
MASTER THESIS
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Units and conventions
Unless specified otherwise, we use the atomic units in all calculations, tables and
diagrams; i.e. the following constants have a unit magnitude in the calculations:

• Planck constant: ℏ,

• Electron mass: me,

• Bohr radius: a0,

• Atomic unit of energy: Eh.

In all the calculations, we denote matrices by letters in bold font A and vectors
by letters with an arrow a⃗. The unit matrix is denoted by I.
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Introduction
This thesis follows up the bachelor thesis Konvalinka [2021] where we studied the
one-channel scattering problem using the phenomenon of the Siegert states. The
main task of the present thesis is to study the Siegert states in a multichannel
quantum scattering problem and extend our study to real quantum systems.

We solve the non-relativistic Schrödinger equation in a non-spherical potential
and search for the scattering solution. Such solutions are completely described
by the energy and asymptotic conditions and can be expressed in terms of the S-
matrix. The poles of the S-matrix, called Siegert states, are of a great importance
for the analysis of the scattering problem. We divide them into the bound, virtual,
and resonant states. The latter are characterized by the energy ER and width Γ
that define the location of the resonant states in the complex plane

E = ER − iΓ2 . (1)

The resonant states are interpreted as temporary bound states of the system with
the lifetime inversely proportional to the width of the resonance. For a small
Γ, the resonant states strongly influence the cross section and other observable
quantities which manifests itself by the resonant peaks.

For the physical interpretation of the structures in the cross section, it is
important to know the locations of Siegert states and be able to separate the
resonant contributions from the so-called background. We implement a mathe-
matical approach similar to the one used in Rakityansky and Elander [2005] to
remove the poles using the Mittag-Leffler expansion of the S-matrix.

The Siegert states were introduced by Siegert [1939] and the original applica-
tion was for nuclear physics, similarly as for the R-matrix in Wigner and Eisenbud
[1947]. In the original form, the Siegert states are defined by the outgoing wave
boundary condition (︄

d
dr − ik

)︄
u(r)

⃓⃓⃓⃓
⃓
r→∞

= 0. (2)

Early applications of the method were to model systems that can be solved an-
alytically. The movement of the poles of the S-matrix in the rectangular potential
well was studied in Nussenzveig [1959]. I reproduced his results in my bachelor
thesis. The problem of one-channel long-range dipole potential and movement of
poles is analytically solved in Estrada and Domcke [1984]. The articles Herzen-
berg and Saha [1983] and Herzenberg [1984] follow up the article by searching
for the poles on various sheets of the complex plane. In this thesis, we repro-
duce their results to test our numerical approach and extend the model to more
channels.

Later, in the 80s and early 90s, the R-matrix method was used to study the
relation between the S-matrix poles and cross section peaks in low-energy elec-
tron scattering from molecules in Schneider [1981]. Further results for particular
molecules were obtained by Morgan and Burke [1988], McCartney et al. [1990],
Morgan et al. [1990] and Fandreyer et al. [1993] for halogen acids and in Morgan
[1998] and Mazevet et al. [2001] for CO2. Regrettably, the R-matrix codes used in
these computations have not been preserved. Recently, a similar R-matrix imple-
mentation has been reimplemented by Ragesh Kumar et al. [2022a] for studying
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the N-H bond dependence of resonances in pyrrole – the whole complex plane
is searched in the recent applications. A different approach employing exterior
complex scaling (ECS) was used in Chen et al. [2015] to study the giant dipole
resonance in Xenon giant resonance.

Another important step in the mathematical approach was made by Tolstikhin
et al. [1998] and Sitnikov and Tolstikhin [2003] who used a slightly different
condition (︄

d
dr − ik

)︄
u(r)

⃓⃓⃓⃓
⃓
r=a

= 0, (3)

closed in a region bounded by r = a to define so-called pseudo-Siegert states.
This method can solve the quantum scattering problem completely in one and
two channels. However, the equations describing the pseudo-Siegert states have
to be linearized which does not have a universal solution for N channels. Other
mathematical properties of the resonances and S-matrix poles are studied for
example in de la Madrid and Gadella [2002] and de la Madrid et al. [2005].

In my bachelor thesis, I implemented a numerical R-matrix approach to solve
the time-independent Schrödinger equation in one channel. Here, I extend the
codes to the multichannel approach and study multichannel inelastic and long-
range model potentials. We study the paths of the poles in the complex plane
and test the pole removal in the multichannel problem.

In the final step, we implement our approach to UKRmol+ molecular codes,
described in Maš́ın et al. [2020], to study real molecular systems in electron
scattering and photoionization. Our goal is to search for Siegert states in systems
where the photoionization cross section (or other observable quantities) indicates
the existence of resonances, implement the method of pole removal into the codes,
and use it for the analysis. We present a working implementation for electron
scattering applications.

This work is structured into four chapters. Chapter 1 summarizes the one-
channel approach used in Konvalinka [2021] and the basis theory. In Chapter 2,
we describe the multichannel problem and implement the multichannel R-matrix
approach and removal of poles of the S-matrix. In Chapter 3, we introduce
multichannel inelastic and long-range model potentials and test our numerical
approach. Chapter 4 describes implementation of our method into the UKRmol+
codes and applications to molecules.
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1. One channel scattering and
previous results
This chapter briefly summarizes the results of my bachelor thesis Konvalinka
[2021] and serves us as a basic introduction to the theory of Siegert states and
the R-matrix method.

1.1 Scattering solution and Siegert states
We follow the basic theory of quantum scattering, see e.g. Friedrich [2016] and
Taylor [1972], and solve the time-independent Schrödinger equation

Ĥψ(r⃗) =
[︃
−1

2∆ + V (r⃗)
]︃

= Eψ(r). (1.1)

After expanding ψ(r⃗) into the partial waves ul(r) and assuming a spherically
symmetric potential, the problem reduces to a radial problem[︄

d2

dr2 − l(l + 1)
r2 − U(r) + p2

]︄
ul(r) = 0, (1.2)

where l denotes an angular momentum, U(r) = 2V (r) is the reduced potential
and p momentum of an incoming particle connected to energy by E = p2/2. We
considered short-range potentials with the asymptotics

V (r) r→∞= O
(︃ 1
r3+ϵ

)︃
ϵ > 0. (1.3)

We searched for a scattering solution, i.e. the solution of (1.1) with positive
energy E > 0, with the boundary condition

ψ(r⃗) r→∞∼ eipz + f(θ, ϕ)e
ipr

r
, (1.4)

where the coefficient f(θ, ϕ) is the scattering amplitude.
Substituting the asymptotic behaviour of the radial wave

ul(r) r→∞= Aĵl(pr) +Bn̂l(pr), (1.5)

where ĵl(k̃r) and n̂l(k̃r) are Riccati-Bessel functions and A and B the independent
constants, we obtained the phase shift

δl = arctan
(︃
B

A

)︃
. (1.6)

Similarly, the asymptotics

ul(r) r→∞∼ ĥ
(−)
l (pr) + S(p)ĥ(+)

l (pr), (1.7)

defines the S-matrix S(p) which is related to the phase shift by S(p) = e2iδl(p).
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The cross section σ of the interaction can be expanded into partial cross
sections

σ =
∞∑︂

l=0
σl , σl = 4π

2l + 1 |fl|2, (1.8)

which are related to the phase shift and the S-matrix

σl(p) = 4π
p2 (2l + 1) sin2 δl = π

p2 (2l + 1)|S(p) − 1|2. (1.9)

Finally, Siegert states are solutions of (1.2) with a complex momentum p
which coincides with a pole of the S-matrix. This is equivalent to the boundary
condition

ul(r) r→∞∼ ĥ
(+)
l (pr). (1.10)

Siegert states are classified into three types:

Bound state: p = i | p |,

Virtual state: p = −i | p |,

Resonant state: p = ±ℜ(p) − i | ℑ(p) | , ℑ(p) > 0.
They have a great importance for analyzing the behaviour of the cross section.
For a resonant state with the complex energy E = ER − iΓ

2 close to the real axis,
we see a sharp increase (of π approximately) of the phase shift expressed by

δres(E) = arcsin
[︄

Γ/2
[(E − ER)2 + (Γ/2)2] 1

2

]︄
, (1.11)

and a characteristic shape of the cross section called the Breit-Wigner resonance.

1.2 R-matrix approach
As a numerical method, we used so-called R-matrix approach explained in Burke
[2011] and Descouvemont and Baye [2010]. For numerical integration, we used
the Gauss-Legendre quadrature described in Chihara [1978] and Koonin [1986]
(source code taken from Burkardt [2020]).

The R-matrix approach consists of separating the space into internal and
external regions. In the external region, the solution uext

l (r) is typically known
explicitly. The R-matrix is the Green function computed on the boundary of the
internal region, in our case, a sphere of radius r = a. We obtain the formula

uext
l (a) = Rl(E)duext

l (r)
dr

⃓⃓⃓⃓
⃓
r=a

, (1.12)

which gives us the expression for the S-matrix

S(p) =
Rl(E)pdĥ

(−)
l (z)
dz

⃓⃓⃓⃓
⃓
z=pa

− ĥ
(−)
l (pa)

Rl(E)pdĥ
(+)
l (z)
dz

⃓⃓⃓⃓
⃓
z=pa

− ĥ
(+)
l (pa)

. (1.13)
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In the internal region, we approximate the solution as a sum of B-splines:
piecewise polynomial functions described in detail in Bachau et al. [2001]. In
this basis of B-splines, we diagonalize the operator Ĥ l + L̂ where Ĥ l is the radial
Hamiltonian for a given l and L̂ is the Bloch operator that ensures the Hermiticity.
The R-matrix is computed as

Rl(E) = 1
2

M∑︂
k=1

ψk(a)ψk(a)
Ek − E

, (1.14)

where Ek denote the eigenvalues of Ĥ l + L̂ and ψk(a) are its eigenstates evaluated
at point r = a.

Figure 1.1: Selected results from Konvalinka [2021]. The form of the cross sections
σ3(p) and σ3,B(p) after removal of the pole B for the chosen values of the potential
U0 ∈ {5, 11.4, 20, 30} a.u., the real parts of resonant poles B and C are denoted
by the vertical lines.

1.3 Removal of S-matrix poles
To analyze the results, we removed selected poles of the S-matrix and computed
the cross section. The formula for removal was based on the theory of complex
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functions explained for example in Kopáček [2010]. A similar approach based on
the removal of poles is used in Rakityansky and Elander [2005]. We expect the
poles to be simple and we define an S-matrix SB(p) with a single pole pB removed

SB(p) = S(p) − RespB
S(p)

p− pB

. (1.15)

This corresponds to the removal of a single term from the Mittag-Leffler expansion
of the function in the same way as in Rakityansky and Elander [2005].

1.4 Model case of a potential well
The simplest case of a spherical rectangular potential well served us well as an
illustration of the numerical method and the method of pole removal. We showed
how the poles of the S-matrix are found in the complex plane and plotted their
trajectories for the depth of the potential well varying. The most relevant result
was a comparison of the cross section σl and σB

l with and without the pole
included, respectively. An illustrative example of this is shown in Figure 1.1 with
the two cross sections compared for different values of the well-depth U0 and the
angular momentum l = 3. As expected, the pole removal has the strongest effect
in case of a sharp resonance. My thesis Konvalinka [2021] includes more examples
including attempts to isolate the background.
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2. Multichannel and R-matrix
scattering theory
In this chapter, we introduce the basics of the multichannel collision theory de-
scribed in Friedrich [2016], Taylor [1972] and Burke [2011]). Then we develop the
multichannel R-matrix theory and explain the method of the removal of S-matrix
poles.

2.1 Multichannel Schrödinger equation
Let’s consider a collision reaction described by

e− + Ai → e− + Aj, (2.1)

where e− is an electron and Ai and Aj are the initial and final bound states of
the target, respectively.

We describe the whole system by the wave function Ψ(ξ, r⃗) depending on the
coordinates r⃗ of the free electron and on the internal degrees of freedom ξ of
the target system. This wave function satisfies the time-independent Schrödinger
equation

ĤΨ(ξ, r⃗) = EΨ(ξ, r⃗), (2.2)
where the Hamiltonian Ĥ is expressed as

Ĥ = Ĥξ − 1
2∆r⃗ + V (ξ, r⃗), (2.3)

i.e. as a sum of an internal Hamiltonian Ĥξ of the target, the kinetic energy of
the electron, and the electron-target interaction V (ξ, r⃗). We expect that there
exist bound states Υi(ξ) of the internal Hamiltonian satisfying the equation

ĤξΥi(ξ) = eiΥi(ξ). (2.4)

The eigenenergies ei are called threshold energies and functions Υi target chan-
nels. Let’s assume that we can expand the wave function in the separable form

Ψ(ξ, r) =
∑︂

j

Υj(ξ)ψj(r), (2.5)

and insert this expansion into (2.2). We obtain the equation for the single-electron
wave functions ∑︂

j

Υj(ξ)
[︃
ej − E − 1

2∆r + V (ξ, r)
]︃
ψj(r) = 0. (2.6)

We expect the channels to be orthonormal, i.e. ⟨Υi|Υj⟩ξ = δij. Therefore, we
can simplify the equation (2.6) by multiplication by Υi(ξ) followed by integration
over ξ and thus obtain the set of coupled Schrödinger equations for the channel
wave functions ψi(r⃗)

(ej − E − 1
2∆r⃗)ψi(r⃗) +

∑︂
j

Vij(r⃗)ψj(r⃗) = 0, (2.7)
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where we define the potential matrix Vij with the components
⟨Υi|V (ξ, r⃗)|Υj⟩ξ = Vij(r⃗) = Vji(r⃗). (2.8)

For a finite number Ntarg of channels Υi(ξ) of the internal Hamiltonian Ĥξ,
the formula (2.8) defines a set of Ntarg equations for a vector of Ntarg functions
ψi(r⃗)

We expand the function ψi into the partial waves summing over the angular
momentum quantum numbers li and mi

ψi(r, θ, ϕ) =
∑︂
li,mi

ui,limi
(r)

r
Ylimi

(θ, ϕ), (2.9)

where Ylimi
(θ, ϕ) are spherical harmonics and ui,limi

(r) radial partial waves for
the i-th channel. The spherical harmonics are orthonormal to each other, i.e.
⟨Ylimi

|Yljmj
⟩θ,ϕ = δliljδmimj

. We multiply (2.7) by Y ∗
limi

(θ, ϕ) and integrate over θ
and ϕ. Thus we obtain the equation[︄

d2

dr2 − li(li + 1)
r2 + p2

i

]︄
ui,limi

(r) −
∑︂

j,lj ,mj

⟨Ylimi
|Uij(r)|Yljmj

⟩θ,ϕuj,ljmj
(r) = 0,

(2.10)
where we identify the reduced potential Uij = 2Vij and the channel momentum
pi defined by

p2
i

2 = E − ei. (2.11)

We separate the Coulomb long-range term from the potential, i.e. rewrite the
components Uij(r⃗) as

Uij(r⃗) = δij
−2Z
r

+ Ũ ij(r⃗), (2.12)

where the rest of the potential is denoted by Ũ ij. The Coulomb term is written
here for the electron-atom or molecule case where Z denotes the charge of the
target. We rewrite the reduced potential term from (2.10) to

⟨Ylimi
|Uij(r⃗)|Yljmj

⟩θ,ϕ = U i,limi
j,ljmj

(r) = Ũ
i,limi

j,ljmj
(r) + −2Z

r
δijδliljδmimj

. (2.13)

Inserting this into the equation (2.10), we obtain the final form[︄
d2

dr2 − −2Z
r

− li(li + 1)
r2 + p2

i

]︄
ui,limi

(r) −
∑︂

j,lj ,mj

Ũ
i,limi

j,ljmj
(r)uj,ljmj

(r) = 0. (2.14)

In the case of a spherically symmetric potential (independent on θ and ϕ), the
radial wave function does not depend on m and the equation (2.14) reduces to[︄

d2

dr2 − −2Z
r

− li(li + 1)
r2 + p2

i

]︄
ui,l(r) −

∑︂
j

Ũ ij(r)uj,l(r) = 0, (2.15)

similar, in form, to the one-channel radial Schrödinger equation.
We define yet another number Nchan denoting the total number of channels

including the degeneracy of the target channels. The formula (2.14) describes
Nchan equations for

Nchan =
Ntarg∑︂
i=1

∑︂
li,mi

1. (2.16)

Here we assume a finite number of angular momenta included in the calculations.
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2.2 Scattering solution and the S-matrix
Let’s now look at the scattering solution of a multichannel quantum problem. It
holds that pi is a real number (i.e. p2

i ≥ 0) only if E ≥ ei. For a given energy E,
we split the target channels into two types with respect to their threshold energy
ei:

• Closed channels: E < ei,

• Open channels: E ≥ ei.

If there are No open target channels and Nc closed target channels it holds
No + Nc = Ntarg for the total number of target channels Ntarg. Including the
degeneracy of the target channels, we define number N chan

o for all open channels
and number N chan

c for all closed channels: N chan
o +N chan

c = Nchan.
In the case of a neutral target, the boundary condition in infinity for the wave

function corresponding to the reaction (2.1) is

Ψ(ξ, r⃗) r→∞∼ Υi(ξ)eipiz +
∑︂

j open
Υj(ξ)fij(θ, ϕ)e

ipjr

r
, (2.17)

where the outgoing term contains only contributions from open channels because
only those transitions are energetically allowed. We choose such a coordinate
system that the momentum pi of the incoming particle is in the z-axis direction.
The equation (2.17) implies the formula for asymptotics of the function ψj in an
open channel as

ψj(r⃗) r→∞∼ δije
ipiz + fij(θ, ϕ)e

ipjr

r
. (2.18)

The problem is more complicated for a charged target, for details, see Friedrich
[1990]. The resulting asymptotics of the wave function is

ψj(r⃗) r→∞∼ δije
i[piz+ηiln(ki[r−z])] +

[︂
δijfC,i(θ) + f̃ ij(θ, ϕ)

]︂ ei[pjr+ηj ln(2kjr)]

r
, (2.19)

where the scattering amplitude fC,i for the pure Coulombic potential is separated
from the amplitude f̃ ij for the short-range plus Coulombic potential.

We describe the asymptotics of a solution of the equation (2.10) similarly as
done in Friedrich [2016]. We assume that the short-range potential Ũ(r⃗) from
(2.12) satisfies the relation

Ũ ij(r⃗) r→∞= O
(︃ 1
r2+ϵ

)︃
, ϵ > 0. (2.20)

For this behaviour of the potential, we asymptotically obtain two linearly
independent solutions

ϕ
(±)
i,li

(pr) r→∞∼
√︄

2
πp
e±iΘi,li

(r), (2.21)

where Θi,li(r) is an argument of the imaginary exponential expressed by

Θi,li(r) = pir − liπ

2 − ηiln2pir + σli , (2.22)
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where
ηi = −Z

pi

, (2.23)

and
σli = argΓ(li + 1 + iηi). (2.24)

For Z = 0, the formula (2.22) simplifies to

Θi,li(r) = pir − liπ

2 . (2.25)

In the case of a neutral target, the functions ϕ
(±)
l (pr) are identified with

the Riccati-Hankel functions ĥ(±)
li

(pir). In the general case of a charged target,
the functions are identified with the Coulomb-Hankel functions H(±)

li
(ηi; pir), de-

scribed in Thompson and Barnett [1985].
For a given energy E, we obtain as many independent vectors ϕi of solutions

as there are open channels. We denote each component ui,limi
j,ljmj

where the bottom
set of indices denotes the independent solutions and the upper set denotes the
components in all channels. Equivalently, we deal with Nchan ×N chan

o matrices u
with the components ui,limi

j,ljmj
instead of N chan

o vectors with components uj,ljmj
.

The expansion (2.9) and the asymptotic condition (2.18) and (2.19), respec-
tively, imply the asymptotic conditions for the partial waves, see Friedrich [2016],

ui,limi
j,ljmj

(r) r→∞∼ e−iΘi,li
(r)δijδliljδmimj

− e+iΘj,lj
(r)Si,limi

j,ljmj
, j, i = 1, .., No, (2.26)

ui,limi
j,ljmj

(r) r→∞∼ 0, j = No + 1, .., Ntarg, i = 1, .., No, (2.27)

where Si,limi
j,ljmj

are components of the open-channel S-matrix and Θi,li is the func-
tion from (2.22) for a given pi. We distinguish between the asymptotics for closed
and open channels. For the N chan

o × N chan
o submatrix ū being the open-channel

part of the matrix u, we rewrite the equation (2.26) in a matrix form

ū r→∞∼ e−iΘ(r) − e+iΘ(r)S, (2.28)

where ū, S, and Θ are N chan
o ×N chan

o matrices (Θ is diagonal). Using the linearly
independent functions (2.21), we get

ū r→∞∼ Φ(−) − Φ(+)S, (2.29)

where Φ(±) are diagonal matrices with components ϕ(±)
li

(pir).

2.2.1 Eigenphases
Phase shift is in one channel defined by the expression S = e2iδ. In multichannel
scattering, we do not compute (N chan

o )2 phase shifts from each S-matrix compo-
nent as one could expect. Instead, we use so-called eigenphases δi indexed by
i = 1, ..., N chan

o . These are calculated by diagonalization of the S-matrix, which is
unitary, so it can be diagonalized by a real symmetric matrix. That gives us the
set of eigenvalues expressed by {exp(2iδi)}Nchan

o
i=1 . These define the eigenphases δi

up to the 2π shift. The eigenphases can be used to compute the eigenphase sum

δ =
Nchan

o∑︂
i=1

δi. (2.30)
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2.2.2 Cross section
Let’s begin with the equations (2.18) and (2.19) determining the shape of the
wave function asymptotics. We compute the differential dσi→j

dΩ or integral σi→j

integral cross section of a transition between an initial state Υi to a final state
Υj as shown in Friedrich [2016]

dσi→j

dΩ = pj

pi

|fij(θ, ϕ)|2 , σi→j = pj

pi

∫︂
|fij(θ, ϕ)|2dΩ, (2.31)

and the total cross section
σ =

∑︂
j open

σi→j. (2.32)

Neutral target

For a neutral target, we proceed similarly as in the one-channel case and obtain
the formula for the scattering amplitudes

fij(θ, ϕ) =
∑︂

lj ,mj

Yljmj
(θ, ϕ)

∑︂
li

ili−lj−1

⌜⃓⃓⎷π(2li + 1)
pipj

(Si,li0
j,ljmj

− δijδliljδ0mj
), (2.33)

and thus also the relation between the cross section σi→j from (2.31) and the
components of the S-matrix

σi→j = π

p2
i

∑︂
l1,l2

il2−l1
√︂

(2l1 + 1)(2l2 + 1)

×
∑︂

lj ,mj

[︂
(Si,l10

j,ljmj
)∗ − δijδl1ljδ0mj

]︂ [︂
Si,l20

j,ljmj
− δijδl2ljδ0mj

]︂
.

(2.34)

Computation of the formula (2.34) simplifies when we consider only a few partial
waves and channels which is the usual case in practice.

Charged target

If the target is charged, we expand the scattering amplitudes fij into two terms

fij(θ, ϕ) = δijfC,i(θ) + f̃ ij(θ, ϕ), (2.35)

where fC,i is the Coulomb scattering amplitude connected with the long-range
Coulomb potential and f̃ ij denotes the additional scattering amplitude connected
with the short-range plus Coulombic potential from (2.13).

The amplitude fC,i is the solution of the scattering on a pure Coulomb poten-
tial. From Friedrich [1990], we get the formula

fC,i = −ηi

2pisin2 θ
2
ei[ηiln(sin2 θ

2 )−2σi,l=0)]. (2.36)

The formula for the additional amplitudes f̃ ij is similar to the case of a neutral
target except for the additional Coulomb phases:

f̃ ij(θ, ϕ) =
∑︂

lj ,mj

Yljmj
(θ, ϕ)

∑︂
li

ili−lj−1ei(σli,i−σlj ,j)

⌜⃓⃓⎷π(2li + 1)
pipj

(Si,li0
j,ljmj

− δijδliljδ0mj
),

(2.37)
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where the S-matrix is asymptotically determined relative to the pure Coulomb
scattering problem and σli,i, σlj ,j are given by (2.24).

Similarly as Friedrich [2016], we rewrite the differential cross section (2.31)
dσi→i

dΩ = |fC,i(θ) + f̃ ii(θ, ϕ)|2, (2.38)

for elastic scattering and
dσi→j

dΩ = pj

pi

|f̃ ii(θ, ϕ)|2 , j ̸= i, (2.39)

for the inelastic case.

2.2.3 Riemann sheets of the first type
In this subsection, we look in detail at the target channel momenta pi given by
the formula (2.11) and describe Riemann sheets of the complex plane of energies
for the multichannel problem. There is an ambiguity of signs in the explicit
expression for the channel momenta

pi = ±
√︂

2(E − ei). (2.40)

For N channels, 2Ntarg combinations of these signs are possible and thus the S-
matrix has 2Ntarg different values for each combination. In the complex plane of
energy E, we introduce 2Ntarg so-called Riemann sheets, each for one combination
of signs. Our working title will be Riemann sheets of the first type (we are going
to deal with a different type of sheets in what follows).

Following Burke [2011], we denote the sheets in the same way. The physical
sheet P is defined by

Im(pi) > 0 , i = 1, .., Ntarg. (2.41)

The bound states are located only on the sheet P , no resonant or virtual states
are on P . We define the sheets Um by the condition

Im(pi) < 0 , i = 1, ..,m ,

Im(pi) > 0 , i = m+ 1, .., Ntarg,
(2.42)

i.e. the physical sheet is equivalent to U0.
Each sheet has a branch cut on the real axis of E between e1 and +∞. Crossing

the positive real axis on the interval (em, em+1) means crossing to another sheet.
Considering this, it is reasonable to specifically define the sheets Um because these
sheets are the ”closest” to the physical sheet.

Let’s explain this behaviour in Figure 2.1 for the simple example of Ntarg = 2,
i.e. 2Ntarg = 4 describes four possible trajectories from E on the physical sheet
P to its complex conjugation E∗. The trajectory denoted (0) goes around the
branch cut and reaches E∗ still on P , the path (1) crosses the branch cut between
e1 and e2 and reaches E∗ on U1 and the path (2) similarly ends on U2. Finally,
the path (1, 2) goes to U1 at first and then ends at E∗ on the last non-physical
sheet which we denote as U1,2.

In the case of one channel, we had to consider two different sheets – P and
U1 – but these can be united into one by mapping values of the S-matrix on the
momentum complex plane. This is not possible to do in more channels.
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Figure 2.1: The scheme of four possible continuous paths in the complex plane
from E on the physical sheet P to E∗ for Ntarg = 2 where ei denotes threshold
energies. Each path is equivalent to reaching the energy E∗ on a different Riemann
sheet (the scheme is taken from Burke [2011]).

2.2.4 Multichannel Siegert states
The Siegert states are defined as poles of the S-matrix by the energy E0 where
the function S has a pole. It is equivalent to finding functions satisfying the
asymptotics

u r→∞∼ Φ(+). (2.43)
In Konvalinka [2021], we distinguished three types of Siegert states with re-

spect to the momentum of the state (see 1.1). In the multichannel case, the
definition of the virtual and bound states is a bit tricky because of the various
Riemann sheets:

Bound state: E ∈ R, on the sheet P,
Virtual state: E ∈ R, on any other sheet,

Resonant state: E = ℜ(E) ± i | ℑ(E) | , ℑ(E) ̸= 0.
The resonances occur every time in pairs and, on the plane of momentum, we

are interested only in the poles with ℜ(p) > 0 that are close to the positive real
axis of momentum and so are connected with peaks of the cross section. These
poles are projected on the poles with ℑ(E) < 0 so we search for the poles only
on the lower half plane of the complex plane of energies.

Resonances and Riemann sheets

The consequence of the behaviour described in 2.2.3 is that we have to look for
the poles of the S-matrix more carefully because they occur on all the 2Ntarg sheets
we are dealing with. Nevertheless, the most important sheets are the sheets Um

because the strong resonant peaks are visible only for resonances ”close” to the
real axis of the physical sheet.

Let’s explain a simple example showing that a resonance occurring on Um for
some m ∈ {1, .., Ntarg} is ”close” to the real axis of the physical sheet P = U0.
We compare Um with a sheet Vm defined by the condition

Im(pi) < 0 , i = m ,

Im(pi) > 0 , i = 1, ..m− 1,m+ 1, .., Ntarg.
(2.44)
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Looking for resonances in the target channel Am, one could intuitively choose the
sheet Vm. However, in Figure 2.2 we show that the poles on Vm are much further
from the real axis of the physical sheet.

Figure 2.2: Different paths from resonance on Um and Vm to the energy E on the
real axis on the physical sheet P .

Let’s assume that there is a resonance on Um and on Vm and our goal is to
find the path to the real axis of the physical sheet. In addition, we need to get
to the real axis from the upper side which is equivalent to reaching the positive
real axis of momentum (reaching the real axis on P is equivalent to reaching the
negative axis of momentum). Figure 2.2 shows that this can be simply done for
the path from the resonance on Um with just one crossing of the real axis of E.
On the other hand, we can not do the same for Vm. Moreover, it is evident that
the sheets Um are the only sheets neighboring the physical sheet P (crossing the
real axis from P gets us every time to some Um), i.e. all the poles that are close
to the real axis and influence the cross section have to lie on Um. The problem
of looking for resonances is thus simplified because we do not have to go through
all the 2Ntarg possibilities – it is sufficient to look only at Um.
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2.3 Multichannel R-matrix approach
In this section, we describe the derivation of the R-matrix approach for the mul-
tichannel case as an extension of the one-channel case from Konvalinka [2021]. A
detailed discussion can be found in Burke [2011].

We define an R-matrix sphere of radius a which splits the space into an internal
and an external region. The R-matrix radius is typically chosen so that the
solution (ui

j)ext in the external region is known analytically. In the internal region
given by the condition r ≤ a, we expand the wave function in an orthonormal
basis

(ui
j)int =

M∑︂
m=1

(ci
j)mfm(r) , r < a, (2.45)

as a linear combination of M orthonormal basis functions fm(r). For convenience,
we omit the indices l and m and merge them into the index i and write the radial
wave function as ui

j(r) instead of the notation in (2.26). Similarly, we will write
Uij(r) for the potential components in (2.13). We also write the numbers of
channels Nchan as N and N chan

o as No.
In the equation (2.45), the index i labels the independent solutions. The

N ×No matrix u thus consists of No columns u⃗j of dimension N

u =
(︂
u⃗j , u⃗j , · · · , u⃗No

)︂
, u⃗j =

⎛⎜⎜⎜⎜⎝
u1

j

u2
j
...
uN

j

⎞⎟⎟⎟⎟⎠ . (2.46)

The equation (2.10) is expressed as

M∑︂
k=1

ĥiku
k
j + Eui

j = 0, (2.47)

where
ĥij = δij

[︄
1
2

d2

dr2 − li(li + 1)
2r2 − ei

]︄
− 2Uij(r). (2.48)

We see that ĥij = −2Uij(r) for i ̸= j. The equation (2.47) is expressed in a
matrix form by

(h − E)u = 0, (2.49)
where h is an N ×N matrix and E is a scalar.

Let’s now define the Bloch operator

l̂ij = δij
1
2δ(r − a) d

dr . (2.50)

This expression can be rewritten in terms of N × N matrix l which acts on the
matrix u. The factor δij originates in the requirement of Hermiticity of the kinetic
energy operator. Adding the operator to the Hamiltonian ensures the Hermiticity
of the whole sum h + l as shown in Konvalinka [2021].

The requirement of continuity of the wave function derivative can be written
as

luint = luext. (2.51)
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Inclusion of this condition into the equation (2.47) gives us the formula

(h + l − E)uint = luext, (2.52)

and subsequently

uint = (h + l − E)−1luext = −1
2G(E; r, a)duext

dr

⃓⃓⃓⃓
⃓
r=a

. (2.53)

In the last equation, we used (2.50) to evaluate luext. The Green function G(E; r)
is defined as an N ×N matrix

G(E; r, a) = −(h + l − E)−1. (2.54)

We evaluate the equation (2.53) at the point r = a where the internal and
external solution must be equal to each other and we obtain the relation

uext = R
duext

dr

⃓⃓⃓⃓
⃓
r=a

, (2.55)

where we define the N ×N dimensional R-matrix R as

2R = −G(E; r = a). (2.56)

In correspondence with the equation (2.29), we assume that we know the
open-channel solution ūext in the external region (for r > a) and we write it in
the form of No ×No matrices

ūext r→∞∼ Φ(+) − Φ(−)S. (2.57)

Including this condition into (2.55) and taking the No × No submatrix R̄ of the
R-matrix R, we compute the No ×No S-matrix

S(E) =
(︄

R̄
dΦ(+)

dr

⃓⃓⃓⃓
⃓
r=a

− Φ(+)
)︄−1 (︄

R̄
dΦ(−)

dr

⃓⃓⃓⃓
⃓
r=a

− Φ(−)
)︄
. (2.58)

Siegert states are located as zeros of the function

F (E) = det
[︄
R̄

dΦ(+)

dr

⃓⃓⃓⃓
⃓
r=a

− Φ(+)
]︄
. (2.59)

2.3.1 Computation of the R-matrix in the basis of B-
splines

In the following, we describe the computation of the R-matrix (2.56) using the
specific basis of B-splines {Bm(r)}M

m=1. The procedure is analogous to the one-
channel case, more details about B-splines are to be found in Bachau et al. [2001].

At first, we want to orthonormalize our basis (B-splines are not orthonormal
functions). We calculate the overlap integrals as

Omn = ⟨Bm|Bn⟩ =
∫︂ a

0
Bm(r)Bn(r)dr. (2.60)

20



These are components of a real symmetric M ×M matrix O which can be diag-
onalized as

O = A+diag(d1, ..., dM)A, (2.61)
where diag(d1, ..., dM) is a diagonal matrix consisting of the eigenvalues di of O
and A is a unitary matrix consisting of the eigenvectors of O. Let’s define a new
basis of functions B̃m(r) by a linear transformation

B̃m(r) =
M∑︂

n=1

AnmBn(r)√
dm

. (2.62)

This new basis is orthonormal and the new overlap matrix Õ in this basis is the
unit matrix

Õmn = ⟨B̃m|B̃n⟩ = δmn, (2.63)
which was a basic assumption in the implementation of the R-matrix approach
in the previous section.

Including this into (2.45), we express the radial wave function in the internal
region in the new basis by

(ui
j)int =

M∑︂
m=1

(ci
j)mB̃m(r) , r < a, (2.64)

where each component ui
j is represented by a vector c⃗i

j with M components (ci
j)m.

We express the operator (2.48) in the basis of B-splines. Each component ĥij

of the multichannel Hamiltonian is in the basis expressed by the M ×M matrix
hij of the components

(hij)mn = ⟨B̃m|ĥij|B̃n⟩r =
∫︂ a

0
B̃mĥijB̃ndr. (2.65)

Merging the expressions (2.64) and (2.65) into the equation (2.47), we obtain a
matrix formula

N∑︂
k=1

hikc⃗
k
j + Ec⃗i

j = 0. (2.66)

Now, we will express the equation (2.49) in terms of B-splines. The N × N
matrix h is in the basis represented by the MN ×MN matrix

H =

⎛⎜⎜⎜⎜⎝
h11 h12 · · · h1N

h21 h22 · · · h2N
... ... . . . ...

hN1 hN2 · · · hNN

⎞⎟⎟⎟⎟⎠ . (2.67)

The N -dimensional independent solutions u⃗j are in the B-spline basis represented
by MN -dimensional vectors as

u⃗j −→

⎛⎜⎜⎜⎜⎜⎝
c⃗1

j

c⃗2
j
...
c⃗N

j

⎞⎟⎟⎟⎟⎟⎠ , (2.68)
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and the N ×No wave function matrix u is represented by the MN ×No matrix

c =

⎛⎜⎜⎜⎜⎝
c⃗1

1 c⃗1
2 · · · c⃗1

No

c⃗2
1 c⃗2

2 · · · c⃗2
No... ... . . . ...

c⃗N
1 c⃗N

2 · · · c⃗2
No

⎞⎟⎟⎟⎟⎠ . (2.69)

The equation (2.49) is then expressed by

(H − E)c = 0. (2.70)

Thus we introduced MN equations for No independent vectors of MN compo-
nents. In the same way, we represent l by the MN × MN matrix L in our
basis.

Thanks to the Hermiticity of (H + L), we can diagonalize this matrix as

H + L = U+diag(E1, ..., EMN)U, (2.71)

and obtain the set of eigenvalues (called R-matrix energies) and eigenfunctions
{Ek, ψk(r)}MN

k=1 . In (2.71), U is a unitary matrix consisting of the eigenvectors
of (H + L) and diag(E1, ..., EMN) is a diagonal matrix consisting of the eigen-
values. The eigenfunctions ψ(r) are in the B-spline basis represented by the
MN -dimensional vectors, columns of U

ψk(r) −→

⎛⎜⎜⎜⎜⎝
U1,k

U2,k
...

UMN,k

⎞⎟⎟⎟⎟⎠ , (2.72)

and we express them by the formula

ψk(r) =
N∑︂

j=1

M∑︂
m=1

U(j−1)M+m,kB̃m(r). (2.73)

We can interpret this equation as consisting of N M -dimensional vectors⎛⎜⎜⎜⎜⎝
U(j−1)M+1,k

U(j−1)M+2,k
...

U(j−1)M+M,k

⎞⎟⎟⎟⎟⎠ , (2.74)

each representing a projection of the function ψk(r) to the j-th channel. We define
the surface amplitudes wj′

k as projections of ψk(r) on the individual channels on
the surface of the R-matrix sphere expressed by

wj′

k = ψj′

k (a) =
M∑︂

m=1
U(j′−1)M+m,kB̃m(a). (2.75)

Using the eigensystem and the surface amplitudes, we express the equation
(2.53) as

(ui
j)int(r) = 1

2

M∑︂
m′=1

N∑︂
j′=1

MN∑︂
k=1

U(j−1)M+m′,kB̃m′(r) 1
Ek − E

wj′

k

d(ui
j′)ext

dr

⃓⃓⃓⃓
⃓
r=a

. (2.76)
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To express the components of the matrix c, we rewrite (2.76) as

(ci
j)m = 1

2

N∑︂
j′=1

MN∑︂
k=1

U(j−1)M+m,k
1

Ek − E
wk

j′
d(ui

j′)ext

dr

⃓⃓⃓⃓
⃓
r=a

. (2.77)

The coefficients can be used in the formula (2.64) to explicitly evaluate the in-
ternal solution once the external one is known.

Setting r = a in (2.76), we obtain the relation

(ui
j)ext =

N∑︂
j′=1

MN∑︂
k=1

1
2
wj

kw
j′

k

Ek − E

d(ui
j′)ext

dr = R
duext

dr

⃓⃓⃓⃓
⃓
r=a

, (ui
j)ext =

N∑︂
j′=1

Rjj′
d(ui

j′)ext

dr ,

(2.78)
where we define the R-matrix components as

Rjj′ =
MN∑︂
k=1

1
2
wj

kw
j′

k

Ek − E
. (2.79)

Thus we obtained the equation (2.78) as an expression of the equation (2.55) and
the formula (2.79) for evaluating the R-matrix components.

Wave function in the internal region

If we want to express the wave function (uj
i )int(r) in the internal region we have

to use explicitly the equation (2.77) to calculate the coefficients (ci
j)m. Then we

calculate the wave function (uj
i )int(r) using the formula (2.64).

However, it is necessary to calculate the S-matrix to obtain the external so-
lution uext at first and then continue with the calculation of (ci

j)m.
The problem simplifies if one needs to calculate the wave function of the

Siegert state. The external solution is then proportional to the function ĥ(+)
l (pr)

or H(+)
l (η, pr), respectively, and the S-matrix is not needed in this case but we

need to know the complex energy (momentum) of the Siegert state.

Searching for the bound states

In the case of a sufficiently large a and a correspondingly dense basis of B-splines,
the diagonalization generates R-matrix energies Ek that are very close to the
energies of bound states which can cause a numerical problem.

Let’s have a bound state EB and an R-matrix energy Er ∼ EB. If we search
for this bound state in the complex plane using the implicit function (2.59) then
the term wj

rwj′
r

Er−E
diverges for E close to EB.

It is important to keep this in mind when we search for the bound states.
This numerical problem is solved for example in Burke and Seaton [1984]. In our
application, we did not encounter it.

2.4 Removal of poles in multichannel problem
By a straightforward extension of Konvalinka [2021], we remove individual poles
of the S-matrix using their complex residues using the formula similar to (1.15).
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The only difference is that the S-matrix has N2
o components and so we have to

compute all of N2
o residues for each component. We also use the S-matrix as a

function of the energy so the removal is based on the Mittag-Leffler expansion
with respect to the energy. In the end, to obtain the transformed S-matrix SB

ij

with a pole of an energy EB removed, we use the formula

SB
ij (E) = Sij(E) − ResEB

Sij(E)
E − EB

. (2.80)

The complex residue ResEB
S(E) is obtained from

ResEB
Sij(B) = 1

2πi

∮︂
C
Sij(E)dE = 1

2π

∫︂ 2π

0
Sij(EB + εeiϕ)εeiϕdϕ, (2.81)

where we integrate over a curve C enclosing the pole at EB (but no other S-matrix
pole at the same time).

As we mentioned above in 2.2.4, resonances occur in pairs and we are inter-
ested in the poles with E = ℜ(E) − i | ℑ(E) |. Using the same logic, we remove
only these poles.

2.4.1 Partial widths
The search of poles gives us only the total width Γ of the resonance but not the
decay widths into the individual channels. To obtain these widths we use the
approach introduced in Taylor [1972] (a similar method is used in Shimamura
[2011]).

Let’s assume a resonance at EB = ER − iΓ
2 lying close to the real axis. In

accordance to Taylor [1972], the S-matrix in the vicinity of EB is given by

Sij(E) = SB
ij + ResEB

Sij(E)
E − ER + iΓ

2
, (2.82)

where we separate it into the resonant contribution and the background S-matrix
SB. We rewrite this expression as

S(E) = SB
(︄

1 − iA
E − ER + iΓ

2

)︄
, (2.83)

where the components of the matrix A have the form

Aij = δiδ
∗
j . (2.84)

We calculate A from the matrix equation

A = i
(︂
SB
)︂−1

ResEB
S. (2.85)

The quantity Γi := Aii = |δi|2 is called the partial width of the resonance for
channel i. In the multichannel problem, it is interpreted as a rate of influence of
the resonance on the individual channels. The partial widths and the width Γ of
the resonance are related by

Γ =
N∑︂

i=1
Γi. (2.86)
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3. Model multichannel problems
with short- and long-range
potentials
In this part, we develop our numerical approach and test it on analytically solv-
able models of multichannel problems employing short-range and long-range po-
tentials.

3.1 Spherical potential well and the Feshbach
resonance

The first problem that we solved was the case of a rectangular potential well; the
two-channel case is in Grozdanov and McCarroll [2007]. We located resonances
arising in the two-channel case of the spherical potential well given by

Ũ(r) =
(︄

−4 −1
−1 −4

)︄
, r ≤ a,

Ũ(r) =
(︄

0 0
0 0

)︄
, r > a,

(3.1)

with a representing both the radius of the well and the R-matrix boundary. The
threshold energies were set to e1 = 0 and e2 = 2. The model parameters have
been selected to allow formation of one Feshbach resonance below the second
threshold. The Feshbach resonance is a pole that emerges from a bound state
with respect to channel 2 when a small coupling between channels 1 and 2 is
present, i.e. it exists only in the multichannel case. We check our results with
the analytically solvable case of the partial wave with l = 0 (see Grozdanov and
McCarroll [2007]) and compare the analytical and numerical results of the cross
section σ in Figure 3.2 (in the top left panel).

We located S-matrix poles for the partial wave with l = 0. In Figure 3.1 we
see the amplitude of the implicit function F (E) from (2.59) whose zero points
are the S-matrix poles. In the top panel, we observe the implicit function for the
uncoupled potential (V12 = V21 = 0) on the physical Riemann sheet where one
bound state with the energy EB = 1.796 occurs. The resonance poles for the
coupled potential (3.1) are on the Riemann sheet U1 in the bottom panel where
the original state with EB gave birth to the two poles EF = 1.832 ± 0.029 i in
the vicinity of the real axis – we see the Feshbach resonance in the vicinity of the
former bound state.

We calculated the cross section σij using (2.34) and removed the Feshbach
resonance from it using the appropriate residue matrix (2.80). The results for all
σij are in Appendix A, here we show only the results for σ11.

The removal led to the complete removal of the Feshbach resonance peak as
shown in the left column of Figure 3.2, where the upper figure shows the cross
section with the pole included and the bottom figure shows the case with the
removed pole, respectively.
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Figure 3.1: Amplitude of the implicit function |F (E)| in the complex plane,
minima of the function are circled. Top panel: physical Riemman sheet for the
uncoupled case with one bound state. Bottom panel: sheet U1 for coupled case
with Feshbach resonances.

Then we did the same for the nonzero angular momentum l = 3, which is no
longer analytically solvable. The Feshbach resonance pole occurred at the energy
EF = 1.775 ± 0.004i for the potential

Ũ(r) =
(︄

−34 −1
−1 −34

)︄
, r ≤ a,

Ũ(r) =
(︄

0 0
0 0

)︄
, r > a.

(3.2)

The cross section is plotted in the right column of Figure 3.2 and the bottom
right panel shows the case with the Feshbach pole removed.

We see that the resonant peaks vanish after the removal of the pole. However,
for l = 3, there is still a small visible peak left even after the removal. The source
of this peak does not lie in physics but in the numerical error – we simply can
not determine the exact position of the pole and so the removal is not perfectly
accurate either. It is important to keep in mind that this can happen when we
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Figure 3.2: The cross section σ1→1 as a function of energy on logarithmic scale.
For l = 0 and the potential (3.1) in the left column; for l = 3 and (3.2) in the
right column. The upper row shows the original cross section; the bottom row
shows the cross section after the removal of the Feshbach resonance.

remove the poles.
In this part, we successfully tested that our numerical results (pole posi-

tions and the cross section with the pole included) correspond to the results in
Grozdanov and McCarroll [2007] and that we can remove strong resonant peaks
completely.
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3.2 Spherical well and dipole potential: one-
channel case

In this section, we describe a model potential that was analytically solved in
Estrada and Domcke [1984] in one channel for the s-wave (l = 0) expressed by
the relation

Ũ =
⎧⎨⎩−U0 , r ≤ a

−γr−2 , r > a,
(3.3)

which combines a spherical well of the depth U0 and a long-range dipole potential
parameterized by γ. The radius of the well a equals the R-matrix boundary. At
first, we solve the problem in one channel and then we present a method solving
the multichannel form of (3.3).

3.2.1 Pure dipole potential in one channel
If we solve a one-channel quantum scattering problem for a pure dipole potential

Ũ = −γr−2, r ≥ a, (3.4)
we express the radial Schrödinger equation for the angular momentum l and
dipole parameter γ by[︄

d2

dr2 + p2
]︄
ul(r) −

[︄
l(l + 1) − γ

r2

]︄
u(r) = 0. (3.5)

We want to rewrite this equation in the form of[︄
d2

dr2 + p2
]︄
ul(r) −

[︄
λ(λ+ 1)

r2

]︄
u(r) = 0. (3.6)

The coefficient λ is a solution of the quadratic equation

λ(λ+ 1) = l(l + 1) − γ, (3.7)

and we choose the solution

λ = 1
2

⎡⎣−1 +
√︄

1
4 + l(l + 1) − γ

⎤⎦ . (3.8)

These coefficients are generally complex numbers.
The analytical asymptotic solutions of (3.6) are the Riccati-Hankel function

ĥ
(±)
λ with the complex order λ. In the code, we evaluate these functions by sub-

routine riccati_hankel_plus_rieman. The method for the evaluation of ĥ(±)
λ

by series expansion is described in Appendix B and it was used in Ragesh Kumar
et al. [2022a].
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Critical dipole

In the case of a pure dipole potential, bound states can emerge only for γ > 1
4 as

shown in Connolly and Griffiths [2007]. This value γcrit = 0.25 is called the critical
dipole. The article Estrada and Domcke [1984] explains that the properties of
the model with (3.3) are different for γ below and above the critical dipole.

Also, the results of the calculation of the S-matrix and Siegert states become
slightly different. For the simplest case of s-wave (l = 0) in one channel, the
coefficient λ from (3.8) is real for γ ≤ γcrit and becomes generally complex for
γ > γcrit.

S-matrix and propagation of R-matrix

Normally, for calculating the S-matrix in a long-range potential, we would have to
use a very large R-matrix boundary to ensure that the potential is small enough
in the external region. However, in this case, we can use a simple solution to the
problem used in Ragesh Kumar et al. [2022b] where a can be used as the grid
boundary.

We call this method the propagation of the R-matrix to a given point r0 ≫ a.
At first, we calculate the S-matrix S̃(E) from the solution ũ represented by

ũ(r) = h
(−)
λ (pr) − h

(+)
λ (pr)S̃, (3.9)

using the R-matrix approach for the R-matrix boundary at a. Then we calculate
the solution at r0 and obtain the R-matrix Rr0 from the equation

ũ(r0) = Rr0

dũ(r)
dr

⃓⃓⃓⃓
⃓
r=r0

, (3.10)

which is the result of the R-matrix approach propagated to the boundary r0.
Then we use Rr0 in the R-matrix condition

u(r0) = Rr0

du(r)
dr

⃓⃓⃓⃓
⃓
r=r0

, (3.11)

with the wave function expressed in terms of ĥ(±)
l with the integer order l

u(r) = h
(−)
l (pr) − h

(+)
l (pr)S, (3.12)

and evaluate the S-matrix S from it.

Localization of Siegert states

The problem is simpler when we are interested only in the positions of the Siegert
states. It is sufficient to compute the minima of the following implicit function

F (E) =
⃓⃓⃓
h

(+)
λ (pr) −R(E)h(+)

λ (pr)
⃓⃓⃓
, (3.13)

as shown in Ragesh Kumar et al. [2022b].
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3.2.2 Numerical results in one channel
This problem was analytically solved in Estrada and Domcke [1984] using the
Jost functions approach. It is shown there that there are no virtual states in the
complex plane for non-zero γ and no resonances in the lower part of the complex
plane that become bound states as a function of increasing U0 for a fixed γ. We
use our approach to confirm this behaviour and show the trajectories of the poles
in the complex plane in Figure 3.3. In this case, the bound state emerges at
U0 = 21.927 for γ = 0.12 (we used this value to check the correctness of our
results) and, in the case of a pure potential well, it happens for U0 = 9 · (0.5π)2 =
22.2066. In Figure 3.4, the scattering cross section is calculated for a few values
of U0 before and after the bound state emerges. We observe behaviour typical
for a resonant or virtual state becoming bound. Nevertheless, there is no pole in
the complex plane that would correlate with this behaviour. Instead, the cross
section rises to the point of emergence of the bound state and then drops as the
bound state moves away from the origin.

Figure 3.3: Complex plane of the momentum of the particle: trajectories of the
S-matrix poles with respect to the depth U0 of the potential well in the potential
(3.3). Parameters of the model: angular momentum l = 0, dipole parameter
γ = 0.12
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Figure 3.4: Scattering cross section on logarithmic scale as a function of the
momentum for selected values of U0 (bound state emerges at the value U0 =
21.9268). Parameters of the model: angular momentum l = 0, dipole parameter
γ = 0.12

3.2.3 Riemann sheets of the second type
In the calculations in Appendix B, we write the complex argument in the polar
form z = |z|eiθ. The functions ĥ(±)

λ (pr) are expressed by the formula

ĥ
(±)
λ (z) =

√︃
πz

2
J−(λ+ 1

2 )(z) − e∓i(λ+ 1
2 )πJ(λ+ 1

2 )(z)
sin[(λ+ 1

2)π] , (3.14)

where J±(λ+ 1
2 )(z) are the Bessel functions expressed by

J±(λ+ 1
2 )(z) =

(︃1
2

)︃±(λ+ 1
2 )

|z|±(λ+ 1
2 ) exp(±i(λ+ 1

2)θ)
∞∑︂

k=0
fk(z2k). (3.15)

In this expansion, the terms fk(z2k) in the sum are functions of the integer powers
of z and they are single-valued. However, for a non-integer order λ, the factor
exp(±i(λ+ 1

2)θ) is multi-valued and depends on the choice of the complex phase.
For momenta expressed by p = |p|eiϕ, we define the Riemann sheets of the

second type Sn for n ∈ Z by

Sn : ϕ ∈
(︃

−π

2 + 2nπ; 3π
2 + 2nπ

)︃
. (3.16)
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The functions that depend only on integer powers of z are invariant to the choice
of the Riemann sheet but, for the potential (3.3) that implies a non-integer order λ
of the Riccati-Hankel functions, we obtain different results for different Riemann
sheets.

The physical sheet of the complex plane is S0; the sheets S+1 and S−1 are the
”closest” sheets to the physical one. We already saw that the resonance poles do
not reach the origin of the complex plane on the physical sheet for the potential
(3.3). Nevertheless, the articles Herzenberg and Saha [1983] and Herzenberg
[1984] explain that we can find such poles (reaching the origin) of the S-matrix
on the other Riemann sheets of the second type and we reproduce these results
in our model.

The results of the pole search on the ”closest” sheets S±1 in Figure 3.5 confirm
the conclusions of Herzenberg and Saha [1983] and Herzenberg [1984]: there are
resonances that reach the origin when the bound state emerges on the physical
sheet. In other words, the bound-state pole ”drops down” from the unphysical
Riemann sheet. Thus, we demonstrate that our approach can find the S-matrix
poles on the non-physical sheets of the complex plane. Particularly, in Figure 3.5,
we see two poles on the sheets S±1 reaching the origin – the right half plane of
the sheet S+1 is equivalent to the left half plane of the sheet S−1 (this symmetry
holds for all n ̸= 0).

Figure 3.5: Complex plane of momentum: trajectories of the S-matrix poles
reaching the origin as a function of the depth U0 of the well. The left half
corresponds to the sheet S−1 and the right half to S+1. Parameters of the model:
angular momentum l = 0, dipole parameter γ = 0.12.
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Figure 3.6: The relation between the dipole parameter γ and the index of the
Riemann sheet for l = 0 showing the areas where the poles can occur in the
vicinity of the origin.

A question remains if we can always find a pole on some Sn which is connected
with the bound state on S0. The answer is no. For example, for a larger γ = 0.139,
the poles on S±1 will not reach the origin. Although there are two similar poles
on the sheets S±2 reaching the origin, for even higher γ there are no such poles
on any other sheet.

For the case l = 0 solved analytically in Herzenberg and Saha [1983] on
various Riemann sheets, there is a relation between the occurrence of poles that
can reach the origin, the index n of the sheet, and the dipole parameter γ up to
γcrit. It was obtained in Herzenberg and Saha [1983] from the boundary condition
of the logarithmic derivatives of the wave function u(r) at r = a. Expanding
the functions into the series in the vicinity of the origin using (3.15) for λ =√︂

1
4 − γ and taking only the lowest powers of the momentum pλ, they obtained

the condition

2
√︄

1
4 − γ

(︃
arg(p) − 1

2π
)︃

= (2nsheet + 1)π. (3.17)

We show this dependence in Figure 3.6 (only for a negative index n of the sheets
but the same relation holds for n ≥ 0). On the diagram, we see two areas where
poles can occur in the vicinity of the origin; anywhere else, this can not happen.
Additionally, the diagram shows us that the occurrence of such poles is forbidden
for γ > 0.21 on every possible sheet.
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Figure 3.7: Real and imaginary part of the wave function for the energies of
the Siegert states shown in Figure 3.3 and 3.5 and for a few key values of the
potential parameter U0. Parameters of the model: angular momentum l = 0,
dipole parameter γ = 0.12.

3.2.4 Wave functions
Finally, one could be interested in the properties of the Siegert states on the sheets
S±1 and look at the relevant wave functions. We applied the R-matrix approach
to calculate the wave functions of the Siegert states at selected values of the
potential parameter U0 focusing on the transition between the resonance and the
bound state. We compared the wave function of resonances on the physical sheet
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S0 with the one on the non-physical sheet S+1 that reaches the origin. The results
are depicted in Figure 3.7 for three values of U0 (for the last one, the bound state
emerges).

We see that the wave function of the pole on S+1, that approaches the origin,
does not grow fast – it behaves as we would expect. It is also interesting that
the shapes of the functions of different Siegert states (the first situated on S0 and
the second on S+1) are similar and they have almost identically positioned zero
points.

Notice that the wave function of the bound state is not a real function as we
would normally expect. This is a simple consequence of the phase convention for
the Riccati-Hankel functions

uli,mi
(r) r→∞∼ ĥ

(+)
λ (pr) ∼ ei(pr−λ π

2 ). (3.18)

For a bound state, p = i|p| so the complex phase originates in the term e−iλπ/2 .

3.3 Gaussian and dipole potential: one-channel
case

3.3.1 Gaussian well with varying depth
To test our approach on some potentials that can not be solved analytically, we
choose a Gaussian potential in the inner region

Ũ =
⎧⎨⎩−U0e

− r2
a2 , r ≤ a

−γr−2 , r > a.
(3.19)

The potential is shown in Figure 3.8.

Figure 3.8: The reduced potential Ũ described by (3.19) comprises of a short-
range Gaussian term and a long-range dipole term. Potential parameters: U0 = 1,
a = 1, γ = 0.12.

We solve this model in the same way as the model with the potential (3.3),
i.e. using the calculation of the Hankel functions with the real coefficients λ and
the implicit function calculated by (3.13). We identify the potential boundary a
with the R-matrix grid boundary.
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Figure 3.9: Trajectories of the poles of the S-matrix in the complex plane of
momentum for the potential (3.19) as functions of the parameter U0. Left panel:
l = 0, γ = 0. Right panel: l = 0, γ = 0.12.

We located the poles of the S-matrix and followed their trajectories on the
complex plane as functions of the parameter U0 for two cases of γ = 0 and
γ = 0.12. The resulting trajectories of the poles are shown in Figure 3.9. The
results are very similar to the case of the rectangular potential well. For γ = 0,
the resonances reach the imaginary axis and give rise to the virtual states (one
virtual and one bound state in the end). For γ = 0.12, we observe the same
process as in the preceding section – poles do not reach the origin or lead to a
virtual state on the physical sheet S0; however, it happens on the sheet S+1.

3.3.2 Gaussian well and barrier with varying dipole pa-
rameter

The second model works with the potential

Ũ = −3e−( r
4 )2 + e−(r−3)2 − γr−2, (3.20)
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in one channel and l = 0. The function (3.20) is plotted in Figure 3.10. In this
case, we set the R-matrix boundary to a = 5. Due to the natural barrier in the
potential, a strong resonance is formed in this system.

Figure 3.10: The reduced potential Ũ described by the equation (3.20) comprises
of a short-range Gaussian term and a long-range dipole term. Potential parame-
ters: γ = 0.12, l = 0.

Figure 3.11: Poles of the S-matrix for the potential (3.20). The trajectory of the
resonance (top panel) and the bound state (bottom panel) in the complex plane
as a function of the parameter γ ∈ [0, 0.25].
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In this case, we varied the γ parameter from 0 to the critical dipole 0.25 and
observed the change of position of the poles of the S-matrix. For γ = 0, two
Siegert states were found in the vicinity of the origin, one resonance and one
bound state. In Figure 3.11, we show their trajectories in the complex plane as
functions of γ increasing to the critical dipole value γcrit = 0.25.

3.4 Spherical well and dipole potential: multi-
channel degenerate problem

Dipolar interaction µ cos θ
r2 is non-spherical and couples partial waves with neigh-

boring angular momenta, i.e. l and l + 1. The one-channel case neglects this
coupling but it can be represented in a multichannel problem. In this subsection,
we introduce the propagation of the R-matrix and search for the Siegert states in
a multichannel case. Then we present results for a two-channel model.

We solve the problem for the potential

Ũ =
⎧⎨⎩−U0 , r ≤ a

−γr−2 , r > a,
(3.21)

which is represented by N ×N matrices U0 and γ.

3.4.1 S-matrix and multichannel propagation of R-matrix
In a multichannel problem, the propagation of the R-matrix used in Section 3.2.1
is more complicated. We can use the approach from Ragesh Kumar et al. [2022b]
only in the case of degenerate channels.

The system consists of N degenerate channels, Ntarg = 1 and Nchan = N . We
set e1 = 0 and pi = p and the set of coupled equations (2.10) becomes[︄

d2

dr2 + p2
]︄
ui(r) −

∑︂
j

[︄
li(li + 1)δij − γij

r2

]︄
uj(r) = 0. (3.22)

We identify a new matrix with components

Bij = li(li + 1)δij − γij, (3.23)

and we rewrite the equation (3.22) by N ×N matrices[︄(︄
d2

dr2 + p2
)︄
I − 1

r2 B
]︄

u = 0. (3.24)

The first term of the equation (3.24) is just the unit matrix multiplied by a
scalar. Therefore, a linear transformation A that will diagonalize the matrix B
will not affect the first term. It can be done only for a degenerate problem (or
when the non-degenerate channels are not coupled). This approach can not be
used in a general case (nevertheless, there is a possibility to solve the problem
using the exterior complex scaling approach).

We diagonalize the matrix B as

B = A+diag(b1, ..., bN)A, (3.25)
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and obtain the set of N eigenvalues bi. Analogically to the approach in Section
3.2.1, we calculate the coefficients

λi = 1
2

⎡⎣−1 +
√︄

1
4 + bi

⎤⎦ . (3.26)

Thus, applying the linear transformation A on u, we obtain the equation[︄
d2

dr2 + p2 − λi(λi + 1)
r2

]︄
Iũ(r) = 0, (3.27)

where ũ is the wave function in the new channel basis. This formula is a decoupled
Schrödinger equation that can be solved using the R-matrix approach and the R-
matrix R̃ = A+RA transformed in the new channel basis giving us the solution

ũ(r) = h(−)
λ (pr) − h(+)

λ (pr)S̃. (3.28)
As a next step, we calculate ũ at some point r0 ≫ a and obtain the R-matrix

R̃r0 from the equation

ũ(r0) = R̃r0

dũ(r)
dr

⃓⃓⃓⃓
⃓
r=r0

, (3.29)

which is the result of the multichannel R-matrix approach propagated to the
boundary r0. We calculate the non-transformed R-matrix at r0 as Rr0 = AR̃r0A+

which leads to the equation for wave functions in the original basis

u(r0) = Rr0

du(r0)
dr

⃓⃓⃓⃓
⃓
r=r0

, (3.30)

and allows us to solve for the S-matrix as usual.

3.4.2 Localization of Siegert states
According to Ragesh Kumar et al. [2022b], for finding the Siegert states, it is
sufficient to locate the minima of the following implicit function

F (E) = |det [M(E)]| =
⃓⃓⃓
det

[︂
h(+)

λ (pr) − A+R(E)Ah(+)
λ (pr)

]︂⃓⃓⃓
. (3.31)

3.4.3 Two-channel approximation for dipolar interaction
To illustrate that similar behaviour occurs in more channels, we add one more
example for two channels. We use the following parameters of the potential:

γ =
(︄

0.12 0.03
0.03 0.12

)︄
, l =

(︄
0
1

)︄
, U0 =

(︄
U11 1
1 U11 + 2

)︄
. (3.32)

The choice of different angular momenta models properties of the actual dipolar
interaction which couples angular momenta of opposite parity. We look for trajec-
tories of Siegert states in the complex plane for U11 varying in the interval (15, 25).
Let’s remind the reader that the channels are degenerate, i.e. e1 = e2 = 0.
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Figure 3.12: Complex plane of energy: trajectories of the S-matrix poles for the
potential (3.32) on different sheets of the plane. The selected Riemann sheets are
indicated in the legend: number Msheet denotes the first type and nsheet denotes
the second type.

This time, we finally have to use the approach leading to the formula (3.31) in
the matrix form. We choose weak coupling components of the dipolar potential
and reach similar results as above and observe consistency between the models.

The movement of the poles is shown in Figure 3.12. In the multichannel case,
we have to stay in the complex plane of energies, the sheets of the plane are
denoted in the legend. We see that the trajectories of the poles are qualitatively
the same as in the one-channel case. For nsheet = 0, there is a resonance that
does not reach the origin. However, there is a resonance for nsheet = +1, which
reaches the origin when the corresponding bound state emerges.
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3.5 Coulomb potential
As the last test of our method, we used the pure Coulomb potential in one channel

Ũ(r) = 0 , Z = 1 , η = −1
p
. (3.33)

We solve the problem with a charged target which means that the external so-
lution (2.21) is now expressed in terms of so-called Coulomb-Hankel functions
H

(±)
l (η, pr). These functions and the Fortran subroutine COULCC that gener-

ates them are described in Thompson and Barnett [1985]. We use this simple case
mainly to test the usage of the Coulomb-Hankel functions before the application
to complex problems.

At first, we test if our approach gives us the correct locations of bound states
of the pure Coulomb potential. In Figure 3.13, we plot the physical sheet of the
complex plane of the energies for l = 1 and l = 3 where the bound states lie on
the negative real axis. We see that our approach gives the predicted results: the
bound states with energies E = − 1

2n2 . We also show that, for higher l, the bound
states with n ≤ l disappear.

Figure 3.13: Bound states of the pure Coulomb potential for l = 1 (top panel)
and l = 3 (bottom panel) on the physical sheet of the complex plane of energies.
Bound states for the lowest n are highlighted.

The next step is testing the accuracy of the bound state energy. We chose
the state with n = 3, l = 1, i.e., we look for the pole at E = − 1

18 = −0.05̄. The
results are in Table 3.1.
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Table 3.1: The energy of bound state of the pure Coulomb potential with n = 3
and l = 1. The comparison of the reference value of the bound state energy
and our numerical result, including the absolute error ∆E and the relative error
ηE. R-matrix grid parameters: number of B-splines M = 103, order of B-splines
k = 5, grid boundary a = 5.

Eref [a.u.] −0.05̄
Enum [a.u.] −0.055555567

∆E [a.u.] 10−8

ηE 2 · 10−7

In the same way as for the bound states, we test the locations of resonances
for the Coulombic potential and the spherical potential well of the depth U0

U(r) = −2Z
r

+ Ũ(r) , Ũ(r) =
⎧⎨⎩−U0 , r ≤ a

0 , r > a.
(3.34)

We show how resonances of the potential well of the depth U0 = 20 move over
the complex plane when we vary the parameter Z from -1 to 1. The case Z = 0
is a solved problem of the pure potential well. The trajectory of the resonance
is shown in Figure 3.14. We see that the pole moves continuously over the plane
which is the first test of correctness.

Figure 3.14: Trajectory of resonance in the potential well with respect to the
parameter Z of the additional Coulomb interaction in the range from -1 to 1.
Parameters: potential depth U0 = 20, angular momentum l = 3.

Similarly as Konvalinka [2021], we test our results analytically in Mathematica
where the Coulomb-Hankel functionsH(±)

l (and Coulomb wave functions F (±)
l and

G
(±)
l ) are implemented. Thus, we find the poles of the S-matrix by applying the

function FindRoot to the function

F (p) = dFl(η, p̃r)
dr

⃓⃓⃓⃓
⃓
r=r0

H
(+)
l (η, pr) − dH(+)

l (η, pr)
dr

⃓⃓⃓⃓
⃓
r=r0

Fl(η, p̃r) , (3.35)

where U0 is the depth of the well, η = Z/p, p̃ =
√
U0 + p2, and r0 the boundary of

the R-matrix grid. The comparison of the analytically and numerically obtained
energies is in Table 3.2.
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Table 3.2: Energies Ea of resonances for various strengths of the Coulomb inter-
action obtained by our code in Mathematica and their differences compared to
the numerical values. Parameters: potential depth U0 = 20, angular momentum
l = 3.

Z Ea [a.u.] ∆E [a.u.]
0 3.83222 − 0.98632 ı 7 · 10−5

−1 2.72645 − 0.77241 ı 8 · 10−5

1 4.94456 − 1.20234 ı 1 · 10−4

The last test was a plot of the implicit function close to the real axis because,
in the preceding applications of the COULCC subroutine, some non-physical
poles occurred there. We tested our numerical model for this behaviour and did
not find any such poles. In Figure 3.15, there is an example of a resonance close
to the real axis with no other poles around.

Figure 3.15: An implicit function for the case of a potential well and Coulomb
potential close to the real axis of energy. Position of the resonance: E = 0.279 −
0.007i. Parameters: Coulomb potential parameter Z = −1 potential depth U0 =
29, angular momentum l = 3.
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4. Siegert states in molecules
After solving the model potentials in the previous chapter we move to real quan-
tum systems. My numerical R-matrix approach is replaced by a complex R-
matrix approach solving the electron scattering from molecules. This numerical
method is implemented in UKRmol+ Fortran codes described in Maš́ın et al.
[2020]. The code has been used for example by Ragesh Kumar et al. [2022a] to
study Siegert states in electronically elastic collisions. The Siegert module was
not applicable to inelastic models and the collisions with ions, relevant also for
photoionization. The goal of my work was to lift these limitations.

4.1 Implementation into the UKRmol+ codes
The numerical approach in UKRmol+ is much more complicated than the R-
matrix method I implemented; the whole problem is multi-electron. Nevertheless,
the calculation of the Siegert states does not have to deal with this complexity.
This is because the Siegert state calculation is a one-electron problem constrained
to the R-matrix outer region which only requires the boundary amplitudes and
channel definitions. Therefore, we use the formulas (2.58) for the S-matrix and
(2.59) for the implicit function in the same way as we did in our model multichan-
nel calculations. The only remaining task was to translate my implementation
into the UKRmol+ codes.

To do that, I made changes in the files siegert.f90 and siegert_mod.f90
in the part UKRmol-out focused on the external region. In these files, the ap-
proach to find the poles of the S-matrix was already implemented; nevertheless,
it had been done only for the completely degenerate case of elastic scattering
with ei = e. I improved the code to solve a general inelastic problem and checked
the implementation with the results of the two-channel potential solved by my
stand-alone code as described in Section 3.1. In the same way, I rewrote the im-
plementation of the S-matrix evaluation for inelastic scattering. The UKRmol+
codes calculate the T-matrix but only on the real axis. The T-matrix is trivially
related to the S-matrix: T = S − I.

Then I implemented the evaluation of the residue of poles of the S-matrix
and implemented output of T-matrices with and without a pole removed. Again,
the results were tested on the problem solved in Section 3.1. The Siegert code is
launched by calling outer-run siegert and outputs the poles of the S-matrix and
secondly the T-matrices on a chosen energy grid. Then the standard UKRmol-
out program ixsecs uses the T-matrices to evaluate the electron scattering cross
section. I used the UKRmol+ code in the same spirit as in the previous chapter
but for the real systems. The necessary input data (R-matrix amplitudes and
channel data) were provided by my supervisor.

4.2 CO2 in Hartree-Fock approximation
We test the method implemented to the UKRmol+ codes on the R-matrix results
for the CO2

+ ion calculated by Hartree-Fock approximation (CO2 HF in what
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follows) of the following channel properties:

• Number of target channels: Ntarg = 1,

• Maximal angular momentum: lmax = 7.

We worked with results of the Hartree Fock (or Static Exchange) model de-
scribed in Maš́ın et al. [2018] for the four lowest-lying states of the ion, including
its ground state. The electron energies are measured with respect to the threshold
of each other. The calculated HF energies of each state are:

• X (2Πg) state (the ground state): eX = −187.16 a.u.,

• A (2Πu) state: eA = −186.99 a.u.,

• B (2Σ+
u ) state: eB = −186.97 a.u.,

• C (2Σ+
g ) state: eC = −186.91 a.u..

Figure 4.1: The results for the X state of CO2
+. Upper panel: electron scattering

cross section, for B3u with pole removed. Bottom panel: the poles of the S-matrix,
the removed pole from the B3u irreducible representation is highlighted.
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Due to later applications to photoionization, we have restricted ourselves to
the three irreducible representations of the total wave function B1u, B2u a B3u.
Only these three irreducible representations are accessed by dipole transition from
the totally symmetric neutral ground state of the molecules. We had one set of
R-matrix outputs for each ionic state and each total symmetry.

We scanned the complex plane for all the states and symmetries and evaluated
the cross sections for the electron scattering on the ion. We show the results for
X state and C state where we found strong resonant peaks as shown in Figure 4.1
and 4.2, respectively. The scan of the complex plane is in the bottom panel and
the scattering cross section with the removed peaks is in the top panel of each
figure. We see that our method is indeed able to perfectly remove the resonant
contribution from the results.

The selected resonant poles in states A and B do not lead to any visible peaks
in the electron scattering due to the growth of the background scattering cross
section for low energies. However, the removal of the poles in Figure 4.3 and 4.4
is still visible (the small sharp peaks in the cross section are there probably due
to a numerical cancellation error).

Figure 4.2: The results for the C state of CO2
+. Top panel: electron scattering

cross section, for B1u with pole removed. Bottom panel: the poles of the S-matrix,
the removed pole from the B1u irreducible representation is highlighted.
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Figure 4.3: The results for the A state of CO2
+. Upper panel: electron scattering

cross section, for B3u with pole removed. Bottom panel: the poles of the S-matrix,
the removed pole from the B3u irreducible representation is highlighted.

4.2.1 Comparison with the photoionization cross section
To see how the same resonances manifest in photoionization, we studied the
photoionization cross section of CO2 from Maš́ın et al. [2018]. The results are in
Figure 4.5. Briefly, the molecular-frame photoionization cross section for photon
polarization q is given in Harvey et al. [2014] by(︄

dσ
dΩ

)︄
= 4π2αa2

0ω

⃓⃓⃓⃓⟨︃
ψ

(−)
kf⃗

|d̂q|ψ0

⟩︃⃓⃓⃓⃓2
, (4.1)

where ψ0 is the wave function of a bound state, ψ(−)
kf⃗

is a final continuum state,
and d̂q is the dipole operator

d̂q =
√︄

4π
3 rX1q(r⃗), (4.2)

where X1q is a real spherical harmonic. The cross sections in Figure 4.5 are
calculated for a randomly oriented sample of molecules from so-called partial-
wave dipole matrix elements which can be calculated from solutions of the type
(2.29). A detailed description of molecular photoionization is beyond the scope
of this work.
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In Figure 4.5, we plot the positions of the selected poles found in the previous
Section to connect them with the peaks of the photoionization cross section.
The highest peak is observed in C state; however, for each state, we found a
peak potentially connected with one of the poles. Note that, in Figure 4.5, the
horizontal axis now corresponds to photon energy.

Notice that the position of the poles in C and X is very similar; however, the
strong peak in the photoionization cross section exists only for the C state. Note
that while in scattering, cf. Figure 4.1 and 4.2, the resonances in the X and C
states were equally visible, in photoionization, only the resonance in the C state
is strong. This is clearly due to the integral which is sensitive also to the initial
state (orbital); an effect not present in scattering.

We plotted also the dipole matrix element
⟨︂
ψ

(−)
l=1,m=0|d̂0|ψ0

⟩︂
for the C state in

B1u and found a pole at E = (23.232 − 2.142) eV – at the same position as the
S-matrix pole in C state. The plots of the magnitude and phase of the dipole
element in channel 1 including the pole are shown in Figure 4.6.

In the next step, we will implement the pole removal for the photoionization
cross section as well and look at the behaviour of the resonances in more detail.

Figure 4.4: The results for the B state of CO2
+. Upper panel: electron scattering

cross section, for B1u with pole removed. Bottom panel: the poles of the S-matrix,
the removed pole from the B1u irreducible representation is highlighted.
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Figure 4.5: Photoionization cross section for CO2 for four states of CO2
+ calcu-

lated using the HF model. The positions of the selected poles from Figures 4.1,
4.2, 4.3, and 4.4 are highlighted by the vertical lines.

Figure 4.6: The magnitude and the complex phase of the partial-wave dipole
matrix element in the complex plane; the pole at E = (23.232 − 2.142) eV is
marked by the green circles.
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4.3 CO2 in Configuration Interaction model
The more complicated case is the R-matrix solution for the CO2 ion approximated
by the configuration interaction approach (CO2 CI in what follows) with the
following channel properties:

• Number of target channels: Ntarg = 300,

• Total number of channels: Nchan = 2420.

Figure 4.7: Scan of the sheet U6 of the energy complex plane corresponding to
the C state of CO2 with Ntarg = 14, Nchan = 108 for the symmetries B1u, B2u,
and B3u. In B1u, one resonance is highlighted.
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Again, the highest partial wave included was for lmax = 7. We do not choose the
whole set of channels for the scattering solution but, for computational reasons,
restrict ourselves to a lower Ntarg. In the following results, we used

• Number of target channels: Ntarg = 14,

• Total number of channels: Nchan = 108.

The states from CO2 HF are equivalent to the first six target channels in CO2
CI:

• X (2Πg) state (the ground state): target channels 1 and 2 (degenerate),

• A (2Πu) state: channels 3 and 4 (degenerate),

• B (2Σ+
u ) state: channel 5,

• C (2Σ+
u ) state: channel 6.

The results of the pole search in the complex plane are shown in Figure 4.7
for the sheet U6 (i.e. the poles here should be affecting the C state). We marked
one isolated pole in the symmetry B1u that could be potentially connected with
the peak in the photoionization cross section for the C state in Maš́ın et al. [2018]
and with the resonant pole in Figure 4.2. There are a lot of poles in the complex
very close to the real axis; they are called auto-ionization resonances and they
generate many narrow peaks in cross section. In general, we found many poles
in such complex models. A clear advantage of the Siegert analysis is that it
allows to reveal much broader structures that are obscured by the dense forest of
autoionization resonances.

We evaluated the cross section for electron scattering on the ion, for a particle
incoming in channels 1-6 summed over all the outgoing channels; i.e. calculated
by

σi =
∑︂

j out
σi→j. (4.3)

The results are in Figure 4.8; notice that the auto-ionization resonances indeed
generated a ”noise” of narrow peaks. In Maš́ın et al. [2018], their effect was
partially removed by smoothing using Gaussian functions.

The removal of the pole in Figure 4.8 (in cross section the blue lines behind
the red) did not remove any big peak. It means that the resonance is very wide
and has a short decay time into each channel.

Although we did not find any isolated resonances that we can connect with
significant peaks, we show that our approach is a useful method to isolate chosen
poles and analyze their influence on the observable quantities. This case serves as
a good illustration of the usability of the method because, without the possibility
of removing the pole, it would be naturally considered a good candidate for strong
resonance.

We have to mention that our model is not completely consistent with the
solution in the internal region because we take only 14 channels from the total
number of Ntarg = 300. For restriction to Ntarg = 6, we obtain non-physical re-
sults for the particle incoming in channels 5 and 6. We also see that the scattering
cross sections for the degenerate target states (channels 1,2 and 3,4) are not equal
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Figure 4.8: CO2 CI: scattering cross section σi for particle incoming in channels 1-
6. The lines FULL and POLE REMOVED overlap except for a subset of energies
where the removal caused changes in the cross section.

but they should be. However, we have to restrict ourselves to a smaller Ntarg to
obtain the results in a reasonable short time. Therefore, one of the future goals
is to obtain results for a model that is consistent in this sense.

4.4 Other molecules
Besides the CO2

+ ion which served as a testing model for our approach, we worked
also with results for HCOOH+ ion and its dimer, N2O+, and ammonia and its
dimer. These results are quite similar to the results for CO2 so we include only
some of them in Appendix C.
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Conclusions
This work followed up my bachelor thesis Konvalinka [2021] where I studied
the collision processes in quantum mechanics in one channel for a short-range
potential using the Siegert states. In this work, I extended my numerical R-
matrix model to the multichannel case and I repeated the implementation of the
removal of the Siegert states to study their influence on the cross section in more
channels than one.

I performed the first tests of my multichannel approach on the simple model
from Grozdanov and McCarroll [2007] and successfully identified and removed
the Feshbach resonance. Then, using the model cases and analytical results from
Estrada and Domcke [1984] and Herzenberg [1984], I tested my approach on the
dipole long-range potential connected with a short-range potential. I managed
to confirm the existence of poles of the S-matrix on non-physical sheets of the
complex plane of energies and follow their movement in the complex plane. The
last test was the application of the Fortran subroutine COULCC and Coulomb-
Hankel function to prove that I could solve models with a charged target particle.

After testing my method on the model potentials, I focused on the real appli-
cations. I worked with the R-matrix results for ions obtained by the UKRmol+
codes from earlier or yet unpublished results. I implemented the multichannel
inelastic scattering approach and the pole removal into the program siegert and
applied it to look for resonances in the complex energy plane of the CO2

+ ion and
plotted the electron scattering cross section with the removed resonances. The
results for other molecules are to be found in Appendix C.

In the future, we want to implement the same method of the removal of poles
for the dipole matrix elements and thus isolate the resonances and remove the
peaks from the photoionization cross section. This allows us to study resonance
effects also in quantum time delay and other observable quantities of the quantum
scattering which are calculated from the S-matrix or the dipole matrix elements.
The method of the removal of the poles implemented in UKRmol+ should serve in
the code as an approach to analyze the quantum scattering solutions in complex
systems. An example of another application can be to rigorously apply the so-
called three-step model of High Harmonic Generation which uses dipole matrix
elements for complex momenta as explained in detail in Smirnova and Ivanov
[2014].

For electron collision applications, a particularly interesting case would be to
study the core-excited resonances found by Maš́ın and Gorfinkiel [2012] but only
in time-delays. Their explicit confirmation as poles of S-matrix is still lacking.
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A. Potential well: Feshbach
resonance in two channels
The cross section for the problem described in 3.1 for all four possible transitions
is in Figure A.1 and A.2, respectively. The full cross section is in the top panels
and the transformed cross section with the pole removed is in the bottom panels.

Figure A.1: The cross section of the potential well defined by (3.2) and the angular
momentum l1 = l2 = 0 as a function of the energy E on the logarithmic scale.
On the bottom diagram is the cross section after the removal of the Feshbach
resonance.
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Figure A.2: The cross section of the potential well defined by (3.2) and the
angular momentum l1 = l2 = 3 as a function of the energy E on the logarithmic
scale. On the bottom figure is the cross section after the removal of the Feshbach
resonance.
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B. Riccati-Hankel functions for
complex argument and order
In this section, we describe the theory behind the implementation of the Fortran
subroutine riccati_hankel_plus_riemann that evaluates the Riccati-Hankel
functions using an expansion and allowing control over the complex argument
of the input. We draw the information from Abramowitz and Stegun [1964].

In our convention, the Riccati-Hankel functions of order λ are related to the
spherical Hankel functions by

ĥ
(±)
λ (z) = ±izh(±)

λ (z). (B.1)

The following formula expresses the spherical Hankel functions

h
(±)
λ (z) =

√︃
π

2zH
(±)
λ+ 1

2
(z) =

√︃
π

2z
(︂
Jλ+ 1

2
(z) ± iYλ+ 1

2
(z)
)︂
, (B.2)

where H(±)
λ+ 1

2
are the Hankel functions of the first and second kind and Jλ+ 1

2
, Yλ+ 1

2

are the Bessel functions of the first and second kind. The functions Yν of order ν
are expressed by

Yν(z) = Jν cos(νπ) − J−ν(z)
sin(νπ) . (B.3)

Combining the equations (B.2) and (B.3), we see that it is sufficient to calculate
the functions J±(λ+ 1

2 ) to obtain both kinds of the Riccati-Hankel functions. The
full expression is

ĥ
(±)
λ (z) =

√︃
πz

2
J−(λ+ 1

2 )(z) − e∓i(λ+ 1
2 )πJ(λ+ 1

2 )(z)
sin[(λ+ 1

2)π] . (B.4)

The functions Jν(z) are evaluated from the absolutely convergent series

Jν(z) =
(︃1

2

)︃ν

|z|ν exp(iνθ)
∞∑︂

k=0

(︂
−1

4

)︂k (︂
|z|2kei2kθ

)︂
k!Γ(ν + k + 1) , (B.5)

where we separate the amplitude and argument of z = |z| exp(iθ). Calculating
the functions in this form enables control over the complex argument of z. More-
over, the sum in (B.7) is invariant to the choice of the argument θ. The whole
dependence on θ lies in the term exp(iνθ) from (B.7) and in

√︂
πz/2, cf. (B.4).

For the derivatives of the Riccati-Hankel functions dĥ(±)
λ (z)/dz, we use a sim-

ilar formula, easily derived from the equation (B.4)
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2z ĥ
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Analogically to (B.7), we have an expansion for the derivatives of the Bessel
functions
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Thus, calculating the Bessel functions and their derivatives order λ+ 1/2 and
−λ − 1/2, we obtain the Riccati-Hankel functions and their derivatives on an
arbitrary Riemann surface, easily controlled by the multi-valued term exp (iνθ).
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C. Siegert states in molecule:
other results

C.1 HCOOH+

The scans of the complex plane for HCOOH+ for states 1a′′, 2a′′, 7a′, 8a′, 9a′, and
10a′ are below in Figures C.1 and C.2 for A′ and A′′ irreducible representations
of the Cs point group of the molecule. We can find some isolated resonances in
the plots. We applied the removal of these isolated resonances but it did not lead
to any significant changes in the electron scattering cross section so we do not
attach the plots of the cross section.

Figure C.1: Scan of the complex plane for the HCOOH+ for the states 1a′′, 2a′′,
7a′
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Figure C.2: Scan of the complex plane for the HCOOH+ for the states 8a′, 9a′,
10a′
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C.2 Ion of HCOOH dimer
We scan the complex plane for the states 1au, 1bg, 2au, 2bg, 9ag, 9bu, 10ag, and
10bu, each either in Au or in Bu irreducible representation of the C2h molecular
point group. The results are in Figures C.3 and C.4. For some resonances, we
obtained interesting results using the removal of poles – the results of the removal
are in Figure C.5 and removed poles are marked by crosses in Figure C.3. This
is the case where the removal shows us resonant peaks that are hardly visible in
the cross section.

Figure C.3: Scan of the complex plane for the ion of HCOOH dimer for the states
1au, 1bg, 2au, 2bg.
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Figure C.4: Scan of the complex plane for the ion of HCOOH dimer for the states
9ag, 9bu, 10ag, 10bu.
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Figure C.5: The cross section for the electron scattering on the ion of HCOOH
dimer for states 1au and 2au with the cross section after removing of resonances
marked in Figure C.1.
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C.3 N2O+

The same results as for HCOOH and its dimer are in this section for N2O – scans
of the complex plane in Figure C.6 and the chosen removals of the poles in the
cross section in Figure C.7. The point group in this case is C2v.

Figure C.6: Scan of the complex plane for the N2O+ ion for the states A and X.
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Figure C.7: The cross section for the electron scattering on the N2O+ ion for
component A1 in state A and components A1, A2, B1 in state X; the cross
section after removing of resonances that are marked in Figure C.6.
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