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Supervisor: doc. RNDr. Michal Pešta, Ph.D., Department of Probability and
Mathematical Statistics

Abstract: This research focuses on a special type of time series data where a sig-
nificant proportion of values is zero. The aim is to develop a statistical model
that accurately captures the behavior of such data. By exploring existing theories
on GARCH and MEM models, new models together with derivation of important
theoretical properties are proposed. To assess their effectiveness, they are tested
on real-world data. This evaluation reveals that each model has its own strengths
and weaknesses. The overall results are promising, proving the models’ validity
and real-world applicability, opening doors for further exploration in this area.

Keywords: stochastic processes, time series, conditional heteroscedasticity mod-
els, GARCH, MEM, dependent zeros, non-negative observations, sparse positive
observations
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zorováńı
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Introduction
The analysis of time series data is an important part of probability and statistics,
especially in fields like finance and insurance. According to an observed evolution
of time series it is possible to forecast the future development. The precision
of these forecasts increases with the complexity of the models involved in this
task; however, creating too elaborate structures may lead to overfitting and poor
performance in longer time horizons. Within this context, the presence of dense
zeros, where a significant proportion of observations are zero, poses a unique
challenge that requires specialized modeling techniques which are the main topic
of this thesis.

The concept of dense zeros in time series data refers to scenarios where a sig-
nificant proportion of observations are zero and the rest are strictly positive.
By delving into the intricacies of dense zeros and, subsequently, into time series
where zero-inflated series are prevalent, it is possible to enhance the reliability
and applicability of statistical analyses in real-world settings.

To illustrate this concept in practice, we may imagine a time series of daily
observed insurance claims on assets such that their occurence is not very com-
mon, e.g. transport ships or rare diseases insurance claims. Since these do not
happen every day (every time period t), in the observed time series there are
many “true zero” observations, i.e. values equal to zero which have not been
created by rounding small non-zero values or by other artifical means. It also
implies that there cannot be negative values in the series. Therefore, this situa-
tion falls into the framework of dense zeros. Naturally, already existing models
such as GARCH, MEM, ARMA and others may be called for duty in this case.
Nevertheless this specific definition of the problem gives rise to new approaches
which can take into account the significant probability of having zero values.

Hence, the goal of this text is to create a model suitable for dealing with these
particular scenarios. There already exist various models with numerous proper-
ties in the literature and the author’s aim is to take inspiration from these findings
and propose brand new ways of how to handle the dense-zeros time series effec-
tively while keeping their complexity at reasonable levels.

The structure of this thesis reflects a comprehensive exploration of time se-
ries analysis with dense zeros. It begins with a theoretical background that
provides an overview of current literature on GARCH models and Multiplica-
tive Error Models (MEMs), introducing the recent findings in these statistical
approaches. The subsequent chapters introduce the author’s new theory, pre-
senting five new models (DZ-EGARCH1, DZ-EGARCH2, DZ-OGARCH, DZ-
GMEM, DZ-NMEM21) specifically designed to address the challenges of dense
zeros. These models come with an innovative perspective on modeling zero-
inflated series with non-negative values. The practical part of the thesis then
focuses on evaluating these models on real-life data. The results, models’ perfor-
mance and implications for future research are to be discussed as well.
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1. GARCH Models and MEMs
This introductory chapter focuses on providing an overview of existing theory
of two main categories of stochastic models – the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) models and Multiplicative Error Mod-
els (MEMs). These two families have been proven to exhibit very satisfying
theoretical properties as well as to provide meaningful predictions and forecasts
in various, not only financial or economic, scenarios.

The first section defines the GARCH models, states their properties and also
presents a handful of modifications and extensions stemming from the base model.
The second section devoted to MEMs is structured analogously. Additionally,
notation and general framework built in these two sections is going to be used
throughout the rest of the text.

Since we are not going to implement these models in their already existing
form but rather create their modifications designed specifically to fit in the con-
cept of dense zeros, this chapter is not supposed to cover all the findings connected
with the mentioned families of models. Hence, the brief summary provided be-
low serves primarily as a theoretical foundation which is going to be utilized
in the following text.

1.1 Introductory Overview
This chapter provides a foundation for the analysis of time series data in the con-
text of probability and statistics. We introduce key concepts such as random
processes, stationarity, covariance, and functions that measure dependence within
a time series over time.

1.1.1 Random Processes and Time Series
A random process, denoted by {Xt : t ∈ T}, is a collection of random variables
indexed by an index set T , typically representing time. Each element Xt repre-
sents the outcome at time t. The set T can be discrete (e.g., hourly temperatures)
or continuous (e.g., stock prices over a day). The complete probabilistic behavior
of the process is determined by the joint probability distribution of any finite col-
lection of these random variables. Formally, for any finite subset t1, t2, . . . , tn ∈ T ,
there exists a joint probability distribution function:

FXt1 ,Xt2 ,...,Xtn
(x1, x2, . . . , xn) = P (Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtn ≤ xn) (1.1)

where P denotes the probability measure.
A time series is a specific realization of a random process. It is an ordered se-

quence of observations collected over time, representing the values of the random
variable Xt at different time points. Let T = {t1, . . . , tN} be a finite index set,
then a time series is a particular outcome denoted by {yt1 , . . . , ytN

} where yti
is

the observed value of the random variable Xti
at time ti, i = 1, . . . , N.
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1.1.2 Stationarity
Stationarity is a crucial property for analyzing time series data. A time series is
considered stationary if its statistical properties are constant over time. Formally,
a stationary time series satisfies the following conditions, depending on the type
of stationarity.

1) Weak Stationarity:

• The mean µt = E(Xt) and variance σ2
t = Var(Xt) are constant for all

times t ∈ T,

• The covariance between any Xt, Xs, defined as

cov(Xt, Xs) = E[(Xt − µt)(Xs − µs)] (1.2)

for every t, s ∈ T, depends only on the difference |t − s|.

2) Strict Stationarity:

• The joint probability distribution of any finite collection of random
variables Xt1 , . . . , Xtn is equal to the joint probability distribution of
Xt1+k, . . . , Xtn+k for all times ti ∈ T and all time lags k.

It can be easily shown that under the assumption of existence and finiteness
of first and second moments, the strict stationarity implies weak stationarity.
In practice, weak stationarity is the more commonly used condition. Stationarity
allows us to develop models and make predictions based on past observations
with the assumption that the future will behave similarly.

1.1.3 Autocovariance and Autocorrelation
Further, the function defined in 1.2 is called the autocovariance function because
it provides covariances at different time points for different pairs of random vari-
ables of the same random process.

There also exists the autocorrelation function which can be described as a nor-
malized autocovariance function. It is defined as

ρt,s = cor(Xt, Xs), (1.3)

where
cor(Xt, Xs) = cov(Xt, Xs)√︂

Var(Xt) Var(Xs)
, (1.4)

which can be reduced to ρt,s = cov(Xt, Xs)/σ2
t if the weak stationarity holds.

1.2 GARCH Models
The fundamentals of GARCH models were established by Bollerslev [1986] whose
work expanded upon the ARCH models introduced by Engle [1982]. These models
have continually evolved and improved, especially because they have proved very
useful in modelling financial time series.
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The primary strength of GARCH models lies in their ability to capture het-
eroscedasticity and varying volatility over time. Despite their successful inte-
gration of thick tails and volatility clustering, GARCH models may not fully
accommodate additional assumptions such as asymmetry (leverage effect) or non-
negativity, as mentioned in Degiannakis and Xekalaki [2004]. However, numerous
modifications have been proposed to address these limitations, some of which will
be discussed subsequently.

Definitions, notation, and other references in this section draw from the afore-
mentioned literature, as well as from Cipra [2013] and Tsay [2010]. Specific lit-
erature will typically be cited in particular instances, such as when introducing
a new source or highlighting unique and significant information.

1.2.1 Fundamentals of GARCH Models
Since we are trying to model time series, we denote by t the time index and by T
the set of all possible values of t. For our purposes, it is sufficient to limit ourselves
to the case of T ⊆ Z; or, in other words, to models with discrete time.

In addition, we want to model financial and/or insurance time series that have
been shown to have specific properties. For example, volatility tends to occur
in “clusters”, i.e. low (or high) levels of volatility are usually expected to follow
a period of previously low (or high) volatility. This effect is known as volatility
clustering.

The leverage effect is another common phenomenon. This means that the level
of volatility changes differently depending on whether the values of the observed
variable go up or down. In finance, this often means that a fall in prices is
often followed by an increase in volatility (investors may become uncertain about
future developments). In the insurance industry, for example, this can happen
when there is a natural disaster, the number of claims rises rapidly and volatility
increases for several days or weeks.

These and other “specialities” were the motivation for creation of non-linear
time series models with conditional expected value µt and conditional variance
σ2

t . These are conditioned on some known past information as

µt = E(yt|Ωt−1), σ2
t = ht = Var(yt|Ωt−1). (1.5)

We denote by Ωt−1 the information set (σ-field) of all information available
at time t − 1. The information set is usually based on the past observations
(yt−1, yt−2, . . . ) and on the past errors (et−1, et−2, . . . ).

The error process {et}t∈T is usually written as et = σtεt where {εt}t∈T denotes
a sequence of independent, identically distributed (iid) variables with zero mean,
unit variance and Normal distribution; that is, εt ∼ N(0, 1) for all possible t ∈ T.1

Having set the fundamentals, we may now define one of the most famous
non-linear time series models, the GARCH model.
Definition 1. Generalized Autoregressive Conditional Heteroscedasticity model
of orders (p, q) is defined as

yt = µt + et, et = σtεt, σ2
t = α0 +

p∑︂
i=1

αie
2
t−i +

q∑︂
j=1

βjσ
2
t−j. (1.6)

1Normality of εt is often assumed, but not needed in the general case.
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We assume that, for all t, εt are independent identically distributed (iid) random
variables with E(εt) = 0 and Var(εt) = 1, that µt is conditional expected values
as defined in (1.5) and that for all i = 1, . . . , p and j = 1, . . . , q it holds that

α0 > 0, αi ≥ 0, βj ≥ 0.

Moreover, the GARCH(p, q) process is weakly stationary with E(et) = 0,
cov(et, es) = 0 for t ̸= s and

Var(et) = α0

1 −∑︁max{p,q}
i=1 (αi + βi)

(1.7)

if and only if
max{p,q}∑︂

i=1
(αi + βi) < 1. (1.8)

This theorem together with its proof may be found in Bollerslev [1986].
Since rather than the original and most general form of GARCH(p, q) models,

as in (1.6), we are interested in the particular version GARCH(1, 1) with modifi-
cations to suit the dense-zeros scenario, we are going to discuss further properties
only for the case where p = q = 1.

1.2.2 Properties and Estimation of GARCH(1, 1)
Let us have GARCH(1, 1) model with zero conditional mean value given by

yt = et = σtεt, σ2
t = α0 + α1e

2
t−1 + β1σ

2
t−1, (1.9)

under the condition that

α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1.

The last inequality is a necessary and sufficient condition for weak stationarity
of the process.

According to Bollerslev [1986], it is also possible to show that the 2m-th
moment of this process can be expressed recursively as

E(e2m
t ) =

am

[︂∑︁m−1
n=0 a−1

n E(e2n
t )αm−n

0

(︂
m

m−n

)︂
η(α1, β1, n)

]︂
1 − η(α1, β1, m) , (1.10)

where
a0 = 1, aj =

j∏︂
i=1

(2j − 1), j = 1, 2, . . .

and where we assume

η(α1, β1, m) =
m∑︂

j=0

(︄
m

j

)︄
ajα

j
1β

m−j
1 < 1. (1.11)

Example 1 (Kurtosis of GARCH(1,1) model). Recall the assumptions on the
sequence {εt}t∈T stating that, for all times t,

E(εt) = 0, Var(εt) = 1.
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Moreover, let us denote
E(ε4

t ) = Kε + 3
where Kε is the excess kurtosis of εt.

2 Therefore, if E(σ4
t ) exists,

Var(yt) = Var(et) = α0

1 − α1 − β1
,

E(y4
t ) = E[E(e4

t |Ωt−1)] = E(σ4
t E(ε4

t )) = E(σ4
t )(Kε + 3).

(1.12)

As proven in Tsay [2010], the excess kurtosis of yt (given it exists) is

Ky = E(y4
t )

(E(y2
t ))2 − 3 = (Kε + 3)(1 − (α1 + β1)2)

1 − 2α2
1 − (α1 + β1)2 − Kεα2

1
− 3

= Kε − Kε(α1 + β1) + 6α2
1 + 3Kεα

2
1

1 − 2α2
1 − (α1 + β1)2 − Kεα2

1
.

(1.13)

We may now distinguish between two cases.

(i) Firstly, assume that εt ∼ N(0, 1). Then its excess kurtosis Kε = 0 and we
obtain

Kg
y = 6α2

1
1 − 2α2

1 − (α1 + β1)2 . (1.14)

It is clear now that the kurtosis of yt exists if 1 − 2α2
1 − (α1 + β1)2 > 0.

Additionally, in this Gaussian case, it is visible that Kg
y = 0 if and only if

α1 = 0, in which case the given GARCH(1,1) model does not include heavy
tails.

(ii) On the other hand, if εt does not follow Normal distribution, the excess
kurtosis of yt becomes, after rearranging and using (1.14),

Ky =
Kε + Kg

y + 5
6KεK

g
y

1 − 1
6KεK

g
y

. (1.15)

This result comes from Bai, Russell, and Tiao [2003]; supposing the kurtosis
exists, it holds for all GARCH models, and, subsequently, for its many
modifications (e.g. for ARCH(1) model obtained by setting β1 = 0).

Finally, we examine predictions of volatility in GARCH(1, 1) model. Let us
denote by σ̂2

t (t − 1) the forecasted value of σ2
t based on Ωt−1, the information

available up to the time t − 1. Clearly

σ̂2
t (t − 1) = α0 + α1e

2
t−1 + β1σ

2
t−1. (1.16)

Next, we can write

σ2
t+1 = α0 + (α1σ

2
t − α1σ

2
t ) + α1e

2
t + β1σ

2
t

= α0 + (α1 + β1)σ2
t + α1σ

2
t (ε2

t − 1)
(1.17)

2Excess kurtosis is defined as (kurtosis - 3) and is used to compare kurtosis of the given
(sequence of) random variables against the kurtosis of a normal distribution which is equal
to three.
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and use that E(ε2
t − 1|Ωt−1) = 0 to obtain

σ̂2
t+1(t − 1) = α0 + (α1 + β1)σ̂2

t (t − 1). (1.18)

Generally, this means that

σ̂2
t+τ (t) = α0 + (α1 + β1)σ̂2

t+τ−1(t), τ = 1, 2, . . . (1.19)

and by recursive substitution this leads to

σ̂2
t+τ (t) = α0(1 − (α1 + β1)τ−1)

1 − α1 − β1
+ (α1 + β1)τ−1σ̂2

t+1(t) → α0

1 − α1 − β1
(1.20)

for τ → ∞. Hence, as the prediction horizon grows, forecasts of volatility converge
to the unconditional variance of the prediction errors et.

1.2.3 Modifications of GARCH Models
The original GARCH model addresses many features of financial time series.
However, its abilities are limited. If we want to include more complex behaviour
in the model, we can choose from its many modifications, which usually add
additional terms to the original formula (1.6).

Let us now present some of such modifications which are often used when
working with real-world data.

(i) IGARCH – Integrated GARCH model of orders p, q is defined as in (1.6)
under the condition that

max(p,q)∑︂
i=1

(α1 + β1) = 1. (1.21)

This results in so called “persistence in variance” – as opposed to original
GARCH where the predictions of volatility converge with increasing time
horizon to unconditional variance, in IGARCH the current information is
significant for predictions in all future times.
Hence, the formula (1.19) can be simplified into

σ̂2
t+τ (t) = α0 + σ̂2

t+τ−1(t), τ = 1, 2, . . . (1.22)

to obtain, recursively,

σ̂2
t+τ (t) = (τ − 1)α0 + σ̂2

t+1(t), τ = 1, 2, . . . (1.23)

This proves the previous claim of persistence and also shows that the pre-
dictions follow a straight line with its slope equal to α0.

(ii) GJR-GARCH – Glosten-Jagannathan-Runkle GARCH is a model ad-
dressing the assymetric leverage effect, i.e. positive disturbances may have
a different effect on volatility than negative ones. It was set in the work
of Glosten, Jagannathan, and Runkle [1993] and its most prominent form
is

yt = µt + et, et = σtεt, σ2
t = α0 + (α1 + γ1)et−11

−
t−1, (1.24)
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where

1
−
t−1 =

⎧⎪⎨⎪⎩ 1 for et < 0,

0 for et ≥ 0.
(1.25)

Such model specifies a parametric form for conditional heteroscedasticity,
directly distinguishing between de facto two different models; one for neg-
ative errors and one for positive errors.
The threshold, however, does not have to be set to zero as in (1.25), allowing
for further modifications of various threshold GARCH (TGARCH) models.

(iii) EGARCH – Exponential GARCH model was first presented by Nelson
[1991] and today, more convenient, but still equivalent, forms of the original
model exist (see e.g. Cipra [2013] or Huang, Wang, and Yao [2008]). Let
us show an alternative form used by Tsay [2010]

yt = µt + et,

et = σtεt,

ln(σ2
t ) = α0 +

s∑︂
i=1

αi
|et−i| + γiet−i

σt−i

+
m∑︂

j=1
βj ln(σ2

t−j).
(1.26)

In this case, if the error et−i is positive (an “upward” movement of the pro-
cess), the log-volatility changes according to

αi(1 + γi)|εt−i|,

whereas for negative et−i (a “downward” movement) the change is propor-
tional to

αi(1 − γi)|εt−i|.
The leverage effect is thus represented by the parameter γi. Moreover, when
applied to financial time series, where we assume that negative disturbances
affect volatility more than positive ones, we would expect γi < 0.

Finally, the use of the logarithm of the conditional variance ensures pos-
itivity and we do not need to impose any further positivity constraints
on the coefficients.

(iv) OGARCH – Overresponse GARCH model was created in order to capture
the overresponse in markets caused by spells of positive and/or negative
shocks. First presented in the work of Liu and Morimune [2005], from which
the following takes inspiration, it can be defined (in a slightly modified form
to fit our notation) as

yt = µt + et,

et = σtεt,

σ2
t = α0 + α1 exp(θγt−1)e2

t−1 + βσt−1,

(1.27)

assuming θ ∈ R, α0 > 0 and α1, β ≥ 0. Most importantly, γt−1 ∈ N
is the number of days in the spells of shocks. Formally,

γt−1 = i ⇐⇒ sign(et−1) = · · · = sign(et−i) = − sign(et−i−1). (1.28)

9



It follows that, at every time period, one of only two values can be attained,
namely

γt−1 =

⎧⎪⎨⎪⎩ 1 if sign(et−1) = − sign(et−2),

γt−2 + 1 if sign(et−1) = sign(et−2).
(1.29)

Moreover, if we define p = P (εt) > 0 and q = 1 − p, then the distribution
of γt−1 in (1.27) is

P (γt−1 = γ) = qγp + qpγ, γ ≥ 1. (1.30)

Since sign(et−i) = sign(εt−i) for any t and i, then et−i and εt−i are in-
terchangable in the previous three equations, meaning the focus may be
directed exclusively to the sign, and subsequently on the underlying distri-
bution, of the random innovations εt.

In conclusion, this model competes with the EGARCH model – the expo-
nential term in (1.27) is always positive (and if θ = 0, the GARCH(1,1)
model is obtained), both models behave similarly, but OGARCH adds the
effect of increasingly longer periods spent in positive or negative shocks.

1.3 Multiplicative Error Models (MEMs)
Multiplicative error models have been studied for more than twenty five years.
The first appearance can be traced back to Engle and Russell [1998], where a “new
statistical model for the analysis of data which arrive at irregular intervals” was
proposed. It focused on the expected duration between events and was called
the Autoregressive Conditional Duration (ACD) model.

It proved useful in many scenarios and soon a new class of models, MEMs,
was established within the general framework set by the ACD models. Their
main feature is that they are (usually) non-negative by definition, which makes
them well suited to the purpose of this paper. However, unlike the GARCH
models, the notation and formulations of the model are not as uniform and, apart
from the most general form, there are several alternative structures of the model
in the literature, hidden behind the same name of MEM.

Therefore, we will first define the most general form of MEM, briefly discuss
its properties, and then focus on some specific modifications. The following text
is inspired by Engle [2002], Engle and Gallo [2006], Brownlees, Cipollini, and
Gallo [2011] and Cipollini and Gallo [2022].

1.3.1 General Formulation of MEM
Definition 2. Let us consider a non-negative time series {yt}t∈N, a sequence
of iid random variables {εt}t∈N, and let us denote by Ωt−1 the set of information
available at time t − 1. Then the process {yt} follows a MEM if we may express
it as

yt = µtεt. (1.31)
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It is assumed that

µt|Ωt−1 = µ(θ, Ωt−1), (1.32)

εt|Ωt−1 ∼ D+(1, σ2), (1.33)

where D+(µ, σ2) denotes a distribution with mean µ, variance σ2 and probability
density function defined over a non-negative support.

Remark 1. The specification (1.32) means that, conditionally on Ωt−1, µt is de-
terministically given by the known information and a vector of parameters θ. It
follows that

E(xt|Ωt−1) = µt · 1 = µt, (1.34)

Var(xt|Ωt−1) = Var(µt, εt|Ωt−1) = µ2
t Var(εt|Ωt−1) = µ2

t σ
2. (1.35)

We can see that MEM is generally defined as the product of a scale factor,
which can evolve in different ways depending on the exact specification of µt

in (1.32), and of an error term with unit mean. As noted in Remark 1, the scale
factor represents the conditional expectation of the process. Its specification,
together with the specification of the conditional distribution of εt, allows for tai-
loring the model to be adapted to the given situation.

In the following, the assumptions will become more concrete. It has been
agreed in the literature that one of the most useful yet not too complex modifi-
cations of MEM is such that its mean, as defined in (1.32), resembles a GARCH
process, usually of the first orders, and that the underlying conditional distribu-
tion of εt is from the family of gamma densities, similarly to the original case
of the ACD models proposed by Engle and Russell [1998].3 These parametriza-
tions are now going to be explored in more detail.

1.3.2 Properties and Estimation of MEM
Considering firstly the mean value µt, it is convenient to specify it conditionally
on Ωt−1 as

µt = α0 + α1yt−1 + β1µt−1 (1.36)
while assuming α1+β1 < 1 to ensure weak stationarity of the process (as discussed
in Engle [2002]). Further restrictions on the parameters may be imposed to have
fully non-negative values or other required properties. This model, proposed e.g.
by Brownlees, Cipollini, and Gallo [2011], can be called as baseline MEM.4

Supposing, additionally, that the process {yt} is mean-stationary, meaning
the unconditional mean is not dependent on time, i.e. E(yt) = E(µt) = µ, it
follows then from (1.36) after taking expectation of both sides that

α0 = µ(1 − α1 − β1). (1.37)
3Despite the fact that some works, e.g. Engle [2002], elaborate on the case of exponential

distribution or other specifically defined densities, the upcoming section tries to provide a brief
insight into the more general case.

4This parametrization allows for further modifications. For instance, adding γ1xt−11{xt<0}
to (1.36) indicates incorporation of possible assymetry in case of negative observations.
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Therefore, there is one less parameter to be estimated because α0 can be calcu-
lated via (1.37) after obtaining α1 and β1 and after estimating µ by the uncondi-
tional (sample) mean ȳ.

Secondly, the distribution of εt has still not been specified. In some cases and
applications, it is not even necessary, since some inference can be done without
it. Most often the (quasi) maximum likelihood is used in the MEM framework.
For instance, Brownlees, Cipollini, and Gallo [2011] express the conditional prob-
ability distribution function (pdf) of εt by fε(εt|Ωt−1). It follows that

fx(xt|Ωt−1) = fε

(︂
xtµ

−1
t |Ωt−1

)︂
µ−1

t (1.38)

and that the log-likelihood function used in the maximization process is

lT =
T∑︂

t=1
lt =

T∑︂
t=1

(ln [fε(εt|Ωt−1)] + ln[εt] − ln[yt]) . (1.39)

However, it can be beneficial to restrict ourselves to a more specific distribu-
tion. Cipollini and Gallo [2022], Engle and Gallo [2006] and Engle [2002] suggest
Gamma(ϕ, ϕ) as the conditional distribution of εt. In that case, E(εt|Ωt−1) = 1
(unit mean distribution) and Var(εt|Ωt−1) = σ2 = 1/ϕ. This implies

f(yt|Ωt−1) = Γ(ϕ)−1ϕϕyϕ−1
t exp

(︄
−ϕyt

µt

)︄
. (1.40)

Should the goal now be to estimate the parameters defining µt only, the simplified
log-likelihood would be of the form

l = C − ϕ
T∑︂

t−1

(︂
ln[µt] + ytµ

−1
t

)︂
. (1.41)

The constant C ∈ R can be omitted in the maximizing procedure and the variable
ϕ is also not relevant; hence, the first order conditions must satisfy

T∑︂
t=1

(︄
yt − µt

µ2
t

)︄
∂µt

∂θ
, (1.42)

where θ is the vector of parameters needed to estimate µt. For instance, in model
given by (1.36), θ = (α0, α1, β1)T .

Moreover, Engle [2002] proposes a so-called (p, q) mean specification for this
model, namely

µt = α0 +
p∑︂

j=1
αjyt−j +

q∑︂
j=1

βjµt−j + γT zt, (1.43)

where zt is a k × 1 vector of predetermined variables. This specification can be
considered a generalization of (1.36). Under the condition that

p∑︂
j=1

αj +
q∑︂

j=1
βj < 1,

Engle [2002] claims that “Corrollary to Lee and Hansen [1994]”, which was first
proposed in Engle and Russell [1998], can be utilized to show that “even mildly
explosive models may be estimated consistently by QMLE”.
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2. Getting Dense with Zeros
Building upon the established challenge of dense zeros in time series data, this
chapter dives into the heart of our proposed solutions. We present five novel
models specifically tailored to effectively model these zero-inflated series. Each
model adopts a distinct approach to address the presence of excess zeros while
simultaneously capturing the dependence structure within the non-zero observa-
tions.

In the following sections, each model will be rigorously examined. We will
begin by formally defining the model structure, followed by a brief exploration
of its theoretical properties. Next, we will outline the estimation procedures
necessary to fit the model to a given time series. Finally, suitable methods for
generating forecasts using the estimated model are to be described, allowing for
informed predictions into the future behavior of the series despite the prevalence
of zeros.

2.1 DZ-EGARCH
Let us name the first model as DZ-EGARCH, where DZ stands for “dense zeros”
modification. It is based on the model 1.26. The main goal of this model will
be to incorporate possible assymetry and leverage. It is expected it will react
not only to the change of the sign of the disturbances, but also to the transition
between zeros and the following spike of positive values.

With all of the above, let us define two slightly different versions of this type
called DZ-EGARCH1 and DZ-EGARCH2.

(i) DZ-EGARCH1:

Yt = σtεt

ln(σ2
t ) = α0 + α1

Yt−1 + γYt−1

σt−1
+ β ln(σ2

t−1)

= α0 + α1
Yt−1(1 + γ)

σt−1
+ β ln(σ2

t−1);

(2.1)

(ii) DZ-EGARCH2:

Yt = σtεt

ln(σ2
t ) = α0 + α1

Yt−1 + γYt−11{Yt−2>0}

σt−1
+ β ln(σ2

t−1)

= α0 + α1
Yt−1(1 + γ1{Yt−2>0})

σt−1
+ β ln(σ2

t−1)

(2.2)

assuming in both cases that α0, α1, β > 0, α1 + β < 1 and γ > −1.
The first proposed version closely aligns with the classical definition estab-

lished earlier. In contrast, the second version incorporates the tuning parameter
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γ only when the observation preceding the penultimate observation (at time t−2)
is positive. This approach balances the benefit of incorporating information from
the more distant past with maintaining a parsimonious model structure by sum-
marizing this past information into a single constant term applicable across all
time steps t. Furthermore, a resemblance can be drawn to the OGARCH model,
as both incorporate a term that reacts solely to non-zero historical values, essen-
tially capturing the impact of a recent shock. The underlying assumption is that
the DZ-EGARCH2 model will exhibit superior performance compared to the first
version.

Following this exposition, a detailed examination of the parameterization em-
ployed in both proposed versions is now to be clarified. For εt, suppose it is
defined as

εt = νtbt. (2.3)
Here, {νt}t∈Z is an iid sequence and every νt follows a half normal distribution,
meaning that νt = |U | where U ∼ N

(︂
0, 1

1−p

)︂
. Secondly, {bt}t∈Z is a Bernoulli

variable, with alternative (Bernoulli) distribution with probability of success 1−p,
so that bt ∼ Be(1 − p), p ∈ (0, 1). This implies P (εt = 0) = P (bt = 0) = p.1

It then follows that

fε(y) = p1{y=0} + (1 − p)fε|ε>0(y)1{y>0} (2.4)

and the density is with respect to measure λ+ +δ0, where λ+ is Lebesgue measure
on (0, ∞) and δ0 is Dirac measure at 0. In our particular case it holds

fε|ε>0(y) =
√︄

2(1 − p)
π

exp
{︃

−1
2(1 − p)y2

}︃
(2.5)

for y > 0. Moreover, Eν2
t = EU2 = 1

1−p
and consequently

Eε2
t = 1. (2.6)

2.1.1 Estimation
Let us denote by θ = (α0, α1, β, γ)T the vector of unknown parameters in the
“volatility equations” (2.1) and (2.2). Working with unconditional density would
be laborous and even unnecessary because we work with time series where we
can observe past values (past information). Thus, it is not difficult to obtain
the conditional density of Yt given the past information included in observations
{yt−1, yt−2 . . . y1} as

fYt|yt−1,...,y1(yt, θ) = [p]1{yt=0}

[︃1 − p

σt

fε|ε>0

(︃
yt

σt

)︃]︃1{yt>0}

. (2.7)

1This setup is almost identical to the one with the so-called gray noise presented in Hanousek
[2022]. The difference lies in the direct specification of half normal distribution which makes
the framework cohere with related literature.
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The corresponding conditional likelihood of the (not necessarily fully observed)
sample of M values denoted as yM is

L(yM , θ) =
M∏︂

t=1
fYt|yt−1,...,y1(yt, θ)

=
M∏︂

t=1
[p]1{yt=0}

[︃1 − p

σt

fε|ε>0

(︃
yt

σt

)︃]︃1{yt>0}

.

(2.8)

Taking the logarithm and substituting (2.5) yields the conditional log likeli-
hood. Its maximization is equivalent to solving

min
θ

M∑︂
t=1

(︄
y2

t

σ̃2
t

+ log[σ̃2
t ]1{yt>0}

)︄
. (2.9)

Here, for t ≥ 1 and the version DZ-EGARCH1,

ln(σ̃2
t ) =α0 + α1

yt−1(1 + γ)
σ̃t−1

+ β ln(σ̃2
t−1) (2.10)

while setting σ̃0 = y0 = y1.
In case of the version DZ-EGARCH2,

ln(σ̃2
t ) =α0 + α1

yt−1(1 + γ1yt−2>0)
σ̃t−1

+ β ln(σ̃2
t−1) (2.11)

while setting σ̃0 = y0 = y1 and disabling the term with the indicator for t ∈ {1, 2}.

The resulting arguments of the minima α̂0, α̂1, β̂, γ̂ are the corresponding
quasi-maximum likelihood estimators of the model’s respective parameters.

To obtain the estimate p̂ of p, the proportion of (true) zeros in the observed
data can be calculated. Hence,

p̂ = 1
M

M∑︂
t=1

1{yt=0}. (2.12)

According to the general theory discussed in the literature on quasi-maximum
likelihood, especially in Hudecová and Pešta [2024] which focuses on very similar
scenario as presented above, the above described estimates are meaningful and
theoretically justifiable. Moreover, under additional assumptions, also asymp-
totically normal. Therefore, they should provide a good basis for the following
predictions and inference.

2.1.2 Consistency of the Estimates
Nevertheless it is important to provide at least a brief proof that the estimates
are reasonable, at least asymptotically. One of the most crucial properties is
consistency.2

2In extension, another useful property of an estimate is asymptotic normality, useful to
validate e.g. Wald tests of parameters. However, in this thesis, such methods are not utilised
and therefore further properties of our estimates are not explored.
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Consistency of the QML estimates of GARCH processes is approached in
numerous ways in the literature. Fundamentals were established already by Lee
and Hansen [1994] or Lumsdaine [1996]. Subsequent results were then published
by and valuable sources of information have been found in Berkes, Horvath, and
Kokoszka [2003] and Francq and Zaköıan [2004], as well as Preminger and Storti
[2014] which explored the ordinary GARCH(1,1).

We begin with concepts appearing in the work of Preminger and Storti [2014].
The model in our case satisfies the following conditions stated in the mentioned
paper:

Theorem 1 (Consistency of the QML Estimates). Consider a time series model
of the EGARCH family. Suppose the process of innovations {εt}t∈T follows the
structure as in (2.3). Define the following set of assumptions:

(A1) The vector of true parameters θ belongs to a compact set

Θ ≡ {α0 > 0, α1 > 0, β > 0, γ > −1, α1 + β < 1};

(A2) E[ln(α0ε
2
t + β)] < 0;

(A3) E|εt|2s < ∞ for some s > 0;

(A4) limr→0 r−(1+v)P (ε2
t ≤ r) < ∞ for some v > 0.

Then

(i) if the considered model satisfies the assumptions (A1)-(A4), the QML es-
timate θ̂M of θ based on a sample of M observations is consistent, i.e.
θ̂M

a.s.−→ θ for M → ∞;

(ii) models DZ-EGARCH1 and DZ-EGARCH2 as defined in (2.1) and (2.2),
respectively, satisfy the assumptions (A1)-(A4) and thus the estimates ob-
tained by the optimization problem (2.9) are consistent.

Proof. Let us begin by examining the assumptions (A1)-(A4). These assumptions
closely resemble those in the research paper of Silvennoinen and Teräsvirta [2021].
They ensure that the parameters do not explode and are sufficient conditions for
consistency. The assumptions can be easily verified. For example, (A2) is true
because the model supposes α1 + β < 1 and we have shown (2.6); a sufficient
condition for (A4) is that the density of innovations is bounded, which is also the
case, because the distribution is bounded by zero on the left side and tends to
zero (asymptotically) on the other.

Further, let us focus now on the “non-zero” part of the log likelihood derived
from (2.8) and denote

lM(yM , θ̃M) = −1
2

M∑︂
t=1

(︄
y2

t

σ̃2
t

+ log[σ̃2
t ]1{yt>0}

)︄
. (2.13)

Therefore, the situation is equivalent to the one described in Berkes, Horvath, and
Kokoszka [2003], in particular in Lemmas 5.4 and 5.5 and Theorems 4.1 and 4.4,
while bearing in mind the dense-zeros modification which has been incorporated
by the modified log likelihood inspired by Hudecová and Pešta [2024]. It follows
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that as the number of training observations approaches the infinity, the corre-
sponding sample and theoretical log likelihoods tend to each other; moreover, the
log likelihood function has only one extreme among all possible estimates θ̂ which
is θ. Hence, for the parameter estimates obtained by QMLE from the observed
sample of M observations it holds that θ̂M

a.s.−→ θ as M tends to infinity.

2.1.3 Prediction
An outline of the prediction procedure based on the observed sample y1, . . . , yM .
The goal is to predict ŷM+h, h = 2, . . . , H. Prediction of ŷM+1 is trivial because
it follows straight from the definition of the model.

(i) Estimate p̂ = 1
M

∑︁M
t=1 1{yt=0}. This is the only parameter needed to be

estimated in order to create sequences of bt and νt.

(ii) Create the sequence {b̂M+h}H
h=M+2.

(iii) It is now sufficient to create only those predictions of ν̂M+h for which the
corresponding b̂M+h ̸= 0. Create such sequence using the estimated distri-
bution N

(︂
0, 1

1−p̂

)︂
.

(iv) Combine the estimated sequences to create {ε̂M+h}H
h=M+2.

(v) Using only the positive cases of y1, . . . , yM , estimate θ̂ = (α̂0, α̂1, β̂, γ̂)T as
outlined in (2.9), (2.10) and (2.11).

(vi) Create a sequence {σ̂M+h}H
h=M+2.

(vii) Create the desired sequence of predicted values {ŷM+h}H
h=M+2.

2.2 DZ-OGARCH
The second model, DZ-OGARCH, is inspired by OGARCH as defined in (1.27).
Its original purpose is to incorporate information about spells of shocks. Because
in our scenario there cannot be negative values, it will then reflect the length of
the time interval since the last zero observation.

Hence, the definition of DZ-OGARCH is

yt = σtεt

σ2
t = α0 + α1 exp(δγt−1)yt−1 + βσt−1,

(2.14)

where

γt−1 =

⎧⎪⎨⎪⎩ 1 if yt−1 = 0,

γt−2 + 1 if yt−1 > 0.
(2.15)

The innovations εt are defined as in (2.3) and the restrictions for the parameter
values are that α0 > 0, α1 > 0, β > 0 and α1 + β < 1.
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2.2.1 Estimation
Since the underlying process is still a modification of GARCH framework with
half-normal “dense zeros” modification of distribution of the innovation process,
we may again proceed similarly as in the DZ-EGARCH case with quasi-maximum
likelihood.

The final minimization problem can be formulated as

min
θ

M∑︂
t=1

(︄
y2

t

σ̃2
t

+ log[σ̃2
t ]1{yt>0}

)︄
. (2.16)

Here, for t ≥ 1,

σ̃2
t = α0 + α1 exp(δγt−1)yt−1 + βσ̃t−1 (2.17)

while setting σ̃0 = y0 = y1.
Naturally, the resulting estimates may be influenced by the changes in the

definition of the model equations (2.14) and (2.15). Nevertheless, the afore-
mentioned (asymptotic) properties of the estimates will be assumed to hold and
possible deviations will be discussed in the third part of this text.

2.2.2 Prediction
An outline of the prediction procedure based on the observed sample y1, . . . , yM .
The goal is to predict ŷM+h, h = 2, . . . , H.

(i) Estimate p̂ = 1
M

∑︁M
t=1 1{yt=0}. This is the only parameter needed to be

estimated in order to create sequences of bt and νt.

(ii) Create the sequence {b̂M+h}H
h=M+2.

(iii) It is now sufficient to create only those predictions of ν̂M+h for which the
corresponding b̂M+h ̸= 0. Create such sequence using the estimated distri-
bution N

(︂
0, 1

1−p̂

)︂
.

(iv) Combine the estimated sequences to create {ε̂M+h}H
h=M+2.

(v) Using only the positive cases of y1, . . . , yM , estimate θ̂ = (α̂0, α̂1, β̂, δ̂)T as
outlined in (2.16) and (2.17).

(vi) Create a sequence {σ̂M+h}H
h=M+2.

(vii) Create the desired sequence of predicted values {ŷM+h}H
h=M+2.
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2.3 DZ-GMEM
As the third candidate, a modification of a baseline MEM is being proposed.
Having the condition of non-negativity already included in the original definition,
it is important to complete the DZ condition by ensuring a non-trivial possibility
of producing zero values. To achieve that, in this case a Gamma version of the
innovation process εG

t will be applied.
The DZ-GMEM takes the form of

yt = µtε
G
t

µt = α0 + α1yt−1 + βµt−1
(2.18)

where α0 > 0, α1 > 0, β > 0 and α1 + β < 1. We define the process

εG
t = ξtbt, (2.19)

where a Gamma distribution of ξt ∼ Γ(a1, a2) = Γ
(︂
1 − p, 1

(1−p)2

)︂
is assumed.

Since in literature there is usually the case of exponential distribution discussed,
we decide to extend it to a more general Gamma distribution. The parametriza-
tion is chosen so that similar ideas as in the previous framework with half-normal
distribution can be applied.3

2.3.1 Estimation
Again, it is assumed (and will be validated in the following chapter) that the
already mentioned general (asymptotic) theory, as proposed in Hudecová and
Pešta [2024], still holds. Then it can be shown that by using quasi-MLE approach,
the problem of maximizing quasi-maximum likelihood is equivalent to minimizing

min
θ

M∑︂
t=1

(︄
y2

t

µ̃2
t

+ log[µ̃2
t ]1{yt>0}

)︄
. (2.20)

Here, for t ≥ 1,

µ̃t = α0 + α1yt−1 + βµ̃t−1 (2.21)

while setting µ̃0 = y0 = y1.

2.3.2 Prediction
An outline of the prediction procedure based on the observed sample y1, . . . , yM .
The goal is to predict ŷM+h, h = 2, . . . , H.

(i) Estimate p̂ = 1
M

∑︁M
t=1 1{yt=0}. This is the only parameter needed to be

estimated in order to create sequences of bt and ξt.

(ii) Create the sequence {b̂M+h}H
h=M+2.

3The parametrization implies that E(ξt) = a1a2 = 1
1−p .
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(iii) It is now sufficient to create only those predictions of ξ̂M+h for which the
corresponding b̂M+h ̸= 0. Create such sequence using the estimated distri-
bution Γ

(︂
1 − p̂, 1

(1−p̂)2

)︂
.

(iv) Combine the estimated sequences to create {ε̂G
M+h}H

h=M+2.

(v) Using only the positive cases of y1, . . . , yM , estimate θ̂ = (α̂0, α̂1, β̂)T as
outlined in (2.20) and (2.21).

(vi) Create a sequence {µ̂M+h}H
h=M+2.

(vii) Create the desired sequence of predicted values {ŷM+h}H
h=M+2.

2.4 DZ-NMEM21
The last member on the candidate list is DZ-NMEM21 model. Similarly as in the
previous case, the original model is a multiplicative error model. However, this
time it includes one more term looking one step farther into history – analogously
as in case of DZ-EGARCH2, the idea is to present another version of a MEM but
with a bit more complex structure. Moreover, not the Gamma innovations εG

t ,
but the Normal innovations εt as defined in (2.3) are implemented.

The DZ-NMEM21 is therefore defined as

yt = µtεt

µt = α0 + α1yt−1 + α2yt−2 + βµt−1
(2.22)

where α0 > 0, α1 > 0, α2 > 0, β > 0 and α1 + α2 + β < 1.

2.4.1 Estimation
Again, it is assumed (and will be validated in the following chapter) that the
already mentioned general (asymptotic) theory, as proposed in Hudecová and
Pešta [2024], still holds. Then it can be shown that by using quasi-MLE approach,
the problem of maximizing quasi-maximum likelihood is equivalent to minimizing

min
θ

M∑︂
t=1

(︄
y2

t

µ̃2
t

+ log[µ̃2
t ]1{yt>0}

)︄
. (2.23)

Here, for t ≥ 1,

µ̃t = α0 + α1yt−1 + α2yt−2 + βµ̃t−1 (2.24)

while setting µ̃0 = y0 = y1.
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2.4.2 Prediction
An outline of the prediction procedure based on the observed sample y1, . . . , yM .
The goal is to predict ŷM+h, h = 2, . . . , H.

(i) Estimate p̂ = 1
M

∑︁M
t=1 1{yt=0}. This is the only parameter needed to be

estimated in order to create sequences of bt and νt.

(ii) Create the sequence {b̂M+h}H
h=M+2.

(iii) It is now sufficient to create only those predictions of ν̂M+h for which the
corresponding b̂M+h ̸= 0. Create such sequence using the estimated distri-
bution N

(︂
0, 1

1−p̂

)︂
.

(iv) Combine the estimated sequences to create {ε̂M+h}H
h=M+2.

(v) Using only the positive cases of y1, . . . , yM , estimate θ̂ = (α̂0, α̂1, α̂2, β̂)T as
outlined in (2.23) and (2.24).

(vi) Create a sequence {σ̂M+h}H
h=M+2.

(vii) Create the desired sequence of predicted values {ŷM+h}H
h=M+2.
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3. Practical Part
The third part of this text aims to apply the newly created models to a real-world
scenario. The task is to collect data with the dense zeros property, train and tune
the models based on the data, and then evaluate their performance using various
metrics. The chapter concludes with a discussion of the results, the parameter
estimation methods and the overall performance of the proposed models.

3.1 Meeting the Dataset
The dataset used to evaluate the models consists of uninsured material damage
claims to cars provided by the Czech Insurance Bureau. It contains daily obser-
vations of such claims from the 1st of January 2015 to the 31st of December 2019,
a total of 1826 observed non-negative values.

The dataset is divided into two parts, the out-of-time observations and the
in-time observations. The latter consist of data between the 1st of March 2015
and the 31st of May 2019, while the rest of the data belong to the out-of-time
sample, which is discarded for the training and estimation procedures in order to
reduce possible biases and/or seasonality related to the beginning and end of the
analysed time series.

Figure 3.1: First 200 Values of the In-Time Dataset

Figure 3.1 provides an initial glimpse into the characteristics of the time series
data. The figure reveals a consistent pattern throughout the data: a high density
of zero values, a concentration of positive observations below a threshold of 45,000,
and occasional outliers exceeding double this value. Numerical characteristics of
the complete in-time sample (positive values only) can be found in Table 3.1.

Ideally, the proposed models should exhibit similar behavior by capturing this
inherent data distribution. An overly conservative model, lacking the ability to
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capture these extreme spikes, would inadequately forecast low-probability, high-
impact loss scenarios, potentially leading to under-reserves and insufficient risk
preparedness. Conversely, an excessively dynamic model could generate overly
pessimistic predictions, resulting in over-reserving and potential profit loss due
to unnecessarily high reserve allocations.

5th quant. 25th quant. Median Mean 75th quant. 95th quant.

7.49 · 102 3.73 · 103 9.13 · 103 1.48 · 104 2.06 · 104 4.48 · 104

Table 3.1: Chosen Quantiles and Mean of the True Positive Observations

It should also be noted that the time series exhibit no signs of nonstationarity.
Using the Augmented Dickey-Fuller (ADF) test, which tests the null hypothesis
H0 that there is a unit root in the time series against the alternative hypothesis
HA that the time series is stationary (or that all roots are less than one in the
complex plane), we prove that the time series is indeed stationary at an a priori
set significance level α = 0.05. Thus, it is reasonable to proceed with parameter
estimation.

3.2 Methodology
The computational methods used for estimation, prediction and evaluation need
to be suited for working with time series and with models with random elements.
There are 1553 observations available (after discarding the out-of-time sample),
which is enough for asymptotic results to hold and for implementation of splitting
methods used in evaluation of the models.

As the main evaluation procedure, a growing-window forward-validation with
K = 6 splits has been chosen. It is a modification of the classical K-fold cross-
validation which divides the dataset into K splits. In each k-th iteration, where
k = 1, . . . , K −1, the first k splits are used for training and the following (k+1)-st
split is used as a test split (against which the current predictions are compared).
There is enough empirical evidence to suggest this method is better suited for
dealing with various types of time series than the ordinary K-fold cross-validation,
see for example Schnaubelt [2019]. For each iteration, the corresponding estimates
of p̂ and of the vector of parameters θ̂ are calculated using a fitting optimization
procedure.1

Secondly, in every k-th iteration of the growing-window forward-validation
procedure, a total of J = 1000 realizations of the forecast innovation sequences
{ε̂M+h}H

h=M+2 and {ε̂G
M+h}H

h=M+2, respectively, have been created.
It has been set that M = ⌊1553/K⌋ = 258 denotes the size of each split

and H = M = 258 denotes the number of predictions computed for each j-th
realization of the innovation sequence where j = 1, . . . , J.

It follows that there have been calculated (K − 1) · J = 5000 total simulations
for each of the proposed models. In order to compare them to each other, several
criteria have been set and evaluated for every model separately, namely

1Constrained optimization algorithm with Nelder-Mead optimization method has been cho-
sen to complete this task.
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(i) the mean of mean absolute deviations (MAE’s) over all realizations,2

(ii) the mean sum of predicted observations over all realizations,

(iii) the 5th percentile, 25th percentile, median, 75th percentile and 95th per-
centile over all realizations.

Values from (ii) and (iii) are to be compared with their counterparts computed
from the original dataset.

The main results are summarized in the following section.

3.3 Results and Comparison
This section presents an evaluation of the models’ performance and a comparative
analysis. Key numerical metrics and graphical illustrations are included. Figure
3.2 depicts, for each of the candidate models, a single realization of predicted data
for the final split based on information from the initial five splits (refer to the
Methodology section for details). These may be compared to the true observed
reality in the last split as presented in the right downmost picture in the same
figure.

EGARCH1 EGARCH2 OGARCH GMEM NMEM21

Mean MAE 23 665 11 824 6.05 · 109 119 041 10 848

Mean sum 5.55 · 106 2.28 · 106 1.56 · 1012 3.00 · 107 1.85 · 106

5th perc. 2.93 · 103 1.60 · 103 3.96 · 100 1.30 · 102 6.76 · 102

25th perc. 1.50 · 104 8.06 · 103 2.04 · 101 5.74 · 103 3.66 · 103

Median 3.30 · 104 1.71 · 104 4.59 · 101 3.34 · 104 9.26 · 103

75th perc. 6.24 · 104 2.96 · 104 9.97 · 101 1.28 · 105 2.09 · 104

95th perc. 1.51 · 105 5.19 · 104 1.44 · 103 7.54 · 105 5.60 · 104

Table 3.2: Comparison of the Models

Our analysis begins with Table 3.2. Although all models possess a sound
theoretical foundation, their suitability for handling dense zeros varies.

DZ-OGARCH demonstrates the lowest performance across all evaluation cri-
teria. Notably, the model consistently generates very low values, with even the
75th percentile remaining low. Furthermore, the 95th percentile fails to reach
significant heights. Despite this, both its Mean Absolute Error (MAE) and mean
sum are unexpectedly high. This discrepancy can be attributed to the exponen-
tial function inherent to the model’s definition. As the window of a shock event

2MAE was chosen as the evaluation metric because it does not penalize big differences
between true and predicted values as much as MSE or RMSE and it works even with “true
zeros” in observed data as opposed to e.g. MAPE.
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Figure 3.2: One Realization of Predictions from Last Splits Compared to Reality

expands, the exponential term rapidly grows, resulting in sharp spikes. This be-
havior is likely balanced by the overall low level of most remaining values, leading
to the observed disparity.

In contrast, DZ-EGARCH1 tells a much different story. It achieves a desirable
balance between low mean MAE and mean sum, while simultaneously capturing
the empirical quantiles of the real data effectively. This model allows for occa-
sional high-value spikes, as demonstrated in its visualisation, resulting in a very
good overall fit. However, it seems to produce values which exceed the original
data by a non-negligible amount which might be a considerable drawback in some
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real-life applications.
Next, DZ-EGARCH2 emerges as the leading performer among the three mod-

els discussed thus far. Sharing much of its structure with its predecessor DZ-
EGARCH1, it also includes a slightly more distant past in its structure repre-
sented by the parameter γ, allowing for incorporating more information in the
computations. Having the second lowest MAE and making its empirical per-
centiles follow the real data very closely, it becomes a very favourable contestant.

Finally, even though the last two multiplicative error models are from the
same family, they are not twins for sure. The Gamma sibling performs poorly,
especially because attaining values too high in comparison to the observed reality.
DZ-NMEM21, conversely, learned from the mistakes of its brother and its forecast
seems to follow the distribution and pattern of reality very well. The lowest mean
MAE, reasonable empirical percentiles and also visual resemblance to real data
indicate this model as being one of the most plausible options.

EGARCH1 EGARCH2 OGARCH GMEM NMEM21

α̂0 9.190 9.191 351.745 574.278 277.700

α̂1 0.067 0.041 0.946 0.071 0.076

α̂2 — — — — 0.012

β̂ 0.512 0.512 0.054 0.929 0.911

γ̂ — 16.091 — — —

δ̂ — — 1.999 — —

Table 3.3: Estimated Parameter Values Taken from the Last (Largest) Split

3.4 Discussion
Building on the established properties and performance of the candidate models,
this section delves deeper into their behavior, particularly focusing on models with
the most disparate performance: DZ-OGARCH on one side and DZ-EGARCH2
with DZ-NMEM21 on the other. The following aims to discuss the reasons behind
their observed behaviors and identify potential areas for future research.

3.4.1 Exponential Loss of DZ-OGARCH
DZ-OGARCH exhibits a notably poor performance compared to other models.
While the original results of OGARCH model by Liu and Morimune [2005] were
promising, it shall not be forgotten that its evaluation employed data with dis-
tinct characteristics. In particular, the data in Liu and Morimune [2005] lacked
the dense zero structure present in our study and represented a financial time se-
ries, where leverage effects due to shock persistence were expected. These factors
justified the inclusion of the exponential term in the original OGARCH model.
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However, in our case with dense zeros, this very term appears to be the source
of the undesirable behavior. As shown in Table 3.3, the estimated value of the
term in the exponential, δ̂, reaches its upper bound, and α̂0 is also relatively
high compared to the empirical percentiles of predicted values in Table 3.2. This
combination leads to a phenomenon of near-constant very low values, revolving
around α̂0, which can unexpectedly surge (due to the exponential term) following
a sequence of positive predictions.

Thus, despite its intriguing theoretical foundation, the applicability of DZ-
OGARCH seems limited to specific scenarios that differ from the one examined
in this thesis. However, if the dense-zeros conditions were relaxed to allow for
negative observations, DZ-OGARCH might prove itself to be of much better
performance. In addition, there is a possibility that a more thorough simulation
and computation studies would reveal that the parameters should be estimated
in a different way, or, possibly, that innovations should be defined in a more
complex manner. All these possibilities offer numerous options for more detailed
investigations in a future study.

3.4.2 Success Echos Through History
On the other hand, two models outperform the rest across all observed metrics –
DZ-EGARCH2 and DZ-NMEM21.

Firstly, let us note that DZ-EGARCH2 shares a significant portion of its
internal structure with DZ-EGARCH1, and their estimated parameter values
(see Table 3.3) are highly similar. The key difference lies in the inclusion of γ̂
as a “past information carrier,” which influences the model’s outcome only when
the penultimate datapoint is positive. Nevertheless, DZ-EGARCH2 not only
demonstrates a superior fit to the data compared to its sibling, but also presents
a more practical choice for real-world applications due to its relative simplicity.

Secondly, DZ-NMEM21 also succeeded in a comparable way as the previously
discussed model. Again, it shares similar structure with DZ-GMEM as well as the
estimated parameters α̂1 and β̂. The striking difference in the quality of output
is caused mainly by including the “historical” term α2yt−2 and marginally also
by changing the distribution of innovations to Normal.3

Ultimately, both models showcase the positive effect of including recent his-
tory and Normal innovations. Additionally, DZ-EGARCH2 avoids the traditional
approach of increasing complexity through structures like GARCH(p, q), where
p ≥ 1 and q ≥ 1 with at least one inequality strict. Instead, it proposes and suc-
cessfully validates an alternative approach with a simpler structure with the term
γ as described above. A more thorough examination of this alternative approach
in various scenarios, particularly in comparison to more elaborate models, could
be a rewarding option for further research.

3By standalone simulation testing, the biggest effect on performance had indeed the inclusion
of the extra term α2yt−2, proved e.g. by reducing the mean MAE from 119 041 in the case of
DZ-GMEM to 33 304. The subsequent change of the innovation distribution then lowered the
mean MAE to the value shown in Table 3.2.
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3.4.3 Limitations and Future Research
It should be noted that all the findings are related to the particular dataset
which has been used in the practical part. It is well possible, also because of solid
theoretical background of all the candidate models, that in altered dense-zeros
scenarios, the results and the final rankings of the proposed models might get
different.

However, it was not desired to create a model which would maximally explain
the current data and provide the best possible fit. This approach would lead to
overfitting and would not be beneficial for further applications.

In contrast, the main goal was to explore the new ground delimited by the
concept of dense zeros and bring fresh ideas on how to design suitable and the-
oretically justifiable methods of tackling this specific problem. Should the need
arise, the several propositions and techniques offered in this thesis can always
be modified for the given real-life situation which is one of the most important
benefit of this author’s work.
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Conclusion
The thesis focuses on the dense zeros framework within financial and insurance
time series. It begins by establishing a solid theoretical foundation, exploring
the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models
and Multiplicative Error Models (MEMs). These models serve as the basis for
understanding the dynamics of time series data, laying the fundamentals for the
following development of novel approaches which should address the issue of dense
zeros.

Building upon this theoretical foundations, the thesis introduces five new
models specifically designed to handle the presence of excess zeros in time se-
ries data. These models, namely DZ-EGARCH1, DZ-EGARCH2, DZ-OGARCH,
DZ-GMEM and DZ-NMEM21, offer innovative solutions to effectively model zero-
inflated series while capturing the underlying dependence structure within the
non-zero observations. Each model is presented with a rigorous definition, out-
line of its structure and derivation of its properties and estimation and prediction
procedures. Creation and further validation of these models is the main contri-
bution of this text.

The validation itself is conducted in the practical part of the thesis using
real-world data from the insurance field. The evaluation process involves meeting
the dataset, defining the methodology, presenting results and opening a detailed
discussion. The results and comparisons obtained from this evaluation reveal the
strengths and limitations of the models, not evading the fact that some models
may have proven to be actually of very bad performance. Nevertheless, the flexi-
bility offered by the different strengths and weaknesses of the models, implied by
various changes in their inner structure and working with historical observations,
is one of the most significant contributions of this text.

In conclusion, this thesis represents a significant contribution to the field of
time series analysis with dense zeros. By bridging the gap between theoretical
concepts and practical applications, the research not only expands the existing
knowledge base but also creates opportunities for further exploration and research
in this area. The underlying conditions may be made more complex, the models
might get suited for slightly different scenarios and more elaborate estimation and
optimization methods can be utilized – however, that is left for future research
and for the interested reader (or even the author himself) to explore further.
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A. Attachments

A.1 Major Parts of the Source Code
The following code shows the main parts of the optimization, estimation and
prediction procedures for the model DZ-EGARCH1. (The in-time sample from
the original dataset was stored in variable ”train”.) Other models’ codes are
analogous.

# Initialization of variables
train.all = train[ ,2]
train.pos = train[which(train$Amount>0),2]
l = length(train.all)
K = 6
J = 1000
sample.size = floor(l/K)
paramNames = c("alpha0","alpha1","beta","gamma")
parDf = setNames(

data.frame(matrix(
ncol = length(paramNames),
nrow = (K-1)
)),
paramNames)

y.hatDf = setNames(
data.frame(matrix(ncol = (K-1), nrow = sample.size)),
1:(K-1))

phat = rep(0,(K-1))
temp.mae = rep(0,(K-1)*J)
temp.sum = rep(0, (K-1)*J)
realizations = vector()

# Beginning of the main cycle
set.seed(128)
for (k in 1:(K-1)) {
setTxtProgressBar(pb,k)
train.all.k = train.all[1:(k*sample.size)]
test.k = train.all[(k*sample.size+1):((k+1)*sample.size)]
train.pos.k = train.all.k[which(train.all.k>0)]
zeros.count = length(which(train.all.k == 0))
phat[k] = (1/length(train.all.k))*zeros.count

# Estimate hattheta
garch_filter = function(vP, y) {

alpha0 = vP[1]
alpha1 = vP[2]
beta = vP[3]
gamma = vP[4]
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sigma_t = rep(0,length(y))
for (i in 1:length(y)) {

if (i == 1) {
sigma_t[i] = y[i]

} else {
sigma_t[i] = sqrt(exp(alpha0 +

(alpha1*(y[i-1]*(1+gamma))/sigma_t[i-1]) +
(beta*log((sigma_t[i-1])ˆ2))
))

}
}
return(sigma_t)

}

# Function to minimize in QMLE
minim.problem1 = function(vP, y) {

alpha0 = vP[1]
alpha1 = vP[2]
beta = vP[3]
gamma = vP[4]
sigma_t = garch_filter(vP, y)
mnm = sum(yˆ2/sigma_tˆ2+log((sigma_t)ˆ2))
return(mnm)

}

# Optimization - Initialization
library(alabama)
const.func = function(vP, y) {

alpha0 = vP[1]
alpha1 = vP[2]
beta = vP[3]
gamma = vP[4]
# set constraints
h = rep(NA, 5)
h[1] = alpha0 # alpha0 > 0
h[2] = alpha1 # alpha1 > 0
h[3] = beta # beta > 0
h[4] = -alpha1-beta+1 # alpha0 + beta < 1
h[5] = gamma+1 # gamma > -1
return(h)

}
optim_method = c(

"Nelder-Mead",
"BFGS",
"CG",
"SANN"

)
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# Optimization - Main (some parts omitted)
m_coptim = constrOptim.nl(par = vP0,

y = train.pos.k,
fn = minim.problem1,
hin = const.func,
control.outer = list(

method = optim_method[1],
trace = FALSE

)
)
alpha0.hat = m_coptim$par[1]
alpha1.hat = m_coptim$par[2]
beta.hat = m_coptim$par[3]
gamma.hat = m_coptim$par[4]
parDf[k, ] = c(alpha0.hat, alpha1.hat, beta.hat, gamma.hat)

# Cycle 2 - seqs ####
# --> Omitted

# Cycle 3 - preds ####
for (h in 2:m) {

sigma.hat[h] = sqrt(exp(alpha0.hat
+ alpha1.hat*(

(y.hat[h-1]*(1+gamma.hat))/
sigma.hat[h-1]
)

+ beta.hat*log(
(sigma.hat[h-1])ˆ2
)))

y.hat[h] = sigma.hat[h]*eps[h]
}
y.hat.pos = y.hat[which(y.hat>0)]
temp.mae[((k-1)*J+j)] = mae(y.hat,test.k)
temp.sum[((k-1)*J+j)] = sum(y.hat)
realizations = append(realizations,y.hat.pos)

if (k == (K-1) & j == J) {
dzegarch.mae = mean(temp.mae)
dzegarch.meansum = mean(temp.sum)
dzegarch.quantsum = quantile(temp.sum)
dzegarch.quantreals = quantile(realizations,

probs = seq(0,1,0.05))
close(pb)

}
}
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