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Keywords: Algebraic Cryptanalysis Gröbner bases AES Locality-Sensitive Hash-
ing

iii



Contents

Introduction 2

1 Theoretical Introduction 4
1.1 Polynomials, Ideals, and Varieties . . . . . . . . . . . . . . . . . . 4
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Introduction
In today’s interconnected and data-driven world, the importance of cryptography
cannot be overstated. Cryptography serves as the cornerstone of secure communi-
cation, enabling individuals, organizations, and governments to protect sensitive
information from unauthorized access and malicious manipulation. At its core,
cryptography is the study of techniques for secure communication in the presence
of adversarial behaviour.

To ensure the quality and reliability of encryption algorithms, standardisation
becomes essential. One of the most widely adopted cryptographic standards is
the Advanced Encryption Standard (AES), a symmetric encryption algorithm
designed to secure sensitive data and communications. Although the security of
AES has been extensively studied, it is a good practice to test the security of
encryption algorithms against new attacks continually.

Algebraic cryptanalysis is a technique used to attack cryptographic schemes by
exploiting algebraic techniques such as solving systems of polynomial equations.
One of the most widely used techniques involves leveraging Gröbner bases to
solve systems of polynomial equations describing the cipher. Although algebraic
cryptanalysis is a well-established concept the importance of this technique is
sometimes underestimated. This is mostly due to the computational complexity
of solving large systems of polynomial equations. However, with the emergence
of a new class of symmetric primitives known as arithmetization-oriented ciphers
(AOCs), algebraic cryptanalysis and more importantly Gröbner bases attacks are
starting to be more relevant.

Arithmetization-oriented ciphers are symmetric primitives designed for opti-
mization with respect to arithmetic complexity. This makes them efficient in
protocols such as Zero-Knowledge proofs and secure Multi-party Computation.
However, their design also allows for a concise description in terms of polynomi-
als. Consequently, the systems of polynomials used in algebraic cryptanalysis are
generally smaller and have a lower degree, rendering them more susceptible.

To illustrate the underestimation of algebraic cryptanalysis we can look at the
primitive known as Jarvis, proposed in 2018 by Ashur and Dhooghe in [AD18].
Despite the initial consideration of a wide range of attacks, including some al-
gebraic techniques like interpolation attacks, the security of Jarvis was com-
promised within a year of its release. A subsequent paper by Albrecht et al.
[ACG+19] demonstrated the inadequacy of the proposed parameters when con-
sidering Gröbner bases attacks. This serves as a reminder that we should not
rely on the fact that some attacks have thus far been less efficient. We need to
proactively assess the security of not only the recently proposed ciphers but also
of those that have been in use for years.

Building on this principle, Bielik examined the algebraic cryptanalysis of AES
in his thesis [Bie21, BJJL22]. He presented an improved algebraic attack against
small-scale variants of AES. Using a single plaintext/ciphertext pair, they recov-
ered the secret key for a one-round, weakened variant of full AES-128 in under
one minute. They also observed that constructing multiple polynomial systems
from additional plaintext/ciphertext pairs helped the performance of the compu-
tation. However, after adding more than five systems the time required to obtain
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the solution started to increase.
As a follow-up, Berušková [Ber22] experimented with generating large quan-

tities of polynomial systems and preprocessing them. The main idea is to reduce
the number of polynomial equations by adding pairs of polynomials. This results
in sparser polynomials that could be better for solving. Berušková used sev-
eral methods to find such pairs, the most successful one being Locality-Sensitive
Hashing or LSH.

In this work, we continue with the examination of preprocessing in algebraic
cryptanalysis by giving a theoretical foundation of thus far heuristic principles.
With this foundation, we aim to explain the observed performance of LSH.

We begin our work by giving a succinct theoretical introduction to polynomi-
als, ideals and varieties serving as a foundation for the introduction of Gröbner
basis and AES in Chapter 1. The method of using Gröbner bases in algebraic
cryptanalysis is also described in this chapter.

The current state of knowledge regarding the method of preprocessing in al-
gebraic cryptanalysis is discussed in Chapter 2. In Section 2.1 we also argue the
correctness of preprocessing.

Our main contribution lies in Chapters 3 and 4. In Section 3.1 we examine the
primary idea of the method used for preprocessing. We give here some theoretical
guarantees of the sparsity of the final system when using random sets of poly-
nomials and we compare this with the values seen in experiments. We continue
in Section 3.2 by giving a theoretical foundation to LSH, we deduce the exact
parameters of the method used in experiments and we give further estimates for
finding sparse polynomials with this method. In Section 3.3 we try to improve
the method by modifying the existing methodology to target a specified portion
of the polynomials. We encounter here a problem with implementation, give a
solution to this problem and argue the error made by such a solution.

The last Chapter 4 discusses the results of our experiments. One of the goals
of our experiments was to better understand the methods used. We give here
the comparison of the basic method of adding all polynomials exhaustively to the
method of using LSH to find candidates for similar polynomials. We present a
graph of the sparsity of polynomials when using LSH. Finally, our second goal
was to test our new method of targeting the leading monomials. We give results
and interpretations of these tests.
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1. Theoretical Introduction
In this chapter, we provide a concise background on the theory of Gröbner bases
following the standard textbook by Cox, Little, and O’Shea [CLO15].

Gröbner bases were introduced in 1965 in the PhD thesis of Bruno Buchberger
[Buc65], who named them in honour of his advisor Wolfgang Gröbner. Since then,
many problems regarding polynomial ideals turned out to be reducible to finding
the ideal’s Gröbner basis. Some examples include ideal membership and solving
polynomial equations, which is our main focus.

Buchberger also introduced an algorithm for computing Gröbner bases known
as the Buchberger’s algorithm. While straightforward to implement, its practical
utility proved to be limited. Several proposals were made to improve the practical
efficiency, such as the algorithms F4 [Fau99] and F5 [Fau02].

1.1 Polynomials, Ideals, and Varieties
To begin, we provide a succinct introduction to polynomials and ideals as a means
to establish the notation in this work. Unless stated otherwise, k denotes a field
throughout this whole chapter.

Definition 1.1. A monomial in variables x1, . . . , xn is a product of the form

xα1
1 · xα2

2 · . . . · xαn
n ,

where all the exponents αi are nonnegative integers.
The total degree of a monomial xα1

1 ·xα2
2 ·. . .·xαn

n is defined as α1 +α2 +. . .+αn.

For simplicity, we shorten the notation of a monomial to xα = xα1
1 ·xα2

2 ·. . .·xαn
n

and we denote its degree as |α| = α1 + α2 + . . . + αn. We define the multidegree
of a monomial xα as multideg(xα) = α.

Definition 1.2. A polynomial in variables x1, . . . , xn over a field k is a finite sum

f =
∑︂

α

cαxα, cα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn) ∈ Nn
0 .

We use the following terminology:

• cα is the coefficient of the monomial xα,

• the total degree of f is defined as deg(f) = maxα{|α| | cα ̸= 0},

• if cα ̸= 0 then cαxα is a term of f .

The set of all polynomials in variables x1, . . . , xn with coefficients from k is
denoted by k[x1, . . . , xn].

It can be proved that k[x1, . . . , xn] with addition and multiplication is a ring,
therefore we refer to it as the polynomial ring.

We have used the notation of monomials as being without coefficients and
terms with coefficients. However, be aware that in some literature (for example
in [Fau99, Fau02]) the definition of term and monomial can be reversed.
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Definition 1.3. For k a field and n a positive integer, we can define an n-
dimentional affine space over k as the set

kn = {(a1, . . . , an) | a1, . . . , an ∈ k}.

A polynomial can also be interpreted as a function mapping the n-tuples
(a1, . . . , an) ∈ kn to elements of k, by replacing each occurrence of xi in the
polynomial with ai.
Definition 1.4. An ideal I is a subset of k[x1, . . . , xn] such that

1. 0 ∈ I,

2. if f, g ∈ I, then f + g ∈ I,

3. if f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.
An ideal generated by polynomials f1, . . . , fs ⊂ k[x1, . . . , xn] is a set

⟨f1, . . . , fs⟩ = {
s∑︂

i=0
hifi | h1, . . . , hs ∈ k[x1, . . . , xn]}.

A proof that ⟨f1, . . . , fs⟩ is an ideal of k[x1, . . . , xn] can be found in [CLO15,
p. 29].

We say that an ideal I is finitely generated if there exists a finite number
of polynomials f1, . . . , fs ∈ k[x1, . . . , xn] such that I = ⟨f1, . . . , fs⟩ and we call
f1, . . . , fs the basis of I. A ring in which every ideal is finitely generated is called
a Noetherian ring. From Hilbert’s Basis Theorem, we get that every ideal of
k[x1, . . . , xn] is finitely generated.
Theorem 1.1 (Hilbert Basis Theorem). If R is a Noetherian ring, then R[x] is
a Noetherian ring.

The proof can be found in [CLO15, p. 77].
Definition 1.5. Let f1, . . . , fs be polynomials from k[x1, . . . , xn]. The affine
variety defined by f1, . . . , fs is a set

V (f1, . . . , fs) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}.

Considering a set of polynomial equations
f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fs(x1, . . . , xn) = 0

the variety V (f1, . . . , fs) is the set of all solutions to these equations in kn.
Due to Hilbert’s Basis Theorem, it also makes sense to consider a variety

defined by an ideal.
Definition 1.6. Let I ⊂ k[x1, . . . , xn] be an ideal. We denote by V (I) the set

V (I) = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ I}.

Theorem 1.2. Let I ⊂ k[x1, . . . , xn] be an ideal such that I = ⟨f1, . . . , fs⟩. Then
V (I) is an affine variety and V (I) = V (f1, . . . , fs).

For a proof see [CLO15, p. 81]
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1.2 Gröbner Bases
In this section, we introduce Gröbner bases - a fundamental tool when working
with polynomial rings with multiple variables. Gröbner basis is a particular
basis of an ideal that has “nice” properties. These properties make them useful
when working with multivariate polynomials and often allow us to solve problems
about polynomial ideals in an algorithmic fashion. They are also one of the main
practical tools for solving systems of polynomial equations in multiple variables.

Many algorithms need a way to determine an order in which to go through
the monomials of a polynomial. For univariate polynomials, we have

· · · > xm+1 > xm > · · · > x2 > x > 1.

However, for multivariate polynomials things are not as clear. For example,
how should the monomials x2

1 and x2
2 compare? To define such an order, let us

denote Mon the set of all monomials in variables x1, . . . , xn.

Definition 1.7. A monomial ordering > on k[x1, . . . , xn] is a relation on the set
of monomials Mon, such that

1. > is a total ordering on Mon,

2. if xα > xβ and xγ ∈ Mon, then xγxα > xγxβ,

3. > is a well-ordering on Mon; meaning that every non-empty subset of mono-
mials has a smallest element.

The first condition allows us to compare every pair of monomials. The second
condition then makes it so that multiplying polynomials will not change the rel-
ative ordering of terms. Finally, the last condition guarantees that every strictly
decreasing sequence of monomials eventually terminates, which is important for
proving that certain algorithms terminate.

Now, let us examine several examples of orders that are the most relevant to
us.

Definition 1.8 (Lexicographic Order). Let xα and xβ be two monomials in
k[x1, . . . , xn]. In lexicographic (Lex) order, we have xα >Lex xβ if the leftmost
nonzero coordinate of α− β is positive.

The lexicographic order represents rather a family of orders depending on how
we decide to arrange the variables in α. Unless stated otherwise, we consider the
most intuitive order of the variables, that is

x1 > x2 > · · · > xn

or
x > y > z,

depending on which labels we use for the variables.

Definition 1.9 (Graded Lexicographic Order). Let xα and xβ be monomials in
k[x1, . . . , xn]. In graded lexicographic (GrLex) order, we have xα >GrLex xβ if
either |α| > |β| or |α| = |β| and xα >Lex xβ.
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The main difference between Lex and GrLex orders is that GrLex considers
the degrees of the monomials first and if that is not a deciding factor it uses the
lexicographic ordering. For example, in lexicographic order, we would have

x >Lex y5,

but in graded lexicographic order

x <GrLex y5.

A monomial order that first orders by degree is called a graded order. The
GrLex order is a graded order, while Lex is not. Another example of a graded
order is the graded reverse lexicographic order.

Definition 1.10 (Graded Reverse Lexicographic Order). Let xα and xβ be mono-
mials in k[x1, . . . , xn]. In graded reverse lexicographic (GrevLex) order, we have
xα >GrevLex xβ if either |α| > |β| or |α| = |β| and the rightmost nonzero coordi-
nate of α− β is negative.

To explain the difference between GrLex and GrevLex, first note that both
orders first look at the degree of the monomials. When the degrees are the same
the GrLex looks for the largest leftmost power, while the GrevLex looks for the
lowest rightmost power. You can notice, that

x1 > x2 > · · · > xn

is true in both orderings.
So far we have used subscript to indicate what monomial ordering we are

working with. However, if the monomial order is clear from the context we omit
the subscript.

Once we have chosen a monomial order, we can find a unique leading term
of any polynomial. That in turn allows us to define the ideal generated by the
leading terms of its polynomials.

Definition 1.11. Let f = ∑︁
α cαxα be a polynomial in k[x1, . . . , xn] and < a

monomial order on k[x1, . . . , xn].

• The leading monomial of f is LM(f) = max{xα | cα ̸= 0}, where the
maximum is taken with respect to <.

• The leading coefficient of f is LC(f) = cα, where LM(f) = xα.

• The leading term of f is LT(f) = LC(f) · LM(f).

• The multidegree of f is multideg(f) = multideg(LM(f)).

As an example, let us determine the leading monomial, coefficient, term and
the multidegree of f = x2 + 7y2 − 3xyz with respect to the Grevlex order

LM(f) = xyz,

LC(f) = −3,

LT(f) = −3xyz,

multideg(f) = (1, 1, 1).
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Definition 1.12. Let I ∈ k[x1, . . . , xn] be an ideal other than {0}. The set of
leading terms is defined as

LT(I) = {LT(f) | f ∈ I \ {0}}.

The ideal ⟨LT(I)⟩ is called the ideal of leading terms.

Importantly, the leading terms of an arbitrary basis of an ideal do not always
generate the ideal of leading terms. The bases that do satisfy this are called
Gröbner bases.

Definition 1.13. Let < be a monomial order on k[x1, . . . , xn] and I an ideal of
k[x1, . . . , xn] different from {0}. A finite subset G = {g1, . . . , gt} of I is a Gröbner
basis of I if ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩ holds.

Proof of the following can be found in the fifth section of the second chapter
of [CLO15].

As seen in the following theorem, all ideals in k[x1, . . . , xn] have a Gröbner
basis.

Theorem 1.3. For a fixed monomial ordering every ideal I ∈ k[x1, . . . , xn] has
a Gröbner basis. Furthermore, any Gröbner basis is also a basis of that ideal.

However, this basis does not have to be unique. For example, if we have
g1, . . . , gt a Gröbner basis of I, then for any element h ∈ I the set g1, . . . , gt, h
is also a Gröbner basis. To get uniqueness we have to pose some additional
restrictions on the basis.

Definition 1.14. A reduced Gröbner basis G of an ideal I ∈ k[x1, . . . , xn] is a
Gröbner basis that satisfies:

1. LC(g) = 1 for all g ∈ G,

2. for all g ∈ G, no monomial of g lies in ⟨LT(G \ {g})⟩.

It is worth noting that every polynomial ideal has a unique reduced Gröbner
basis. Most computer algebra systems compute the reduced Gröbner basis by
default.

1.2.1 Computing Gröbner Bases
Thus far, we have seen that all polynomial ideals have a Gröbner basis. However,
we have not seen how to find it. The first algorithm for computing Gröbner
bases was introduced by Bruno Buchberger in his PhD thesis introducing Gröbner
bases. While this algorithm is simple, it has a few issues limiting its efficiency. In
this section, we introduce the main idea behind Buchberger’s algorithm as well
as its limitations. We also explore other algorithms that aim to overcome these
limitations, most notably F4, which is one of the best algorithms implemented
today in practical computer algebra software.

Two of the main definitions needed for the Buchberger’s algorithm are reduc-
tions and S-polynomials.
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Definition 1.15. Let < be a monomial order on k[x1, . . . , xn], I ∈ k[x1, . . . , xn]
an ideal, and G = {g1, . . . , gt} its Gröbner basis. Then any polynomial f ∈
k[x1, . . . , xn] can be written as

f = q1g1 + . . . + qtgt + r,

where qi, r ∈ k[x1, . . . , xn] and either r = 0 or no term of r is divisible by any
LT(g1), . . . , LT(gt). Additionally, r is unique. We call r the remainder of f on
division by G.

It is worth noting that the uniqueness of r is not guaranteed for a general set
of polynomials g1, . . . , gt. This aspect is one of the advantageous properties of
Gröbner bases. In fact, Gröbner bases can be characterized by the uniqueness of
the remainder.

Definition 1.16. The S-polynomial of f, g ∈ k[x1, . . . , xn] is the combination

S(f, g) = lcm(LM(f), LM(g))
LT(f) · f − lcm(LM(f), LM(g))

LT(g) · g

The S-polynomials then can be used to define a criterion for determining when
a set of polynomials is a Gröbner basis.

Theorem 1.4 (Buchberger’s Criterion). Let I ∈ k[x1, . . . , xn] be an ideal and
G = {g1, . . . , gt} its basis. Then G is a Gröbner basis of I if and only if the
remainder of S(gi, gj) on division by G is zero for all i ̸= j.

Buchberger’s Criterion is the foundation of the Buchberger’s algoritm, whose
pseudocode is written in Algorithm 1. In its most basic version, the algorithm
continually computes the reduction of the S-polynomials of the partial Gröbner
basis and adds the remainders to the Gröbner basis.

Algorithm 1 Buchberger’s Algorithm
Input: Set of polynomials F = {f1, . . . , fs}
Output: Gröbner basis G for the ideal I = ⟨F ⟩

1: G′ ← F
2: G = ∅
3: while G ̸= G′ do
4: G← G′

5: for all (gi, gj) ∈ G×G do
6: Compute the remainder r of S(f, g) on division by G
7: if r ̸= 0 then
8: Add r to G
9: return G

While this algorithm is straightforward, it does not perform very well in prac-
tice. The primary bottleneck stems from the fact that a considerable amount of
the S-polynomials reduce to 0, resulting in substantial time spent on computa-
tions that do not add anything to the basis and thus, making them essentially
useless.
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Two strategies for accelerating the computation taken in algorithms F4 and
F5 involve parallelizing the reductions and implementing criteria to identify in-
stances when certain S-polynomials reduce to 0. The parallelization is done by
constructing a matrix holding information about the S-polynomials and then re-
ducing that matrix to a reduced echelon form. In this way, we get multiple
reduction results simultaneously. The algorithm employing this strategy, intro-
duced by Jean-Charles Faugère in [Fau99], is known as F4 and we present it in
Algorithm 2.

Algorithm 2 F4 Algorithm
Input: Set of polynomials F = {f1, . . . , fs}
Output: Gröbner basis G for the ideal I = ⟨F ⟩

1: G← F
2: t← s
3: B = {{i, j} | 1 ≤ i < j ≤ s}
4: while B ̸= ∅ do
5: Select B′ ̸= ∅, B′ ⊆ B
6: B = B \B′

7: L =
{︂ lcm(LM(fi),LM(fj))

LT(fi) · fi | {i, j} ∈ B′
}︂

8: M = ComputeM(L, G)
9: N = row reduced echelon form of M

10: N+ = {n ∈ rows(N) | LM(n) /∈ ⟨LM(rows(M))⟩}
11: for all n ∈ N+ do
12: t = t + 1
13: ft = polynomial form of n
14: G = G ∪ {ft}
15: B = B ∪ {{i, t} | 1 ≤ i < t}

The algorithm uses a function ComputeM which is presented in Algorithm 3.

Algorithm 3 ComputeM algorithm from F4
Input: L, G = {f1, . . . , ft}
Output: Matrix M

1: H ← L
2: done = LM(H)
3: while done ̸= Mon(H) do
4: select largest xβ ∈Mon(H) \ done with respect to <
5: done = done ∪ {xβ}
6: if there exists fl ∈ G such that LM(fl) | xβ then
7: H = H ∪ { xβ

LM(fl) · fl}

8: M = matrix of coefficients of H with respect to Mon(H), columns in de-
creasing order according to <

9: return M

The F4 algorithm depends on several choices like what strategy we employ
to select the set B′. It is perhaps more accurate to talk about F4 as a family of
algorithms.
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1.3 Algebraic Cryptanalysis
Algebraic cryptanalysis is, by now, a classical topic developed by cryptographers
in the 2000s [Bar09]. It is a class of cryptanalytic methods against practical
symmetric ciphers such as the Advanced Encryption Standard [oST] that exploits
the algebraic structure of a given cipher. In its most common form, it consists of
two steps:

1. polynomial modelling,

2. solving the equations.

In the first step, given a pair of plaintext and its corresponding ciphertext,
the cryptanalyst describes the encryption operation as a system of multivariate
polynomial equations with variables corresponding to the bits of the secret key.
The second step then consists of recovering the bits of the key by solving these
equations.

The problem of solving a polynomial system of equations over a finite field
is NP-Hard [Bar09, Corollary 79]. Despite this characterization, individual in-
stances of these problems may not be that difficult to solve. Usually, algorithms
for computing Gröbner bases are employed to solve these equations. The polyno-
mials in the equations generate an ideal in an appropriate polynomial ring, and
finding a Gröbner basis for that ideal with respect to a suitable monomial order
allows solving for the key. This is a consequence of the following.

Definition 1.17. Let I = ⟨f1, . . . , fs⟩ be an ideal in k[x1, . . . , xn] and let l ∈ [0, n].
The l-th elimination ideal Il is an ideal of k[xl+1, . . . , xn] defined by

Il = I ∩ k[xl+1, . . . , xn].

The Gröbner basis of an l-th elimination ideal can be easily found with the
help of the Gröbner basis of the whole ideal, as seen in the next theorem.

Theorem 1.5 (The Elimination Theorem). Let I be an ideal in k[x1, . . . , xn] and
let G be a Gröbner basis of I with respect to the lexicographic order. Then for
every l ∈ [0, n] the set

Gl = G ∩ k[xl+1, . . . , xn]
is a Gröbner basis of the l-th elimination ideal Il.

Thus, computing the Gröbner basis in lexicographic order allows us to find
a univariate polynomial. After solving such a polynomial we can substitute the
solution into the rest of the polynomials and we again get a univariate polynomial.
Not all solutions can be extended in such a way. However, if there is a solution,
we can find it in this way.

Computing a Gröbner basis in lexicographic order is often costly in practice
and the resulting polynomials can be quite large. For example, the Gröbner basis
of the ideal I = ⟨x5 +y4 +z3−1, x3 +y3 +z2−1⟩ in Lex order has 8 polynomials,
one of which has 282 terms, is of degree 25 and has a coefficient 47780995

7776 . On the
other hand, its Gröbner basis in GrevLex order has just 3 elements, the longest
polynomial has 9 terms and the highest degree is 6. In practice, if we require the
lexicographic Gröbner basis most computer algebra systems first compute the
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Gröbner basis with respect to the GrevLex order and then use an algorithm to
convert it to the Gröbner basis with respect to the lexicographic order such as
FGLM [FGLM93]. With this in mind, the general process of algebraic cryptanal-
ysis looks as follows:

1. Model the cipher as a system of polynomial equations.

2. Compute the Gröbner basis w.r.t. the GrevLex order.

3. Change the order to lexicographic by using an algorithm like FGLM.

4. Read out the solution.

There are several proposals of optimized algorithms for finding a Gröbner
basis, such as F4, F5 and XL [SS21]. However, when applying the algebraic
attacks in practice, we are restricted to the algorithm F4 as it is the only one with
an efficient implementation provided in the highly optimized software Magma.

1.4 Advanced Encryption Standard
Advanced Encryption Standard, also known by its original name Rijndael, is a
widely used symmetric encryption algorithm adopted by the U.S. government for
securing sensitive information [oST]. It operates on fixed block sizes of 128 bits
and supports key sizes of 128, 192, and 256 bits. Our focus is on the version
with key size set to 128, referred to as AES-128. We give here a very high-level
description of the AES and refer the reader to the official standard [oST] for a
thorough description.

AES employs a substitution-permutation network (SPN) structure, which pro-
vides a high degree of confusion and diffusion. It works with the state as a 4× 4
matrix, where each entry is 8-bits long. We refer to 32-bits as a word and thus,
the matrix has exactly one word in each column or row.

A pseudocode of the structure is illustrated in algorithm 4. The algorithm
starts by running a KeySchedule on the original 128-bit key to get an expanded
key of 44 words - 4 words for each round and 4 additional words for the initial
key addition. The 4 initial words are the original key.

The input of the cipher is divided into 16 blocks of 8 bits and copied into
the state and then the initial 4 words of the key are added. The cipher then
repeats 10 rounds iterating over 4 operations. The SubBytes operation is a non-
linear substitution step, that operates on each element of the matrix separately.
We refer to it as an S-box and it is usually implemented as a lookup table.
The S-box used is derived from an inverse function combined with an invertible
affine transformation. After the SubBytes comes the ShiftRows operation. It
is a transposition step that works on the rows of the matrix, shifting each row
cyclically by a certain offset. The MixColumns step on the other hand operates
on the columns of the matrix, multiplying each column by a matrix. This step
is omitted in the last round, which makes the encryption and decryption more
similar and it does not reduce the security of the cipher. The last operation is
the AddRoundKey, it operates on elements of the matrix, adding to each byte a
byte of the expanded key.
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Algorithm 4 High-level overview of AES
Input: Plaintext PT , Key K
Output: Ciphertext CT

1: ExpandKey(K)
2: state← AddRoundKey(PT, RoundKey[0])
3: for i from 1 to 9 do
4: state← SubBytes(state)
5: state← ShiftRows(state)
6: state← MixColumns(state)
7: state← AddRoundKey(state, RoundKey[i])
8: state← SubBytes(state)
9: state← ShiftRows(state)

10: state← AddRoundKey(state, RoundKey[10])
11: return state

1.4.1 Small Scale Variants of AES
In this section, we describe scaled-down variants of AES introduced by Cid,
Murphy, and Robshaw in [CMR05, CMR06]. Their modelling differs from the
standard AES by keeping the MixColumns operation in the last round. The re-
ductions emerge naturally with the consideration of the state matrix. The new
cipher is described by parameters:

• n, the number of rounds,

• r, the number of rows of the state matrix,

• c, the number of columns,

• e, the length of the elements in the matrix in bits,

and we denote the small scale version as SR(n, r, c, e). A rigorous definition
would require us to define each operation for the small scale version. This is out
of the scope of this thesis and we refer the reader to [CMR05] for a more precise
description.

The parameters we consider are n ∈ [1, 10] for the number of rounds, both
r, c ∈ {1, 2, 4} and e ∈ {4, 8}. The SR(10, 4, 4, 8) would then be the standard
AES with the only difference being the added MixColumns operation in the last
round.

The small-scale variant, represented as a system of polynomials, is compre-
hensively described in [Bie21, BJJL22]. Our focus lies primarily on the systems
with no auxiliary variables. This configuration enables us to consider multiple
plaintext/ciphertext pairs for one key and get multiple polynomial systems.
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2. Preprocessing in Algebraic
Cryptanalysis
A recent line of research by the group of Martin Jureček, Ph.D. from FIT ČVUT
introduced the possibility of using preprocessing of the polynomial system ob-
tained in the first step of algebraic cryptanalysis to improve the efficiency of the
whole attack. Recall that the algebraic cryptanalysis consists of two steps:

1. Polynomials modelling,

2. Solving the equations.

In the first step, given a pair of plaintext and its corresponding ciphertext, the
cryptanalyst describes the encryption operation as a system of multivariate poly-
nomial equations with variables corresponding to the bits of the secret key. Be-
cause the system depends on the plaintext/ciphertext pair generated we can con-
sider generating multiple plaintext/ciphertext pairs for the same key. This gives
us more polynomial equations to work with.

The work of Bielik et al. [Bie21, BJJL22] presented an improved algebraic
attack against small-scale variants of AES. Using a single plaintext/ciphertext
pair, they recovered the secret key for a one-round, weakened variant of full AES-
128 in under one minute. More importantly to us, they observed that constructing
more equations from additional plaintext/ciphertext pairs helped the performance
of the computation. However, after adding more than five systems (i.e., using five
plaintext/ciphertext pairs), the time required to obtain the solution started to
increase.

As a follow-up, Berušková [Ber22] experimented with preprocessing the sys-
tems of polynomial equations created from large quantities of plaintext/ciphertext
pairs. She used three methods: clustering based on Partitioning Around Medoids
(PAM), Locality-Sensitive Hashing (LSH), and direct elimination of the leading
monomial, where LSH proved to be the most effective approach. All of the meth-
ods attempted to lessen the number of monomials in the polynomials given as
input to the solving algorithm, as this parameter is believed to have the biggest
effect on the time complexity.

The first method PAM partitions the polynomials into clusters, then takes
two of the most similar polynomials from each cluster and xors them. The LSH
approach works by hashing the polynomials in a way that preserves the distance.
If two polynomials hash to the same output, they are marked as “possibly similar”
and their xor is used in the computation. Finally, the last method simply takes
a certain number of polynomials with the lowest leading monomial.

The most effective algorithm out of the three appears to be the LSH. Impor-
tantly, the methods used are purely heuristic. Understanding how the preprocess-
ing helps in the computation would allow us to design more effective methods.

Jureček’s group primarily investigated the “classical” cipher AES. Although
ciphers like the Arithmetization Oriented Ciphers (AOCs) may potentially be
more susceptible to algebraic attacks, our analysis will continue with the exami-
nation of the AES cipher. Our objective is to establish a theoretical foundation
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of the LSH method used by Berušková and to leverage the existing codebase as
a cornerstone for our experiments.

2.1 Correctness of Preprocessing
Using preprocessing in algebraic cryptanalysis involves modifying the original set
of equations by adding pairs of polynomials, followed by selecting a subset of
these pairs. Could this process potentially destroy information about the correct
solution? In this section, we want to clarify why this process is correct and why
the correct key can still be determined as a solution to these equations.

Let us start by examining the original set of polynomials F in k[x1, . . . , xn]
created by modelling a cipher and let K = (k1, . . . , kn) ∈ kn be the secret key.
The set of all solutions to F forms a variety V (F) and it is straightforward to
see that the secret key lies in this variety.

Lemma 2.1. Let F ⊆ k[x1, . . . , xn] be a system of polynomials created by mod-
elling a cipher and let K = (k1, . . . , kn) ∈ kn be the secret key. Then K ∈ V (F).

Proof. We need to show that, for an arbitrary f ∈ F , the key satisfies f(K) = 0.
This follows directly from the fact that K is the secret key to the cipher modelled
by F that was used to create the plaintext/ciphertext pair.

Consider a new system of equations G created by taking linear combinations of
polynomials from F , that is g ∈ G then g = ∑︁s

i=0 gi ·fi, gi ∈ k[x1, . . . , xn], fi ∈ F .
We want to examine the relationship between the varieties V (F) and G. The

next theorem shows that this construction preserves all solutions of the original
system F .

Theorem 2.2. Let F and G be two systems of polynomials defined as above.
Then V (F) ⊆ V (G).

Proof. The original system forms an ideal ⟨F⟩. We have seen in Theorem 1.2
that V (F) = V (⟨F⟩). We know that G ⊆ ⟨F⟩ from the fact that ideals are closed
under addition and multiplication by an element from the parent ring. This gives
us ⟨G⟩ ⊆ ⟨F⟩.

From ⟨G⟩ ⊆ ⟨F⟩ we can finally deduce V (G) ⊆ V (F).

The other inclusion does not have to be true. To illustrate, let us consider
f1 = 2x + 2y and f2 = 3x + 3y in Z5[x, y] and g = f1 + f2. We have a = (1, 1) ∈
V (g) because g(a) = f1(a) + f2(a) = 2 + 2 + 3 + 3 = 0, but f1(a) = 2 + 2 = 4,
f2(a) = 3 + 3 = 1.

This demonstrates that preprocessing is a viable technique that could be used
in algebraic cryptanalysis. Although the variety of our new system may be larger
than the original, it nevertheless contains the sought-after key.
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3. Theoretical Guarantees for
Preprocessing
In algebraic cryptanalysis, we construct polynomial equations describing the ci-
pher we are analysing. These equations encapsulate the relationship between the
plaintext, ciphertext, and the encryption key. Solving the system using Gröbner
bases then gives us the key.

The polynomial system generated depends on the plaintext/ciphertext pair
used. Thus, generating more plaintext/ciphertext pairs for a fixed key gives us
more equations. This gives us more information about the key, and, intuitively,
it should help the attacker to find the key quicker. However, larger numbers of
plaintext/ciphertext pairs help the cipher only initially.

In the experiments carried out by Bielik [Bie21, BJJL22], it was observed
that taking two pairs of plaintext/ciphertext leads to generally quicker solving
times. However, as the number of plaintext/ciphertext pairs increased, the time
required for solving also increased. A natural explanation for such behaviour is
that the F4 algorithm necessitates investigating all pairs of input polynomials.
Specifically, for s polynomials in the input, the algorithm must process at least(︂

s
2

)︂
pairs. The number s of polynomials on the input is typically quite large,

making the quadratic growth significant.
Building on this observation, Berušková [Ber22] experimented with prepro-

cessing the systems of polynomial equations created from large quantities of
plaintext/ciphertext pairs. The primary objective was to reduce the number
of equations while simultaneously enhancing the suitability of the polynomials
for the F4 algorithm.

One approach is to reduce the number of monomials in the polynomials. The
intuition behind this is that, in the ComputeM algorithm used in F4, we have to go
through all of the monomials present in the input polynomials. Crafting sparser
polynomials, containing fewer monomials, could thus lead to having to go through
less monomials. One method of decreasing the number of nonzero monomials is
adding each pair of polynomials in the system and working with the resulting
polynomials with the fewest monomials - hoping for significant cancellations of
monomials. Since we work over Z2 this corresponds to performing elementwise
XOR of the vectors representing the polynomials.

In the context of a “good” cipher, the polynomial system derived from en-
crypting the plaintext/ciphertext pair should exhibit pseudorandom characteris-
tics, resembling the properties of a fully random polynomial system. Newtx, we
examine the sparsity that can be achieved by XORing a fully random polynomial
system over Z2.

3.1 Sparsity of Random Polynomial Systems
Let us have a set of polynomials V = {v1, . . . , vn} from Zm

2 and say we want k
polynomials as an input for the F4 algorithm. Using the method explained above
of XORing every pair of polynomials from this set, then picking the ones with
the lowest number of monomials, we want to examine how many polynomials we
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need in n to pick on average at least k polynomials with a certain level of sparsity.
We can describe a level of sparsity after XORing with the Hamming distance.

Definition 3.1. Let v, w ∈ Zm
2 be two vectors. Their Hamming distance is

d(v, w) = |{i ∈ [1, m] | vi ̸= wi}|,

where v = (v1, . . . , vm) and w = (w1, . . . , wm).

Say we have two polynomials p, q ∈ Z2[x1, . . . , xn]. We can convert these
polynomials into vectors by assigning a number to each monomial from 1 to the
number of distinct monomials in both polynomials and then create a vector in
Zm

2 for each polynomial, where there is a 1 in position i if and only if the i-th
monomial is in that polynomial.

Now say two vectors vp, vq ∈ Zm
2 corresponding to two polynomials p, q have

a hamming distance d(vp, vq) = m/2. Then the XOR of those polynomials will
have exactly m/2 monomials. That is due to the fact that we are working over
Z2 and so if the two vectors differ in an element, meaning in one polynomial the
corresponding monomial is present and in the other polynomial it is not then,
after XORing, the monomial will be present in the new polynomial. On the other
hand, if the vectors agree in an element, the corresponding monomial either is
present in both of the polynomials or in neither of them and in both cases the
monomial will not be present in the XOR.

We can thus examine the situation where we have a fixed k ∈ N and r ∈ [0, m]
where k stands for the number of polynomials we want to find that have a
Hamming distance less than or equal to r. A similar concept was explored in
[LMRS12], when investigating general methods of finding near-collisions in cryp-
tographic hash functions. They defined an ϵ-near-collision for a pair of messages
m, m∗ under a hash function H as instances where d(H(m), H(m∗)) ≤ ϵ. We
aim to investigate when the Hamming distance d(v, w) is less than or equal to
r for two random vectors v and w from Fm

2 . To accomplish this, we adopt the
methodology outlined in Section 3.2 of [LMRS12].

Let V = {v1, . . . , vn} be a set of uniformly random polynomials from Zm
2 .

For the hamming distance d, we can define a hamming sphere of radius r of a
polynomial x ∈ Zm

2 as

Br(x) = {y ∈ Zm
2 : d(x, y) ≤ r}

and its volume as
V (m, r) = |Br(x)| =

r∑︂
i=0

(︄
m

i

)︄
.

The V (m, r) function represents the number of all vectors of Zm
2 that have the

hamming weight at most r or that have at most r distance from an arbitrary
vector x ∈ Zm

2 . This means that the probability that two random vectors from
Zm

2 have a Hamming distance at most r is V (m, r)/2m.
For a pair of vectors vi, vj ∈ Zm

2 , let us consider the random variable d(vi, vj)
and the characteristic function χ of the event d(vi, vj) ≤ r, defined as

χ(d(vi, vj) ≤ r) =
⎧⎨⎩1, if d(vi, vj) ≤ r

0, otherwise.
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The number of pairs from V such that their distance is at most r can be expressed
as a random variable

NV (r) =
n∑︂

i=1

i−1∑︂
j=1

χ(d(vi, vj) ≤ r).

We are interested in the expected number of pairs of distance at most r.

Theorem 3.1. With the notation introduced above, the expected value of NV (r)
is

E (NV (r)) =
(︄

n

2

)︄
V (m, r)

2m
.

Proof. Let us first examine the expected value of χ.

E (χ(d(vi, vj) ≤ r)) = 0 · Pr[d(vi, vj) > r] + 1 · Pr[d(vi, vj) ≤ r] = V (m, r)
2m

.

Using the linearity of expectation, we can now compute the expected value of
NV (r):

E (NV (r)) = E (
n∑︂

i=1

i−1∑︂
j=1

χ(d(vi, vj) ≤ r))

=
n∑︂

i=1

i−1∑︂
j=1

E (χ(d(vi, vj) ≤ r))

=
(︄

n

2

)︄
V (m, r)

2m
.

The above was used in [LMRS12] to analyse the complexity of finding ϵ-
near-collitions using a Birthday-like ϵ-near-collision search. Building upon this
foundation, we can leverage similar techniques to investigate the number of vec-
tors in V necessary to establish a lower bound for the expected value of r-near
pairs.

Theorem 3.2. To have the average number of vectors from V that have distance
at most r be at least k, we need the set V of size at least

|V | ≥
√

k · 2m/2√︂
V (m, r)

.
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Figure 3.1: Expected value of the number of pairs closer than d, for m = 10

Proof. To see this, let us look at the expected value of NV (r).

E (NV (r)) ≥ k(︄
n

2

)︄
V (m, r)

2m
≥ k(︄

n

2

)︄
≥ k · 2m

V (m, r)

n2 − n ≥ k · 2m+1

V (m, r)

n2 ≥ k · 2m+1

V (m, r)

n ≥
√

k · 2m/2√︂
V (m, r)

In Figure 3.1, we can see the value of E (NV (r)) plotted for n from 2 to 20
and different values of d and for a fixed value of m = 10. When we fix a value
k = E (NV (r)) of how many polynomial pairs we want to find on average we can
see that as n increases the distance of the found vectors decreases. For example
when we would like to obtain k = 6 vector pairs on average, when we have n = 6
we would have to set d as 5, meaning we would want the vectors to be different in
at most 1/2 elements. When we increase n to 18, we can now set d to 2, meaning
at most 1/5 of the vectors is going to be different.
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Figure 3.2: Number of polynomial pairs from the SR(1,2,2,4) cipher with distance
less than r. The values indicated by lines represent the expected values, while
the dots represent the experimental values.

While having the expected value of a number of pairs closer than r is im-
portant, the above results assume uniformly random polynomial systems. We
want to compare these findings to systems generated for AES. We ran a series of
experiments on the cipher SR(1,2,2,4) for various values of plaintext/ciphertext
pairs, looking at the distances of pairs of polynomials. The results can be found
in Figure 3.2, where they are presented in the same way as Figure 3.1, that is
on the x-axis we have the number of polynomials in the system (or |V | = n) and
the y-axis indicates two distinct instances. The dots, stars and pluses indicate
the number of pairs found in these experiments with distance at most r, while
the lines represent the expected value E (NV (r)) of the number of pairs. With
the vector length of m = 57 we picked r = 10, 25, 57 to illustrate different values
while ensuring legibility.

Observing Figure 3.2 we note that for lower and higher values of r the exper-
imental values closely align with the expected values. However, for the interme-
diate values of r, there are discrepancies between the experimental and expected
values. We suspect this arises from the fact that for parameter as low as in
SR(1,2,2,4) the polynomial system is not pseudorandom. With more complex
ciphers like SR(10,4,4,8), we would expect a closer alignment between the experi-
mental values and the expected values. It is, however, important to acknowledge
that due to time constraints, we could only perform one run of the experiments,
which may contribute to the observed variance.
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3.2 Locality-Sensitive Hashing
As we mentioned at the start of the chapter, our goal is to reduce the number of
polynomials from multiple polynomial systems describing a cipher. We aim to do
this by adding all of the polynomials and using a certain number of the shortest
polynomials.

However, if we have s polynomials in our system then adding every pair would
require going through

(︂
s
2

)︂
pairs, leading to a quadratic overhead. To address this

challenge, Berušková [Ber22] explored a few strategies on how to mitigate this,
with the most promising approach being Locality-Sensitive Hashing or LSH. Next,
we introduce the necessary definitions for LSH following the presentation in [Wyl].

Definition 3.2. Let F be a family of functions h : M → S, d a distance measure
on M and d1 < d2 two distances in this measure. We say that F is (d1, d2, p1, p2)−
sensitive if for all h ∈ F and all x, y ∈M :

• if d(x, y) ≤ d1 then Pr[h(x) = h(y)] ≥ p1,

• if d(x, y) ≥ d2 then Pr[h(x) = h(y)] ≤ p2.

A (d1, d2, p1, p2)− sensitive family is called an LSH family.

Locality-Sensitive Hashing is a method of determining which items in a given
set are similar. It accomplishes this by hashing similar items to the same elements
with high probability. An element of the output is generally called a bucket. Since
similar items tend to end up in the same buckets, we can use this technique to
find vectors that are similar without going through all of the pairs. This enables
us to reduce the number of comparisons to just the pairs in the same bucket.

LSH is versatile in its application, as it can accommodate various distance
measures to quantify similarity. In our context, we leverage the Jaccard similarity
measure, which assesses the degree of similarity between two sets.

Definition 3.3. Let A and B be finite sets. Then the Jaccard similarity is defined
as

J(A, B) = |A ∩B|
|A ∪B|

.

Jaccard similarity indicates what portion of two sets is the same. It is 1 if
the sets are the same, 0 if they have no elements in common and somewhere in
between otherwise.

This however does not meet the definition of distance. To rectify this, we
need to reverse the interval to adhere to the conventions of distance measures.

Definition 3.4. Let A and B be finite sets and J(A, B) their Jaccard similarity.
Then the Jaccard distance is defined as 1− J(A, B).

With this, we can prove that Jaccard distance is a distance.

Lemma 3.3. Jaccard distance is a distance measure on the collection of all finite
sets.

Proof. A distance measure d has to meet these four definitions:
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1. d(x, x) = 0,

2. d(x, y) > 0 when x ̸= y

3. d(x, y) = d(y, x),

4. d(x, z) ≤ d(x, y) + d(y, z).

Let d be the Jaccard distance and A, B, C three finite sets. For the first
equation, we have d(A, A) = 1− J(A, A) = 1− |A∩A|

|A∪A| = 0.
The second equation holds because |A ∩B| < |A ∪B| when A ̸= B. The

third equation holds because |A ∩B| = |B ∩ A| and |A ∪B| = |B ∪ A|.
Proving the last equation can be quite cumbersome, thus we refer to [Kos19]

for a complete proof.

We can interpret our polynomials as sets of monomials. Because we are work-
ing with polynomials in Z2 this also incorporates the coefficients. Comparing two
polynomials then reduces to computing the Jaccard distance of the corresponding
sets.

The LSH method using Jaccard distance as a measure uses a family of func-
tions called MinHash. MinHash was first introduced by Andrei Broder in [Bro97]
to detect duplicate web pages.

Definition 3.5. Let h be a hash function that maps the members of a set U to
distinct integers, let p be a random permutation of the elements of U , and for
any subset S ⊆ U define hmin(S) to be the minimal member of S with respect to
h◦p—that is, the member x ∈ S with the minimum value of h(p(x)). The family
of functions hmin defined as above is called a MinHash family.

Let us provide an example to better illustrate the MinHash family.

Example 3.6. Let f1 = xy + z and f2 = x2 + z be two polynomials in Z2[x, y, z].
The set U in this case would represent the set of all present monomials, hence
U = {x2, xy, z} and we can equate the subsets S1 = {xy, z} and S2 = {x2, z} to
the polynomials f1, f2.

Let us take a hash function h : U → Z such that h(x2) = 1, h(xy) = 2 and
h(z) = 3 and a permutation p : U → U such that p(x2) = z, p(xy) = xy and
p(z) = x2. Then

hmin(S1) = min{h(p(xy)), h(p(z))} = min{2, 1} = 1,

hmin(S2) = min{h(p(x2)), h(p(z))} = min{3, 1} = 1.

Hence, we get the same hash for both polynomials.

To see that MinHash functions are an LSH family we need the following
lemma.

Lemma 3.4. Let A and B be two finite sets and J(A, B) their Jaccard similarity.
Than the probability that hmin(A) = hmin(B) is equal to J(A, B).

Proof. We can see that hmin(A) = hmin(B) if and only if among all elements of
A∪B the element with the minimum hash value lies in both A and B. Therefore
we have Pr[hmin(A) = hmin(B)] = J(A, B).
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Corollary 3.5. A family of MinHash functions is (d1, d2, 1−d1, 1−d2)−sensitive.

Proof. Let h : M → S be a hash function from the MinHash function family.
Suppose that the Jaccard similarity of two elements A, B ∈ M is at least

s, then their Jaccard distance is at most d1 = 1 − s. By 3.4 we have that
Pr[h(A) = h(B)] ≥ s = 1− d1.

On the other hand, suppose that the Jaccard distance of A and B is at least
d2. Then their Jaccard similarity is at most s = 1 − d2 and thus Pr[h(A) =
h(B)] ≤ s = 1− d2.

The overarching idea, as explained above, is to hash polynomials in such a
way that similar polynomials are more likely to end up in the same bucket and
dissimilar polynomials are more likely to end up in different buckets. To have
a way of altering that probability we use multiple hash functions from MinHash
on a single polynomial. By adjusting the parameters of the combinations of the
MinHash functions, we can affect the likelihood of polynomials being grouped
together based on their similarity.

Suppose we have a (d1, d2, p1, p2)-sensitive family of hash functions F . We
can construct new families of functions in two ways. An AND-family of functions
G where each g ∈ G is constructed by using k independently uniformly chosen
functions f1, . . . , fk ∈ F and we say that g(x) = g(y) if and only if fi(x) = fi(y)
for all i ∈ [1, k].

We can similarily construct an OR-family G where each g ∈ G is again con-
structed by using k independently uniformly chosen functions f1, . . . , fk ∈ F and
g(x) = g(y) if and only if fi(x) = fi(y) for at least one i ∈ [1, k].

The properties of these constructions are summarised in the next theorem, for
which we present a self-contained proof.

Theorem 3.6. Let F be a (d1, d2, p1, p2)-sensitive family of hash functions. An
AND-family of hash functions constructed from F by using k functions is a
(d1, d2, pk

1, pk
2)-sensitive family.

An OR-family of hash functions constructed from F by using k functions is
(d1, d2, (1− (1− p1)k), (1− (1− p2)k))-sensitive.

Proof. When d(x, y) ≤ d1 we have for all i ∈ [1, k] that Pr[fi(x) = fi(y)] ≥ p1.
Let us first look at the sensitiveness of the AND-construction.

Because all fi are chosen independently uniformly from F we have

Pr[g(x) = g(y)] = Pr[fi(x) = fi(y) for all i ∈ [1, k]]

=
k∏︂

i=1
Pr[fi(x) = fi(y)] ≥ pk

1.

For the OR-construction we have

Pr[g(x) = g(y)] = Pr[fi(x) = fi(y) for at least one i ∈ [1, k]]

= 1− Pr[fi(x) ̸= fi(y) for all i ∈ [1, k]] = 1−
k∏︂

i=1
Pr[fi(x) ̸= fi(y)]

≥ 1− (1− p1)k.

The proof of the case when d(x, y) ≥ d2 is analogous to the preceding proofs.
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Figure 3.3: Probability of two vectors becoming candidates for an (r, b)-MinHash
construction

Using the above theorem, we can formulate the level of sensitivity of families
of functions constructed as a combination of the AND-construction and the OR-
construction.
Corollary 3.7. A family of hash functions constructed by first using r MinHash
functions with the AND-construction and then using b functions from this new
family for the OR-construction is (d1, d2, 1− (1− (1− d1)r)b, 1− (1− (1− d2)r)b-
sensitive. We call this family an (r, b)-MinHash construction.

In our experiments, the LSH is performed as follows. We interpret each poly-
nomial as a set of monomials, then we fix a set of MinHash functions of size
n = r · b and use them on each set. The results of each hash function concate-
nated together is called a signature of that set. We divide each signature into b
parts, called bands. If two polynomials have the same signature in at least one
band, we mark them as candidates. Then we can go through all of the candi-
dates, add them and sort all of the new polynomials according to the number
of monomials. The polynomials with the lowest number of monomials are the
polynomials we take for F4.

If two polynomials have Jaccard similarity s, then with this scheme the prob-
ability that we pick them as candidates is exactly 1− (1− sr)b. We can see this
function plotted in 3.3 for different values of r and b, used in the experiments by
Berušková [Ber22]. Observe that the function has the shape of a S-curve. The
shape and steepness of the function suggest the size of the error that can occur
when using LSH.

In the Section 3.1, we examined the sparsity of fully random polynomial sys-
tems when adding all pairs of polynomials. How does this transfer when using
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LSH?
We saw that the (r, b)-MinHash construction is (d1, d2, 1− (1− (1−d1)r)b, 1−

(1− (1−d2)r)b-sensitive. Therefore, if we have two vectors v, w with d(v, w) ≤ d1
then, for any h from the MinHash family, Pr[h(v) = h(w)] ≥ 1− (1− (1− d1)r)b.

Let us consider the set W = {(v1, w1), . . . , (vk, wk)} of pairs of vectors such
that d(vi, wi) ≤ d1 for all i ∈ [1, k] and the set of all candidates after LSH
C = {(vi, wi) ∈ W | h(vi) = h(wi)}. In Section 3.1 we have examined the
expected value of the size of W . We define a characteristic function χ of the
event (vi, wi) ∈ C, that is

χ((vi, wi) ∈ C) =
⎧⎨⎩1, if h(vi) = h(wi)

0, otherwise.

We want to examine the expected value of the number of candidates in C.
We can define a random variable

NC(W ) =
k∑︂

i=1
χ((vi, wi) ∈ C).

Lemma 3.8. With the above definitions, the expected value of NC(W ) is

E (NC(W )) ≥ k · (1− (1− (1− d1)r)b).

Proof. By the linearity of expectation

E (NC(W )) = E (
k∑︂

i=1
χ((vi, wi) ∈ C))

=
k∑︂

i=1
E (χ((vi, wi) ∈ C)) = k · Pr[h(vi) = h(wi)]

≥ k · (1− (1− (1− d1)r)b).

To combine this with Section 3.1 we can replace k with E (NV (d1)) to get the
following theorem.

Theorem 3.9. Let V be a set of uniformly random polynomials from Zm
2 and

d1 ∈ [0, 1]. When using LSH on this set the expected value of the number of
candidates NC is

E (NC) ≥
(︄

n

2

)︄
V (m, d1)

2m
· (1− (1− (1− d1)r)b).

Finally, while we have defined LSH for the Jaccard distance, as MinHash is
originally defined for this distance, it is worth noting that the Jaccard distance
shares similarities with the Hamming distance. To see this, consider two poly-
nomials p, q ∈ Z2[x1, . . . , xn] and two representations of them. Firstly, we can
represent them by sets of monomials Mp, Mq present in the respective polynomi-
als. Alternatively, we can represent them using vectors vp, vq ∈ Zm

2 , where m is
the number of distinct monomials in both polynomials. In this representation,
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the vector vp has a 1 in position i if and only if the i-th monomial is present in
p. This, of course, requires us to order the monomials.

Now if we denote by d(v, w) the hamming distance of polynomials v, w, we
have

1− |Mp ∩Mq|
|Mp ∪Mq|

= d(vp, vq)
|vp|

.

Consequently, the MinHash is also a method for the normalised hamming dis-
tance. This is the typical approach for presenting LSH and MinHash when the
main motivation is implementation.

3.3 Reduction in Leading Monomials
In the ComputeM algorithm used in F4, the procedure traverses all monomials
from the largest one to the smallest one. We believe that crafting sparser poly-
nomials could enhance the algorithm’s performance and we can accomplish that
with a method like LSH introduced in Section 3.2. Another potentially bene-
ficial strategy involves considering the sparsity distribution across polynomials.
By prioritizing sparsity in larger monomials, we may achieve a reduction in the
average leading term, thereby enabling F4 to work with “shorter” polynomials.

To test this hypothesis, we modified the existing experiments programmed by
Berušková in [Ber22] to exclusively use LSH on a portion of the biggest monomi-
als. The experiment works as follows:

1. Compute polynomial systems.

2. Sort all present monomials according to GrevLex.

3. Create vector representations of all polynomials.

4. Take only a part of the vector and use the LSH method as before.

5. XOR all candidates and select a subset of the shortest ones.

The existing implementation of LSH skips the second step, as having the
monomials sorted when applying the LSH to the whole polynomial is unneces-
sary. This, however, presents a problem when implementing the new method.
The program inherently sorts the monomials according to the Lex ordering and
so we need to implement a custom way of sorting the monomials in the GrevLex
order. Initially, we attempted to achieve this by adapting a segment of code
from the MSM reduction method (another reduction method used by Berušková
[Ber22]) to identify the largest leading monomial according to GrevLex. Mod-
ifying it as a comparison function, we used it with pythons sort() function to
sort the monomials. However, this approach proved to be too time-consuming.
The preprocessing time drastically increased from an average of a few seconds to
hours.

To mitigate this issue, we opted to utilize the GrLex order instead of GrevLex.
Given that the program inherently sorts monomials based on the Lex order, we
can leverage this to sort monomials in the GrLex order using the sort() function
as before. However, now we let the program sort the monomials only according
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to the degrees. The sort() function preserves the original order and as a result,
monomials are sorted according to the degree lexicographic order.

Next, we need to address the error introduced by using GrLex instead of
GrevLex. Let us first recall the definitions of GrLex and GrevLex. Let xα and
xβ be monomials in k[x1, . . . , xn].

• Lexicographic Order (Lex):
xα >Lex xβ if the leftmost nonzero coordinate of α− β is positive.

• Graded Lexicographic Order (GrLex):
xα >GrLex xβ if either |α| > |β| or |α| = |β| and xα >Lex xβ.

• Graded Reverse Lexicographic Order (GrevLex):
xα >GrLex xβ if either |α| > |β| or |α| = |β| and the rightmost nonzero
coordinate of α− β is negative.

Both GrLex and GrevLex first sort monomials according to their degree. Only
when two monomials have the same degree can the orders differ. Thus, we can try
to approximate the mistake between these two orders using this characteristic.

Let us first define the problem at hand. Let vGrevLex be the vector containing
all monomials up to degree d sorted in the GrevLex order and likewise vGrLex
the vector containing all monomials up to degree d sorted in the GrLex order.
The question is when we want to use the first, for example, a tenth of the vector
vGrLex, what portion of vGrevLex do we need to use to cover all monomials?

When we look at the degree of the lowest monomial in the first tenth of vGrevLex
if we add all monomials with that degree then we cover all of the monomials that
we wanted to cover in vGrLex. Given that there are

(︂
n+d+1

d

)︂
monomials of degree

d in n variables, the number of such monomials grows rapidly with an increasing
degree d. You can see this growth in Figure 3.4.

We can examine what portion of the vector vGrLex we would have to take to
cover everything in a set portion of vGrevLex. You can a graph of this in Figure 3.5.
The grey dashed line represents the equality of portions for both vectors, e.g.
taking 0.1 portion of vGrevLex and 0.1 of vGrLex lies on the line. Our proportion
copying this line would mean we take exactly the same proportion of vGrLex and
cover all monomials in vGrevLex. However, you can see, that for smaller portions
of vGrevLex like 0.1 we would have to take over half of the vGrLex vector if we were
to use this approximation. This is due to the fact that monomials of the highest
degree take up as much as half of all the monomials in that vector. For larger
amounts, the proportions start to match more closely.

Another way to look at this is to want to know how much of the vectors
vGrLex and vGrevLex would overlap were we to take the same portion sizes of both.
With our simple approximation in terms of degrees, this does not work for smaller
portions. If we take a portion of vectors that contains only the highest degree then
with this technique, we have no way to distinguish between the used monomials.
As a result, this creates a very similar graph to Figure 3.5.

In conclusion, we can say that without examining the differences between
these two orderings within the degrees we cannot say anything about the error
with small portions of vectors. However, for bigger portions, we can see that the
error between these two orderings is relatively small.
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Figure 3.4: Number of monomials of degree d in 32 variables
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Figure 3.5: Portion of vGrLex needed to cover the monomials in a portion of
vGrevLex. The vectors contain all monomials up to degree 30 in 32 variables.
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4. Experiments
All of the experiments were conducted on GNU/Linux 5.4 utilizing two Intel®
Xeon® Gold 6136 processors with 769 GB DDR4 memory evenly distributed
across 12 modules. To solve the systems of equations we used an F4 imple-
mentation in Magma V2.25-5.

The scripts used in our experiments were adapted from those developed by
Bielik and Berušková for their respective theses [Bie21, Ber22]. The source code
of Bielik’s experiments can be found at https://gitlab.com/marek.onl/masters-
thesis, while the source code created by Berušková can be found at
https://github.com/berusjan/RedPolSysAES.

We added two other preprocessing methods detailed in Section 4.1 and Sec-
tion 4.2. The source code for these experiments will be made available at
https://gitlab.mff.cuni.cz/maskovkr/algcryptopre. Moreover, our repository con-
tains Jupyter notebooks featuring some graphs and statistics presented herein.

Our goal for these experiments was twofold. First, we aimed to confirm that
using LSH is better than exhaustively going through all pairs, while also compar-
ing these two methods. We analyze this in Section 4.1. Secondly, we wanted to
test our assumption, that using LSH only the first portion of the vectors would
further fasten the time required for solving. We describe these experiments and
give some results in Section 4.2.

For the sake of simplicity, all experiments were conducted with a single poly-
nomial set as input for F4. The number of polynomials therefore corresponds to
the number of key bits.

Some experiments did not finish. This was either due to the fact that the
time exceeded a predetermined limit, typically set to 4 hours, or encountering
computational errors resulting from an error in Magma. These incomplete runs
were excluded from the final analysis.

4.1 Comparative Analysis of LSH and Exhaus-
tive Comparison

In this section, we analyze the efficiency of LSH compared to the exhaustive
pairwise comparison. In Chapter 3 we described the primary way of preprocessing
in algebraic cryptanalysis we investigate in this work. It involves adding all
pairs of polynomials and selecting those resulting in the fewest monomials, which
corresponds to performing bitwise XOR operations on the vectors representing
the polynomials.

Going through all pairs of polynomials on its own involves traversing
(︂

s
2

)︂
pairs,

where s is the number of polynomials. This process exhibits quadratic growth
and can become prohibitively expensive for a larger number of polynomials. To
illustrate, consider SR(1,4,4,8) or one round of AES. The system of polynomials
has as many polynomials as there are bits of the key, in this case, that is 128
polynomials. Generating 8 polynomial systems would mean we would have 1024
polynomials and that is 523776 pairs to go through. One way to mitigate this
is to use a method like LSH. When experimenting with LSH on SR(1,4,4,8), we
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Figure 4.1: Preprocessing times of LSH and All on SR(1,2,2,4)

observed a significant reduction in the number of pairs to just 5826, approximately
0.01 of the original value. When we ran experiments of LSH on SR(1,4,4,8) the
number of pairs went down to 5826, or just around 0.01 of the original value.

To give us an idea of how much faster LSH generally is, we implemented a
new method of reduction called “All” that first XORs all of the pairs of polyno-
mials and then picks for solving those, that have the lowest amount of monomi-
als. We conducted experiments across various ciphers, each with different num-
bers of generated plaintext/ciphertext pairs. We examined the proportion of all
pairs to candidate pairs when employing LSH, as well as the preprocessing time
when using both “All” and LSH. The exact parameters can be found in scripts
run LSH data-full.sh and run All data-full.sh.

For each cipher, we compared the number of all pairs required without LSH to
the number of candidate pairs identified by LSH. On average, LSH pairs accounted
for a mere 4.9% of all pairs, with the highest value of 38.3% and the lowest of
1.2% of total pairs.

The comparison between the time required to go through all pairs versus the
time required when using LSH is illustrated in Figure 4.1. Here the x-axis repre-
sents the number of plaintext/ciphertext pairs generated, while the y-axis depicts
the time of preprocessing for the SR(1,2,2,4) cipher with that number of plain-
text/ciphertext pairs. You can see that for a low number of plaintext/ciphertext
pairs the times appear to be comparable. However, the time to go through all
pairs grows rapidly as the number of plaintext/ciphertext pairs increases.

We can analyze this further by examining the proportion of the preprocessing
time for LSH and “All”. On average, the preprocessing time of LSH is approx-
imately 20% of the preprocessing time for “All”, indicating that LSH is around
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Figure 4.2: Proportion of preprocessing time of LSH to “All” for SR(1,4,4,8)

five times faster. We would expect the LSH preprocessing to be faster the more
polynomials are in the system. This is evident for example in Figure 4.2, where
we can see the proportion of preprocessing times of LSH to “All” in relation to
the number of polynomials in the system.

The number of candidates LSH outputs is related to how many polynomials
are on average in a bucket. For instance, if LSH were to put all polynomials into a
single bucket, the number of candidates would be the same as going over all pairs.
Although we did not delve into this in detail, we wanted to experimentaly examine
the distribution of polynomials in buckets. To achieve this, we generated several
graphs showing the number of buckets with a certain amount of polynomials. One
such graph is presented in Figure 4.3. As depicted, as the amount of polynomials
increases, the number of buckets with that amount of polynomials decreases.
Notably, the graph illustrates that a large amount of the buckets contain only 2
polynomials, with almost all buckets containing fewer than 40 polynomials. These
findings were consistent across all generated graphs, highlighting a distribution
pattern.

4.2 Partial LSH Experiments
Our second goal was to test our assumption of using LSH only on a portion of the
polynomial, hopefully finding a candidate for the optimal value of that portion.
We described this method in detail in Section 3.3. The idea is that polynomials
reduced primarily in the bigger monomials would be more suitable for F4.

To test this, we modified the existing code so that the monomials would be
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Figure 4.3: Number of buckets with that amount of polynomials in SR(1,2,2,4)
for number of generated plaintext/ciphertext pairs set to 128

sorted in GrLex order, we added a new method of reduction named “LSH part”
and we added an argument -LSHpart that takes in a float and interprets it as the
portion of the vector that LSH should be used on. We also modified the resolution
of the time to be in milliseconds and not seconds, as most of the experiments in
our earlier runs either ran for less than a second or did not finish at all.

Running the experiments for all ciphers and all possible values of -LSHpart
would be too time-consuming, so we decided to run the experiments only for two
ciphers SR(1,2,2,8) and SR(2,2,2,4). We first generated and saved 10 random
instances for different numbers of plaintext/ciphertext pairs ranging from 4 to
1024. Then we ran the experiments for values of -LSHpart 0.1, 0.2, . . . , 0.9, 1,
each 10 times on the pre-generated data. The average times for each value of
-LSHpart can be seen in Table 4.1 and in Figure 4.4.

In the Table 4.1, you can also see the value Mon representing the average
number of monomials in a polynomial. The value stays roughly the same for all
parts. However, we can see that it is lowest for values close to the edge while
being higher for values in the middle. This could suggest that using LSH is most
effective when done on the whole vector or only on a small part, but not on half
of the vector.

In Figure 4.4 we can see that the optimal value of -LSHpart in terms of time
spent in the solver is around 0.7. Another dip can be seen in -LSHpart 0.2,
however, we could not figure out a reason why that might happen.

While the average number of monomials in a polynomial does not change
much between the values of -LSHpart, it changes drastically with larger numbers
of plaintext/ciphertext pairs generated. This can be seen in Figure 4.5, where we
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-LSHpart Mon Time [ms]
0.1 87.9 25374
0.2 88.2 10518
0.3 88.5 25072
0.4 88.5 34072
0.5 89.4 11773
0.6 89.2 11603
0.7 88.8 9290
0.8 87.8 11674
0.9 87.9 16248
1.0 86.2 17321

Table 4.1: Average times of partial LSH used on SR(1,2,2,8).
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Figure 4.4: Average times of LSH part for SR(1,2,2,8)

33



4 8 12 16 32 48 64 96 128 256 384 512 1024
Number of plaintext/ciphertext pairs

40

60

80

100

120

140

160

180

200

Nu
m

be
r o

f m
on

om
ia

ls

SR(1,2,2,8)

Figure 4.5: Average number of monomials in a polynomial for SR(1,2,2,8)

plotted the average number of monomials in a polynomial for changing numbers
of plaintext/ciphertext pairs.

We ran the same experiments on the cipher SR(2,2,2,4), you can see the
average times of LSH part in Figure 4.6. For this cipher, the lowest value of time
in the solver is around -LSHpart of 0.6 and there is no dip around the 0.2 as in
the previous graph.

Due to the time constraint, we did not manage to run additional experiments
for LSH part. Running experiments for more ciphers with a wider range of pa-
rameters could yield more conclusive results.
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Figure 4.6: Average times of LSH part for SR(2,2,2,4)
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Conclusion
Preprocessing in algebraic cryptanalysis is a new topic, by now only explored
by Bielik et al. [Bie21, BJJL22] and Berušková [Ber22]. Both of works focused
on implementing the ideas and experimenting with them. While Berušková sug-
gested a few techniques for preprocessing, the suggestions were purely heuristic.
Our goal was to provide a theoretical framework for explaining the observed per-
formance in the above experiments and that provides a guide on how to refine
and optimize the performance of preprocessing techniques.

We showed the correctness of preprocessing in Chapter 2 together with giving
an overview of the current state of knowledge. In Chapter 3 we first examined
the sparsity of fully random systems. We presented a foundation of the theory
on Locality-Sensitive Hashing used in preprocessing, and, finally, we suggested a
version of preprocessing that focuses on the leading monomials in a polynomial.
We concluded this thesis with a discussion of the results of our experiments. We
showed that LSH is most useful when working with larger sets of polynomials
and that using LSH only on the leading monomials could further help the com-
putation.

In the introduction, we mentioned the new class of primitives known as Arith-
metization Oriented Ciphers. These primitives are designed to be efficient in pro-
tocols using arithmetization like Zero Knowledge proofs. This also makes them
vulnerable to algebraic cryptanalysis. Exploring the power of the preprocess-
ing techniques in algebraic cryptanalysis of these ciphers could yield interesting
insights on their security.
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Yet another algebraic cryptanalysis of small scale variants of AES.
In Sabrina De Capitani di Vimercati and Pierangela Samarati, edi-
tors, Proceedings of the 19th International Conference on Security and
Cryptography, SECRYPT 2022, Lisbon, Portugal, July 11-13, 2022,
pages 415–427. SCITEPRESS, 2022.

[Bro97] Andrei Z. Broder. On the resemblance and containment of documents.
In Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and James A.
Storer, editors, Compression and Complexity of SEQUENCES 1997,
Positano, Amalfitan Coast, Salerno, Italy, June 11-13, 1997, Proceed-
ings, pages 21–29. IEEE, 1997.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal.
Dissertation an dem Math. Inst. der Universität von Innsbruck, 1965.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and
Algorithms. Undergraduate Texts in Mathematics. Springer Cham,
2015.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale
variants of the AES. In Henri Gilbert and Helena Handschuh, editors,
Fast Software Encryption: 12th International Workshop, FSE 2005,

37

https://github.com/berusjan/RedPolSysAES
https://gitlab.com/marek.onl/masters-thesis


Paris, France, February 21-23, 2005, Revised Selected Papers, volume
3557 of Lecture Notes in Computer Science, pages 145–162. Springer,
2005.

[CMR06] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Algebraic
aspects of the advanced encryption standard. Springer, 2006.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing
Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1-
3):61–88, June 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing
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