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Introduction

When talking about polynomial factorizations, one can not omit the fundamental
theorem of algebra. It states, that any complex polynomial P has a complex root
z and hence the associated linear polynomial factor t−z. The rest of the original
polynomial will have another complex zero and another linear factor, giving way
for a factorization of P into linear terms. The natural question to ask is whether
we can generalize it.

Another extension of R, standing right beyond the complex numbers, is the set
of quaternions. One of its most notable differences to real and complex numbers
is the fact, that quaternion multiplication is not commutative. Therefore we do
not speak of the Ąeld of quaternions, but rather a division ring or a skewĄeld.

Quaternions have found their use in geometry. Namely, they represent the el-
ements of SO(3) Ű the group of rotations about an axis through origin. Dual
quaternions, which are an extension of quaternions, yield SE(3) Ű the group
of rigid body displacements. Both representations are commonly used in com-
puter graphics, with dual quaternions having further use in mechanism science
and robotics.

From geometric point of view, polynomials over dual quaternions parametrize
motions in space. In fact we do not need all of them, as we can restrict our-
selves to Ťmotion polynomialsŤ. The quaternion polynomials then correspond
to the special case of spherical motion. Factorizing these into linear factors al-
lows us to decompose a complex motion into a sequence of simpler ones.

In this thesis we will discuss how to factorize polynomials whose indeterminate
commutes with the coefficients. There are also more strict conventions regarding
the polynomials over non-commutative rings. Some works, including Gordon and
Motzkin [1965], study those as well. However, for applications in geometry, it is
more natural to think of the indeterminate as a real parameter for our motion.

In the Ąrst chapter, we look brieĆy into the algebra and geometry of quater-
nions and dual quaternions. Most of the material is well-known, but we will
also introduce simple lemmas, which will be useful in later chapters. For a more
thorough introduction, see for example Selig [2004].

The second chapter covers the factorization of quaternion polynomials. Here
we exploit the relation between roots and polynomial factors. The theory of Ąnd-
ing quaternion zeros was already developed by Niven [1941], while more modern
work of Huang and So [2002] gives the explicit solutions to degree two polyno-
mials. Since neither were interested in factorizations, we will have to translate
the results ourselves.

In chapter three we proceed to the case of dual quaternion polynomials.
We will look into the factorization of motion polynomials, which was not widely
considered until the work of Hegedüs et al. [2013]. As we will see, obtaining linear
motion polynomials is not always possible. Since the paper only covers a spe-
cial class of motion polynomials, it remains to us to disclose which cases admit
a factorization. The paper by Li et al. [2019] gives an algorithm that decomposes
the motion of given polynomial, when a factorization is not viable. We will use
the same approach to get a more versatile version of the algorithm.

Finally, in the fourth chapter, we will see the application of factorizations
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to the construction of mechanical linkages. The main reason for the study
of Hegedüs et al. [2013] was the construction of movable closed linkages. We will
show how to obtain those from the factorization.
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1. Preliminaries

The Ąrst chapter serves as a basic introduction into the world of quaternions and
dual quaternions. We talk about these two concepts brieĆy from both algebraic
and geometric point of view in sections 1.1 and 1.3. The section 1.2 gives us
the basics of quaternion polynomials.

1.1 Quaternions

In this section we talk about the ring of quaternions. The aim is to introduce
the basics necessary for further work. For more thorough read, see for example
Joly [1905].

DeĄnition 1. The set of quaternions is the set

H = ¶a + bi + cj + dk ♣ a, b, c, d ∈ R♢.

For quaternion q = a + bi + cj + dk, we say a is the real part (or scalar part)
of q, denoted Re q, and bi + cj + dk is the imaginary part (or vector part) of q,
denoted Im q.

Let v = (v1, v2, v3) ∈ R
3 and let a ∈ R. We deĄne the quaternion p = a + v

to be
p = a + v1i + v2j + v3k

and identify v = Im p.

DeĄnition 2. Let p = a + v and q = b + w be quaternions. We deĄne the sum
and the product of p and q as follows.

p + q = (a + b) + (v + w),

p · q = (a · b− v ·w) + (aw + bv + v×w).

The set H with these operations forms the ring of quaternions.

We may see, that the ring H is not commutative. However, this does not
mean two quaternions can not commute. This simple geometric characterization
will help us later.

Lemma 1. Two quaternions commute if and only if their imaginary parts (viewed
as a vector) are linearly dependent.

Proof. Set p = a + p and q = b + q. We compute the difference pq − qp.

pq − qp = (ab− p · q + aq + bp + p× q)− (ab− p · q + aq + bp + q × p),

= p× q − q × p,

= 2p× q.

We may see that the difference is zero if and only p× q = 0, which is equivalent
to p and q being linearly dependent.
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DeĄnition 3. Let p = a + v ∈ H. The quaternion conjugate to p is

p = a− v.

The norm of p is

∥p∥ =
√

pp =
√︂

a2 + ∥v∥2.

We say p is a unit quaternion if ∥p∥ = 1 and denote the set of unit quaternions
H1. The inverse of p is

p−1 =
p

pp
=

p

∥p∥2 .

The main use of quaternions is in geometry. The group H1 is a 2 : 1 cover
of the group of rotations SO(3). Namely, the rotation about a unit vector n

by angle θ can be represented by q = ±(cos θ
2

+ sin θ
2
n). The rotation is then

acted by quaternion conjugation.

Lemma 2. Let x, n ∈ R
3, x = 0 + x, ∥n∥ = 1, θ ∈ R and q = cos θ

2
+ sin θ

2
n.

Then vector
y = Im qxq

is the result of rotation of vector x about n by angle θ.
If p = aq for some a ∈ R \ ¶0♢, then also

y = Im pxp−1 = Im(pxp)/(pp).

The proof of the Ąrst part can be found in section 2.3 of Selig [2004]. The sec-
ond part follows immediately from the fact that pp = a2.

Lemma 3. Rotating vector x by quaternion q and subsequently by quaternion p
yields the same result as rotating by quaternion pq.

Proof. Simply note that

p(qxq−1)p−1 = (pq)x(pq)−1.

Now let us assume a rotation by angle θ ̸= 2kπ for k ∈ Z. Since sin θ
2
̸= 0, we

can divide our unit quaternion by this value and obtain the quaternion

p = cotg
θ

2
+ n,

which gives the same rotation about unit vector n by the same angle θ.
This allows for a nice parametrization. We can simply replace the cotangent

by a (real) time parameter t. As t attains real values the angle θ = 2 · arccotg t
spans the interval (0, 2π). To be able to reach a trivial rotation, that is θ = 0,
we deĄne arccotg∞ = 0.

Lemma 4. Let h = a + v ∈ H, v ̸= 0, t ∈ R. Then the map given by

x ↦→ (t− h)x(t− h)−1 =
(t− h)x(t− h)

(t− h)(t− h)

corresponds to rotation of vector x about axis −v by angle

θ = 2 · arccotg
t− a

∥v∥ .

5



Proof. Any real multiple of quaternion yields the same rotation. Set

p = (t− h)/ ∥v∥ .

By separating the real and imaginary part we get

p =
(t− a)

∥v∥ −
v

∥v∥ .

Since v/ ∥v∥ is a unit vector, by the work above we see that Re p = cotg θ
2
, where

θ is the angle of rotation around −v/ ∥v∥. It now holds that

θ = 2 · arccotg Re p

= 2 · arccotg
t− a

∥v∥ ,

which concludes the proof.

1.2 Polynomials

In this section we formally introduce the polynomials over quaternions. We
present the most important algebraic properties and show the geometric inter-
pretation as a parametrized spherical motion.

DeĄnition 4. Let n ∈ Z, n ≥ 0 and ∀i ∈ ¶0, . . . , n♢ let hi ∈ H. The quaternion
polynomial P is given as

P (t) =
n
∑︂

i=0

hit
i.

The number n is called the degree of P , and the polynomial

Re P (t) =
n
∑︂

i=0

Re(hi)t
i

is called the real part of P .

Example. Setting P1(t) = t− i gives a simple rotation about the x axis. The poly-
nomial P2(t) = t−j−k parametrizes a rotation about the vector v = (0,−1,−1).
Since ∥v∥ =

√
2 ̸= 1, P2 parametrizes the rotation at different speed than P1.

We compose these two rotation into a motion given by the degree two polynomial

P (t) = P2(t) · P1(t),

= (t− j− k) · (t− i),

= t2 − (i + j + k)t + j− k.

Lemma 5. Let P ∈ H[t] be a quaternion polynomial with no real zeros and
x ∈ R

3 \ ¶0♢. Then the formula

y(t) =
P (t)xP (t)

P (t)P (t)

prescribes a spherical motion. That is ∥y(t)∥ = ∥x∥ ∀t ∈ R.
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Figure 1.1: The trajectory of spherical motion of point x = ( 5
13

, 12
13

, 0) given
by the polynomial P (t) = t2 − (i + j + k)t + j− k (left) and the same trajectory
with added unit sphere (right).

Proof. For Ąxed t ∈ R the polynomial P (t) becomes a non-zero quaternion p.
Then p/(pp) = p−1, which for our t means that y(t) = pxp−1. The quaternion
norm is multiplicative, therefore it holds that

∥y(t)∥ =
/︂

/︂

/︂pxp−1
/︂

/︂

/︂ = ∥p∥ ∥x∥ ∥p∥−1 = ∥x∥ .

Example. Let us now consider an arbitrary vector x and set P (t) = P2(t)P1(t)
as in previous example. The formula from lemma above gives the trajectory of x

by the compound transformation given by P1(t) and then P2(t) with respect to t.
We may see the trajectory of x = (5, 12, 0)/13 in Ągure 1.1.

Now let us compare the polynomial P (t) = t2− (i+ j+k)t+ j−k with degree
one polynomial from the lemma 4. It is not easy to see what motion P pre-
scribes. For linear polynomials we only have to look at the numbers next to i, j, k

to determine what axis are we rotating about. The real part (with t) will then
describe the admissible angles. Readability gives us the motivation to factorize
those higher-degree polynomials into linear terms.

In our example, we can imagine a rotation given by P1, which transforms
the axis Im P2 = (0,−1,−1). This moving axis then rotates our given point,
drawing its trajectory. We may see this in Ągure 1.2 with black segments (links)
drawing the trajectories of both the axis and the point.

In order to get the polynomial P = P2P1 in previous section, we allowed the in-
determinate t to commute with quaternion coefficients. This followed naturally
from the assumption that t is a real time parameter. In doing the factorization we
will need to occasionally evaluate given polynomials at quaternion values. This
evaluation clearly depends on which side of coefficients is t written on.

DeĄnition 5. Let M(t) =
∑︁n

i=0 hit
i be a quaternion polynomial. For q ∈ H we

deĄne the right evaluation of M at q to be

M(q) =
n
∑︂

i=0

hiq
i.

Moreover q is called right zero of M if M(q) = 0.
Similarly, the left evaluation of M is

∑︁n
i=0 qihi and q is called a left zero of M ,

if the left evaluation of M at q is equal to zero.
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Figure 1.2: The trajectory of the motion of point x = ( 5
13

, 12
13

, 0) given by the poly-
nomial P (t) = t2 − (i + j + k)t + j − k (red) and trajectory of the axis
Im P2 = (0,−1,−1) (blue). Captured for t ∈ (−∞,−3) (left) and t ∈ (−∞, 1)
(right).

From now on, we will be using only the right evaluation and refer to right
zeros, unless we specify otherwise.

Let us now introduce more basic algebraic properties, to make the polynomials
easier to talk about.

Lemma 6. Let M, N ∈ H[t]. Then there exist exactly one pair of polynomials
Q, R ∈ H[t] such that deg R < deg N and

M(t) = Q(t) ·N(t) + R(t).

Note, that this is just a special case of lemma 1 in Hegedüs et al. [2013].
The proof can be found there.

DeĄnition 6. The process of computing Q, R ∈ H[t] in lemma 6 is called right
division of M by N . Polynomial Q is the right quotient, denoted rquo(M, N),
and R is the right reminder, denoted rrem(M, N).

If R = 0, then we say that N is a right factor of M . If M has no right factor
of degree greater than 0, it is called irreducible.

Note, that all of this can be deĄned for left division as well. We just have
to write the formula in lemma 6 as

M(t) = N(t)Q(t) + R(t).

Then we can also get the analogous concept of left quotient (Q = lquo(M, N)),
left reminder (R = lrem(M, N)) and left factor.

Lemma 7. Let M ∈ H[t] and h ∈ H. Then M(h) = 0 if and only if (t − h) is
a right factor of M .

For the proof see proposition 16.2 in Lam [2001]. The book formulates it
for more general setting of division rings.

The preceding lemma could also be reformulated to left zeros and left factors.
To avoid duplicating all the work, we can rely on the following relation between
left zeros and right zeros.
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Lemma 8. Let M ∈ H[t] and h ∈ H. Then h is a left zero of M if and only if
M(h) = 0.

Proof. Using a version of the preceding lemma, h is a left zero of M if and
only if we may write M(t) = (t − h)N(t) for some N ∈ H[t]. This is then
equivalent to M(t) = N(t)(t−h), which by preceding lemma happens if and only
if M(h) = 0.

DeĄnition 7. Let M ∈ H[t] be a polynomial. The factorization of M is a se-
quence of irreducible polynomials M1, M2, . . . , Mk such that

M(t) = M1(t) ·M2(t) · . . . ·Mk(t).

In this work we will only consider factorization of monic polynomials. As-
suming m ∈ H \ ¶0♢ is a leading coefficient of M(t), we may factorize M ′(t) =
m−1M(t) as M1(t) ·M2(t) · . . . ·Mk(t). Then the factorization of M(t) will be
obtained by changing M1(t) into mM1(t).

While the factorization of polynomials over Ąelds, such as R or C, is unique
up to ordering of factors, in the quaternion case this is not true. Since H is not
commutative, different order typically leads to different product. Furthermore,
one polynomial may have many different factorization, depending on which zeros
we factor out Ąrst.

Example. Let us now return to the polynomial P (t) = t2−(i+j+k)t+j−k. It can
be easily veriĄed that P (i) = 0, which agrees with the fact that P1(t) = t − i

is a right divisor of P . But i is not the only right zero. In fact it holds that
P (4

3
i + 1

3
j + 1

3
k) = 0 as well. It gives us a new right factor and with it a brand

new factorization

P (t) =

(︄

t− −i + 2j + 2k

3

)︄

·
(︄

t− 4i + j + k

3

)︄

.

The polynomial P is unchanged, so the trajectory of point x remains the same.
However, the way we draw it changes. In Ągure 1.3 we may see segments drawing
according to the new factorization.

1.3 Dual quaternions

In this section we introduce one of the possible generalizations of quaternions,
the dual quaternions. Their geometric properties allow not only rotations about
an axis through origin, but all rigid body displacements in space. However,
we need the dual numbers to properly speak about them.

DeĄnition 8. We deĄne the ring of dual numbers to be

D = R[ε]/
˜︁

ε2
˜︂

= ¶a + εb ♣ a, b ∈ R♢.
DeĄnition 9. The square root of a + εb ∈ D is deĄned whenever a > 0 and
it holds that √

a + εb =
√

a + ε
b

2
√

a
.

The inverse of a + εb ∈ D is deĄned whenever a ̸= 0 and it holds that

(a + εb)−1 =
1

a + εb
=

1

a
− ε

b

a2
.
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Figure 1.3: Trajectory of the motion of point x = ( 5
13

, 12
13

, 0) given by polynomial
P (t) = t2−(i+j+k)t+j−k (red). On the left, we may see the drawing segments
for the new factorization. On the right, we see a comparison with the original
factorization shown in blue.

We now may delve into the basics of dual quaternions. A more extensive text
on the topic can be found in section 9.3 of Selig [2004].

DeĄnition 10. The set of dual quaternions is the set

DH = ¶p + εq ♣ p, q ∈ H♢.

For h = p + εq we call p the primal part of h and q the dual part of h.
Further we deĄne the quaternion conjugate (or just conjugate) of h to be

h = p + εq and the dual conjugate of h to be h⋆ = p− εq.
Lastly we deĄne the scalar part of h as Re h = Re p+ε Re q ∈ D and the vector

part of h as Im h = Im p + ε Im q.

DeĄnition 11. Let g = p + εq and h = r + εs be dual quaternions. We deĄne
the sum and the product of g and h as follows.

g + h = (p + r) + ε(q + s),

g · h = (p · r) + ε(p · s + r · q).

DeĄnition 12. We deĄne the norm of h ∈ DH to be

∥h∥ =
√︂

h · h ∈ D.

Lemma 9. Let h = p + εq ∈ DH. Then

hh = pp + ε(pq + qp).

Furthermore ∥h∥ is well-deĄned for all h ∈ DH.

Proof. First note, that (p + εq)(p + εq) = pp + ε(pq + qp).
Now, if p = 0, then hh = 0 and its square root is well-deĄned.
If p ̸= 0, then pp > 0 and again the square root of hh is well-deĄned.
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Lemma 10. Dual quaternion h = p + εq is invertible if and only if p ̸= 0 and
it holds that

h−1 =
h

hh
.

Proof. Since multiplying εq by any dual quaternion can only yield a multiple of ε,
it is not possible to invert h = p + εq for p = 0.

If p ̸= 0, then hh ∈ D has a non-zero primal part and thus it is invertible.
Hence h/(hh) is well deĄned. It holds that

h

hh
· h = h · h

hh
=

hh

hh
= 1.

Now if hg = 1 for some g ∈ DH then by multiplication from the left by h−1 we get
g = h−1. The same holds for gh = 1.

DeĄnition 13. We call the elements of set

DH
× = ¶h ∈ DH ♣ ∥h∥ ∈ R \ ¶0♢♢

the Study quaternions.

Lemma 11. Let h = p+εq ∈ DH, p ̸= 0. Then h ∈ DH
× if and only if it satisĄes

the Study condition:
pq + qp = 0.

Proof. Follows straight from lemma 1.3.

With basic algebraic knowledge of dual quaternions, we can move on to their
geometric properties. In the case of quaternions, the vectorial part characterized
a vector in R

3. The vectorial Study quaternions characterize lines in R
3.

DeĄnition 14. Let l be a line in R
3 with direction vector p and let q be a point

on it. Then the Plücker coordinates of line l is the vectorial dual quaternion h
of the form

h = p− ε(p× q).

If ∥p∥ = 1, then we refer to h as normalized Plücker coordinates.

Lemma 12. Plücker coordinates h of line l are uniquely determined by l up to
a real multiple.

For proof see section 6.2 of Selig [2004].

Lemma 13. Let h = p + εq ∈ DH
×, x ∈ R

3. Then the point y such that

1 + εy =
h⋆(1 + εx)h

hh

is the result of rotating x by quaternion p and subsequent translation by vector
−2qp−1.1

The resulting motion is a pure rotation if and only if −2qp−1 ⊥ p and p ̸= 0.
The resulting motion is a pure translation if and only if p ∈ R.

1Beware, that there are different conventions on how to deĄne the transformation. Ours is
in line with the work on polynomials by Li et al. [2019], as this is the main aim of this thesis.

Other works, such as Selig [2004], use h(1 + εx)h
⋆

/(hh).
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Proof. Let us compute

h⋆(1 + εx)h

hh
=

(p− εq)(1 + εx)(p + εq)

pp

=
pp + ε(pxp + pq − qp)

pp

= 1 + ε
pxp− 2qp

pp
.

We used the Study condition pq = −qp. Also from the Study condition we have
0 = pq + qp = 2 Re(qp). Using the fact, that p−1 = p/(pp) we may write

y = pxp−1 − 2qp−1,

which is a rotation by p and subsequent translation by 2qp−1.
The transformation is a rotation about some axis if and only if the translation

vector is perpendicular to the rotation vector, which gives the Ąrst statement.
To get a translation, we need the rotation part to be trivial, which is if and

only if p ∈ R, yielding the second statement.

Note, that similarly to the case of quaternions, multiplying h by an arbitrary
a ∈ R \ ¶0♢ gives the same motion, since

(ah)⋆(1 + εx)(ah)

ah(ah)
=

a2h⋆(1 + εx)h

a2hh
=

h⋆(1 + εx)h

hh
.

Lemma 14. Let l be a line in R
3 with the Plücker coordinates g = p−ε(p×q) ∈

DH
×, ∥p∥ = 1. The result of rotation of point x ∈ R

3 about line l by angle θ ∈ R

is the point y such that
1 + εy = h⋆(1 + εx)h,

where

h = cos
θ

2
+ sin

θ

2
g⋆.

Proof. Let us take h = p + εq, so p = cos θ
2

+ sin θ
2
p and q = sin θ

2
(p× q). Note,

that ∥p∥ = 1. Now, let us compute qp−1.

qp−1 =

(︄

sin
θ

2
(p× q)

)︄(︄

cos
θ

2
− sin

θ

2
p

)︄

(1.1)

= cos
θ

2
sin

θ

2
(p× q)− sin2 θ

2
(p× q)× p. (1.2)

Since qp−1 ⊥ p, the motion is a rotation. To determine it is a rotation about l,
we need to prove all points of l remain unchanged by the motion.

So let us take an arbitrary point of l. Without loss of generality, we may
choose q. Then

pqp−1 − qp−1 = cos2 θ

2
q + 2 cos

θ

2
sin

θ

2
(p× q)− sin2 θ

2
(p× q)× p

+ sin2 θ

2
(q · p)p− 2 cos

θ

2
sin

θ

2
(p× q) + 2 sin2 θ

2
(p× q)× p

= cos2 θ

2
q + sin2 θ

2
((q · p)p + (p× q)× p)

= cos2 θ

2
q + sin2 θ

2
q = q.
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Analogically to the case of quaternions, we may choose to parametrize this
motion. Dividing the dual quaternion h by sin θ

2
we obtain

h′ = cotg
θ

2
+ g⋆,

which represents the same transformation as h. By taking t = cotg θ
2

we get
a polynomial parametrization

H(t) = t + g⋆.
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2. Factorization of quaternion

polynomials

In this chapter, we look into the factorization of polynomials over quaternions.
We explore the number of such factorizations in section 2.1 following the steps
of Gordon and Motzkin [1965] for division algebras, before giving explicit factor-
izations for any quaternion polynomial of degree two in section 2.2.

Some of the results from these sections will then be used in section 2.3. Here we
derive the general factorization algorithm 1 combining the idea of Niven [1941]
with the modern approach to polynomials over dual quaternions by Li et al.
[2019].

2.1 Number of factorizations

We start with a section concerning the various factorization we may obtain.
A classical work by Gordon and Motzkin [1965] studies the number of right ze-
ros over division rings in general. This will be our stepping stone to determine
the number of factorizations. We also look into the origin of those factorizations
and introduce some concepts, that will be useful both now and further on.

The example at the end of section 1.2 showed us a polynomial of degree 2
with two different factorizations. This leads us to a question whether there could
be more of those. Once we make it through the factorization algorithm, we will be
able to see, that the answer is no for the polynomial P (t) = t2−(i+j+k)t+j−k.
In general a quaternion polynomial of degree n allows either at most n! or inĄnite
number of factorizations.

As we saw in lemma 7, to Ąnd a linear right factor of our polynomial, we need
to Ąnd a right zero.

Theorem 15 (Gordon and Motzkin). Let P (t) ∈ H[t] have degree n. Then P
has either at most n right zeros or inĄnitely many of them.

This is just the theorem 5 in Gordon and Motzkin [1965], reformulated to
quaternions. The proof can be found in the paper.

Corollary 16. Let P ∈ H[t], deg P = n ≥ 1. Then there are either at most n!
or inĄnitely many factorizations of P .

Proof. The proof is by induction. For n = 1 there is clearly exactly one factor-
ization of P . For n > 1 we have two cases. By theorem 15 P has at most n
zeros or inĄnitely many of them. If the latter is the case, then there are certainly
inĄnitely many factorizations.

So let us assume P has at most n zeros. Then for any such zero h ∈ H we
may Ąnd Q(h) ∈ H[t] polynomial of degree n− 1 such that P (t) = Q(h)(t)(t− h).
If Q(h) has inĄnitely many factorizations for some h, so does P . Otherwise,
by the inductive step, Q(h) has at most (n−1)! factorizations for any zero h of P .
The number of factorizations of P is then at most n · (n− 1)! = n!.

14



Example. The polynomial t2 − (i + j)t + k has only one factorization, namely
(t − i)(t − j). Now note, that any h = 0 + h ∈ H such that ∥h∥ = 1 satisĄes
h2 = −1. So, clearly, inĄnitely many such h are right zeros of t2 + 1, hence
the polynomial can be factored in inĄnitely many ways.

The aforementioned paper by Gordon and Motzkin [1965] studies a broader
topic of polynomials over division algebras, rather than just quaternions. Their
steps have interesting consequences in the world of quaternions, so we will ap-
ply them. For that we need a couple of deĄnitions and a simple lemma, which
introduce a useful concept of conjugacy classes.

DeĄnition 15. A conjugacy class of quaternion q is the set

[q] = ¶hqh−1 ♣ h ∈ H \ ¶0♢♢.

DeĄnition 16. A characteristic polynomial of quaternion q is the real polynomial

Pq(t) = (t− q)(t− q) = t2 − 2 · Re(q)t + ∥q∥2 .

Lemma 17. Quaternions p, q lie in the same conjugacy class if and only if it holds
that Pp = Pq.

Proof. We need to check that p ∈ [q] if and only if Re p = Re q and simultaneously
∥Im p∥ = ∥Im q∥.

First let h ∈ H \ ¶0♢ be such that p = hqh−1. Then

Re p = h Re(q)h−1 = Re q.

Since h ̸= 0, then Im p = h Im(q)h−1 is a rotation of vector Im q onto vector Im p.
Therefore ∥Im p∥ = ∥Im q∥.

For the converse assume Re p = Re q and ∥Im p∥ = ∥Im q∥. Any two vectors
of the same length can be rotated one onto the other. So there is h ∈ H \ ¶0♢,
such that

Im p = h Im(q)h−1.

Then clearly p = hqh−1, so p ∈ [q].

The concept of characteristic polynomials is not a part of Gordon and Motzkin
[1965]. It is however a useful approach to conjugacy classes of quaternions,
and can be found for example in the work of Kalantari [2013] on Ąnding ze-
ros of quaternion polynomials. We use them in section 2.3, in particular to prove
lemma 19.

Lemma 18. Let M ∈ H[t] be a polynomial of degree n. Then M has zeros
in at most n different conjugacy classes.

The lemma is just a restating of theorem 2 in Gordon and Motzkin [1965]
speciĄed for quaternions. The proof can be found there.

Lemma 19. Let M ∈ H[t] be a polynomial and x ∈ H, M(x) = 0. If M has
another zero in conjugacy class [x], then ∀y ∈ [x] it holds that M(y) = 0.

15



This time, the lemma 19 is a bit stronger then just a restatement of theorem
4 in Gordon and Motzkin [1965]. The theorem in the paper states, that there
are inĄnitely many zeros in the conjugacy class [x]. However, if we apply its
constructive proof on quaternions, we may see that for any q ∈ H such that

M(qxq−1) = 0,

any t ∈ R yields a new zero of the form

(t + q)x(t + q)−1.

This does not give us the entirety of [x] yet. However, given y = qxq−1, there
are inĄnitely many other axes about which one can rotate x = Im x onto y = Im y.
Parametrizing all of them similarly to q above would give an entirety of [x].

However, this approach is not the most straightforward. Therefore, we will
give a formal proof of lemma 19 once we have the general factorization algorithm
in section 2.3.

2.2 Factorization of degree two polynomials

The core of this section is the proof of theorem 20, that gives us a way to factorize
degree two polynomials of various forms over quaternions. The results, in par-
ticular for real coefficients, will be useful for the general algorithm in section 2.3
and will give us other valuable information.

The theorem is based on the work of Huang and So [2002], who derive formulas
for quaternion zeros. We adjust the formulation to talk about factorizations and
take a different route to some of the cases, which will hopefully provide some
new insights. Since we have different preliminaries and different end products
to the paper, we will do our own proofs. The corollaries in this section are also
our own work.

Theorem 20. Let P (t) = t2 + bt + c ∈ H[t] be a polynomial. Then one of the fol-
lowing holds:

a) If b, c ∈ R and b2−4c ≥ 0, then there are at most two different factorizations
given as

P (t) =

(︄

t +
b +
√

b2 − 4c

2

)︄

·
(︄

t +
b−
√

b2 − 4c

2

)︄

=

(︄

t +
b−
√

b2 − 4c

2

)︄

·
(︄

t +
b +
√

b2 − 4c

2

)︄

b) If b, c ∈ R and b2 − 4c < 0, then there are inĄnitely many factorizations
of the form

P (t) = (t− q)(t− q),

where q ∈ H is of the form

−b +
√

4c− b2v

2
,

for any v ∈ R
3, ∥v∥ = 1.
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c) If P /∈ R[t] and b = Im b and c = Im c are linearly dependent, then there
are one or two factorizations of the form

P (t) = (t− p)(t− q) = (t− q)(t− p)

for p, q ∈ H.

d) If P /∈ R[t] and b = Im b and c = Im c are linearly independent, then there
are exactly two factorizations

P (t) = (t− p1)(t− q1) = (t− p2)(t− q2).

The exact formulas for parts c) and d) are rather complicated. They can be
found in full in corollaries 26 and 27.

Proof of parts a) and b). The formula from a) is well known to depict the real
roots of P (t) = t2 + bt + c, given the condition b2 − 4c ≥ 0. There are no roots
in C, we however suggest, there are no zeros in H either.

So let us assume P (t) = (t − p)(t − q). Then q = ρ + q satisĄes P (q) = 0.
In order for b ∈ R, it holds that p = −q. Since c ∈ R as well, the real parts of p
and q are the same. So necessarily p = q.

Then

P (t) = t2 + bt + c = (t− q)(t− q),

= t2 − 2 Re(q)t + ∥q∥2 .

We may write ρ = − b
2
. Since ∥q∥2 = ρ2 + ∥q∥2, it holds that

c = ∥q∥2 ≥ ρ2 =
b2

4
.

Observing, that equality only holds for q ∈ R we get 4c > b2, which is the desired
condition for b). We are now left to compute the imaginary part of q.

Return to the relation ∥q∥2 = ρ2 + ∥q∥2. Since ∥q∥2 = c and ρ = − b
2
, we may

write ∥q∥2 = c − b2

4
. We may see that it is actually sufficient condition for q,

since the coefficients of P only hold information about real part of q and its norm.
For any unit vector v we may write the solution as

−b +
√

4c− b2v

2
.

Corollary 21. Quaternions p, q lie in the same conjugacy class if and only if
Pp(q) = 0.

Proof. First recall that by lemma 17 p, q lie in the same conjugacy class only if
Pp = Pq. Then

Pp(q) = Pq(q) = 0,

from the deĄnition of characteristic polynomial.
For the converse see that

Pp(t) = t2 − 2 Re(p)t + ∥p∥2

has right zeros p and q. By the proof above, both norm and real part of such zero
are uniquely determined. Hence Re p = Re q, ∥p∥ = ∥q∥ and Pp(t) = Pq(t).
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Corollary 22. Let M ∈ R[t] be degree two polynomial with a quaternion zero
h /∈ R. Then M(t) = Ph(t).

Next, the case c) gives us a look into when the two factors of P commute.
As we will Ąnd out, this case is analogical to factorizing complex quadratic poly-
nomials. First we need to expand on the commutativity.

Lemma 23. Let P (t) = (t − p)(t − q) = t2 + bt + c ∈ H[t] and let p, q, b, c be
the imaginary parts of p, q, b, c, respectively. Then p, q, b, c are either pairwise
linearly dependent or pairwise linearly independent.

Proof. Assume the latter is not the case, i. e. there is a pair of vectors among
p, q, b, c, which are linearly dependent. These two vectors are therefore a mul-
tiple of some unit vector n. By deĄnition b = −p− q, so if two of those vectors
are a multiple of n, so is the third. With p, q linearly dependent, it now holds
that

c = Re(p)q + Re(q)p + p× q = Re(p)q + Re(q)p

is a multiple of n as well.
The other case is when c is one of the two linearly dependent vectors. Since

p, q, b all lie in the span of p and q, c lies there as well. However

Re(p)q + Re(q)p ∈ span(p, q) and p× q ⊥ span(p, q),

which means, that the vector product p× q must be zero. As such p and q are
linearly dependent and from the work above, all four vectors are multiple of some
unit vector n.

Corollary 24. Let P (t) = (t− p)(t− q) = t2 + bt + c ∈ H[t]. Then p, q, b, c are
either pairwise commutative or no pair of them commutes.

Proof. Follows from straightforward application of commutativity characteriza-
tion in lemma 1 on the statement from preceding lemma.

Corollary 25. Let P (t) = (t − p)(t − q) = t2 + bt + c ∈ H[t]. If b, c commute,
then also P (t) = (t− q)(t− p) and both p and q are right zeros of P .

We now have all we need for the proof of the next part.

Proof of theorem 20, part c). Let P (t) = (t − p)(t − q) and q = Im q and p =
Im p. As we saw in lemma 23, the condition for b and c is equivalent to all four
vectors p, q, b, c being a real multiple of some unit vector n. We will show,
that the choice of orientation is arbitrary, but for now we deĄne n = b/ ∥b∥,
if b ̸= 0 and c/ ∥c∥ otherwise. Let us also deĄne ζ ∈ R such that c = ζn. Clearly
♣ζ♣ = ∥c∥.

The key to the formula is an observation, that the set ¶a1 +a2n ♣ a1, a2 ∈ R♢
behaves exactly as the Ąeld of complex numbers. Rather than taking the imagi-
nary unit i, we consider the imaginary unit n. It can be easily veriĄed, that both
addition and multiplication act the same on both sets.

With this in mind, we can solve the equation just like in complex case. First
let us see that (t + b/2)2 = (4c− b2)/4. We know the complex roots of

x2 = a1 + a2n
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to be

x = ±

∏︁

ˆ︂

ˆ︂

∐︂

⌜

⃓

⃓

⎷

√︂

a2
1 + a2

2 + a1

2
+ sgn(a2)

⌜

⃓

⃓

⎷

√︂

a2
1 + a2

2 − a1

2
n

∫︁

ˆ︃

ˆ︃

ˆ︁

,

where sgn is a modiĄed sign function, giving sgn(x) = 1 if x ≥ 0 and sgn(x) = −1
otherwise.

In our case a1 = (4 Re c−Re2 b+∥b∥2)/4 and a2 = (4ζ−2 Re b ∥b∥)/4. Setting
ξ1 = 42(a2

1 + a2
2) and ξ2 = 4a1, we get

t +
b

2
= ±

∏︁

∐︂

1

2

√︄√
ξ1 + ξ2

2
+

1

2

√︄√
ξ1 − ξ2

2
n

∫︁

ˆ︁ .

Subtracting b/2 gives us right zeros of P , which by corollary above are exactly
our p and q.

Note that choosing −n in place of n changes the sign in a2. If a2 = 0 than

either
√︂

a2
1 = a1 or −a1, so at most one of the coefficients is non-zero. The ±

in front of parenthesis then makes the choice of sign arbitrary. If a2 ̸= 0, then
sgn(−a2) = − sgn(a2), so sgn(−a2) · (−n) = sgn(a2)n.

Corollary 26. For P /∈ R[t] and b = Im b, c = Im c linearly dependent, the two
factorizations

P (t) = (t− p)(t− q) = (t− q)(t− p)

satisfy

p = − b

2
+

1

2

∏︁

∐︂

√︄√
ξ1 + ξ2

2
+

√︄√
ξ1 − ξ2

2
n

∫︁

ˆ︁ ,

q = − b

2
− 1

2

∏︁

∐︂

√︄√
ξ1 + ξ2

2
+

√︄√
ξ1 − ξ2

2
n

∫︁

ˆ︁ ,

for n = b/ ∥b∥ or n = c/ ∥c∥, whichever is deĄned, and

ξ1 = (4 Re c + Re2 b− ∥b∥2)2 + (4 ∥c∥+ 2 Re b ∥b∥)2,

ξ2 = 4 Re c + Re2 b− ∥b∥2 .

For the Ąnal part of the proof, we will actually use the work by Huang and So
[2002]. While it is possible to verify that the two factorizations provided below
are correct with our current knowledge, we still need to prove there are no other
viable factorizations. Here we will use the right zeros provided by the paper.

Lemma 27. Let

c′ = c− 1

4
(Re b)2 − 1

2
Re bb,

µ = ∥b∥2 + 2 Re c− 1

2
(Re b)2 = ∥b∥2 + 2 Re c′,

ν = 2b · c− Re b ∥b∥2 = 2 Re(bc′),

ξ =
⎤

Re c− 1

4
(Re b)2

⎣2

+
/︂

/︂

/︂

/︂

c− 1

2
Re bb

/︂

/︂

/︂

/︂

2

= ∥c′∥2
.
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Then the two factorizations in part d) of theorem 20 satisfy

p1 = −Re b/2 + (y − c′)(
√

z + b)−1,

q1 = −Re b/2 + (−
√

z + b)−1(x− c′),

p2 = −Re b/2 + (x− c′)(−
√

z + b)−1,

q2 = −Re b/2 + (
√

z + b)−1(y − c′),

where one of the following holds:

(1) There is a unique positive z ∈ R such that

z3 + 2µz2 + (µ2 − 4ξ)z − ν2 = 0.

Then

x =

√
z

3
+ µ
√

z − ν

2
√

z
, y =

√
z

3
+ µ
√

z + ν

2
√

z
.

(2) Otherwise z = 0 and

x =
µ−
√

µ2 − 4ξ

2
, y =

µ +
√

µ2 − 4ξ

2
.

We start by restating the case 4 of theorem 2.3 in Huang and So [2002] using
our own notation, to make it easier to use.

Theorem 28 (Huang and So, case 4). Using the notation of lemma 27, if b /∈ R,
then the solutions q such that P (q) = 0 can be obtained by

q = −1

2
Re b− (b + Z)−1(c′ −X),

where the pair (Z, X) is chosen as follows.

1. Z = 0, X = (µ±
√

µ2 − 4ξ)/2 provided that ν = 0 and µ2 ≥ 4ξ.

2. Z = ±
√︂

2
√

ξ − µ, X =
√

ξ provided that ν = 0 and µ2 < 4ξ.

3. Z = ±√z, X = (Z3 +µZ +ν)/(2Z) provided that ν ̸= 0 and z is the unique
positive root of real polynomial

z3 + 2µz2 + (µ2 − 4ξ)z − ν2.

As this is just a restatement, the proof can be found in Huang and So [2002].
Before delving into the proof of lemma 27 and consequently the proof of part

d) of theorem 20, we need just one more technical lemma.

Lemma 29. Using the notation of lemma 27, it holds that

µ + 2
√︂

ξ ≥ 0.
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Proof. First note, that by deĄnition

µ = ∥b∥2 + 2 Re c− 1

2
(Re b)2 ≥ 2 Re c− 1

2
(Re b)2 = 2 Re c′.

Hence

µ + 2
√︂

ξ ≥ 2 Re c′ + 2 ∥c′∥ = 2 Re c′ + 2
√︂

(Re c′)2 + ∥c′∥2

≥ 2 Re c′ + 2
√︂

(Re c′)2 = 2(Re c′ + ♣Re c′♣)
≥ 0.

Proof of lemma 27. First we need to match our q1 and q2 to the zeros from Huang
and So [2002], which we see in the restated theorem 28. Then we will verify, that
the p1 and p2 yield the corresponding right factors.

First let us assume that there is z > 0 such that

z3 + 2µz2 + (µ2 − 4ξ)z − ν2 = 0.

If ν ̸= 0 we are in the third case of theorem 28. The choice of Z =
√

z gives

X =

√
z

3
+ µ
√

z + ν

2
√

z
= y

and hence the root q = q2. On the other hand choosing Z = −√z gives us

X =
−√z

3 − µ
√

z + ν

−2
√

z
=

√
z

3
+ µ
√

z − ν

2
√

z
= x,

yielding the root q = q2.
Now if ν = 0 the positive root z is clearly a root of z2 +2µz +(µ2−4ξ). Hence

it is of the form

z =
−2µ±

√
4µ2 − 4µ2 + 4ξ

2
= −µ± 2

√︂

ξ.

Note, that ξ = ∥c′∥2 ≥ 0. Since z > 0, then by lemma 29 necessarily z = 2
√

ξ−µ
and µ < 2

√
ξ, which is equivalent to the condition of case 2 in theorem 28.

Now clearly

x = y =

√
z

3
+ 2µ

√
z

2
√

z
=

1

2
(z + µ) =

√︂

ξ = X.

The choice of Z =
√

z yields q = q2 and Z = −√z yields q = q1.
For the Ąnal part let us assume, the polynomial z3 + 2µz2 + (µ2 − 4ξ)z − ν2

has no positive root. By theorem 28 that happens only if ν = 0 and by the work
above necessarily µ2 ≥ 4ξ. Hence we are in the Ąrst case of the theorem and
Z =

√
z = 0. The choice of sign in X gives us either

X =
µ +
√

µ2 − 4ξ

2
= y,
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or

X =
µ−
√

µ2 − 4ξ

2
= x.

The Ąrst case corresponds to q = q1, the second case corresponds to q = q2.
Now we only need to verify, that p1q1 = c = p2q2 and p1 + q1 = −b = p2 + q2.

For the sake of simplicity we only prove these identities for p1 and q1. The proof
for p2 and q2 follows analogically.

First notice, we have the following identities

x + y = µ + z,√
z(y − x) = ν,

xy = ξ.

Then see that for p̃ = p1 + Re b/2 and q̃ = q1 + Re b/2 we have

(t− p̃)(t− q̃) = t2 − (p̃ + q̃) + p̃q̃

= t2 − (Re b + p1 + q1)t + (Re b)2 + Re b/2(p1 + q1) + p1q1.

Hence, the pair of identities p1 + q1 = −b and p1q1 = c is equivalent to the pair
p̃ + q̃ = −b and p̃q̃ = c′. We will prove those instead.

Let us start with

p̃ + q̃ = (y − c′)(
√

z + b)−1 + (−
√

z + b)−1(x− c′)

=
1

∥√z + b∥2 (y − c′)(
√

z − b) +
1

∥−√z + b∥2 (−
√

z − b)(x− c′)

=
y
√

z − yb−√zc′ + c′b−√zx +
√

zc′ − xb + bc′

z + ∥b∥2

=

√
z(y − x)− (x + y)b + c′b + bc′

z + ∥b∥2

=
ν − (µ + z)b + c′b + bc′

z + ∥b∥2

=
bc′ + c′b− (∥b∥2 + z)b− 2 Re(c′)b + c′b + bc′

z + ∥b∥2

=
2b Re c′ − 2 Re(c′)b− (z + ∥b∥2)b

z + ∥b∥2 = −b.

We used the identities from above, deĄnitions of µ, ν, ξ and the fact that b = −b.
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Now, for the product we have

p̃q̃ = (y − c′)(
√

z + b)−1(−
√

z + b)−1(x− c′)

=
1

(z + ∥b∥2)2
(y − c′)(

√
z − b)(−

√
z − b)(x− c′)

=
−∥√z + b∥2

(z + ∥b∥2)2
(y − c′)(x− c′)

= −(y − c′)(x− c′)

z + ∥b∥2

= −xy − (x + y)c′ + c′2

z + ∥b∥2

= −ξ − (µ + z)c′ + c′2

z + ∥b∥2

= −c′c′ − (c′ + c′ + ∥b∥2 + z)c′ + c′2

z + ∥b∥2

= −(c′ − c′)(c′ − c′)− (z + ∥b∥2)c′

z + ∥b∥2 = c′.

Once again we only used the identities for x, y, z and the deĄnitions of µ, ν, ξ.
Now we have the desired properties for p̃, q̃ and therefore the second part

of the proof.

The proof of theorem 20, part d), follows from lemma 27.

2.3 General factorization

This section will give us the tools to factorize all quaternion polynomials. The ba-
sic idea from Niven [1941] is to use the norm and the real part of quaternion zeros
to Ąnd right factors. We modernise and simplify this approach, taking inspiration
from the case of dual quaternions in Li et al. [2019], to get the algorithm 1.

More precisely, we will obtain an algorithm, that given a factorization of a cer-
tain real polynomial, returns the factorization of the original. This entire pro-
cess revolves around norm polynomials, which are the polynomial counterparts
of quaternion norm.

DeĄnition 17. Given P ∈ H[t], we call the polynomial PP the norm polynomial
of P .

Lemma 30. For any P ∈ H[t], it holds that PP ∈ R[t].

Proof. Assume P (t) =
∑︁n

i=0 ait
i. Then the j-th coefficient of PP is of the form

∑︁j
i=0 aiaj−i. It is easy to see, that whenever i ̸= j − i, then

aiaj−i + aj−iai = aiaj−i + aiaj−i = 2 Re(aiaj−i).

On the other hand, if i = j − i, then

aiaj−i = aiai = ∥ai∥2 ∈ R.

Therefore the coefficients are all real.
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Example. The norm polynomial of P (t) = t2− (i+ j+k)t+ j−k from the section
1.2 is

PP (t) = t4 + 3t2 + 2.

Given a linear polynomial t− h for some h ∈ H, its norm polynomial is

(t− h)(t− h) = (t− h)(t− h) = Ph(t),

which is the characteristic polynomial of h.

The main advantage of norm polynomial PP is, that it has all the right zeros
that P does, while possibly adding new ones. This is the case for all polynomials
P , not just the linear ones.

Lemma 31. Let P ∈ H[t] and h ∈ H such that P (h) = 0. Then also PP (h) = 0.

Proof. The fact, that h is a right zero of P can be equivalently written as P (t) =
Q(t) · (t− h) for some Q ∈ H[t]. Then, we may write

PP (t) = P (t) · P (t),

= Q(t) · (t− h) ·Q(t) · (t− h),

= Q(t) · (t− h) · (t− h) ·Q(t),

= Q(t)Q(t) ·
(︂

(t− h)(t− h)
⎡

,

where the Ąnal equation holds, as ((t − h)(t − h)) ∈ R[t], so it commutes
with the other polynomials. Furthermore (t − h)(t − h) = (t − h)(t − h), so
we may write

PP (t) = Q̃(t) · (t− h)

for Q̃(t) = Q(t)Q(t)(t− h). Therefore h is a right zero of PP .

Corollary 32. Let P ∈ H[t]. If h ∈ H satisĄes P (h) = 0, then Ph(t) divides
PP (t).

While it may not be obvious, this lemma is crucial for the factorization.
We know, that the factorization can be carried out by Ąnding and factoring out
right zeros of the given polynomial P . The proof tells us to look for the common
zeros of the polynomial P and some real quadratic polynomial Ph. In fact, Ph

is the characteristic polynomial of our desired root h, carrying the information
about the norm of h and its real part.

If we Ąnd any such characteristic polynomial, it will be easier to Ąnd the root.
So we need to extract Ph from PP .

Since PP ∈ R[t], it can be written as a product of real quadratic1 polynomials.
The question now is, which of these quadratic factors give us the desired zeros?
The answer is all of them.

Lemma 33. Let P ∈ H[t], n = deg P , and let R1, R2, . . . , Rn ∈ R[t] be quadratic
polynomials, such that

PP (t) = R1(t) ·R2(t) · . . . ·Rn(t).

Then for any i ∈ ¶1, . . . , n♢ there exists h ∈ H such that P (h) = Ri(h) = h.

1At most quadratic. For h ∈ R we may factor (t − h)(t − h) = (t − h)2. But deg PP is
always even, so we will be able to couple those into real quadratic polynomials.
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Proof. Let R = Ri for arbitrary i ∈ ¶1, . . . , n♢. We start by dividing P by R
from the right and let Q, S ∈ H[t] be such, that P (t) = Q(t)R(t) + S(t), where
deg S < deg R = 2. Now note that

PP (t) = (Q(t)R(t) + S(t)) · (Q(t)R(t) + S(t)),

= Q(t)R(t)R(t)Q(t) + Q(t)R(t)S(t) + S(t)R(t)Q(t) + S(t)S(t),

= Q(t)Q(t)R2(t) + Q(t)S(t)R(t) + S(t)Q(t)R(t) + S(t)S(t).

We used the fact, that R is real and commutes with other polynomials. Now we
may see, that since R is a right factor of PP , as well as three of our terms on the
right, it must also divide S(t)S(t).

We split the proof into two cases, depending on degree of S. If deg S = 1,
then deg SS = 2 = deg R and therefore SS = νR for some ν ∈ R. Seeing as
S(t) = at + b for some a, b ∈ H, the quaternion h = −a−1b is a zero of both S
and R. Since (t − h) is a right divisor of R(t) and S(t) it is also a right divisor
of Q(t)R(t) + S(t) = P (t), so h is a right zero of P as well.

Now, if deg S = 0 and R is a right divisor of SS ∈ H, then necessarily S is
a zero polynomial. Then clearly anytime (t − h) is a right divisor of R(t), it is
also a right divisor of P (t) = Q(t)R(t).

This gives us a way of Ąnding right zeros.

Corollary 34. Let us have a real quadratic polynomial R dividing PP and set
S(t) = rrem(P, R). Then S(t) = at + b. If a ̸= 0, then P has a right zero −a−1b.
If a = 0, then b = 0 and the right zeros can be calculated from R by formula
in part a) or part b) of theorem 20.

Example. So let us consider P (t) = t2−(i+j+k)t+j−k, we saw at the beginning
of section 1.2. We will use the newly found wisdom. The norm polynomial is

PP (t) = t4 + 3t2 + 2 = (t2 + 1)(t2 + 2) = R1(t) ·R2(t).

Using our R1(t) = t2 + 1, we calculate

S(t) = rrem(P (t), R1(t)) = −(i + j + k)t− (1− j + k),

which has the root i. Dividing our P on the right by (t−i) yields the factorization

P (t) = (t− j− k)(t− i).

Now, what if used R2, the other quadratic factor, instead? We have

S ′(t) = rrem(P (t), R2(t)) = −(i + j + k)t− (2− j + k),

which has the right zero (4i + j + k)/3. This gives us the second factorization,
we saw at the end of section 1.2:

P (t) =

(︄

t− −i + 2j + 2k

3

)︄

·
(︄

t− 4i + j + k

3

)︄

.
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To get a right zero of P , we used the real quadratic factors of PP . Different
factors gave us different zeros. Once we Ąnd h such that P (h) = 0, we may
continue our factorization with Q(t), where P (t) = Q(t)(t − h). For different
h we get different factorizations. The proof of lemma 31 shows, that any right
zero can be obtained by choosing the right factor of PP . Therefore all possible
factorizations of P are obtainable by algorithm 1.

Algorithm 1 Factorization of quaternion polynomials

Input: polynomial P ∈ H[t] of degree n

Output: polynomials P1, P2, . . . , Pn ∈ H[t] of degree one, such that P = Pn · . . . · P1

N ← P · P
For i = 1, . . . , n Do

R← real monic quadratic factor of N
S ← rrem(P, R)
a← linear coefficient of S
If a = 0 Do

b← linear coefficient of R
c← constant coefficient of R

Pi ← t + (b +
√

4c− b2i)/2
Else Do

b← constant coefficient of S
Pi ← t + a−1b

End If

N ← N/R
P ← rquo(P, Pi)

End For

Return P1, . . . , Pn

We now return to lemma 19 to Ąnd all roots in given conjugacy class.

Proof of lemma 19. Let x1, x2 ∈ H be two distinct zeros of M from the same con-
jugacy class. From lemma 17, we have that Px1

= Px2
. Let S(t) = rrem(M, Px1

).
From the corollary 34 we know that S either has only one root or S = 0. Since
M and Px1

have at least two common roots, then the latter is the case. Hence
for some Q ∈ H[t] and any y ∈ [x1] we have

M(t) = Q(t)Px1
(t) = Q(t)(t− y)(t− y).

We see that y is a right zero of M .
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3. Dual quaternion polynomials

This chapter gives us some insight into the factorization of polynomials over dual
quaternions. In section 3.1 we start with the basics of how such polynomials work.
The section 3.2 will begin the work towards factorization, drawing similarities and
differences to quaternion polynomials. We propose the theorem 43 summing up
our options and give an example in the form of algorithm by Hegedüs et al. [2013],
which factorizes the generic polynomials.

These results will then help us in section 3.3. Here we factorize a motion into
rotations rather than just factorizing the polynomial itself. We follow the foot-
steps by Li et al. [2019], while also improving the variety of achievable factoriza-
tions with our own algorithm.

3.1 Polynomials

This section formally introduces the polynomials over dual quaternions. Most
of the work here is analogical to the case of quaternion polynomials in section
1.2. However, we use the concept of motion polynomials, which makes our effort
easier, with no loss of generality on the geometric side.

DeĄnition 18. Let P, Q ∈ H[t]. A dual quaternion polynomial is given as

H(t) = P (t) + εQ(t).

The set of such polynomial is denoted by DH[t].
The polynomial P is called the primal part of H, polynomial Q is called

the dual part of H.

Lemma 35. Let H(t) be as above. Then for n = max¶deg P, deg Q♢ and ∀i ∈
¶0, . . . , n♢ there exist ai ∈ DH such that

H(t) =
n
∑︂

i=0

ait
i.

Proof. Let P (t) =
∑︁n

i=0 pit
i and Q(t) =

∑︁n
i=0 qit

i. Then ∀i ∈ ¶0, . . . , n♢ we may
set ai = pi + εqi to obtain the desired form.

DeĄnition 19. Let H = P + εQ ∈ DH[t]. The number n = max¶deg P, deg Q♢
is called the degree of H.

DeĄnition 20. Let M(t) =
∑︁n

i=0 ait
i be a dual quaternion polynomial. For h ∈

DH we deĄne the right evaluation of M at h to be

M(h) =
n
∑︂

i=0

aih
i.

Moreover h is called right zero of M if M(q) = 0.

Lemma 36. Let H, G ∈ DH[t]. Then there exist exactly one pair of polynomials
Q, R ∈ DH[t] such that deg R < deg G and

H(t) = Q(t) ·G(t) + R(t).
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This is just a restatement of lemma 1 in Hegedüs et al. [2013], the proof can
be found there.

DeĄnition 21. The process of computing Q, R ∈ DH[t] in lemma 36 is called
the right division of H by G. Polynomial Q is the right quotient, denoted
rquo(H, G), and R is the right reminder, denoted rrem(H, G).

If R = 0, then we say that G is a right factor of H. If H has no right factor
of degree greater than 0, it is called irreducible.

Similarly to the case of quaternions, we may talk of left division by writing

H(t) = G(t)Q(t) + R(t)

in lemma 36. This would then deĄne the left quotient (Q = lquo(H, G)), left
reminder (R = lrem(H, G)) and left factor.

Lemma 37. Let H ∈ DH[t] and h ∈ DH. Then H(h) = 0 if and only if (t− h)
is a right factor of H.

The statement with proof can be found as lemma 2 in Hegedüs et al. [2013].
We would now like to prepare for similar approach we had in the case of quater-

nion polynomials. We used the concept of norm polynomial to help us Ąnd
the right zeros. We can use the very same deĄnition here, however, we will have
to restrict us further, to make sure such polynomial is real.

DeĄnition 22. We call the polynomial HH the norm polynomial of H.

DeĄnition 23. Let P, Q ∈ H[t]. A polynomial P + ϵQ ∈ DH[t] is motion poly-
nomial if PQ + QP = 0 and its leading coefficient is invertible. The equation
PQ + QP = 0 is called the Study condition.

The condition on leading coefficient allows us to consider only monic polyno-
mials. The Study condition guarantees the motion polynomial to be real.

Lemma 38. Let H ∈ DH[t] be a polynomial with invertible leading coefficient.
Then H is a motion polynomial if and only if HH ∈ R[t].

Proof. Let H = P + εQ for P, Q ∈ H[t]. Then

HH = (P + εQ)(P + εQ) = PP + ε(PQ + QP ),

which is real if and only if H satisĄes the Study condition.

Corollary 39. Let H ∈ DH[t] be a motion polynomial. If H has no real zero,
then for any t0 ∈ R it holds that H(t0) ∈ DH

×.

Theorem 40 (Jüttler). Let H ∈ DH[t] be a motion polynomial with no real zeros
and x ∈ R

3. Then the curve y(t) such that

1 + εy(t) =
H⋆(t)(1 + εx)H(t)

H(t)H(t)

is rational.
Moreover, for any rational curve y(t) there exists motion polynomial H and

x ∈ R
3 such that the expression above holds.
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Figure 3.1: The trajectory of point x = (−2/3, 1/3, 2/3) given by polynomial
H(t) = t2 + (−i − k)t + (1 + i − k) + ε ((j + 2k)t + (2− 2i + j)). The view
on the left picture is from front and top right, the middle picture is a front view,
the right picture is a top view of the trajectory.

This is a famous result by Jüttler [1993]. The proof can be found in the paper,
although with different terminology.

Note, that the Ąrst part also holds for any dual quaternion polynomial, since
the given form guarantees, that the trajectories of all points are rational curves.
The other direction is more important. It tells us, that by restricting ourselves
to motion polynomials, we do not lose any variability in obtainable motions.

3.2 Factorizations in DH[t]

In this section we begin our journey towards factorization of motion polynomi-
als. Our aim is to use what we learned from the case of quaternions and apply
the factorization of the norm polynomial. The main result is the theorem 43 and
subsequently corollary 44, which sum up how and when we can obtain the desired
right factors.

Example. Let us consider the polynomial

H(t) = t2 + (−i− k)t + (1 + i− k) + ε ((j + 2k)t + (2− 2i + j))

= (t− i− j− k + ε(i− j)) · (t− j + ε(−i− 2k)).

Its norm polynomial is HH(t) = t4 + 4t2 + 3, so H is a motion polynomial.
The trajectory of point x = (−2/3, 1/3, 2/3) can be seen in Ągure 3.1.

It is hard to say just from the polynomial, what motion does H prescribe.
The factorization shows us, that the motion is a composition of two rotations. One
is about the axis (1, 1, 1)− ε(1,−1, 0), the other is about (0, 1, 0)− ε(−1, 0,−2).
We may see the two axis in Ągure 3.2, in several steps of drawing the trajectory.

DeĄnition 24. Let H ∈ DH[t] be a polynomial. The factorization of H is a se-
quence of irreducible polynomials H1, H2, . . . , Hk such that

H(t) = H1(t) ·H2(t) · . . . ·Hk(t).
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Figure 3.2: The trajectory of point x = (−2/3, 1/3, 2/3) being drawn (orange).
The axis (1, 1, 1) − ε(1,−1, 0) is shown in blue, the rotating axis (originally
(0, 1, 0)−ε(−1, 0,−2)) is shown in green. The black lines are the links connecting
the axes and the moving point. The pictures depict the state at t = −2, t = 0
and t = 2, respectively

We proceed by giving a deĄnition of characteristic polynomials for dual quater-
nions. The main difference to quaternion case is that these are in general poly-
nomials over dual numbers.

DeĄnition 25. Let h ∈ DH. We deĄne the characteristic polynomial of h as

Ph(t) = (t− h)(t− h) ∈ D[t].

Since any motion polynomial H has a real norm polynomial, we would like
to restrict ourselves to R[t]. Fortunately, such restriction still allows for a full
access to pure rotations and translations.

Lemma 41. Let h = p + εq ∈ DH, p = Im p and q = Im q. Then the following
are equivalent:

(1) h ∈ DH
× and it gives a pure rotation or pure translation.

(2) Ph(t) ∈ R[t].

(3) p ̸= 0, Re q = 0 and p ⊥ q.

Proof. (1) ⇔ (3): The Ąrst statement says, that p ̸= 0, the Study condition
holds, and that either p ∈ R or qp−1 ⊥ p. Note, that the latter holds even
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in the case p ∈ R as p = 0. Multiplying qp−1 by non-zero real number ∥p∥2 gives
us an equivalent relation qp ⊥ p. We compute

(qp) · p = (−Re qp + Re pq − q × p) · p
= −Re q ∥p∥2 + Re p(q · p).

We also rewrite the Study condition as

0 = pq + qp = 2 Re(pq) = 2 · (Re p · Re q + p · q).

Now, if (3) holds, then p ·q = q ·p = 0, irregardless of whether or not p ∈ R.
Since also Re q = 0, we may see that both conditions of (1) are satisĄed.

If (1) holds, then p · q = q · p = −Re p · Re q from Study condition. This
transforms the other condition into

0 = −Re q ∥p∥2 − (Re p)2 · Re q = −Re q · ∥p∥2 .

Since p ̸= 0, then necessarily Re q = 0. From Study condition we get 0 = p · q,
which gives p ⊥ q.

(2)⇔ (3): Let us compute Ph(t):

Ph(t) = (t− p− εq)(t− p− εq)

= t2 − (p + p + ε(q + q))t + pp + ε(pq + qp).

Clearly Ph(t) ∈ R[t] if and only if Re q = (q + q)/2 = 0 and

Re p · Re q + p · q = (pq + qp)/2 = 0.

This is equivalent to Re q = 0 and p ⊥ q, which concludes the proof.

Corollary 42. Let p ∈ H and set M(t) = Pp(t) ∈ R[t]. Then for any q ∈ H,
the following are equivalent:

(1) M(p + εq) = 0.

(2) p + εq ∈ DH
× and Re q = 0.

Now we have an entire class of Study quaternions given by a real polynomial
M . In the case of quaternions, Ąnding such M among the factors of the norm
polynomial would guarantee us a right zero. Adding dual part to a polynomial
makes things more complicated.

Example. Let us consider the motion polynomial

H(t) = t2 + 1 + ε ((i + j)t + k) .

The trajectory of point x = (−2/3, 1/3, 2/3) is an ellipse, as we can see in Ągure
3.3. It can be factorized in inĄnitely many ways. For example, for any µ ∈ R we
have

H(t) =
⎤

t + i + ε
i

2
+ εµj

⎣

·
⎤

t− i + ε
i

2
+ ε(1− µ)j

⎣

.

However, the norm polynomial of left factor is t2 +1+ε and the norm polynomial
of right factor is t2 + 1 − ε. By lemma 41 these do not give us rotation nor
a translation.
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Figure 3.3: The trajectory of point x = (−2/3, 1/3, 2/3) given by motion poly-
nomial H(t) = t2 + 1 + ε ((i + j)t + k). The picture on the left is a front right
view, the picture on the right is a view from front top right corner.

The motion described by these polynomials is referred to as vertical Darboux
motion. More details on this can be found in Siegele et al. [2021]. We would like
to restrict ourselves onto rotations and translations, hence we need the charac-
teristic polynomial of our roots to be real.

Such an assumption limits our possibilities. In the following theorem, we ex-
plore what zeros can be found in different classes given by real characteristic
polynomials.

Theorem 43. Let H = P +εQ ∈ DH[t] be a motion polynomial and let M ∈ R[t]
be a monic degree two factor of PP with at most one distinct real zero.

(1) If M is not a factor of P , then there is a unique h ∈ DH
× such that

M(h) = H(h) = 0.

(2) If M is a factor of both P and Q, then any h ∈ DH
× satisfying M(h) = 0

also satisĄes H(h) = 0.

(3) If M is a factor of P and QQ, but not a factor of Q, then the primal part
of h ∈ DH

× satisfying M(h) = H(h) = 0 is unique.

(4) If M is a factor of P , but not a factor of QQ, then h ∈ DH
× satisfying

M(h) = H(h) = 0 does not exist.

Proof. (1): Note that rrem(P +εQ, M) = rrem(P, M)+ε rrem(Q, M). If M is not
a factor of P , then by corollary after lemma 33 we have that deg rrem(P, M) = 1.
Hence we may write rrem(P + εQ, M) = at + b for some a, b ∈ DH, where
the primal part of a is non-zero, so a is invertible. We claim h = −a−1b is
the unique quaternion satisfying M(h) = H(h) = 0 and h ∈ DH

×.
The uniqueness is clear since h is the only dual quaternion zero of at + b.

We remain to prove M(h) = 0. Let G ∈ DH[t] be such, that H = GM + (at + b).
Since M is a factor of PP = HH, it is a factor of

(GM+(at+b))(GM + (at + b)) = (GGM+G(at+b)+(at+b)G)M+(at+b)(at+b).
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Therefore M is also a factor of

(at + b)(at + b) = aat2 + (ab + ba)t + bb

= (at + b)(at + b)

= (t + ba−1)aa(t + a−1b)

= aa(t + ba−1)(t + a−1b).

Since a is invertible, so is aa ∈ D. Since M is monic, we get

M(t) = (t + ba−1)(t + a−1b),

so M(h) = 0. To see that h ∈ DH
×, note that the absolute term of M is real and

equal to
(aa)−1(bb) = (a−1b)(a−1b),

which is the norm of h.
(2): This part is clear from the fact, that M is a factor of H.
(3) and (4): Similarly to the Ąrst case set at + b = rrem(P + εQ, M). Now, since
M is a factor of P , the primal part of both a and b is zero and hence they are
not invertible. We may write at + b = ε rrem(Q, M). Hence h ∈ DH

× satisĄes
H(h) = M(h) = 0 if and only if εQ(h) = 0 and εM(h) = 0. Since h = p + εq
must be invertible, then p ̸= 0, so the primal part of M(h) and Q(h) is equal to
M(p) and Q(p) respectively. Hence

εM(h) = εM(p) and εQ(h) = εQ(p).

By corollary 32, we know that a common zero p of Q and M exists only if M
divides QQ. Since M is not a divisor of Q, by corollary 34 such p is unique.

We can then pick any q using lemma 42, for example q = 0. Then M(h) = 0
and εQ(h) = εM(h) = 0, hence also H(h) = 0.

Corollary 44. Let H = P +εQ ∈ DH[t] be a motion polynomial and let M ∈ R[t]
be a factor of PP . Then there exists h ∈ DH

× satisfying M(h) = H(h) = 0 if
and only if (at least) one of the following holds:

• M is not a factor of P .

• M is a factor of QQ.

Example. The polynomial H(t) = t2 + 1 + ε ((i + j)t + k) has a primal part equal
to P (t) = t2 + 1 ∈ R[t]. The norm polynomial is

HH(t) = t4 + 2t2 + 1 = (t2 + 1)2.

Since the norm polynomial of Q(t) = (i + j)t + k is 2t2 + 1, it si not divisible
by t2 + 1, so by corollary 44 there is no h ∈ DH

× satisfying H(h) = h2 + 1 = 0.
Hence the polynomial H(t) can not be factorized into linear motion polynomials.

The wisdom of theorem 43 allows us to factorize at least some polynomials.
The paper of Hegedüs et al. [2013] uses of the Ąrst part of the theorem. We present
their algorithm as the simplest example of factorization over dual quaternions.

DeĄnition 26. Motion polynomial H = P + εQ ∈ DH[t] is called generic, if its
primal part P has no real factors.
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The idea is very simple. Since P has no real factors, the theorem 43 guarantees
a unique right zero at every step. Moreover the proof also gives us a way of Ąnding
the factors, which is analogical to the factorization of quaternion polynomials.

Algorithm 2 Factorization of generic polynomials

Input: generic motion polynomial H ∈ DH[t] of degree n

Output: motion polynomials H1, H2, . . . , Hn ∈ DH[t] of degree 1, such that H = Hn · . . . ·
H2 ·H1

N ← HH
For i = 1, . . . , n Do

M ← real monic quadratic factor of N
S ← rrem(H, M)
a← linear coefficient of S
b← constant coefficient of S
Hi ← t + a−1b
N ← N/R
H ← rquo(H, Hi)

End For

Return H1, . . . , Hn

Example. Let us now return to the motion polynomial

H(t) = t2 + (−i− k)t + (1 + i− k) + ε ((j + 2k)t + (2− 2i + j))

from the beginning of this section. Its norm polynomial is

N(t) = t4 + 4t2 + 3 = (t2 + 1)(t2 + 3).

Clearly its primal part has no real zeros, otherwise the norm polynomial would
have those zeros as well. Since its primal part is quadratic and non-real, it has
no real factors either. So we may use algorithm 2 to factorize it.

First let M(t) = t2 + 3. Then

S = rrem(H, M)

= (−i− k + εj + 2εk)t + (−2 + i− k + 2ε− 2εi + εj).

Therefore the right factor is H1(t) = t− i+j−k+ε(−i+j+2k). We can compute
the other factor just by right division to get

H(t) = (t− j + εi)(t− i + j− k + ε(−i + j + 2k)).

If we used the other factor t2 + 1 of N(t), we would obtain the factorization
from the beginning of this section:

H(t) = (t− i− j− k + ε(i− j)) · (t− j + ε(−i− 2k)).

We may see the new factorization in action in Ągure 3.4. The axes are visibly
different to the original factorization (see Ągure 3.2), but the trajectory remains
the same.
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Figure 3.4: The trajectory of point x = (−2/3, 1/3, 2/3) drawn by a linkage
from the computed factorization. The axis (0, 1, 0) − ε(1, 0, 0) is shown in blue,
the moving axis (originally (1,−1, 1)− ε(−1, 1, 2)) is shown in green. The black
lines are links connecting the axes and the moving point. The pictures depict
the state at t = −2, t = 0 and t = 2, respectively.

3.3 Factorization into rotation polynomials

The next step is to decompose given motion into a sequence of rotations. The sur-
prising result by Li et al. [2019] states that it can be done for any bounded motion,
even if its motion polynomial itself can not be factorized into rotational linear
terms.

In this section we look into how this can be done. The main difference to
the aforementioned paper will be in the approach. Li et al. [2019] try to algorith-
mically change the given polynomial into a generic one, which we can factorize
already. We deal with the problematic cases of theorem 43 as we get to them.

While the general tricks are the same, our algorithm 3 produces wider range
of possible factorizations, while keeping all the properties of the one presented by
Li et al. [2019].

DeĄnition 27. We say a motion polynomial H = P + εQ ∈ DH[t] is bounded,
if its primal part P has no real zeros.

Theorem 45. Given a bounded motion polynomial H = P + εQ ∈ DH[t], there
always exists R ∈ R[t] with no real zeros such that HR can be written as a product
of linear rotation polynomials.

If the polynomial P has a root t0 ∈ R, we get H(t0) = εQ(t0) which no
longer lies in DH

×. Geometrically the closer the parameter t is to t0, the closer
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is the trajectory of given point to inĄnity. Hence the requirement of bounded
polynomials is not unreasonable. The multiplication by real polynomial does not
change the motion since

(HR)⋆(1 + εx)(HR)

HRHR
=

R2H⋆(1 + εx)H

R2HH
=

H⋆(1 + εx)H

HH
.

Example. The polynomial H(t) = t2 + 1 + ε ((i + j)t + k) from previous section
can not be factorized into linear motion polynomials. Since t2 + 1 has no real
roots, the polynomial is bounded. It holds that

H(t) · (t2 + 1) =
⎤

t +
4

5
i− 3

5
j

⎣

·
⎤

t− 4

5
i +

3

5
j + ε

3

4
i + εj

⎣

·
⎤

t + j + ε
1

4
i

⎣

· (t− j) .

One can easily verify, that every term in this product parametrizes a rotation.

Let us head towards the factorization. We would like to modify algorithm 2
so it works in all cases of theorem 43. By corollary 44 there is only one case,
when the factor of the form (t − h) for h ∈ DH

× does not exist. We now work
to deal with that.

Lemma 46. Let H = P +εQ ∈ DH[t] and let M ∈ R[t] be a degree two polynomial
with no real roots that is a factor of P , but not QQ. Then for any hr ∈ H such
that M(hr) = 0 there exists a unique hl ∈ H such that the following holds:

(1) M(hl) = 0.

(2) Quaternion hl is a left zero of Q · (t− hr).

(3) For P ′ = (t−hl)(P/M)(t−hr) and Q′ = lquo(Q · (t−hr), (t−hl)) it holds
that

(P + εQ)M = (t− hl)(P
′ + εQ′)(t− hr).

Proof. For simplicity, let us denote N = Q · (t − hr). By lemma 8 Ąnding a left
zero of N is equivalent to Ąnding a right zero of N . Its norm polynomial satisĄes

NN = Q(t− hr)(t− hr)Q = QQM.

Since M does not divide QQ, it can not divide N either. Then by corollary after
lemma 33 there is a unique right quaternion zero h of N . Setting hl = h gives us
the unique left zero of N .

We remain to prove that such hl satisĄes (3). Since hl is a left factor of N ,
polynomial Q′ is well-deĄned. Then we may write

(t− hl)(P
′ + εQ′)(t− hr) = (t− hl)P

′(t− hr) + ε(t− hl)Q
′(t− hr)

= M(P/M)M + εQ(t− hr)(t− hr)

= PM + εQM.

DeĄnition 28. Let M ∈ R[t] be a degree 2 polynomial with no real zeros and
let Q ∈ H[t] be such, that M is not a factor of QQ. Let us denote O ⊆ H the
set of zeros of M . We deĄne the function fM,Q: O → O by assigning each h ∈ O
the unique left zero of both M and Q · (t− h).
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The idea is to modify the motion polynomial in such a way that does not
change its degree nor the motion it deĄnes. As we will see, the changes in part
(3) of lemma 46 can be used to get rid of the real factors of P . We now show
a way of computing fM,Q. This is not included in Li et al. [2019].

Lemma 47. For any h ∈ O we have fM,Q(h) = aha−1, where a = Q(h).

Proof. Let us take b, c ∈ H such that bt−c = rrem(Q, M). Since M is not a factor
of Q, b and c can not be both zero. Then we may write for some R ∈ H[t] that

Q(t) = R(t)M(t) + (bt− c) = R(t)(t− h)(t− h) + (bt− c).

Hence a = Q(h) = 0 + bh− c. Since M does not divide QQ, h is not a right
zero of Q and a ̸= 0.

Now let us compute a right zero of (t − h)Q. Since M is a real polynomial,
we have that rrem(Q, M) = bt− c. Furthermore M(t) = Ph(t), so clearly

rrem((t− h)Q, M) = (t− h)(bt− c)−Mb

= bt2 − (hb + c)t + hc− (bt2 − (h + h)bt + hh b)

= (h b− c)t− h(h b− c).

The right zero is then

(h b− c)−1h(h b− c) = (bh− c)h(bh− c)−1 = aha−1.

Then by lemma 8 the left zero of original is

fM,Q(h) = (aha−1) = aha−1.

Corollary 48. Let P, S ∈ H[t] and h ∈ H be such, that P (t) = S(t) · (t − h).
Then aha−1 for a ∈ H is a left zero of P if one of the following holds:

(1) Ph is not a factor of SS and a = S(h).

(2) S(h) = 0 and a ̸= 0.

Knowing the correspondence between left and right zeros within the same
class is useful in analysis of polynomial modiĄcations proposed in lemma 46. Our
next aim is the lemma 53. It tells us which choices of hl and hr are to be avoided,
if we want to get rid of real factors of P . First we will need some technical
lemmas.

Lemma 49. The function fM,Q is bijective.

This is just the lemma 4 in Li et al. [2019]. The proof can be found there.

Lemma 50. Let P, Q ∈ H[t] and let R ∈ R[t] be a degree 2 polynomial. If R is
a factor of neither P or Q, but it is a factor of PQ, then there exist h ∈ H such
that R(t) = (t−h)(t−h) and (t−h) is a right factor of P (t) and (t−h) is a left
factor of Q(t).
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The lemma is used quite commonly and it can be found with proof, for example
in Li et al. [2016] as lemma 1.

Lemma 51. Let T ∈ H[t] be a polynomial with no real factors and let h ∈ H.
Then the polynomial T · (t− h) has no real factor if and only if h is not a right
zero of T .

Proof. Clearly if T (h) = 0, the polynomial Ph(t) = (t− h)(t− h) is a real factor
of T (t)(t− h).

In the other direction it is clear to see there is no real factor of degree one.
So let R be a degree two factor of T (t) · (t− h). By applying lemma 50 on T and
(t− h) we get that (t− h) must be a right factor of T , hence T (h) = 0.

Corollary 52. The polynomial (t − h) · T has no real factor if and only if h is
not a left zero of T .

Lemma 53. Let H = P + εQ ∈ DH[t] be a bounded motion polynomial and let
M ∈ R[t] be a monic degree two polynomial with no real roots that is a factor
of P , but not QQ. Furthermore let hr ∈ H, M(hr) = 0, set hl = fM,Q(hr) and
let us write P = RT , where R ∈ R[t] and T ∈ H[t] has no real factors. Then
the following statements hold:

(1) Polynomial (t− hl) · T · (t− hr) has a real factor if and only if hl is a left
zero of T · (t− hr) or T (hr) = 0.

(2) There exists Ąnitely many hr for which (1) holds.

Part (1) is just an application of lemma 51. The proof of part (2) uses the fact,
that T has at most one right zero in the class deĄned by M . The rest of the proof
can be found in Li et al. [2019] as lemma 6. The proof in the paper goes even
further and shows, that there are at most two hr for which hl = fM,Q(hr) is a left
zero of T (t) · (t− hr).

Such a result allows us to just guess hr, other than the possible zero of T .
The veriĄcation of whether hl is a left zero can be computed by left evaluation.
In at most three guesses we will get a suitable pair of hr, hl.

Example. Recall the polynomial H(t) = t2 + 1 + ε ((i + j)t + k) with norm poly-
nomial (t2 + 1)2. Let M(t) = t2 + 1 and Q(t) = (i + j)t + k. Then we have

fM,Q(h) = ((i + j)h + k)h((i + j)h + k)−1.

Note, that the primal part is M(t) ∈ R[t], so the polynomial T from lemma 53 is
just constant 1. Hence it has no zeros and the only left zero of 1 · (t− hr) is hr.

Let us note, that fM,Q(i) = −i = i. Therefore hr = i is not a valid choice
for our procedure.

However,

fM,Q(j) = −4

5
i +

3

5
j

gives us a valid pair hr = j and hl = −4
5
i + 3

5
j. Then we may write

P ′(t) = (t− hl)(t− hr) = t2 − (
4

5
i− 8

5
j)t− 3

5
− 4

5
k,

Q′(t) = (i + j)t− 4

5
+

3

5
k.
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Figure 3.5: The trajectory of point x = (−2/3, 1/3, 2/3) drawn by a linkage
from the computed factorization. The order of the axes is blue (Ąxed), green,
yellow and purple (all moving). The black lines are links connecting the consec-
utive axes and the moving point. The pictures depict the state at t = −2, t = 0
and t = 2, respectively.

Since P ′(t) has no real factors, we can factorize P ′(t) + εQ′(t) using the algo-
rithm 2. We obtain

P ′(t) + εQ′(t) =
⎤

t− 4

5
i +

3

5
j + ε

3

4
i + εj

⎣

·
⎤

t + j + ε
1

4
i

⎣

.

The factorization of the motion given by H(t) is then

H(t) · (t2 + 1) =
⎤

t +
4

5
i− 3

5
j

⎣

· (P ′(t) + εQ′(t)) · (t− j)

=
⎤

t +
4

5
i− 3

5
j

⎣⎤

t− 4

5
i +

3

5
j + ε

3

4
i + εj

⎣⎤

t + j + ε
1

4
i

⎣

(t− j) .

We may see how this factorization draws the trajectory of the point x =
(−2/3, 1/3, 2/3) in Ągure 3.5.

We now remain to deal with the case when M is a factor of both P and QQ.
By lemma 33 there is a quaternion p such that M(p) = Q(p) = 0. Since M is
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a factor of P , then also P (p) = 0 and hence H(p) = 0. Therefore Ąnding the right
factor in this case corresponds to Ąnding the right factor of Q over quaternions.

Algorithm 3 Factorization of bounded polynomials

Input: bounded motion polynomial H = P + εQ of degree n

Output: real polynomial R of degree 2m and rotation polynomials H1, H2, . . . , Hn+m,

G1, G2, . . . , Gm of degree 1, such that HR = G1 ·G2 · . . . ·Gm ·Hm+n · . . . ·H2 ·H1

N ← HH
R← 1
i← 1
j ← 1
While deg H > 0 Do

M ← real monic quadratic factor of N
If rrem(P, M) ̸= 0 Do

S ← rrem(H, M)
a← linear coefficient of S
b← constant coefficient of S
Hi ← t + a−1b
N ← N/M
H ← rquo(H, Hi)
i← i + 1

Else If rrem(QQ, M) = 0 Do

S ← rrem(Q, M)
a← linear coefficient of S
If a = 0 Do

b← linear coefficient of M
c← constant coefficient of M

Hi ← t + (b +
√

4c− b2i)/2
Else Do

b← constant coefficient of S
Hi ← t + a−1b

N ← N/M
H ← rquo(H, Hi)
i← i + 1

Else Do

compute hr, hl

P ′ ← (t− hl)(P/M)(t− hr)

Q′ ← lquo(Q(t− hr), (t− hl))

Hi ← (t− hl)

Gj ← (t− hr)
R← R ·M
H ← P ′ + εQ′

i← i + 1
j ← j + 1

End If

Return H1, H2, . . . , Hn+m, G1, G2, . . . , Gm
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Theorem 54. The algorithm 3 is correct and always terminates.

Proof. For correctness we need to verify, that all polynomials H1, . . . , Hn+m,
G1, . . . , Gm are rotation polynomials. Each of the polynomials is of the form
(t− h) for some h ∈ DH, it is enough to prove h is purely rotational.

From the algorithm we know that for any h there is M ∈ R[t] such that M
is a factor of N and M(h) = 0. Since H was originally a bounded polynomial,
its primal part P had no real zeros. Therefore PP = HH = N has no real zeros
and neither does M , so h /∈ R. Then M = Ph is its characteristic polynomial.
Since M ∈ R[t], by lemma 41, h is either pure rotation or pure translation.

For contradiction, let us assume the latter is the case. Then h = p+εq, where
p ∈ R and Re q = 0, again by lemma 41. We may write

M(t) = (t− h)(t− h) = (t− p− εq)(t− p + εq) = (t− p)2.

This contradicts the fact that M has no real factor. Hence we obtained only
rotational polynomials.

For termination, let us write P = UT , where U ∈ R[t] and T ∈ H[t] has no
real factors. We will watch the quantity k = deg H + deg U . Note, that k = 0 if
and only if deg H = deg U = 0. Inside the loop, three different cases may occur.
In Ąrst two, we Ąnd a factor by which we divide H, hence lowering deg H by one.
Note, that this action may decrease deg U , but it can not raise it.

In the third case we change H = P + εQ into H ′ = P ′ + εQ′. Let P ′ = U ′T ′,
with U ′ ∈ R[t] and T ′ ∈ DH[t] having no real factors. It holds that

P ′(t) = (t− hl)
P (t)

M(t)
(t− hr)

=
U(t)

M(t)
(t− hl)T (t)(t− hr).

By lemma 53 it is always possible to choose hl and hr in such a way, that (t −
hl)T (t − hr) has no real factors. Hence U ′ = U/M and we lowered the degree
of U by two. The degree of H remained unchanged.

So at every iteration of the loop we lower the value of k by at least one.
Therefore the algorithm terminates after at most k iterations.

Corollary 55. The cofactor R from algorithm 3 has degree at most deg U , where
U ∈ R[t], P = UT and T ∈ DH[t] has no real factors.

Proof of theorem 45. We can use the algorithm 3 to compute the desired factor-
ization, hence it exists.
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4. Application to the

construction of mechanisms

A mechanical linkage is an assembly of rigid bodies called links, which are joined
together by moveable joints. If the links are connected in series, we talk about
open linkage. We saw examples of those in previous sections, see for example
Ągures 1.2, 3.2 or 3.5. Recall, that we prescribed the motion of each joint and
the endpoint of Ąnal link drew the trajectory of given point.

A more interesting example is a closed linkage, which we obtain by connecting
the links in circle, see for example Ągure 4.3. Such linkage does not allow for an ar-
bitrary movement. The compound motion given by all joints must be an identity
in R

3, since the initial link is rigid. For this to hold, the motion of joints must
satisfy some constraints, called the closure equations. If such a linkage moves,
the closure equations must have at least one-parametric set of solutions.

We will show, that one can use the different factorizations of quaternion and
motion polynomials to create closed linkages. In section 4.1 the focus will be on
spherical linkages. In section 4.2, we will create some over-constrained linkages Ű
linkages, that move, even though it seems, they should not.

4.1 Closed spherical linkages

Spherical linkages are contained on a sphere. All of their joints allow a motion
in SO(3), so we can use quaternions to describe them.

Let us now look into what can a closed spherical 4-bar linkage look like.
We will have four rigid links connected by four joints. The parametrization
of each motion given by our joints is

(t1 − h1), (t2 − h2), (t3 − h3), (t4 − h4),

where t1, t2, t3, t4 are real parameters and h1, h2, h3, h4 ∈ H.
Now, we would like to write the closure equation to see, whether such a link can

exist and move. Without loss of generality, we may Ąx the link connecting the Ąrst
and the last joint. The movement of said link can be described as the composed
motion given by

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4).

Since the link is Ąxed in place, this polynomial has to be real. Conversely if this
polynomial is real, the link will not move. This gives us the closure equation

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4) ∈ R[t].

We could equivalently write this a set of three real equations Ű each of the poly-
nomial coefficients of i, j, k have to be zero. To obtain a motion, we need to get
(at least) a one-parametric set of solutions.

Note the motion of the link connecting second and third node. Its movement
is described by (t1 − h1)(t2 − h2). Equivalently, since the fourth jointed is Ąxed,
the same motion can be described by (t4 − h4)(t3 − h3) Ű the inverse motion to
(t3 − h3)(t4 − h4).
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We are able to obtain a particular solution to this using the factorization
of polynomials. Let us take a quadratic polynomial P ∈ H[t] whose coefficients do
not commute. By the theorem 20 this polynomial has two distinct factorizations

P (t) = (t− p1)(t− q1) = (t− p2)(t− q2).

We also know its norm polynomial is real and

PP (t) = P (t) · (t− q2)(t− p2)

= (t− p1)(t− q1)(t− q2)(t− p2).

Hence for h1 = p1, h2 = q1, h3 = q2, h4 = p2 we have the solution t1 = t2 = t3 =
t4 = t ∈ R.

Example. Let us use the polynomial P (t) = t2 − (i + j + k)t + j− k from section
1.2. In section 2.3, we found out it has two factorizations

(t− j− k)(t− i) =

(︄

t− −i + 2j + 2k

3

)︄(︄

t− 4i + j + k

3

)︄

.

Hence the compound motion

(t− j− k)(t− i)

(︄

t− i− 2j− 2k

3

)︄(︄

t− −4i− j− k

3

)︄

describes an identity on the sphere as well as a closed spherical 4-bar linkage.
The resulting linkage can be seen in different positions in Ągure 4.1. The Ągure

4.2 visualises various states of the linkage on a single sphere.

4.2 Spatial linkages

In this section, we create a moveable 4-bar and 6-bar linkages. While the spherical
4-bar linkage had closure equations consisting of 4 variables and 3 equations, this
time we will have 4 and 6 variables respectively, but only 6 equations. That is
caused by the fact, that the vectorial part of a dual quaternion has 6 coefficients.

Having more equations than variables causes a problem, since it does not have
a solution in general. Even in the case of 6 variables and 6 equations the solution
should theoretically consist of isolated points, which does not give us a motion.
This is why such linkages are called over-constrained.

However, the fact that a linkage is over-constrained in general does not mean,
it can not move under special circumstances. We already saw a special case
of a 4-bar linkage Ű the spherical 4-bar linkage. We will generalize the work from
previous section to dual quaternions, to get over-constrained linkages. This ap-
proach was Ąrst done by Hegedüs et al. [2013].

BennettŠs 4-bar linkage. The most general case1 of 4-bar linkage with ro-
tational joints is called the Bennett linkage. It was Ąrst described by Bennett
[1903].

1That is: neither a spherical nor a planar linkage.
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Figure 4.1: Spherical 4-bar linkage obtained by factorizations of P (t) = t2− (i +
j + k)t + j − k. Captured at t = −3, t = −0.5, t = 1 and t = 4 (row-wise, each
row left to right). The black link is Ąxed on the sphere, while the blue links are
rotating the red one.

Figure 4.2: Different positions of the same spherical 4-bar linkage.
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We are trying to construct a spatial 4-bar linkage. Once again we have four
rigid links connected by four rotational joints. Using h1, h2, h3, h4 ∈ DH

× which
are purely rotational, we search for t1, t2, t3, t4 ∈ R so that

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4) ∈ D.

We will use the polynomial factorization to obtain such h1, h2, h3, h4 for which
the linkage exists. First take a quadratic bounded motion polynomial P ∈ DH[t]
with two different factorizations

P (t) = (t− g1)(t− g2) = (t− g3)(t− g4).

Then its norm polynomial is real, so

(t− g1)(t− g2)(t− g4)(t− g3) ∈ R[t] ⊆ D[t].

Hence, for h1 = g1, h2 = g2, h3 = g4 and h4 = g3 we get a solution t1 = t2 = t3 =
t4 = t ∈ R.

Example. Recall the polynomial

H(t) = t2 + (−i− k)t + (1 + i− k) + ε ((j + 2k)t + (2− 2i + j))

from section 3.2. We have two different factorizations

H(t) = (t− i− j− k + ε(i− j)) · (t− j + ε(−i− 2k))

= (t− j + εi) · (t− i + j− k + ε(−i + j + 2k)).

This allows us to create a closed linkage satisfying

(t−i−j−k+ε(i−j))(t−j+ε(−i−2k))(t+i−j+k+ε(i−j−2k))(t+j−εi) ∈ R[t].

We can see the resulting linkage in two different positions in Ągure 4.3. The Ągure
4.4 contains several states in one picture, to better show the movement of said
linkage.

6R linkage. We will use the same approach to get a 6-bar linkage with rota-
tional joints. The norm polynomial of a generic degree three motion polynomial
H can be decomposed as

HH(t) = M1M2M3.

The different factorizations depend on the order in which we use M1, M2 and M3.
However not all choices will give us a 6-bar linkage.

Example. Let us take a motion polynomial

H(t) = t3 + (−1 + 2k)t2 + (1− 2j− 2k)t + 1− 2i− 2j + 2k

+ ε
(︂

(i− j− k)t2 + (2− 3i + 4j + k)t− 4 + 2i− j + 4k
⎡

.

Its norm polynomial is

t6 − 2t5 + 7t4 − 8t3 + 15t2 − 6t + 9 = (t2 − 2t + 3)(t2 + 3)(t2 + 1).
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Figure 4.3: The Bennett linkage obtained from the polynomial H(t) = t2 +(−i−
k)t + (1 + i− k) + ε ((j + 2k)t + (2− 2i + j)). The red lines are links, the green
and blue lines are axes of rotational joints.

So let M1(t) = t2 − 2t + 3, M2(t) = t2 + 3 and M3(t) = t2 + 1. Then taking
M1, M2, M3 in this order in algorithm 2 gives us

H(t) = (t + j− εi)(t + i− j + k + ε(i− j− 2k))(t− 1− i + k + ε(i + k)).

If we take M1 then M3 and Ąnally M2, we get

H(t) = (t + i + j + k + ε(i− j))(t− j + ε(−i− 2k))(t− 1− i + k + ε(i + k)).

Let us try to create a linkage from these two factorizations. The closure
equation of such linkage is

(t1 + j− εi) · (t2 + i− j + k + ε(i− j− 2k))

· (t3 − 1− i + k + ε(i + k)) · (t4 − 1 + i− k + ε(−i− k))

· (t5 + j + ε(i + 2k)) · (t6 − i− j− k + ε(−i + j)) ∈ D[t].

Note, that the third and fourth joints specify rotation about the same axis.
The conjugation just changed the orientation of the line. In case of t3 = t = t4

we get two rotations that cancel out, which means, that the third link (between
the joints parametrized by t2 and t3) and the Ąfth link (between t4 and t5) are
moving in phase. The link between them is just spinning in place with no effect
on its surroundings.

Alternatively, we may imagine the third and Ąfth link as the same rigid
body. The fourth link in between them is just an appendage spinning irregardless
of the remainder of linkage. Hence the rest of mechanism is just a 4-bar linkage.

Since the mechanism is circular, the situation is equivalent to Ąrst and last
joints producing the opposite rotation. Therefore we have to make sure, that
the Ąrst factors and the last factors in our factorizations differ.
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Figure 4.4: Various states of the same Bennett linkage obtained from the poly-
nomial H(t) = t2 + (−i− k)t + (1 + i− k) + ε ((j + 2k)t + (2− 2i + j)). The red
lines are links, the green and blue lines are axes of rotational joints.

This can be done by picking the Ąrst and last polynomials from M1, M2, M3

differently in each of our factorizations. If we have a factorization obtained by tak-
ing M1 then M2 and Ąnally M3, it will form a 6-bar linkage with another factor-
ization, only if that other factorization started with something else than M1 and
ended with something else than M3.

Example. Let us now return to the polynomial H(t) above. We have the factor-
ization

H(t) = (t + j− εi)(t + i− j + k + ε(i− j− 2k))(t− 1− i + k + ε(i + k)),

obtained from taking Ąrst M1, then M2 and then M3. The second factorization
for our linkage can start with M2 or M3 and end with M1 or M2. We get three
possibilities: M2, M3, M1 or M3, M1, M2 or M3, M2, M1.

We will use the second one. The factorization is

H(t) = (t + i + j + k + ε(i− j)) ·
(︄

t− 1− i− j + ε
−3i + 3j− 2k

2

)︄

·
⎤

t + k + ε
3i− 3j

2

⎣

.
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Figure 4.5: A 6-bar linkage with rotational joints. Red lines correspond to links.
Blue lines are Ąxed axes, green axes move in space.

The resulting closure equation is

(t1 + j− εi) · (t2 + i− j + k + ε(i− j− 2k))

· (t3 − 1− i + k + ε(i + k)) ·
⎤

t4 − k + ε
−3i + 3j

2

⎣

·
(︄

t5 − 1 + i + j + ε
3i− 3j + 2k

2

)︄

· (t− i− j− k + ε(−i + j)) ∈ D[t].

We may see, that the consecutive joints rotate about different axes. The resulting
linkage can be seen in Ągure 4.5.
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Conclusion

In the thesis we have shown a complete factorization analysis for quaternion poly-
nomials and given a factorization algorithm for generic polynomials in the case
of dual quaternions. We have also characterized the obtainable factors. Finally,
we have provided a workaround for decomposing a motion into rotations, even
in the case when the given bounded polynomial can not be factorized directly.
This allowed us to construct certain mechanical linkages.

The natural continuation would be to expand the set of motion polynomials,
which one can factorize. Unbounded motion may allow for factorization into
rotations and translations. If we permit other types of linear terms, such as
Darboux motion, we no longer need to restrict ourselves to motion polynomials.
The ongoing research pushes the bounds of what polynomials we can factorize,
but there is still more to uncover.

Another, perhaps more practical direction would be the study of numerical
behaviour of factorization algorithms. This would allow for further use of the the-
ory in settings that are limited by Ąnite precision arithmetic. There are already
papers on numerical methods for Ąnding quaternion zeros, so it could be only
natural to attempt an application to factorizations.
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