
MASTER THESIS

Bc. Matěj Kripner

Self-Supervised Summarization via
Reinforcement Learning

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: doc. RNDr. Ondřej Bojar, Ph.D.
Consultant of the master thesis: Mgr. Aleš Tamchyna, Ph.D.

Study programme: Artificial Intelligence
Study branch: Intelligent agents

Prague 2024

I declare that I carried out this master thesis on my own, and only with the cited sources,
literature and other professional sources. I understand that my work relates to the rights
and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in par-
ticular the fact that the Charles University has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date .
Author’s signature

i

I’d like to express my gratitude to my supervisor Ondřej Bojar and my consultant Aleš
Tamchyna for the many hours of consultations that provided me with invaluable feedback
and often nudged me in the right direction. I’d also like to thank Milan Straka for his
suggestions early on in the work.

Acknowledgement
This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic through the e-INFRA CZ (ID:90254).

ii

Title: Self-Supervised Summarization via Reinforcement Learning

Author: Bc. Matěj Kripner

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. RNDr. Ondřej Bojar, Ph.D., Institute of Formal and Applied Linguistics

Consultant: Mgr. Aleš Tamchyna, Ph.D.

Abstract: In deep learning, summarization models are traditionally trained using a max-
imum likelihood objective with reference summaries. Another line of work explores self-
supervised approaches that do not require and are not limited by references. In this the-
sis, we opt for the latter approach. Our main contributions include the design of a novel
dense reward function for summarization and its application for fine-tuning a sequence-
to-sequence model via reinforcement learning. We build the whole training pipeline in
a modular fashion, separately evaluating and tuning a supervised pre-training module,
the reinforcement learning algorithm, and the reward function. After connecting all these
components together, we also tune our self-learning approach as a whole. We evaluate
the final checkpoints using 12 automatic and 3 manual metrics, revealing an improvement
in reference-free metrics in nearly all cases.

Keywords: summarization, reinforcement learning, language model, self-supervision

iii

Název práce: Automatická sumarizace z neanotovaných dat pomocí zpětnovazebního
učení

Autor: Bc. Matěj Kripner

Ústav: Ústav formální a aplikované lingvistiky

Vedoucí diplomové práce: doc. RNDr. Ondřej Bojar, Ph.D., Ústav formální a aplikované
lingvistiky

Konzultant: Mgr. Aleš Tamchyna, Ph.D.

Abstrakt: Sumarizační modely v kontextu hlubokého učení jsou tradičně trénovány me-
todou maximální věrohodnosti s použitím referenčních souhrnů. Aktivní je také výzkum
v oblasti učení s vlastním dohledem (self-supervised), kde reference nejsou vyžadovány
a výsledné modely jimi nejsou limitovány. Na tento výzkum navazujeme v této práci
návrhem nové funkce odměn (reward function), která hodnotí kvalitu jednotlivých tokenů
souhrnu. Tuto funkci pak aplikujeme ve zpětnovazebním učení. Celou trénovací logiku
implementujeme modulárně, kdy nezávisle na sobě vyhodnocujeme a ladíme modul učení
s učitelem, algoritmus zpětnovazebního učení a funkci odměn. Stejně tak ladíme i výsledný
program po propojení těchto komponent. Výsledné modely vyhodnocujeme na 12 auto-
matických a 3 manuálních metrikách. V téměř všech případech náš přístup zlepšil skóre
na metrikách nevyžadujících referenční souhrn (reference-free).

Klíčová slova: sumarizace, zpětnovazební učení, jazykový model, učení s vlastním dohle-
dem

iv

Contents

Introduction 3

1 Background 5
1.1 Summarization . 5

1.1.1 ROUGE . 5
1.2 Reinforcement Learning . 5

1.2.1 REINFORCE . 6
1.3 BART Architecture . 7
1.4 Related Work . 7

2 Datasets and Models 10
2.1 Datasets . 10
2.2 Model . 11

3 Supervised Fine-Tuning 12
3.1 Fine-Tuning . 12

3.1.1 Context Length Extension . 12
3.2 Evaluation . 13
3.3 Results . 13

4 Reinforcement Learning for Language Models 16
4.1 Existing RL Libraries . 16

4.1.1 TRL: Transformer Reinforcement Learning 16
4.1.2 trlX . 16
4.1.3 RL4LMs . 16

4.2 Custom Implementation . 17
4.2.1 Reinforcement Learning Formulation 17
4.2.2 Action Generation . 17
4.2.3 Calculation of Cumulative Discounted Returns 18
4.2.4 Reference KL-Divergence Anchoring 18
4.2.5 Qualitative Analysis . 19

4.3 Test Task . 19
4.3.1 Dataset . 20
4.3.2 Results . 20

5 Reward Function for Summarization 24
5.1 Our Approach . 24

5.1.1 Masking Strategies . 24
5.1.2 Confusion Coefficients . 26
5.1.3 IDF Weights . 26
5.1.4 Supervised Fine-Tuning of Predictor 27

5.2 Quantitative Analysis . 28
5.2.1 Paired Test Using a Distractor Article 29
5.2.2 Independent Test Using a Distractor Summary 30
5.2.3 Grid Search . 30

5.3 Qualitative Analysis . 32

1

5.3.1 Interactive Browser Application . 34
5.3.2 Reward Examples . 34
5.3.3 Cross-Entropy Error Examples . 35

6 Self-Supervised Summarization Task 38
6.1 Training . 38
6.2 Automatic Evaluation . 38

6.2.1 Discussion of the Automatic Results 41
6.2.2 Discussion of Specific Examples . 42

6.3 Human Evaluation . 44

Conclusion 48
6.4 Future Work . 48

Bibliography 50

A Grid Search Results 56

B Technical Details 58
B.1 SummEval Package Installation . 58

C Contents of Electronic Attachment 59

2

Introduction
Automatic text summarization is a well-established task in NLP with the first extrac-
tive approaches dating as far back as the 1950s [Luhn, 1958]. With the advent of deep
learning and the Transformer architecture [Vaswani et al., 2017], summarization has seen
dramatic improvements using abstractive methods that capture the crux of a text without
being limited to the original phrasing. Recently, large language models trained using un-
supervised objectives on internet-scale datasets exhibited summarization as an emergent
capability, surpassing previous results with just one-shot prompting [Radford et al., 2019,
Brown et al., 2020, Goyal et al., 2022]. These capabilities were then improved by align-
ing the models to human preferences using reinforcement learning from human feedback
(RLHF) [Stiennon et al., 2020].

Furthermore, reinforcement learning has been used to directly optimize reference-free
summarization metrics like SUPERT [Gao et al., 2020]. Instead of optimizing a scalar per-
sequence reward, previous work has also explored redistributing the reward to individual
summary tokens based on the attention map of Transformer architecture, densifying the
training signal [Chan et al., 2024].

We build on this in optimizing summarization models for a novel per-token reward
function that rewards relevant pieces of information and penalizes wrong, misleading, or
irrelevant phrases. To this end we employ a sequence-to-sequence model (predictor) based
on BART [Lewis et al., 2019], fine-tuned to predict a text based on its summary. The
basic idea is that when some of the summary tokens are masked, the increase in predictor’s
perplexity gives us a signal about the importance of these tokens.

Our main contributions are the following:

• We introduce a new approach for evaluating the quality of individual summary
tokens, leading to a dense reward function for summarization.

• We provide a family of such reward functions by implementing various architectural
and parameter options.

• We design proxy metrics for evaluating the quality of such reward functions and
conduct extensive experiments including a grid search.

• We provide a simple implementation of the REINFORCE algorithm [Williams, 1987,
1992] and test it on an artificial task of maximizing the frequency of output words
starting with the letter T.

• We apply REINFORCE using our reward function to train BART-base and BART-
large models on XSum and CNN/Daily Mail datasets (with labels removed), ex-
perimenting with different hyperparameter configurations. The models are first
pre-trained in a supervised fashion on a different part of the datasets.

• We use the SummEval [Fabbri et al., 2020] package to evaluate the resulting models
on 12 summarization metrics. Our approach improves performance on all reference-
free metrics.

• We conduct a small human evaluation using 3 manual metrics. Our approach im-
proves performance on all these metrics, but the sample size is too small to make
a definitive conclusion.

3

• We create pull requests to these open-source repositories: SummEval (fixes in the
installation process), RL4MLs (migration to new versions of dependencies), Trans-
formers (a simple bug fix).

The whole codebase is implemented using PyTorch 2 [Ansel et al., 2024], mostly in com-
bination with the Transformers library [Wolf et al., 2020].

The thesis is structured as follows. In the first chapter, we give an overview of related
work in summarization and reinforcement learning. In the second chapter, we describe
the datasets and family of models used in all experiments. The third chapter deals with
supervised fine-tuning of these models to provide a baseline and a starting point for the
reinforcement learning experiments. In the fourth chapter, we discuss our implementation
of the REINFORCE algorithm and test it on an artificial task. In the fifth chapter, we
introduce a new reward function for summarization and experiment with various design
choices. The final chapter connects all the previous work by improving the previously
fine-tuned models using reinforcement learning with our reward function and evaluating
the end result using the SummEval package and human judgement.

Thanks to this modular design, the individual parts (supervised fine-tuning, reinforce-
ment learning, reward function) can be exchanged for a different implementation or used
independently.

4

1. Background
In this chapter we give a brief overview of summarization, reinforcement learning, and
relevant previous results.

1.1 Summarization
Automatic summarization in the context of natural language processing is the process
of shortening an input text so that the result represents some of the relevant information
within the input [Lloret and Palomar, 2012]. What is meant by relevant is influenced
by the type of user reading the summaries and can be conditioned on a query (query-
based as opposed to generic). The goal of the summary can be to contain as much
information as possible or to only inform about the scope of the summarized document
without giving any details (informative versus indicative). The summarization system
can work by extracting parts of the input text (e.g. sentences) or by writing the summary
from scratch (extractive versus abstractive). Based on the type of input, summarization
is either single-document or multi-document.

We focus on generic abstractive single-document summarization.

1.1.1 ROUGE
Summarization systems are traditionally evaluated using ROUGE [Lin, 2004], Recall-
Oriented Understudy for Gisting Evaluation. ROUGE-n is defined as the n-gram recall
between a generated summary and a reference summary, i.e. the ratio of reference n-grams
that are also generated. ROUGE-L is instead based on the length of the longest common
subsequence between generated and reference summaries.

For an overview of the limitations of ROUGE, refer to Schluter [2017], Ganesan [2018].

1.2 Reinforcement Learning
Reinforcement learning is a machine learning paradigm concerned with maximizing the
cumulative reward of an agent in a dynamic environment through trial-and-error [Kael-
bling et al., 1996, Sutton and Barto, 2018]. The agent executes actions using its policy
based on the observed state of the environment. The key difference from supervised learn-
ing is that the agent does not receive feedback about which action it should have taken,
but rather just about the quality of the taken actions. Moreover, the feedback might be
incomplete or delayed.

In the context of language models, actions can be individual output tokens or entire
output sequences. Rewards are then calculated using automatic metrics [Gao et al.,
2020], simulated environments [Carta et al., 2023], or human feedback [Ziegler et al.,
2019]. Importantly, these rewards do not have to be differentiable.

In this context we refer to reward functions that assign a scalar value to each token as
dense. This is in contrast to sparse reward functions which assign a single scalar to the
entire output sequence.

5

1.2.1 REINFORCE
REINFORCE [Williams, 1987, 1992] is an algorithm for reinforcement learning which
belongs to the class of direct policy search. As such, it searches for the agent’s policy
directly, instead of, for example, estimating the state value function and representing the
policy implicitly. More specifically, it is an instance of the policy gradient method which
we now describe.

Policy gradient methods (also called gradient-based) parametrize the agent’s policy πθ

with a parameter vector θ. Importantly, the probability of executing action a in state s,
i.e. πθ(a|s), has to be differentiable with respect to θ. In a supervised setting, the reference
action a would be known, and we could directly use the gradient ∇θπθ(a|s) in gradient
descent.

In reinforcement learning, we seek to maximize some performance measure J(θ) which
in finite episodic tasks is taken to be the value of the initial state, i.e. vπθ

(s0). We use
the policy gradient theorem to calculate how the policy should be altered to increase J(θ).
The theorem states that:

∇θJ(θ) ∝
∑︂

s

µ(s)
∑︂

a

qπθ
(s, a)∇θπθ(a|s), (1.1)

where µ(s) is the on-policy distribution under πθ, representing how often a state s is
encountered, i.e.:

µ(s) =
∞∑︂

k=0
γkP (s0 → s in k steps | πθ), (1.2)

and qπθ
(s, a) is the state-action value, i.e.:

qπθ
(st, a) = Est+1,rt+1 [rt+1 + γvπθ

(st+1)] . (1.3)

The right-hand-side of Equation (1.1) can then be used as the gradient in a gradient
descent update, since the effect of any proportionality constant is negated by the arbitrary
choice of learning rate. The REINFORCE algorithm provides a way to use states and
actions sampled from the agent’s interaction with environment to obtain an expression
whose expected value is equal to this gradient. We start with the policy gradient theorem
and replace the sum over all states with an expectation, utilizing the definition of on-policy
distribution:

∇θJ(θ) ∝ Es∼µ

[︄∑︂
a

qπθ
(s, a)∇θπθ(a|s)

]︄
. (1.4)

Then we multiply the expression by 1 = πθ(a|s)
πθ(a|s) to enable once again replacing the sum

with expectation:

∇θJ(θ) ∝ Es∼µ

[︄∑︂
a

πθ(a|s)qπθ
(s, a)∇θπθ(a|s)

πθ(a|s)

]︄

= Es∼µ,a∼πθ

[︄
qπθ

(s, a)∇θπθ(a|s)
πθ(a|s)

]︄
.

(1.5)

Finally, we estimate qπθ
(s, a) with the sample return Gt = ∑︁∞

t′=t γt′−trt′+1, which is an un-
biased estimator. This yields the final REINFORCE update:

6

θt+1 = θt + αG
∇θπθ(a|s)

πθ(a|s) . (1.6)

Intuitively, this update attempts to increase the probability of the taken action propor-
tionally to its observed performance. It uses the πθ(a|s)−1 factor to down-weight actions
which are sampled more often and therefore will be updated more frequently.

We can use the identity ∇ ln(x) = ∇x
x

to rewrite the update to the following form:

θt+1 = θt + αG∇θ ln πθ(a|s). (1.7)

Note that this is just a weighted cross-entropy loss with actions used as reference labels
and returns used as weights.

1.3 BART Architecture
BART [Lewis et al., 2019] is a family of encoder-decoder sequence-to-sequence models
trained using the objective of de-noising corrupted text. It closely follows the Trans-
former architecture from Vaswani et al. [2017] with modifications only to the activation
functions (using GELUs [Hendrycks and Gimpel, 2016]) and to parameter initialization
(using N (0, 0.02)). The base model contains 6 layers in both encoder and decoder and
uses a hidden size of 768. The large model scales this to 12 layers and a hidden size
of 1024.

BART utilizes a bidirectional encoder and an autoregressive decoder and can thus be
seen as a generalization of BERT [Devlin et al., 2018] and GPT [Radford et al., 2018]. This
is in contrast to encoder-only models which are not suitable for autoregressive generation
and decoder-only models in which for a given token, the attention layers can only access
tokens that are positioned before it in the sequence.

1.4 Related Work
The idea of improving summarization capabilities using reinforcement learning is not new.
In this section we discuss some of the relevant previous results.

RLHF
Most notably, previous work has utilized the framework of Reinforcement Learning from
Human Feedback (RLHF) [Akrour et al., 2011, Christiano et al., 2017] to bypass proxy
objectives and directly optimize for human feedback about the relative quality of sum-
maries [Ziegler et al., 2019, Stiennon et al., 2020, Ouyang et al., 2022, OpenAI, 2022b].
This makes it easier to utilize the capabilities of a model and also improves summarization
performance.

Reinforcement Using Automatic Metrics
Paulus et al. [2017] use ROUGE-L as the reward function, improving performance of
their attention-based model on the CNN/Daily Mail [Hermann et al., 2015] dataset and
achieving state-of-the-art at the time. To achieve improvements both on ROUGE and
on human evaluation, they optimize a convex combination of the reinforcement signal

7

(i.e. policy learning) and the standard maximum-likelihood loss for next-token prediction.
The reinforcement learning signal is based on REINFORCE but uses the self-critical ap-
proach of Rennie et al. [2017] for baseline estimation. In this approach, the baseline is
calculated as the reward of a summary generated by greedy search (as opposed to sam-
pling).

Pasunuru and Bansal [2018] build on this, addressing the issue that ROUGE-L does
not reflect important properties of a summary such as salient phrase inclusion and directed
logical entailment. To this end they propose two new reward functions – ROUGESal which
rewards salient phrases by giving them more weight during the ROUGE calculation, and
Entail which assesses if the summary is logically entailed by the source document. They
reach the best results when optimizing both metrics concurrently, alternating between
them in successive batches. They present this approach as simpler than optimizing a linear
combination of metrics.

Gao et al. [2020] use their reference-free SUPERT metric as a reward function to
achieve state-of-the-art at the time results on multiple ROUGE metrics.

Metrics Based on Language Understanding
Arumae and Liu [2019] introduce a reward for extractive summarization based on the
helpfulness of a summary in answering Cloze-style [Taylor, 1953] questions about the
source document. The question-answer pairs are obtained from reference summaries by
masking either a salient word or a named entity from each sentence. The final reward is
then calculated as a linear combination of 4 metrics: QA competency based on question
answering, adequacy based on the unigram overlap with the reference summary, fluency,
and length.

Eyal et al. [2019] propose APES, Answering Performance for Evaluation of Summaries,
measuring quality of a summary based on how helpful it is in answering questions about
the original document. The questions are generated either manually or automatically
from a reference summary by masking entities identified using a named-entity recognition
system. Scialom et al. [2019] extend this to the unsupervised setting where the questions
and answers are generated from the source document instead of the reference summary.
The resulting reference-free metric is referred to as SummaQA in the SummEval pack-
age [Fabbri et al., 2020].

Question answering has also been utilized for summarization evaluation by Chen et al.
[2018].

Vasilyev et al. [2020] introduce the BLANC metric based on the ability of BERT [De-
vlin et al., 2018] to fill in words masked in an article sentence while having access to the
summary. Most similar to our approach, their BLANC-help variant uses BERT twice:
First, the input is a summary concatenated with a masked sentence from the original
article. Second, the summary is replaced with a “filler” where each token is substituted
with a period (“.”). The BLANC metric is then calculated using the relative success of
predicting the masked words when the summary is available versus when it is not. One
mask covers every sixth word and in total 6 masks are generated to cover each word once.
Their second variant (BART-tune) instead fine-tunes BERT on a small dataset created
from the summary and observes how that improves prediction of the article.

8

Dense Rewards
Another line of work addresses the challenge arising from the sparsity of the reward signal
which typically gives only a scalar value for the entire summary. This sparsity leads to
less efficient learning [Andrychowicz et al., 2017].

In the case of human feedback, dense token-level or segment-level annotations [Light-
man et al., 2023, Wu et al., 2024] are expensive to produce. Bai et al. [2022b] and Lee
et al. [2023] explore complementing or substituting the human feedback with AI feedback
from a preference model, yielding Reinforcement Learning from AI Feedback (RLAIF).
Similarly, Cao et al. [2024] use a critic model prompted to identify problematic spans
in a summary, resulting in intrinsic span-level rewards which complement the extrinsic
summary-level reward. The critic model is either GPT-3.5 [OpenAI, 2022a] or the same
as the policy model (Llama 2 [Touvron et al., 2023]).

Chan et al. [2024] instead introduce Attention Based Credit which redistribute the
scalar extrinsic reward to individual token based on the attention map in the reward
model. Specifically, they take the last layer and average the attentions over all heads.

9

2. Datasets and Models
Here we describe the datasets and family of models used in all our experiments. We also
discuss the issue of truncating long inputs and outputs to improve efficiency and comply
with architectural restrictions of the models.

2.1 Datasets
We apply our approach to CNN/Daily Mail and XSum datasets following Lewis et al.
[2019].

The CNN/Daily Mail summarization dataset [Hermann et al., 2015, Nallapati et al.,
2016] as used in See et al. [2017] is more extractive, meaning the target summaries tend
to resemble source sentences. Each data point consists of a news article and its summary,
harvested from CNN and Daily Mail. The mean article length is 983 tokens and the mean
summary length is 75 tokens. The dataset is split into train (287k examples), validation
(13.4k examples) and test (11.5k examples) sets.

In contrast, the XSum summarization dataset [Narayan et al., 2018] is highly abstrac-
tive with one-sentence summaries. Each data point is a news article and its summary,
harvested from the BBC. The mean article length is 524 tokens and the mean summary
length is 30 tokens. The dataset is split into train (204k examples), validation (11.3k
examples) and test (11.3k examples) sets.

Because of the quadratic complexity of self-attention with respect to sequence length,
we seek to limit the length of training samples. To that end, we truncate each news
article to a maximum length of 2048 tokens for CNN/Daily Mail and 1024 for XSum.
The number 1024 for XSum is chosen so that we can test models with absolute position
embeddings of length 1024, such as BART, without any modification. The distribution
of article and summary lengths in train split together with the cutoff line are shown in
Figure 2.1 for CNN/Daily Mail, and Figure 2.2 for XSum.

In the train splits, 4.8 % of articles and 5.1 % of summaries are affected in CNN/Daily
Mail, and 10.9 % of articles and 0.4 % of summaries are affected in XSum.

102 103

Length (tokens)

0

5000

10000

15000

20000

25000

Co
un

t

Distribution of Article Lengths (CNN/DM)

(a) Article lengths.

101 102 103

Length (tokens)

0

5000

10000

15000

20000

25000

30000

35000

40000

Co
un

t

Distribution of Summaries Lengths (CNN/DM)

(b) Summary lengths.

Figure 2.1: Token lengths in train split of CNN/Daily Mail with cutoff marked.

10

100 101 102 103 104

Length (tokens)

0

5000

10000

15000

20000

25000

Co
un

t
Distribution of Article Lengths (XSum)

(a) Article lengths.

101 102

Length (tokens)

0

5000

10000

15000

20000

25000

30000

Co
un

t

Distribution of Summaries Lengths (XSum)

(b) Summary lengths.

Figure 2.2: Token lengths in train split of XSum with cutoff marked.

2.2 Model
We test our approach on BART [Lewis et al., 2019], a widely used family of models which
we described in Section 1.3. Concrete pre-trained models are BART-base with 139M
parameters and BART-large with 406M parameters, both available at HuggingFace.1

Initially, we experimented with the T5 model [Raffel et al., 2020] and we expect our
findings to carry over to other similar models, however, we ultimately decided to utilize
BART because of its recent successes in summarization [Ghosal et al., 2023].

1https://huggingface.co/facebook/bart-large

11

https://huggingface.co/facebook/bart-large

3. Supervised Fine-Tuning
In this chapter, we obtain a baseline as well as a starting checkpoint for reinforcement
learning experiments through supervised fine-tuning of pre-trained models. Specifically,
we fine-tune BART-base and BART-large models (Section 2.2) for summarization on
XSum and CNN/Daily Mail datasets (Section 2.1) using the standard next-token predic-
tion objective. In the case of CNN/Daily Mail dataset, we extend the absolute position
embedding size of BART from 1024 to 2048.

The self-supervised training approach described in later chapters can be used with
any unlabeled documents, not necessarily related to the dataset used for supervised fine-
tuning. However, we use an easier setting where we split the train set of XSum and
CNN/Daily Mail in half and use the first half for supervised fine-tuning and the second half
for reinforcement learning (where the reference summaries are hidden from the model).
With this, we minimize the distribution shift between data in both training stages. This
leaves to future work the exploration of using a different data source for the reinforcement
learning stage.

3.1 Fine-Tuning
We base our choice of hyperparameters on the official fine-tuning tutorial in Fairseq1 and
tune them with manual experimentation on XSum. The resulting important hyperpa-
rameter values are listed in Table 3.1.

We use Adam optimizer [Kingma and Ba, 2014] from the bitsandbytes library with
8-bit quantization of the optimizer state. We also experimented with Adafactor [Shazeer
and Stern, 2018] which did not result in performance improvement. The L2 weight decay
is applied on all parameters except bias.

When allowed by the GPU architecture, we use 16-bit mixed precision training and
PyTorch 2.0’s training graph compilation. To fully utilize NVIDIA Tensor Cores in mixed
precision training, we follow the official NVIDIA guide2 and pad all sequence lengths to
multiples of 8 along with choosing batch size to be a multiple of 8. We also experimented
with gradient checkpointing [Chen et al., 2016] but found that gradient accumulation with
smaller batch sizes gives better performance in our case.

3.1.1 Context Length Extension
To enable training on the CNN/Daily Mail dataset, we modify the trained absolute po-
sition embedding matrix of BART from length 1024 to length 2048. The new embedding
matrix is initialized with two concatenated copies of the original matrix. We also exper-
imented with initializing the second half of the matrix randomly which yielded similar
performance. Initializing the whole matrix randomly yielded slightly inferior performance.

1https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.
summarization.md

2https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.
html#tensor-core-shape

12

https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.summarization.md
https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.summarization.md
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#tensor-core-shape
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#tensor-core-shape

Hyperparameter BART-base BART-large
Samples per update 64
Learning rate 1e-4 3e-5
Learning rate schedule linear decay
Warmup steps 500
Label Smoothing 0.1
L2 weight decay 0.01
Dropout rate 0.1
Optimizer Adam (8-bit quantized)

Table 3.1: BART fine-tuning hyperparameters.

3.2 Evaluation
During training, we evaluate ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-LSum [Lin,
2004] on 10% of the validation split after every 1000 updates. The final evaluation is
performed on the whole validation split.

For generation, we use beam search with 4 beams and early stopping. We also ban the
repetition of any trigram and limit the maximum generation length to 160 for CNN/Daily
Mail and 128 for XSum. Additionally, we use the Porter Stemming Algorithm [Porter,
1980] to strip word suffixes before evaluation. This is to address the fact that multiple
word forms (due to tense, plurality, etc.) can refer to the same underlying concept.

3.3 Results
On XSum, we performed a total of 15,000 updates (10 epochs). On CNN/Daily Mail, we
performed 22,000 updates (10 epochs) in the case of BART-base and only 12,000 in the
case of BART-large (for computation reasons).

The training curves for BART on both XSum and CNN/Daily Mail are shown in
Figure 3.1. Final evaluation scores are shown in Table 3.2 where models are listed by
their HuggingFace identifier with our results prefixed by "ours/". We achieve competitive
performance to the official fine-tuned BART-large checkpoint released by Meta, which
has seen twice the amount of data (this is because we split our train set into two parts as
explained in the introduction to this chapter). Note that in the case of CNN/Daily Mail,
our models have a context length of 2048 as opposed to the original 1024.

13

0K 2K 4K 6K 8K 10K 12K 14K
Step

101

2 × 100

3 × 100

4 × 100

6 × 100

Lo
ss

BART-base
BART-large

(a) Training Loss (XSum)

0K 2K 4K 6K 8K 10K 12K 14K
Step

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

RO
UG

E-
1

BART-base
BART-large

(b) Validation ROUGE-1 (XSum)

0K 5K 10K 15K 20K
Step

101

2 × 100

3 × 100

4 × 100

6 × 100

Lo
ss

BART-base
BART-large

(c) Training Loss (CNN/DM)

0K 5K 10K 15K 20K
Step

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RO
UG

E-
1

BART-base
BART-large

(d) Validation ROUGE-1 (CNN/DM)

Figure 3.1: Supervised fine-tuning of BART.

14

Model ROUGE-1 ROUGE-2 ROUGE-L
XSum

facebook/bart-large 17.2 3.2 11.0
facebook/bart-large-xsum 45.4 22.2 37.2
ours/bart-large-xsum ∗ 44.7 21.4 36.6
ours/bart-base-xsum ∗ 41.3 18.4 33.5

CNN/Daily Mail
facebook/bart-large † 36.5 16.2 22.6
facebook/bart-large-cnn † 44.8 21.7 31.2
ours/bart-large-cnn ∗ 42.4 19.8 29.3
ours/bart-base-cnn ∗ 41.8 19.2 29.2

∗ Trained on just 50% of data.
† Model is limited to context length 1024, increasing the effect of truncation.

Table 3.2: Comparison of performance on XSum.

15

4. Reinforcement Learning for
Language Models
In this chapter we provide an overview of existing Reinforcement Learning (RL) libraries,
develop our own implementation, and run experiments to decide which training configura-
tion to use in the following chapters. We use an artificial test task for experimenting with
reinforcement learning for language models – maximizing the average number of output
words that start with the letter T.

4.1 Existing RL Libraries
First, we explore available RL libraries and evaluate their suitability for our task in the
context of language models.

4.1.1 TRL: Transformer Reinforcement Learning
TRL [von Werra et al., 2020] is a mature library integrated with HuggingFace Transform-
ers. It is mostly intended for Reinforcement Learning from Human Feedback (RLHF) and
provides tools for Supervised Fine-tuning, Reward Modeling, and Proximal Policy Opti-
mization (PPO) [Schulman et al., 2017]. It is attractive because of its large community
and active development, with over 7.5K stars on GitHub as of February 2024. Unfor-
tunately, it doesn’t support assigning rewards to individual tokens (i.e. dense rewards)
and instead only works with per-sequence scalar rewards. This makes it inapplicable for
our purposes. When inspecting the codebase, we found no easy way to circumvent this
limitation.

4.1.2 trlX
Inspired by TRL, trlX [Havrilla et al., 2023] was designed for RLHF at scale, providing
Accelerate1-backed and NVIDIA NeMo2-backed trainers. It implements Proximal Policy
Optimization (PPO) and Implicit Language Q-Learning (ILQL).

Based on the documentation and type signature of the main train method which
serves as the library’s entry point, trlX only supports per-sequence rewards similarly
to TRL. We suspect that this limitation could be circumvented by directly using the
AcceleratePPOTrainer class. Since this is not done in any of the provided examples, we
did not pursue this direction for time reasons.

4.1.3 RL4LMs
RL4LMs [Ramamurthy et al., 2022] is a RL library based on Stable Baselines 3 (SB3) [Raf-
fin et al., 2021], originally designed for RLHF. Unfortunately, RL4MLs is not actively
developed, with no updates in nearly a year and outdated dependencies. We forked and
updated the codebase, notably migrating to current versions of Stable Baselines 3 and

1https://huggingface.co/docs/accelerate
2https://github.com/NVIDIA/NeMo

16

https://huggingface.co/docs/accelerate
https://github.com/NVIDIA/NeMo

replacing the deprecated OpenAI gym library with gymnasium. We then created a pull
request back to the original repository.

Thanks to its modularity, RL4LMs can be easily extended with custom reward func-
tions, on-policy algorithms, metrics, and datasets. Notably, since each produced token
is taken as an individual action, it is assigned an individual reward (as opposed to as-
signing just one scalar reward per sequence). However, because the PPO implementation
in RL4LMs is based on OnPolicyAlgorithm of SB3, the token reward has to be com-
puted before generating the next token. This is in conflict with our approach which only
computes the rewards after the whole sequence has been rolled out.

We suspect that this limitation could be circumvented by making the reward function
return proxy objects instead of actual numbers. This could work since in SB3 the rewards
are initially simply stored in a rollout buffer and are only evaluated for returns calculation
after the episode has ended. The only obstacle seems to be that the rollout buffer is
a NumPy array which does not support storing object references, necessitating a simple
modification of the SB3 code. We did not pursue this direction for time reasons.

4.2 Custom Implementation
We implement a baseline RL approach based on the REINFORCE algorithm, which we
briefly described in Section 1.2.1.

4.2.1 Reinforcement Learning Formulation
We formulate the summary generation as a Markov decision process (MDP) [Bellman,
1957] where an agent (i.e. summarizer) observes the so-far generated prefix together with
the state of the encoder (i.e. a representation of the article being summarized) and pro-
duces a single token as its action. It then receives a scalar reward associated with the
taken action. This environment is deterministic, discrete, and fully observable.

An episode ends when the agent generates an end-of-sequence token or when the
maximum number of actions (i.e. generated tokens) is reached. The maximum number
of actions is set to 128 for XSum and 160 for CNN/DM. More precisely, the rewards are
only calculated after the episode ends. This is required by the reward function that will
be introduced in Chapter 5.

Our formulation is consistent with the RL4LMs library. It is in contrast with TRL
and trlX libraries in which an action corresponds to an entire summary instead of just
one token.

4.2.2 Action Generation
To generate an action (i.e. a token), we sample from the summarizer’s output distribution.
We disallow the end-of-sequence token in the first 16 steps to enforce a minimum episode
length.

Importantly, the output distribution is generated deterministically with dropout turned
off. This is necessary for a stable calculation of the reference KL-divergence described in
Section 4.2.4. This behavior is consistent e.g. with the TRL library.

We also experimented with using contrastive search [Su et al., 2022] instead of sam-
pling. Contrastive search extends greedy search by introducing a degeneration penalty
for token T equal to the maximum cosine similarity between the embedding of T and

17

embeddings of all tokens preceding T . This is to limit undesirable repetitions. Addition-
ally, contrastive search only considers the top k predictions of the model. In our case,
we used a degeneration penalty coefficient α = 0.6 and k = 6. This approach achieved
competitive performance to sampling on our experiments but ultimately did not lead to
improved results.

4.2.3 Calculation of Cumulative Discounted Returns
We follow the standard definition of returns as the expected discounted sum of future
rewards. Returns are then taken as estimates of state values and used by REINFORCE.
With a discount factor γ ∈ [0, 1] and rewards R1, . . . , Rn the definition of returns r1, . . . , rn

is given in Equation (4.1).

rt =
n∑︂

i=t

(︂
γi−tRi

)︂
+ γn−t+1e (4.1)

The term e serves as a baseline estimate of the final state value to offset the effect that
episode cut-off has on the estimated value of states near episode end. We experimented
with setting e to the average of all rewards in the current batch which yielded marginally
better performance compared to e = 0. We use this approach in all experiments where
γ ̸= 0.

4.2.4 Reference KL-Divergence Anchoring
If the only objective being optimized was an arbitrary reward function, the model would
have no incentive to keep producing natural language. Indeed, this is the case even in our
test task of maximizing the number of words starting with the letter T: the model quickly
starts only repeating the token "the".

We use the standard remedy of adding another minimization criterion calculated as the
Kullback-Leibler divergence (KL-divergence) [Kullback and Leibler, 1951] between output
distributions of the trained model and a frozen reference model. The KL-divergence then
also acts as an entropy regularizer in that it encourages exploration [Stiennon et al., 2020].
In our case, the frozen model is a copy of the initial version of the trained model.

In the context of RLHF, the KL-divergence anchoring approach was first used by
Jaques et al. [2019]. It was then employed in InstructGPT [Ouyang et al., 2022] and
is implemented in all the open-source libraries listed in Section 4.1. It was also used
by Anthropic [Bai et al., 2022a] and DeepMind [Glaese et al., 2022] for their RLHF
implementations.

However, various details differ across implementations. Notably, there are several
ways to calculate the deviance between the model and reference distributions. We follow
TRL (described in Section 4.1.1) and implement four different strategies listed below.
For notation, let π be the trained model, πref the frozen reference model, x an input to
the model (i.e. input prompt and already generated prefix), and k the argmax over π(x)
(i.e. the most probable next token).

• full_kl – KL-divergence DKL(π(x)|πref(x)) = ∑︁n
i=1 π(x)i log π(x)i

πref(x)i

• diff – Difference of log-probabilities log π(x)k − log πref(x)k = log π(x)k

πref(x)k

• abs_diff – Absolute difference of log-probabilities
⃓⃓⃓
log π(x)k − log πref(x)k

⃓⃓⃓
18

• rmse – Root-mean-square error between log-probabilities (log π(x)k − log πref(x)k)2

Traditionally, the resulting deviance is then subtracted from the per-token reward.
However, using this approach we weren’t able to find a choice of hyperparameters leading
to summaries that are both coherent and meaningfully maximize the reward in our test
task. We hypothesize that the difficulty stems from the sparsity of both the anchoring
signal and the reward signal.

To solve this, we observe that all the deviance strategies are differentiable. Therefore,
they provide a richer signal than a classic RL reward in that they show how the model’s
output should be improved instead of just giving its quality. To utilize this, we minimize
the deviance directly with back-propagation rather than subtracting it from the reward.
In PyTorch, we do this by adding the deviance to the loss with a suitable coefficient.

We use this approach with the full_kl deviance which differs from others in that it is
calculated from the full output distribution instead of just the highest log-probabilities.
We call this new strategy full_kl_loss. The resulting loss can then be written as:

L(x) = LREINFORCE(x) + βDKL(π(x) ∥ stop_gradient(πref(x))) (4.2)

Notice that in the second term of Equation (4.2), gradient updates are not propagated
to the frozen reference model. The first term of Equation (4.2) is the REINFORCE loss
described in Section 1.2.1.

A potential disadvantage of the full_kl_loss strategy is that for cases when γ > 0,
adding KL-divergence directly to the loss means that this signal does not propagate to the
preceding tokens. When it is subtracted from the reward instead, preceding tokens are
affected through the cumulative returns. In other words, full_kl_loss prevents tokens
from “seeing” their effect on the coherence of the following text.

4.2.5 Qualitative Analysis
Along with logging metrics using Tensorboard3 [Abadi et al., 2016] we build a custom
visualization application using Streamlit4 to monitor the evolution of rewards on summary
tokens over time. The application tracks the first 25 validation set samples, one of which
is shown in Figure 4.1. Visible are the article (cropped), a slider for timestep selection,
and the summary with positive rewards marked red and negative rewards marked blue.5

4.3 Test Task
We evaluate different approaches using a test task of maximizing the number of output
words starting with the letter T (case-insensitive). This task is designed to be simple and
easy to evaluate, allowing us to experiment with our reinforcement learning implementa-
tion in isolation before applying it with our custom reward which is more complex. With
this, we obtain a reasonable configuration of all hyperparameters which we then use as
a starting point in Chapter 6.
The test reward for token t is defined as:

3https://www.tensorflow.org/tensorboard
4https://streamlit.io/
5In this example we use the reward function introduced in Chapter 5.

19

https://www.tensorflow.org/tensorboard
https://streamlit.io/

Figure 4.1: Interactive browser application for monitoring rewards during training.

r(t) =

⎧⎪⎪⎨⎪⎪⎩
0, if t is not the first token of a word
1, if t is the first token of a word and begins with a T
− c

1−c
, if t is the first token of a word and does not begin with a T

(4.3)

In Equation (4.3), c = 0.16 is the approximate frequency of English words starting with
T. The negative reward for the beginnings of word starting with a different letter is chosen
so that for an average English sentence, the sum of rewards is 0.

4.3.1 Dataset
We initialize the model from checkpoints that we obtained in Chapter 3 through supervised
fine-tuning. We also use the XSum dataset described in Section 2.1 with labels removed.
However, we discard the first 50% of train data, because the model has already seen it
during the supervised fine-tuning.

4.3.2 Results
We performed a manual search over hyperparameters to find an approximate local opti-
mum on the XSum dataset. The final choice of hyperparameters is listed in Table 4.1.
The training curves with reward and KL-divergence are shown in Figure 4.2. BART-large
yields higher reward and higher reference KL-divergence than BART-base. Note that
the KL-divergence cannot be directly compared since the reference models differ in both
cases.

Finally, Table 4.2 lists a few output samples from the evaluation split, together with
gold data and a comparison to the output of Llama 2 70B [Touvron et al., 2023]. BART
does not attain the creativity and fluency of Llama 2 70B but is able to increase the number
of words starting with T while preserving some of the summary’s message and coherency,
although it frequently employs fixed phrases carrying no meaning like “has taken to the
top two”. Interestingly, Llama 2 70B fails to accomplish the goal in examples (2) and (3),

20

Hyperparameter Value
Samples per update 16
Learning rate 1e-5
Optimizer Adam
KL-divergence strategy full_kl_loss
β (KL-divergence coefficient) 0.3
γ (discount factor) 0
Normalize returns False
Number of updates ~1200

Table 4.1: Test task hyperparameters.

hallucinating unrelated information or using only a normal number of words starting
with T. We believe this could be rectified with more complex prompting.

These quantitative and qualitative results give us the confidence to move forward with
using more complex reward functions.

21

0 200 400 600 800 1000 1200 1400
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
Re

wa
rd

BART-base
BART-large

(a) Training Reward

0 200 400 600 800 1000 1200 1400
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n
KL

-d
iv

er
ge

nc
e

BART-base
BART-large

(b) Train KL-divergence

0 200 400 600 800 1000 1200 1400
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
Re

wa
rd

BART-base
BART-large

(c) Validation Reward

0 200 400 600 800 1000 1200 1400
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
KL

-d
iv

er
ge

nc
e

BART-base
BART-large

(d) Validation KL-divergence

Figure 4.2: Test task RL training of BART on XSum.

22

Gold summary
(1) Former Premier League footballer Sam Sodje has appeared in court alongside

three brothers accused of charity fraud.
(2) The Duchess of Cambridge will feature on the cover of British Vogue to mark

the magazine’s centenary.
(3) Google has hired the creator of one of the web’s most notorious forums -

4chan.
BART-base after supervised fine-tuning
(1) Sam Sodje has been remanded in custody after appearing in court accused

of embezzling £1m from a sports charity in Nigeria.
(2) The Duchess of Cambridge has been photographed for the first time in

British Vogue’s 100th anniversary issue.
(3) Google has appointed the former administrator of notorious social network-

ing site 4chan to lead its social networking efforts.
BART-base after 1040 T-maximizing RL updates
(1) Sam Sodje has taken to the top two to the tens of thousands of pounds to

try to take to the streets of the town to raise money for Nigerian sport.
(2) The Duchess of Cambridge has taken to the top two to appear on the cover of

British Vogue to mark the publication of the magazine’s 100th anniversary.
(3) Google has taken to the top two to try to take the time to think through

the threat posed by the social networking site 4chan.
Llama 2 70B prompted for T-maximizing ∗

(1) Trial set for tarnished footballers accused of tainted trading tactics totaling
tens of thousands.

(2) Two tributes to tennis talent take time to transform into timeless treasures.
(3) Chris Poole, aka “moot”, creator of controversial imageboard website 4chan,

joins Google as an executive, bringing his expertise in building online com-
munities to the tech giant’s social networking efforts.

∗ The exact prompt: Please summarize the following article in one sentence using only words that
start with the letter t

Table 4.2: Samples of test task output on validation data.

23

5. Reward Function for
Summarization
In this chapter, we define a per-token reward function that rewards summaries based on
their quality. For our purposes, a high-quality summary is one that satisfies the following:

1. Is short, coherent, and written in English.

2. Contains as many important facts from the summarized text as possible.

3. Contains as few wrong or misleading facts as possible.

Ultimately, our goal is to reward a model for all these traits using the reinforcement
learning approach described in Chapter 4. The reward function that we develop in this
chapter is meant to target the last two traits. We assume the first trait is already present
and only needs to be preserved as much as possible during RL training using the KL-
divergence method described in Section 4.2.4.

5.1 Our Approach
We introduce a separate instance of BART called predictor. For disambiguation, we call
the trained model summarizer. Like the summarizer, the predictor is meant for sequence-
to-sequence prediction on the summarization dataset. However, its inputs are summaries
and its outputs are the original articles being summarized (i.e. the direction is flipped
with respect to the summarizer).

The idea behind our reward function is to approximate the importance of a summary
token T by how much harder it is for the predictor to predict the summarized article
when we mask out T . We hypothesize that masking out an important informative token T
should make it harder to predict the article. On the other hand, masking out a misleading
token should make the prediction easier. Finally, masking out an irrelevant “filler” token
should not have a big influence on the prediction.

The ease of prediction is measured by considering the model’s cross-entropy on the
article tokens. The exact details and their evaluation are the subject of the rest of this
chapter.

5.1.1 Masking Strategies
For every generated summary S = T1 . . . Tn, we create a set of binary masks {M1, . . . , Mm},
each of length n. Let P (Mj) be the indices where mask Mj is set (i.e. where masking
occurs). The result of the application of a mask Mj(S) is an altered summary S ′ which
is equal to S except for the positions k ∈ P (Mj) where S ′

k is set to a masking token K.
The predictor is run individually with each of M1(S), . . . , Mm(S) as input to predict

the summarized article (the executions are batched), details of which are described in
Section 5.1.2. This gives us “confusion coefficients” c1, . . . , cm representing how much the
predictor “got confused” by each of the individual masks.

The reward for a token Ti is then dependent on those cj where i ∈ P (Mj), i.e. on
results from masks where Ti is masked. If Ti is not masked by any mask, we set its reward

24

to 0. By the nature of the REINFORCE algorithm, such tokens are disregarded during
gradient computation.

On the other hand, suppose that Ti is masked at least once and possibly multiple
times, obtaining the corresponding subset of confusion coefficients c1, . . . , cp. To obtain
a single scalar reward Ri we use one of the following strategies, calling this hyperparameter
samples_reducer:

• average, where Ri = 1
p

∑︁p
l=1 cl,

• max, where Ri = max c1, . . . , cp.

• min, where Ri = min c1, . . . , cp,

As for the masking token K, we experiment with BART tokens <unk>, <mask>, and
<pad>, together with a random strategy which selects from all tokens at random for each
occurrence. However, we discarded the <pad> early in the process because of its inferior
performance.

The currently implemented mask-generation strategies are as follows. An example of
a mask for each of these strategies is shown in Figure 5.1.

• random – Generate mask_count masks. For each mask and each position, decide
independently randomly with probability mask_prob whether to mask the position
or not.

• tokenwise – Create a separate mask for each position where only that one position
is masked. This means that the mask count is equal to the summary length.

• random_bursts – Generate mask_count masks as follows. First, select some po-
sitions at random. For each selected position, mask it together with the following
burst_length−1 tokens to form a masked burst. The number of bursts is calculated
so that the ratio of masked tokens is approximately mask_prob.

• bursts – For each possible burst (substring of length burst_length), create a mask
where nothing but this burst is masked. Furthermore, create shorter masks on
both ends of the summary so that each token is masked exactly burst_length-
times. This means that for reasonably long summaries, the mask count is equal to
n + 2(burst_length − 1) where n is the summary length.

• words – Define words by splitting the de-tokenized summary along spaces (with
no additional preprocessing). Each mask is then constructed by masking a burst
of word_burst_length consecutive words. As in the bursts strategy, both ends
of the summary are additionally masked so that each word is masked exactly
word_burst_length-times.

• random_variable_bursts – This strategy is only used for predictor training as
described in Section 5.1.4. It works by choosing the length of a burst at random
between 1 and burst_length and generating a mask where nothing but this burst
is masked.

Importantly, the beginning-of-sequence (BOS) and end-of-sequence (EOS) tokens are
never masked since their absence causes BART to have radically higher cross-entropy
and obscures any signal.

25

Figure 5.1: An example of a mask for each mask-generation strategy. The tokenization is
only illustrative, unrelated to the BART tokenizer. In all examples, burst_length = 3
and word_burst_length = 2.

5.1.2 Confusion Coefficients
Here we discuss the computation of the confusion coefficients introduced and used in
the previous Section 5.1.1. A scalar confusion coefficient is calculated for each mask.
Intuitively, it expresses the amount of “confusion” caused to the predictor by obscuring
the masked tokens.

After applying a mask, we start with predictor’s perplexities on each of the original
article tokens as compared to perplexities before masking. These are then weighted and
reduced either by averaging or by taking the maximum. An example of the relative
perplexities before reduction is shown in Figure 5.8.

We now express this idea mathematically. Let S be a summary, M a mask, and M(S)
the application of mask M on summary S as in the previous section. Furthermore, let A
be the summarized article, wt be arbitrary weights, and predictor(S)t be the predictor’s
output distribution on the t-th token with predictor(S)t,At being the predicted probability
of the correct token. An example of weights wt will be described in Section 5.1.3. Finally,
let R be either max or average. We call this hyperparameter loss_reducer.

The confusion coefficient cj can then be expressed as:

cj = R|A|
t=1

(︄
−wt log predictor(M(S))t,At

predictor(S)t,At

)︄
(5.1)

In our implementation, we split the logarithm into difference of logarithms so that
the logarithm and predictor’s softmax can be fused to make back-propagation more nu-
merically stable. The bulk of the calculation is then the standard cross-entropy loss with
a custom reduction, as available in PyTorch. However, we use our custom implementation
which exploits the fact that the labels (i.e. the article A) are the same for all invocations
of the loss function and thus don’t have to be duplicated.

5.1.3 IDF Weights
Confusion coefficients defined in Equation (5.1) are designed so that tokens of article
A can be arbitrarily weighted to have more or less significance in the calculation. We
implement weighting based on IDF (inverse document frequency) of words (not tokens).
This puts more emphasis on rare words in the article such as names of people and places.

26

(a) ω = 1

(b) ω = 2

Figure 5.2: IDF weights on a part of an article from XSum. Darker colors correspond to
higher weights.

However, its efficacy is to be tested since not all information-dense utterances consist of
rare words.

We start by calculating IDF of words from the second 50% of training data articles.
Words are defined by the regular expression (?u)\b[a-zA-Z]+\b. Words seen in fewer
than 3 documents are disregarded (i.e. cut-off is 3).

IDF values are then used when calculating the confusion coefficients as follows. Sup-
pose the t-th token belongs to a word with IDF I. In this case, words are obtained
simply by splitting the text on spaces and newlines. To combat punctuation and other
characters not considered during IDF computation, we additionally find all occurrences
of (?u)\b\w+\b in each word to perform the IDF search. When more occurrences are
found, we take their average IDF. Words not found in the training corpus are assigned
the maximum from all IDF values.

We first set w′
t = Iω where ω is a hyperparameter. Then, the values w′

t across all
tokens are normalized so that the average value is equal to 1, obtaining the final weights
wt.

Figure 5.2 shows an example of the resulting weights on a part of an article from
XSum with different values of ω.

5.1.4 Supervised Fine-Tuning of Predictor
We obtained the predictor checkpoints by fine-tuning BART on the first 50% of each cor-
responding dataset with inputs and outputs swapped. Hyperparameters were chosen iden-
tically to summarizer fine-tuning as listed in Table 3.1. We call the resulting checkpoints

27

0K 2K 4K 6K 8K 10K 12K 14K
Step

2.54

2.56

2.58

2.60

2.62
Va

lid
at

io
n

Lo
ss

No Masking
Random
<mask>
<unk>

(a) BART-base (XSum)

0K 2K 4K 6K 8K 10K 12K 14K
Step

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

Va
lid

at
io

n
Lo

ss

No Masking
Random

(b) BART-large (XSum)

0 5K 10K 15K 20K
Step

2.52

2.54

2.56

2.58

2.60

2.62

2.64

2.66

Va
lid

at
io

n
Lo

ss

Random

(c) BART-base (CNN/DM)

0 2K 4K 6K 8K 10K 12K 14K 16K
Step

2.40

2.42

2.44

2.46

2.48

Va
lid

at
io

n
Lo

ss

Random

(d) BART-large (CNN/DM)

Figure 5.3: Validation loss during predictor fine-tuning.

predictor_base (based on BART-base) and predictor_large (based on BART-large).
Without this fine-tuning, the performance of our metric was radically worse.

Additionally, we perform this fine-tuning with masked versions of the inputs using
the random_variable_bursts masking strategy described in Section 5.1.1. This is to
minimize the distribution shift between the fine-tuning data and the data that the pre-
dictor will ultimately be used on. In the case of BART-base we experimented with all
the <mask>, <unk>, and random mask tokens, obtaining checkpoints predictor_base-
mask, predictor_base-unk, and predictor_base-random. However, predictor_base-
random dominated all our evaluations and was chosen as the only predictor for the follow-
up grid search in Section 5.2.3. Therefore, in the case of BART-large, we only used the
random strategy, obtaining checkpoint predictor_large-random.

Plots of all the fine-tuning runs are shown in Figure 5.3. All of these runs are stable
and close to convergence.

5.2 Quantitative Analysis
To quickly identify promising hyperparameter configurations we design quantitative met-
rics of the reward function’s performance, i.e. how effective it is in discerning relevant

28

summary tokens from irrelevant or misleading tokens. We present two such metrics and
argue that both are useful.

5.2.1 Paired Test Using a Distractor Article
First, we describe a metric which is based on a distractor article. For each data sample
consisting of an article A and a summary S we choose another distractor article A′ at
random. We use the article A to compute per-token rewards p1, . . . , pn on S (positive
samples) and article A′ to compute per-token rewards n1, . . . , nn on S (negative samples).
With this, we obtain a set of positive measurements P and a set of negative measurements
N on the same population, i.e. the same summary tokens. We then employ paired one-
sided statistical tests with the null hypothesis that P is not stochastically greater than
N . The following tests are performed:

• One-sided Wilcoxon signed-rank test. The test works by computing the differences
Xi = Pi −Ni, assigning ranks to them based on their absolute value, and computing
the following statistic (Ri denotes rank of Xi):

T =
n∑︂

i=1
sgn(Xi)Ri. (5.2)

• One-sided Student’s t-test, which computes the following statistic:

t = d̄√︂
s2/n

, (5.3)

where d̄ is the mean difference and s2 is the sample variance. This test assumes that
the differences are approximately normally distributed.

Through statistical tests, we obtain a p-value. However, because of the large number
of samples and relatively large difference between P and N , the p-values are too close to
zero to be distinguishable. Since we are only interested in the relative ordering of reward
functions, not in the absolute p-values, we only consider the T and t statistics themselves.
If one reward function yields substantially larger statistic than another one, we use that
as a signal about their relative quality. In our experiments, an average of about 90%
reward function pairs are ordered identically when using T or t metrics.

The Distractor Article approach is theoretically pleasing because of its simplicity and
paired measurements, i.e. the positive and negative samples are obtained on the same to-
kens. There are fewer arbitrary decisions to be made when designing this test compared
to the one introduced in the next Section 5.2.2. The result gives us a hint about a re-
ward function’s ability to assign greater rewards to summaries that contain some relevant
information about the article. This is mainly affected by the predictor architecture and
pre-training, mask token, and loss_reducer.

However, this metric does not take into account the distribution of rewards among
individual tokens in a summary, which makes it unusable for testing hyperparameters
like burst_length, masking_strategy, or samples_reducer. For example, increasing
burst_length and setting samples_reducer to max will typically increase P more than
N , thus improving the metric even though this makes the reward function lose its ability
to correctly allocate reward inside a summary. In the limit, a uniform function assigning
the same reward to all summary tokens might seem to perform well under this metric
while being useless in practice.

29

5.2.2 Independent Test Using a Distractor Summary
To address shortcomings of the Distractor Article metric discussed in the previous Sec-
tion 5.2.1, we introduce a different approach based on a distractor summary. For each
data sample consisting of an article A and a summary S we choose another distractor
summary S ′ at random. We then construct an artificial summary T by selecting individ-
ual words from either S or S ′ at random. In this context, words are defined by simply
splitting along spaces and newlines.

The words are not sampled independently; instead, the first token is taken either from
S or from S ′, and for each following token, the chance of it being sampled from the same
summary as the previous one is 60 %. This approach was chosen by manually inspecting
the resulting summaries and trying to maximize their coherence while still switching
between S and S ′ often enough. Importantly, all the random choices have a fixed seed
and are therefore identical across evaluation runs.

Afterward, we compute per-token rewards r1, . . . , rn+m on T and split them into posi-
tive samples p1, . . . , pn and negative samples n1, . . . , nm based on whether the correspond-
ing token came from S or S ′. With this, we again obtain a set of positive measurements
P and a set of negative measurements N . However, the measurements are now not on
the same population (i.e. the same summary tokens) and in general have different sizes
(although in our case the sizes are similar). We therefore perform independent one-sided
statistical tests instead of paired tests. We use the following tests with the null hypothesis
that P is not stochastically greater than N :

• One-sided Mann–Whitney U test (also known as Wilcoxon rank-sum test). Works
by combining both sets of numbers, summing ranks of samples from each set to get
R1 and R2, and computing the following statistic:

U1 = nm + n(n − 1)
2 − R1. (5.4)

• One-sided Welch’s t-test, which is an adaptation of Student’s t-test without the
assumption of equal variance of P and N . However, the assumption that the tested
values are normally distributed is maintained. The statistic t is given by:

t = X1¯ − X2¯√︂
s2

X1̄
+ s2

X2̄

, (5.5)

where Xi
¯ are population means and sX1̄ are its standard errors.

Again, we only consider U1 and t statistics themselves instead of calculating p-values.
It is important to note that since the artificial summary T is created by concatenating
words from S and S ′, we expect it to favor the words masking strategy.

5.2.3 Grid Search
After manually experimenting with all the different hyperparameters, we designed and
performed the following grid search:

• predictor checkpoint: predictor_base-random, predictor_base-mask,

• mask token: random, <mask>,

30

• loss_reducer: average, max,

• samples_reducer: average, max, min,

• mask_strategy: bursts (using burst_length ∈ {2, 3, 4}), words (using word_bur-
st_length = 2),

• ω (IDF weight power): 0.0, 1.0, 2.0.

We visualize the results of the grid search separately for each combination of predictor
checkpoint and mask token. Out of all 4 combinations the (predictor_base-random,
random) performed best with results shown in Figure 5.4. Each run is plotted in a 2-
dimensional space corresponding to the two metrics introduced in Section 5.2.1 and Sec-
tion 5.2.2. Each run is drawn as a single symbol so that mask_strategy corresponds to
shape, samples_reducer corresponds to outer color, loss_reducer corresponds to inner
color, and ω (IDF weight power) corresponds to size. More specifically, the correspondence
is as follows:

• loss_reducer

– average: green
– max: red

• samples_reducer

– average: blue
– max: orange
– min: purple

• mask_strategy

– bursts

∗ burst_length = 2: circle
∗ burst_length = 3: triangle
∗ burst_length = 4: square

– words, word_burst_length = 2: star

• ω (IDF weight power)

– 0.0: small
– 1.0: medium
– 2.0: large

The resulting Figure 5.4 suggests that loss_reducer strategy average is more effec-
tive in discerning relevant summary tokens from irrelevant ones than the max strategy,
indicated by the red cluster on the left. We hypothesize that this is because max is more
prone to noise in predictor’s perplexities than average.

The same figure also shows a clear trend when increasing burst_length from 2 to 3
to 4 – the reward becomes less effective in discerning relevant tokens (symbols move to the

31

Hyperparameter Value
Predictor checkpoint predictor_base-random
Mask token random
loss_reducer average
samples_reducer min
mask_strategy words (word_burst_length = 2)
ω (IDF weight power) {0.0, 1.0} (inconclusive)

Table 5.1: Best reward function configuration based on grid search.

left). Furthermore, the effect of IDF weight power is relatively small when loss_reducer
is max, indicated by the different sizes of the same symbol being generally close together.

We choose the Distractor Summary Mann-Whitney statistic as the primary measure
of quality and report the best hyperparameter configuration based on this metric in Ta-
ble 5.1. However, we only use this configuration as a starting point and experiment with
all the hyperparameters further in Chapter 6.

The (predictor_base-random, mask) and (predictor_base-mask, mask) combina-
tions are competitive while (predictor_base-mask, random) performs substantially worse.
Their visualizations are provided in Appendix A.

Scaling the Predictor to BART-large

We then run some of the best performing and some of the worst performing configurations
with a larger predictor model predictor_large-random. The resulting differences are
shown in Figure 5.5. To our surprise, using a stronger predictor model hurts performance
on our metrics in all tested cases. This suggests there might be an optimal middle point
in predictor size where weaker models do not provide enough signal and stronger models
are not “confused” enough by masking important words.

We observe that if the predictor model is too strong, it can be better than a human in
inferring a masked section of a summary from the non-masked context, leading to small
reward for phrases that a human reader might consider useful. For example, consider
a summary containing the phrase “Welsh cyclist Luke Rowe”. When the phrase “Welsh
cyclist” is masked, a strong predictor might be able to infer it with relative certainty
from the context “Luke Rowe”. This means that parts of the original article pertaining to
Wales and cycling would not suffer any detriment in prediction perplexities, yielding small
reward for the phrase “Welsh cyclist” which a human reader might consider important.
Our metrics capture this human preference because “Welsh cyclist” is contained in the
reference summary.

We use the results from this section in that we avoid training a BART-large version of
the predictor in the case of CNN/Daily Mail, which would be relatively expensive due to
long article lengths compared to XSum. In the case of XSum we still train and experiment
with both BART-base and BART-large versions of the predictor.

5.3 Qualitative Analysis
On top of the general training monitoring tools described in Section 4.2.5, we develop
tools for debugging reward functions which we describe in this section.

32

1.0 1.1 1.2 1.3 1.4 1.5
Distractor Summary Mann Whitney Statistic 1e8

3.4

3.6

3.8

4.0

4.2

Di
st

ra
ct

or
 A

rti
cle

 W
ilc

ox
on

 S
ta

tis
tic

1e8

Figure 5.4: Grid search results for parameters mask_token = <random>, predictor =
predictor_base-random.

1.0 1.1 1.2 1.3 1.4 1.5
Distractor Summary Mann Whitney Statistic 1e8

3.4

3.6

3.8

4.0

4.2

Di
st

ra
ct

or
 A

rti
cle

 W
ilc

ox
on

 S
ta

tis
tic

1e8

Figure 5.5: Comparison between predictor_base-random and predictor_large-
random on select configurations.

33

5.3.1 Interactive Browser Application
To facilitate a quick qualitative feedback loop when experimenting with different reward
functions we implement an interactive browser application using Streamlit. The applica-
tion allows the user to choose values for all relevant hyperparameters and run the reward
function on a selected article-summary pair. Along with the resulting reward values, the
user can also choose to visualize either the IDF weights or all the masks with their cor-
responding cross-entropy errors on the article tokens. A screenshot of the application is
shown in Figure 5.6.

5.3.2 Reward Examples
Concrete rewards on the first four summaries from XSum validation set1 are shown in
Figure 5.7. We include the beginning-of-sequence and end-of-sequence tokens for com-
pleteness, although they are ignored during reinforcement updates. The figure also shows
a tampered version of each summary where a piece of correct information is replaced with
a false one.

We also monitor the aggregate distributions of positive and negative rewards over
all data samples. An example of such distributions taken from the best-performing grid
search run on XSum is shown in Figure 5.9. The positive rewards are clearly stochastically
greater than the negative rewards.

Analysis of the Provided Examples

As hinted by Figure 5.7, in many cases the reward function correctly identifies salient
pieces of information such as names of people and organizations (e.g. Sam Sodje, Adam
Voges, Vogue, 4chan, Google) and assigns to them a positive reward. Similarly, the
reward detects obviously wrong information in the tampered summaries (Jan Novak,
Czech, Nature, fired), assigning them a negative reward.

However, not all important information is rewarded and not all false information is
penalized. For example, the substring “Former Premier League footballer” in example
(A) is not rewarded even though a human reader might find it relevant. That is because
the corresponding article pertains more to a court case than to football and does not
mention the Premier League, meaning that masking the phrase “Premier League” in the
summary does not make it substantially harder to predict the article.

Similarly, the phrase “torn calf muscle” in example (B) is not rewarded because the
corresponding article only mentions an “injury” without specifying any details. In general,
our reward function cannot reward relevant context not present in the article. In fact,
there is fundamentally no way to detect if such a piece of information is correct if we only
have access to the document which does not mention it. This unfortunate property of
XSum is caused by the process of its creation where the first sentence of a BBC article is
taken to be its summary but is often crucial for the understanding of the whole article.

Furthermore, different parts of one information piece such as a name can be rewarded
differently, as is the case for “Sam Sodje” in example (A) and “Adam Voges” in example
(B). In both cases, masking a person’s surname causes higher predictor perplexity on
the article than masking their forename. This is partly because predicting a common
forename is easier than predicting a less common surname. It is also because both full

1The hyperparameter configuration is mask_token = random, loss_reducer = average,
samples_reducer = min, with IDF weighting turned on.

34

names are also present in the training data, so the model can infer the forename from the
surname.

Other Known Problems

Another issue with the design of our reward function is that incorrect information in
the summary might still be helpful in predicting the article. For example, consider the
summary “A taxi driver has been involved in a collision with a pedestrian in Inverness.”
Although the incident took place in Dundee, masking the mention of Inverness hurts
article prediction because both cities are located in Scotland. The mention of a Scottish
city is a good hint in predicting various parts of the article, such as the name Caird Hall
(a concert auditorium in Dundee). At the same time, since the article does not explicitly
mention Dundee, listing the wrong city in the summary has little negative effect. We
discuss a possible mitigation of this problem in Section 6.4.

5.3.3 Cross-Entropy Error Examples
For an example of how masking part of a summary affects the prediction of an article,
Figure 5.8 shows cross-entropy errors on the article tokens when the words “Sam Sodje”
are masked. The predictor is expectedly “confused” when predicting a name in the article
that has been masked in the summary.

35

Figure 5.6: Interactive browser application for experimenting with different reward set-
tings.

36

(A)

(B)

(C)

(D)

Figure 5.7: Examples of rewards on XSum validation set. Red colors correspond to posi-
tive values, blue to negative. Every second sample is altered to contain false information.

Figure 5.8: Cross-entropy errors on article tokens when some summary tokens are masked.
Summary is shown above article with the masked tokens marked red. High cross-entropy
on article corresponds to red colors.

1.0 0.5 0.0 0.5 1.0 1.5
Reward

100

101

102

103

104

Co
un

t

Positive rewards
Negative rewards

Figure 5.9: Positive and negative rewards from an independent test using a distractor
summary.

37

6. Self-Supervised Summarization
Task
This chapter combines all of the work described in previous chapters into a final set of
experiments. Specifically, we use pre-trained checkpoints from Chapter 3 and attempt
to improve their summarization abilities using the reinforcement learning approach from
Chapter 4 with the self-supervised reward function from Chapter 5. We start with the
hyperparameter configurations tuned on test tasks in previous chapters and adapt them
for this specific case.

6.1 Training
During training, we monitor the reinforcement rewards and returns, KL-divergence with
respect to a reference model, gradient norm, policy entropy, and summarization metrics
ROUGE and BertScore. We conduct a manual hyperparameter search on the XSum
dataset using BART-base, evaluating various configurations of β, γ, KL-divergence mini-
mization strategies, masking strategies, returns normalization, learning rate values, mask
tokens, loss_reducer strategies, and samples_reducer strategies (for a description of
these hyperparameters refer to Chapter 4 and Chapter 5). Then we use the best found
configuration to train BART-large, altering only β, learning rate, and batch size. The
same configuration is then used for the CNN/Daily Mail dataset with minimal modifica-
tions.

The final hyperparameter configurations are listed in Table 6.1. For runs with these
configurations, the progression of reward and reference KL-divergence on the validation
set during training is shown in Figure 6.1.

6.2 Automatic Evaluation
We evaluate the trained models using SummEval [Fabbri et al., 2020], a collection of 14
automatic evaluation metrics. Because of technical difficulties, we exclude the S3 metric,
which is a model-based metric that uses other metrics as input features. The model is
unfortunately serialized using an old version of Python not available in our execution
environment. More details including the installation process of SummEval are available
in Appendix B.1.

We also exclude the Sentence Mover’s Similarity (SMS) as it reports the value of 1.0
for all our experiments. Since we did not modify the default configuration for this metric
we suspect it might be a problem with the implementation. We do not investigate this
further.

We therefore report scores on 12 automatic evaluation metrics. Following [Fabbri et al.,
2020] we split these into metrics designed for summarization and general text generation
metrics. We further split the former based on whether they use the gold reference into
reference-based and reference-free.

Reference-based metrics generally rely on measuring the overlap of n-grams, words,
sub-sequences, or sentences between the reference and the model’s output. They employ
various strategies for alignment, stemming, soft comparison in embedding spaces, and

38

0 100 200 300 400 500 600 700 800
Step

0.015

0.020

0.025

0.030

Va
lid

at
io

n
Re

wa
rd

BART-base
BART-large

(a) Validation reward (XSum)

0 100 200 300 400 500 600 700 800
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
KL

-d
iv

er
ge

nc
e

BART-base
BART-large

(b) Validation reference KL-divergence (XSum)

0 200 400 600 800 1000
Step

0.0125

0.0130

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

Va
lid

at
io

n
Re

wa
rd

BART-base
BART-large

(c) Validation reward (CNN/DM)

0 200 400 600 800 1000
Step

0.00

0.05

0.10

0.15

0.20

Va
lid

at
io

n
KL

-d
iv

er
ge

nc
e

BART-base
BART-large

(d) Validation reference KL-divergence
(CNN/DM)

Figure 6.1: Validation reward and reference KL-divergence during BART training.

39

XSum CNN/Daily Mail
Hyperparameter BART-base BART-large BART-base BART-large
Batch size 16 12 12 5
Learning rate 1e-5 5e-6 1e-5 1e-5
Number of updates 800 800 1100 300
KL-divergence strategy full_kl_loss
β (KL-divergence coefficient) 0.014 0.015 0.03 0.03
γ (discount factor) 0.9 0.95 0.9 0.9
ω (IDF weight power) 1.0
Loss reducer average
Samples reducer min
Masking strategy words
Masking token random
words_burst_length 2
Returns normalization False
Predictor BART-base BART-large BART-base BART-base
Predictor SFT masking random

Table 6.1: Final hyperparameters.

more. The problem with reference-based metrics is that even high-quality summaries
might be penalized because they might be very different from the reference summary.
Reference-free metrics work either by measuring the usefulness of the summary when
performing language understanding tasks on the article (SummaQA [Scialom et al., 2019],
BLANC [Vasilyev et al., 2020]) or by generating pseudo-reference summaries from the
article, converting the problem to the reference-based case (SUPERT [Gao et al., 2020]).

The final test split scores of BART-base and BART-large trained using our approach
on XSum and CNN/DailyMail are listed in Table 6.2 (marked RL). For comparison, we
also include scores for the models before reinforcement learning after only supervised
fine-tuning on the first 50% of the train split (marked SFT). To account for the effect
of training the SFT models on just half of the data compared to the RL models, we
additionally train BART on the whole train split of XSum and provide their evaluation
as well (marked full-SFT). This additional training is not done in the case of CNN/Daily
Mail.

Together with the human evaluation, this is the only time when the test split is used.
All experiments performed on the test split are reported.

During evaluation, we utilize the length_penalty1 parameter of the Transformers
library to encourage some models to generate shorter output sequences. This is important
because some metrics are incomparable across models if the average output length differs
considerably. Specifically, for the marked models we use a length_penalty of −2. This
means that during beam search, the score (i.e. log-probability) of a sequence of length
n is divided by n−2. Since these scores are negative, this penalizes longer sequences.
This technique is enabled by default when using BART in Transformer’s summarization
pipeline on CNN/Daily Mail.2

Afterward, we experimented with the exponential_decay_length_penalty param-

1The naming of this parameter is unfortunate since positive values encourage longer sequences and
negative values encourage shorter sequences.

2This can be verified by inspecting the task_specific_params field of BART’s config in Transform-
ers.

40

Model Reference-based metrics Reference-free metrics
ROUGE-1/2/3/4/L/su*/w ROUGE-WE-3 BertScore MoverScore SummaQA BLANC SUPERT

XSum
base SFT 0.410/0.182/0.096/0.056/0.331/0.173/0.197 0.229 0.429 0.247 0.059 0.025 0.454
base full-SFT 0.427/0.198/0.109/0.064/0.347/0.187/0.206 0.244 0.446 0.267 0.059 0.025 0.454
base RL 0.333/0.119/0.053/0.027/0.258/0.115/0.155 0.158 0.308 0.124 0.097 0.057 0.494
large SFT 0.445/0.212/0.119/0.071/0.363/0.202/0.216 0.261 0.467 0.291 0.058 0.025 0.454
large full-sft 0.458/0.225/0.129/0.080/0.375/0.213/0.224 0.274 0.480 0.307 0.057 0.025 0.453
large RL ∗ 0.379/0.152/0.075/0.041/0.297/0.145/0.179 0.197 0.376 0.193 0.084 0.054 0.493

CNN/Daily Mail
base SFT 0.412/0.188/0.109/0.073/0.384/0.158/0.211 0.228 0.404 0.197 0.146 0.099 0.626
base RL ∗ 0.391/0.172/0.099/0.066/0.363/0.143/0.201 0.209 0.378 0.172 0.158 0.112 0.643
base RL † 0.391/0.172/0.099/0.066/0.363/0.143/0.200 0.210 0.377 0.173 0.154 0.108 0.642
large SFT 0.417/0.191/0.111/0.074/0.384/0.160/0.213 0.232 0.405 0.198 0.150 0.103 0.649
large RL ∗ 0.411/0.187/0.109/0.074/0.375/0.154/0.211 0.227 0.395 0.188 0.170 0.121 0.690
large RL † 0.411/0.184/0.107/0.072/0.374/0.153/0.209 0.224 0.389 0.187 0.162 0.114 0.681
∗ Evaluated using length_penalty = −2.

† Evaluated using exponential_decay_length_penalty = (55, 0.9).

(a) Model scores from summarization-specific evaluation metrics.

Model BLEU chrF CIDEr METEOR Length Stats (cov/comp/den) Repeated (1/2/3) Novelty (1/2/3)
XSum

base SFT 12.015 36.182 1.291 0.184 21.228 0.763/20.916/1.637 0.068/0.003/0.000 0.250/0.720/0.883
base full-SFT 13.482 37.775 1.433 0.194 21.663 0.756/20.530/1.602 0.069/0.003/0.000 0.258/0.729/0.889
base RL 7.584 31.730 0.836 0.151 25.113 0.890/17.996/3.731 0.089/0.004/0.000 0.119/0.482/0.667
large SFT 14.692 39.373 1.512 0.206 22.260 0.748/20.030/1.549 0.069/0.003/0.000 0.267/0.741/0.897
large full-SFT 15.860 40.617 1.637 0.214 22.419 0.743/19.898/1.526 0.068/0.003/0.000 0.272/0.745/0.899
large RL ∗ 9.699 35.442 1.019 0.177 25.808 0.864/17.601/4.452 0.083/0.003/0.000 0.145/0.492/0.652

CNN/Daily Mail
base SFT 15.378 39.348 0.705 0.189 56.986 0.957/14.272/12.900 0.183/0.025/0.000 0.031/0.139/0.241
base RL ∗ 14.222 39.478 0.552 0.186 64.216 0.963/13.107/16.397 0.176/0.023/0.000 0.024/0.097/0.171
base RL † 14.379 38.733 0.617 0.181 60.519 0.963/13.261/16.586 0.175/0.023/0.000 0.025/0.095/0.167
large SFT 15.753 40.231 0.647 0.194 59.516 0.966/14.206/18.316 0.170/0.018/0.000 0.030/0.109/0.183
large RL ∗ 14.595 41.483 0.482 0.201 68.693 0.977/12.917/26.105 0.172/0.016/0.000 0.020/0.051/0.088
large RL † 14.916 40.226 0.605 0.190 62.086 0.976/12.928/25.873 0.165/0.015/0.000 0.022/0.051/0.087
∗ Evaluated using length_penalty = −2.

† Evaluated using exponential_decay_length_penalty = (55, 0.9).

(b) Model scores from general text generation evaluation metrics.

Table 6.2: Final model scores on 12 SummEval metrics. The two highest scores on each
dataset for each metric (lowest for Length and Repeated-1/2/3) are bolded, ignoring the
models marked with † and cases where the values are too small to be distinguishable.
BART-base is listed as base and BART-large as large.

eter in Transformers, achieving an average output length even more similar to the SFT
models. We include these for completeness.

All other generation parameters are the same as in Section 3.2.

6.2.1 Discussion of the Automatic Results
Table 6.2 shows the final test scores of relevant checkpoints on 12 summarization metrics.
The main trend to observe is that our self-supervised approach (models marked RL) im-
proves scores on reference-free metrics in almost all cases. This holds even when compared
to the models trained in a supervised fashion on the whole train split (marked full-SFT),
offsetting the fact that the SFT models saw only half of the data.

The success on SummaQA and BLANC is somewhat to be expected since these metrics
measure language understanding on an article based on a summary, which is similar to
our approach. This is not the case for the SUPERT metric which measures the semantic
similarity of a summary with a pseudo-reference summary created by selecting salient
sentences from the article.

41

The performance improvement on reference-free metrics is accompanied by a decline
on all reference-based metrics. This is to be expected since the self-learning objective does
not encourage adhering to the reference summary (it only attempts to not deviate too
much from the outputs produced after supervised fine-tuning through the use of reference
KL-divergence).

Compared to the scores reported on BART3 by Fabbri et al. [2020], our checkpoints
after supervised fine-tuning on CNN/Daily Mail achieve comparable performance.4 The
only discrepancy is the Repeated-3 metric which is consistently indistinguishable from
zero in our case. We suspect there is a problem in the reporting of Repeated-3 by Fabbri
et al. [2020] since it is exactly equal to Repeated-2 in all cases.

Overall, these results show that the self-supervised learning improved some of the
summarization capabilities of the fine-tuned models.

6.2.2 Discussion of Specific Examples
Table 6.3 lists generated summaries on the first five validation samples from XSum. The
top half of the table contains outputs from BART-base fine-tuned in a supervised fashion
(experiment BART-base SFT). The bottom half contains outputs generated after our
self-supervised approach was applied on top of the supervised fine-tuning (experiment
BART-base RL). In this section, we discuss each of these samples. For full context, refer
to the corresponding articles listed, for example, on HuggingFace.5

This section is meant as a small qualitative example of the effect that our self-learning
approach has on the generated summaries but we will not attempt to make any general
conclusions from only five data points. Such analysis will be the subject of Section 6.3.

The following list contains comments for summaries in Table 6.3 generated after su-
pervised fine-tuning, marked (SFT), and summaries generated after self-learning, marked
(RL).

(A) (SFT) The summary is coherent and relevant. However, the article contains no
mention of the £1m figure (nor is it mentioned in connection to Sam Sodje in
the XSum train data) and it mentions that the defendants were released on
bail (not remanded in custody).

(RL) The summary correctly states that there were actually four actors (brothers),
that they are from Kent, Greater Manchester, and Bexley, that they denied
charges, that the charges relate to fraudulent trading, and also the name of the
Sodje Sports Foundation. However, it lists the name Efe twice, although the
fourth brother is named Stephen, hurting readability. It also makes no mention
of the court.

(B) (SFT) The summary correctly captures the main point of the article. However, the
article does not mention the type of injury suffered (hamstring) and neither
the fact that Adam Voges is a batsman, although that could be considered
common knowledge. Moreover, the article states that the team hopes to have
Adam Voges back in August, not that he will be out for the rest of the season.

(RL) The only difference from (SFT) is the replacement of “hamstring” with “calf”,
which is equally inconsistent with the article.

3Fabbri et al. [2020] do not specify whether they use BART-base or BART-large.
4The chrF metric [Popović, 2015] is reported in percentages instead of in the range [0, 1] in our case.
5https://huggingface.co/datasets/EdinburghNLP/xsum/viewer/default/validation

42

https://huggingface.co/datasets/EdinburghNLP/xsum/viewer/default/validation

BART-base after supervised fine-tuning
(A) Sam Sodje has been remanded in custody after appearing in court accused

of embezzling £1m from a sports charity in Nigeria.
(B) Middlesex batsman Adam Voges has been ruled out for the rest of the season

with a hamstring injury.
(C) The Duchess of Cambridge has been photographed for the first time in

British Vogue’s 100th anniversary issue.
(D) Google has appointed the former administrator of notorious social network-

ing site 4chan to lead its social networking efforts.
(E) Three people have been charged in connection with an aggravated vehicle

theft in north Belfast.
BART-base after 800 RL updates
(A) Sam, from Kent, Efe and Bright, of Greater Manchester, and Efe Sodje, of

Bexley, have denied fraudulent trading charges relating to the Sodje Sports
Foundation.

(B) Middlesex batsman Adam Voges has been ruled out for the rest of the season
with a calf injury.

(C) The Duchess of Cambridge has been photographed in a photographic shoot
for British Vogue 100: A Century of Style.

(D) Chris Poole, the administrator of 4chan, has joined Google’s social network-
ing site, Bradley Horowitz.

(E) A man, aged 19, and a boy, aged 16, have been charged with six counts of
aggravated vehicle taking in Belfast.

Table 6.3: The first five samples on XSum validation set. At the top are outputs after
supervised fine-tuning. At the bottom are outputs after 800 updates of self-learning.

(C) (SFT) The summary captures the main point of the article and contains no serious
errors. However, as per the article, the duchess was not photographed for the
first time ever, rather it was the first time she did so for a magazine.

(RL) Compared to (SFT), the summary specifies the name “British Vogue 100:
A Century of Style”. According to the article, this is the name of an exhibition
where the photos will also be displayed and which collaborated with Vogue on
the photographic shoot. However, the formulation in the summary is mislead-
ing, because the photos were primarily taken for the magazine. Furthermore,
readability is hurt by the redundant repetition in the phrase “photographed in
a photographic shoot”.

(D) (SFT) The summary captures the main point of the article but lacks detail. More-
over, it is inconsistent with the article in that the article does not mention that
the person in question will have a leadership position.

(RL) Compared to (SFT), the summary adds the piece of information that the
person in question is named Chris Poole (which is correct as per the article)
and discards the inconsistent piece of information about leadership. However,
it lacks coherence because of the odd mention of Bradley Horowitz, whom the
article quotes welcoming Chris Poole to Google. It is also inconsistent to call

43

Chris Poole “the administrator of 4chan” because the article mentions that he
has already stepped down.

(E) (SFT) The summary captures the basic message of the article but contains factual
errors. As per the article, two people have been involved in the incident (not
three). Moreover, the article does not mention north Belfast, but rather only
the Belfast Magistrates’ Court. It is debatable whether that implies that the
incident occurred in Belfast.

(RL) Compared to (SFT), the summary correctly lists two actors together with
their age. It also adds the correct information that there were six counts of
theft. Furthermore, it discards the incorrect adjective “north” when talking
about Belfast.

6.3 Human Evaluation
We conduct a human evaluation of the generated summaries on the first 50 test set samples
from XSum using our custom browser application built with Streamlit. A screenshot of
this application is shown in Figure 6.4. The user is presented with general instructions,
a definition for each evaluated metric, an XSum article, and five different summaries
generated from the evaluated models. The generation was done in the same way as in
Section 6.2. Crucially, the presented summaries are shuffled randomly for each example
so that the user cannot tell which one was generated from which model.

We take heavy inspiration from Fabbri et al. [2020] in designing the axes on which
summaries are evaluated. However, we discard their Coherence metric which measures
inter-sentence coherence since XSum summaries mostly consist of just one sentence. In
the end, we use the following three metrics:

• relevance – measures how well the summary captures key points of the article,

• consistency – measures whether the facts in the summary are consistent with the
facts in the original article,

• readability – measures the grammatical, stylistic, and logical quality of the summary
when read by itself (without the original article).

In statistical terms, relevance can be roughly thought of as recall and consistency as
precision.

The whole evaluation was performed by just one annotator (the author of this thesis).
The resulting average scores for BART-base and BART-large after supervised fine-tuning
and after self-learning are listed in Table 6.4 and plotted in Figure 6.2. In addition to
the trained models, we include the score for reference summaries from XSum under the
label reference. For a better insight into the distribution of scores, we plot the individual
scores on relevance and consistency from human evaluation in Figure 6.3.

The results suggest that the self-supervised training improved the amount of relevant
information included in the summaries (relevance) as well as its accuracy (consistency).
At the same time, it did not induce any detriment in readability. Another trend to
observe is that BART-large consistently gives better scores than BART-base. However,
to formulate a definitive conclusion on any of these trends, we would need more annotators
evaluating more samples.

44

Model Relevance Consistency Readability
BART-base SFT 3.54 3.42 4.62
BART-base RL 3.92 3.56 4.70
BART-large SFT 3.68 3.54 4.64
BART-large RL 3.98 3.94 4.84
reference 3.70 3.46 4.80

Table 6.4: Average scores from human evaluation. The two highest scores on each metric
are bolded.

Figure 6.2: Average scores from human evaluation.

Interestingly, the reference summaries from XSum score relatively low on consistency
and also on relevance. After inspecting the samples and scores qualitatively,6 we believe
this is due to the way XSum was created which we already alluded to in Section 5.3.
Specifically, the summary was taken to be the first sentence of a BBC news article and
was subsequently removed from the article. However, some crucial information is often
only contained in this first sentence and therefore the XSum article does not entail the
XSum summary. This leads to the reference summary being marked low on consistency.
It also means that some parts of the summary might not be relevant with respect to the
article, causing a low score on relevance.

Considering these shortcomings of the XSum reference summaries, part of the value
of a self-supervised approach is unshackling the models from having to maximize their
likelihood.

6This analysis was only done after all the scores were recorded.

45

(a) Relevance scores from human evaluation.

(b) Consistency scores from human evaluation.

Figure 6.3: Individual scores from human evaluation displayed as a scatter plot. Over-
lapping dots are moved to remove the overlap.

46

Figure 6.4: Screenshot of the browser application used for human evaluation (cropped).

47

Conclusion
We introduced a novel dense reference-free reward function for summarization. Its core
idea is to estimate the importance of summary tokens based on the impact that masking
them has on the prediction of the original article. We then used the reward function
for reinforcement learning, improving some summarization capabilities of BART. This
improvement was observed both on reference-free automatic metrics and in human eval-
uation.

Because of the complexity of the final self-learning pipeline, we designed and tested
its components in separation. First, we obtained baseline checkpoints via supervised fine-
tuning. Then we implemented and tested the reinforcement learning algorithm using an
artificial task of maximizing the number of output words that start with the letter T. The
reward function for summarization was also designed separately, choosing from a number
of different strategies and hyperparameters using two custom automatic metrics. Finally,
we connected all the pieces together for self-supervised training of BART.

We evaluated the final checkpoints on the test set using 12 automatic metrics from the
SummEval package and 3 manual metrics. The results indicate that the self-supervised
approach causes models to less adhere to the reference summaries and improves their
performance on all reference-free metrics in nearly all cases. We believe that this validates
the viability of our approach and opens the door to future research.

6.4 Future Work
There remains a lot of work to be done in the area of summarization via reinforcement
learning, including building on the results of this thesis. In this section, we highlight some
of the possible avenues of future work.

Reward Function Improvement and Evaluation
While the general idea of approximating the importance of a phrase by masking it and ob-
serving the increase of predictor perplexity is simple, there are numerous implementation
choices with non-trivial interdependence. Many of them remain unexplored.

For example, instead of masking phrases by replacing them with random tokens, the
masking could be done by replacing words with other words that are close in a semantic
contextual embedding such as one obtained from BERT [Devlin et al., 2018]. This would
be to address the issue introduced in Section 5.3.2 where an incorrect piece of informa-
tion might still improve predictor performance because it is in some way related to the
correct information. The example we gave was that masking the mention of Inverness
hurts predictor performance even though the article is about Dundee because both are
cities in Scotland. If instead of completely obscuring “Inverness” it was replaced with e.g.
Dunfermline (another city in Scotland), the perplexity increase could be negated, elimi-
nating the positive reward on “Inverness”. This is because presumably “Dunfermline” is
as helpful as “Inverness” when the actual city is Dundee.

Our reinforcement learning implementation might also be tested with an entirely dif-
ferent reward function architecture, for example, the Attention Based Credit introduced
by Chan et al. [2024].

48

Besides the reward function design, there is room for improvement in the evaluation
procedure of reward functions. We introduced two evaluation metrics in Section 5.2.
Future work might empirically explore their correlation with human judgement regarding
the ability of reward function to recognize important summary tokens.

Reinforcement Learning Improvements
Regarding the reinforcement learning logic, we only implemented the REINFORCE al-
gorithm. This leaves room for many future improvements, most notably implementing
the Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017]. Even with
REINFORCE, future work might use a value network computing state values for better
baseline estimation.

Other Training Strategies
We only explored the in-domain self-learning setting where both the supervised fine-tuning
and the self-learning were done on different parts of the same dataset. This leaves for
future work the out-of-domain setting where the self-learning might utilize unlabeled arti-
cles from an entirely different data source, thereby also casting our approach as a domain
adaptation technique.

Usage as a Summarization Metric
While we employed our reward function only as a training signal for reinforcement learn-
ing, it could also be used as a basis for a summarization metric. For this, it is necessary
to define a consistent way of reducing the dense per-token reward to a scalar per-sequence
reward. The resulting metric should then be rigorously tested with human evaluation.

One benefit of this metric is that it would provide detailed per-token scores for better
interpretability.

Work on the Open-Source Ecosystem
During our work, we found that many useful open-source libraries in the field of sum-
marization and reinforcement learning are no longer maintained. This makes them un-
necessarily difficult to install and unable to capture recent trends in these fields. Most
importantly, this is the case for RL4MLs and SummEval. We created pull requests to
both of these libraries to make them easier to install, but there remains the need for more
thorough refactoring and an active community of maintainers.

49

Bibliography
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning.
In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I 11,
pages 12–27. Springer, 2011.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. Advances in neural information processing systems, 30, 2017.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan,
Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej
Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason
Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias
Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet,
Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. Py-
Torch 2: Faster machine learning through dynamic Python bytecode transformation
and graph compilation. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Vol-
ume 2 (ASPLOS ’24). ACM, 4 2024. doi: 10.1145/3620665.3640366. URL https:
//pytorch.org/assets/pytorch2-2.pdf.

Kristjan Arumae and Fei Liu. Guiding extractive summarization with question-answering
rewards. arXiv preprint arXiv:1904.02321, 2019.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Consti-
tutional AI: Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022b.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics,
pages 679–684, 1957.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

50

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Beyond
sparse rewards: Enhancing reinforcement learning with language model critique in text
generation. arXiv preprint arXiv:2401.07382, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and
Pierre-Yves Oudeyer. Grounding large language models in interactive environments
with online reinforcement learning. In International Conference on Machine Learning,
pages 3676–3713. PMLR, 2023.

Alex J Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for
free in reinforcement learning from human feedback. arXiv preprint arXiv:2402.00782,
2024.

Ping Chen, Fei Wu, Tong Wang, and Wei Ding. A semantic qa-based approach for
text summarization evaluation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with
sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information
processing systems, 30, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Matan Eyal, Tal Baumel, and Michael Elhadad. Question answering as an automatic
evaluation metric for news article summarization. arXiv preprint arXiv:1906.00318,
2019.

Alexander R Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard
Socher, and Dragomir Radev. SummEval: Re-evaluating summarization evaluation.
arXiv preprint arXiv:2007.12626, 2020.

Kavita Ganesan. ROUGE 2.0: Updated and improved measures for evaluation of sum-
marization tasks. arXiv preprint arXiv:1803.01937, 2018.

Yang Gao, Wei Zhao, and Steffen Eger. SUPERT: Towards new frontiers in unsuper-
vised evaluation metrics for multi-document summarization. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 1347–1354,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.124. URL https://aclanthology.org/2020.acl-main.124.

Tirthankar Ghosal, Ondřej Bojar, Marie Hledíková, Tom Kocmi, and Anna Nedoluzhko.
Overview of the second shared task on automatic minuting (AutoMin) at INLG 2023. In
Proceedings of the 16th International Natural Language Generation Conference: Gen-
eration Challenges, pages 138–167, 2023.

51

https://aclanthology.org/2020.acl-main.124

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds,
Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Im-
proving alignment of dialogue agents via targeted human judgements. arXiv preprint
arXiv:2209.14375, 2022.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. News summarization and evaluation in
the era of GPT-3. arXiv preprint arXiv:2209.12356, 2022.

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung, Aman Tiwari, Jonathan Tow,
Stella Biderman, Quentin Anthony, and Louis Castricato. trlX: A framework for large
scale reinforcement learning from human feedback. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pages 8578–8595, Singa-
pore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.530. URL https://aclanthology.org/2023.emnlp-main.530.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend.
CoRR, abs/1506.03340, 2015. URL http://arxiv.org/abs/1506.03340.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata
Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch
deep reinforcement learning of implicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton
Bishop, Victor Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement learning
from human feedback with AI feedback. arXiv preprint arXiv:2309.00267, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehension.
CoRR, abs/1910.13461, 2019. URL http://arxiv.org/abs/1910.13461.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. arXiv preprint arXiv:2305.20050, 2023.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text
summarization branches out, pages 74–81, 2004.

Elena Lloret and Manuel Palomar. Text summarisation in progress: a literature review.
Artificial Intelligence Review, 37:1–41, 2012.

52

https://aclanthology.org/2023.emnlp-main.530
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1910.13461

Hans Peter Luhn. The automatic creation of literature abstracts. IBM Journal of research
and development, 2(2):159–165, 1958.

Ramesh Nallapati, Bing Xiang, and Bowen Zhou. Sequence-to-sequence RNNs for text
summarization. CoRR, abs/1602.06023, 2016. URL http://arxiv.org/abs/1602.
06023.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme summarization.
volume abs/1808.08745, 2018.

OpenAI. GPT-3.5 Turbo. https://platform.openai.com/docs/models/gpt-3-5,
2022a. Accessed: 2024-04-19.

OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt, 2022b. Accessed:
2024-04-09.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

Ramakanth Pasunuru and Mohit Bansal. Multi-reward reinforced summarization with
saliency and entailment. arXiv preprint arXiv:1804.06451, 2018.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for ab-
stractive summarization. arXiv preprint arXiv:1705.04304, 2017.

Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings
of the tenth workshop on statistical machine translation, pages 392–395, 2015.

M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, Jul 1980. URL
https://tartarus.org/martin/PorterStemmer/def.txt. Accessed: 2024-04-09.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of machine learning research, 21(140):
1–67, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-Baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/
papers/v22/20-1364.html.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet
Sifa, Christian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement
learning (not) for natural language processing?: Benchmarks, baselines, and building

53

http://arxiv.org/abs/1602.06023
http://arxiv.org/abs/1602.06023
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/blog/chatgpt
https://tartarus.org/martin/PorterStemmer/def.txt
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

blocks for natural language policy optimization. 2022. URL https://arxiv.org/abs/
2210.01241.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel.
Self-critical sequence training for image captioning. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 7008–7024, 2017.

Natalie Schluter. The limits of automatic summarisation according to ROUGE. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics, pages 41–45. Association for Computational Linguistics, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Thomas Scialom, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano. Answers
unite! unsupervised metrics for reinforced summarization models. In Kentaro Inui,
Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3246–
3256, Hong Kong, China, November 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1320. URL https://aclanthology.org/D19-1320.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization
with pointer-generator networks. CoRR, abs/1704.04368, 2017. URL http://arxiv.
org/abs/1704.04368.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear
memory cost. In International Conference on Machine Learning, pages 4596–4604.
PMLR, 2018.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier.
A contrastive framework for neural text generation. Advances in Neural Information
Processing Systems, 35:21548–21561, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Wilson L Taylor. “cloze procedure”: A new tool for measuring readability. Journalism
quarterly, 30(4):415–433, 1953.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Oleg Vasilyev, Vedant Dharnidharka, and John Bohannon. Fill in the BLANC: Human-
free quality estimation of document summaries. arXiv preprint arXiv:2002.09836, 2020.

54

https://arxiv.org/abs/2210.01241
https://arxiv.org/abs/2210.01241
https://aclanthology.org/D19-1320
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
Nathan Lambert, and Shengyi Huang. TRL: transformer reinforcement learning.
https://github.com/huggingface/trl, 2020.

Ronald J. Williams. A class of gradient-estimating algorithms for reinforcement learning
in neural networks. In Proceedings of the IEEE First International Conference on
Neural Networks, San Diego, CA, 1987.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229–256, 1992. ISSN 1573-0565. doi:
10.1007/BF00992696. URL https://doi.org/10.1007/BF00992696.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstra-
tions, pages 38–45, Online, October 2020. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu,
Noah A Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback
gives better rewards for language model training. Advances in Neural Information
Processing Systems, 36, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario
Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from hu-
man preferences. arXiv preprint arXiv:1909.08593, 2019.

55

https://github.com/huggingface/trl
https://doi.org/10.1007/BF00992696
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A. Grid Search Results

1.0 1.1 1.2 1.3 1.4 1.5
Distractor Summary Mann Whitney Statistic 1e8

3.4

3.6

3.8

4.0

4.2

Di
st

ra
ct

or
 A

rti
cle

 W
ilc

ox
on

 S
ta

tis
tic

1e8

(a) mask_token = <mask>, predictor = predictor_base-random

1.0 1.1 1.2 1.3 1.4 1.5
Distractor Summary Mann Whitney Statistic 1e8

3.4

3.6

3.8

4.0

4.2

Di
st

ra
ct

or
 A

rti
cle

 W
ilc

ox
on

 S
ta

tis
tic

1e8

(b) mask_token = <mask>, predictor = predictor_base-mask

Figure A.1: Paired and independent test statistics of grid search results.

56

1.0 1.1 1.2 1.3 1.4 1.5
Distractor Summary Mann Whitney Statistic 1e8

3.4

3.6

3.8

4.0

4.2

Di
st

ra
ct

or
 A

rti
cle

 W
ilc

ox
on

 S
ta

tis
tic

1e8

(c) mask_token = <random>, predictor = predictor_base-mask

Figure A.1: Paired and independent test statistics of grid search results (cont.)

57

B. Technical Details
B.1 SummEval Package Installation
We use the official Python package released together with the SummEval paper [Fabbri
et al., 2020] available at https://github.com/Yale-LILY/SummEval. Along with stan-
dard installation using pip we found the following steps to be necessary. Note that they
are not listed in the package’s setup.py file and thus need to be executed manually.

• Install the pyrouge package from https://github.com/bheinzerling/pyrouge.
git.

• Install the wmd package available at PyPi.

• Install the scikit-learn in the exact version 0.21.3. The version is important
because of the S3 metric since its associated model cannot be loaded using newer
versions. Unfortunately, this package version is not compatible with Python versions
newer than 3.7. Since our environment only offers Python versions from 3.8 up we
decided to skip this step and not use the S3 metric.

• Download NLTK data with the following command:
python -c "import nltk; nltk.download(’stopwords’)"

• Modify the following environment variables. We assume that <summ_eval> is the
absolute path where the SummEval repository was cloned.

– ROUGE_HOME=<summ_eval>/evaluation/summ_eval/ROUGE-1.5.5/
– CORENLP_HOME=<summ_eval>/evaluation/summ_eval/

stanford-corenlp-full-2018-10-05/
– PYTHONPATH=$PYTHONPATH:<summ_eval>/evaluation/summ_eval

The installation unfortunately constraints many packages to their old versions, no-
tably forcing torch version 1.13. This is incompatible with the rest of our codebase.
For this reason, we set up SummEval in a separate Python virtual environment and run
the metric calculation as a separate process, using inter-process communication to ex-
change JSON messages between the environments. To this end, we modify the package’s
calc_scores.py to simplify its interface and make it produce machine-readable output.

Along with these steps we had to make the following modifications to the codebase.
We create pull requests back to the original repository for both of these issues.

• In sentence_movers_utils.py and calc_scores.py, substitute all occurrences of
stderr with sys.stderr.

• In rouge_we_metric.py on line 17, use the HTTPS protocol instead of HTTP.
Specifically, substitute http://u.cs.biu.ac.il/ with https://u.cs.biu.ac.il/.
Without this modification, the download fails on timeout.

We created a Dockerfile which automatically performs all the steps listed.
The metric calculation is then controlled using a Gin1 configuration file. We use the

provided default configuration, modifying only batch sizes.
1https://github.com/google/gin-config

58

https://github.com/Yale-LILY/SummEval
https://github.com/bheinzerling/pyrouge.git
https://github.com/bheinzerling/pyrouge.git
http://u.cs.biu.ac.il/
https://u.cs.biu.ac.il/
https://github.com/google/gin-config

C. Contents of Electronic
Attachment
code.zip

src – source codes for the whole training pipeline and experiments

train.py

eval.py

rewards.py

masks.py

dataset.py

. . .

summ_eval_wrapper

calc_scores.py – modified version of the SummEval entry script

config – configuration files for SummEval

summ_eval.config

summ_eval-small_bs.config

experiments – various stand-alone experiments and visualizations

predictor_viz.py

grid_search.py

dataset_stats.py

. . .

human_eval

human_eval.py – processing and visualization of human evaluation data

human_eval_app.py – browser application for human evaluation

summaries.jsonl – sampled summaries for human evaluation

ratings.json – scores recorded from human evaluation

Dockerfile

requirements.txt

requirements-summ_eval.txt

59

	Introduction
	Background
	Summarization
	ROUGE

	Reinforcement Learning
	REINFORCE

	BART Architecture
	Related Work

	Datasets and Models
	Datasets
	Model

	Supervised Fine-Tuning
	Fine-Tuning
	Context Length Extension

	Evaluation
	Results

	Reinforcement Learning for Language Models
	Existing RL Libraries
	TRL: Transformer Reinforcement Learning
	trlX
	RL4LMs

	Custom Implementation
	Reinforcement Learning Formulation
	Action Generation
	Calculation of Cumulative Discounted Returns
	Reference KL-Divergence Anchoring
	Qualitative Analysis

	Test Task
	Dataset
	Results

	Reward Function for Summarization
	Our Approach
	Masking Strategies
	Confusion Coefficients
	IDF Weights
	Supervised Fine-Tuning of Predictor

	Quantitative Analysis
	Paired Test Using a Distractor Article
	Independent Test Using a Distractor Summary
	Grid Search

	Qualitative Analysis
	Interactive Browser Application
	Reward Examples
	Cross-Entropy Error Examples

	Self-Supervised Summarization Task
	Training
	Automatic Evaluation
	Discussion of the Automatic Results
	Discussion of Specific Examples

	Human Evaluation

	Conclusion
	Future Work

	Bibliography
	Grid Search Results
	Technical Details
	SummEval Package Installation

	Contents of Electronic Attachment

