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Fine properties of functions and
operators

Department of Mathematical Analysis

Supervisor of the master thesis: prof. RNDr. Luboš Pick, CSc., DSc.
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Introduction
Sobolev embeddings have been closely studied for several decades, ever since
the period in which they were pioneered in the works of Gagliardo [6], Sobolev
[19, 20] and Nirenberg [16]. Isoperimetric inequalities were explored by De Giorgi
[4] and Federer and Fleming [5]. Some time later, Sobolev embeddings have been
connected with isoperimetric inequalities in the works of Maz’ya [11, 12]. The
study of the mentioned connection has been rapidly developing ever since, and
in 2015 a comprehensive paper [2] presented a unified approach to the topic, and
moreover, managed to find the optimal target spaces in the Sobolev embeddings
on fairly general underlying measure spaces.

The aim of the thesis is to exploit the equivalence of Sobolev embeddings and
isoperimetric inequalities in order to connect Sobolev embeddings with bound-
edness of two supremum operators SI and TI , which are formally introduced in
Definition 2.2, in manner similar to that in [9] and [10], where I is the isoperimet-
ric function of the domain. It turns out that the boundedness of SI is related to
the optimal domain spaces in the Sobolev embedding, and TI corresponds to the
optimal target spaces in the Sobolev embedding. We prove the intimate relation
between Sobolev embeddings and the action of supremum operators under the
assumptions of Theorem 3.13, which cover important Maz’ya class of domains
Jα for α ∈

[︂
1
n′ , 1

)︂
. As the results rely on the boundedness of the Hardy-type

operator f ↦→ 1
t

∫︁ t
0 f(s) ds, they are not generally applicable to J1, as the func-

tion 1
I

is not integrable near zero. We in fact show that the norm of the optimal
target space cannot be expressed in a manner stated in Theorem 3.13 for certain
functions I ∈ J1 which is contained in a discussion after the mentioned theorem.
Nonetheless, many results only require a certain condition regarding the function
I, namely ∫︂ t

0

I(s)
s

ds ≲ I(t), t ∈ (0, 1). (1)

We show that this condition is always satisfied in the product probability spaces.
Using this condition we show the boundedness of the operator TI on the associate
spaces of the optimal target spaces. However, in order to prove the analogous
result for the operator SI , we further require a condition similar to (1), namely∫︂ t

0

ds

I(s) ≲
t

I(t) , t ∈ (0, 1). (2)

It is easy to see that this condition enforces integrability of 1
I

and thus more
restraining than (1) in this way.

The boundedness of TI and SI was previously studied for example in [8].
There, they are studied in the context of Orlicz LA and Gamma Γp,ϕ spaces.
Hence, once the equivalence of the Sobolev embeddings with boundedness of TI

and SI is established, it allows us to partially recover and extend such results.

The work consists of four chapters. The first and preliminary chapter covers
background results and is divided into four sections. First we recall the notion of
the nonincreasing rearrangement and so-called rearrangement-invariant Banach
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function spaces, which will form our main framework. It will, however, be nec-
essary to delve a bit deeper and work with quasi-Banach function spaces, such
as the weak Lebesgue space L1,∞. The second section covers Sobolev spaces
built upon rearrangement-invariant spaces and their connection to isoperimetric
inequalities. Third section is devoted to the interpolation theory and, in partic-
ular, to the theory of the K-functional. The fourth and last section contains the
characterization of boundedness of a general supremum operator on a weighted
Lebesgue space.

In the second chapter we define supremum operators SI and TI and study their
basic properties. The setting here will be that I is an increasing concave bijection
of (0, 1) onto itself. It is mainly due to operator SI , and the Marcinkiewicz type
space mI , that we are forced to work with quasi-Banach function spaces. However,
the condition (2) characterizes when the mI is in fact a Banach space, and implies
subaditivity of SI . The end of the chapter then calls into play the condition (1)
and we show its equivalence to two other statements, which will play a crucial
role in the main, third chapter.

The third chapter finally connects optimal spaces with the boundedness of
supremum operators. In its first section we present an alternative description
of the associate optimal norm via a functional which admits boundedness of the
operator SI (Theorem 3.4). This is in turn used to describe the optimal target
norm. Starting with the second section, we find an alternative description of the
optimal target norm under the assumption of boundedness f ↦→ 1

t

∫︁ t
0 f(s) ds. The

culmination of the chapter is then the third section which establishes equivalence
between optimal spaces and boundedness of TI or SI on their associate spaces.

The fourth and final chapter summarises the conditions which have been used
throughout the thesis. We show that the product probability spaces satisfy the
main condition (1). We then translate Theorem 3.18 into examples.
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1. Preliminaries

1.1 Rearrangement invariant spaces
Let (Ω, µ) be a nonatomic σ-finite measure space. We set

M(Ω, µ) = {f : Ω → [−∞, ∞] : f is µ-measurable in Ω},

M+(Ω, µ) = {f ∈ M(Ω, µ) : f ≥ 0}

and

M0(Ω, µ) = {f ∈ M(Ω, µ) : f is finite µ-a.e. in Ω}.

We will often, for brevity, write only M(Ω) if there is no risk of confusion,
and similarly for the other two sets. When Ω ⊂ R is measurable, unless stated
otherwise, we will consider the Lebesgue measure which we will be denoted by λ.
When considering a unit interval (0, 1), which will be of particular interest to us,
we will simply write M(0, 1).

Given f ∈ M(Ω), we define the distribution function of f , denoted f∗, by

f∗(λ) = µ({|f | > λ)}), λ ∈ [0, ∞). (1.1)

Distribution function of a measurable function is a nonnegative, nonincreasing
and right-continuous function on [0, ∞) [1, Chapter 2, Proposition 1.3]. Given
f, g ∈ M(Ω), we say that they are equimeasurable if f∗ = g∗ and write f ∼ g.

Given f ∈ M(Ω), we define its nonincreasing rearrangement, denoted f ∗, by

f ∗(t) = inf{λ ≥ 0: f∗(λ) ≤ t}, t ∈ [0, ∞). (1.2)

As the nonincreasing rearrangement plays a crucial role in the thesis, we list the
basic properties of the nonincreasing rearrangement, the proof of which can be
found in [1, Chapter 2, Proposition 1.7].

Fact 1.1. Let f, g, fn ∈ M(Ω), n ∈ N, a ∈ R and 0 < p < ∞. Then f ∗ is
a nonnegative, nonincreasing and right-continuous function on [0, ∞) and the
following holds:

(i) (af)∗ = |a| f ∗,

(ii) |f | ≤ |g| µ-a.e. =⇒ f ∗ ≤ g∗.

(iii) |f | ≤ lim inf |fn| µ-a.e. =⇒ f ∗ ≤ lim inf f ∗
n, in particular, |fn| ↗ |f | µ-a.e.

=⇒ f ∗
n ↗ f ∗,

(iv) if f∗ is decreasing and continuous, then f ∗ = (f∗)−1,

(v) f ∼ f ∗,

(vi) (|f |p)∗ = (f ∗)p,

(vii) (f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2), t1, t2 > 0.
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The nonincreasing rearrangement satisfies Hardy-Littlewood inequality [1, Chap-
ter 2, Theorem 2.2]∫︂

Ω
|f(x)g(x)| dµ(x) ≤

∫︂ ∞

0
f ∗(t)g∗(t) dt, f, g ∈ M(Ω). (1.3)

In particular,∫︂
E

|f(x)| dµ(x) ≤
∫︂ µ(E)

0
f ∗(t) dt, f ∈ M(Ω), E ⊂ Ω measurable.

As Fact 1.1 suggests, f ↦→ f ∗ need not be subaditive in the sense that
(f + g)∗ ≤ f ∗ + g∗ and only satisfies the weaker condition (vii). It turns out
that passing from f ∗ to its Hardy average, which we will call the maximal non-
increasing rearrangement, defined by

f ∗∗(t) = 1
t

∫︂ t

0
f ∗(s) ds, f ∈ M(Ω), t ∈ (0, ∞), (1.4)

we gain subaditivity. To be precise, it holds that (f + g)∗∗ ≤ f ∗∗ + g∗∗ for
f, g ∈ M(Ω).

As the maximal nonincreasing rearrangement will, too, be of great importance,
we list its properties. The proof can be found in [1, Chapter 2, Proposition 3.2]
and in [1, Chapter 2, Theorem 3.4].

Fact 1.2. Let f, g, fn ∈ M(Ω), n ∈ N, and a ∈ R. Then f ∗∗ is nonnegative,
nonincreasing and continuous on (0, ∞), and the following holds:

(i) f ∗∗ ≡ 0 ⇐⇒ f = 0 µ-a.e.,

(ii) f ∗ ≤ f ∗∗,

(iii) |f | ≤ |g| µ-a.e. =⇒ f ∗∗ ≤ g∗∗,

(iv) (af)∗∗ = |a| f ∗∗,

(v) |fn| ↗ |f | µ-a.e. =⇒ f ∗∗
n ↗ f ∗∗,

(vi) (f + g)∗∗ ≤ f ∗∗ + g∗∗.

We are finally ready to define the notion of a rearrangement-invariant (r.i.)
Banach function norm.

Definition 1.3. A mapping ρ : M+(0, 1) → [0, ∞] is called rearrangement in-
variant Banach function norm, or r.i. norm for short, if it satisfies the following
conditions:

(P1) ρ(f) = 0 ⇐⇒ f = 0 a.e.,
ρ(af) = aρ(f), f ∈ M+(0, 1), a ≥ 0,
ρ(f + g) ≤ ρ(f) + ρ(g), f, g ∈ M+(0, 1),

(P2) f ≤ g a.e. =⇒ ρ(f) ≤ ρ(g), f, g ∈ M+(0, 1),

(P3) fn ↗ f a.e. =⇒ ρ(fn) ↗ ρ(f), f, fn ∈ M+(0, 1), n ∈ N,

(P4) ρ(χ(0,1)) < ∞,
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(P5)
∫︁ 1

0 f(t) dt ≲ ρ(f), f ∈ M+(0, 1),

(P6) ρ(f) = ρ(f ∗), f ∈ M+(0, 1).

Sometimes we will work with a functional which is not a norm, but still satisfies
rearrangement invariance – so-called r.i. quasinorm.

Definition 1.4. A mapping ρ : M+(0, 1) → [0, ∞] is called rearrangement-
invariant quasi-Banach function norm, or r.i.q. norm for short, if it satisfies
conditions (P2), (P3), (P4), (P6) and

(Q1) ρ(f) = 0 ⇐⇒ f = 0 a.e.,
ρ(af) = aρ(f), f ∈ M+(0, 1), a ≥ 0,
∃C ≥ 1 ρ(f + g) ≤ Cρ(f) + ρ(g), f, g ∈ M+(0, 1).

When ρ is an r.i. quasinorm, we define its associate functional, ρ′, by

ρ′(f) = sup
ρ(g)≤1

∫︂ 1

0
f(t)g(t) dt, f ∈ M+(0, 1). (1.5)

An immediate consequence of the definition of the associate functional is Hölder’s
inequality ∫︂ 1

0
f(t)g(t) dt ≤ ρ(f)ρ′(g), f, g ∈ M+(0, 1), (1.6)

under the convention 0 · ∞ = 0 on the right-hand side.
By [1, Chapter 1, Theorem 2.7] and [1, Chapter 2, Proposition 4.2] if ρ is an

r.i. norm, its associate norm ρ′ is an r.i. norm as well and obeys the principle of
duality, that is,

ρ′′ := (ρ′)′ = ρ. (1.7)
Given f, g ∈ M+(0, 1), Hardy’s lemma [1, Chapter 2, Proposition 3.6] asserts
that

f ∗∗(t) ≤ g∗∗(t), t ∈ (0, 1) =⇒
∫︂ 1

0
f ∗(t)h(t) dt ≤

∫︂ 1

0
g∗(t)h(t) dt (1.8)

for every h ∈ M+(0, 1) nonincreasing. An important consequence of Hardy’s
lemma and the principle of duality is the Hardy-Littlewood-Pólya (HLP) principle
[1, Chapter 2, Theorem 4.6], which reads as follows:

f ∗∗(t) ≤ g∗∗(t), t ∈ (0, 1) =⇒ ρ(f) ≤ ρ(g) (1.9)

whenever ρ is an r.i. norm.
For an r.i.q norm ρ we further define X = X(ρ) as a collection of all f ∈

M(0, 1) such that ρ(|f |) < ∞. Equipping X with a quasinorm defined by ∥f∥X :=
ρ(|f |) for f ∈ X, we immediately see that X = (X, ∥ · ∥X) is a quasinormed
linear space. By [1, Chapter 1, Theorem 1.6] and [15, Corollary 3.8], (X, ∥ ·
∥X) is a complete metric space, and spaces defined in this manner are called
rearrangement-invariant quasi-Banach function spaces or, as we will often say for
brevity, r.i.q. spaces. If ρ is in fact an r.i. norm, the space X = X(ρ) is called
rearrangement-invariant Banach function space or briefly r.i. space. By X ′ we
denote the space corresponding to ρ′ and call it the associate space of X.

By Xb we denote the closure of simple functions in the space X.
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The fundamental function corresponding to an r.i.q. space X, φX , is defined
by

φX(t) = ∥χ(0,t)∥X , t ∈ (0, 1). (1.10)
The fundamental function of r.i. space X satisfies [1, Chapter 2, Theorem 5.2]

φX(t) · φX′(t) = t, t ∈ (0, 1).

A corollary to this is that if X is an r.i. space, then φX is a quasiconcave
function, that is

t ↦→ φX(t) is nondecreasing, t ↦→ φX(t)
t

is nonincreasing

and φX(t) = 0 ⇐⇒ t = 0 [1, Chapter 2, Corollary 5.3].
Whenever φ is a quasiconcave function, by [1, Chapter 2, Proposition 5.10]

there exists its least concave majorant, say φ̃, which satisfies
1
2 φ̃(t) ≤ φ(t) ≤ φ̃(t), t ∈ (0, 1).

Furthermore, every r.i. space X can be equivalently renormed so that φX is a
concave function [1, Chapter 2, Proposition 5.11] – we will from now on assume
that every r.i. space has been renormed in this fashion.

We write A ≲ B if A is dominated by a constant multiple of B, independent of
all quantities involved; these quantities will usually be evident from the context.
By A ≈ B we mean that both A ≲ B and A ≳ B.

Let now X and Y be two r.i.q. spaces. We write X ⊂ Y if f ∈ X ⇒ f ∈ Y .
When T is an operator on M+(0, 1), we say that T is bounded from X to Y if

∥Tf∥Y ≲ ∥f∥X , f ∈ X, (1.11)

and denote this fact by T : X → Y . If X = Y , we say that T is bounded on X.
In the particular case when T = Id, an inclusion operator, we have [1, Chapter
1, Theorem 1.8] and [15, Corollary 3.10]

X ⊂ Y ⇐⇒ Id : X → Y. (1.12)

In other words, inclusions between r.i.q. spaces are always continuous. The fact
that Id : X → Y will be denoted as X ↪→ Y .

We say that an operator T ′ on M+(0, 1) is an associate operator of T if∫︂ 1

0
(Tf)(t)g(t) dt =

∫︂ 1

0
f(t)(T ′g)(t) dt, f, g ∈ M+(0, 1). (1.13)

For two r.i. spaces X and Y one sees that

T : X → Y ⇐⇒ T ′ : Y ′ → X ′ (1.14)

and ∥T∥ = ∥T ′∥.
For s > 0 the dilation operator Es defined for f ∈ M(0, 1) by

(Esf)(t) = f
(︃

t

s

)︃
χ(0,min{s,1})(t) t ∈ (0, 1). (1.15)

It is proved in [1, Chapter 3, Proposition 5.11] for r.i. spaces and, more generally,
in [15, Theorem 3.23] for r.i.q. spaces, that Es is bounded on every r.i.q. space.
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Definition 1.5. Let T be an operator on M+(0, 1) and X and Y be r.i. spaces.
We say that Y is an optimal target space for X under the mapping T , if T : X → Y
and for every r.i. space Z the following implication holds:

T : X → Z =⇒ Y ↪→ Z. (1.16)

Vice versa, we say that X is an optimal domain space for Y under the mapping
T , if T : X → Y and for every r.i. space Z the following implication holds:

T : Z → Y =⇒ Z ↪→ X. (1.17)

In the main chapter we will use the level function which is closely related to
the nondecreasing rearrangement.

Definition 1.6. Let f ∈ M+(0, 1). Then the level function of f , denoted f ◦, is
the derivative of the least concave majorant of t ↦→

∫︁ t
0 f(s) ds, t ∈ (0, 1).

Take note that, as f ∗ is nonincreasing, t ↦→
∫︁ t

0 f ∗(s) ds is a concave function,
and so ∫︂ t

0
f ◦(s) ds ≤

∫︂ t

0
f ∗(s) ds, f ∈ M+(0, 1), t ∈ (0, 1). (1.18)

G. Sinnamon proved in [18, Corollary 2.4] that

∥f ◦∥X′ = ∥f∥X′
d
, f ∈ M+(0, 1). (1.19)

Here, ∥ · ∥X′
d

refers to the down dual associate norm of an r.i. space X, which is
defined by

∥f∥X′
d

= sup
∥g∥X≤1

∫︂ 1

0
f(t)g∗(t) dt, f ∈ M+(0, 1). (1.20)

Evidently ∥f∥X′
d

≤ ∥f∥X′ for every f ∈ M+(0, 1). Observe, however, that
∥f∥X′

d
= ∥f∥X′ whenever f is nonincreasing.

Definition 1.7. Let I : (0, 1) → (0, ∞) be a function. We say that I satisfies ∆2
condition if

I(2t) ≈ I(t), t ∈
(︃

0,
1
2

)︃
,

and denote this fact as I ∈ ∆2.

Classical examples of r.i. spaces would be Lebesgue’s Lp(0, 1) spaces, where
1 ≤ p ≤ ∞, whose norm is defined by

∥f∥p =
(︃∫︂ 1

0
|f(t)|p dt

)︃ 1
p

(1.21)

if 1 ≤ p < ∞ and
∥f∥∞ = ess sup |f | . (1.22)

We use the convention that 1
∞ = 0 · ∞ = 0. Defining p′ = p

p−1 for p ∈ [1, ∞], one
has (Lp)′ = Lp′ .

Classical examples of r.i.q. spaces, which are not normed nor embedded in L1,
are Lebesgue’s Lp spaces with p ∈ (0, 1), whose quasinorm is defined as in (1.21),
or the weak Lebesgue space L1,∞ with a quasinorm defined as

∥f∥1,∞ = sup
0<t<1

tf ∗(t). (1.23)
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There is the largest and the smallest r.i. space. To be precise, by [1, Chapter 2,
Corollary 6.7], it holds true that

L∞ ↪→ X ↪→ L1 (1.24)

for every r.i. space X.
One possible generalization of Lebesgue’s spaces are Lorentz’ Lp,q spaces,

where 1 ≤ p, q ≤ ∞, whose quasinorm is defined by

∥f∥p,q =
⃦⃦⃦
t

1
p

− 1
q f ∗(t)

⃦⃦⃦
q
. (1.25)

It is known that ∥ · ∥p,q is equivalent to an r.i. norm if and only if one of the
following conditions is satisfied:

1 < p < ∞, 1 ≤ q ≤ ∞,

p = q = 1,

p = q = ∞.

1.2 Sobolev spaces over r.i. spaces and isoperi-
metric function

Let Ω ⊂ Rn be a domain, that is, a connected open set. We equip Ω with a finite
measure µ which is absolutely continuous with respect to the Lebesgue measure
with density ω. More precisely,

dµ(x) = ω(x)dx,

where ω is a Borel measurable function satisfying ω(x) > 0 for a.e. x ∈ Ω. Thus,
the measure of an arbitrary measurable set E ⊂ Ω is given by

µ(E) =
∫︂

E
ω(x)dx.

Throughout the thesis we will assume, for simplicity, that µ is normalized in such
a way that µ(Ω) = 1. We now recall the definition of the perimeter of a set with
respect to our space (Ω, µ) and the isoperimetric function.

Definition 1.8. Let E ⊂ Rn be measurable. We define the perimeter of E in
(Ω, µ) by

Pµ(E, Ω) =
∫︂

Ω∩∂M E
ω(x) dHn−1(x).

Here, Hn−1 stands for the n − 1 dimensional Hausdorff measure on Rn and
∂ME denotes the essential boundary of E in the sense of the geometric measure
theory [13, 21].

Definition 1.9. The isoperimetric function of (Ω, µ) is a mapping IΩ,µ : [0, 1] →
[0, ∞] defined by

IΩ,µ(t) = inf
{︃

Pµ(E, Ω): E ⊂ Ω, t ≤ µ(E) ≤ 1
2

}︃
for t ∈

[︃
0,

1
2

]︃
and IΩ,µ(t) = IΩ,µ(1 − t) for t ∈ (1

2 , 1].
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An easy consequence of this definition is the isoperimetric inequality

IΩ,µ(µ(E)) ≤ Pµ(E, Ω), E ⊂ Ω is measurable.

It is evident from the definition that IΩ,µ is a nondecreasing function on [0, 1
2 ].

Further, by [2, Proposition 4.1], we know that IΩ,µ(t) ≲ t
1

n′ for t sufficiently small.
Given an r.i. space X, we define X(Ω) = X(Ω, µ) as the collection of all

u ∈ M(Ω) such that
∥u∥X(Ω) := ∥u∗∥X

is finite. The functional ∥ · ∥X(Ω) defines a norm on X(Ω). The space X(Ω)
endowed with this norm is also called rearrangement-invariant space, and the
space X is called its representation space.

The space X ′(Ω) is then defined analogously via ∥ · ∥X′ .
Throughout the thesis we will, for the most part, not distinguish between

X(Ω) and its representation space, as it will be evident whether we work in X(Ω)
or in X.

Let m ∈ N and X(Ω, µ) be an r.i. space. We define the m-th order Sobolev
space V mX(Ω, µ) as

V mX(Ω, µ) = {u : u is m-times weakly differentiable in Ω
and |∇mu| ∈ X(Ω, µ)}.

(1.26)

The results of [2] do not require one to work exactly with IΩ,µ. It suffices to
have a lower bound in terms of a nondecreasing function. To be precise, we work
with a nondecreasing function I : [0, 1] → [0, ∞) satisfying IΩ,µ(t) ≥ cI(ct), t ∈
[0, 1

2 ] for some c > 0. In view of [2, Proposition 4.2], it is natural to assume that
I(t) ≳ t, t ∈ (0, 1), as this guarantees that V 1L1(Ω) ⊂ L1(Ω) and, consequently,
that V 1X(Ω) ⊂ L1(Ω) for every r.i. space X.

We continue by introducing a pair of integral operators, RI and HI , on
M+(0, 1) which are defined by

RIf(t) = 1
I(t)

∫︂ t

0
f(s) ds, t ∈ (0, 1), (1.27)

and
HIf(t) =

∫︂ 1

t

f(s)
I(s) ds, t ∈ (0, 1). (1.28)

Further, for m ∈ N we set

Rm
I = RI ◦ . . . ◦ RI⏞ ⏟⏟ ⏞

m-times

and Hm
I = HI ◦ . . . ◦ HI⏞ ⏟⏟ ⏞

m-times

. (1.29)

Fubini’s theorem reveals that operators RI and HI are mutually associate. Hence,
Rm

I and Hm
I are also mutually associate for every m ∈ N.

The operator GI is then defined by

GIf(t) = sup
t≤s<1

RIf ∗(s), f ∈ M+(0, 1), t ∈ (0, 1).

Therefore, for every f ∈ M+(0, 1), GIf is a nonincreasing function and RIf ≤
RIf ∗ ≤ GIf and so (RIf)∗ ≤ GIf .
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It holds true that

∥GIf∥X ≈ ∥RIf ∗∥X , f ∈ M+(0, 1), (1.30)

whenever X is an r.i. space [2, Theorem 9.5].
The core result of [2, Theorem 5.1] reads as follows:

Theorem 1.10 (Reduction principle). Let (Ω, µ) be such that IΩ(t) ≳ t. Let
m ∈ N, and let X and Y be r.i. spaces. Then

∥Hm
I f∥Y ≲ ∥f∥X , f ∈ M+(0, 1), (1.31)

implies
V mX(Ω) → Y (Ω). (1.32)

Now, if we consider
∥f∥X′

m
= ∥Rm

I f ∗∥X′ , (1.33)

by [2, Theorem 5.4] we know the following.

Theorem 1.11 (Optimal target). The functional ∥ · ∥X′
m

defined in (1.33) is an
r.i. norm, whose associate norm, ∥ · ∥Xm, satisfies

V mX(Ω) → Xm(Ω). (1.34)

Moreover, if (1.32) implies (1.31) (and so they are equivalent), then the space
Xm(Ω) is the optimal target space in (1.34) among all r.i. spaces.

Unless stated otherwise, by YX we will mean the optimal target space of X
under the mapping HI , and by XY we mean the optimal domain space of Y under
the mapping HI (if it exists). By the symbol Y ′

X we understand (YX)′ and the
symbol YXZ

stands for Y(XZ).
The existence of the optimal target space YX is justified in [2, Proposition

8.3]. We will leave the question of the optimal domains to the beginning of the
Chapter 3.

1.3 Interpolation theory
Definition 1.12. Let X0 and X1 be quasi-Banach spaces. We say that (X0, X1) is
a compatible couple of quasi-Banach spaces if there exists a Hausdorff topological
vector space H such that X0 ↪→ H and X1 ↪→ H.

Let us recall the definition of the K-functional. In [1, Chapter 5] the K-
functional is defined only for Banach spaces. However, it is not hard to see that
extending this notion over quasi-Banach spaces does not invalidate any theorems
that we will need, and their proofs would only need minor, if any, modifications.
Let us also note that, by [1, Theorem 1.4] and [15, Theorem 3.4], for every
r.i.q. space X we have X ↪→ M0, where M0 is equipped with the (metrizable)
topology of convergence in measure on the sets of finite measure. Consequently,
any two r.i.q. spaces form a compatible couple.

11



Definition 1.13. Let (X0, X1) be a compatible couple quasi-Banach spaces. We
define the K-functional on X0 + X1 by

K(f, t, X0, X1) = inf{∥g∥X0 + t∥h∥X1 : f = g + h, g ∈ X0, h ∈ X1}, t ∈ (0, ∞).

The next theorem will be of use to us, especially when combined with Theo-
rem 1.15. The proof can be found in [1, Chapter 5, Proposition 5.2].

Theorem 1.14. Let (X0, X1) be a compatible couple of quasi-Banach spaces.
Then for every f ∈ X0 + X1 the map t ↦→ K(f, t, X0, X1) is nonnegative, nonde-
creasing and concave on (0, ∞). Consequently,

K(f, t, X0, X1) = K(f, 0+, X0, X1) +
∫︂ t

0
k(f, s, X0, X1) ds, (1.35)

where t ↦→ k(f, t, X0, X1) is the uniquely determined nonincreasing and right-
continuous function.

There is a nice characterization in [1, Chapter 5, Proposition 1.15], stating
when the first term of the righthand side of (1.35) can be omitted. Note that since
the spaces involved need not be normed, one should be familiar with a generalised
Riesz–Fischer theorem [15, Theorem 3.3].

Theorem 1.15. Let (X0, X1) be a compatible couple of quasi-Banach spaces.
Then

K(f, 0+, X0, X1) = 0, f ∈ X0 + X1

if and only if X0 ∩ X1 is dense in X0.

The proof of the next theorem can be found in [1, Chapter 5, Theorem 1.11].

Theorem 1.16. Let (X0, X1) and (Y0, Y1) be two compatible couples of quasi-
Banach spaces. Let T be a sublinear operator such that

T : X0 → Y0 and T : X1 → Y1.

Then there is c > 0 such that

K(Tf, t, Y0, Y1) ≲ K(f, ct, X0, X1), f ∈ X0 + X1, t > 0. (1.36)

In many theorems, we will use a certain elementary decomposition of f , to
which we will refer as our favourite decomposition.

Definition 1.17 (Favourite decomposition). Let f ∈ M(0, 1) and t ∈ (0, 1) be
given. We define the favourite decomposition of f at point t by

f0(s) = min{|f(s)| , f ∗(t)} sgn f(s),

and
f1(s) = max{|f(s)| − f ∗(t), 0} sgn f(s).

Then f = f0 + f1 and it further satisfies

f ∗
0 (s) = min{f ∗(s), f ∗(t)},

f ∗
1 (s) = (f ∗(s) − f ∗(t))χ(0,t)(s),

(1.37)

and f ∗ = f ∗
0 + f ∗

1 .
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Next we state and prove two inequalities concerning the K-functional for
(X, L∞) and (L1, X).

Proposition 1.18. Let X be a r.i.q. space and assume its fundamental function,
φX , is an increasing bijection on (0, 1). Then

∥f ∗χ(0,φ−1
X (t))∥X ≲ K(f, t, X, L∞), f ∈ M+(0, 1), t ∈ (0, 1). (1.38)

Proof. Let f ∈ X + L∞ and t ∈ (0, 1) be given. Write f = f0 + f1, where
f0 ∈ X and f1 ∈ L∞. Using the boundedness of the dilation operator and the
monotonicity of ∥ · ∥X , we estimate

∥f ∗χ(0,φ−1
X (t))∥X ≲

⃦⃦⃦
f ∗(2s)χ(0,φ−1

X (t))(2s)
⃦⃦⃦

X
≤
⃦⃦⃦
f ∗(2s)χ(0,φ−1

X (t))(s)
⃦⃦⃦

X

≲
⃦⃦⃦
f ∗

0 χ(0,φ−1
X (t))

⃦⃦⃦
X

+
⃦⃦⃦
f ∗

1 χ(0,φ−1
X (t))

⃦⃦⃦
X

≤
⃦⃦⃦
f ∗

0 χ(0,φ−1
X (t))

⃦⃦⃦
X

+ ∥f ∗
1 ∥∞ ·

⃦⃦⃦
χ(0,φ−1

X (t))

⃦⃦⃦
X

=
⃦⃦⃦
f ∗

0 χ(0,φ−1
X (t))

⃦⃦⃦
X

+ ∥f ∗
1 ∥∞ · t ≤ ∥f0∥X + t∥f1∥∞.

On taking infimum over all such decompositions we obtain

∥f ∗χ(0,φ−1
X (t))∥X ≲ K(f, t, X, L∞).

Proposition 1.19. Let X be an r.i.q. space such that φ(t) := t
φX(t) is an increas-

ing bijection on (0, 1). Then

K(f, t, L1, X) ≲
⃦⃦⃦
f ∗χ(0,φ−1(t))

⃦⃦⃦
1

+ t
⃦⃦⃦
f ∗χ(φ−1(t),1)

⃦⃦⃦
X

, f ∈ M+(0, 1), t ∈ (0, 1).
(1.39)

Proof. Let f ∈ M+(0, 1) and t ∈ (0, 1) be given. Let f0 and f1 be our favourite
decomposition of f at point φ−1(t) in place of t. Using the rearrangement invari-
ance of both L1 and X and (1.37), we estimate

K(f, t, L1, X) ≤ ∥f1∥1 + t∥f0∥X = ∥f ∗
1 χ(0,φ−1(t))∥1 + t∥f ∗

0 ∥X

= ∥f ∗χ(0,φ−1(t))∥1 − φ−1(t)f ∗(φ−1(t))
+ t∥f ∗(φ−1(t))χ(0,φ−1(t)) + f ∗χ(φ−1(t),1)∥X

≲ ∥f ∗χ(0,φ−1(t))∥1 − φ−1(t)f ∗(φ−1(t))
+ tφX(φ−1(t))f ∗(φ−1(t)) + t∥f ∗χ(φ−1(t),1)∥X

= ∥f ∗χ(0,φ−1(t))∥1 + t∥f ∗χ(φ−1(t),1)∥X .

Definition 1.20. Let X0, X1 and X be quasi-Banach spaces which all embed
to a Hausdorff topological vector space H and satisfy X0 ⊂ X ⊂ X1. We say
that X is an interpolation space between X0 and X1, the fact being denoted
X ∈ Int(X0, X1), if for any linear operator T the following holds:

T : X0 → X0 and T : X1 → X1 =⇒ T : X → X.
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The next theorem [1, Chapter 5, Theorem 1.19] of an interpolation nature
appears to be indispensable in the proof of Theorem 3.4.

Theorem 1.21. Let (X0, X1) and (Y0, Y1) be two compatible couples of quasi-
Banach spaces and λ be an r.i. norm. Suppose X0 ∩ X1 is dense in X0 and that
Y0 ∩ Y1 is dense in Y0. Set α(f) = λ(k(f, t, X0, X1)) and β(f) = λ(k(f, t, Y0, Y1))
for f ∈ M+(0, 1). Then for any linear operator T satisfying

T : X0 → Y0 and T : X1 → Y1,

we have
β(Tf) ≲ α(f), f ∈ M+(0, 1).

Additionally, if X0 and X1 are r.i. spaces, then the functional α is an r.i. norm.

Remark 1.22. It is important that the functional λ in the theorem above is an
r.i. norm, so that we have the HLP principle at our disposal.

1.4 Weighted inequalities involving suprema
We will also use [7, Theorem 3.2] and its reduction to our setting. By weights we
understand positive measurable functions on (0, ∞).

Theorem 1.23. Let u, v, w be weights on (0, ∞) such that 0 <
∫︁ x

0 v(t) dt < ∞
and 0 <

∫︁ x
0 w(t) dt < ∞ for every x ∈ (0, ∞). Then∫︂ ∞

0
sup

t≤τ<∞
u(τ)φ(τ)w(t) dt ≲

∫︂ ∞

0
φ(t)v(t) dt (1.40)

holds for all φ ∈ M+(0, ∞) nonincreasing if and only if∫︂ x

0
sup

t≤τ≤x
u(τ)w(t) dt ≲

∫︂ x

0
v(t) dt for every x ∈ (0, ∞). (1.41)

Corollary 1.24. Let u, v, w be weights on (0, 1) for each of which there exists the
limit at 1 from the left that is nonzero and finite. Then∫︂ 1

0
sup

t≤τ<1
u(τ)φ(τ)w(t) dt ≲

∫︂ 1

0
φ(t)v(t) dt (1.42)

holds for all φ ∈ M+(0, 1) nonincreasing if and only if∫︂ x

0
sup

t≤τ≤x
u(τ)w(t) dt ≲

∫︂ x

0
v(t) dt for every x ∈ (0, 1). (1.43)

Proof. It suffices to show that (1.40) is equivalent to (1.42) and (1.41) is equiv-
alent to (1.43). We begin by extending all u, v, w constantly on [1, ∞) by their
respective left limits at 1. We will not distinguish between u, v, w and their
extensions.
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(1.42) ⇒ (1.40): Let φ ∈ M+(0, ∞) be nonincreasing. Then∫︂ ∞

0
sup

t≤τ<∞
u(τ)φ(τ)w(t) dt

=
∫︂ 1

0
sup

t≤τ<1
u(τ)φ(τ)w(t) dt +

∫︂ ∞

1
sup

t≤τ<∞
u(τ)φ(τ)w(t) dt

≲
∫︂ 1

0
φ(t)v(t) dt +

∫︂ ∞

1
u(1)φ(t)w(1) dt

≲
∫︂ 1

0
φ(t)v(t) dt +

∫︂ ∞

1
φ(t)v(1) dt

=
∫︂ ∞

0
φ(t)v(t) dt.

(1.43) ⇒ (1.41): Let x ∈ [1, ∞). Then∫︂ x

0
sup

t≤τ≤x
u(τ)w(t) dt =

∫︂ 1

0
sup

t≤τ≤x
u(τ)w(t) dt +

∫︂ x

1
sup

t≤τ≤x
u(τ)w(t) dt

≲
∫︂ 1

0
v(t) dt +

∫︂ x

1
u(1)w(1) dt ≲

∫︂ x

0
v(t) dt.

For x ∈ (0, 1) there is nothing to be proved. As implications (1.40) ⇒ (1.42) and
(1.41) ⇒ (1.43) are trivial, the proof is complete.
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2. Supremum operators
In this chapter, we will introduce two supremum operators SI and TI and explore
their boundedness and interpolation properties. These two supremum opera-
tors, as their name suggest, will be defined in terms of a nondecreasing function
I : (0, 1) → (0, 1). However, for our purposes, we restrict ourselves to concave
functions, even though many theorems would hold in a more general setting.
There are two things that lead us to this.

First, we will work with the Marcinkiewicz type space mI given by the func-
tional ∥f∥mI

= sup0<t<1 I(t)f ∗(t) for f ∈ M+(0, 1). From here, we impose a ∆2
condition on I, because:

Fact 2.1. Let I : (0, 1) → (0, 1) be a nondecreasing function. Then mI is an r.i.q.
space if and only if I ∈ ∆2.

Secondly, we will want I to be such that t ↦→ I(t)
t

, t ∈ (0, 1), is nonincreasing.
In other words, we want I to be quasiconcave. However, since there exists ˜︁I con-
cave such that I ≈ ˜︁I on (0, 1), and we will not particularly care about constants,
there is no real loss of generality if we assume I to be concave.

For the remainder of the thesis, whenever we mention a concave function I,
we implicitely assume that I : (0, 1) → (0, 1) is a bijection with I(0+) = 0 and
I(1−) = 1. Note that this implies that I(t) ≥ t, t ∈ (0, 1).

We proceed by defining two supremum operators.

Definition 2.2. Let I be a concave function. We define supremum operators SI

and TI on M+(0, 1) by

(SIf)(t) := 1
I(t) sup

0<s≤t
I(s)f ∗(s), f ∈ M+(0, 1), t ∈ (0, 1),

and
(TIf)(t) := I(t)

t
sup

t≤s<1

s

I(s)f ∗(s), f ∈ M+(0, 1), t ∈ (0, 1).

Observe that f ∗ ≤ TIf and f ∗ ≤ SIf for every f ∈ M+(0, 1). We also see
that both of these operators are monotone – if f, g ∈ M+(0, 1) are such that
f ≤ g, then SIf ≤ SIg and TIf ≤ TIg.

Moreover, t ↦→ TIf(t) is a nonincreasing function for every f ∈ M+(0, 1).
Deploying Fact 1.1 and ∆2 condition of I, we see that

(SI(f + g))(t) ≲ (SIf)
(︃

t

2

)︃
+ (SIg)

(︃
t

2

)︃
, f ∈ M+(0, 1), t ∈ (0, 1), (2.1)

and

(TI(f + g))(t) ≲ (TIf)
(︃

t

2

)︃
+ (TIg)

(︃
t

2

)︃
, f ∈ M+(0, 1), t ∈ (0, 1). (2.2)

We continue by defining three function spaces. To simplify notation, by sym-
bol ˜︁I we will denote a function ˜︁I(t) = t

I(t) , t ∈ (0, 1).

16



Definition 2.3. Let I be a concave function. We introduce three functionals
defined on M+(0, 1) with values in [0, ∞] by

∥f∥mI
:= sup

0<t<1
I(s)f ∗(s),

∥f∥m˜︁I := sup
0<t<1

s

I(s)f ∗(s),

∥f∥ΛI
:=
∫︂ 1

0

I(s)
s

f ∗(t) ds.

We further denote mI := {f ∈ M+(0, 1) : ∥f∥mI
< ∞}. Analogously we define

spaces m˜︁I and ΛI .

Before we begin exploring the mapping properties of the operator SI , let us
observe that t ↦→ SIf(t) is a nonincreasing function for every f ∈ M+(0, 1).

Lemma 2.4. Let I be a concave function and f ∈ M+(0, 1). Then SIf is a
nonincreasing function on (0, 1).

Proof. We put Rf(t) = sup0<s≤t I(s)f ∗(s) for t ∈ (0, 1). Let 0 < t1 < t2 < 1 be
given. We consider two cases: If Rf(t1) = Rf(t2), then (SIf)(t2) ≤ (SIf)(t1)
because t ↦→ 1

I(t) is nonincreasing. If Rf(t1) < Rf(t2), we consider a function

f1(s) :=

⎧⎨⎩f ∗(s), s ≤ t1,

f ∗(t1), t1 < s < 1.

Then f ∗
1 = f1 and f ∗ ≤ f ∗

1 . Hence, as Rf(t1) < Rf(t2), we have

Rf(t2) = sup
t1<s≤t2

I(s)f ∗(s)

and, consequently,
Rf1(t2) = sup

t1<s≤t2

I(s)f ∗
1 (s).

We estimate

(SIf)(t2) ≤ (SIf1)(t2) = 1
I(t2)

sup
t1<s≤t2

I(s)f ∗
1 (s)

= 1
I(t2)

· I(t2)f ∗
1 (t2) = f ∗

1 (t1) = f ∗(t1) ≤ (SIf)(t1).

Theorem 2.5. Let I be a concave function. Then the operator SI has the fol-
lowing endpoint mapping properties:

(i) SI : L∞ → L∞,

(ii) SI : mI → mI .

Proof. (i) Given f ∈ L∞ we estimate

∥SIf∥∞ = sup
0<t<1

1
I(t) sup

0<s≤t
I(s)f ∗(s) ≤ ∥f∥∞ sup

0<t<1

1
I(t) sup

0<s≤t
I(s)

= ∥f∥∞ sup
0<t<1

1
I(t) · I(t) = ∥f∥∞.
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(ii) Let f ∈ mI be given. By Lemma 2.4 we have

∥SIf∥mI
= sup

0<t<1
I(t)

(︄
τ ↦→ 1

I(τ) sup
0<s≤τ

I(s)f ∗(s)
)︄∗

(t)

= sup
0<t<1

I(t) · 1
I(t) sup

0<s≤t
I(s)f ∗(s) = ∥f∥mI

.

Theorem 2.6. Let I be a concave function. Then the following holds:
(i) TI : m˜︁I → m˜︁I ,

(ii) TI : L1 → L1 if and only if
∫︁ t

0
I(s)

s
ds ≲ I(t) for t ∈ (0, 1).

Proof. (i) Let f ∈ m˜︁I be given. As TIf is nonincreasing, we estimate

∥TIf∥m˜︁I = sup
0<t<1

t

I(t) · I(t)
t

sup
t≤s<1

s

I(s)f ∗(s) = sup
0<s<1

s

I(s)f ∗(s) = ∥f∥m˜︁I .

(ii) We use Corollary 1.24 with weights u(t) = t
I(t) , w = 1

u
and v = 1. Hence,

TI is bounded on L1 if and only if∫︂ t

0
sup

s≤τ≤t

τ

I(τ) · I(s)
s

ds ≲ t, t ∈ (0, 1).

As t ↦→ t
I(t) is nondecreasing, sups≤τ≤t

τ
I(τ) = t

I(t) . Thus, multiplying through by
I(t)

t
, we equivalently rewrite this as∫︂ t

0

I(s)
s

ds ≲ I(t), t ∈ (0, 1).

We proceed by defining a certain average condition for a concave function I,
which says that the reciprocal of I is approximately the average integral of itself.
Definition 2.7. Let I be a concave function. We say that I has the average
property, if ∫︂ t

0

ds

I(s) ≈ t

I(t) , t ∈ (0, 1).

This condition, among other things, also appeared in [2], and allows one to
simplify the description of the optimal target norm of the m-th order Sobolev
embedding. Note that this condition implies integrability of 1

I
. Classical examples

of functions satisfying the average property are the polynomials t ↦→ tα, t ∈ (0, 1)
for α ∈ (0, 1). Functions which do not possess this property include for example
t ↦→ t or t ↦→ t

√︂
log 2

t
for t ∈ (0, 1).

Lemma 2.8. Assume that I satisfies the average property. Then

sup
0<s≤t

I(s)f ∗(s) ≈ sup
0<s≤t

I(s)f ∗∗(s), f ∈ M+(0, 1), t ∈ (0, 1).

In particular, mI = MI with equivalent norms, where MI is the Marcinkiewicz
space with norm given by

∥f∥MI
= sup

0<t<1
I(t)f ∗∗(t).
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Proof. Fix f ∈ M+(0, 1) and t ∈ (0, 1). Denoting

M = sup
0<s≤t

I(s)f ∗(s),

which we can without loss of generality assume to be finite, we have for every
s ∈ (0, t) that

f ∗(s) ≤ M
1

I(s) .

Thus

sup
0<s≤t

I(s)f ∗∗(s) ≤ M sup
0<s≤t

I(s)
s

∫︂ s

0

dr

I(r) ≲ M,

where the second inequality is exactly the average property. The converse in-
equality holds trivially, as f ∗ ≤ f ∗∗.

Remark 2.9. One easily sees from the proof that, in fact, mI = MI is equivalent
to I enjoying the average property. Indeed, one simply tests the inequality on

1
I(t) . Even more is true – mI is an r.i. space if and only if I has the average
property. We have already proved the sufficiency of this claim. Assuming ∥ · ∥mI

to be equivalent to an r.i. norm, say ∥ · ∥, their fundamental functions coincide.
As mI and MI have the same fundamental function, mI ↪→ MI by [1, Chapter
2, Theorem 5.13] and so mI = MI , since MI ↪→ mI holds regardless of what the
function I satisfies.

One could also wonder whether SI is bounded on MI . We now claim that this
happens if and only if MI = mI . Indeed, sufficiency was proved in Theorem 2.5.
As for necessity, assume that SI : MI → MI . This means that

sup
0<t<1

I(t)
t

∫︂ t

0

1
I(s) sup

0<r≤s
I(r)f ∗(r) ds ≲ sup

0<t<1

I(t)
t

∫︂ t

0
f ∗(s) ds, f ∈ M+(0, 1).

(2.3)
Let r ∈ (0, 1) be given and consider f = f ∗ = χ(0,r). Then the right-hand side of
(2.3) can be written as

sup
0<t<1

I(t)
t

∫︂ t

0
f ∗(s) ds = max

{︄
sup

0<t≤r
I(t), sup

r≤t<1

I(t)
t

r

}︄
= I(r).

Similarly, the left-hand side can be rewritten as

sup
0<t<1

I(t)
t

∫︂ t

0

1
I(s) sup

0<r≤s
I(r)f ∗(r) ds

= max
{︄

sup
0<t≤r

I(t), sup
r<t<1

I(t)
t

(︄
r +

∫︂ t

r

I(r)
I(s) ds

)︄}︄
.

Therefore, necessarily,

sup
r<t<1

I(t)
t

∫︂ t

r

I(r)
I(s) ds ≲ I(r), r ∈ (0, 1).

Dividing by I(r) we deduce that

sup
0<r<1

sup
r<t<1

I(t)
t

∫︂ t

r

ds

I(s) < ∞.
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In particular, should we fix t ∈ (0, 1) and take limit for r → 0+, we obtain that
I has to satisfy the average property. Consequently, by Remark 2.9, MI = mI .

It is evident that the operator SI and the space mI are intertwined in a
sense that SIf is finite if and only if f ∈ mI . Next theorem provides us with a
result, which essentially says that SI is the greatest operator which is bounded
simultaneously on L∞ and mI . To prove this, we will need a K-functional related
lemma first.

Lemma 2.10. Let I be a concave function. Then

K(f, t, mI , L∞) ≈ sup
0<s≤I−1(t)

I(s)f ∗(s), f ∈ mI , t ∈ (0, 1).

Proof. By virtue of Proposition 1.18, it remains to prove K(f, t, mI , L∞) ≲
sup0<s≤I−1(t) I(s)f ∗(s). To this end, let f ∈ mI and t ∈ (0, 1) be given. Let
f0 and f1 be our favourite decomposition of f at point I−1(t). Then

K(f, t, mI , L∞) ≤ ∥f1∥mI
+ t∥f0∥∞ = sup

0<s≤I−1(t)
I(s)f ∗

1 (s) + tf ∗(I−1(t))

≤ sup
0<s≤I−1(t)

I(s)f ∗(s) + tf ∗(I−1(t)) ≤ 2 sup
0<s≤I−1(t)

I(s)f ∗(s).

Theorem 2.11. Let I be a concave function and let S be a sublinear operator
defined on mI . If S is bounded on L∞ and on mI , then

(Sf)∗(t) ≲ (SIf)(t), f ∈ M+(0, 1), t ∈ (0, 1).

If, in addition, I has the average property, then

(Sf)∗∗(t) ≲ (SIf)(t), f ∈ M+(0, 1), t ∈ (0, 1), (2.4)

and so
(SIf)∗∗(t) ≲ (SIf)(t), f ∈ M+(0, 1), t ∈ (0, 1). (2.5)

In particular, for an r.i. space X ⊂ mI we have X ∈ Int(L∞, mI) whenever
SI is bounded on X.

Proof. By Lemma 2.10, we have

K(f, t, mI , L∞) ≈ sup
0<s≤I−1(t)

I(s)f ∗(s).

Fix f ∈ mI and t ∈ (0, d), where d = min{1
c
, cI

(︂
1
c

)︂
} and c ≥ 1 is a constant from

Theorem 1.16. We estimate

sup
0<s≤I−1(t)

I(s)(Sf)∗(s) ≲ sup
0<s≤I−1(ct)

I(s)f ∗(s). (2.6)

Passing from t to I(t) we arrive at

sup
0<s≤t

I(s)(Sf)∗(s) ≲ sup
0<s≤I−1(cI(t))

I(s)f ∗(s).
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Thus, choosing s = t on the left-hand side and dividing by I(t) gives us

(Sf)∗(t) ≲ 1
I(t) sup

0<s≤I−1(cI(t))
I(s)f ∗(s) ≈ (SIf)(I−1(cI(t))) ≤ (SIf)(t),

where the last inequality stems from Lemma 2.4 and c being no less than one.
Next, assuming SI is bounded on X we estimate using the boundedness of

the dilation operator:

∥(Sf)∗∥X ≈ ∥(Sf)∗χ(0,d)∥X ≲ ∥SIfχ(0,d)∥X ≈ ∥SIf∥X ≲ ∥f∥X .

Now, regarding the “in addition” part of the theorem, we only need to show
(2.4) and (2.5), as the rest follows from the previous part. First, (2.4) is a direct
application of Lemma 2.8 on the left-hand side of (2.6). Second, (2.5) holds true,
because of (2.1) and the boundedness of the dilation operator on r.i.q. spaces.
Remark 2.12. Should we assume that I satisfies the average property, then
X ∈ Int(L∞, MI) ⇐⇒ SI : X → X. “⇐” is exactly Theorem 2.11. The other
implication is proved in [3, Theorem 1].
Corollary 2.13. Let X be an r.i. space. Define ∥f∥Z := ∥SIf∥X for f ∈ M(0, 1).
Then ∥ · ∥Z is an r.i.q. norm and, denoting by Z the r.i.q. space corresponding to
∥ · ∥Z, we have that

SI : Z → Z.

If I satisfies the average property, then ∥ · ∥Z is equivalent to an r.i. norm, and
so Z is an r.i. space.
Proof. The only property of (Q1) that requires some comment is the quasi-
triangle inequality. To this end, let f, g ∈ M(0, 1) be given. Using (2.1) and
the boundedness of the dilation operator on r.i. spaces we calculate

∥f + g∥Z = ∥SI(f + g)∥X ≲
⃦⃦⃦⃦
SIf

(︃
t

2

)︃
+ SIg

(︃
t

2

)︃⃦⃦⃦⃦
X

≤
⃦⃦⃦⃦
SIf

(︃
t

2

)︃⃦⃦⃦⃦
X

+
⃦⃦⃦⃦
SIg

(︃
t

2

)︃⃦⃦⃦⃦
X

≈ ∥SIf∥X + ∥SIg∥X = ∥f∥Z + ∥g∥Z .

Property (P2) obviously holds.
Let fn, f ∈ M+(0, 1) be such that fn ↗ f a.e. Then f ∗

n ↗ f ∗. Fix t ∈ (0, 1)
and let K < sup0<s≤t I(s)f ∗(s). We find t0 ∈ (0, t] such that I(t0)f ∗(t0) > K.
Then

I(t0)f ∗
n(t0) ↗ I(t0)f ∗(t0)

and so (SIf ∗
n)(t) ↗ (SIf ∗)(t). As X is an r.i. norm, we get that ∥fn∥Z ↗ ∥f∥Z

and (P3) holds.
Regarding (P4), we have ∥χ(0,1)∥Z = ∥SIχ(0,1)∥X = ∥χ(0,1)∥X < ∞.
Thus, functional ∥ · ∥Z is an r.i.q. norm.
Since ∥·∥X possesses property (P5), we can say the same about ∥·∥Z , because

∥ · ∥X ≤ ∥ · ∥Z .
Next, for every f ∈ M(0, 1), we estimate

∥SIf∥Z = ∥SI(SIf)∥X =
⃦⃦⃦⃦
⃦ 1

I(t) sup
0<s≤t

I(s)
(︄

τ ↦→ 1
I(τ) sup

0<r≤τ
I(r)f ∗(r)

)︄∗

(s)
⃦⃦⃦⃦
⃦

X

≤
⃦⃦⃦⃦
⃦ 1

I(t) sup
0<s≤t

I(s) · 1
I(s) sup

0<r≤s
I(r)f ∗(r)

⃦⃦⃦⃦
⃦

X

= ∥SIf∥X = ∥f∥Z ,
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where the inequality comes from Lemma 2.4.
If I satisfies the average property, Lemma 2.8 tells us that

∥f∥Z = ∥SIf∥X ≈ ∥SIf ∗∗∥X =: ∥f∥, f ∈ M+(0, 1).

It follows from the previous and subadditivity of both f ↦→ f ∗∗ and supremum,
that ∥ · ∥ is an r.i. norm and ∥ · ∥Z ≈ ∥ · ∥.

In view of Theorem 2.6, we will assume that the function I satisfies∫︂ t

0

I(s)
s

ds ≲ I(t), t ∈ (0, 1), (2.7)

when working with TI .

Lemma 2.14. Let I be a concave function satisfying (2.7). Then

(TIf)∗∗(t) ≲ (TIf ∗∗)(t), f ∈ M+(0, 1), t ∈ (0, 1). (2.8)

Proof. Fix f ∈ M+(0, 1) and t ∈ (0, 1). Let f0 and f1 be our favourite decompo-
sition of f at point t.

Then, as TIf is nonincreasing and supremum is subadditive, we have

(TIf)∗∗(t) = 1
t

∫︂ t

0

I(s)
s

sup
s≤r<1

r

I(r)f ∗(r) ds

≤ 1
t

∫︂ t

0

I(s)
s

sup
s≤r<1

r

I(r)f ∗
0 (r) ds⏞ ⏟⏟ ⏞

I

+ 1
t

∫︂ t

0

I(s)
s

sup
s≤r<1

r

I(r)f ∗
1 (r) ds⏞ ⏟⏟ ⏞

II

.

As for I, we estimate

I = 1
t

∫︂ t

0

I(s)
s

sup
s≤r<1

r

I(r) min{f ∗(r), f ∗(t)} ds

= 1
t

∫︂ t

0

I(s)
s

max
{︄

sup
s≤r<t

r

I(r)f ∗(t), sup
t≤r<1

r

I(r)f ∗(r)
}︄

ds

= 1
t

∫︂ t

0

I(s)
s

sup
t≤r<1

r

I(r)f ∗(r) ds = I(t)
t

· 1
I(t)

∫︂ t

0

I(s)
s

sup
t≤r<1

r

I(r)f ∗(r) ds

≲
I(t)

t
sup

t≤r<1

r

I(r)f ∗(r) = (TIf)(t).

Next, using Theorem 2.6, (ii), we estimate II:

II = 1
t

∫︂ t

0

I(s)
s

sup
s≤r<1

r

I(r)f ∗
1 (r) ds ≤ 1

t

∫︂ 1

0

I(s)
s

sup
s≤r<1

r

I(r)f ∗
1 (r) ds

≲
1
t

∫︂ 1

0
f ∗

1 (s) ds = 1
t

∫︂ t

0
(f ∗(s) − f ∗(t)) ds ≤ f ∗∗(t).

Putting everything together, we arrive at what we wanted:

(TIf)∗∗(t) ≲ (TIf(t) + f ∗∗(t)) ≲ (TIf ∗∗)(t).
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Remark 2.15. Notice that in the proof we used both (2.7) and the boundedness
of TI on L1, which we know are equivalent. Now, taking the limit t → 1− in (2.8),
we get ∫︂ 1

0
(TIf)(t) dt ≲ lim

t→1−

I(t)
t

sup
t≤s<1

(RIf ∗)(s) =
∫︂ 1

0
f ∗(t) dt.

In other words, (2.8) is equivalent to the boundedness of TI on L1.

Now, an important consequence of the previous lemma is the following corol-
lary.

Corollary 2.16. Let X be an r.i. space and let I be a concave function satisfying
(2.7). Then ⃦⃦⃦⃦

⃦ t

I(t)(TIf)∗∗(t)
⃦⃦⃦⃦
⃦

X

≲

⃦⃦⃦⃦
⃦ t

I(t)f ∗∗(t)
⃦⃦⃦⃦
⃦

X

, f ∈ M+(0, 1).

In other words, operator TI is bounded on Y ′
X whenever X is an r.i. space.

Proof. For f ∈ M+(0, 1) we estimate⃦⃦⃦⃦
⃦ t

I(t)(TIf)∗∗(t)
⃦⃦⃦⃦
⃦

X

≲

⃦⃦⃦⃦
⃦ t

I(t)(TIf ∗∗)(t)
⃦⃦⃦⃦
⃦

X

=
⃦⃦⃦⃦
⃦ sup

t≤s<1

s

I(s)f ∗∗(s)
⃦⃦⃦⃦
⃦

X

≈
⃦⃦⃦⃦
⃦ t

I(t)f ∗∗(t)
⃦⃦⃦⃦
⃦

X

where the “≈” is (1.30).
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3. Optimal spaces

3.1 Optimal target space
As we said in the preliminary chapter of the thesis, given an r.i. space X, its
optimal target space YX under the map HI always exists. Moreover, the following
inclusions hold:

YL∞ ⊂ YX ⊂ YL1 . (3.1)
The situation with optimal domain spaces is a bit different. The proof of the
following statement can be found in [14, Proposition 3.3].

Proposition 3.1. Let I be a concave function and let Y be an r.i. space. Then
the functional

∥f∥ := sup
h∼f

∥HIh∥Y , f ∈ M+(0, 1),

is an r.i. norm if and only if HI1 ∈ Y . In that case ∥ · ∥XY
:= ∥ · ∥ is the optimal

domain norm for Y under the mapping HI .

From this proposition it easily follows that if 1
I

is integrable, then XL∞ exists,
and the inclusions

XL∞ ⊂ XY ⊂ XL1 (3.2)
hold for every r.i. space Y .

Lemma 3.2. Let I be a concave function, X ⊂ ΛI be an r.i. space and assume
that TI : X ′ → X ′. Then X ∈ Int(L∞, ΛI). If I in addition satisfies (2.7), then
YX′ ∈ Int(L∞, ΛI).

Proof. Let f ∈ M+(0, 1) and t ∈ (0, 1) be given. Let f0 and f1 be our favourite
decomposition of f at point t. Let T be a linear operator bounded on both L∞

and ΛI . Using the subadditivity of f ↦→ f ∗∗ and Hardy’s lemma (1.8), we estimate∫︂ t

0

I(s)
s

(Tf)∗(s) ds =
∫︂ t

0

I(s)
s

(T (f0 + f1))∗(s) ds

≤
∫︂ t

0

I(s)
s

((Tf0)∗(s) + (Tf1)∗(s)) ds

=
∫︂ t

0

I(s)
s

(Tf0)∗(s) ds +
∫︂ t

0

I(s)
s

(Tf1)∗(s) ds =: I + II.

Now, for I, we estimate∫︂ t

0

I(s)
s

(Tf0)∗(s) ds ≤
∫︂ t

0

I(s)
s

∥Tf0∥∞ ds

≲
∫︂ t

0

I(s)
s

∥f0∥∞ ds =
∫︂ t

0

I(s)
s

f ∗
0 (s) ds.

As for the II, we compute∫︂ t

0

I(s)
s

(Tf1)∗(s) ds ≤
∫︂ 1

0

I(s)
s

(Tf1)∗(s) ds

≲
∫︂ 1

0

I(s)
s

f ∗
1 (s) ds =

∫︂ t

0

I(s)
s

f ∗
1 (s) ds.
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Combining the last two estimates yields∫︂ t

0

I(s)
s

(Tf)∗(s) ds ≲
∫︂ t

0

I(s)
s

f ∗(s) ds.

Applying Hardy’s lemma (1.8) to h(s) = sups≤t<1
t

I(t)g
∗(t), g ∈ M+(0, 1), s ∈

(0, 1), we obtain
∫︂ 1

0

I(s)
s

sup
s≤t<1

t

I(t)g∗(t)(Tf)∗(s) ds ≲
∫︂ 1

0

I(s)
s

sup
s≤t<1

t

I(t)g∗(t)f ∗(s) ds,

which is nothing else than∫︂ 1

0
(TIg)(s)(Tf)∗(s) ds ≲

∫︂ 1

0
(TIg)(s)f ∗(s) ds.

Finally,∫︂ 1

0
(Tf)∗(t)g∗(t) dt ≤

∫︂ 1

0
(Tf)∗(s)(TIg)(t) dt ≲

∫︂ 1

0
f ∗(t)(TIg)(t) dt

≤ ∥f∥X∥TIg∥X′ ≲ ∥f∥X∥g∥X′ .

Division by ∥g∥X′ , g ̸= 0, followed by taking supremum over ∥g∥X′ ≤ 1 provides
us with ∥Tf∥X ≲ ∥f∥X , f ∈ M+(0, 1).

Assume now that I satisfies (2.7). Corollary 2.16 guarantees that

∥TIf∥Y ′
X′

≲ ∥f∥Y ′
X′

, f ∈ M+(0, 1).

It remains to show that YX′ ⊂ ΛI for every r.i. space X. This is by (3.1) equivalent
to showing that YL1 ⊂ ΛI . We show that, in fact, YL1 = ΛI . We know

∥f∥Y ′
L1

= ∥RIf ∗∥∞ = sup
0<t<1

t

I(t)f ∗∗(t) = ∥f∥M˜︁I , f ∈ M+(0, 1).

Observe that the condition (2.7) simply states that ˜︁I satisfies has the average
property. Therefore, Remark 2.9 asserts that M˜︁I = m˜︁I , from whence it follows
that YL1 = ΛI .

Our next objective is to describe the norm of the optimal target space YX .
The first step in this direction is to describe the norm of Y ′

X via a functional,
∥ · ∥Z , such that SI is bounded thereon. We begin by exploring the mapping
properties of the operator RI .

Lemma 3.3. Let I be a concave function satisfying (2.7). Then the operator RI

has the following mapping properties:

(i) RI : m˜︁I → L∞,

(ii) RI : L1 → mI ,

(iii) RI : L1 → (mI)b.
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Proof. Let f ∈ m˜︁I and estimate

∥RIf∥∞ = sup
0<t<1

t

I(t)f ∗∗(t) ≈ sup
0<t<1

t

I(t)f ∗(t) = ∥f∥m˜︁I ,

where the approximation follows from the assumption that ˜︁I has the average
property.

We take care of (ii) and (iii) in one fell swoop. Let fn → f in L1. Then, for
every t ∈ (0, 1), we have

|(RIf)(t)| ≤ ∥f∥∞
1

I(t)

∫︂ t

0
ds = ∥f∥∞

t

I(t) ≲ ∥f∥∞,

from whence it follows that if fn is a sequence of bounded functions, then RIfn

is a sequence of bounded functions. Now,

|(RIfn)(t) − (RIf)(t)| =
⃓⃓⃓⃓
⃓ 1
I(t)

∫︂ t

0
(fn(s) − f(s)) ds

⃓⃓⃓⃓
⃓ ≤ 1

I(t)∥f − fn∥1

and so,
(s ↦→ |(RIfn)(s) − (RIf)(s)|)∗ (t) ≤ 1

I(t)∥f − fn∥1.

Multiplying through by I(t) and taking supremum over t ∈ (0, 1) finish the proof.

Theorem 3.4. Let I be a concave function satisfying (2.7) and let X be an
r.i. space. Define ∥f∥Z = ∥SIf∥X′ for f ∈ M+(0, 1). Then

∥f∥Y ′
X

=
⃦⃦⃦⃦
⃦ 1

I(t)

∫︂ t

0
f ∗(s) ds

⃦⃦⃦⃦
⃦

X′
≈
⃦⃦⃦⃦
⃦ 1

I(t)

∫︂ t

0
f ∗(s) ds

⃦⃦⃦⃦
⃦

Z

(3.3)

and SI is bounded on Z.

Proof. We define three functionals

λ(f) := ∥f ∗∗(I(t))∥X′ ,

α(f) := λ(k(f, t, L1, m˜︁I))
and
β(f) := λ(k(f, t, (mI)b, L∞))

for f ∈ M+(0, 1). We check that λ is an r.i. norm. The triangle inequality
follows from the subadditivity of f ↦→ f ∗∗ and the triangle inequality of ∥ · ∥X′ .
The rest of (P1) obviously holds. The same goes for (P2). When 0 ≤ fn ↗ f ,
then f ∗∗

n ↗ f ∗∗ and so f ∗∗
n (I(t)) ↗ f ∗∗(I(t)) for every t ∈ (0, 1). Hence (P3) for λ

follows from (P3) of X ′. Regarding (P4), we note that the maximal nonincreasing
rearrangement of a constant function is the function itself, and so the required
property follows from its counterpart in X ′. As for (P5), we estimate

λ(f) = ∥f ∗∗(I(t))∥X′ ≥
⃦⃦⃦
f ∗∗(I(t))χ(0, 1

2 )(t)
⃦⃦⃦

X′
≥
⃦⃦⃦⃦
f ∗∗

(︃
I
(︃1

2

)︃)︃
χ(0, 1

2 )

⃦⃦⃦⃦
X′

≈ f ∗∗
(︃

I
(︃1

2

)︃)︃
≈ f ∗∗

(︃1
2

)︃
≈ ∥f∥1, f ∈ M+(0, 1).
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As λ is obviously rearrangement invariant, depending only on the nonincreasing
rearrangement of f , we conclude that λ is an r.i. norm.

In general, if we have a compatible couple of quasi-Banach spaces (X0, X1)
such that X0 ∩ X1 is dense in X0, Theorem 1.15 combined with the definition of
λ give us

λ(k(f, t, X0, X1)) =
⃦⃦⃦⃦
⃦ 1

I(t)

∫︂ I(t)

0
k(f, t, X0, X1)

⃦⃦⃦⃦
⃦

X′

=
⃦⃦⃦⃦
⃦ 1

I(t)K(f, I(t), X0, X1)
⃦⃦⃦⃦
⃦

X′
.

(3.4)

Since L1 ∩ m˜︁I is dense in L1 and I(t) is an increasing bijection of (0, 1) onto
itself, by Proposition 1.19 we have

α(f) =
⃦⃦⃦⃦
⃦ 1

I(t)K(f, I(t), L1, m˜︁I)
⃦⃦⃦⃦
⃦

X′
≤
⃦⃦⃦⃦
⃦ 1

I(t)

(︄∫︂ t

0
f ∗(s) ds + I(t) sup

t≤s<1

s

I(s)f ∗(s)
)︄⃦⃦⃦⃦
⃦

X′

≤ ∥f∥Y ′
X

+
⃦⃦⃦⃦
⃦ t

I(t)(TIf)
⃦⃦⃦⃦
⃦

X′
≲ ∥f∥Y ′

X
,

(3.5)

where the last estimate comes from Corollary 2.16.
Next, (mI)b ∩ L∞ is dense in (mI)b. Using (3.4) once more we have

β(f) =
⃦⃦⃦⃦
⃦ 1

I(t)K(f, I(t), (mI)b, L∞)
⃦⃦⃦⃦
⃦

X′

≥
⃦⃦⃦⃦
⃦ 1

I(t)K(f, I(t), mI , L∞)
⃦⃦⃦⃦
⃦

X′
≈
⃦⃦⃦⃦
⃦ 1

I(t) sup
0<s≤t

I(s)f ∗(s)
⃦⃦⃦⃦
⃦

X′
= ∥f∥Z ,

(3.6)

where the first inequality follows from enlarging the space (mI)b to mI and
hence allowing more decompositions. The approximation is an application of
Lemma 2.10.

Adding Lemma 3.3 to the kettle we see that all the assumptions of Theo-
rem 1.21 are satisfied. Therefore

β (RIf ∗) ≲ α(f ∗). (3.7)

Finally, chaining (3.6), (3.7) and (3.5) together, we arrive at

∥RIf ∗∥Z ≲ β(RIf ∗) ≲ α(f ∗) ≲ ∥f∥Y ′
X

. (3.8)

This finishes the proof, as the reverse inequality holds trivially.

We now introduce two functionals, λ and µ, and exhibit their equivalence in
Proposition 3.6.
Lemma 3.5. Let I be a concave function and let X be an r.i. space. Define
a functional ∥f∥Z = ∥SIf∥X , f ∈ M+(0, 1). Then

µ(f) := sup
∥g∥Z≤1

∥g∥∞<∞

∫︂ 1

0
f ∗(t) dcsup

0<s≤t
I(s)g∗(s) + ∥f∥1, f ∈ M+(0, 1), (3.9)

is an r.i. norm. Here, csup
0<s≤t

φ(s) stands for the least concave majorant of t ↦→

sup0<s≤t φ(s).
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Proof. Denote hg(t) = csup
0<s≤t

I(s)g∗(s) for g ∈ M+(0, 1). Let us observe that

t ↦→ sup0<s≤t I(s)g∗(s) is a quasiconcave map for every g ∈ Z and so hg is a finite
concave function. Indeed, for such functions g the supremum is finite, as Z ⊂ mI ,
and with increasing t the supremum is nondecreasing. It thus remains to check
that for 0 < t1 < t2 < 1 the inequality

sup0<s≤t2 I(s)g∗(s)
t2

≤
sup0<s≤t1 I(s)g∗(s)

t1

holds. We calculate

supt1<s≤t2 I(s)g∗(s)
t2

≤ g∗(t1)
sup0<s≤t1 I

(︂
t2
t1

· s
)︂

t2
t1

· t1

≤
sup0<s≤t1 I(s)g∗(t1)

t1
≤

sup0<s≤t1 I(s)g∗(s)
t1

,

where in the second to last inequality we used the concavity of I. For ∥g∥Z ≤ 1
we therefore have ∫︂ 1

0
f ∗(t) dhg(t) =

∫︂ 1

0
f ∗(t)dhg(t)

dt
dt.

As t ↦→ dhg(t)
dt

is nonincreasing, Hardy’s lemma (1.8) gives us a triangle inequality
of the functional µ. Property (P2) is obvious. (P3) follows from the monotone
convegence theorem. To check (P4), let ∥g∥Z ≤ 1 be given. Using the fact that
Z ↪→ mI , we estimate∫︂ 1

0
dcsup

0<s≤t
I(s)g∗(s) ≤ csup

0<s<1
I(s)g∗(s) ≈ sup

0<s<1
I(s)g∗(s) = ∥g∥mI

≲ ∥g∥Z ≤ 1.

Thus µ(χ(0,1)) < ∞. Regarding (P5), ∥f∥1 ≤ µ(f), f ∈ M+(0, 1), follows from
the definition of µ. Finally, µ is rearrangement invariant, as the first expression in
its definition (3.9) depends only on the nonincreasing rearrangement of a function
and the second term, ∥ · ∥1, is rearrangement invariant.

Proposition 3.6. Let I be a concave function and let X be an r.i. space. Put
∥f∥Z := ∥SIf∥X for f ∈ M+(0, 1). Then the functional λ on M+(0, 1) defined
by

λ(f) = sup
∥g∥Z≤1

∫︂ 1

0
−I(t)g∗(t) df ∗(t) + ∥f∥1, f ∈ M+(0, 1),

is equivalent to an r.i. norm.

Proof. We show that λ ≈ µ, where µ is the functional from Lemma 3.5. First
observe that, by the monotone convergence theorem, it suffices to consider only
bounded functions over which we take the supremum in the definition of the
functional λ.

We show their equivalence in three steps. Let first f ∈ M+(0, 1) be such
that f ∗(0+) < ∞ and f ∗(1−) = 0 and pick g ∈ M+(0, 1) bounded such that
∥g∥Z ≤ 1. Then

lim
t→0+

f ∗(t)csup
0<s≤t

I(s)g∗(s) = lim
t→1−

f ∗(t)csup
0<s≤t

I(s)g∗(s) = 0.
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Consequently, integration by parts yields∫︂ 1

0
f ∗(t) dcsup

0<s≤t
I(s)g∗(s) =

∫︂ 1

0
−csup

0<s≤t
I(s)g∗(s) df ∗(t).

We therefore have

sup
∥g∥Z≤1

∥g∥∞<∞

∫︂ 1

0
f ∗(t) dcsup

0<s≤t
I(s)g∗(s) = sup

∥g∥Z≤1
∥g∥∞<∞

∫︂ 1

0
−csup

0<s≤t
I(s)g∗(s) df ∗(t)

≈ sup
∥g∥Z≤1

∥g∥∞<∞

∫︂ 1

0
− sup

0<s≤t
I(s)g∗(s) df ∗(t) = sup

∥g∥Z≤1
∥g∥∞<∞

∫︂ 1

0
−I(t)(SIg)(t) df ∗(t)

= sup
∥SIg∥Z≤1
∥g∥∞<∞

∫︂ 1

0
−I(t)(SIg)(t) df ∗(t) = sup

∥g∥Z≤1
∥g∥∞<∞

∫︂ 1

0
−I(t)g∗(t) df ∗(t),

and so µ(f) ≈ λ(f). Here we used the fact that ∥g∥Z = ∥SIg∥Z for every
g ∈ M+(0, 1) and Theorem 2.5, (i), which says that if g is bounded, so is SIg.

Second, let f ∈ M+(0, 1) be such that f ∗(1−) = 0. We show that for
min{f ∗, n} =: fn = f ∗

n we have λ(fn) ↗ λ(f). Indeed, by the monotone conver-
gence theorem we have

λ(fn) = sup
∥g∥Z≤1

∫︂ 1

0
−I(t)g∗(t) df ∗

n(t) + ∥fn∥1

= sup
∥g∥Z≤1

∫︂ 1

tn

−I(t)g∗(t) df ∗(t) + ∥fn∥1 ↗ λ(f),

where tn = inf{t ∈ (0, 1) : f ∗(t) ≤ n}.
Finally, let f ∈ M+(0, 1) be such that f ∗(1−) < ∞. Then, using the previous

step, we have

λ(f) = sup
∥g∥Z≤1

∫︂ 1

0
−I(t)g∗(t) df ∗(t) + ∥f∥1

= sup
∥g∥Z≤1

∫︂ 1

0
−I(t)g∗(t) d(f ∗ − f ∗(1−))(t) + ∥f ∗ − f ∗(1−)∥1 + f ∗(1−)

≈ µ(f ∗ − f ∗(1−)) + f ∗(1−) ≈ µ(f),

since

µ(f ∗ − f ∗(1−)) + f ∗(1−) ≤ µ(f) + µ(f ∗(1−)) + f ∗(1−)
≈ µ(f) + ∥f ∗(1−)∥1 ≤ µ(f) + ∥f∥1 ≈ µ(f)

and

µ(f) ≤ µ(f ∗ − f ∗(1−)) + µ(f ∗(1−)) ≈ µ(f − f ∗(1−)) + f ∗(1−).

Remark 3.7. Both functionals µ and λ contain ∥ · ∥1 in their definitions. For
the functional µ it guarantees that X(µ) ↪→ L1, while for λ it guarantees that
λ(f) = 0 ⇐⇒ f = 0 a.e.
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Before we establish an alternative description of the optimal target space
norm, we require a technical lemma which extends (1.30) to our setting.

Lemma 3.8. Let I be a concave function and X be an r.i. space. Put ∥f∥Z =
∥SIf∥X , f ∈ M+(0, 1). Then

∥RIf ∗∥Z ≈ ∥GIf∥Z , f ∈ M+(0, 1).

Proof. We show that SIGIf = GIf for every f ∈ M+(0, 1). To this end, fix
f ∈ M+(0, 1) and t ∈ (0, 1). We calculate

(SIGIf)(t) = 1
I(t) sup

0<s≤t
I(s) sup

s≤r<1

1
I(r)

∫︂ r

0
f ∗(z) dz

= 1
I(t) sup

0<s≤t
sup

s≤r<1
I(s) 1

I(r)

∫︂ r

0
f ∗(z) dz

= 1
I(t) max

{︄
sup

0<s≤t
sup

s≤r≤t

I(s)
I(r)

∫︂ r

0
f ∗(z) dz, sup

0<s≤t
sup

t≤r<1

I(s)
I(r)

∫︂ r

0
f ∗(z) dz

}︄

= 1
I(t) max

{︄
sup

0<r≤t
sup

0<s≤r

I(s)
I(r)

∫︂ r

0
f ∗(z) dz, sup

t≤r<1

I(t)
I(r)

∫︂ r

0
f ∗(z) dz

}︄

= 1
I(t) max

{︄
sup

0<r≤t

∫︂ r

0
f ∗(z) dz, sup

t≤r<1

I(t)
I(r)

∫︂ r

0
f ∗(z) dz

}︄

= 1
I(t) max

{︄
I(t)
I(t)

∫︂ t

0
f ∗(z) dz, sup

t≤r<1

I(t)
I(r)

∫︂ r

0
f ∗(z) dz

}︄

= max
{︄

1
I(t)

∫︂ t

0
f ∗(z) dz, sup

t≤r<1

1
I(r)

∫︂ r

0
f ∗(z) dz

}︄

= sup
t≤r<1

1
I(r)

∫︂ r

0
f ∗(z) dz = GIf(t).

Therefore, by (1.30),

∥GIf∥Z = ∥SIGIf∥X = ∥GIf∥X ≈ ∥RIf ∗∥X ≤ ∥SIRIf ∗∥X = ∥RIf ∗∥Z .

We know RIf ∗ ≤ GIf and so SIRIf ∗ ≤ SIGIf . Furnishing this last inequality
with ∥ · ∥X finishes the proof.

Theorem 3.9. Let I be a concave function satisfying (2.7) and let X be
an r.i. space. Then

∥f∥YX
≈ λ(f), f ∈ M+(0, 1),

where λ is the functional from Proposition 3.6.

Proof. Put ∥f∥Z = ∥SIf∥X′ for f ∈ M+(0, 1). Let f, g ∈ M+(0, 1) be given and
assume f ∗(0+) < ∞ and f ∗(1−) = 0. Then
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∫︂ 1

0
f ∗(s)g∗(s) ds =

∫︂ 1

0
−g∗(s)

∫︂ 1

s
df ∗(t) ds =

∫︂ 1

0
−
∫︂ t

0
g∗(s) ds df ∗(t)

=
∫︂ 1

0
−I(t)

I(t)

∫︂ t

0
g∗(s) ds df ∗(t) ≤

∫︂ 1

0
−I(t)(GIg)(t) df ∗(t)

≈
∥g∥Y ′

X⃦⃦⃦
1

I(t)
∫︁ t

0 g∗
⃦⃦⃦

Z

∫︂ 1

0
−I(t)(GIg)(t) df ∗(t)

≈
∥g∥Y ′

X

∥GIg∥Z

∫︂ 1

0
−I(t)(GIg)(t) df ∗(t)

≤ ∥g∥Y ′
X

· sup
∥g∥Z≤1

∫︂ 1

0
−I(t)g∗(t) df ∗(t) ≤ ∥g∥Y ′

X
· λ(f),

where the first approximation is Theorem 3.4 and in the second approximation
we used Lemma 3.8. Dividing by ∥g∥Y ′

X
and taking supremum over g ∈ M+(0, 1)

with ∥g∥Y ′
X

≤ 1 gives us ∥f∥YX
≲ λ(f).

In the other direction, let f ∈ M+(0, 1) be arbitrary. As

∥f∥Y ′
X

=
⃦⃦⃦⃦
⃦ 1

I(t)

∫︂ t

0
f ∗
⃦⃦⃦⃦
⃦

X′
,

there exists h ∈ M+(0, 1) with ∥h∥X ≤ 1 and

1
2∥f∥Y ′

X
≤
∫︂ 1

0

h(t)
I(t)

∫︂ t

0
f ∗(s) ds dt.

Put g(t) = g∗(t) =
∫︁ 1

t
h(s)
I(s) ds. For k ∈ M+(0, 1) satisfying ∥k∥Z ≤ 1 we have

∫︂ 1

0
−I(t)k∗(t) dg∗(t) =

∫︂ 1

0
I(t)k∗(t)h(t)

I(t) dt

=
∫︂ 1

0
k∗(t)h(t) dt ≤ ∥k∥X′∥h∥X ≤ ∥k∥Z∥h∥X ≤ 1.

By Fubini’s theorem we estimate∫︂ 1

0
g∗(t) dt =

∫︂ 1

0

∫︂ 1

t

h(s)
I(s) ds dt =

∫︂ 1

0
h(s) s

I(s) ds ≲
∫︂ 1

0
h(s) ds ≲ ∥h∥X ≤ 1.

The last two estimates tell us that λ(g) ≲ 1.
We further have∫︂ 1

0
f ∗(t)g∗(t) dt =

∫︂ 1

0
f ∗(t)

∫︂ 1

t

h(s)
I(s) ds dt =

∫︂ 1

0

h(s)
I(s)

∫︂ s

0
f ∗(t) dt ds ≥ 1

2∥f∥Y ′
X

.

Finally, putting everything together yields

1
2∥f∥Y ′

X
≤
∫︂ 1

0
f ∗(t)g∗(t) dt ≤ λ′(f)λ(g) ≲ λ′(f)

or, equivalently, λ(f) ≲ ∥f∥YX
.
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3.2 Alternative norm in the optimal target space
Starting from Proposition 3.12, we will need boundedness of f ↦→ f ∗∗ on ΛI . The
following characterization can be found in [17, Theorem 10.3.12].

Theorem 3.10. The operator f ↦→ f ∗∗ is bounded on ΛI if and only if∫︂ 1

t

I(s)
s2 ds ≲

1
t

∫︂ t

0

I(s)
s

ds, t ∈ (0, 1).

Remark 3.11. In the proposition that follows, we will use a slighty stronger
condition, namely ∫︂ 1

t

I(s)
s2 ds ≲

I(t)
t

, t ∈ (0, 1). (3.10)

This condition is indeed stronger, as

I(t)
t

≤ 1
t

∫︂ t

0

I(s)
s

ds, t ∈ (0, 1),

is true due to t ↦→ I(t)
t

being nonincreasing. However, we will, as in many previous
results, assume

∫︁ t
0

I(s)
s

ds ≲ I(t), t ∈ (0, 1). In other words, in our setting, (3.10)
is equivalent to the condition in Theorem 3.10.

Proposition 3.12. Let I be a concave function satisfying (2.7) and (3.10). Let
X be an r.i. space. Put ∥f∥Z = ∥SIf∥X′ , f ∈ M+(0, 1). Then

∥f∥YX
≈ sup

∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt + ∥f∥1, f ∈ M+(0, 1).

Proof. By virtue of Theorem 3.10, the mapping f ↦→ f ∗∗ is bounded on ΛI which
implies that the map f ↦→ 1

t

∫︁ t
0 f(s) ds is, too, bounded on ΛI . Lemma 3.2 tells us

that YX ∈ Int(L∞, ΛI). Therefore f ↦→ 1
t

∫︁ t
0 f(s) ds and, consequently, f ↦→ f ∗∗

are bounded on YX .
Now, for every ε ∈ (0, 1

2) and g ∈ M+(0, 1) we have
∫︂ 1−ε

ε
−I(t)g∗(t) d

[︃1
t

∫︂ t

0
f ∗∗(s) ds

]︃
=
∫︂ 1−ε

ε
−I(t)g∗(t)

[︃
− 1

t2

∫︂ t

0
f ∗∗(s) ds + 1

t
f ∗∗(t)

]︃
dt

=
∫︂ 1−ε

ε
I(t)

[︃1
t

∫︂ t

0
(f ∗∗(s) − f ∗(s)) ds

]︃
g∗(t) dt.

Thus, passing to the limit and using Fubini’s Theorem, we have∫︂ 1

0
I(t)g∗(t) d

[︃1
t

∫︂ t

0
f ∗∗(s) ds

]︃
=
∫︂ 1

0

I(t)
t2

∫︂ t

0
(f ∗∗(s) − f ∗(s)) ds g∗(t) dt

=
∫︂ 1

0

I(s)
s

(f ∗∗(s) − f ∗(s)) s

I(s)

∫︂ 1

s

I(t)
t2 g∗(t) dt ds

=
∫︂ 1

0

I(s)
s

(f ∗∗(s) − f ∗(s))(Hg∗)(s).
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Here, the operator H is defined as

Hg(s) = s

I(s)

∫︂ 1

s

I(t)
t2 g(t) dt, g ∈ M+(0, 1), s ∈ (0, 1). (3.11)

Observe that, on one hand, we have

(Hg∗)(s) = s

I(s)

∫︂ 1

s

I(t)
t2 g∗(t) dt ≤ g∗(s) s

I(s)

∫︂ 1

s

I(t)
t2 dt ≲ g∗(s), (3.12)

and, on the other hand,

(Hg∗)
(︃

s

2

)︃
≳

s

I(s)

∫︂ s

s
2

g∗(t)I(t)
t2 dt ≳

s

I(s)g∗(s)I(s)
s2 · s = g∗(s). (3.13)

Finally, using Theorem 3.9, we get

∥f∥YX
≈
⃦⃦⃦⃦1

t

∫︂ t

0
f ∗∗(s) ds

⃦⃦⃦⃦
YX

≈ sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))(Hg∗)(t) dt + ∥f∥1.
(3.14)

To finish the proof we need to show that

sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))(Hg∗)(t) dt ≈ sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt.

The inequality “≲” immediately follows from (3.12).
The boundedness of the dilation operator followed by (3.14) and the fact that

(f ∗(2·))∗∗(t) = f ∗∗(2t), substitution and (3.13) yield

∥f∥YX
≈ ∥f ∗(2t)∥YX

≈ sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(2t) − f ∗(2t))(Hg∗)(t) dt + ∥f∥1

≳ sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))(Hg∗)
(︃

t

2

)︃
dt + ∥f∥1

≳ sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt + ∥f∥1.

Theorem 3.13. Let I be a concave function satisfying (2.7), (3.10) and the
average property. Let X be an r.i. space such that SI is bounded on X ′. Assume

c = sup
{︄

λ ≥ 0 : λ

(︄
I(t)
t2 − 1

)︄
≤
∫︂ 1

t

I(s)
s3 ds, t ∈ (0, 1)

}︄
∈ (0, ∞) (3.15)

and let d denote the smallest positive number such that∫︂ 1

t

I(s)
s2 ds ≤ d

I(t)
t

.

If
either c − 1 ≥ 0 or (1 − c)d ≤ c,

then
∥f∥YX

≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

X

+ ∥f∥1. (3.16)
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Proof. Since SI is bounded on X ′, we have ∥SIg∥X′ ≈ ∥g∥X′ , g ∈ M+(0, 1).
Therefore, by Proposition 3.12, (1.19) and the fact that ∥ · ∥X = ∥ · ∥X′′ , we
obtain

∥f∥YX
≈ sup

∥SIg∥X′ ≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt + ∥f∥1

≈ sup
∥g∥X′ ≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt + ∥f∥1

=
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

(X′)′
d

+ ∥f∥1

=
⃦⃦⃦⃦
⃦
(︄

I(s)
s

(f ∗∗(s) − f ∗(s))
)︄◦ ⃦⃦⃦⃦
⃦

X

+ ∥f∥1, f ∈ M+(0, 1).

(3.17)

It follows from (1.18) and the HLP principle (1.9) that ∥f ◦∥ ≤ ∥f∥ for every
f ∈ M+(0, 1) and every r.i. norm ∥ ·∥. We have therefore obtained “≲” in (3.16).

From the definition of the level function, for every f ∈ M+(0, 1), we have∫︂ t

0

I(s)
s

(f ∗∗(s) − f ∗(s)) ds ≤
∫︂ t

0

(︄
I(y)

y
(f ∗∗(y) − f ∗(y))

)︄◦

(s) ds, t ∈ (0, 1).

Using Hardy’s lemma we get to∫︂ t

0

I(s)
s

(f ∗∗(s) − f ∗(s))g∗∗(s) ds ≤
∫︂ t

0

(︄
I(y)

y
(f ∗∗(y) − f ∗(y))

)︄◦

(s)g∗∗(s) ds

for every t ∈ (0, 1), f, g ∈ M+(0, 1). Using Fubini’s theorem, we rewrite the last
inequality as∫︂ t

0
g∗(s)

∫︂ t

s

I(y)
y

(f ∗∗(y)−f ∗(y))dy

y
ds ≤

∫︂ t

0
g∗(s)

∫︂ t

s

(︄
I(z)

z
(f ∗∗(z) − f ∗(z))

)︄◦

(y)dy

y
ds.

(3.18)
For f ∈ M+(0, 1) we calculate∫︂ 1

t

I(s)
s

(f ∗∗(s) − f ∗(s))ds

s

=
∫︂ 1

t

I(s)
s3

∫︂ 1

0
χ(0,s)(y)f ∗(y) dy ds −

∫︂ 1

t

I(s)
s2 f ∗(s) ds

=
∫︂ 1

0
f ∗(y)

∫︂ 1

t

I(s)
s3 χ(y,1)(s) ds dy −

∫︂ 1

t

I(s)
s2 f ∗(s) ds

=
∫︂ t

0
f ∗(y) dy

∫︂ 1

t

I(s)
s3 ds⏞ ⏟⏟ ⏞

I

+
∫︂ 1

t
f ∗(y)

∫︂ 1

y

I(s)
s3 ds dy −

∫︂ 1

t

I(s)
s2 f ∗(s) ds⏞ ⏟⏟ ⏞

II

.

(3.19)

For I we estimate

I = tf ∗∗(t)
∫︂ 1

t

I(s)
s3 ds ≥ ctf ∗∗(t)

(︄
I(t)
t2 − 1

)︄
= c

I(t)
t

f ∗∗(t) − ctf ∗∗(t). (3.20)

For II we proceed similarly:

II ≥
∫︂ 1

t
f ∗(y)c

(︄
I(y)
y2 − 1

)︄
dy −

∫︂ 1

t

I(y)
y2 f ∗(y) dy

=
∫︂ 1

t
(c − 1)f ∗(y)I(y)

y2 dy − c
∫︂ 1

t
f ∗(y) dy.

(3.21)
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If c − 1 ≥ 0, then we can omit the first term on the second line of (3.21), not
making it greater. Therefore, putting (3.20) and (3.21) together and using (3.19),
we arrive at

c
I(t)

t
(f ∗∗(t) − f ∗(t)) − c∥f∥1 ≤ c

I(t)
t

f ∗∗(t) − ctf ∗∗(t) − c
∫︂ 1

t
f ∗(y) dy

≤ I + II =
∫︂ 1

t

I(s)
s

(f ∗∗(s) − f ∗(s))ds

s
.

(3.22)

If c − 1 < 0, we return to (3.21) and continue in our estimates:∫︂ 1

t
(c − 1)f ∗(y)I(y)

y2 dy − c
∫︂ 1

t
f ∗(y) dy ≥ (c − 1)f ∗(t)

∫︂ 1

t

I(y)
y2 dy − c

∫︂ 1

t
f ∗(y) dy

≥ (c − 1)dI(t)
t

f ∗(t) − c
∫︂ 1

t
f ∗(y) dy.

Assuming therefore that (1 − c)d ≤ c, similarly as in (3.22), we get

(1 − c)dI(t)
t

(f ∗∗(t) − f ∗(t)) − c∥f∥1 ≤ c
I(t)

t
f ∗∗(t) + (c − 1)dI(t)

t
f ∗(t) − c∥f∥1

≤
∫︂ 1

t

I(s)
s

(f ∗∗(s) − f ∗(s))ds

s
.

Either way, we have

I(t)
t

(f ∗∗(t)−f ∗(t)) ≲
∫︂ 1

t

I(s)
s

(f ∗∗(s)−f ∗(s))ds

s
+∥f∥1, f ∈ M+(0, 1), t ∈ (0, 1).

Hence, for every f ∈ M+(0, 1) we have⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

X

≲

⃦⃦⃦⃦
⃦
∫︂ 1

t

I(s)
s

(f ∗∗(s) − f ∗(s))ds

s

⃦⃦⃦⃦
⃦

X

+∥f∥1

≲

⃦⃦⃦⃦
⃦
∫︂ 1

t

(︄
I(y)

y
(f ∗∗(y) − f ∗(y))

)︄◦

(s)ds

s

⃦⃦⃦⃦
⃦

X

+∥f∥1,

(3.23)

where the second inequality comes from (3.18) by taking t = 1 and supremum
over all g ∈ M+(0, 1) with ∥g∥X′ ≤ 1.

As I has the average property, by Remark 2.9 f ↦→ 1
t

∫︁ t
0 f(s) ds is bounded

simultaneously on L∞ and mI . Since the operator SI is bounded on X ′, Theo-
rem 2.11 asserts that X ′ ∈ Int(L∞, mI). Therefore f ↦→ 1

t

∫︁ t
0 f(s) ds is bounded

on X ′ and so, by duality (1.14), its associate operator, f ↦→
∫︁ 1

t
f(s)

s
ds, is bounded

on X. We therefore have⃦⃦⃦⃦
⃦
∫︂ 1

t

(︄
I(y)

y
(f ∗∗(y) − f ∗(y))

)︄◦

(s)ds

s

⃦⃦⃦⃦
⃦

X

≲

⃦⃦⃦⃦
⃦
(︄

I(y)
y

(f ∗∗(y) − f ∗(y))
)︄◦ ⃦⃦⃦⃦
⃦

X

.

Adding this estimate to (3.23) and using (3.17) we have⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

X

≲

⃦⃦⃦⃦
⃦
(︄

I(y)
y

(f ∗∗(y) − f ∗(y))
)︄◦ ⃦⃦⃦⃦
⃦

X

+ ∥f∥1 ≈ ∥f∥YX
,

which concludes the proof.
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Remark 3.14. Observe that the average property was only used in Theorem 2.11
to guarantee us the validity of the theorem for an arbitrary r.i. space. Therefore, if
the map f ↦→ 1

t

∫︁ t
0 f(s) ds is bounded on the associate space of a certain r.i. space

X, we may drop this assumption and still obtain validity of (3.16).
Also, we can view the condition about I having the average property as the

property of the operator HI to push the optimal target space YL1 far enough from
L1, so that f ↦→ f ∗∗ is bounded on YL1 .

Let us demonstrate that for a function I defined by I(t) = t logα 2
t
, α ∈

[︂
0, 1

2

]︂
,

the conclusion of the theorem need not hold. To this end, let α ∈
[︂
0, 1

2

]︂
be

given and set X = L1. We first notice that
∫︁ t

0
I(s)

s
ds ≲ I(t), t ∈ (0, 1) holds

for this particular choice of I (this assertion is contained as a special case in
Proposition 4.2). At the end of the proof of Lemma 3.2, we showed that YL1 = ΛI .
Thus, in our setting, (3.16) reads as

∥f∥ΛI
≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

1
+ ∥f∥1.

We now show that the left-hand side does not majorize the right-hand side. To
this end, it suffices to show that f ↦→ f ∗∗ is not bounded on ΛI . By Theorem 3.10
this is equivalent to showing that∫︂ 1

t

I(s)
s2 ds ≲

I(t)
t

, t ∈ (0, 1),

does not hold. Plugging in our choice of I, we get I(t)
t

= logα 2
t
, t ∈ (0, 1) and∫︂ 1

t

I(s)
s2 ds =

∫︂ 1

t

logα 2
s

s
ds ≈ logα+1 2

t
, t ∈ (0, 1).

As logα+1 2
t

is not majorized by logα 2
t
, the result follows.

The examples of functions which satisfy (3.10) are I(t) = tα, α ∈ (0, 1).
As for the condition (3.15), it is satisfied by every concave function for t ∈(︂

0, 1
2

)︂
. This follows from the following calculation:∫︂ 1

t

I(s)
s3 ds ≥

∫︂ 2t

t

I(s)
s3 ds ≈ I(t)

t2 ≥ I(t)
t2 − 1.

Corollary 3.15. Let X be an r.i. space and assume that I satisfies all the con-
ditions we imposed in Theorem 3.13. Put ∥f∥Z = ∥SIf ∗∗∥X′. Then

∥f∥YX
≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

Z′
+ ∥f∥1.

Proof. By Corollary 2.13 Z is an r.i. space which admits boundedness of the
operator SI . Thus, by Theorem 3.13, we have

∥f∥YZ′ ≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

Z′
+ ∥f∥1.

However, by Proposition 3.12,

∥f∥YZ′ ≈ sup
∥SIg∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt + ∥f∥1

≈ sup
∥g∥Z≤1

∫︂ 1

0

I(t)
t

(f ∗∗(t) − f ∗(t))g∗(t) dt + ∥f∥1 ≈ ∥f∥YX
.
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3.3 Optimality and supremum operators
Next proposition is an analogue of Corollary 2.16 for the operator SI .

Proposition 3.16. Let Y be an r.i. space and assume that a concave function I
satisfies (2.7) and the average property. Then the operator SI is bounded on X ′

Y .

Proof. By virtue of Proposition 3.1, the optimal domain space under the map
HI , XY , exists for every r.i. space Y and is optimal in

∥HIf∥Y ≲ ∥f∥XY
, f ∈ M+(0, 1).

This means, by duality, that X ′
Y is optimal in

∥RIf ∗∥X′
Y
≲ ∥f∥Y ′ , f ∈ M+(0, 1). (3.24)

From the definition of the norm of the space Y ′
XY

, it easily follows that Y ′
XY

is
optimal in

∥RIf ∗∥X′
Y
≲ ∥f∥Y ′

XY
, f ∈ M+(0, 1). (3.25)

Let us check that X ′
Y , too, is optimal therein. Assume that

∥RIf ∗∥Z ≲ ∥f∥Y ′
XY

, f ∈ M+(0, 1),

for some r.i. space Z. We need to show that X ′
Y ↪→ Z. Optimality of Y ′

XY
in

(3.25) and inequality (3.24) tell us that Y ′ ↪→ Y ′
XY

, which in turn implies that

∥RIf ∗∥Z ≲ ∥f∥Y ′ .

Finally, optimality of space X ′
Y in (3.24) yields X ′

Y ↪→ Z as we wanted.
Define β′(f) = λ(k(f, t, mI , L∞)), f ∈ M+(0, 1), where λ is as in Theorem 3.4

corresponding to the space XY – here the space XY plays the role of the space X.
Since I satisfies the average property, by Remark 2.9, mI is in fact an r.i. space
and so, by Theorem 1.21, β′ is an r.i. norm. Respecting the notation from Theo-
rem 3.4, β′ ≤ β and so

β′(RIf ∗) ≤ ∥f∥Y ′
XY

.

Optimality of X ′
Y in (3.25) therefore tells us that β′(·) ≲ ∥ · ∥X′

Y
. Further, using

(3.6), we have
β′(f) ≳ ∥SIf∥X′

Y
, f ∈ M+(0, 1).

Connecting last two estimate, we arrive at ∥SIf∥X′
Y
≲ β′(f) ≲ ∥f∥X′

Y
. In other

words, SI is bounded on X ′
Y .

In the final theorem of the chapter, we will need an alternative description of
the optimal domain norm. Boundedness of the operator TI plays essential role
in there.

Theorem 3.17. Let I be a concave function satisfying (2.7). Let Y be an
r.i. space such that HI1 ∈ Y . If TI is bounded on Y ′, then

sup
h∼f

∥HIh∥Y ≈ ∥HIf ∗∥Y , f ∈ M+(0, 1).

In other words, for the optimal domain space we have

∥f∥XY
≈ ∥HIf ∗∥Y , f ∈ M+(0, 1).
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Proof. First, as HI1 ∈ Y , ∥ · ∥XY
is an r.i. norm by Proposition 3.1. Next, as TI

is bounded on Y ′, we have

∥g∥Y ′ ≈ ∥TIg∥Y ′ , g ∈ M+(0, 1).

We need to check that

sup
h∼f

∥HIh∥Y ≲ ∥HIf ∗∥Y , f ∈ M+(0, 1).

To this end, fix f ∈ M+(0, 1). We estimate⃦⃦⃦⃦
⃦
∫︂ 1

t

f(s)
I(s) ds

⃦⃦⃦⃦
⃦

Y

= sup
∥g∥Y ′ ≤1

∫︂ 1

0
g∗(t)

∫︂ 1

t

f(s)
I(s) ds dt

= sup
∥g∥Y ′ ≤1

∫︂ 1

0

f(s)
I(s)

∫︂ s

0
g∗(t) dt ds

≤ sup
∥g∥Y ′ ≤1

∫︂ 1

0

f(s)
I(s)

∫︂ s

0
(TIg)(t) dt ds

≈ sup
∥g∥Y ′ ≤1

∫︂ 1

0

f(s)∫︁ s
0

I(r)
r

dr

∫︂ s

0
(TIg)(t) dt ds

≤ sup
∥g∥Y ′ ≤1

∫︂ 1

0

f ∗(s)∫︁ s
0

I(r)
r

dr

∫︂ s

0
(TIg)(t) dt ds

≈ sup
∥TIg∥Y ′ ≤1

∫︂ 1

0
(TIg)(t)

∫︂ 1

t

f ∗(s)
I(s) ds dt

≈ sup
∥g∥Y ′ ≤1

∫︂ 1

0
g∗(t)

∫︂ 1

t

f ∗(s)
I(s) ds dt =

⃦⃦⃦⃦
⃦
∫︂ 1

t

f ∗(s)
I(s) ds

⃦⃦⃦⃦
⃦

Y

.

Here, the first and second “≈” is the assumption that I(t) ≈
∫︁ t

0
I(s)

s
ds. In the

second inequality we used the Hardy-Littlewood inequality (1.3), and the fact
that

s ↦→ 1∫︁ s
0

I(t)
t

dt

∫︂ s

0
(TIg)(t) dt = 1∫︁ s

0
I(t)

t
dt

∫︂ s

0
sup

t≤r<1

r

I(r)g∗(r)I(t)
t

dt

is nonincreasing, being the integral mean of a nonincreasing function with respect
to the measure I(t)

t
dt.

Theorem 3.18. Let I be a concave function as in Theorem 3.13. Then an
r.i. space X is the optimal domain space under the map HI for some r.i. space
Y if and only if SI is bounded on X ′. In that case,

∥f∥YX
≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

X

+ ∥f∥1, f ∈ M+(0, 1). (3.26)

Vice versa, an r.i. space Y is the optimal target space under the map HI for
some r.i. space X if and only if TI is bounded on Y ′. In that case,

∥f∥XY
≈
⃦⃦⃦⃦
⃦
∫︂ 1

t

f ∗(s)
I(s) ds

⃦⃦⃦⃦
⃦

Y

, f ∈ M+(0, 1). (3.27)
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Proof. Since 1
I

is integrable, the optimal domain space XZ exists for every r.i. space
Z by Proposition 3.1. By Proposition 3.16, SI is bounded on X ′

Y . This, by The-
orem 3.13, means that

∥f∥YXY
≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

XY

+ ∥f∥1, f ∈ M+(0, 1). (3.28)

Now, given an r.i. space Z, operator TI is bounded on Y ′
Z by virtue of Corol-

lary 2.16. Hence, by Theorem 3.17, we have

∥f∥XYZ
≈
⃦⃦⃦⃦
⃦
∫︂ 1

t

f ∗(s)
I(s) ds

⃦⃦⃦⃦
⃦

YZ

, f ∈ M+(0, 1). (3.29)

Assuming now that X is optimal for some Y , we have that X = XY . Conse-
quently (3.28) turns into (3.26) and SI is bounded X ′.

On the contrary, assuming SI is bounded on X ′, we obtain validity of (3.26)
by Theorem 3.13. We show that XYX

= X. To this end, let f ∈ M+(0, 1) be
given. Then

∥f∥XYX
≈
⃦⃦⃦⃦
⃦
∫︂ 1

t

f ∗(s)
I(s) ds

⃦⃦⃦⃦
⃦

YX

≈
⃦⃦⃦⃦
⃦I(t)

t

(︄
1
t

∫︂ t

0

∫︂ 1

s

f ∗(r)
I(r) dr ds −

∫︂ 1

t

f ∗(s)
I(s) ds

)︄⃦⃦⃦⃦
⃦

X

+
∫︂ 1

0

∫︂ 1

t

f ∗(s)
I(s) ds dt

=
⃦⃦⃦⃦
⃦I(t)

t2

∫︂ t

0

r

I(r)f ∗(r) dr

⃦⃦⃦⃦
⃦

X

+
∫︂ 1

0

∫︂ 1

t

f ∗(s)
I(s) ds dt,

(3.30)

because, by Fubini’s theorem,

1
t

∫︂ t

0

∫︂ 1

s

f ∗(r)
I(r) dr ds −

∫︂ 1

t

f ∗(s)
I(s) ds = 1

t

∫︂ t

0

s

I(s)f ∗(s) ds.

Further,∫︂ 1

0

∫︂ 1

t

f ∗(s)
I(s) ds dt ≤

∫︂ 1

0
f ∗(t)

∫︂ 1

t

ds

I(s) dt ≤
∫︂ 1

0
f ∗(t) dt

∫︂ 1

0

ds

I(s) ≲ ∥f∥1 ≲ ∥f∥X .

(3.31)

Observe that the operator R defined by

Rf(t) = I(t)
t2

∫︂ t

0

s

I(s)f(s) ds, f ∈ M+(0, 1), t ∈ (0, 1),

is associate to the operator H defined in (3.11). Concavity of I implies that∫︂ t

0

s

I(s) ds ≈ t2

I(t) , t ∈ (0, 1).

Therefore, for the operator R′ defined by

R′f(t) = 1∫︁ t
0

s
I(s) ds

∫︂ t

0

s

I(s)f(s) ds, f ∈ M+(0, 1), t ∈ (0, 1),
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we have
Rf(t) ≈ R′f(t), f ∈ M+(0, 1), t ∈ (0, 1).

The advantage of the operator R′ is that R′f ∗ is nonincreasing for every f ∈
M+(0, 1), being the integral mean of f ∗ with respect to the measure t

I(t) dt.
Hence, using (3.12), we have

∥Rf ∗∥X ≈ ∥R′f ∗∥X = sup
∥g∥X′ ≤1

∫︂ 1

0
R′f ∗(t)g∗(t) dt ≈ sup

∥g∥X′ ≤1

∫︂ 1

0
Rf ∗(t)g∗(t) dt

= sup
∥g∥X′ ≤1

∫︂ 1

0
f ∗(t)Hg∗(t) dt ≲ sup

∥g∥X′ ≤1

∫︂ 1

0
f ∗(t)g∗(t) dt = ∥f ∗∥X ,

for every f ∈ M+(0, 1).
We also see that

I(t)
t2

∫︂ t

0

r

I(r)f ∗(r) dr ≥ f ∗(t) · I(t)
t2

∫︂ t

0

r

I(r) dr ≥ f ∗(t) · I(t)
t2

∫︂ t

t
2

r

I(r) dr ≈ f ∗(t),

as I ∈ ∆2. Thus⃦⃦⃦⃦
⃦I(t)

t2

∫︂ t

0

r

I(r)f ∗(r) dr

⃦⃦⃦⃦
⃦

X

≈ ∥f∥X , f ∈ M+(0, 1).

Combining this with (3.30) and (3.31) yields

∥f∥XYX
≈ ∥f∥X .

Turning our attention to the second part, the assumption on optimality of Y
for some space X implies Y = YX . Hence TI is bounded on Y ′ and (3.29) turns
into (3.27).

In the other direction, let us assume that TI is bounded on Y ′. We show that
Y = YXY

, which shows optimality of Y for some space – XY in fact.
For t ∈ (0, 1

2) we estimate
∫︂ 1

t

I(s)
s2 (f ∗∗(s) − f ∗(s)) ds =

∫︂ 1

t

I(s)
s3

∫︂ s

0
f ∗(r) dr ds −

∫︂ 1

t

I(s)
s2 f ∗(s) ds

=
∫︂ 1

t

I(s)
s3

∫︂ t

0
f ∗(r) dr ds +

∫︂ 1

t

I(s)
s3

∫︂ s

t
f ∗(r) dr ds −

∫︂ 1

t

I(s)
s2 f ∗(s) ds

≥
∫︂ 1

t

I(s)
s3

∫︂ t

0
f ∗(r) dr ds +

∫︂ 1

t

I(s)
s3 (s − t)f ∗(s) ds −

∫︂ 1

t

I(s)
s2 f ∗(s) ds

=
∫︂ 1

t

I(s)
s3

∫︂ t

0
f ∗(r) dr ds − t

∫︂ 1

t

I(s)
s3 f ∗(s) ds

≥ t
∫︂ 1

t

I(s)
s3 f ∗∗(t) ds − tf ∗(t)

∫︂ 1

t

I(s)
s3 ds

≥ t
∫︂ 2t

t

I(s)
s3 ds(f ∗∗(t) − f ∗(t)) ≈ I(t)

t
(f ∗∗(t) − f ∗(t)).
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Using this, (3.28) and Theorem 3.17, we have

∥f∥YXY
≈
⃦⃦⃦⃦
⃦I(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

XY

+ ∥f∥1

≲

⃦⃦⃦⃦
⃦
∫︂ 1

t

I(s)
s2 (f ∗∗(s) − f ∗(s)) ds

⃦⃦⃦⃦
⃦

XY

+ ∥f∥1

≈
⃦⃦⃦⃦
⃦
∫︂ 1

t

1
I(s)

∫︂ 1

s

I(r)
r2 (f ∗∗(r) − f ∗(r)) dr ds

⃦⃦⃦⃦
⃦

Y

+ ∥f∥1.

(3.32)

Now, for every h ∈ M+(0, 1), we have∫︂ 1

t

1
I(s)

∫︂ 1

s
h(r)dr

r
ds =

∫︂ 1

t

h(r)
r

∫︂ r

t

ds

I(s) dr ≤
∫︂ 1

t

h(r)
r

∫︂ r

0

ds

I(s) dr

≲
∫︂ 1

t

h(r)
r

· r

I(r) dr =
∫︂ 1

t

h(r)
I(r) dr,

(3.33)

where the first inequality is the average property of I. Further,∫︂ 1

t

1
s2

∫︂ s

0
h(r) dr ds =

∫︂ 1

t

1
s2

∫︂ t

0
h(y) dy ds +

∫︂ 1

t

1
s2

∫︂ s

t
h(r) dr ds

≤
∫︂ t

0
h(y) dy

∫︂ 1

t

ds

s2 +
∫︂ 1

t
h(r)

∫︂ 1

r

ds

s2 dr

≤ 1
t

∫︂ t

0
h(r) dr +

∫︂ 1

t

h(r)
r

dr.

(3.34)

Deploying (3.33) for h(r) = I(r)
r

(f ∗∗(r) − f ∗(r)) and (3.34) for h(r) = f ∗(r) in
this order in (3.32) yields

∥f∥YXY
≲
⃦⃦⃦⃦∫︂ 1

t

1
s

(f ∗∗(s) − f ∗(s)) ds

⃦⃦⃦⃦
Y

+ ∥f∥1

=
⃦⃦⃦⃦
⃦
∫︂ 1

t

1
s2

∫︂ s

0
f ∗(r) dr ds −

∫︂ 1

t
f ∗(s)ds

s

⃦⃦⃦⃦
⃦

Y

+ ∥f∥1

≤ ∥f ∗∗∥Y + ∥f∥1.

(3.35)

We now claim that TI : Y ′ → Y ′ implies Y ⊂ ΛI . In the proof of Lemma 3.2 we
showed that Λ′

I = m˜︁I whenever I satisfies (2.7). Therefore, we can equivalently
show that Y ′ ⊃ m˜︁I . Now, for every f ∈ m˜︁I there exists c ≥ 0 such that
f ∗(t) ≤ c I(t)

t
, t ∈ (0, 1). Thus, from the lattice property of the space Y ′, it suffices

to show that t ↦→ I(t)
t

∈ Y ′. We observe that (TI1)(t) = I(t)
t

, t ∈ (0, 1), and so,
using the boundedness of the operator TI on Y ′, we have⃦⃦⃦⃦

⃦I(t)
t

⃦⃦⃦⃦
⃦

Y ′
= ∥TI1∥Y ′ ≲ ∥1∥Y ′ < ∞.

Hence, combining Lemma 3.2 with Theorem 3.10, we conclude that f ↦→ f ∗∗ is
bounded on Y . Adding this piece of information to (3.35), we obtain

∥f∥YXY
≲ ∥f∥Y .

As YXY
⊂ Y holds trivially, the proof is complete.
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4. Examples
In this chapter, we first briefly discuss all the properties we have imposed on a
function I so far and explore their relations. This will be followed by naming
particular examples of functions I, for some of which, we will apply the results
of Chapter 3.

4.1 Comparison of conditions
We have so far used these conditions:

(i) ∫︂ t

0

ds

I(s) ≈ t

I(t) , t ∈ (0, 1),

(ii) ∫︂ t

0

I(s)
s

ds ≈ I(t), t ∈ (0, 1),

(iii) ∫︂ 1

t

I(s)
s2 ds ≲

I(t)
t

, t ∈ (0, 1),

(iv) ∫︂ 1

t

I(s)
s2 ds ≈ I(t)

t
− 1, t ∈ (0, 1),

(v) ∫︂ 1

t

I(s)
s3 ds ≈ I(t)

t2 − 1, t ∈ (0, 1).

We have always formulated all these properties on the whole unit interval
(0, 1), but what is truly needed is its validity on some right neighbourhood of 0.

When checking validity of condition (ii), it is oft easier to check whether I

satisfies I ′(t) ≈ I(t)
t

, t ∈ (0, 1), the latter being stronger.
Similarly, if

(︂
t

I(t)

)︂′
≈ 1

I(t) , t ∈ (0, 1), then

(︄
I(t)

t

)︄′

=
⎛⎝(︄ t

I(t)

)︄−1
⎞⎠′

= −I(t)2

t2 ·
(︄

t

I(t)

)︄′

≈ −I(t)
t2 , t ∈ (0, 1).

From here it follows that condition (iv), and consequently (iii), hold.
We will be interested in two types of domains. Firstly, those whose isoperimet-

ric profile is related to polynomials I(t) = tα, α ∈
[︂

1
n′ , 1

)︂
and, secondly, product

probability spaces. To this end, we check which conditions are satisfied.
The following proposition states, that strictly concave polynomials satisfy all

the conditions that appeared throughout the thesis. The proof is omitted.

Proposition 4.1 (Polynomials tα for α ∈ (0, 1)). Let α ∈ (0, 1) be given. Then
I(t) = tα satisfies all the conditions (i)-(v). Moreover, the condition (3.15) is
satisfied with c = 2−α ≥ 1 and so I satisfies all the assumptions in Theorem 3.13.
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Next, let us consider Φ: [0, ∞) → [0, ∞). Assume Φ is twice differentiable,
strictly increasing and convex in (0, ∞),

√
Φ is concave and Φ(0) = 0. Define

further a measure on R by

dµΦ(x) = cΦe−Φ(|x|) dx,

where cΦ is such that µΦ(R) = 1.
We then define its product measure µΦ,n on Rn as

µΦ,n = µΦ × · · · × µΦ⏞ ⏟⏟ ⏞
n-times

.

Then (Rn, µΦ,n) is a probability space.
It is further known by [2, Chapter 7] that

I(t) = IRn,µΦ,n
(t) ≈ tΦ′

(︃
Φ−1

(︃
log 2

t

)︃)︃
, t ∈

(︃
0,

1
2

)︃
. (4.1)

Note that I is quasi-concave function – I being nondecreasing is proved in [2,
Lemma 11.1], while t ↦→ I(t)

t
being nonincreasing follows from the fact that Φ is

increasing and convex. Hence, the theory we built is applicable.
We will now check that I ′(t) ≈ I(t)

t
on some right neighbourhood of 0.

First, we observe that Φ ∈ ∆2. Indeed, to see this, recall that
√

Φ is concave
and so

√
Φ ∈ ∆2. We estimate

Φ(2t) =
(︃√︂

Φ(2t)
)︃2

≤
(︃

c
√︂

Φ(t)
)︃2

= c2Φ(t), t ∈ (0, ∞).

As Φ is an increasing convex function with Φ(0) = 0, we write

Φ(t) =
∫︂ t

0
Φ′(s) ds, t ∈ (0, ∞).

Convexity tells us that Φ′ is nondecreasing and so, for every t ∈ (0, ∞), we have

Φ(t) =
∫︂ t

0
Φ′(s) ds ≤ tΦ′(t) ≤

∫︂ 2t

t
Φ′(s) ds ≤ Φ(2t).

Combining with the knowledge that Φ ∈ ∆2, we obtain

Φ′(t) ≈ Φ(t)
t

, t ∈ (0, ∞).

Plugging this new information into (4.1), we have

I(t) ≈
t log 2

t

Φ−1
(︂
log 2

t

)︂ , t ∈
(︃

0,
1
2

)︃
, (4.2)

and so we may as well consider the very last expression to be the representantive
of I. Differentiating, we get

I ′(t) =

(︂
log 2

t
− 1

)︂
Φ−1

(︂
log 2

t

)︂
− 1

Φ′(Φ−1(log 2
t ))

· −1
t

· t log 2
t(︂

Φ−1
(︂
log 2

t

)︂)︂2

=

(︂
log 2

t
− 1

)︂
Φ−1

(︂
log 2

t

)︂
⏞ ⏟⏟ ⏞

A(t)

+
log 2

t

Φ′
(︂
Φ−1

(︂
log 2

t

)︂)︂
·
(︂
Φ−1

(︂
log 2

t

)︂)︂2

⏞ ⏟⏟ ⏞
B(t)

, t ∈
(︃

0,
1
2

)︃
.
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As for A, we simply note that log 2
t

− 1 ≈ log 2
t

on some right neighbourhood of
0, because limt→0+ log 2

t
= ∞. Therefore, it follows that A(t) ≈ I(t)

t
. Using both

(4.1) and (4.2), we obtain

B(t) ≈
log 2

t
I(t)

t

·
(︄

I(t)
t log 2

t

)︄2

= I(t)
t log 2

t

.

Finally, observing that limt→0+
B(t)
A(t) = 0, we conclude that B is negligible.

We have therefore proved the following proposition.

Proposition 4.2. Let I be as in (4.1). Then

I ′(t) ≈ I(t)
t

on some right neighbourhood of 0. Consequently, condition (ii) is satisfied.

A corollary to this observation follows immediately from Corollary 2.16.

Corollary 4.3. Let X be an r.i. space and let I as in (4.1). Then TI is bounded
on Y ′

X .

4.2 Higher-order Sobolev embeddings
Recall that Maz’ya classes of domains Jα for α ∈

[︂
1
n′ , 1

)︂
are defined as

Jα =
{︃

Ω : IΩ(t) ≳ tα, t ∈
[︃
0,

1
2

]︃}︃
.

Since I(t) = tα enjoys the average property, we have, by virtue of [2, Proposition
8.6],

∥Rm
I f∥X ≈

⃦⃦⃦⃦
⃦ tm−1

I(t)m

∫︂ t

0
f(s) ds

⃦⃦⃦⃦
⃦

X

, f ∈ M+(0, 1),

and
∥Hm

I f∥X ≈
⃦⃦⃦⃦
⃦
∫︂ 1

t

sm−1

I(s)m
f(s) ds

⃦⃦⃦⃦
⃦

X

, f ∈ M+(0, 1),

for every r.i. space X. Define a function J : (0, 1) → (0, ∞) by

J(t) = I(t)m

tm−1 = t1−m(1−α), t ∈ (0, 1).

From here, we see that whenever 1 − m(1 − α) > 0, then J(t) is an increasing,
strictly concave bijection of (0, 1) onto itself. Proposition 4.1 therefore asserts that
the function J satisfies all the conditions (i)-(v). Therefore, for this particular
choice of I, Theorem 3.18 reads as follows:

Corollary 4.4. Let α ∈
[︂

1
n′ , 1

)︂
be given and let m ∈ N be such that 1−m(1−α) >

0. Put J(t) = t1−m(1−α) for t ∈ (0, 1). Then an r.i. space X is the optimal domain
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space under the map Hm
I for some r.i. space Y if and only if SJ is bounded on

X ′. In that case,

∥f∥YX
≈
⃦⃦⃦⃦
⃦J(t)

t
(f ∗∗(t) − f ∗(t))

⃦⃦⃦⃦
⃦

X

+ ∥f∥1, f ∈ M+(0, 1).

Vice versa, an r.i. space Y is the optimal target space under the map Hm
I for

some r.i. space X if and only if TJ is bounded on Y ′. In that case,

∥f∥XY
≈
⃦⃦⃦⃦
⃦
∫︂ 1

t

f ∗(s)
J(s) ds

⃦⃦⃦⃦
⃦

Y

, f ∈ M+(0, 1).

Recall that a bounded open Ω ⊂ Rn is said to be a John domain, if there
exists x0 ∈ Ω and c > 0 such that for every x ∈ Ω there exists a recitifiable curve
γx : [0, l] → Ω, parametrized by its arclength, such that

dist(γx(t), ∂Ω) ≥ ct, t ∈ [0, l].

It is known that for every John domain Ω we have IΩ(t) ≈ t
1

n′ . Note that every
Lipschitz domain is also a John domain.

Now, given Ω ⊂ Rn a John domain, [2, Theorem 6.1] asserts that

Hm
IΩ

: X → Y ⇐⇒ V mX → Y

whenever X and Y are r.i. spaces. Combining this with Corollary 4.4, we have:
Corollary 4.5. Let Ω ⊂ Rn be a John domain. Let m ∈ N, m < n be given and
put J(t) = t1− m

n for t ∈ (0, 1). Then an r.i. space X(Ω) is the optimal domain
space in the m-th order Sobolev embedding for some r.i. space Y (Ω) if and only
if SJ is bounded on X ′. In that case,

∥f∥YX
≈
⃦⃦⃦
t− m

n (f ∗∗(t) − f ∗(t))
⃦⃦⃦

X
+ ∥f∥1, f ∈ M+(0, 1).

Vice versa, an r.i. space Y (Ω) is the optimal target space in the m-th order
Sobolev embedding for some r.i. space X(Ω), if and only if TJ is bounded on Y ′,
in which case

∥f∥XY
≈
⃦⃦⃦⃦∫︂ 1

t
s

m
n

−1f ∗(s) ds

⃦⃦⃦⃦
Y

, f ∈ M+(0, 1).

The very last corollary recovers [10, Theorem A] for Lipschitz domains and
extends the result to John domains.

The next proposition exhibits an Euclidean domain Ωα which is extreme in
the sense that IΩα(t) ≈ tα. The proof follows from a special case of [13, Section
5.3.3].

Proposition 4.6. Let α ∈
[︂

1
n′ , 1

)︂
and define ηα :

[︂
0, 1

1−α

]︂
→ [0, ∞) by

ηα(r) = ω
− 1

n−1
n−1 (1 − (1 − α)r)

α
(1−α)(n−1) , r ∈

[︃
0,

1
1 − α

]︃
,

where ωn−1 denotes the Lebesgue measure of the unit ball in Rn−1.
Define Ωα ⊂ Rn as

Ωα =
{︃

(x′, xn) ∈ Rn : x′ ∈ Rn−1, 0 < xn <
1

1 − α
, |x′| < ηα(xn)

}︃
. (4.3)

Then |Ωα| = 1 and IΩα(t) ≈ tα, t ∈
[︂
0, 1

2

]︂
. In particular, Ωα ∈ Jα.

45



The following theorem is a special case of [2, Theorem 6.4].

Theorem 4.7. Let α ∈
[︂

1
n′ , 1

)︂
and m ∈ N be such that 1 − m(1 − α) > 0. Put

J(t) = t1−m(1−α). Let X and Y be r.i. spaces and let Ωα be as in (4.3). Then the
following statements are equivalent:

(i)
HJ : X → Y ;

(ii)
∀Ω ∈ Jα : V mX(Ω) → Y (Ω);

(iii)
V mX(Ωα) → Y (Ωα).

Using this theorem, we formulate a result analogous to Corollary 4.4.

Corollary 4.8. Let α ∈
[︂

1
n′ , 1

)︂
and m ∈ N be such that 1 − m(1 − α) > 0.

Put J(t) = t1−m(1−α) and let Ωα be as in (4.3). Then an r.i. space X(Ωα) is the
optimal domain space in the m-th order sobolev embedding for some r.i. space
Y (Ωα) if and only if SJ is bounded on X ′. In this case, V mX(Ω) → Y (Ω) for
every Ω ∈ Jα and

∥f∥YX
≈ ∥t−m(1−α)(f ∗∗(t) − f ∗(t))∥X + ∥f∥1, f ∈ M+(0, 1).

Vice versa, an r.i. space Y (Ωα) is the optimal target space in the m-th order
Sobolev embedding for some r.i. space X(Ωα) if and only if TJ is bounded on Y ′.
In this case, V mX(Ω) → Y (Ω) for every Ω ∈ Jα and

∥f∥XY
≈
⃦⃦⃦⃦∫︂ 1

t
sm(1−α)−1f ∗(s) ds

⃦⃦⃦⃦
X

, f ∈ M+(0, 1).
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