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Abstract: It can be shown that linear transformations of logarithm are the only
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Introduction
In the utility maximization problem, generally the optimal portfolio depends on
its reference asset, also called the numeraire. It can be shown that the only
utility (up to additive and multiplicative constants) that is maximized for every
numeraire all the same is the natural logarithm. Given our market opinion, more
precisely state price density (SPD), the expected log-utility is maximized for the
portfolio with the SPD corresponding to this opinion and is equal to Kullback-
Leibler divergence of this opinion’s and reference asset’s SPDs. In incomplete
markets however, it might be impossible to replicate this SPD exactly. From
here the problem arises of finding a portfolio that is the closest to our opinion in
Kullback-Leibler divergence. We can approximate the log-utility, in two different
ways by its second order Taylor polynomial and we get a mean variance problem
that has an analytic solution.

The thesis is organized in the following way: In Chapter 1 we give the neces-
sary definitions and theorems used later on we show that prices are just scaled
likelihood ratios of SPDs and the numeraire invariance of the logarithm. The
relationship of log-utility maximization and K-L divergence is shown in Chapter
2 along with the conversion to a mean variance problem. Also the asymptotic
behaviour of the price under the physical measure is discussed. In Chapter 3 we
assume a geometric brownian motion model and approximately optimal portfo-
lios of two assets and one or two maximal contracts (European options). Lastly
in Chapter 4 we show some well known strategies that can be employed to profit
on different market scenarios when we have one or two contracts in the portfolio.
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1. State price densities and
logarithmic utility
In the opening chapter we define the state price density of an asset and show that
prices are scaled likelihood ratios of state price densities. We also show that the
logarithmic utility is the only function whose optimal portfolio does not change
with numeraire.

1.1 Prices as likelihood ratios
Let (Ω, F , (Ft)t≥0,P) be a stochastic basis and X,Y two assets. We introduce the
following notation.
Notation. By XY (t) we mean the price of X in terms of Y at time t ≥ 0

We will assume the stochastic process {XY (t), t ≥ 0} to be continuous,
(Ft)-adapted, XY (0) to be deterministic and asset Y not worthless, so the price
is well defined. This notation allows us to easily change the reference asset by
the relationship

XZ(t) = XY (t)YZ(t),
where Z is another arbitrary, not worthless asset.

Remark 1. Assets by themselves do not have any precise mathematical meaning
and are defined by their prices. We can look at them as equivalence classes where
two assets X, Y are equivalent at time T if and only if XY (T ) = YX(T ) = 1.

Definition 1. Let Y be an asset and T > 0, a contract (contingent claim) V
settled in Y at time T is a financial contract that delivers VY (ω, T ) units of Y
for market scenario ω ∈ Ω.

Remark 2. VY in the previous definition is a non-negative (FT )-random variable.

Assets can however be characterized by their state price density. Let T > 0,
for A ∈ FT let

V (T ) = 1AX(T ) (1.1)
be a contract that pays a unit of no arbitrage asset X if the event A occurs
at time T . These types of contracts are known as Arrow-Debreu securities. To
calculate its price in terms of X at time 0 we are going to assume there exists
measure PX on F under which {VX(t), t ≥ 0} is a martingale.

Remark 3. By the symbol EX we understand the expectation with respect to
measure PX or equivalently density p(ω|X).

Then the martingale property implies

VX(0) = EXVX(T ) = EX1A = PX(A).

Additionally if PX ≪ P, then by the Radon-Nikodým theorem there exists a
density p(ω |X) on Ω such that

PX(A) =
∫︂

A
p(ω|X)dP(ω). (1.2)
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Definition 2. The function p(ω|X) in (1.2) is called the state price density of
asset X at time T .

The exsistence of PX , and consequently of p(ω|X), is not guaranteed, however
we will assume it to exist, as we are treating state price densities as the main
inputs of the model.

The following theorem states that prices can be expressed as scaled likelihood
ratios of state price densities. Later on in Section 2 it will be useful to represent
price as a state price density ratio of an asset and its numeraire.

Theorem 1. Let X, Y be no arbitrage assets and PX ≪ PY , then for T > 0 it
holds that

XY (ω, T ) = XY (0) · p(ω|X)
p(ω|Y ) , PY -a. s. (1.3)

Proof. Let V (ω, T ) be an arbitrary contract with random payoff a time T . We
can settle it either in asset X or Y , getting

V (0) = EX [VX(T )]X(0) = EY [VY (T )]Y (0).

The second equality above can be rewritten as

X(0)
∫︂

Ω
VX(ω, T )p(ω|X)

p(ω|Y ) p(ω|Y )dω = Y (0)
∫︂

Ω
VY (ω, T )p(ω|Y )dω

and since V is arbitrary, it must hold that

VX(ω, T )p(ω|X)
p(ω|Y ) X(0) = VY (ω, T )Y (0), PY -a. s.

and by dividing both sides by VX(ω, T ) and taking Y as reference asset we obtain

XY (ω, T ) = XY (0) · p(ω|X)
p(ω|Y ) , PY -a. s.

Remark 4. The assumption PX ≪ PY is usually satisfied in reality. The asset
Y represents cash and if for some scenario it becomes worthless, then all other
assets will as well.

The relationship (1.3) has been first introduced in Geman and Rochet [1995],
Theorem 1, in the form

p(ω|X) = XY (ω, T )
XY (0) · p(ω|Y )

and understood as a way to obtain the PX from PY and the price process. We,
on the other hand, and in the spirit of Theorem 1, are going to assume the state
price densities to be known and use them to represent the price process at time
T.
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Now we define what we mean by a portfolio.

Definition 3. Let n ∈ N, X i, i = 1, ..., n be assets, wi ∈ R, i = 1, , , , n,
∑︁

wi = 1,
then the asset

P =
n∑︂

i=1
wiX

i (1.4)

is called the portfolio of assets X1, ..., Xn with weights w1, ..., wn.

In the previous definition we are allowing the weights to be any real numbers
as long as they sum up to one. This is to include leverage (|wi| > 1) and shorting
(wi < 0).

Remark 5. The sum (1.4) is of course only symbolic, summing arbitrary assets
is not defined. But the price of a portfolio in terms of an asset Y equals the sum
of prices in Y of its assets with corresponding weights.

The following Corollary of the Theorem 1 says that the state price density
of a portfolio is a linear combination of the state price densities of the assets it
contains. Since we allow the weights to be negative or absolutely greater than
one, the resulting combination of densities does not need to be a density, more
specifically it can attain negative values. Later when finding optimal weights, we
are going to treat this by simply adding a condition on the corresponding state
price density linear combination to be non-negative on its entire domain.

Corollary 1. The state price density of a portfolio (1.4) is of the form

p(ω|P ) =
n∑︂

i=1
[wiX

i
P (0)] · p(ω|X i), (1.5)

if the right hand in non-negative for all ω ∈ Ω.

Proof. Let Y be an arbitrary asset such that PP ≪ PY , then from Theorem 1 we
have

p(ω|P ) = PY (ω, T )
PY (0) · p(ω|Y )

= p(ω|Y )
PY (0) ·

n∑︂
i=1

wiX
i
Y (ω, T )

= p(ω|Y )
PY (0) ·

n∑︂
i=1

wiX
i
Y (0)p(ω|X i)

p(ω|Y )

=
n∑︂

i=1
[wiX

i
P (0)]p(ω|X i).

(1.6)

Terms [wiX
i
P (0)] are the relative amounts of assets Xi in the portfolio and satisfy

n∑︂
i=1

[wiX
i
P (0)] = 1. (1.7)
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In order to show an application of the Theorem 1 in a geometric brownian
motion model we are going to need the basic version of Itô formula.

Theorem 2 (Itô formula). Let f : [0, T ]×R → R be a function in C1,2([0, T ]×R),
{XY (t), t ∈ [0, T ]} a continuous martingale satisfying

dXY (t) = atdt + btdWt,

where {at}, {bt} are {Ft}- predictable,∫︂ T

0
(at + b2

t )dt < ∞ a. s.

and {Wt, t ≥ 0} is a Wiener process, then

df [XY (t), t] =
{︄

∂f

∂t
[XY (t), t] + at

∂f

∂x
[XY (t), t] + b2

t

2
∂2f

∂x2 [XY (t), t]
}︄

dt

+ bt
∂f

∂x
[XY (t), t]dWt.

(1.8)

Proof. Theorem holds in more general setting, i. e. Theorem 3.6, Karatzas and
Shreve [1988].

Example 1. Let σ > 0 and X, Y be assets and price {XY (t), t ≥ 0} be defined
by dynamics

dXY (t) = σXY (t)dW Y (t), (1.9)
where {W Y (t), t ≥ 0} is a Wiener process on (Ω, {Ft},PY ). The simple return
process in Y is then

R(T ) =
∫︂ T

0

dXY (t)
XY (t) = σW Y (t) (1.10)

and has distribution N (0, σ2T ). Clearly it holds YX(t) = [XY (t)]−1, so the dy-
namics of YX(t) is determined by Theorem 2 as

dYX(t) = dXY (t)−1 = σ2YX(t)dt − σYX(t)dW Y (t).

It also holds that
dYX(t) = σYX(t)dW X(t), (1.11)

so we have a relationship

R(T ) = σW Y (t) = −σW X(t) + σ2T
d= σW X(t) + σ2T ∼ N (σ2T, σ2T ).

The simple return process is perceived to have a positive drift under PX . From
Theorem 1 we can write the price XY (t) as scaled likelihood ratio of p(x|X) and
p(x|Y ), where x ∼ N (0, σ2T ).

XY (T ) = XY (0) · p(x|X)
p(x|Y ) =

2πσ
√

T exp
(︂

(x−σ2T )2

σ2T

)︂
2πσ

√
T exp

(︂
x2

σ2T

)︂ = XY (0) exp
(︄

x − σ2T

2

)︄
,

which is the same as a solution to the stochastic differential equation (1.9).
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1.2 Numeraire invariance of logarithmic utility
Instead of maximizing directly the expected payoff of a portfolio, investor often
transforms it by a so called utility function, that takes into account investor’s
greater aversion to some scenarios, typically going bankrupt.

Example 2. One class of utility functions are isoelastic utilities

Ub(x) =

⎧⎨⎩
x1−b−1

1−b
x ≥ 0, b ∈ [0, 1)

log(x) x ≥ 0, b = 1

Now suppose we have an opinion of the market, i. e. state price density
p(ω|M), ω ∈ Ω, and a driftless asset Y (cash).

Remark 6. Except in Subsection 2.1.1, we are going to assume that p(ω|M) is
the real state price density of the market, often called the physical measure. In
reality this density is not directly observable and we can only estimate it which
can be problematic. A nonparametric estimation is discussed for example in Aı̈t-
Sahalia and Lo [1998].

By maximizing the expected utility with respect to Y we understand finding
a random variable PY (T ) representing the price of a portfolio at time T that
maximizes

EMU(PY (T ))

under the condition that the expected price remains the same under PY

EY PY (T ) = PY (0).

For well-behaved utilities this problem can be solved in general.

Theorem 3. Let U be twice differentiable, increasing and concave on [0, ∞).
Define

I(x) = [U ′(x)]−1

and let λY satisfy

EY I

(︄
λY · p(ω|M)

p(ω|Y )

)︄
= PY (0)

Then the EMU(PY (T )) is maximized for

PY (ω, T ) = I

(︄
λY · p(ω|M)

p(ω|Y )

)︄

Proof. In a more general setting, Theorem 2.1. Kramkov and Schachermayer
[1999].
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Remark 7. By taking U(x) = log(x) we can see that

I(x) = 1
x

and
λY = 1

PY (0)
giving the optimal

PY (ω, T ) = VY (0) · p(ω|M)
p(ω|Y ) ,

which is identical to the statement od Theorem 1.

This makes the logarithmic utility special, because prices are automatically
log-optimal and is the reason a large section of this thesis focuses on this utility.

Theorem 3 can also be employed to prove that the logarithm is the only utility,
up to additive and multiplicative constants, whose optimal expected payoff does
not depend on the numeraire.

Theorem 4. Let U be twice differentiable, increasing and concave on [0, ∞).
Then the optimal expected payoff EMU(PY (T )) is numeraire invariant if and
only if ∃ C1, C2 ∈ R :

U(x) = C1 log(x) + C2 (1.12)

Proof. The implication from right to left is a straight application of Theorem 3.
By maximizing the expectation of 1.12 with reference assets X and Y we get

PX(ω, T ) = p(ω|M)
p(ω|X) · PX(0),

PY (ω, T ) = p(ω|M)
p(ω|Y ) · PY (0)

and it holds that

PY · YX = p(ω|M)
p(ω|Y ) · p(ω|Y )

p(ω|X)YX(0)PY (0) = p(ω|M)
p(ω|X) PX(0) = PX ,

so the weights in the optimal portfolios with respect to X and Y are the same.
Conversely suppose that U is arbitrary, then for reference assets X, Y from

Theorem 3 the optimal portfolios are

PX(ω, T ) = I

(︄
λX

p(ω|X)
p(ω|M)

)︄
,

PY (ω, T ) = I

(︄
λY

p(ω|Y )
p(ω|M)

)︄
.

From numeraire invariance it follows that

PX(ω, T ) = PY (ω, T ) · YX(ω, T ),
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by Theorem 1 equivalently

I

(︄
λX

p(ω|X)
p(ω|M)

)︄
· pX(ω, T ) = I

(︄
λY

p(ω|Y )
p(ω|M)

)︄
· p(ω|Y )YX(0).

Also, since the left hand side of the above equality does not depend on Y , the
function I has to be of the form

I(x) = C1

x
, C1 ∈ R

and since I = [U ′]−1, we get

U(x) = C1 log(x) + C2.

Example 3. Let us have a market opinion p(ω|M) ∼ N (µT, σ2T ) and for assets
X, Y assume the price dynamics as in Example 1. Asset Y in this case represents
available cash that can be invested into asset X (for example a stock). In a little
more general setting than this, Merton [1971] showed using stochastic control
theory that the expected log-return is maximized if we invest µ

σ2 of our wealth in
Y into asset X. Using Theorems 1 an 3 we can show this result directly. From
Remark 7 we have

PY (x, T ) = PY (0) · p(x|M)
p(x|Y ) = PY (0) exp

(︄
µ

σ2 R(T ) − µ2

2σ2 T

)︄
, (1.13)

the price PY (T ) is a martingale under PY so from Itô formula used on the
simple return process R(T ) from (1.10) and

f(x, T ) = PY (0) exp
(︄

µ

σ2 x − µ2

2σ2 T

)︄

we obtain
dPY (R(T ), T ) = µ

σ2 PY (R(T ), T )dR(T ),

equivalently
dPY (x, T )
PY (x, T ) = µ

σ2
dXY (x, T )
XY (x, T ) .

The simple return process of the optimal portfolio is equal to µ
σ2 fraction of the

simple return process R(T ), therefore we should invest µ
σ2 of our wealth into X.
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2. Kullback-Leibler divergence
and approximated portfolios
In this chapter we show the connection between expected log-utility maximiza-
tion and Kullback-Leibler divergence. In an incomplete market we cannot con-
struct the optimal portfolio exactly and have to settle for one that minimizes the
relative entropy with the optimal portfolio. We are going to discuss three ap-
proaches to this problem: straightforward numerical maximization of the expec-
tation, approximation by a mean variance problem similar to the one addressed
by Markowitz [1952] and finally an approximation by a driftless problem, which
is related to the Fischer information matrix, where it is enough to minimize a
quadratic form defined by a covariance matrix of the state price densities. Ap-
peals of the latter two methods are the existence of analytical solutions and their
relative simplicity, where the inputs are the state price densities and outputs are
the optimal weights.

2.1 Optimal portfolio and Kullback-Leibler di-
vergence

Definition 4. Let p(x|X), p(x|Y ) be densities of two arbitrary real continu-
ous distributions PX , PY , the Kullback-Leibler divergence (relative entropy) of
PX ,PY is defined as

DKL(PX ||PY ) =
∫︂
R

log
(︄

p(z|X)
p(z|Y )

)︄
p(z|X)dz = EX log

(︄
p(Z|X)
p(Z|Y )

)︄

It is well known that K-L divergence is non-negative and

DKL(PX || PY ) = 0 ⇐⇒ p(x|X) = p(x|Y ), λ − a. e.,

where λ is the Lebesgue measure on the real line. On the other hand it is obviously
not symmetric and does not satisfy the triangle inequality, so it is not a metric in
a classical sense, but we can still interpret it as a notion of distance (divergence)
between two distributions, in our case the state price densities. The following
theorem shows the connection between the problem of maximizing log-utility
and relative entropy.

Theorem 5. Let Y be a reference asset, then the portfolio with state price density
p(x|M), assuming PM ≪ PY , has the maximal expected log-utility, given our
market opinion is p(x|M), i. e.

DKL(PM ||PY ) = EM log
(︄

MY (T )
MY (0)

)︄
= max

PY (T )
EM log

(︄
PY (T )
PY (0)

)︄

Proof. First equality follows from Theorem 1 and Definition 4. For an arbitrary
portfolio P with state price density p(x|P ) we have
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EM log
(︄

PY (T )
PY (0)

)︄
= EM log

(︄
MY (T )PM(T )
MY (0)PM(0)

)︄

= EM log
(︄

MY (T )
MY (0)

)︄
+ EM log

(︄
PM(T )
PM(0)

)︄
= DKL(PM ||PY ) − DKL(PM ||PP )
≤ DKL(PM ||PY ).

(2.1)

Definition 5. A market is complete if any contract with payoff VY (T ) can be
replicated by a portfolio of assets available on the market, i. e. there exist assets
X1, ..., Xn,
n ∈ N and weights w1, ..., wn, n ∈ N,

∑︁
wi = 1 such that

VY (T ) =
n∑︂

i=1
wiX

i
Y (T ), PY -a. s.

A market is incomplete if it is not complete.

If we are able to construct a portfolio with the same state price density as
our opinion, from Theorem 5 we know it is optimal. However, in the case of
incomplete markets, this may not be possible. The best we can do is to minimize
the term DKL(PM ||PP ) in (2.1).

Obviously we can maximize the expectation numerically, solving a problem

max
w1,...,wn

EM log
(︄

PY (T )
PY (0)

)︄

s. t.
n∑︂

i=1
wi = 1,

but that does not have to be feasible for large portfolios. In the following sections
we approximate the logarithm by its Taylor polynomial and get two types of mean
variance problems that are generally much easier to solve.

2.1.1 Asymptotic price behaviour under the physical mea-
sure

Let P̂ be the physical measure of the market. If we assume the price increments
over disjoint equidistant time intervals to be i.i.d., which is true for example in
a geometric brownian motion model assumed in Chapter 3, then the asymptotic
behaviour of the price in Y depends on whether the P̂ is closer to PY or PM in
the Kullback-Leibler divergence.

Proposition 1. If DKL(P̂||PY ) > DKL(P̂||PM), then

MY (t) −−−→
n→∞

+∞, P̂ − a. s.

and if the opposite inequality holds, then

MY (t) −−−→
n→∞

0, P̂ − a. s.
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Proof. Let P̂ be a hypothetical asset with state price density P̂, then we have

EP̂ log
(︄

MY (T )
MY (0)

)︄
= EP̂ log

(︄
MP̂ (T )
MP̂ (0)

)︄
+ EP̂ log

(︄
P̂ Y (T )
P̂ Y (0)

)︄
= DKL(P̂||PM) − DKL(P̂||PY ).

(2.2)

Now suppose the right hand side of (2.2) is strictly positive, i. e. there exists
ε > 0 such that

EP̂ log
(︄

MY (T )
MY (0)

)︄
> ε.

Random variables
Yn = log

(︄
MY (nT )

MY ((n − 1)T )

)︄
are i.i.d. and by the law of large numbers it holds

1
n

log
(︄

MY (nT )
MY (0)

)︄
= 1

n

n∑︂
k=1

Yk −−−→
n→∞

EP̂ log
(︄

MY (T )
MY (0)

)︄
> ε, P̂ − a. s.

Therefore from some n0 ∈ N onward we have

log
(︄

MY (nT )
MY (0)

)︄
>

εn

2 , P̂ − a. s.

and the right hand side tends to infinity, so the left hands does as well. The
argument for the second part of the statement is analogous.

If we are able to make sure our opinion density has smaller relative entropy
with the physical measure than the driftless measure does, the previous Proposi-
tion says we are going to profit in the longterm.

Example 4. In Merton’s setup and a complete market, from (1.13) we see that
the best payoff we can get is

DKL(PM ||PY ) = 1
2

µ2

σ2 T.

This will be used as a benchmark for approximated portfolios in Chapter 3, espe-
cially in the two asset case, i. e. Figure 3.1. Additionally, if the physical measure
disagrees with our opinion only in drift parameter, i. e. P̂ ∼ N (µ̂T, σ2T ), then

DKL(P̂||PY ) = 1
2

µ̂2

σ2 T

and
DKL(P̂||PM) = 1

2
(µ − µ̂)2

σ2 T

so, according to Proposition 1, we have to make sure that |µ − µ̂| < |µ̂|. If µ̂ > 0
this translates to µ ∈ (0, 2µ̂). In reality we do not know the value of µ̂ and in
order to fulfill the condition in Proposition 1 it is safer to choose µ from the right
neighbourhood of 0, even though that means smaller returns.
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2.2 Approximation by a mean variance problem
Suppose we have assets X1, ..., Xn to make a portfolio out of. We can approximate
the problem by taking the second order Taylor polynomial of logarithm

log(x) = (x − 1) − 1
2(x − 1)2 + o((x − 1)2).

First lets look at the difference

EM log
(︄

PY (T )
PY (0)

)︄
− EY log

(︄
PY (T )
PY (0)

)︄
=
∫︂
R

log
(︄

PY (T )
PY (0)

)︄
[p(x|M) − p(x|Y )]dx

≈
∫︂
R

(︄
p(x|P )
p(x|Y ) − 1

)︄
[p(x|M) − p(x|Y )] dx

=
∫︂
R

(︄
p(x|P )
p(x|Y ) − 1

)︄
p(x|M)dx

= EM

(︄
p(x|P )
p(x|Y ) − 1

)︄
.

By this approximation and Theorem 1 we get

EM log
(︄

PY (T )
PY (0)

)︄
≈ EM

(︄
p(x|P )
p(x|Y ) − 1

)︄
+ EY log

(︄
PY (T )
PY (0)

)︄

≈ EM

(︄
n∑︂

i=1
wi

p(x|X i)
p(x|Y ) − 1

)︄
− 1

2E
Y

(︄
n∑︂

i=1
wi

X i
Y (T )

X i
Y (0) − 1

)︄2

=
n∑︂

i=1
wiEM

(︄
p(x|X i)
p(x|Y ) − 1

)︄
− 1

2E
Y

(︄
n∑︂

i=1
wi

p(x|X i)
p(x|Y ) − 1

)︄2

= µTw − 1
2wTΣ1w,

(2.3)

where

µ =
(︄
EM

[︄
p(x|X1)
p(x|Y ) − 1

]︄
, ...,EM

[︄
p(x|Xn)
p(x|Y ) − 1

]︄)︄T

and

Σ1 =
[︄
EY

(︄
p(x|X i)
p(x|Y ) − 1

)︄(︄
p(x|Xj)
p(x|Y ) − 1

)︄]︄n

i,j=1
=
[︄
covY

(︄
X i

Y (T )
X i

Y (0) ,
Xj

Y (T )
X i

Y (0)

)︄]︄
i,j

,

which is similar to a mean variance problem addressed by Markowitz [1952], only
the drift term is with respect to PM . We have a program

max
w1,...,wn

µTw − 1
2wTΣ1w (2.4)

s. t.
n∑︂

i=1
wi = 1.
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If Σ is invertible, the solution can be found by using the Lagrange multipliers
theorem and is of the form

λ = 1 − 1TΣ−1
1 µ

1TΣ−1
1 1

,

w = Σ−1
1

(︄
µ + 1 − 1TΣ−1

1 µ

1TΣ−1
1 1

· 1
)︄

, (2.5)

where λ is the Lagrange multiplier and 1 is a vector of ones and length n.

Remark 8. From (2.3) it is apparent if the asset Y is part of the portfolio, and
in Chapter 3 it will be, the row and column corresponding to Y in Σ1 and µ will
both have only zero entries.

In the classical Markowitz approach, the drift a volatility parameters are usu-
ally estimated from historical behaviour of the prices which brings more uncer-
tainty. In our case this is not needed because they are determined by the state
price densities of the assets.

2.3 Fischer approximation by a variance prob-
lem

We can further simplify the problem by realizing

EM

(︄
PM(T )
PM(0)

)︄
= 1

to reformulate it as follows.

EM log
(︄

PY (T )
PY (0)

)︄
= EM log

(︄
PM(T )
PM(0)

)︄
+ EM log

(︄
MY (T )
MY (0)

)︄

≈ DKL(PM ||PY ) − 1
2E

M

(︄
PM(T )
PM(0) − 1

)︄2

= DKL(PM ||PY ) − 1
2wTΣw,

(2.6)

for

Σ =
[︄
EM

(︄
p(x|X i)
p(x|M) − 1

)︄(︄
p(x|Xj)
p(x|M) − 1

)︄]︄n

i,j=1

=
[︄
covM

(︄
X i

Y (T )
X i

Y (0) ,
Xj

Y (T )
Xj

Y (0)

)︄]︄n

i,j=1
.

(2.7)

Considering the price with respect to M gets rid of the drift term in (2.3)
and finding the optimal weights w that maximize the right hand side of (2.6)
is computationally easier than maximizing the expectation. An insightful per-
spective is that the portfolio maximizing the log expected payoff under PM has
approximately the smallest variance under the same measure.
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The problem of finding the minimum is very similar to (2.4),

min
w1,...,wn

wTΣw (2.8)

s. t.
n∑︂

i=1
wi = 1,

only with the drift vector µ being zero and a different Σ matrix.
Therefore from (2.5) follows the solution

λ = 1
1TΣ−1

1 1

w = Σ−11
1TΣ−1

1 1
. (2.9)

2.3.1 Connection to Fischer information
The Σ matrix in (2.7) is closely related to the Fischer information matrix in
statistics, hence the name of the method.

Definition 6. Let {p(x|w); w ∈ Θ ⊂ Rn, n ∈ N} be a family of probability
densities, then the Fischer information matrix is

[I(w)]ni,k=1 = Ew
[︄(︄

∂ log(p(X|w))
∂wi

)︄(︄
∂ log(p(X|w))

∂wk

)︄]︄
.

Under so called regularity conditions (Anděl [2007], Definition 7.8) we can
rewrite it as

[I(w)]ni,k=1 = −Ew
[︄

∂2 log(p(X|w))
∂wi∂wk

]︄
.

Now consider family Φ = {∑︁n
i=1 wip(x|X i); wi ∈ R,

∑︁
wi = 1}, that repre-

sents the possible state price densities of our portfolio, then in the first line of
(2.6) we have

EM log
(︄

PM(T )
PM(0)

)︄
= −DKL(PM ||PP ) =

∫︂
p(x|M) log

(︄∑︁
wip(x|X i)
p(x|M)

)︄
dx.

The Fischer information matrix of this family has entries

[I(w)]i,k = −EM

[︄
p(X|X i)p(X|Xk)

(∑︁n
j=1 wjp(X|Xj))2

]︄
.

If p(x|M) = ∑︁
wîp(x|X i) ∈ Φ, from the second order Taylor expansion around

ŵ we obtain (under regularity conditions)

DKL(PM ||PP ) ≈ 1
2(w − ŵ)T [I(ŵ)]ni,k=1(w − ŵ), (2.10)

because

[I(ŵ)]i,k = −Eŵ
[︄

∂2 log(p(X|w))
∂wi∂wk

]︄
=
(︄

∂2DKL(PM ||PP )
∂wi∂wk

)︄
w=ŵ

.

It is not hard to see that the right hand side of (2.10) is the same as the quadratic
form defined by (2.7).
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We have

−(w − ŵ)T [I(ŵ)](w − ŵ) =
∑︂

i

∑︂
k

(wi − wî)(wk − wk̂)[I(ŵ)]i,k

=
∑︂

i

∑︂
k

wiwk[I(ŵ)]i,k −
∑︂

i

∑︂
k

wîwk[I(ŵ)]i,k

−
∑︂

i

∑︂
k

wiwk̂[I(ŵ)]i,k +
∑︂

i

∑︂
k

wîwk̂[I(ŵ)]i,k

=
∑︂

i

∑︂
k

wiwk[I(ŵ)]i,k − 1 − 1 + 1

= wTΣw.

(2.11)

In the third equality we used the fact that

∑︂
i

∑︂
k

wîwk[I(ŵ)]i,k = EM

[︄
p(X|M)∑︁k wkp(X|Xk)

(p(X|M))2

]︄
= 1,

similarly for the other two terms. The last equality follows from

1 =
∑︂

i

∑︂
k

wiwk.

Since we originally assume p(x|M) /∈ Φ, i. e. the market is incomplete, the
initial problem can also be understood as finding a portfolio that contains the
most Fischer information about PM .
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3. Application in GBM model
In this chapter we are going compare the three approaches from Chapter 3 in a
simple geometric brownian motion model of the prices, where

dXY (t) = σ1XY (T )dW Y (t), σ2 > 0,

or equivalently

XY (t) = XY (0) exp
{︄

σ1W
Y (t) − σ2

1t

2

}︄

PY almost surely, where W Y is a Wiener process on (x, F ,PY ). Let our market
opinion be

PM ∼ N (µT, σ2
2T ), µ ∈ R, σ2 > 0. (3.1)

We will consider three portfolios consisting of a risk-free asset Y and asset X
with state price densities

PY ∼ N (0, σ2
1T ), PX ∼ N (σ2

1T, σ2
1T ), (3.2)

and one or two maximal contracts with payoff in an arbitrary asset Z at time T
being

[OK ]Z(T ) = max {XZ(T ), K · YZ(T )} ,

where K > 0 is a so called strike price which serves purpose of scaling asset Y so
the prices of K · Y and X are comparable. Maximal contracts by themselves are
not traded in the real world markets because their payoff, by definition, dominates
payoffs of both assets K · Y an X. What is actually traded are (among other
contracts of course) the so called European options.

Definition 7. For assets X, Y, Z the European call option with payoff in Z
based on X and Y is a contract with payoff

max{XZ(T ) − K · YZ(T ), 0}.

A European put option in the same setup has payoff

max{K · YZ(T ) − XZ(T ), 0}.

Remark 9. Usually in the previous definition we take Z = Y and the payoff
becomes

max{XY (T ) − K, 0}.

In cases of the first two portfolios we will assume σ1 = σ2, the general case is
considered in Section 3.3. From the relationship

max(XZ(T ), K · YZ(T )) = max{XZ(T ) − K · YZ(T ), 0} + K · YZ(T ) (3.3)

we can see the maximal contract is just a shifted European call, or analogously
put, option with the same strike price. From Theorem 1 we can calculate the
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state price density of the maximum contract

p(x|OK) = p(x|M) · max{XM(T ), K · YM(T )}
max{XM(0), K · YM(0)}

= p(x|M) ·
max{ p(x|X)

p(x|M)XM(0), K · p(x|Y )
p(x|M)YM(0)}

max{XM(0), K · YM(0)}

= max{p(x|X)XM(0), K · p(x|Y )YM(0))}
max{XM(0), K · YM(0)}

(3.4)

and by properly norming we obtain

p(x|OK) = max{p(x|X)XM(0), K · p(x|Y )YM(0))}
XM(0)(1 − FX(d)) + K · YM(0)FY (d) ,

where
d = σ2

1t

2 − log
(︄

XM(0)
K · YM(0)

)︄
(3.5)

and FX and FY are distribution functions of N (σ2
1T, σ2

1T ), N (0, σ2
1T ) respec-

tively.
In the following sections we are going to find the optimal weights and their

respective portfolios payoffs for all three approaches given in Chapter 2 and com-
pare them. All calculations and plots have been done in a Mathematica notebook
attached (Wolfram Research, Inc. [2023]).
Notation. From now on, to simplify notation, we will be writing XM(0) as x0 and
YM(0) as y0.

3.1 Portfolio of 2 assets
First we will look at the simplest case, when no maximal contracts are added to
the portfolio. For simplicity we will also assume that σ = σ1 = σ2. Thus we are
finding log-optimal portfolio

P 2 = wX + (1 − w)Y

under market opinion (3.1), where X,Y have state price densities given by (3.2).
For this case we chose the parameter values to be µ = 0.03, σ = 0.2 and T = 10,
which is not unreasonable in the real world.

As for the Markowitz approach from Section 2.2, the Σ1 matrix is very simple:

Σ1 =
(︄

eσ2T − 1 0
0 0

)︄
,

the drift vector is
µ =

(︄
eµT − 1

0

)︄
,

giving the weight

w1 = eµT − 1
eσ2T − 1 .
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In the driftless case from Section 2.3, the Σ matrix is of the form

Σ =
(︄

exp{ (µ−σ2)T
σ2 } exp{(µ2

σ2 − µ)T}
exp{(µ2

σ2 − µ)T} exp{µ2T
σ2 }

)︄
.

By solving (2.8) we obtain

w =
exp{(µ2

σ2 )T} − exp{µ(µ+σ2)T
σ2 }

2 exp{(µ2

σ2 )T} − exp{µ(µ+σ2)T
σ2 } − exp{(µ2

σ2 + σ2 − µ)T}
.

The highest payoff achievable only in a complete market is

DKL(PM ||PY ) = 1
2

µ2

σ2 T = 0.1125.

Remark 10. In both approaches it is not hard to calculate the limit

lim
T →0+

w = lim
T →0+

w1 = µ

σ2

that agrees with how much we should have invested in asset X according to Merton
[1971].

The calculated weights and payoffs of all three approaches from Chapter 2 are
laid out in Table 3.1. Here they are pretty similar and even for 10 year horizon
not far off from the Merton’s initial allocation from Remark 10. As expected, the
Fischer approach outperforms Markowitz.

We know that Merton’s portfolio is optimal so we can use it as a benchmark.
If we plot the expected payoffs in Figure 3.1 as functions of time for our parameter
values, the fall off of Markowitz starts to be significant after about 40 years.

The portfolio with no contracts also allows us to demonstrate how the approx-
imate solutions fare against the exact one on a simple plot in Figure 3.2. Clearly
the Fischer method does a better job at approximating the maximum of the real
payoff, as we are expanding the Taylor polynomial ’around’ PM and Theorem 5
holds. The points in the plot represent portfolios with weights obtained above
plugged into all three approaches with their respective colours. In the case of
only two assets the difference is almost indistinguishable.

Weight and Payoff
Method Weight Payoff
Numeric 0.767 0.111

Markowitz 0.711 0.1106
Fischer 0.769 0.111
Optimal 0.1125

Table 3.1: Calculated weights and payoffs for µ = 0.03, σ = 0.2, T = 10.
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Figure 3.1: Expected payoff of 2 asset portfolio in time for µ = 0.03, σ = 0.2.
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Figure 3.2: The exact and approximated expected logarithmic payoffs from Chap-
ter 2 with their optimal portfolios. The colours of the points correspond to the
methods used.
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3.2 Portfolio of 2 assets and one maximal con-
tract

By adding a maximal contract to the portfolio we can improve on the expected
payoff. We are now optimizing the portfolio

P 3 = w1X + w2Y + (1 − w1 − w2)OK .

Lets now consider T = 10, µ = 0.05, σ = 0.3, x0 = y0 = 1. Unlike in the 2 asset
portfolio, here we have one extra parameter to maximize the expected payoff, the
strike price K of the maximal contract. Given an investing horizon T , we can
find the optimal strike numerically by maximizing (2.4) with weights from (2.5)
or as

K = arg min
K>0.1

ŵTΣŵ,

where ŵ is the solution to (2.8).

Remark 11. To prevent getting extreme values, we will be maximizing only over
strikes greater that 0.1. This assumption is not vital and can be changed if needed.

The entries of Σij, i, j ∈ {1, 2} (and also in the case of Σ1) that do not depend
on the strike K are of course the same as in the previous section so we only need
to calculate the new right column and bottom row. The expressions representing
the weights and new entries of Σ1 and Σ matrices are very long so we leave them
out, they can be found in the attached Mathematica notebook. The calculations
are quite straightforward, but a little bit lengthy and tedious. One example of
entry Σ13 is

Σ13 = EM

(︄
p(Z|X)p(Z|OK))

p(Z|M)2

)︄

=
∫︂
R

p(z|X)p(z|OK)
p(z|M) dz

= C

(︄∫︂ d

−∞

p(z|X)p(z|Y )
p(z|M) dz +

∫︂ ∞

d

p(z|X)p(z|X)
p(z|M) dz

)︄

= C

[︄
x0 exp

(︄
(µ − σ)2T

σ2

)︄(︄
1 + Erf

(︄(3σ2 − 2µ)t + 2 log( x0
Ky0

)
σ2T

)︄)︄

+Ky0 exp
{︄(︄

µ2

σ2 − µ

)︄
T

}︄(︄
1 + Erf

(︄
(µ − σ2)

√
T

σ
√

2

)︄

+ σ2 − µ

|σ2 − µ|
Erf

(︄
|σ2 − µ|

√
T

σ
√

2

)︄

+
(2µ − σ2)T − log( x0

Ky0
)⃓⃓⃓

(2µ − σ2)T − log( x0
Ky0

)
⃓⃓⃓Erf

⎛⎝
⃓⃓⃓
(2µ − σ2)T − log( x0

Ky0
)
⃓⃓⃓

2
√

2σ
√

T

⎞⎠⎞⎠⎤⎦ ,

(3.6)
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where
Erf(x) = 2√

π

∫︂ x

−∞
e−t2

dt

is the Error function, d is from (3.5) and

C = 1
XM(0)(1 − FX(d)) + KYM(0)FY (d) .

The calculated optimal weights and strikes along with their payoffs are written
out in Table 3.2. The optimal payoff derived in Example 4 is

DKL(PM ||PY ) = 1
2

µ2

σ2 T = 0.1389.

In this case the Markowitz method gives very different weights than the other
two and its payoff is compensated by setting a significantly higher strike of the
contract, but the hierarchy of payoffs remains the same. The Fischer method
holds up well. The weight discrepancies in the Markowitz case hint that this
approach might not approximate the original problem well enough.

Remark 12. With the contract as part of the portfolio we cannot plot the payoff
as in Figure 3.1 anymore because the optimal strike depends on the time horizon
T .

Weights, Strike, and Payoff
Method w1 w2 Strike Payoff
Numeric 0.937 0.84 1.023 0.138

Markowitz 0.758 1.12 1.681 0.137
Fischer 0.949 0.851 1.019 0.1375
Optimal 0.1389

Table 3.2: Calcuated weights, strikes, and payoffs for T = 10, µ = 0.05, σ =
0.3, x0 = y0 = 1

3.2.1 Mean variance frontier
Another useful perspective can be gained by plotting the approximate portfolios
on a mean-variance (volatility) graph. For simplicity we are going to limit our-
selves to the 1 contract case. If we leave all parameters the same, the result is in
Figure 3.3.

The points labeled ”H,V,F” represent portfolios obtained by numerical op-
timization, Markowitz approach and Fischer approach respectively. ”M” is the
ideal portfolio that is impossible to reach precisely and ”MH” is the maximal con-
tract with optimal strike. The blue line depicts returns and volatilities of solely
contracts as strike changes. The green line are portfolios consisting of only the
contract and asset X, taking out Y. By including Y we get the yellow line that is
tangent to the frontier excluding Y. We also included, in red, the approximation
of the logarithmic return by the Markowitz method as

µ ≈ σ2

2 + 1
2µT Σ−1

1 µ,
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where µ, Σ1 are from 2.3. The agreement on volatility and the longer time
horizon makes the plot not really transparent but all the portfolios are pretty
close, which is not surprising given the closeness of fit in Figure 3.6.

Much more illustrative is Figure 3.4 where we work with µ = 0.05, σ1 =
0.3, σ2 = 0.35, x0 = y0 = 1, T = 1. Here the Markowitz portfolio has higher
returns than the other two but it also has much higher volatility. At the same time
the numerical and Fischer portfolios lie on a very comparable (purple) parabola
which makes those preferable over Markowitz. Of course the optimal portfolio is
”H” and ”V” and ”F” are only approximations.
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Figure 3.3: Approximate portfolios and particular mean variance frontiers for
parameters µ = 0.05, σ1 = 0.3, σ2 = 0.3, x0 = y0 = 1, T = 10.
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Figure 3.4: Approximate portfolios and particular mean variance frontiers for
parameters µ = 0.05, σ1 = 0.3, σ2 = 0.35, x0 = y0 = 1, T = 1.
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3.3 Portfolio of 2 assets and two maximal con-
tracts

Now we consider the general case where σ1, σ2 > 0 and a portfolio with two
maximal contracts with two strike prices K1, K2:

P 4 = w1X + w2Y + w3OK1 + (1 − w1 − w2 − w3)OK2 .

Without the loss of generality we are going to assume that K1 < K2 and take
µ = 0.05, σ1 = 0.3, σ2 = 0.4, T = 10, x0 = y0 = 1.

Again there is no point in typing out all the new entries and expressions of
weights, see the attached notebook, but since we now do not assume σ1 = σ2, the
calculation of the Σ matrix comes with constraints. For example the entry Σ11 is
of the form

Σ11 = EM

(︄
p(x|X)
p(x|M) − 1

)︄2

=
exp

(︂
− (µ−σ2

1)2T

σ2
1−2σ2

2

)︂
√︃

2σ2
1 − σ4

1
σ4

2

and the expectation is real only for 0 < σ1 <
√

2σ2. The same constraints are
required for other entries as well.

The optimal payoff achievable only in a complete market is

DKL(PM ||PY ) ≈ 0.24.

The resulting weights and strikes are summarized in Table 3.3. The numerical
method surprisingly comes out to have lower return that Fischer. In the next
Section we discuss that it has found a local maximum.

Note that assuming asset volatility to be lower than the market’s allows for
much higher expected return. This is intuitive because the portfolio has smaller
volatility but is part of the market whose drift has not changed.

In the next section we will compare the approximated densities of the portfo-
lios calculated in the last three sections with the desired market density.

Weights, Strikes, and Payoff
Method w1 w2 w3 K1 K2 Payoff
Numeric 0.294 -1.478 2.184 2.411 4.498 0.221

Markowitz 0.405 -0.471 -0.059 0.1 1.388 0.21
Fischer -2.121 -3.529 2.663 0.279 4.087 0.231
Optimal 0.24

Table 3.3: Calculated weights, strikes, and payoffs for µ = 0.05, σ1 = 0.3,
σ2 = 0.4, T = 10, x0 = y0 = 1.
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3.4 Approximated portfolios state price densi-
ties

Now lets compare state price densities of the three types of portfolios discussed
in the previous sections. These densities (portfolios) should be, according to
Theorem 5, close in the Kullback-Leibler divergence with the market density.
Even though it is not the same as the relative entropy, the closeness of the fit is
evident in Figures 3.5, 3.6 and 3.7.

The relative entropies of the portfolio densities are laid out in Table 3.4. We
can see the Fischer approach outperforms Markowitz in every case and is even
better than the standard optimization tools used in the two contracts case. This is
probably because we are allowing shorting, i. e. negative weights and this makes
the space of feasible solutions quite complicated, because not all combinations of
weights result in non negative combination of densities on the whole real line. In
order to find truly optimal attainable values, more sophisticated methods, beyond
the scope of this thesis, would need to be employed.

From Table 3.4 of Figure 3.7 we observe that assuming different volatilities
σ1, σ2, of PX and PM slightly increases the relative entropy. Intuitively it is clear,
we are trying to ’match’ both parameters µ, σ2 instead of just the drift as in the
univolatility case.
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Figure 3.5: State price densities of 2 asset portfolios comparison with market
opinion with parameters µ = 0.03, σ = 0.2, x0 = y0 = 1, T = 10.

No Contract 1 Contract 2 Contracts
Markowitz 0.001809 0.0021 0.0405

Fischer 0.001262 0.00137 0.008
Numeric 0.001261 0.00136 0.0222

Table 3.4: Kullback-Leibler divergences of calculated portfolios

25



-4 -2 2 4

0.1

0.2

0.3

0.4

One contract ortfolios and market density comparison

Markowitz density

Numerical density

Tuned density

market opinion density pM

Figure 3.6: State price densities comparison of 2 asset and 1 maximal contract
approximated portfolios against market opinion with parameters µ = 0.05, σ =
0.3, x0 = y0 = 1, T = 10.
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Figure 3.7: State price densities of 2 asset and 2 maximal contracts approximated
portfolios against market opinion with parameters µ = 0.05, σ1 = 0.2,
σ2 = 0.3, x0 = y0 = 1, T = 10.
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4. Option strategies
By having options (or maximal contracts) in the portfolio, besides using them
to maximize the expected log payoff, we can also utilize them in certain market
scenarios, such as high or low volatility or negative return. These strategies are
profitable given our opinion is more accurate than market’s. In the previous chap-
ter we calculated portfolios with approximately the highest expected logarithmic
returns. Now we are going to showcase strategies involving one or two options in
these (close to) optimal portfolios. Without the loss of generality we can work
with portfolios with maximal contracts because these can be transformed into
standard options by adding assets X or Y , as indicated in (3.3). The payoff func-
tion and option price (in Y ) are then just shifted corresponding maximal contract
payoff function and price. In the case of two options portfolio we will need to
add a constraint that the options weights are the same for the strategies to work
properly.

Of the two approximations from Chapter 3, the Fischer method seems to be
the most accurate so we are going to use it exclusively to find the optimal strikes
that affect the profit/loss of the option strategies.

As in the previous chapter we are going to assume the geometric brownian
motion model with assets X and Y . A classical way to determine a price of a call
option expiring at time T with strike price K that has payoff

VY (T ) = max{0, XY (T ) − K} = max{XY (T ), K} − K

is the Black-Scholes formula (e. g. Večeř [2011], equation (1.77))

VY (0) = PX(XY (T ) ≥ K)XY (0) − K · PY (XY (T ) ≥ K) (4.1)

and in the GBM model it is straight forward to calculate

VY (0) = XY (0)Φ(d+) − K · Φ(d−)

where Φ is the distribution function of N (0, 1) and

d± = 1
σ1

√
T

log
(︄

XY (0)
K

)︄
± 1

2σ1
√

T .

A put option has payoff

UY (T ) = max{0, K −XY (T )} = max{K, XY (T )}−XY (T ) = VY (T )+K −XY (T )

so its price at time 0 is

UY (0) = VY (0) + K − XY (0).

4.1 One option portfolio
With one option in the portfolio we can hedge against the market moving heavily
into either direction. By buying call or put options we can speculate on the
market movement in either direction, that would correspond to µ < 0 or µ > 0.
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Lets look at the bearish case. Take T = 10, µ = −0.05, σ1 = 0.3, σ2 = 0.3
and XY (0) = 1, then the optimal strike is K = 0.677 and the plot of Profit/Loss
against the price XY (T ) is shown in Figure 4.1.

If we think that the market is more volatile, i. e. σ1 > σ2, we can buy the
same amount of calls and puts with the same strike price and we will profit in case
of high volatility. For T = 10, µ = 0.05, σ1 = 0.3, σ2 = 0.22 and XY (0) = 1,
by the same method as in previous chapter, we get optimal K = 1.173 and we
can plot the Profit/Loss against the terminal price XY (T ) in Figure 4.2. This
strategy is well known and fittingly called Straddle.

For simplicity the plots show the P/L in case of holding one put (Figure 4.1)
or a put and call pair (Figure 4.2), in the context of our our portfolio it would
just be scaled differently depending on the weight of the contract.
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P/L of a put option with optimal strike

Figure 4.1: P/L of a put option with parameters µ = −0.05, σ1 = 0.3,
σ2 = 0.3, K = 0.677, T = 10.
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Figure 4.2: P/L of Straddle strategy with parameters µ = 0.05, σ1 = 0.3,
σ2 = 0.22, K = 1.173, T = 10.

4.2 Two options portfolio
Adding a second option to the portfolio allows us to bet on the drift of the market
while limiting the downside to the option premium. For the hedge against risk
to work properly, we will add a constraint that both options in the portfolio have
the same weight. More precisely, the portfolio is of the form

P 4 = w1X + (1 − w1 − 2w2)Y + w2(OK1 + OK2).

All the calculations as described in Chapter 2 remain the same.
Let us first assume the drift is positive, µ = 0.05 > 0 and σ1 = σ2 = 0.3,

T = 10, then the optimal strikes are

K1 = 0.46, K2 = 2.11.

If we buy a call with strike K1 and sell a call with strike K2, the P/L plot looks
like in Figure 4.3. This strategy is known as the Bullish Spread.

After setting µ = −0.05 < 0 and leaving the rest of the parameters the same,
we calculate

K1 = 0.34, K2 = 0.84.

Buying a put with strike K2 and selling a put with strike K1 ensures profit given
sufficient price decrease while risking ”only” the option price as is shown in Figure
4.4. This strategy is called the Bearish Spread.

More complex strategies are possible in portfolios with 3 or more options with
different strikes. Principally it is not different than the two options case so we
are not going to explore these cases further.
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Figure 4.3: P/L of a Bullish Spread strategy with parameters µ = 0.05,
σ1 = σ2 = 0.3, K1 = 0.46, K2 = 2.11, T = 10.
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Figure 4.4: P/L of a Bearish Spread strategy with parameters µ = −0.05,
σ1 = σ2 = 0.3, K1 = 0.46, K2 = 2.11, T = 10.
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4.2.1 Recovering the state price density from a P/L func-
tion

Given a P/L function of a combination of contracts, using Theorem 1 we can
calculate the corresponding state price density. Let p(ω|S) be a state price density
of the contract combination, then the profit/loss at time T is equal to

SY (T ) − SY (0) = p(ω|S)
p(ω|Y )SY (0) − SY (0) = p(ω|S) − p(ω|Y )

p(ω|Y ) SY (0),

on the other hand the P/L is a linear combination of, sold or bought, put and
call options with different strikes K1, ..., Kn, n ∈ N and combined payoff

n∑︂
i=1

ai max{XY (T ) − Ki, 0}, ai ∈ {−1, 1}.

Therefore

p(ω|S) =
n∑︂

i=1
max{p(ω|X)XY (0) − p(ω|Y )Ki, 0} + p(ω|Y )SY (0).

SY (0) is our initial cost of the contracts, i. e. sum of the option prices with their
sign depending on whether we sold or bought them.
Example 5. Consider the Bullish spread from the current section with the same
parameters. Then we have

p(ω|S) − p(ω|Y )
p(ω|Y ) SY (0) = max{XY (T ) − K1, 0} + min{K2 − XY (T ), 0},

therefore the state price density of the Bullish spread is
p(ω|S) = max{XY (0) · p(ω|X) − K1 · p(ω|Y ), 0}

+ min{K2 · p(ω| Y ) − XY (0) · p(ω|X), 0}
+ SY (0) · p(ω|Y )

SY (0) in this case is the difference between premiums of call options with
optimal strikes 0.46 and 2.11, which, according to the Black-Scholes formula (4.1)
comes out to 0.451. Plot of the density is in Figure 4.5.
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Figure 4.5: State price density of a bullish spread with µ = 0.05, σ = 0.3, T =
10, K1 = 0.46, K2 = 2.11.
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Conclusion
In the thesis we first showed that a price of an asset expressed in terms of another
asset is just scaled likelihood ratio of their state price densities. From this fact
and standard utility maximization techniques it follows that prices are naturally
log-optimal and logarithm is the only utility (up to scaling and shifting) that
is numeraire invariant, meaning the weights of the log-optimal portfolio do not
change with the underlying asset.

Chapter 2 was dedicated to the connection between log utility maximization
and Kullback-Leibler divergence. We showed that the maximal logarithmic pay-
off of a portfolio in terms of an asset PY in a market with physical measure PM is
exactly DKL(PM ||PY ). This is however achievable only in a complete market, oth-
erwise the best we can do is to find a portfolio with smallest relative entropy with
the physical measure, which leads to a problem that does not have an analytical
solution and may not be numerically feasible for large portfolios. For this purpose
we presented two alternative approaches based on approximating the logarithm
by its second order Taylor polynomial, resulting in mean variance type optimiza-
tion problems, one similar to the one firstly addressed by Markowitz [1952] and
the other related to Fischer information. Those have analytical solutions and are
generally easier to calculate.

The accuracy of these methods was then demonstrated on a simple model
with two assets with the same volatility, one of them driftless, when their prices
follow the geometric brownian motion, and one or two maximal contracts (op-
tions) based on those assets. The physical measure was considered to have a
different drift and also volatility than the other two, which is a generalization of
the setup in Merton [1971], who considered all assets to have the same volatility.
On the three different combinations of volatilities and drifts, we showed that the
approximations, especially Fischer’s, work quite well.

Finally the benefits, other than achieving smaller relative entropy with PM ,
of having the contracts in the portfolio when certain market scenarios occur were
discussed.
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A. Attachments
All calculations and plots throughout the thesis have been done in the Mathe-
matica notebook called ”calculations.nb”.
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