓
⃓⃓
2

dx

⎞⎟⎠
1

2H

ds

≤ T sup
|t−s|≤ T

m

E
(︄∫︂ T

0
|Dx(gt − gs)|2 dx

)︄ 1
2H

−−−→
m→∞

0.

By the same arguments as above∫︂ T

0
E∥D2(gs − gm

s )∥
1
H

L2([0,T ]2) ds −−−→
m→∞

0.

Since L2, 1
H

C is dense in L2, 1
H , we get that

∥g − gm∥
L2, 1

H
−−−→
m→∞

0

for any g ∈ L2, 1
H .

It remains to show that any F ∈ D2, 1
H can be approximated by a sequence

{Fk} ⊂ D2, 1
H

b . For k ∈ N, let φk : R → R be functions such that φk ∈ C2(R),
φk(x) = x, |x| ≤ k,

φk(x) ≤ k, |x| > k + 1,

|φ′
k(x)| ≤ 1, x ∈ R,

|φ′′
k(x)| ≤ K, x ∈ R,

where K is a finite positive constant. Assume, moreover, that
sup
x∈R

|φ′
k(x) − 1| −−−→

k→∞
0, sup

x∈R
|φ′′

k(x)| −−−→
k→∞

0.

For k ∈ N, set Fk = φk(F ). Then by Proposition 1.3, we have that Fk ∈ D2, 1
H

and that Fk is clearly bounded for each k ∈ N. We will show that

∥F −Fk∥
1
H

D2, 1
H

= E|F −Fk|
1
H +E∥D(F −Fk)|

1
H

L2([0,T ])+E∥D2(F −Fk)|
1
H

L2([0,T ]2) (4.4)

converges to zero as k → ∞. Consider the first term of (4.4). By the mean value
theorem, we obtain

E|F − Fk|
1
H = E|F − φk(F )| 1

H

≤ 2 1
H

−1
(︂
E|F |

1
H + E|φk(F )| 1

H

)︂
= 2 1

H
−1
(︂
E|F |

1
H + E|φk(F ) − φk(0)| 1

H

)︂
= 2 1

H
−1
(︃
E|F |

1
H + E

(︂
|φ′

k(ξ)| · |F − 0|
)︂ 1

H

)︃
≤ 2 1

H
−1
(︂
E|F |

1
H + E|F |

1
H

)︂
= 2 1

H E|F |
1
H < ∞.
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And so, by the dominated convergence theorem, we have E|F − Fk| 1
H → 0 as

k → ∞. Now consider the second term in (4.4). By using Proposition 1.3, it
follows that

E∥D(F − Fk)∥
1
H

L2([0,T ]) = E∥D(F − φk(F ))∥
1
H

L2([0,T ])

= E∥DF − φ′
k(F )DF∥

1
H

L2([0,T ])

≤ sup
x∈R

|1 − φ′
k(x)| 1

H E∥DF∥
1
H

L2([0,T ]) −−−→
k→∞

0.

As for the last term in (4.4), since in view of Proposition 1.3 we have

D2φk(F ) = D
(︂
φ′

k(F )DF
)︂

= φ′
k(F )D2F + φ′′

k(F )(DF ⊗ DF ),

we obtain

E∥D2(F − Fk)∥
1
H

L2([0,T ]2) = E∥D2(F − φk(F ))∥
1
H

L2([0,T ]2)

= E∥D2F − φ′
k(F )D2F − φ′′

k(F )(DF ⊗ DF )∥
1
H

L2([0,T ]2),

where again the right-hand side converges to zero, as k → ∞, by the conditions
imposed on φk.

Proof of Theorem 4.2. Since, by Lemma 4.6, the space UT is dense in L2, 1
H , we

can find a sequence of bounded elementary processes {gm} ⊆ UT of the form

gm =
m−1∑︂
j=0

F m
j 1[sm

j ,sm
j+1),

where F m
j ∈ D2, 1

H
b and {sm

j }m
j=0 is a partition of interval [0, T ], such that

∥g − gm∥
L2, 1

H
−−−→
m→∞

0.

Set Xm
t =

∫︁ t
0 gm

s dZH,2
s . Then by the triangle inequality, we have

E
⃓⃓⃓⃓
⃓V 1/H

n (X) − CH

∫︂ T

0
|gs|

1
H ds

⃓⃓⃓⃓
⃓ ≤ E|V 1/H

n (X) − V 1/H
n (Xm)|

+ E
⃓⃓⃓⃓
⃓V 1/H

n (Xm) − CH

∫︂ T

0
|gm

s |
1
H ds

⃓⃓⃓⃓
⃓

+ CHE
⃓⃓⃓⃓
⃓
∫︂ T

0
(|gm

s |
1
H − |gs|

1
H ) ds

⃓⃓⃓⃓
⃓

= am
n + bm

n + cm.

We want to show that all three terms converge to zero. We will prove this in
multiple steps.
Step 1. Consider term am

n first. From Lemma 4.4, we have

sup
n∈N

am
n = sup

n∈N
E|V 1/H

n (X) − V 1/H
n (Xm)|

≤ kH∥g − gm∥
L2, 1

H

(︃
∥g∥

1−H
H

L2, 1
H

+ ∥gm∥
1−H

H

L2, 1
H

)︃
−−−→
m→∞

0.
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Step 2. Now, consider term bm
n . For any F ∈ D2, 1

H
b and interval [a, b] ⊆ [0, T ] we

have by virtue of Proposition 1.5 the equality∫︂ T

0
F1[a,b](s) dZH,2

s = δ2
(︂
KH,2(F1[a,b])

)︂
= δ2

(︂
FKH,2(1[a,b])

)︂
= δ

(︃
Fδ(KH,21[a,b]) −

⟨︂
DF, KH,21[a,b]

⟩︂
L2([0,T ])

)︃
= Fδ2(KH,21[a,b]) −

⟨︂
DF, δ(KH,21[a,b])

⟩︂
L2([0,T ])

− δ
(︃⟨︂

DF, KH,21[a,b]
⟩︂

L2([0,T ])

)︃
= F (ZH,2

b − ZH,2
a ) −

⟨︂
DF, δ(KH,21[a,b])

⟩︂
L2([0,T ])

− δ
(︃⟨︂

DF, KH,21[a,b]
⟩︂

L2([0,T ])

)︃
.

By appealing to this computation, we can express Xm
t for t ∈ [0, T ] as

Xm
t =

∫︂ t

0
gm

s dZH,2
s

=
(︂
δ2 ◦ KH,2

)︂
(gm1[0,t])

=
(︂
δ2 ◦ KH,2

)︂⎛⎝m−1∑︂
j=0

F m
j 1[sm

j ,sm
j+1)1[0,t]

⎞⎠
=

m−1∑︂
j=0

F m
j (ZH,2

sm
j+1∧t − ZH,2

sm
j ∧t) −

m−1∑︂
j=0

⟨︂
DF m

j , δ(KH,21[sm
j ,sm

j+1)1[0,t])
⟩︂

L2([0,T ])

−
m−1∑︂
j=0

δ
(︃⟨︂

DF m
j , KH,21[sm

j ,sm
j+1)1[0,t]

⟩︂
L2([0,T ])

)︃
= A1

t − A2
t − A3

t .

We have

A2
t =

m−1∑︂
j=0

∫︂ T

0
DyF m

j δ(KH,21[sm
j ,sm

j+1)1[0,t])(y) dy

= c(H, 2)
m−1∑︂
j=0

∫︂ T

0
Dy1F m

j δ

⎛⎝∫︂ T

0
1[sm

j ,sm
j+1)(u)1[0,t](u)

×
(︄

u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠ dy1,

where the divergence acts on the variable y2. By linearity and closability of the
divergence, one can interchange the Lebesgue integral and the divergence operator

34



(see [9, Exercise 3.2.7]) and write

A3
t =

m−1∑︂
j=0

δ
(︃⟨︂

DF m
j , KH,21[sm

j ,sm
j+1)1[0,t]

⟩︂
L2([0,T ])

)︃

=
m−1∑︂
j=0

δ

(︄∫︂ T

0
DyF m

j KH,2(1[sm
j ,sm

j+1)1[0,t])(y, ·) dy

)︄

=
m−1∑︂
j=0

∫︂ T

0
δ
(︂
DyF m

j KH,2(1[sm
j ,sm

j+1)1[0,t])(y, ·)
)︂

dy

=
m−1∑︂
j=0

∫︂ T

0
DyF m

j δ(KH,21[sm
j ,sm

j+1)1[0,t])(y) dy

−
m−1∑︂
j=0

∫︂ T

0

⟨︂
D2

y,·F
m
j , KH,2(1[sm

j ,sm
j+1)1[0,t])(y, ·)

⟩︂
L2([0,T ])

dy

= A2
t − A4

t ,

where in the second to last equality we used Proposition 1.5. Finally,

A4
t =

m−1∑︂
j=0

∫︂ T

0

∫︂ T

0
D2

y1,y2F m
j KH,2(1[sm

j ,sm
j+1)1[0,t])(y1, y2) dy1 dy2

= c(H, 2)
m−1∑︂
j=0

∫︂ T

0

∫︂ T

0
D2

y1,y2F m
j

∫︂ T

0
1[sm

j ,sm
j+1)(u)1[0,t](u)

×
(︄

u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du dy1 dy2

= c(H, 2)
∫︂ t

0

∫︂ T

0

∫︂ T

0
D2

y1,y2(gm(u))

×
(︄

u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ dy1 dy2 du.

Summarized, we expressed the process Xm
t as

Xm
t =

m−1∑︂
j=0

F m
j (ZH,2

sm
j+1∧t − ZH,2

sm
j ∧t) − 2A2

t + A4
t = Y m

t + Zm
t ,

where we set Y m
t = A1

t and Zm
t = −2A2

t + A4
t . Then we can estimate

bm
n ≤ E|V 1/H

n (Xm) − V 1/H
n (Y m)| + E

⃓⃓⃓⃓
⃓V 1/H

n (Y m) − CH

∫︂ T

0
|um

s | ds

⃓⃓⃓⃓
⃓ = dm

n + em
n .

Step 2.1. Take the term dm
n . By Lemma 4.3, we have the estimate

dm
n ≤ 1

H

(︂
EV 1/H

n (Zm)
)︂H (︂

(EV 1/H
n (Xm))1−H + (EV 1/H

n (Y m))1−H
)︂

Using estimate (4.3) yields

EV 1/H
n (Xm) ≤ kH∥gm∥

1
H

L2, 1
H
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and

EV 1/H
n (Y m) ≤

m−1∑︂
j=0

sup
ω∈Ω

|F m
j (ω)| 1

H EV 1/H
n

(︃∫︂ ·

0
1[sm

j ,sm
j+1) dZH,2

)︃

≤ kH

m−1∑︂
j=0

sup
ω∈Ω

|F m
j (ω)| 1

H ∥1[sm
j ,sm

j+1)∥
1
H

L2, 1
H

< ∞.

Hence, we found bounds for terms EV 1/H
n (Xm) and EV 1/H

n (Y m) which are inde-
pendent of n ∈ N. If we assume that Zm is a process of zero 1/H-variation, then
we obtain dm

n −−−→
n→∞

0.
Step 2.1.1. We show that process Zm has zero 1/H-variation. It is enough
to show that both processes A2

t and A4
t have zero 1/H-variation since for two

arbitrary stochastic processes X and Y it holds

V 1/H
n (X + Y ) =

2n−1∑︂
i=0

⃓⃓⃓
(Xtn

i+1
+ Ytn

i+1
) − (Xtn

i
+ Ytn

i
)
⃓⃓⃓ 1

H

=
2n−1∑︂
i=0

⃓⃓⃓
(Xtn

i+1
− Xtn

i
) + (Ytn

i+1
− Ytn

i
)
⃓⃓⃓ 1

H

≤ 2 1
H

−1
2n−1∑︂
i=0

(︂
|Xtn

i+1
− Xtn

i
|

1
H + |Ytn

i+1
− Ytn

i
|

1
H

)︂
= 2 1

H
−1
(︂
V 1/H

n (X) + V 1/H
n (Y )

)︂
.

Consider the process A4
t first. We will show that the process

Bt =
∫︂ t

0

∫︂ T

0

∫︂ T

0
D2

y1,y2F

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ dy1 dy2 du,

where F ∈ D2, 1
H , is a process of bounded variation. Using twice Hölder’s inequal-

ity, it follows that

E

⃓⃓⃓⃓
⃓⃓∫︂ t

0

∫︂ T

0

∫︂ T

0
D2

y1,y2F

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ dy1 dy2 du

⃓⃓⃓⃓
⃓⃓

≤ E
∫︂ T

0

∫︂ T

0

∫︂ T

0
|D2

y1,y2F |
(︄

u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ dy1 dy2 du

≤ E
(︄∫︂ T

0

∫︂ T

0
|D2

y1,y2F |2 dy1 dy2

)︄ 1
2

×

⎛⎜⎝∫︂ T

0

∫︂ T

0

⎛⎝∫︂ T

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠2

dy1 dy2

⎞⎟⎠
1
2

(4.5)

⪯

⎛⎝E(︄∫︂ T

0

∫︂ T

0
|D2

y1,y2F |2 dy1 dy2

)︄ 1
2H

⎞⎠H

∥1∥HH
< ∞,
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where the second factor in (4.5) can be computed as was done in Section 3.1. The
HH-norm of 1 is indeed finite. In fact, it is equal to T H due to (2.1). Hence Bt (and
consequently A4

t ) is of bounded variation and therefore of zero 1/H-variation.
In similar manner, we show that the process A2

t is also of bounded variation.
Consider the process

Nt =
∫︂ T

0
Dy1F δ

⎛⎝∫︂ T

0
1[0,t](u)

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠ dy1

=
∫︂ t

0

∫︂ T

0
Dy1F δ

⎛⎝(︄ u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+

⎞⎠ dy1 du

where F ∈ D2, 1
H and where again the divergence acts on the variable y2. Applying

twice Hölder’s inequality yields

E

⃓⃓⃓⃓
⃓⃓∫︂ t

0

∫︂ T

0
Dy1F δ

⎛⎝(︄ u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+

⎞⎠ dy1 du

⃓⃓⃓⃓
⃓⃓

= E

⃓⃓⃓⃓
⃓⃓∫︂ T

0
Dy1F δ

⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠ dy1

⃓⃓⃓⃓
⃓⃓

≤ E
(︄∫︂ T

0
|Dy1F |2 dy1

)︄ 1
2

×

⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃓⃓⃓⃓⃓⃓
2

dy1

⎞⎟⎠
1
2

≤

⎡⎣E(︄∫︂ T

0
|Dy1F |2 dy1

)︄ 1
2H

⎤⎦H

×

⎡⎢⎢⎣E
⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃓⃓⃓⃓⃓⃓
2

dy1

⎞⎟⎠
1

2(1−H)
⎤⎥⎥⎦

1−H

where the first factor is obviously finite since we assumed F ∈ D2, 1
H . By the

generalized Minkowski inequality applied to the second factor, we obtain⎡⎢⎢⎣E
⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃓⃓⃓⃓⃓⃓
2

dy1

⎞⎟⎠
1

2(1−H)
⎤⎥⎥⎦

1−H

≤

⎡⎣ ∫︂ T

0

⎛⎝E
⃓⃓⃓⃓
⃓⃓δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

×
(︄

u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃓⃓⃓⃓⃓⃓
1

1−H
⎞⎠2(1−H)

dy1

⎤⎦ 1
2

.
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By using Theorem 1.11 and Proposition 1.9, it follows that
⎛⎜⎝E

⃓⃓⃓⃓
⃓⃓δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃓⃓⃓⃓⃓⃓
1

1−H

⎞⎟⎠
2(1−H)

=

⃦⃦⃦⃦
⃦⃦δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃦⃦⃦⃦⃦⃦
2

L
1

1−H (Ω)

⪯

⃦⃦⃦⃦
⃦⃦δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃦⃦⃦⃦⃦⃦
2

L2(Ω)

=

⃦⃦⃦⃦
⃦⃦∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⃦⃦⃦⃦
⃦⃦

2

L2([0,T ])

=
∫︂ T

0

⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠2

dy2.

Hence⎡⎢⎢⎣E
⎛⎜⎝∫︂ T

0

⃓⃓⃓⃓
⃓⃓δ
⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠⃓⃓⃓⃓⃓⃓
2

dy1

⎞⎟⎠
1

2(1−H)
⎤⎥⎥⎦

1−H

⪯

⎡⎣ ∫︂ T

0

∫︂ T

0

⎛⎝∫︂ t

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠2

dy2 dy1

⎤⎦ 1
2

≤

⎡⎣ ∫︂ T

0

∫︂ T

0

⎛⎝∫︂ T

0

(︄
u

y1

)︄H
2

(u − y1)
H
2 −1

+

(︄
u

y2

)︄H
2

(u − y2)
H
2 −1

+ du

⎞⎠2

dy2 dy1

⎤⎦ 1
2

∝ ∥1∥HH
< ∞

and so the process Nt (and therefore also the process A2
t ) is of bounded variation

and thus also of zero 1/H-variation.
Step 2.2. By taking p = 1

H
and q = 2 in (2.2), we obtain

E|ZH,2
sm

j+1
− ZH,2

sm
j

|
1
H = CH |sm

j+1 − sm
j |.
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Then we have

em
n = E

⃓⃓⃓⃓
⃓V 1/H

n (Y m) − CH

∫︂ T

0
|gm

s | ds

⃓⃓⃓⃓
⃓

= E

⃓⃓⃓⃓
⃓⃓V 1/H

n (Y m) − CH

m−1∑︂
j=0

|F m
j |

1
H (sm

j+1 − sm
j )

⃓⃓⃓⃓
⃓⃓

= E

⃓⃓⃓⃓
⃓⃓V 1/H

n (Y m) −
m−1∑︂
j=0

|F m
j |

1
H E|ZH,2

sm
j+1

− ZH,2
sm

j
|

1
H

⃓⃓⃓⃓
⃓⃓

≤
m−1∑︂
j=0

sup
ω∈Ω

|F m
j (ω)| 1

H

× E

⃓⃓⃓⃓
⃓⃓⃓(︃ ∑︂

i∈Jm,n
j

|ZH,2
tn
i+1

− ZH,2
tn
i

|
1
H

)︃
− E|ZH,2

sm
j+1

− ZH,2
sm

j
|

1
H

⃓⃓⃓⃓
⃓⃓⃓ −−−→

n→∞
0,

where Jm,n
j = {i : tn

i ∈ [sm
j , sm

j+1)} and where the fact that the last term converges
to zero follows by (4.1), self-similarity, and the stationarity of increments of the
Rosenblatt process. Therefore, we have that bm

n → 0 as n → ∞.
Step 3. Finally, consider the term cm. Applying the mean value theorem in the
same way as in proof of Lemma 4.3 and Hölder’s inequality gives

cm = CHE
⃓⃓⃓⃓
⃓
∫︂ T

0
(|gm

s |
1
H − |gs|

1
H ) ds

⃓⃓⃓⃓
⃓

≤ CH

H
E
∫︂ T

0
|gm

s − gs|(|gm
s |

1
H

−1 + |gs|
1
H

−1) ds

= CH

H
E
∫︂ T

0
|gm

s − gs||gm
s |

1
H

−1 ds + CH

H
E
∫︂ T

0
|gm

s − gs||gs|
1
H

−1 ds

≤ CH

H

(︄
E
∫︂ T

0
|gm

s − gs|
1
H ds

)︄H (︄
E
∫︂ T

0
|gm

s |
1
H ds

)︄1−H

+ CH

H

(︄
E
∫︂ T

0
|gm

s − gs|
1
H ds

)︄H (︄
E
∫︂ T

0
|gs|

1
H ds

)︄1−H

≤ CH

H
∥gm − g∥

L2, 1
H

(∥gm∥
1−H

H

L2, 1
H

+ ∥g∥
1−H

H

L2, 1
H

) −−−→
m→∞

0,

where we used the embedding D2, 1
H ↪→ L

1
H (Ω). This concludes the proof.
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Conclusion
As the main result of the thesis, we showed that for g ∈ L2, 1

H , the Skorokhod
integral with respect to the Rosenblatt process

∫︁ ·
0 gs dZH,2

s has 1/H-variation equal
to

CH

∫︂ T

0
|gs|

1
H ds,

where CH = E|ZH,2
1 | 1

H .
It is plausible that a result similar to Theorems 4.1 and 4.2 should also hold

for the stochastic integral with respect to the Hermite process of a general order
q. Such integral would be defined by∫︂ t

0
gs dZH,q

s = δq
(︂
KH,q(g1[0,t])

)︂
,

for any Borel measurable g : [0, T ] → L2(Ω), such that KH,q(g1[0,t]) ∈ Dom δq.
From the analysis of the proof of Theorem 4.2, it seems that out of the properties
of the integrator, the proof depends only on the self-similarity, stationarity of
increments, and the form of 1/H-variation of the integrator itself. Furthermore,
the proof builds on the mapping property of the integral (Proposition 3.3).

However, we have all these properties for a general Hermite process as well.
The self-similarity and stationarity of increments follows form Proposition 2.1 and
we have the right form of 1/H-variation by Proposition 2.3. A mapping property
similar to Proposition 3.3 can be derived also for the integral

∫︁ T
0 (. . .) dZH,q as

the proof of this proposition is mainly a consequence of the Meyer inequalities
and the mapping property of the transfer operator KH,q (which was proven in
Proposition 3.1 for arbitrary q ∈ N).
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A. Appendix

A.1 Special functions
Definition A.1. For x > 0, we define the gamma function Γ(x) by

Γ(x) =
∫︂ ∞

0
tx−1 e−t dt.

Definition A.2. For x > 0, y > 0, we define the beta function B(x, y) by

B(x, y) =
∫︂ 1

0
tx−1(1 − t)y−1 dt

Proposition A.1. Let u, w, a ∈ R be such that a < −1
2 and u ̸= w. Then

(i) ∫︂ u∧w

−∞
(u − y)a(w − y)a dy = B(a + 1, −2a − 1)|u − w|2a+1, (A.1)

(ii) ∫︂ u∧w

0
y−2a−2(u − y)a(w − y)a dy = B(a + 1, −2a − 1)(uw)−a−1|u − w|2a+1.

(A.2)

Proof. We first show (ii). Considering the case w ≤ u, then by substitution
z = u−y

w−y∫︂ w

0
y−2a−2(u − y)a(w − y)a dy = (u − w)2a+1

∫︂ ∞

u
w

(wz − u)−2a−2za dz.

By change of variables x = u
wz

, we obtain

(u − w)2a+1
∫︂ ∞

u
w

(wz − u)−2a−2za dz = (u − w)2a+1(uw)−a−1
∫︂ 1

0
xa(1 − x)−2a−2 dx

= (u − w)2a+1(uw)−a−1B(a + 1, −2a − 1),

which proves (ii). In order to show (i), it is enough to use the substitution
z = u−y

w−y
.

A.2 Fractional calculus
We state basic definitions and a useful result regarding the fractional calculus.
For more information about the topic see [25].
Definition A.3. Let a, b ∈ R, α > 0 and f ∈ L1(a, b). We define the left and
right-sided fractional integrals of f of order α for x ∈ (a, b) by

(Iα
a+f)(x) = 1

Γ(α)

∫︂ x

a
f(t)(x − t)α−1 dt,

(Iα
b−f)(x) = 1

Γ(α)

∫︂ b

x
f(t)(t − x)α−1 dt.
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The following result provides a mapping property of fractional integrals be-
tween Lp-spaces.

Theorem A.2 ([25, Theorem 3.5]). If 0 < α < 1, 1 < p < 1
α
, then the fractional

integrals Iα
a+, Iα

b− are bounded linear operators from Lp(a, b) to Lq(a, b), where
q = p/(1 − αp).
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