
MASTER THESIS

Bc. Jakub Pohly

Risk measures in scheduling problems
under uncertainty

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: doc. RNDr. Martin Branda, Ph.D.
Study programme: Probability, Mathematical Statistics

and Econometrics
Study branch: Probability, Mathematical Statistics

and Econometrics

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank everyone who supported me while working on this thesis.
Specifically I would like to thank doc. RNDr. Martin Branda, Ph.D. for his
insight into this topic and his time he devoted to consultations and comments
that helped me finish this thesis.

ii

Title: Risk measures in scheduling problems under uncertainty

Author: Bc. Jakub Pohly

Department: Department of Probability and Mathematical Statistics

Supervisor: doc. RNDr. Martin Branda, Ph.D., Department of Probability and
Mathematical Statistics

Abstract: In the presented work we deal with fixed interval scheduling problem
with random delays. We present common formulations of the problem and intro-
duce new ones. The aim is introduction of formulations where the actual cost or
penalty is properly expressed and also risk of the schedule is taken into account.
The main topic of the work is combining existing formulations for FIS problem
with risk measures and creating mixed integer linear formulations of them. The
new formulations are minimizing expected number of unprocessed jobs which is
better linked to penalties than number of overlaps. For formulations based on
risk measures we presented mean-variance optimization of number of overlaps
and CVaR optimization of both number of overlaps and number of unprocessed
jobs. All of the new formulations were reformulated as mixed integer linear prob-
lem. Finally we show a numerical study where we implemented two of the new
formulations we presented in this work.

Keywords: fixed interval scheduling, risk measures, graph coloring, mixed integer
programming, linear programming

iii

Contents

Introduction 2

1 Fixed interval scheduling 3
1.1 Fixed interval scheduling with random delay 4

1.1.1 Tactical FIS with random delay 4
1.2 Operational FIS with random delays 5

1.2.1 Maximizing reliability of schedule 6
1.2.2 Minimizing expected number of overlaps 9
1.2.3 Network flow formulation of FIS problem 10

1.3 Minimizing number of not processed jobs 12
1.3.1 Expected number of not processed jobs 13

2 Risk measures 15
2.0.1 Coherent risk measures . 16

2.1 Commonly used risk measures . 17
2.1.1 Variance . 17
2.1.2 Standard deviation . 18
2.1.3 Conditional Value at Risk 19

3 Risk measures in FIS problem 20
3.1 Mean-variance optimization of number of overlaps 20

3.1.1 Mean-variance optimization with correlated delays 22
3.2 CVaR of number of overlaps . 24

3.2.1 Mean-CVaR optimization of number of overlaps 26
3.3 CVaR of number of unprocessed jobs 26

3.3.1 Example problem . 28

4 Numerical study 30
4.1 Data generation . 30
4.2 Size of the optimization problem 31
4.3 Optimization . 32
4.4 Mean-variance model . 35

Conclusion 37

Bibliography 38

1

Introduction
In this work we will focus on a fixed interval scheduling problem (FIS). We will
work with fixed starting and finishing times of each work, but in the process some
random delays of finishing times can occur. The delays can cause that the next
job will not be processed and therefore it can make the whole schedule infeasible.

One of the goals of FIS is to assign jobs to machines in such way, that the
probability of given schedule is feasible is maximized. Alternatively very common
variant of FIS is to minimize penalty of the schedule. We can imagine the penalty
as fine for not processing certain job or a fee we need to pay for outsourcing
that job. Since the cost of the schedule is random variable, most commonly the
expected cost is minimized.

In the first chapter we will introduce the FIS problem and common approaches
how the problem is solved. We will also present one new metric which can be
useful to use instead of commonly used number of overlaps. The new metric is
number of unprocessed jobs, which can be better linked to the penalty we need
to pay if not all jobs are processed. The number of unprocessed jobs problem is
then reformulated as mixed integer linear optimization. In second chapter we will
introduce various common risk measures and we will discuss their properties. The
third chapter will be dedicated to applying the risk measures to the FIS problem
and finding ways to reformulate these problems as mixed integer programming.
The new formulations we presented are mean-variance optimization of number
of overlaps, CVaR optimization of number of overlaps and CvaR optimization
of number of unprocessed jobs. All of those optimizations combine FIS problem
with risk measures. We were able to reformulate all of those new formulations as
mixed integer linear programming. In the last chapter we will conduct a numerical
study where we will implement some of the formulations we introduced in the
third chapter of this thesis.

2

1. Fixed interval scheduling
In the first chapter we will look at some common formulations of fixed interval
scheduling problem. FIS is a special instance of scheduling problems. In schedul-
ing problems the aim is generally to assign resources to some processes. In this
problem we work with a set of machines and a set of jobs. Firsstly we will look at
the deterministic version of this problem. We will assume that we have available
C identical machines which are supposed to do J jobs. The set of the machines
will be denoted C = {1, . . . , C} and the set of jobs J = {1, . . . , J}. In FIS prob-
lem the jobs have predefined starting time and duration (or finishing time). The
starting time of job j will be denoted sj and finishing time fj.

In the non stochastic version of the problem the aim is to assign each job
to one of the machines in such way that each machine can not process more
than one job at each time. The optimization in this case can be done by finding
the smallest number of machines needed to still having a feasible schedule. The
formulation of this problem is:

min
x, y

∑︂
c∈C

yc

s.t. xjc ≤ yc ∀c ∈ C, ∀j ∈ J ,∑︂
c∈C

xjc = 1 ∀j ∈ J ,∑︂
j:sj≤t<fj

xjc ≤ 1 ∀c ∈ C, ∀t ∈ T̃ ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
yc ∈ {0, 1} ∀c ∈ C

(1.1)

The binary variable xjc indicates if job j is assigned to machine c. Variable yc

indicates if the machine c is used, or in other words if at least one job is assigned
to this machine. The second constrain says that each job has to by assigned to
exactly one machine. The third constrain says that at each time, each machine
can be processing maximum of one job. We can not check this constrain for
all timestamps t ∈ T = [0, T] because it would create infinite constrains. It is
sufficient to check this constrain only for timestamps which correspond to the
starting times T̃ = {s1, . . . , sJ}.

We can interpret this problem as a graph coloring problem where each job
represents a vertex and each machine is represented by color, the vertices that
are connected are those with overlapping processing times which means that
they can not be processed by the same machine. The problem of finding the
smallest number of machines to process these jobs is then equivalent to finding
the chromatic number of corresponding graph and the final coloring corresponds
to the optimal schedule.

3

1.1 Fixed interval scheduling with random de-
lay

In this thesis we will focus on stochastic version of FIS problem, specifically on
Fixed interval scheduling with random delay. In this problem we will again work
with the set of machines C an set of jobs J and the aim will be to assign jobs to
machines. The difference between the non stochastic version of FIS and FIS with
random delay is that while the starting times are still fixed, there can occur some
delay while doing the job and the finishing times can be delayed. The finishing
time of job j will be denoted as

fj(ξ) = f 0
j +Dj(ξ).

The finishing time consist of fixed prescribed finishing time f 0
j and some non

negative random delay Dj(ξ). The random delay is a random variable. We will
work with assumption that the probability distribution of delays is known and
that probability of job finishing on time is positive and comes from a probability
space (Ξ,A,P). Elementary events from this probability space are denoted by
ξ ∈ Ξ. Each job has to start exactly at the predefined time and if the machine
which it was assigned for is not available, then there is a penalty. The penalty
can be understood for example as lost profit for not fulfilled job or as cost of
outsourcing the job.

The FIS problems can be divided generally into two categories. The first one
is tactical FIS problem and the second one is operational FIS problem. The aim
of the tactical problem is as in the previous chapter to minimize the number
of machines required to process the jobs. In the operational FIS problem on
the other hand we use all the machines and optimize allocation of the jobs to
machines in some way.

1.1.1 Tactical FIS with random delay
In the non stochastic version of FIS we were looking for the smallest number
of machines to still find a feasible solution. In case of tactical FIS with random
delays we will be looking for the smallest number of machines to still find a feasible
solution with prescribed reliability. The formulation for tactical FIS problem is
taken from Branda [2018].

4

min
x, y

∑︂
c∈C

yc

s.t.
xjc ≤ yc ∀c ∈ C, ∀j ∈ J ,

P

⎛⎝ξ ∈ Ξ :
∑︂

j:sj≤t<fj(ξ)
xjc ≤ 1,∀c ∈ C, ∀t ∈ T̃

⎞⎠ ≥ 1 − ε,

∑︂
c∈C

xjc = 1 ∀j ∈ J ,∑︂
j:sj≤t<f0

j

xjc ≤ 1 ∀c ∈ C, ∀t ∈ T̃ ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
yc ∈ {0, 1} ∀c ∈ C

(1.2)

The formulation of this problem is similar to formulation (1.1). The difference
is that now we will add a new constraint which ensures prescribed level of relia-
bility 1 − ε. This new constraint ensures that only a subset of feasible solutions
for problem (1.1) is feasible also for (1.2). The difference is that schedules which
are not fulfilled completely with probability greater than ε will be unfeasible for
this problem.

It is good to point out that while the fourth constraint says that at each
time only one job can be scheduled to each machine while taking into account
only prescribed finishing times of jobs. In the second constraint we check if each
machine has assigned at most one job at the time while taking into account
finishing times with delays.

If we consider that no delay would occur with probability 1 then the fourth
constraint would ensure that the probability from second constraint will be 1 for
all feasible solutions therefore second constraint will be fulfilled. This means that
the problem (1.1) is a special case of problem (1.2).

1.2 Operational FIS with random delays
In the rest of the thesis we will discuss the operational FIS problem. The aim
of operational FIS problem is to find schedule in which the most jobs are done.
Because of the delays there is generally no schedule with reliability 100% and
therefore we want to find a schedule which will have the least number of processing
time overlaps between jobs scheduled to one machine.

Such optimization problem can be as formulated as two stage optimization:

5

min
x, y

∑︂
c∈C

∑︂
j∈J

yjc(ξ)

s.t. ∑︂
c∈C

xjc = 1 ∀j ∈ J ,∑︂
j:sj≤t<f0

j

xjc ≤ 1 ∀c ∈ C, ∀t ∈ T̃ ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,∑︂
k:fj≤sk<fj(ξ)

xkc ≤ yjc(ξ) + J(1 − xjc) ∀c ∈ C, ∀j ∈ J , ∀ξ ∈ Ξ,

yjc(ξ) ∈ N ∀c ∈ C, ∀j ∈ J , ∀ξ ∈ Ξ.

(1.3)

The first three constraints are similarly as in problems (1.1) and (1.2) to
ensure that each job is scheduled exactly to one machine and that each machine
is scheduled maximum one job at each time. The last two constraints introduce
a new second stage decision variable yjc(ξ) which is dependent on realizations of
delays ξ ∈ Ξ. The variable attains positive values (yjc(ξ) > 0) when the job j
is scheduled to machine c or (xjc = 1) and the delay of job j, Dj(ξ), caused at
least one subsequent job on machine c to be not executed. The number yjc(ξ)
indicates exactly how many jobs were not executed because of the delay Dj(ξ).

Since the problem (1.3) is stochastic optimization problem it can not be solved
directly. Instead we can look at other qualities that can be optimized. For
example we can look for the schedule with the highest reliability, lowest expected
number of jobs not executed, lowest penalty for not completed jobs and others.

In the following sections we will work with assumption that the number of
jobs is not less than number of machines (J ≥ C) and also we will assume that
each machine has at least one job assigned. If some machine has no assigned
job and another machine has at least two jobs, we can take one job from second
machine and assign it to the first machine and the resulting schedule will not be
worse.

1.2.1 Maximizing reliability of schedule
In Branda et al. [2016] two approaches to operational FIS problem were presented,
first of them was called Schedule reliability criterion which is to maximize relia-
bility of the schedule. The goal is be to find such schedule that the probability of
two jobs assigned to a single machine at the same time will be the smallest. To
express it in terms of problem (1.3), the goal is to maximize probability:

P

⎛⎝ξ ∈ Ξ :
∑︂
c∈C

∑︂
j∈J

yjc(ξ) = 0
⎞⎠

The problem is formulated in as follows:

6

max
x

P

⎛⎝ξ ∈ Ξ :
∑︂

j:sj≤t<fj(ξ)
xjc ≤ 1,∀c ∈ C, ∀t ∈ T̃

⎞⎠
s.t.

∑︂
c∈C

xjc = 1 ∀j ∈ J ,∑︂
j:sj≤t<f0

j

xjc ≤ 1 ∀c ∈ C, ∀t ∈ T̃ ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J

(1.4)

This problem can be reformulated as deterministic problem. For that we need
assumption that the multivariate distribution of random delays Dj(ξ) follows a
copula which belongs to a special class. For definitions of copula we will use
McNeil and Nešlehová [2009].

Definition 1. A (d-dimensional) copula is a function C : [0, 1]n → [0, 1] satisfy-
ing

1. C(u1, . . . , ud) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d},

2. C(u1, . . . , ud) = ui if uj = 0 ∀j ∈ {1, . . . , d}, j ̸= i. ,

3. C is d-decreasing, i.e. for each B = ∏︁J
i=1[ai, bi] ⊆ [0, 1]d∫︂

B
dC(u) =

∑︂
z∈×d

i=1{ai,bi}
(−1)card{i:zi=ai}C(z) ≥ 0.

According to Sklar’s theorem, for every d-dimensional distribution function
F there exist a copula function C for which it holds

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) ,

where F1, . . . , Fd are marginal distributions of F .
To represent maximal reliability FIS problem as deterministic problem we

need the copula function C associated with distribution of random delays to
belong to Archimedian copula class.

Definition 2. A d-dimensional copula C belongs to the Archimedian copula class
if there exists a strictly decreasing continuous function ψ(u) : [0, 1] → R+ satis-
fying:

1. ψ(1) = 0,

2. limx→0+ ψ(x) = ∞,

3. C(u) = ψ−1
(︂∑︁d

i=1 ψ(ui)
)︂

The function ψ(x) is called Archimedean generator of copula C.

Using assumption that the distribution of random delays follows Archimedean
copula, we can now reformulate the maximum reliability FIS problem using graph
coloring approach. Firstly we need to establish how will our graph look.

7

Vertices in the graph stand for jobs and colours represent machines. The edges
in the graph are split into two sets. Firstly there is set E of edges which can not
be colored by the same color (processing times overlap with probability 1). That
means

{i, j} ∈ E if si ≤ sj < f 0
i .

The second set is set Ē of edges which can be colored by same color (processing
times overlap with probability less than 1). That means

{i, j} ∈ Ē if f 0
i ≤ sj.

Each edge {i, j} ∈ Ē is associated witch a penalty qij = ψ(1 − pij) where pij

represents probability that jobs i and j will overlap i.e. pij = P(Di(ξ) > sj − f 0
i)

When we mention the pair of jobs (vertices) {i, j} we always consider the pair to
be ordered by starting times si ≤ sj.

The deterministic reformulation of the problem is then:

min
x, y, z

∑︂
{i,j}∈Ē

qijzij

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

yij +
∑︂

k:{i,k}∈Ē & sk≥f0
j

zik ≤ 1 ∀{i, j} ∈ Ē,

∑︂
k:{j,k}∈Ē

yjk ≤ J
∑︂

k:{j,k}∈Ē

zjk ∀j ∈ J ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

zij ∈ {0, 1} ∀{i, j} ∈ Ē

(1.5)

The first constraint ensures that each job is assigned to exactly one machine.
The second constraint says that job with overlapping processing times can not
be processed by the same machine. In the third constraint we introduce a new
variable yij which has value yij = 0 if jobs i and j are scheduled to different
machines and yij = 1 if jobs i and j are scheduled to the same machine.

In the fourth constraint

yij +
∑︂

k:{i,k}∈Ē & sk≥f0
j

zik ≤ 1 ∀{i, j} ∈ Ē

we introduce another new variable zij which has value zij = 1 if job j is
scheduled at the same machine as job i and there is no other job scheduled to
the same machine between these two jobs. In all other cases it is zij = 0. The
equation says that if jobs {i, j} are scheduled to the same machine, all jobs

8

with starting times that are greater or equal finishing time of job j can not be
immediate successors of job i.

The fifth constraint

∑︂
k:{j,k}∈Ē

yjk ≤ J
∑︂

k:{j,k}∈Ē

zjk ∀j ∈ J

ensures that if there is at least one job assigned to the same machine after job
j (left side of equation grater than zero) then at least one of the jobs which start
after job j has to be its immediate successor.

The objective function comes from the fact that we want to maximize reli-
ability which is probability that for each pair of consecutive jobs scheduled to
the same machine (zij = 1) it will hold that fi(ξ) ≤ sj. Using assumption that
the distribution of random delays follows Archimedean copula it holds for the
reliability of the schedule R(x) that

R(x) = ψ−1

⎛⎝ ∑︂
{i,j}∈Ē

ψ(1 − pij)zij

⎞⎠ = ψ−1

⎛⎝ ∑︂
{i,j}∈Ē

qijzij

⎞⎠ .
Since ψ is strictly monotonous decreasing function, we maximize the reliability

if we minimize the objective function of (1.5)

1.2.2 Minimizing expected number of overlaps
The reliability may not be the best criterion when making repeating schedules.
To maximize long term profit minimizing expected value of number of overlaps
might be a better approach. Expected number of overlaps criterion is the second
approach proposed in Branda et al. [2016]. The problem is basically problem
(1.3) with addition of expected value of objective function.

Eξ

⎡⎣∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎤⎦

Problem is that this formulation still contains stochasticity in the constraint

∑︂
k:fj≤sk<fj(ξ)

xkc ≤ yjc(ξ) + J(1 − xjc) ∀c ∈ C, ∀j ∈ J , ∀ξ ∈ Ξ.

and in the variable yjc(ξ). This can be solved by for example by generating
all the scenarios, which can be defined by the number of jobs that each job will
overlap with due to the random delay. Problem with this approach is that there
are J ! scenarios which is computationally impossible to solve for large problems.

It turns out that graph coloring reformulation can be used for this problem
as well. The graph coloring problem is formulated

9

min
x, y

∑︂
{i,j}∈Ē

qijyij

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
yij ∈ {0, 1} ∀{i, j} ∈ Ē

(1.6)

where qij = pij is probability of jobs i and j to overlap.
The formulation of problem (1.6) looks very similar to problem (1.5). Even the

variables xjc and yij have the same meaning. The difference is that the penalty
qij holds a different meaning and is activated for each pair of the jobs that are
scheduled to the same machine and not only for consecutive jobs. The proof that
this formulation solves the expected number of overlaps problem can be found in
Branda et al. [2016] Proposition 3.1.

This formulation can be easily generalized to problem where different jobs are
associated with different penalty if they are not performed. Let the penalties
for not performing each job be rj, j ∈ J . Using that we modify the objective
function to

∑︂
{i,j}∈Ē

qijyijrj

and now the problem (1.6) minimizes not expected number of overlaps between
jobs but expected penalty of the schedule.

1.2.3 Network flow formulation of FIS problem
In previous parts we presented graph coloring reformulations (1.5) and (1.6) of
fixed interval scheduling problem. Now we show network flow approach to this
problem. The graph in this problem will look differently than in the coloring
problem approach. This approach was presented in Branda and Hájek [2017]. It
is superior to formulation (1.5) because due to properties of network flow problem
the decision variables can be relaxed to real numbers and therefore the problem
does not need to use mixed integer programming.

Now we will construct graph with 2J + 1 vertices, which represent starting
and finishing times of each job and vertices 0 and 2J + 1 which correspond to
the beginning and end of the schedule. The first set of oriented edges G contains
all pairs of vertices {0, sj}, {si, fj}, {fj, 2J + 1} for each of the jobs j ∈ J .
The second set of oriented edges Ḡ contains all pairs {fi, sj} where it holds that
sj ≥ f 0

i . Lets note that sj represents both starting time of job j and starting node
of job j in graph while finishing time is represented by f 0

j (scheduled finishing
time), fj(ξ) (actual finishing time which is dependent on realization of random
delay - not used in this formulation) and finishing node of job j is represented by
fj.

10

For each of the nodes we need to specify set of predecessors and set of succes-
sors. For each vertex u we assign set of predecessors G·u and a set of successors
Gu·.

G·u =
{︂
v : {v, u} ∈ G ∪ Ḡ

}︂
Gu· =

{︂
v : {u, v} ∈ G ∪ Ḡ

}︂
Note that for the 0 node the set of successors contains all the starting time

nodes, for the starting time nodes the set of successors contains only one element,
finishing time node of the same jobs and for finishing time nodes the set of
successors contains schedule end node and starting time nodes of jobs which can
be scheduled after the job to the same machine.

Next step is to assign demand d to each node. Firstly we have C machines,
therefore we can have C flows from start to the machines: d0 = C. Each job has
to start, therefore starting time node has to accept demand from starting node 0
or finishing time node of previous job. The demand will be therefore dsj

= −1 for
all jobs j ∈ J . Finishing time nodes will be associated on the other hand with
demand dfj

= 1 for all jobs j ∈ J . Finally the 2J + 1 node which represents end
of the schedule has to accept each flow therefore the demand will be d2J+1 = −C.

Each of the edges {fi, sj} ∈ Ḡ is associated with penalty

qfisj
= ψ

(︂
P(Di(ξ) ≤ sj − f 0

i)
)︂

which is equivalent to the penalty qij in problem (1.5).
The formulation of network-flow problem is:

min
z

∑︂
{fi,sj}∈Ḡ

qfisj
zfisj

s.t.
∑︂

v∈G0·

z0v = C,

∑︂
v∈Gsj ·

zsjv −
∑︂

u∈G·sj

zusj
= −1 ∀j ∈ J ,

∑︂
v∈Gfj ·

zfjv −
∑︂

u∈G·fj

zufj
= 1 ∀j ∈ J ,

∑︂
u∈G·(2J+1)

zu(2J+1) = C,

0 ≤ zuv ≤ 1 ∀{u, v} ∈ Ḡ

(1.7)

This problem is equivalent to the formulation (1.4). The objective is to max-
imize reliability of the schedule.

11

1.3 Minimizing number of not processed jobs
In this section we would like to present an alternative criterion to the one pre-
sented in section 1.2. We will not focus on number of overlaps but on number of
jobs that would not be processed. The difference is that for example let’s imagine
3 jobs scheduled to single machine. It can happen that after considering random
delays job one will overlap with jobs two and three and also jobs two and three
will overlap. That gives us three overlaps but in reality there are only two jobs
that are not completed. Therefore in this section we will not focus on the number
of jobs that are overlapped by delay of each job but on the fact whether that job
is processed or not.

Advantage of this approach is that number of not processed jobs can be better
linked to penalty for not processing these jobs or cost of outsourcing the job than
number of overlaps. The reason is that one job can be overlapped by multiple
previous jobs and therefore we might penalise this job more than once.

We will need to introduce a random variable Tij(ξ) = I[Di(ξ) > sj −f 0
i] which

is binary random variable that indicates whether processing times of jobs i and
j are overlapping. The stochastic formulation of the problem is following:

min
x, y, z

∑︂
j∈J

zj(ξ)

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,∑︂
j:sj≤t<f0

j

xjc ≤ 1 ∀c ∈ C, ∀t ∈ T̃ ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,∑︂
c∈C

xjcxic = yij ∀(i, j) : si < sj,∑︂
i:si<sj

(1 − zi(ξ))yijTij(ξ) = zj(ξ) ∀j ∈ J

(1.8)

The first three constraints are standard constraints that ensure feasibility of
the schedule. The forth constraint is there to introduce binary variable yij which
gets activated when both jobs are scheduled to the same machine. The last
constraint introduces a new binary variable zj(ξ) that indicates whether job j is
done (zj(ξ) = 0) or is overlapping with a previous job that is scheduled and done
on the same machine. (zj(ξ) = 1) after observing the random delay.

The variable zj(ξ) gets activated (zj(ξ) = 1) when one of the previous jobs
that is processed (zi(ξ) = 0), is scheduled to the same machine (yij = 1) and
their processing times overlap (Tij(ξ) = 1). It can bee easily verified that zj(ξ)
can not be grater than 1. Imagine that zj(ξ) ≥ 2 that means there are jobs i and
k for which all of the above holds. Let’s say si < sk < sj. We have yij = ykj = 1
therefore also yik = 1 because pair of jobs i and k is also scheduled to the same
machine. We have Tij(ξ) = 1 but since sk < sj also Tik(ξ) = 1. Therefore we will
get that zk(ξ) = 1 which means that zj(ξ) can not be activated by both jobs i
and k.

12

1.3.1 Expected number of not processed jobs
The easiest way how to deal with stochasticity in problem (1.8) is to switch to
expected numbers. For long term repeating schedules is expected value suitable
measure as it minimizes overall long term costs (penalties).

In this formulation we will use the same graph coloring notation as used in
section (1.2.1) where we have jobs as vertices and machines as color. The edges
are split into two sets E and Ē where first set E contains pairs of jobs which can
not be scheduled to the same machine and the second set Ē contains pair of jobs
that do not overlap with positive probability. We will also use assumption that
delays of the jobs are independent.

The linear programming reformulation for expected value objective is follow-
ing:

min
x, y, z

∑︂
j∈J

zj

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

yij + yik ≤ 1 + yjk ∀i, j, k ∈ J ,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

yij = 0 ∀{i, j} ∈ E,

zj =
∑︂

i:{i,j}∈Ē

z∗
ij ∀j ∈ J ,

z∗
ij ≥ 0 ∀{i, j} ∈ Ē,

1 + z∗
ij ≥ (1 − zi)pij + yij ∀{i, j} ∈ Ē,

z∗
ij ≤ yij ∀{i, j} ∈ Ē,

z∗
ij ≤ (1 − zi)pij ∀{i, j} ∈ Ē

(1.9)

The first set of constraints (for variables x) is universal for all FIS problems,
it constraints us to the set of feasible schedules. The second set of constraints
(for variable y) is there to determine variable yij as binary indicator that jobs i
and j are scheduled to the same machine.

First of the constraints xic + xjc ≤ 1 + yij forces yij = 1 if they are scheduled
to the same machine. Second one is there to ensure that if jobs are scheduled to
different machines then yij = 0. If yij = 1 where job i is scheduled to machine 1
and job j to machine 2 and let job k be scheduled to machine 2 then yjk = 1 be-
cause they are both scheduled to the same machine but because of the constraint
yij + yjk ≤ 1 + yik also yik = 1 even tho they are scheduled to different machines.
Therefore if yij = 1 then for all pairs jobs where job k is scheduled to machine 2
and job l is scheduled to machine 1 it will hold that ykl = 1. If one of the pairs
of jobs overlaps with probability 1 then such solution would be infeasible because
of last constraint of the set. (yij = 0 if jobs i and j overlap with probability 1.)
In case none of the jobs overlap it would create penalty equivalent to schedule
where all jobs from these machines are scheduled to machine 1 and nothing is

13

scheduled to machine 2 and it can be easily seen that such schedule can not have
smaller penalty.

This set of extra constraints for variables y was not necessary in previous
formulations, the difference is that in previous formulations the variables yij were
connected only to positive values in objective function and therefore it was set to
0 by minimization in case the jobs were not scheduled to the same machine. In
this formulation the variables are connecting to each other in more complicated
ways and therefore we need to ensure that yij = 0 in case the jobs are scheduled
to different machines.

Last set of constraints introduces our penalties, which are probabilities that
job j is overlapped by one of the previous jobs conducted on the same machine.
As it was explained in the previous section job can be not conducted only because
of one of the previous jobs scheduled to the same machine. Therefore using this
and independence of the delays we get that

zj = P(zj(ξ) = 1) = P

⎛⎝ ∑︂
i:si<sj

(1 − zi(ξ))yijTij(ξ) = 1
⎞⎠ (1.10)

=
∑︂

i:si<sj

yijP ((1 − zi(ξ))Tij(ξ) = 1) (1.11)

=
∑︂

i:si<sj

yijP ((1 − zi(ξ)) = 1) P (Tij(ξ) = 1) (1.12)

=
∑︂

i:si<sj

yij(1 − zi)pij (1.13)

=
∑︂

i:{i,j}∈Ē

z∗
ij (1.14)

The last equation comes from the last four constraints. If yij = 0 then also
z∗

ij = 0. If yij = 1 then z∗
ij = (1 − zi)pij. Variable z∗

ij is therefore probability that
job i causes job j to be unprocessed.

What needs to be proven is that zj = P(zj(ξ) = 1). For the first job it holds
that it is processed certainly because there can not be any job scheduled before
job 1. Therefore P(z1(ξ) = 1) = 0. For z1 it holds that z1 = 0 because again
no job can be scheduled before job 1 and therefore {i : {i, j} ∈ Ē} is empty set.
That means the equality holds for j = 1. In equation (1.10) we proved that if it
holds for all i < j then it holds also for j. Since we also proved that it holds for
j = 1 from mathematical induction it holds for all j.

To generalize this problem to situation where the jobs are associated with
different penalties when they are unprocessed we can simply modify the objective
function by adding penalties. Lets say that penalty for not doing job j is rj > 0,
then we can simply change the objective function to

min
x, y, z

∑︂
j∈J

zjrj

In this modified problem we will be looking for schedule with the lowest ex-
pected penalty.

14

2. Risk measures
The problem we are dealing in this thesis is stochastic in its nature. The outcome
of the schedule, actual number of jobs that will not be executed is random variable
which is dependent on random delays. In such problems it can be useful to
introduce risk measures into the problem. While maximizing expected value is
usually reasonable approach when we want to create multiple repeating strategies,
it comes from the law of big numbers, it can be also associated with possible big
losses in some of the schedules. Of course in the long run the higher expected
value compensates the possible losses but in the short term the losses can be big
enough to cross some acceptable threshold.

Now we need too introduce what a risk measure is. We will use definitions
from Shapiro et al. [2009].

Definition 3. Risk measure. Let Z(ξ) be a random variable from probability
space (Ξ,A,P). By a risk measure we understand function ρ(Z) which assigns
the random variable Z a value from R̄ = R ∪ {+∞,−∞}.

The definition states that risk measure can be any function from space of
random variables to R̄. One of the basic ones can be variance. Variance as a risk
measure is used for example in Markowitz portfolio problem, Markowitz [1952],
which is a bi-criteria optimization of revenue R(x) over set of possible portfolios
X .

max
x

E[R(x)]

min
x

var(R(x))

s.t. x ∈ X

the solution to this problem is a set of efficient portfolios (efficient frontier) and
the problem can be solved by help of parametric optimization. Now we present
parametric formulation for bi-criteria mean-risk problem. Unlike in Markowitz
portfolio problem we will consider the random variable Z(ξ, x) to represent loss or
something else we would like to minimize. The first formulation uses parameter
only in objective function.

min
x

Eξ[Z(ξ, x)] + λρξ(Z(ξ, x))

s.t. x ∈ X
(2.1)

where λ > 0 is a parameter and X is the set of feasible solutions.
The second and third formulations put the parameter into Constraints as

maximal acceptable expected value Zmax

min
x

ρξ(Z(ξ, x))

s.t. Eξ[Z(ξ, x)] ≤ Zmax,

x ∈ X
(2.2)

15

or maximal accepted risk rmax.

min
x

Eξ[Z(ξ, x)]

s.t. ρξ(Z(ξ, x)) ≤ rmax,

x ∈ X
(2.3)

From the multi criterion optimization theory we know that the solution to
problem (2.1) where parameter λ > 0 is always efficient. For problems (2.2) and
(2.3) we can not say the same as there may not be unique solution to the problem
and not all solutions have to be efficient. Therefore for our mean-risk analysis we
will be using first formulation.

2.0.1 Coherent risk measures
In order to use the risk measure for some analysis we would like it to fulfill some
conditions. That brings us to introduction of a subset of the risk measures called
coherent risk measures. Firstly we need to define inequality between random loss
variables:

Z ⪰ Z ′ ⇐⇒ ∀ξ ∈ Ξ : Z(ξ) ≥ Z ′(ξ)

Now we are ready to define the coherent risk measures. In Shapiro et al. [2009]
the definition of coherent risk measures is following.

Definition 4. Coherent risk measure
Let Z, Z ′ be random variables from probability space (Ξ,A,P) and ρ(Z) be a

risk measure. We say that ρ(Z) is coherent risk measure if following conditions
hold ∀Z, Z ′ ∈ (Ξ,A,P):

1. Convexity:

ρ(tZ + (1 − t)Z ′) ≤ tρ(Z) + (1 − t)ρ(Z ′) ∀t ∈ [0, 1].

2. Monotonicity:

Z ⪰ Z ′ =⇒ ρ(Z) ≥ ρ(Z ′).

3. Translation equivalence:

ρ(Z + a) = ρ(Z) + a ∀a ∈ R.

4. Positive homogenity:

ρ(tZ) = tρ(Z) ∀t > 0.

The most common coherent risk measure is conditional value at risk (CVaR).
On the other hand popular risk measures like variance or value at risk are not
coherent.

16

2.1 Commonly used risk measures
In this section we will present some risk measures that are commonly used.

2.1.1 Variance
One of the most basic risk measured is variance. The reasoning why it is useful
comes from the application in the mean-risk models. Lowering variance means
that the random outcome will be closer to the mean and therefore we will get more
stable solution. On the other hand, variance does not fulfill all the conditions of
coherent risk measure.
Theorem 1. Variance as risk measure fulfills only condition of convexity. All the
other conditions: monotonicity, translation equivalence and positive homogenity
are not fulfilled. Therefore variance is not a coherent risk measure.

Proof. Let Z, Z ′ be random variables from probability space (Ξ,A,P).
1. Convexity: let t ∈ [0, 1]

var(tZ + (1 − t)Z ′) = t2var(Z) + (1 − t)2var(Z ′) + 2t(1 − t)cov(Z,Z ′)
≤ t2var(Z) + (1 − t)2var(Z ′) + 2t(1 − t)sd(Z)sd(Z ′)
= t var(Z) + (1 − t)var(Z ′) + (t2 − t)var(Z)+

+ ((1 − t)2 − (1 − t))var(Z ′) + 2t(1 − t)sd(Z)sd(Z ′)
= t var(Z) + (1 − t)var(Z ′) − t(1 − t)var(Z)−

− t(1 − t)var(Z ′) + 2t(1 − t)sd(Z)sd(Z ′)
= t var(Z) + (1 − t)var(Z ′) − t(1 − t)[sd(Z)2 + sd(Z ′)2 − 2sd(Z)sd(Z ′)]
= t var(Z) + (1 − t)var(Z ′) − t(1 − t)[sd(Z) − sd(Z ′)]2

≤ t var(Z) + (1 − t)var(Z ′).
Therefore variance is convex.

2. Monotonicity:
Let Z ∼ Alt(0, 1) with probability P(Z = 1) = 0.5 and Z ′ ∼ Alt(2, 3)
with probability P(Z ′ = 3) = 0.1. It is obvious that Z ′ ⪰ Z but var(Z) =
0.25 > 0.09 = var(Z ′).
Therefore variance is not monotonous.

3. Translation equivalence: let a ̸= 0
var(Z + a) = var(Z) ̸= var(Z) + a.

Therefore variance is not translation equivalent.

4. Positive homogenity: let t ̸= 1
var(tZ) = t2var(Z) ̸= t var(Z).

Therefore variance is not positively homogeneous.
Because not all condition are fulfilled, variance is not a coherent risk mea-

sure.

17

2.1.2 Standard deviation
Another of the basic risk measures is standard deviation. It is used mostly in
finance where they called it volatility. Since the standard deviation is just square
root of variance transformation between those two measures is monotonous. As
a result of this minimizing variance and minimizing standard deviation is the
same. Also the efficient frontier for mean-variance and mean-standard deviation
bi-variate problem is the same. Those two risk measures can be used interchange-
ably. Standard deviation is better risk measure than variance because compared
to variance it is also positive homogeneous.

Theorem 2. Standard deviation as risk measure is convex and positively homo-
geneous. It does not fulfill conditions of monotonicity and translation equivalence
therefore it is not a coherent risk measure.

Proof. Let Z, Z ′ be random variables from probability space (Ξ,A,P).

1. Convexity: let t ∈ [0, 1]

[sd(tZ + (1 − t)Z ′)]2 = var(tZ + (1 − t)Z ′)
= t2var(Z) + (1 − t)2var(Z ′) + 2t(1 − t)cov(Z,Z ′)
≤ t2[sd(Z)]2 + (1 − t)2[sd(Z ′)]2 + 2t(1 − t)sd(Z)sd(Z ′)
= [t sd(Z) + (1 − t)sd(Z ′)]2

Applying square root on both sides we get that standard deviation is convex.

2. Monotonicity:
Using same example as with variance, let Z ∼ Alt(0, 1) with probability
P(Z = 1) = 0.5 and Z ′ ∼ Alt(2, 3) with probability P(Z ′ = 3) = 0.1. It is
obvious that Z ′ ⪰ Z but sd(Z) = 0.5 > 0.3 = sd(Z ′).
Therefore standard deviation is not monotonous.

3. Translation equivalence: let a ̸= 0

sd(Z + a) = sd(Z) ̸= sd(Z) + a.

Therefore variance is not translation equivalent.

4. Positive homogenity: let t > 0

sd(tZ) = t sd(Z).

Standard deviation is positively homogeneous.

Because not all condition are fulfilled, standard deviation is also not a coherent
risk measure.

However standard deviation is not a coherent risk measure, it fulfills all the
axioms of a deviation measure defined in Rockafellar et al. [2006].

18

2.1.3 Conditional Value at Risk
The most important risk measure we will focus on in this thesis is Conditional
Value at Risk in some literature also denoted as Expected shortfall. CV aRα

where α is called confidence level can be understood as expected value in worst-
case situations that occur with probability 1 − α. Common choice for confidence
level is α = 0.95 therefore CV aR0.95 is expected value of 5% highest losses.
In Rockafellar and Uryasev [2002] it is proven that CV aRα is a coherent risk
measure.

In this thesis we want to optimize number of overlaps and number of unfulfilled
jobs. Those are both discrete random variables therefore we can focus more on
CVaR for discrete random variables.

Let Z be a discrete random variable with finite set of random values: z1 <
z2 < · · · < zN with probabilities p1, . . . , pN . Now let n0 be such that

n0−1∑︂
i=1

pi < α ≤
n0∑︂
i=1

pi

then it holds that

CV aRα(Z) = 1
1 − α

⎡⎣(︄ n0∑︂
i=1

pi − α

)︄
zn0 +

N∑︂
i=n0+1

pizi

⎤⎦ (2.4)

Better way to calculate CVaR is to use minimization formula. If Z is a random
variable with finite expected value, using minimization formula, the CV aRα can
be calculated as

CV aRα(Z) = mina a+ 1
1 − α

E[Z − a]+

where [Z − a]+ = max(0, Z − a)

19

3. Risk measures in FIS problem
In this chapter we will combine the Fixed interval scheduling from chapter 1 with
risk measures presented in chapter 2. The aim is to find new ways how to deal
with fixed interval scheduling while taking into account uncertainty.

3.1 Mean-variance optimization of number of
overlaps

The first formulation we will focus on is mean-variance optimization. The problem
is similar to Markowitz portfolio problem. Instead of returns from investment
we will look at number of overlaps between jobs scheduled to the same machine,
which will pay the role of random losses. In problem (1.6) we minimized expected
value of the overlaps, now we would like to minimize the expected number as well
as the variance of the number of overlaps. Since it is bi-criteria optimization, we
will use formulation (2.1) with parameter λ > 0.

In context of problem (1.3) we would like to minimize following objective
function:

Eξ

⎡⎣∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎤⎦+ λ var

⎛⎝∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎞⎠ , λ > 0 (3.1)

The notation is based on the same graph coloring problem as in (1.6) and is
expanded with new notation specific for this problem. The first formulation of this
problem assumes that the random delays of the jobs are pairwise uncorrelated.

min
x, y, z

∑︂
{i,j}∈Ē

yij(qij + λvij) + 2λ
∑︂

({i,j}&{j,k})∈Ē

zijkvijk

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

yij + yik ≤ 1 + zijk ∀({i, j}&{j, k}) ∈ Ē,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

zijk ∈ {0, 1} ∀({i, j}&{j, k}) ∈ Ē

(3.2)

where qij = pij expresses probability of jobs i and j overlapping (expected value of
that event), vij = pij(1−pij) is variance of event that these jobs would overlap and
vijk = pik(1−pij) is covariance between event that jobs i and j are overlapping and
jobs i and k are overlapping. Additional variables introduced in this formulation
zijk are indicators that the triplet of jobs i, j and k are all scheduled to the same
machine.
Theorem 3. Problem (3.2) minimizes the objective function (3.1) over set of
feasible schedules. The set of feasible schedules is equivalent to set of feasible
solutions from problem (1.3).

20

Proof. It is easy to note that the constrains of both problems define the same
set of feasible schedules. The only thing we need to do therefore is to compare
the objective functions.

From Branda et al. [2016] Proposition 3.1 we already know that the first part
of the objective function (3.1) corresponds to

Eξ

⎡⎣∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎤⎦ =

∑︂
{i,j}∈Ē

yijqij

Now we will look at the second part.

var

⎛⎝∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎞⎠ =

=
∑︂
j∈J

var

(︄∑︂
c∈C

yjc(ξ)
)︄

+ 2
∑︂
j∈J

∑︂
i∈J ,i ̸=j

cov

(︄∑︂
c∈C

yjc(ξ),
∑︂
c∈C

yic(ξ)
)︄

(3.3)

=
∑︂
j∈J

var

(︄∑︂
c∈C

yjc(ξ)
)︄

Last equivalence comes from the assumption that the delays are pairwise uncor-
related. Now we will rewrite variable yic(ξ):

∑︂
c∈C

yic(ξ) =
∑︂

j:{i,j}∈Ē

yijI[Di(ξ) > sj − f 0
i] =

∑︂
j:{i,j}∈Ē

yijTij(ξ)

where yij is indicator variable that jobs i and j are scheduled to the same machine
and Tij(ξ) = I[Di(ξ) > sj −f 0

i] is binary random variable indicating whether their
processing times are overlapping.

var

(︄∑︂
c∈C

yic(ξ)
)︄

= var

⎛⎝ ∑︂
j:{i,j}∈Ē

yijTij(ξ)
⎞⎠

=
∑︂

j:{i,j}∈Ē

var (yijTij(ξ)) + 2
∑︂

j:{i,j}∈Ē

∑︂
k:{j,k}∈Ē

cov (yijTij(ξ), yikTik(ξ)) (3.4)

=
∑︂

j:{i,j}∈Ē

yij var (Tij(ξ)) + 2
∑︂

j:{i,j}∈Ē

∑︂
k:{j,k}∈Ē

yijyik cov (Tij(ξ), Tik(ξ))

and there we can also use:

vij := var (Tij(ξ)) = pij(1 − pij)
vijk := cov (Tij(ξ), Tik(ξ)) = Eξ[Tij(ξ)Tik(ξ)] − Eξ[Tij(ξ)]Eξ[Tik(ξ)]

= Eξ[Tik(ξ)] − Eξ[Tij(ξ)]Eξ[Tik(ξ)] (3.5)
= pik − pijpik = pik(1 − pij)

yijyik = zijk

21

The last equivalence hold from the fact that if both yij = 1 and yjk = 1 then
from the fourth constraint also zijk = 1 and if at least one of them is not 1 then
zijk = 0 because of the minimization and the fact that vijk is non-negative.

Equivalence Eξ[Tij(ξ)Tik(ξ)] = Eξ[Tik(ξ)] comes from the fact that Tik(ξ) is a
subevent of Tij(ξ) when j < k. Therefore expected value (probability) of both
events happening is equal to the expected value (probability) of the subevent
happening.

Combining all off this we will get that

Eξ

⎡⎣∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎤⎦+ λ var

⎛⎝∑︂
c∈C

∑︂
j∈J

yjc(ξ)
⎞⎠ =

=
∑︂

{i,j}∈Ē

yijqij + λ
∑︂
j∈J

var

(︄∑︂
c∈C

yjc(ξ)
)︄

=
∑︂

{i,j}∈Ē

yijqij + λ
∑︂
i∈J

⎛⎝ ∑︂
j:{i,j}∈Ē

yij vij + 2
∑︂

j:{i,j}∈Ē

∑︂
k:{j,k}∈Ē

zijk vijk

⎞⎠
=

∑︂
{i,j}∈Ē

yij(qij + λvij) + 2λ
∑︂

({i,j}&{j,k})∈Ē

zijkvijk

Where first equation comes from previous formulation and (3.3). The second
equation comes from (3.4) and (3.5). The last equation is only reformulation.

In conclusion, under the assumptions that the random delays of the jobs are
pairwise uncorrelated, the mean-variance problem can be formulated as linear
integer programming.

3.1.1 Mean-variance optimization with correlated delays
In this section we will generalize the formulation to situation where the delays can
be correlated with non-negative correlation. We will add new decision variables
z∗

ijkl which are binary indicators that pair jobs i and j is scheduled to the same
machine and also pair of jobs k and l is scheduled to the same machine (both
pairs can be scheduled to different machine).

22

min
x, y, z

2λ
⎛⎝ ∑︂

({i,j}&{j,k})∈Ē

zijkvijk +
∑︂

({i,j}&{k,l})∈Ē, i ̸=k

z∗
ijklvijkl

⎞⎠
+

∑︂
{i,j}∈Ē

yij(qij + λvij)

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

yij + yik ≤ 1 + zijk ∀({i, j}&{j, k}) ∈ Ē,

yij + ykl ≤ 1 + z∗
ijkl ∀({i, j}&{k, l}) ∈ Ē, i ̸= k,

xjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ J ,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

zijk ∈ {0, 1} ∀({i, j}&{j, k}) ∈ Ē,

z∗
ijkl ∈ {0, 1} ∀({i, j}&{k, l}) ∈ Ē, i ̸= k

(3.6)

where all the notation is the same as it was in problem (3.2) with additional
parameters vijkl = cov(Tij(ξ), Tkl(ξ)). The non-negativity of correlation is there
to ensure that vijkl ≥ 0.

The difference between this problem and the previous problem (3.2) is in the
correlation between delays of different jobs. Therefore we need to add to the
objective function

2
∑︂
j∈J

∑︂
i∈J ,i ̸=j

cov

(︄∑︂
c∈C

yjc(ξ),
∑︂
c∈C

yic(ξ)
)︄

That can be rewritten as:

cov

(︄∑︂
c∈C

ykc(ξ),
∑︂
c∈C

ykc(ξ)
)︄

= cov

⎛⎝ ∑︂
j:{i,j}∈Ē

yijTij(ξ),
∑︂

k:{k,l}∈Ē

yklTkl(ξ)
⎞⎠

=
∑︂

j:{i,j}∈Ē

∑︂
k:{k,l}∈Ē

yijykl cov (Tij(ξ), Tkl(ξ))

=
∑︂

j:{i,j}∈Ē

∑︂
k:{k,l}∈Ē

z∗
ijklvijkl

last equation holds because if both yij = 1 and ykl = 1 then from fifth constraint
also z∗

ijkl = 1 and if one of them is not equal to 1 than from non-negativity of vijkl

minimizing of objective function would push z∗
ijkl to 0. Alternatively vijkl = 0

and in that case the value of z∗
ijkl is not important.

23

3.2 CVaR of number of overlaps
In this chapter, our aim is to optimize conditional value at risk of number of
overlaps. We will present a problem formulation where the optimal schedule will
be the one with the lowest CVaR. Since the stochasticity in our problem can
be decomposed into finite number of scenarios we will use it and define a set of
scenarios S. In each of the scenarios π ∈ S it is defined for each job j ∈ J which
of the following jobs is first not to overlap with job j. We understand the set
of jobs as ordered set J = {1, . . . , J} where i > j means that si ≥ sj. In case
the starting times are equal we can order the jobs by scheduled finishing times or
randomly. Jobs that have the same starting time will overlap with probability 1
that means none of them can be scheduled to the same machine after the other
one and therefore it is not important in which order they are in set J .

π = {{1, j1π}, {2, j2π}, . . . , {J − 1, j(J−1)π}, {J,∞}}

The pair {i, jiπ} means that in scenario π it holds that

sjiπ−1 < f 0
i +Di(ξ) ≤ sjiπ

(3.7)

jiπ can attain values i + 1, . . . , J,∞ where in case jiπ = ∞ we understand
that all following jobs are overlapping with job i. If job i is the last job (j = J)
then there are no following jobs that can go after it and therefore jJπ = ∞ in all
scenarios. We can set s∞ = +∞ and the last inequality will hold also for these
cases. If jiπ = ∞ then we will need to set jiπ − 1 = J in that case as the job
J is the last one to overlap with job i. For the last job J there is no successor
available therefore there is only one scenario {J,∞}.

Now let us look at the scenarios for situation where we have J = 3 jobs. We
have 6 scenarios:

• {{1, 2}, {2, 3}, {3,∞}} - no jobs are overlapping.

• {{1, 2}, {2,∞}, {3,∞}} - jobs 2 and 3 are overlapping.

• {{1, 3}, {2, 3}, {3,∞}} - jobs 1 and 2 are overlapping.

• {{1, 3}, {2,∞}, {3,∞}} - job 1 is overlapping with job 2 and job 2 is over-
lapping with job 3.

• {{1,∞}, {2, 3}, {3,∞}} - job 1 is overlapping with jobs 2 and 3.

• {{1,∞}, {2,∞}, {3,∞}} - job 1 in overlapping with jobs 2 and 3 and also
job 2 is overlapping with job 3.

For each of the scenarios we will need to compute probability of its happening.
Firstly we will define pi(jiπ−1)jiπ

= pi(jiπ−1) − pijiπ
is probability that 3.7 holds.

The probability of each scenarios can be then computed as

pπ =
J∏︂

i=1
pi(jiπ−1)jiπ

(3.8)

24

if we assume independence between random delays.
Some of the scenarios can have probability pπ = 0. For example if jobs 1 and

2 overlap with probability p12 = 1 then the first 3 scenarios from the example are
impossible. Probability of the first scenario will be computed as

pπ = p112p223p33∞ = (p11 − p12)(p22 − p23)(p33 − p3∞)
= (1 − 1)(1 − p23)(1 − 0) = 0

To reduce number of scenarios it is possible to omit these scenarios with
probability pπ = 0.

For the formulation of the problem we will use again graph coloring formu-
lation that was first mentioned in problem (1.5). The CVaR problem will be
formulated as follows:

min
x, y, a, d

a+ 1
1 − α

∑︂
π∈S

pπdπ

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

xjc ∈ {0, 1} ∀j ∈ J , ∀c ∈ C,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

yij = 0 ∀{i, j} ∈ E,∑︂
i∈J

jiπ−1∑︂
k=i+1

yik − a ≤ dπ ∀π ∈ S,

0 ≤ dπ ∀π ∈ S

(3.9)

In comparison to the previous problem (1.5) we introduced new scenario de-
pendent variables dπ which serve as max(0,#overlaps − a). Another new real
decision variable is a which comes from the optimization formulation of CV aRα.

Theorem 4. The linear programming problem (3.9) will return feasible schedule
with the lowest value of CV aRα.

Proof. Set of feasible schedules is the same as in all previous formulations, there-
fore we only need to check if the objective function minimizes CV aRα correctly.
CV aRα can be rewritten as minimization problem

CV aRα(Z) = mina a+ 1
1 − α

E[Z − a]+

which can be combined into objective function as

minx CV aRα(Z) = minx mina a+ 1
1 − α

E[Z − a]+

= minx,a a+ 1
1 − α

Ed

25

where d := [Z−a]+. Since there is finite number of scenarios Ed = ∑︁
π∈S pπdπ.

Now it is sufficient to show that dπ is really maximum of 0 and number of overlaps
under scenario π minus a. From the last constraint we know that dπ ≥ 0 and from
the previous one we know that it is greater or equal number of overlaps in the
schedule under scenario π minus a. Since dπ is connected only to non-negative
values in objective function, the value of dπ will be the lowest possible, therefore
value of dπ is really what we need and the objective function minimizes CV aRα

of number of overlaps.

3.2.1 Mean-CVaR optimization of number of overlaps
Combining problem (3.9) where we minimize CV aRα with problem (1.6) where
we minimize expected value we will get mean-CVaR formulation of the problem.

min
x, y, a, d

∑︂
{i,j}∈Ē

pijyij + λ

(︄
a+ 1

1 − α

∑︂
π∈S

pπdπ

)︄

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

xjc ∈ {0, 1} ∀j ∈ J , ∀c ∈ C,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

yij = 0 ∀{i, j} ∈ E,∑︂
i∈J

jiπ−1∑︂
k=i+1

yik − a ≤ dπ ∀π ∈ S,

0 ≤ dπ ∀π ∈ S

(3.10)

For various choices of parameter λ > 0 we will get efficient mean-risk sched-
ules.

3.3 CVaR of number of unprocessed jobs
In this chapter we will apply the methodology from the last chapter to the problem
of minimizing number of jobs that are not done which was presented in section
1.3. As it was mentioned before number of unprocessed job is better linked with
possible penalty than number of overlaps. We will work again with the same set
of scenarios as in the last chapter. For each pair of jobs and each scenario we will
define a new binary parameter gijπ which indicates whether jobs i and j overlap
under scenario π. Since this problem is based on problem (1.9) we will assume
that the random delays of the jobs are independent as it was assumed before.

26

min
x, y, z, a, d

a+ 1
1 − α

∑︂
π∈S

pπdπ

s.t.
∑︂
c∈C

xjc = 1 ∀j ∈ J ,

xic + xjc ≤ 1 ∀c ∈ C, ∀{i, j} ∈ E,

xic + xjc ≤ 1 + yij ∀c ∈ C, ∀{i, j} ∈ Ē,

yij + yik ≤ 1 + yjk ∀i, j, k ∈ J ,
xjc ∈ {0, 1} ∀j ∈ J , ∀c ∈ C,
yij ∈ {0, 1} ∀{i, j} ∈ Ē,

yij = 0 ∀{i, j} ∈ E,

zjπ =
∑︂

i:{i,j}∈Ē

z∗
ijπ ∀j ∈ J , ∀π ∈ S,

z∗
ijπ ≥ 0 ∀{i, j} ∈ Ē, ∀π ∈ S,

1 + z∗
ijπ ≥ (1 − ziπ)gijπ + yij ∀{i, j} ∈ Ē, ∀π ∈ S,
z∗

ijπ ≤ yij ∀{i, j} ∈ Ē, ∀π ∈ S,
z∗

ijπ ≤ (1 − ziπ)gijπ ∀{i, j} ∈ Ē, ∀π ∈ S,∑︂
i∈J

ziπ − a ≤ dπ ∀π ∈ S,

0 ≤ dπ ∀π ∈ S

(3.11)

The notation used in this formulation is similar as for problem (1.9) with
addition of scenario based decision variables dπ which have in this case meaning
max(0,#unprocessed − a). Another difference is that in this formulation the
decision variables z are scenario based and binary. (However for computational
purposes they can be relaxed to real variables, they attain values only 0 or 1). In
problem (1.9) they represented probability that job is not done or probability that
job is not done because of delay of specific previous job. Here in problem (3.11)
they are binary variables that indicate whether is that job unprocessed under
scenario π and whether is that job unprocessed because of specific previous job.

To be more specific zjπ = 1 means that in scenario π job j is unprocessed and
zjπ = 0 means that job j is processed. Also z∗

ijπ = 1 means that under scenario π
job i causes job j to be unprocessed. This can happen only if job i is processed
(ziπ = 0), jobs i and j are overlapping in this scenario (gijπ = 1) and both jobs
are scheduled to the same machine (yij = 1).

At the end of section 1.3 we presented generalisation where we are looking for
schedule with minimized expected penalty where we were considering for each job
a penalty rj > 0 which has to be paid if job j is not done. This generalization can
be incorporated into problem (3.11) by simply changing second to last constraint
into

∑︂
i∈J

ziπri − a ≤ dπ ∀π ∈ S

Disadvantage of scenario based methods for minimizing CVaR proposed in this
thesis is that there is too many scenarios. Since each scenario is uniquely defined

27

for each job by one of his consecutive jobs the number of scenarios is J !. That
means the number of constraints and also the number of parameters and variables
in this formulations is of order J !. For large number of jobs the problem is
computationally not possible to solve. In the next chapter we will perform a short
numerical study where we will find out what are the computational limitations
for this problem.

3.3.1 Example problem
For illustration we will show a short example of the FIS problem. In this example
we will work with C = 3 machines and J = 5 jobs. For probabilities of overlap
between jobs i and j where i < j we have:

p12 = 0.071 p13 = 0.026 p14 = 0.008 p15 = 0.007
p23 = 0.210 p24 = 0.058 p25 = 0.057

p34 = 0.082 p35 = 0.081
p45 = 1

From the overlap probabilities we can see that only jobs 4 and 5 are always
overlapping and therefore they can not be scheduled to the same machine. For
all other jobs it means that if no delays occur then job 1 ends before job 2 begins,
job 2 ends before job 3 begins and job 3 ends before job 4 begins. In terms of
starting times sj and prescribed finishing times f 0

j we have:

s1 < f 0
1 < s2 < f 0

2 < s3 < f 0
3 < s4 < s5 < f 0

4 < f 0
5 .

The basic scheduling algorithm would be to schedule each job to the machine
that was idle the longest time. In this example that would mean we will schedule
job 1 to the machine 1, job 2 to the machine 2, job 3 to the machine 3, job 4 to
the machine 1 and job 5 to the machine 2.

Job 4 will be unprocessed with probability p14 = 0.008 and job 5 will be
unprocessed with probability p25 = 0.057.

The distribution of number of unprocessed jobs is:

• 0 jobs: (1 − p14)(1 − p25) = 0.935456

• 1 job: (1 − p14)p25 + p14(1 − p25) = 0.064088

• 2 jobs: p14p25 = 0.000456

Using formula (2.4) we will compute CV aR0.95 as

(0.935456 + 0.064088 − 0.95) ∗ 1 + 0.00456 ∗ 2
1 − 0.95 = 1.00912

In an alternative schedule where we switch machines for jobs 4 and 5, that
means job 4 will be scheduled to machine 2 and job 5 to machine 1 we will have
job 4 unprocessed with probability p24 = 0.058 and job 5 will be unprocessed
with probability p15 = 0.07.

The distribution of number of unprocessed jobs for this schedule is:

28

• 0 jobs: (1 − p15)(1 − p24) = 0.935406

• 1 job: (1 − p15)p24 + p15(1 − p24) = 0.064188

• 2 jobs: p15p24 = 0.000406

and CV aR0.95:

(0.935406 + 0.064188 − 0.95) ∗ 1 + 0.000406 ∗ 2
1 − 0.95 = 1.00812

There we can see that the alternative schedule is slightly better with respect
to CV aR0.95 value. Computing problem (3.11) we will see that this schedule is
the optimal schedule for this problem, that means it is the schedule with the
lowest expected number of unprocessed jobs in the worst 5% of outcomes.

29

4. Numerical study
In this chapter we will perform a numerical study where we will try to minimize
CVaR of number of unprocessed jobs for a few instances of scheduling problems.
The formulation we will use is problem (3.11) from the last section of previ-
ous chapter. After that we will look at a few instances where we will perform
the mean-variance optimization presented in problem (3.2). The simulation was
conducted using python 3.10.9 in Jupyter Notebook. The package used for opti-
mization was gurobipy which worked with Gurobi Optimizer version 11.0.1 build
v11.0.1rc0. An academic license was used for accessing full version of Gurobi
Optimizer. Computer used to run the optimization uses Windows 10.0 operating
system. Processor in this computer is AMD Ryzen 5 2500U with 4 cores and 2
GHz and an 8 GB RAM.

4.1 Data generation
Firstly we had to generate the problem instances. For that we started by defining
parameters of the problem. Number of jobs - J , number of machines - C, number
of problem instances we want to generate - N . For number of jobs we chose
J = 5, J = 6, J = 7 and J = 8 jobs. For number of machines we chose C = 3 for
all models. For all 4 of the types of problems we generated N = 10 instances.

The instances were simulated by generating starting time and duration of each
of the J jobs. The starting times were generated by such way that differences
between two consecutive starting times are independent identically distributed
random variables with exponential distribution with scale parameter β1. Also
durations of the jobs are independent identically distributed with exponential
distribution with scale parameter β2. The random variables were generated using
numpy library with seed specified before the first random variable was generated.

The parameters β1 and β2 we chose for our simulations are:

β1 = 1 β2 = 1
For each of the simulated instances we firstly checked if there exists feasible

schedule using C machines. This check was performed by solving problem (1.1)
where we checked for the chromatic number of the graph (smallest number of
machines to perform the schedule) and compare the number with number of
available machines C. We repeated generating new instances until we had N
instances with feasible schedules.

Next thing that needs to be specified is distribution of random delays. As
required by the assumptions of problem (3.11) the random delays are indepen-
dent. We also assumed that the delays are identically distributed where the
distribution is as follows. With probability pnd no delay appears, with the com-
plementary probability (1 − pnd) the delay follows exponential distribution with
scale parameter β3.

The cumulative distributional function of the delay is therefore:

FDj
(x) = P(Dj(ξ) ≤ x) = pnd + (1 − pnd)(1 − e−x/β3), x ≥ 0.

30

What interests us mostly is probability of two jobs overlapping and that can
be calculated as

pij = P(Di(ξ) > sj − f 0
i) = 1 − FDi

(sj − f 0
i) = (1 − pnd)e−(sj−f0

i)/β3

The parameters for the random delays pnd and β3 were chosen as:

pnd = 0.75 β3 = 1

4.2 Size of the optimization problem
Now let us look at the size of our problem, to be more specific number of variables
and constraints that went into optimization solver. In the original formulation
(3.11) we have 6 sets of variables.

• xjc - J ∗C binary variables indicating whether job j is scheduled to machine
c.

• yij - J ∗ J binary variables indicating whether jobs i and j are scheduled to
the same machine.

• zjπ - J ∗J ! binary variables indicating whether job j is not processed under
scenario π.

• z∗
ijπ - J ∗ J ∗ J ! binary variables indicating whether job j is not processed

under scenario π because of delay of job i.

• dπ - J ! real-value variables that represent max(0,#unprocessed− a) under
scenario π.

• a - single real-value variable that comes from the optimization formulation
of CV aR.

Because of the constraint definition the zjπ is just a sum of variables z∗
ijπ and

therefore it can be relaxed to real-value variable. Also due to constraints the
variable z∗

ijπ attains value (1 − ziπ)gijπyij which is either 0 or 1. Therefore also
variables z∗

ijπ can be relaxed to real-value variables.
Altogether we have

• J ∗ (J + C) binary variables

• J ! ∗ (J2 + J + 1) + 1 real-value variables.

For the number of constraints we need to set nE = |E| and n̄E = |Ē|. We
will also not count the constraints which define xjc and yij as binary variables
because that is restriction on the variable type and not constraint. Also we added
constraints yij = yji and yjj = 1 (J2 + J constraints) to ensure that the resulting
matrix y is symmetric and clearly represents which pair of jobs is scheduled to
the same machine.

31

Therefore the number of constraints is

J ! ∗ (2 + J + 4n̄E + nE) + J3 + J2 + 2J + C ∗ (nE + n̄E).

We can clearly see that the biggest attribute to the size of the problem is J !
which represents number of scenarios we explore. Therefore in order to make the
problem smaller we need to find a way to reduce number of scenarios. The way
to do it is to throw away scenarios with probability pπ = 0. Some pairs of jobs
overlap with probability 1 (pairs of jobs from set E) and therefore if {i, j} ∈ E
then j can not be the first job that job i does not overlap with. That means if
{i, j} ∈ π then pπ = 0 and we do not need to consider such scenario. Doing that
we can lower the number of scenarios significantly.

Let us assume that the number of scenarios is nS ≤ J ! the number of real-value
variables in our problem is then

nS ∗ (J2 + J + 1) + 1

and number of constraints

nS ∗ (2 + J + 4n̄E + nE) + J3 + J2 + 2J + C ∗ (nE + n̄E).

4.3 Optimization
To perform the optimization we needed to prepare some additional parameters.
Firstly we needed to calculate scenario probabilities pπ. Those probabilities were
calculated using equation (3.8). Next we prepared an array G of binary parame-
ters gijπ which indicates whether job j starts before job i finishes under scenario
π. Lastly we needed to specify lever α for witch we want to compute CV aRα.
We decided for the common choice of α = 0.95.

The optimization was performed by Gurobi solver with default setting. Time
limit for the optimization was set to 3 hours. Only 1 instance from the 8 jobs
problem did not meet this time limit and therefore only best solution that was
computed by this time is reported.

In the following tables (4.1), (4.2), (4.3) and (4.4) we can see results of the op-
timization for all 40 instances. The reported values are ”CVaR” as optimal value
of CV aRα of number of unprocessed jobs, ”Exp” as expected value of number of
unprocessed jobs in the resulting schedule, ”gap” represents relative gap between
lower bound of objective function and value of objective function of optimal solu-
tion. If it is not equal to 0 that means the final schedule might not be the optimal
one but that it lies in the gap. Default setting in Gurobi is that for gap smaller
than 10−4 it stops the optimization process, that is why in the instance 2 of 7
job problem we have non zero gap. Next we have ”status” which attains value
2 if the optimization algorithm finished and returned optimal solution and 9 if
it exceeded time limit. Another reported values are ”runtime” which is duration
of optimization in seconds and ”scen” which reports number of scenarios nS for
each instance. Last two reported values are ”vars” which is number of variables
and ”constr” which means number of constraints.

32

CVaR Exp gap status runtime scen vars constr
0 1.214 0.207 0 2 0.040 16 537 613
1 1.265 0.244 0 2 0.050 32 1033 1155
2 0.352 0.018 0 2 0.157 120 3761 4511
3 1.086 0.160 0 2 0.063 20 661 794
4 1.061 0.143 0 2 0.031 24 785 868
5 1.011 0.062 0 2 0.094 40 1281 1473
6 0.615 0.031 0 2 0.078 90 2831 3252
7 1.008 0.065 0 2 0.078 60 1901 2232
8 1.021 0.140 0 2 0.091 96 3017 3457
9 0.378 0.019 0 2 0.156 120 3761 4511

Table 4.1: Results of 5 jobs problems.

CVaR Exp gap status runtime scen vars constr
0 2.054 0.380 0 2 0.062 72 3151 3054
1 1.453 0.269 0 2 0.047 64 2807 2877
2 1.691 0.334 0 2 0.547 288 12439 13561
3 1.015 0.118 0 2 0.157 90 3925 4274
4 1.022 0.058 0 2 0.227 192 8311 9145
5 1.021 0.063 0 2 0.630 300 12955 14713
6 1.278 0.221 0 2 0.116 72 3151 3339
7 1.233 0.193 0 2 0.638 240 10375 11832
8 1.729 0.361 0 2 0.485 192 8311 8762
9 1.037 0.111 0 2 0.537 360 15535 16874

Table 4.2: Results of 6 jobs problems.

CVaR Exp gap status runtime scen vars constr
0 1.319 0.252 0 2 3.625 2000 114071 126475
1 1.021 0.057 0 2 7.911 1944 110879 122947
2 1.095 0.119 0 2 59.594 3780 215531 261291
3 1.227 0.189 0 2 31.322 2520 143711 169312
4 2.518 0.726 0 2 1.592 480 27431 27838
5 2.592 0.705 8e-5 2 0.118 540 30851 30179
6 2.110 0.410 0 2 8.585 960 54791 57117
7 1.055 0.091 0 2 9.044 2016 114983 131513
8 1.066 0.095 0 2 10.210 1200 68471 76075
9 0.888 0.044 0 2 50.708 4032 229895 278679

Table 4.3: Results of 7 jobs problems.

In table (4.5) we can see average of number of scenarios and average of runtime
for each number of jobs. These data can be seen plotted on logarithmic scales
in Figure 4.1. The left axis with the red line represent dependence of average
number of scenarios on the number of jobs. The right axis with the blue line
represent dependence of average runtime on number of jobs. We can see that
both of them are growing faster than exponentially. (They are growing with J !)

33

CVaR Exp gap status runtime scen vars constr
0 1.199 0.191 0 2 126.736 15552 1135385 1291499
1 1.184 0.163 0 2 8329.176 30240 2207609 2692040
2 1.253 0.210 0 2 10329.384 29400 2146289 2617280
3 1.925 0.358 0 2 96.163 7200 525689 583883
4 2.251 0.554 0.137 9 10800.728 18816 1373657 1637673
5 1.763 0.300 0 2 487.300 10080 735929 837323
6 1.073 0.110 0 2 216.742 29400 2146289 2558481
7 1.103 0.111 0 2 1043.308 11200 817689 975080
8 1.537 0.283 0 2 1460.843 11520 841049 956842
9 2.497 0.676 0 2 34.953 4200 306689 332485

Table 4.4: Results of 8 jobs problems.

J scenarios runtime
5 61.8 0.0838
6 187 0.3446
7 1947.2 18.2709
8 16760.8 3292.5333

Table 4.5: Average number of scenarios and runtime for different number of jobs.

5 6 7 8
number of jobs

102

103

104

sc
en

ar
io

s

10 1

100

101

102

103

ru
nt

im
e

Figure 4.1: Average number of scenarios and runtime for different number of jobs.

For higher number of jobs the optimization problem was not possible to solve.
For J = 9 the computer raised out of memory error at the beginning of the
optimization. Using a different computer with better computing power and bigger
RAM the problem might be solvable.

34

4.4 Mean-variance model
Second model we decided to implement is mean-variance optimization of number
of overlaps. We considered the delays of the jobs to be independent, therefore we
used linear model (3.2) for optimization. We managed to increase number of jobs
in the schedule to J = 25 and number of machines to C = 5. Other parameter
were chosen the same as in previous simulation.

For data generation we used the same process as described in section 4.1. The
size of the problem was also significantly different. In this problem we used only
3 sets of variables:

• xjc - J ∗C binary variables indicating whether job j is scheduled to machine
c.

• yij - n̄E binary variables indicating whether jobs i and j are scheduled to
the same machine. Different than in previous problem is that we need
this variable only for the pairs of jobs that can be scheduled to the same
machine.

• zijk - n̄E ∗ n̄E binary variables indicating whether triplet of jobs i, j and k
is scheduled to the same machine. Since n̄E is of order J2 we have of order
J4 variables z. But since in optimization we will actively use only those
that share the same job on the second place of first pair {i, j} ∈ Ē and first
place of second pair {j, k} ∈ Ē the number of active variables is of order
J3.

For number of constraints it is not easy to compute exactly because it depends
on the number of actively used variables zijk, but it is possible to compute upper
bound. By actively used variable we mean variable that is used in at least one
constraint. For actively used variable zijk it holds that 1 ≤ i < j < k ≤ J . That
gives us upper bound of J ∗ (J − 1) ∗ (J − 2)/6 actively used variables. Therefore
the number of constraints is bounded by:

J + C ∗ (nE + n̄E) + 1
6 ∗ J ∗ (J − 1) ∗ (J − 2)

It also holds that nE + n̄E = J ∗ (J − 1)/2 since it is the number of all pairs
of jobs, therefore the upper bound of number of constraint is:

C ∗ J2

2 − C ∗ J
2 + J3

6 − J2

2 + 4J
3

We can see that the number is growing with J3 which is significantly slower
than J ! in previous problem. For our choice of parameters (J = 25, C = 5) the
upper bound is 3825 constraints.

For the optimization we did not need to compute more input parameters,
we needed only the probabilities of pair of job overlapping. Parameters vij and
vijk in the objective function are only direct transformation of those probabilities
therefore they did not need to be precomputed. Last parameter used in the
objective function λ had to be chosen. For our simulation we decided for λ = 0.5.

35

var Exp gap status runtime vars constr
0 5.537 0.439 0 2 28.453 79931 3437
1 4.925 0.212 0 2 131.974 79931 3439
2 3.826 0.305 0 2 48.478 73837 3221
3 4.121 0.099 0 2 12.103 84515 3603
4 3.896 0.240 0 2 11.503 78805 3398
5 5.100 0.319 0 2 77.216 77131 3325
6 5.033 0.317 0 2 224.559 79367 3407
7 3.604 0.040 0 2 29.437 82781 3535
8 5.918 0.611 0 2 29.014 74927 3260
9 3.719 0.208 0 2 8.864 78245 3381

Table 4.6: Results of mean-variance problem.

In table (4.6) we can see results of the simulation. The reported value of
”var” is variance of number of overlaps in the final schedule, also ”Exp” represents
expected number of overlaps in the final schedule. All other columns are the same
as in previous tables. We can see that in all instances the algorithm successfully
computed optimal schedule.

For larger schedules with more than 25 jobs the computing time started to
grow rapidly. With time limit set to 1 hour, the highest instance we were able to
solve was with J = 30 jobs.

36

Conclusion
In this thesis we discussed fixed interval scheduling problem with random delays.
In the first chapter we presented what the fixed interval scheduling means and
what are some common approaches to the problem. Specifically maximizing
reliability of the schedule and minimizing number of overlaps between the jobs.
At the end of the first chapter we introduced a new approach to the problem
which was minimizing expected number of unprocessed jobs.

The second chapter contains a short introduction into risk measures. We
discuss some properties and usage of risk measures and coherent risk measures.
Afterwards we present common risk measures which are used in the third chapter.
Specifically we focused on variance and conditional value at risk.

In the third chapter we combine fixed interval scheduling problem with risk
measures. The aim was to create new formulations of FIS problem where risk
is taken into account. At first we created a new mean-variance optimization
problem where the resulting optimal schedule is efficient considering bi-criteria
problem where we want to minimize both expected value and variance of number
of overlaps between jobs. The second approach was to minimize conditional value
at risk of number of overlaps and lastly we presented a new formulation where
we minimized conditional value at risk of number of unprocessed jobs.

In the last chapter we performed a numerical study where we tried computa-
tional limits for our newly introduced formulations from third chapter. For the
minimization of CVaR of number of unprocessed we found out that it is possi-
ble to solve only for small instances because the the complexity of the problem
rises very fast with number of jobs. Therefore for bigger instances we decided to
implement also mean-variance optimization which was able to compute optimal
schedule for much bigger instances.

37

Bibliography
M. Branda. Distributionally robust fixed interval scheduling on parallel identical

machines under uncertain finishing times. Computers & Operations Research,
98:231–239, 2018. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2018.05.
025.

M. Branda and Š. Hájek. Flow-based formulations for operational fixed interval
scheduling problems with random delays. Computational Management Science,
14:161–177, 2017.

M. Branda, J. Novotný, and A. Olstad. Fixed interval scheduling under un-
certainty – a tabu search algorithm for an extended robust coloring formu-
lation. Computers & Industrial Engineering, 93:45–54, 2016. ISSN 0360-
8352. doi: https://doi.org/10.1016/j.cie.2015.12.021. URL https://www.
sciencedirect.com/science/article/pii/S036083521500501X.

H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
ISSN 00221082, 15406261. URL http://www.jstor.org/stable/2975974.

A. J. McNeil and J. Nešlehová. Multivariate Archimedean copulas, d-monotone
functions and l1-norm symmetric distributions. The Annals of Statistics, 37
(5B):3059 – 3097, 2009. doi: 10.1214/07-AOS556. URL https://doi.org/
10.1214/07-AOS556.

R. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss dis-
tributions. Journal of Banking & Finance, 26:1443–1471, 07 2002. doi:
10.1016/S0378-4266(02)00271-6.

R. Rockafellar, S. Uryasev, and M. Zabarankin. Master funds in portfo-
lio analysis with general deviation measures. Journal of Banking & Fi-
nance, 30(2):743–778, 2006. ISSN 0378-4266. doi: https://doi.org/10.1016/
j.jbankfin.2005.04.004. URL https://www.sciencedirect.com/science/
article/pii/S0378426605000920. Risk Management and Optimization in
Finance.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic program-
ming. Modeling and theory. 01 2009. doi: 10.1137/1.9780898718751.

38

https://www.sciencedirect.com/science/article/pii/S036083521500501X
https://www.sciencedirect.com/science/article/pii/S036083521500501X
http://www.jstor.org/stable/2975974
https://doi.org/10.1214/07-AOS556
https://doi.org/10.1214/07-AOS556
https://www.sciencedirect.com/science/article/pii/S0378426605000920
https://www.sciencedirect.com/science/article/pii/S0378426605000920

	Introduction
	Fixed interval scheduling
	Fixed interval scheduling with random delay
	Tactical FIS with random delay

	Operational FIS with random delays
	Maximizing reliability of schedule
	Minimizing expected number of overlaps
	Network flow formulation of FIS problem

	Minimizing number of not processed jobs
	Expected number of not processed jobs

	Risk measures
	Coherent risk measures
	Commonly used risk measures
	Variance
	Standard deviation
	Conditional Value at Risk

	Risk measures in FIS problem
	Mean-variance optimization of number of overlaps
	Mean-variance optimization with correlated delays

	CVaR of number of overlaps
	Mean-CVaR optimization of number of overlaps

	CVaR of number of unprocessed jobs
	Example problem

	Numerical study
	Data generation
	Size of the optimization problem
	Optimization
	Mean-variance model

	Conclusion
	Bibliography

