List of Appendices

A.1 Results of Applicant Attractiveness Survey

To rank the experiment participants according to their attractiveness, I conducted a survey. The survey included pictures of the participants and asked subjects to assign them to a category - above average looking (compared to the same age/gender group), average looking and below average looking. The survey was sent to volunteer students of different nationalities studying in various universities in Prague, the Czech Republic. In total 35 subjects responded to the survey. There was a total of 10 applicant pictures in the survey, 4 female and 6 males. After the survey, I chose a picture of one female and male participant from each category. As Table A.7 shows, there is a consensus about participants' attractiveness among the students surveyed.

Participant #	Attractiveness category						
	Above average looking	Average looking	Below average looking				
1	0	40	60				
2	85.8	8.6	5.6				
3	31.4	48.6	20				
4	20	62.9	17.1				
5	20	31.4	48.6				
6	80	14.1	5.9				

Table A.7: Attractiveness evaluation of experiment participants

Notes: Numbers are percentages of votes in the survey

I wanted to make sure that applicants are not rejected because of characteristics other than a visible tattoo, for ethnicity, for example, so I wanted candidates to have a "German look". Ideally one could use pictures of German people, although in my case it was not feasible, as only one participant is from Germany. For this reason, I needed to make sure that participants' perceived nationality was similar in the treatment and control group. In the first survey described above, in addition to perceived attractiveness, I asked respondents to state (their perceived) nationality of the person depicted on the pictures.¹ Alongside this survey I created another survey, this time using photos with tattoos, and asked another set of participants to state the perceived nationality of the person in the picture. 26 volunteers completed the survey. Table A.8 shows the top three nationalities indicated by volunteers (with respective percentages). As the table shows, there is no

¹ In that survey participants did not have tattoo.

difference in the perceived nationality of applicants with and without tattoos. This ensures that applications in the treatment and control group will not be treated as different nationals, which may complicate the results.

Without Tattoo	Participant #	With Tattoo
Top 3 nationalities		Top 3 nationalities
German - 31%; Czech - 26%; British - 22%	1	Czech - 42%; German - 27%; British - 15%
German - 29%; American - 29%; British - 17%	2	German - 35%; Czech - 23%; British - 23%
British - 67%; American - 17%; German - 6%	3	British - 46%; German - 27%; American - 23%
Czech - 26%; American - 17%; German - 9%	4	American - 31%; Czech - 23%; German - 8%
Czech - 31%; American - 29%; German - 20%	5	American - 31%; British - 31%; Czech - 15%
American - 29%; Czech - 26%; German - 23%	6	American - 35%; British - 31%; Czech - 23%

Table A.8: Perceived nationality of experiment participants

A.2 Randomization Check

As I sent only one application to one employer, I needed to ensure that firms and jobs were similar in the treatment and control group in terms of all controllable characteristics. In the paper I presented evidence that in terms of a firm's characteristics the sample is balanced. Here I do the same exercise for regions. I test whether regions of the country are similarly represented in the treatment and control group. Table A.9 shows balanced check results for regions. None of the differences are statistically significant, meaning that the randomization ensures the treatment and the control groups are similar in terms of controllable characteristics. Thus, I can rule out that any differential treatment of tattooed applicants is related to firm characteristics and/or to region- specific factors. Therefore, I argue that any difference in callback rates between the treatment and the control group should be due to the treatment itself.

Region	Non-Tattooed	Tattooed	<i>P-value</i>
Baden-Württemberg	0.09 (0.29)	0.09 (0.29)	0.89
Bavaria	0.19 (0.39)	0.19 (0.39)	0.84
Berlin	0.10 (0.31)	0.10 (0.30)	0.98
Brandenburg	0.00 (0.05)	0.01 (0.07)	0.58
Bremen	0.02 (0.14)	0.03 (0.16)	0.68
Hamburg	0.08 (0.27)	0.08 (0.28)	0.89
Hesse	0.14 (0.35)	0.14 (0.35)	0.94
Lower Saxony	0.03 (0.18)	0.04 (0.19)	0.63
Mecklenburg-Vorpommern	0.00 (0.05)	0.01 (0.07)	0.58
North Rhine-Westphalia	0.22 (0.41)	0.22 (0.41)	0.90
Rhineland-Palatinate	0.01 (0.10)	0.01 (0.09)	0.67
Saarland	0.00 (0.05)	0.00 (0.05)	0.98
Saxony	0.05 (0.01)	0.04 (0.01)	0.34
- Saxony-Anhalt	0.01 (0.07)	0.01 (0.09)	0.43
Schleswig-Holstein	0.03 (0.17)	0.02 (0.15)	0.60
Thuringia	0.01 (0.09)	0.01 (0.09)	0.74
N	385	397	

Table A.9: Randomization check – regions

Notes: The table shows mean comparison of regions across treatment (tattooed) and the control (non-tattooed) groups. Standard deviations are in parenthesis. Column 3 shows p-values of the hypothesis of equal means.

A.3 Pictures Used in the Experiment

A.4 Robustness Check – Probit Model Estimates

To perform the robustness of the Linear Probability Model (LPM) used in the main text I performed the same analysis using Probit model. Tables below confirm that the Probit model produces results that are qualitatively same the LPM model results.

Dependent variable: Callback	(1)	(2)	(3)	(4)	(5)	(6)
Visible Tattoo	-0.13***††† (0.03)	-0.13***††† (0.03)	-0.13** (0.05)	-0.11***† (0.04)	-0.17** (0.08)	-0.15* (0.08)
Male			-0.12** (0.06)			
Visible Tattoo * Male			-0.01 (0.07)			
International firm				-0.06 (0.05)		
Visible Tattoo * International firm				-0.07 (0.07)		
West Germany					-0.07 (0.06)	
Visible Tattoo * west Germany					0.05 (0.09)	
Urban area						-0.03 (0.07)
Visible Tattoo * Urban area						0.02 (0.09)
Constant	$0.30^{***}^{\dagger\dagger\dagger}_{(0.02)}$	0.29***††† (0.02)	0.28***††† (0.02)	$0.28^{***}^{\dagger\dagger\dagger}_{(0.02)}$	0.28***††† (0.02)	0.28***††† (0.02)
Monthly and regional dummies	Ν	Y	Y	Y	Y	Y
Control variables	N	N	Y	Y	Y	Y
\mathbb{R}^2	0.02	0.06	0.09	0.09	0.09	0.08
Ν	782	782	782	782	782	782

Table A.10: Estimates of the Probit Model – Firm Characteristics

Notes: The table shows marginal effects at means of the Probit model. Robust standard errors in parentheses. Columns 2-6 include monthly and regional dummies. In columns 3-6, I control for firm characteristics including age, size, number of job advertisements and whether the location of the job is in an urban area. * p<0.1, ** p<0.05, *** p<0.01. † - significance level with multiple hypothesis testing adjusted.

Dependent variable: Callback	(1)	(2)	(3)	(4)
Visible Tattoo	-0.13***††† (0.03)	-0.14***†† (0.04)	-0.16***††† (0.04)	-0.14*** (0.05)
Front office		0.05 (0.05)		
Visible Tattoo * Front office		0.02 (0.07)		
Appearance requirement			-0.04 (0.05)	
Visible Tattoo * Appearance requirement			0.09 (0.08)	
Teamwork requirement				-0.08 (0.05)
Visible Tattoo * Teamwork requirement				0.05 (0.07)
Constant	$0.29^{***}^{\dagger\dagger}^{\dagger\dagger}_{(0.02)}$	$0.28^{***}^{\dagger\dagger}^{\dagger\dagger}_{(0.02)}$	$0.28^{***}^{\dagger\dagger}^{\dagger\dagger}_{(0.02)}$	$0.25^{***}^{\dagger\dagger}^{\dagger\dagger}_{(0.02)}$
Monthly and regional dummies	Y	Y	Y	Y
Control variables	N	Y	Y	Y
R ²	0.06	0.09	0. 09	0.11
Ν	782	782	782	782

Table A.11: Estimates of the Probit Model – Job requirements

Notes: The table shows marginal effects at means of the Probit model. Robust standard errors in parentheses. Columns 2-4 include monthly and regional dummies. In columns 2-4, I control for firm characteristics including age, size, number of job advertisements and whether the location of the job is in an urban area. * p<0.1, ** p<0.05, *** p<0.01. \ddagger - significance level with multiple hypothesis testing adjusted.

Dependent variable: Callback	(1)	(2)	(3)
Visible Tattoo	-0.13***†††	-0.13***††	-0.17***†††
	(0.03)	(0.04)	(0.04)
Reference signal		-0.03	
		-0.02	
Visible Tattoo * Reference signal		(0.07)	
Group membership			-0.00
Group memoersmp			(0.05)
Visible Tattoo * Group membership			0.09
	0.29***†††	0.28***†††	0.28***†††
Constant	(0.02)	(0.02)	(0.02)
Monthly and regional dummies	Y	Y	Y
Control variables	N	Y	Y
\mathbb{R}^2	0.06	0.08	0.11
Ν	782	782	782

Table A.12: Estimates of the Probit Model – Channels of statistical discrimination

Notes: Estimates of the linear probability model. Robust standard errors in parentheses. All specifications control for monthly and regional dummies and firm characteristics including age, size, number of job advertisements and whether the location of the job is in an urban area. * p<0.1, ** p<0.05, *** p<0.01. † - significance level with multiple hypothesis testing adjusted.

B.1 Robustness C	heck – Probit Model Estimates
	Table B.4: Estimates of the Probit model

B.1 Robustness	Check -	Probit Model	Estimates

	Table D	F. Estimates	s of the Fit	bolt model			
Dependent variable: Callback	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Visible Tattoo	-0.09*** (0.03)	-0.08** (0.03)	-0.09* (0.05)	-0.06 (0.05)	-0.01 (0.09)	-0.12 (0.07)	-0.03 (0.07)
Male	· · · ·		-0.08* (0.05)				
Visible Tattoo * Male			0.03 (0.07)				
High skill				0.05 (0.05)			
Visible Tattoo * High skill				-0.03 (0.07)			
West Germany					0.03 (0.20)		
Visible Tattoo * west Germany					-0.07 (0.09)		
Urban area						-0.03 (0.06)	
Visible Tattoo * Urban area						0.05 (0.08)	
Small firm							0.09 (0.09)
Visible Tattoo * Small firm							-0.13 (0.09)
Medium firm							-0.02 (0.07)
Visible Tattoo * Medium firm							-0.01 (0.08)
Constant	0.31*** (0.02)	0.30*** (0.02)	0.30*** (0.02)	0.30*** (0.02)	0.30*** (0.02)	0.30*** (0.02)	0.30*** (0.02)
Monthly and regional dummies	N	Y	Y	Y	Y	Y	Y
Control variables	N	Y	Y	Y	Y	Y	Y
R^2	0.007	0.061	0.064	0.061	0.061	0.061	0.065
Ν	800	799	799	799	799	799	799

Notes: The table shows marginal effects at means of the Probit model. Robust standard errors in parentheses. Columns 2-7 include monthly and regional dummies. In columns 2-7, I control for firm characteristics including age, size, $\forall \#$ of job advertisements, $\forall \#$ of required programs, gender of HR contact, whether the position includes "senior" in the title or requires teamwork, whether the location of the job is in an urban area and whether the firm is international. * p<0.1, ** p<0.05, *** p<0.01.

B.2 Sample Application of High Skilled Female Applicant

Name Surname

Software Engineer

Attachments: Cover Letter Resume

Street name ##| Postcode City xxxxx@xxxmail.xxxx | +49 XX XXXXXX Company name Address XXXXX City Name Surname Street name XX Postcode Coty

Date of applying

Application for the position of POSITION NAME

Dear Mrs/Mr Surname,

During this activity I built on my knowledge of XXXXX XXXXX XXXXX, which I worked XXXXX XXXXX for the *COMPANY NAME*. On this position, I brought in my experienced IT knowledge in the field of software development and participated actively and competently in a variety of IT projects. The focus was on the implementation and optimization of sophisticated IT applications for banks and financial service providers based on Java and C #.

You can expect from me an extensive knowledge of the programming language such as C # / VB.NET and XXXXX XXXXX XXXXX, which is particularly relevant for the position I am applying.

Since your position offers me a very diverse XXXXX XXXXX XXXXX, I would like to take the opportunity with you and convince you as soon as possible with my high IT expertise, taking into account my notice period of 2 weeks. My annual salary expectation for this position is *AMOUNT* Euro p.a.

I would like to start working with you as soon as possible and, of course, I am also willing to change my place of residence for this exciting job.

I look forward to supporting your team in *CITY* as soon as possible with my high level of commitment and I am looking forward to your feedback.

Kind regards

RESUME NAME SURNAME

Street name, ## · Postcode City · xxxx@xxxmail.xxxx | +49 XXXX XXXXXXX

PERSONAL DATA	Nationality: German
	Date of birth: DD MMMMM YYYY

PROFESSIONAL EXPERIENCE MM/YYYY – today **COMPANY NAME – CITY** POSITION TITLE

- Transformation of existin XXXXX XXXXX XXXXX
 - XXXXX XXXXX XXXXX MS SQL Server & Web-applications
- Development and XXXXX XXXXX XXXXX
- XXXXX XXXXX XXXXX of proposed solutions and responsibility for timely implementation

MM/YYYY – MM/YYYY COMPANY NAME – CITY POSITION TITLE

- Participation in XXXXX XXXXX XXXXX
- Realization and optimization of demanding IT applications XXXXX XXXXX XXXXX Java or C#
- XXXXX XXXXX XXXXX, desing and implementation before testing
- XXXXX XXXXX XXXXX of database solutions

APPRENTICESHIP

MM/YYYY – MM/YYYY COMPANY NAME – CITY

IT internship POSITION TITLE

- XXXXX XXXXX XXXXX applications with .NET and C#
- XXXXX XXXXX XXXXX with WPF and ASP.NET MVC
- XXXXX XXXXX XXXXX of business logic with C#, Webservices and MS-SQL

MM/YYYY – MM/YYYY COMPANY NAME – CITY

Voluntary internship during the semester break, IT

- Active participation in IT projects and XXXXX XXXXX XXXXX
- Creation, XXXXX XXXXX XXXXX in Java and JavaScript
- XXXXX XXXXX XXXXX in business processes and services as well as the implementation of new and modification of existing applications

EDUCATION

MM/YYYY – MM/YYYY UNIVERSITY NAME, CITY

	Diploma: Master of Science in IT GPA: 1.7
	MM/YYYY – MM/YYYY <i>UNIVERSITY NAME, CITY</i> Diploma: Bachelor of Science in IT GPA: 1.3
HIGH SCHOOL EDUCATION	MM/YYYY – MM/YYYY <i>HIGH SCHOOL NAME, CITY</i> Diploma: General University Entrance Qualification GPA: 1.3
IT- KNOWLEDGE	Programming languages: Java, J2EE, C++, XXXXX, Delphi, PHP, XXXXX, MS SQL XML, HTML, VB.NET Experiences in SPSS, Matlab with XXXXX, WinCC, Step7/Simatic, Very good knowledge of MSOffice, XXXXX, Unix/Linux
LANGUAGES	German (native) English (advanced)

SIGNATURE

CITY, DD.MM.YYYY

C.1 Discrete Choice Model

The mathematical equations for the discrete choice model are as follows.² Decision makers observe utility of option *i* as $Utility_i = Value_i + \varepsilon_i$, where ε_i is the error term. They then maximize their own utility by choosing the option with the highest utility (or if there is a tie, randomly choosing between items with the highest utility). If errors are Type I Extreme Value distributed³, then the probability that an option will be chosen is calculated as follows:

$$P(\text{option i chosen}) = \frac{e^{Value_i}}{\sum_{j=1}^{N} e^{Value_j}}$$

In other words, the probability that an option is chosen is its exponentiated value, divided by the sum of exponentiated values of all options. This particular form of a discrete choice model is known as a conditional logit model.

C.2 Randomization Check

The two tables below replicate Tables 3.2 and 3.3 respectively, but with the outliers dropped. A participant is defined as an outlier if they answered too slowly/fast given the number of workers they had to choose from (more than 2.5 standard deviations below or above the mean for the number of workers they had to choose from), and/or if they failed attention checks. Specifically, 4 subjects were dropped in the 2-worker condition since they spent more than 144 seconds (more than 2.5 standard deviations above the mean). For the same reason, 3 subjects were dropped in the 8-worker condition as it took them more than 127 seconds to complete the survey. No subject was dropped in 4 worker conditions or because they completed the survey too fast. As an attention check, we asked participants what type of questions potential employees answered. 22 subjects answered either "Liberal Arts" or "Other", while the correct answer was "Math"/"Science". Therefore, we dropped those 22 subjects who failed the attention check question. After dropping the outliers, 157 subjects remain and are used as the subject pool in the robustness checks.

² Value is computed as described in the main text.

³ This is the standard assumption made by the literatures in various disciplines that use discrete choice modelling, arbitrary as it may be. See the references we cited in the main text.

Table C.6 confirms that the qualitative results remain unchanged when we drop outlier observations: All explanatory variables that were statistically significant in Table 2 remain statistically significant and have the same sign. The estimates are also largely similar in magnitude, with only a few exceptions. For example, the estimate of *Female* is reduced to 0.20 after dropping outliers (it was 0.36 in Table 3.2), and the estimate of *Black* and subgroup information treatment interaction is also lower compared to Table 3.2 values (-0.58 vs -0.41) (leftmost column of Table C.6). Similarly, the qualitative results remain the same as in Table 3.3 when outliers are dropped from analysis (Table C.7).

Dependent variable: Choice	Full sample	Prior performance shown			
		none	individual	subgroup	All
Attractiveness	0.14***	0.25***	0.02	0.17***	0.25***
Attractiveness	(0.04)	(0.06)	(0.06)	(0.06)	(0.06)
Attractiveness * Individual info tractment					-0.23***
Attractiveness mulviduar into treatment					(0.09)
Attractiveness * Subgroup info treatment					-0.09
Refuences Subgroup into reduitent					(0.09)
Female prop	0.38***	0.20**	0.55***	0.40***	0.20**
	(0.06)	(0.10)	(0.10)	(0.11)	(0.10)
Female prop * Individual info treatment					0.35**
* *					(0.15)
Female prop * Subgroup info treatment					0.20 (0.15)
	0 20**	0 2 4 * *	0.01	0 11***	(0.13)
Asian prop	(0.09)	(0.16)	(0.17)	(0.15)	(0.16)
	(0.07)	(0.10)	(0.17)	(0.15)	-0.35
Asian prop * Individual info treatment					(0.24)
					0.10
Asian prop * Subgroup into treatment					(0.22)
Diask mon	-0.14*	0.12	-0.10	-0.46***	0.12
Бласк ргор	(0.08)	(0.13)	(0.14)	(0.14)	(0.13)
Black prop * Individual info treatment					-0.22
Black prop marviadar mio treatment					(0.19)
Black prop * Subgroup info treatment					-0.58***
Direct prop Suegroup mie deament					(0.19)
Latino prop	-0.07	0.18	0.01	-0.44*	0.18
1 1	(0.14)	(0.22)	(0.25)	(0.25)	(0.22)
Latino prop * Individual info treatment					-0.17
* *					(0.33)
Latino prop * Subgroup info treatment					-0.62^{*}
N	7726	2770	2296	2660	7726
Number of clusters	1871	677	572	622	1871
Pseudo R ²	0.020	0.019	0.022	0.031	0.026

Table C.6: Replication of Table 3.2 models with outliers dropped

Dependent variable: Choice	Number	- Euli		
	2	4	8	Full sample
A 44 4	0.13**	0.13***	0.17***	0.13**
Attractiveness	(0.07)	(0.06)	(0.06)	(0.07)
Attractiveness * 1 worker treatment				-0.00
Attractiveness 4 worker treatment				(0.09)
Attractiveness * 8 worker treatment				0.04
				(0.09)
Female prop	0.45***	0.25***	0.47***	0.45***
i ennare prop	(0.11)	(0.10)	(0.10)	(0.11)
Female prop * 4 worker treatment				-0.20
				(0.15)
Female prop * 8 worker treatment				0.03
	0.12	0.00**	0.04**	(0.15)
Asian prop	0.13	0.33^{**}	0.34^{**}	0.13
	(0.16)	(0.15)	(0.16)	(0.16)
Asian prop * 4 worker treatment				(0.20)
				(0.22)
Asian prop * 8 worker treatment				(0.21)
	0.03	0.16	0.22	(0.23)
Black prop	(0.14)	(0.13)	(0.14)	(0.14)
	(0.11)	(0.15)	(0.11)	-0.13
Black prop * 4 worker treatment				(0.19)
				-0.19
Black prop * 8 worker treatment				(0.20)
. .	0.00	-0.01	-0.20	0.00
Latino prop	(0.24)	(0.23)	(0.25)	(0.24)
T				-0.01
Latino prop * 4 worker treatment				(0.33)
T * 0 * 0 1				-0.20
Latino prop * 8 worker treatment				(0.35)
N	1630	2352	3744	7726
Number of clusters	815	588	468	1871
Pseudo R ²	0.025	0.014	0.026	0.022

Table C.7: Replication of Table 3.3 models with outliers dropped

Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01.

C.3 Odds Ratio

Below are tables showing the odds ratios for each table presented in the main text. That is, if a coefficient in a table was estimated as X, the coefficient in the corresponding table shows e^{X} . These tables can be used to compute effect sizes by subtracting 1 from the relevant odds ratio.

Dependent variable: Choice	Full sample	le Prior performance shown			
		none	individual	subgroup	All
Attractiveness	1.15*** (0.04)	1.28*** (0.07)	1.03 (0.06)	1.15*** (0.04)	1.27*** (0.07)
Attractiveness * Individual info treatm	ent				0.81*** (0.07)
Attractiveness * Subgroup info treatme	ent				0.92 (0.07)
Female prop	1.60*** (0.09)	1.38*** (0.13)	1.98*** (0.19)	1.52*** (0.15)	1.43*** (0.13)
Female prop * Individual info treatment	nt				1.37** (0.18)
Female prop * Subgroup info treatmen	t				1.06 (0.15)
Asian prop	1.23** (0.10)	1.33* (0.19)	0.95 (0.15)	1.43** (0.21)	1.35** (0.20)
Asian prop * Individual info treatment					0.69* (0.15)
Asian prop * Subgroup info treatment					1.07 (0.22)
Black prop	0.85** (0.06)	1.02 (0.13)	0.85 (0.11)	0.68*** (0.09)	1.03 (0.13)
Black prop * Individual info treatment					0.81 (0.14)
Black prop * Subgroup info treatment					0.66** (0.12)
Latino prop	0.91 (0.11)	1.28 (0.25)	0.82 (0.18)	0.69 (0.16)	1.23 (0.24)
Latino prop * Individual info treatmen	t				0.66 (0.20)
Latino prop * Subgroup info treatment	:				0.56* (0.17)
N	9256	3320	2846	3090	9256
Number of clusters Pseudo R ²	0.024	/96 0.025	0.032	0.031	0.030

Table C.8: Odds Ratios of the estimates from Table 3.2

Notes: Robust standard errors are in parenthesis. * p<0.1, ** p<0.05, *** p<0.01.

Dependent variable: Choice	Number	- 17 11 1		
	2	4	8	Full sample
Attractiveness	1.15*** (0.07)	1.14** (0.06)	1.16*** (0.07)	1.15** (0.07)
Attractiveness * 4 worker treatment				0.99 (0.08)
Attractiveness * 8 worker treatment				1.01 (0.08)
Female prop	1.73*** (0.18)	1.34*** (0.12)	1.86*** (0.18)	1.73*** (0.18)
Female prop * 4 worker treatment				0.77* (0.11)
Female prop * 8 worker treatment				1.07 (0.15)
Asian prop	1.10 (0.17)	1.42** (0.20)	1.16 (0.17)	1.10 (0.17)
Asian prop * 4 worker treatment				1.29 (0.27)
Asian prop * 8 worker treatment				1.06 (0.22)
Black prop	0.92 (0.12)	0.87 (0.11)	0.74** (0.09)	0.92 (0.12)
Black prop * 4 worker treatment				0.95 (0.17)
Black prop * 8 worker treatment				0.81 (0.14)
Latino prop	0.93 (0.21)	0.98 (0.19)	0.79 (0.17)	0.93 (0.21)
Latino prop * 4 worker treatment				1.06 (0.32)
Latino prop * 8 worker treatment				0.85 (0.27)
N	1912	2736	4608	9256
Number of clusters Pseudo R ²	956 0.035	684 0.017	576 0.031	2216 0.027

Table C.9: Odds Ratios of the estimates from Table 3.3

Notes: Robust standard errors in parenthesis. * p<0.1, ** p<0.05, *** p<0.01.

Dependent variable: Choice	(1)	(2)				
Attractiveness	1.08* (0.05)	1.08** (0.04)				
Female prop	1.62*** (0.09)	1.71*** (0.11)				
Female * Attractiveness	1.05 (0.06)					
Asian prop	1.22** (0.10)	1.09 (0.10)				
Black prop	0.84** (0.06)	0.93 (0.08)				
Latino prop	0.89 (0.11)	0.92 (0.13)				
Prediction		2.91*** (0.13)				
N	9256	9256				
Number of clusters	2216	2216				
<i>Pseudo</i> R^2	0.025	0.024				
Notes: Robust standard errors in parenthesis. * p<0.1, ** p<0.05, ***						

Table C.10: Odds Ratios of the estimates from Table 3.4

Notes: Robust standard errors in parenthesis. * p<0.1, ** p<0.05, *** p<0.01.

C.4 Details of Experimental Trials

The order of trials was randomized across participants. The order of candidates (i.e., workers) within each trial was also randomized. Also, whether information about past performance was displayed was randomized across participants (i.e., between subjects' experimental manipulation).

C.4.1 Two Workers Condition

Tables below show examples of experimental conditions in two, four and eight workers conditions with the past performance displayed at the individual level. In these tables, for example Male 5 means a Male who got 5 questions correct; Female 4 - a Female who got 4 questions correct. For example, in the second trial in Table C.11, participants had to choose between a male who got 2 questions correct, and a female that got 2 questions correct.

Trial #	Candidate 1	Candidate 2
1	Male 0	Female 0
2	Male 2	Female 2
3	Male 4	Female 4
4	Male 5	Female 5
5	Male 1	Female 2
6	Male 2	Female 3
7	Male 1	Female 4
8	Male 2	Female 5
9	Male 2	Female 1
10	Male 3	Female 2
11	Male 4	Female 1
12	Male 5	Female 2

Table C.11: Example of past performance at individual level - two worker condition

C.4.2 Four Workers Condition

Table C.12: Example of past performance at individual level - four worker condition

Trial #	Candidate 1	Candidate 2	Candidate 3	Candidate 4
1	Male 0	Female 0	Male 0	Female 0
2	Male 2	Female 2	Male 2	Female 2
3	Male 1	Female 4	Male 4	Female 1
4	Male 2	Female 2	Male 4	Female 4
5	Male 4	Female 4	Male 1	Female 1
6	Male 3	Female 1	Male 1	Female 3
7	Male 4	Female 5	Male 1	Female 1
8	Male 5	Female 4	Male 1	Female 1
9	Male 4	Female 1	Male 1	Female 4
10	Male 3	Female 4	Male 1	Female 1
11	Male 4	Female 3	Male 1	Female 1
12	Male 4	Female 2	Male 2	Female 4

C.4.3 Eight Workers Condition

Trial #	Candidate 1	Candidate 2	Candidate 3	Candidate 4	Candidate 5	Candidate 6	Candidate 7	Candidate 8
1	Male 3	Female 3						
2	Male 4	Female 1	Male 0	Female 4	Male 1	Female 1	Male 1	Female 0
3	Male 0	Female 4	Male 1	Female 1	Male 4	Female 2	Male 1	Female 0
4	Male 5	Female 2	Male 2	Female 2	Male 1	Female 5	Male 2	Female 1
5	Male 0	Female 0	Male 5	Female 4	Male 1	Female 2	Male 2	Female 1
6	Male 0	Female 0	Male 4	Female 5	Male 1	Female 2	Male 2	Female 1
7	Male 1	Female 3	Male 0	Female 1	Male 5	Female 1	Male 0	Female 1
8	Male 0	Female 4	Male 0	Female 1	Male 3	Female 0	Male 1	Female 0
9	Male 0	Female 0	Male 3	Female 1	Male 0	Female 3	Male 1	Female 0
10	Male 1	Female 4	Male 0	Female 0	Male 4	Female 1	Male 1	Female 0
11	Male 5	Female 0	Male 0	Female 5	Male 1	Female 1	Male 2	Female 2
12	Male 1	Female 1	Male 4	Female 0	Male 1	Female 4	Male 1	Female 1

Table C.13: Example of past performance at individual level - eight worker condition

C.4.4 Information Provision Treatment

The tables in the condition where no information about the prior performance was displayed are identical to the above tables, except that prior performance at the individual level was not displayed.

The tables in the condition where only subgroup performance by gender was displayed are identical to the above tables, except that prior performance at the individual level was not displayed, and additionally, Figure 3.2 in the main text was displayed to participants at the start of the study, and they could click on a link to see the figure again at any point in the experiment if they wanted.

C.5 Recruiter Gender

This section replicates Tables 3.2, 3.3 and 3.4 disaggregated by gender of the recruiter. 57% of our recruiter subjects were male and remaining 43% were female.

C.5.1 Female Recruiter

Dependent variable: Choice	Full sample		Prior perform	or performance shown		
-		none	individual	subgroup	All	
Attractiveness	0.07 (0.05)	0.16* (0.08)	-0.03 (0.11)	0.07 (0.09)	0.16* (0.08)	
Attractiveness * Individual info treatme	ent				-0.19 (0.13)	
Attractiveness * Subgroup info treatme	nt				-0.09 (0.12)	
Female prop	0.44*** (0.09)	0.40*** (0.13)	1.07*** (0.18)	0.04 (0.15)	0.40*** (0.13)	
Female prop * Individual info treatmen	t				0.67** (0.22)	
Female prop * Subgroup info treatment					-0.36* (0.20)	
Asian prop	0.20 (0.13)	0.28 (0.20)	-0.11 (0.28)	0.34 (0.22)	0.28 (0.20)	
Asian prop * Individual info treatment					-0.39 (0.35)	
Asian prop * Subgroup info treatment					0.06 (0.30)	
Black prop	-0.13 (0.11)	0.08 (0.18)	-0.15 (0.23)	-0.34* (0.19)	0.08 (0.18)	
Black prop * Individual info treatment					-0.23 (0.29)	
Black prop * Subgroup info treatment					-0.42 (0.26)	
Latino prop	-0.00 (0.19)	0.25 (0.30)	-0.08 (0.39)	-0.10 (0.31)	0.25 (0.30)	
Latino prop * Individual info treatment					-0.33 (0.49)	
Latino prop * Subgroup info treatment					-0.36 (0.43)	
N N	3848	1550	932	1366	3848	
Number of clusters Pseudo R ²	952 0.018	403 0.023	238 0.071	311 0.012	952 0.031	

Table C.14: Replication of Table 3.2 – Female recruiter

Dependent variable: Choice	Number	D 11 1		
-	2	4	8	Full sample
Attractiveness	0.17* (0.09)	-0.11 (0.09)	0.13 (0.09)	0.17* (0.09)
Attractiveness * 4 worker treatment				-0.28** (0.13)
Attractiveness * 8 worker treatment				-0.04 (0.13)
Female prop	0.70*** (0.15)	0.28* (0.15)	0.36** (0.14)	0.70*** (0.15)
Female prop * 4 worker treatment				-0.42* (0.22)
Female prop * 8 worker treatment				-0.34* (0.21)
Asian prop	0.08 (0.23)	0.38 (0.23)	0.15 (0.22)	0.08 (0.23)
Asian prop * 4 worker treatment				0.30 (0.32)
Asian prop * 8 worker treatment				0.07 (0.32)
Black prop	-0.16 (0.19)	0.08 (0.21)	-0.34* (0.20)	-0.16 (0.19)
Black prop * 4 worker treatment				0.24 (0.28)
Black prop * 8 worker treatment				-0.19 (0.27)
Latino prop	-0.09 (0.32)	0.32 (0.33)	-0.15 (0.34)	-0.09 (0.32)
Latino prop * 4 worker treatment				0.40 (0.46)
Latino prop * 8 worker treatment				-0.05 (0.47)
N	920	1008	1920	3848
Number of clusters Pseudo R ²	$\begin{array}{c} 460\\ 0.054\end{array}$	252 0.011	240 0.015	952 0.024

Table (C.15:	Replication	of Table 3	.3 – Female	e recruiter

Pseudo R²0.0340.0110.015Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01.

Dependent variable: Choice	(1)	(2)
Attractiveness	0.05 (0.07)	0.01 (0.06)
Female prop	0.45*** (0.09)	0.48*** (0.10)
Female * Attractiveness	0.01 (0.09)	
Asian prop	0.19 (0.13)	0.09 (0.15)
Black prop	-0.13 (0.11)	0.09 (0.13)
Latino prop	-0.00 (0.19)	0.21 (0.23)
Prediction		1.31*** (0.08)
N	3848	3848
Number of clusters	952	952
Pseudo R ²	0.018	0.298

Table C.16: Replication of Table 3.4 – Female recruiter

C.5.2 Male Recruiter

	Prior performance shown			
	none	individual	subgroup	All
0.20*** (0.04)	0.32*** (0.08)	0.08 (0.07)	0.21*** (0.08)	0.32*** (0.08)
				-0.24** (0.10)
				-0.10 (0.11)
0.52*** (0.07)	0.32** (0.13)	0.52*** (0.12)	0.73*** (0.14)	0.32** (0.13)
				0.20 (0.13)
				0.41** (0.19)
0.21* (0.11)	0.32 (0.21)	-0.07 (0.19)	0.37* (0.19)	0.32 (0.21)
				-0.39 (0.28)
				0.05 (0.28)
-0.22** (0.10)	0.00 (0.18)	-0.24 (0.15)	-0.39*** (0.18)	0.00 (0.18)
				-0.24 (0.23)
				-0.39 (0.25)
-0.19 (0.17)	0.16 (0.27)	-0.21 (0.27)	-0.63* (0.34)	0.16 (0.27)
				-0.38 (0.38)
				-0.79* (0.43)
5384	1770	1890	1724	5384
1252	393	453	406	1252
_	$\begin{array}{c} 0.20^{***} \\ (0.04) \\ 0.52^{***} \\ (0.07) \\ 0.21^{*} \\ (0.17) \\ \hline \\ -0.22^{**} \\ (0.10) \\ \hline \\ -0.19 \\ (0.17) \\ \hline \\ 5384 \\ 1252 \\ 0.033 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	none individual 0.20^{***} 0.32^{***} 0.08 (0.04) (0.08) (0.07) 0.52^{***} 0.32^{**} 0.52^{***} (0.07) 0.32^{**} 0.52^{***} (0.07) (0.13) (0.12) 0.21^{*} 0.32 -0.07 (0.11) (0.21) (0.19) -0.22^{**} 0.00 -0.24 (0.10) (0.18) (0.15) -0.19 0.16 -0.21 (0.17) 0.16 -0.21 (0.17) 0.16 -0.21 (0.27) (0.27) (0.27) 5384 1770 1890 1252 393 453 0.033 0.032 0.021	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table C.17: Replication of Table 3.2 – Male recruiter

Dependent variable: Choice	Number	of displayed ca	andidates	
	2	4	8	- Full sample
Attractiveness	0.12 (0.09)	0.26*** (0.07)	0.17** (0.07)	0.12 (0.09)
Attractiveness * 4 worker treatment				0.14 (0.11)
Attractiveness * 8 worker treatment				0.04 (0.11)
Female prop	0.45*** (0.14)	0.29** (0.12)	0.82*** (0.13)	0.45*** (0.14)
Female prop * 4 worker treatment				-0.16 (0.18)
Female prop * 8 worker treatment				0.37* (0.19)
Asian prop	0.07 (0.21)	0.34* (0.18)	0.16 (0.19)	0.07 (0.21)
Asian prop * 4 worker treatment				0.27 (0.28)
Asian prop * 8 worker treatment				0.09 (0.28)
Black prop	-0.10 (0.18)	-0.26* (0.16)	-0.26 (0.16)	-0.10 (0.18)
Black prop * 4 worker treatment				-0.16 (0.24)
Black prop * 8 worker treatment				-0.16 (0.24)
Latino prop	-0.02 (0.32)	-0.21 (0.26)	-0.28 (0.28)	-0.02 (0.32)
Latino prop * 4 worker treatment				0.19 (0.41)
Latino prop * 8 worker treatment				-0.27 (0.43)
N	968	1728	2688	5384
Number of clusters Pseudo R ²	484 0.024	432 0.031	336 0.048	1252 0.037

Table C.18: Replication of Table 3.3 – Male recruiter

 $\frac{1524}{Notes: \text{ Standard errors are clustered at the subject level. * } p<0.051 + 0.048}{0.051} = 0.048}$

Dependent variable: Choice	(1)	(2)
Attractiveness	0.10* (0.06)	0.12*** (0.05)
Female prop	0.52*** (0.07)	0.57*** (0.08)
Female * Attractiveness	0.07 (0.08)	
Asian prop	0.19* (0.11)	0.09 (0129)
Black prop	-0.22** (0.10)	-0.17 (0.11)
Latino prop	-0.20 (0.17)	-0.25 (0.18)
Prediction		0.92*** (0.05)
Ν	5384	5384
Number of clusters	1252	1252
Pseudo R ²	0.033	0.208

Table C.19: Replication of Table 3.4 – Male recruiter

C.6 Information Provided to Employer Subjects

C.6.1 No Prior Performance Info Provided

Table C.20: Replication of Table 3.3 - No prior performance info provided

Dependent variable: Choice	Number	of displayed c	andidates	
	2	4	8	Full sample
Attractiveness	0.21** (0.11)	0.14 (0.09)	0.35*** (0.10)	0.21** (0.11)
Attractiveness * 4 worker treatment				-0.07 (0.14)
Attractiveness * 8 worker treatment				0.14 (0.14)
Female prop	0.52*** (0.17)	-0.23 (0.15)	0.94*** (0.17)	0.52*** (0.17)
Female prop * 4 worker treatment				-0.75*** (0.23)
Female prop * 8 worker treatment				0.42* (0.24)
Asian prop	0.35 (0.27)	0.48** (0.24)	0.09 (0.25)	0.35 (0.27)
Asian prop * 4 worker treatment				0.13 (0.36)
Asian prop * 8 worker treatment				-0.26 (0.37)
Black prop	0.23 (0.22)	0.07 (0.21)	-0.18 (0.22)	0.23 (0.22)
Black prop * 4 worker treatment				-0.16 (0.30)
Black prop * 8 worker treatment				-0.40 (0.31)
Latino prop	0.46 (0.35)	0.06 (0.32)	0.24 (0.36)	0.46 (0.35)
Latino prop * 4 worker treatment				-0.39 (0.47)
Latino prop * 8 worker treatment				-0.21 (0.51)
N Number of clusters Pseudo R ²	680 340 0.048	1008 252 0.012	1632 204 0.078	3320 796 0.048

C.6.2 Individual Performance Info Provided

Dependent variable: Choice	Numbe	er of displayed car	ndidates	
	2	4	8	— Full sample
Attractiveness	0.03 (0.12)	0.13 (0.09)	-0.09 (0.11)	0.03 (0.12)
Attractiveness * 4 worker treatment				0.10 (0.15)
Attractiveness * 8 worker treatment				-0.12 (0.16)
Female prop	0.81*** (0.19)	-0.63*** (0.14)	0.64*** (0.19)	0.81*** (0.19)
Female prop * 4 worker treatment				-0.17 (0.24)
Female prop * 8 worker treatment				0.17 (0.27)
Asian prop	-0.11 (0.30)	0.32 (0.23)	-0.66* (0.19)	-0.11 (0.30)
Asian prop * 4 worker treatment				0.43 (0.38)
Asian prop * 8 worker treatment				0.56 (0.42)
Black prop	0.02 (0.25)	-0.17 (0.18)	-0.40* (0.24)	0.02 (0.25)
Black prop * 4 worker treatment				-0.19 (0.31)
Black prop * 8 worker treatment				-0.42 (0.35)
Latino prop	-0.25 (0.46)	-0.06 (0.33)	-0.45 (0.41)	-0.25 (0.46)
Latino prop * 4 worker treatment				0.20 (0.56)
Latino prop * 8 worker treatment				-0.20 (0.61)
N Number of clusters Pseudo R ²	542 271 0.056	1152 288 0.039	1152 144 0.028	2846 703 0.039

Table C.21: Replication of Table 3.3 - Individual performance info provided

C.6.3 Subgroup Performance Info Provided

Dependent variable: Choice	Number	r of displayed ca	ndidates	
	2	4	8	- Full sample
Attractiveness	0.18* (0.10)	0.14 (0.12)	0.16* (0.09)	0.18* (0.10)
Attractiveness * 4 worker treatment				-0.04 (0.16)
Attractiveness * 8 worker treatment				-0.02 (0.14)
Female prop	0.38** (0.17)	0.59** (0.22)	0.35** (0.15)	0.38** (0.17)
Female prop * 4 worker treatment				0.21 (0.28)
Female prop * 8 worker treatment				-0.03 (0.23)
Asian prop	0.03 (0.24)	0.26 (0.29)	0.67*** (0.22)	0.03 (0.24)
Asian prop * 4 worker treatment				0.23 (0.38)
Asian prop * 8 worker treatment				0.63* (0.32)
Black prop	-0.47** (0.21)	-0.41 (0.28)	-0.29 (0.20)	-0.47** (0.21)
Black prop * 4 worker treatment				0.07 (0.35)
Black prop * 8 worker treatment				0.18 (0.30)
Latino prop	-0.44 (0.38)	-0.05 (0.47)	-0.48 (0.37)	-0.44 (0.38)
Latino prop * 4 worker treatment				0.39 (0.61)
Latino prop * 8 worker treatment				-0.04 (0.54)
N Number of clusters Pseudo R ²	690 345 0.033	576 144 0.040	1824 228 0.033	3090 717 0.035

Table C.22: Replication of Table 3.3 - Subgroup performance info provided

C.7 Other Characteristics by Gender

This section reviews the results of "other characteristics" by gender of applicants. As the results in the two tables below indicate, the impact of *Attractiveness* relates to female applicants, with beauty irrelevant for male applicants. Similarly, *Masculine* and *Feminine* impact is also driven by female applicants. On the other hand, *Asian* and *Dominant* effects are mainly driven by male applicants. The impact of the rest of the characteristics (*Black, Latino, Angry, Happy, Trustworthy* and *Threatening*) are not driven by any particular gender.

Table C.23: Estimates of Discrete Choice Model – Other characteristics: Female applicants

Dependent variable: <i>Choice</i>	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Attractiveness	0.21*** (0.06)	0.22*** (0.06)	0.13** (0.06)	0.07 (0.07)	0.22*** (0.05)	0.17*** (0.06)	0.20*** (0.06)
Asian prop	0.21 (0.14)	0.22 (0.14)	0.17 (0.14)	0.20 (0.14)	0.18 (0.14)	0.17 (0.14)	0.18 (0.14)
Black prop	-0.18* (0.11)	-0.18 (0.11)	-0.18 (0.11)	-0.18 (0.11)	-0.16 (0.11)	-0.20* (0.11)	-0.18* (0.11)
Latino prop	-0.09 (0.19)	-0.09 (0.19)	-0.17 (0.19)	-0.11 (0.19)	-0.06 (0.19)	-0.07 (0.19)	-0.09 (0.19)
Angry	-0.04 (0.07)						
Нарру		-0.04 (0.04)					
Masculine			-0.13** (0.06)				
Feminine				0.18** (0.07)			
Dominant					-0.13*** (0.05)		
Trustworthy						-0.13 (0.09)	
Threatening							-0.14*** (0.05)
N	2896	2896	2896	2896	2896	2896	2896
Number of clusters	977	977	977	977	977	977	977
Pseudo R ²	0.018	0.018	0.021	0.022	0.019	0.022	0.018

Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01. Various characteristics from the Chicago Face Database are added to the main specification in this table.

Dependent variable: Choice	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Attractiveness	0.05 (0.08)	0.09 (0.09)	0.11 (0.08)	0.08 (0.08)	0.11 (0.08)	0.05 (0.10)	0.05 (0.08)
Asian prop	0.28* (0.16)	0.30* (0.16)	0.27* (0.16)	0.31* (0.16)	0.23 (0.17)	0.25 (0.17)	0.23 (0.17)
Black prop	-0.15 (0.15)	-0.15 (0.15)	-0.11 (0.15)	-0.14 (0.15)	-0.09 (0.15)	-0.18 (0.15)	-0.15 (0.15)
Latino prop	0.00 (0.25)	-0.00 (0.25)	0.03 (0.25)	-0.00 (0.25)	-0.10 (0.26)	0.02 (0.25)	0.01 (0.25)
Angry	-0.13 (0.09)						
Нарру		0.00 (0.09)					
Masculine			-0.10 (0.07)				
Feminine				0.09 (0.07)			
Dominant					-0.19*** (0.09)		
Trustworthy						-0.14 (0.18)	
Threatening							-0.16 (0.10)
Ν	1787	1787	1787	1787	1787	1787	1787
Number of clusters	643	643	643	643	643	643	643
Pseudo R^2	0.008	0.006	0.008	0.007	0.009	0.006	0.008

Table C.24: Estimates of Discrete Choice Model – Other characteristics: Male applicants

Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01. Various characteristics from the Chicago Face Database are added to the main specification in this table.

C.8 Other Characteristics by Race

In this section, we review the results of "other characteristics" by the race of applicants. The tables below show that the strong positive impact of *Attractiveness* is driven by *White* applicants, with beauty not a significant factor for other races. We also see that the impact of *Female* is largely homogeneous by the race of applicants: for all races, *Females* have a large positive (and in most cases significant) impact on hiring probability. As for "other characteristics", *White* applicants are the main driver of the impact of *Masculine* and *Feminine*, while *Asians* drive a negative impact for *Angry* faces. The *Dominant* impact is driven by *Asian* and *Black* applicants, with the rest of the

characteristics (*Happy*, *Trustworthy* and *Threatening*) are not driven by any particular race.

Dependent variable: Choice	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Attractiveness	-0.00 (0.14)	0.04 (0.16)	0.10 (0.14)	-0.11 (0.18)	0.08 (0.13)	0.03 (0.16)	0.05 (0.14)
Female prop	0.77*** (0.21)	0.74*** (0.21)	0.79 (0.68)	-0.45 (0.74)	0.59*** (0.21)	0.71*** (0.21)	0.70*** (0.21)
Angry	-0.27* (0.15)			. ,	. ,		
Нарру		0.08 (0.15)					
Masculine			0.04 (0.27)				
Feminine				0.42 (0.26)			
Dominant					-0.44** (0.19)		
Trustworthy						0.18 (0.28)	
Threatening							-0.17 (0.19)
Ν	622	622	622	622	622	622	622
Number of clusters	253	253	253	253	253	253	253
$Pseudo R^2$	0.061	0.054	0.053	0.059	0.065	0.054	0.055

 Table C.25: Estimates of Discrete Choice Model – Other characteristics: Asian

applicants

Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01. Various characteristics from the Chicago Face Database are added to the main specification in this table.

Dependent variable: <i>Choice</i>	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Attractiveness	0.09 (0.12)	0.13 (0.12)	0.13 (0.14)	-0.01 (0.22)	0.14 (0.10)	0.23* (0.12)	0.11 (0.12)
Female prop	0.71*** (0.16)	0.70*** (0.16)	0.43 (0.70)	-0.04 (0.81)	0.49*** (0.18)	0.70*** (0.16)	0.66*** (0.16)
Angry	-0.17 (0.14)						
Нарру		0.09 (0.13)					
Masculine			-0.10 (0.24)				
Feminine				0.27 (0.28)			
Dominant					-0.37** (0.16)	0.00	
Trustworthy						-0.20 (0.27)	0.15
Threatening							-0.17 (0.19)
Ν	829	829	829	829	829	829	829
Number of clusters	322	322	322	322	322	322	322
Pseudo R^2	0.051	0.049	0.049	0.050	0.056	0.049	0.050

Table C.26: Estimates of Discrete Choice Model – Other characteristics: Black

applicants

Pseudo R^2 0.0510.0490.0490.0500.0560.0490.050Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01. Various characteristics from the Chicago Face Database are added to the main specification in this table.

Dependent variable: <i>Choice</i>	(1)	(2)	(3)	(4)	(5)	(6)	(7)
. .	-0.16	-0.09	-0.17	-0.07	-0.15	-0.15	-0.17
Attractiveness	(0.17)	(0.19)	(0.17)	(0.18)	(0.17)	(0.19)	(0.17)
	0 49***	0 41*	0.72	1 32	0 47**	0 48**	0 47**
Female prop	(0.22)	(0.23)	(0.54)	(0.82)	(0.22)	(0.21)	(0.21)
	0.03	(0.23)	(0.51)	(0.02)	(0.22)	(0.21)	(0.21)
Angry	(0.10)						
	(0.17)	0.15					
Нарру		-0.13					
		(0.18)	0.00				
Masculine			0.08				
			(0.17)				
Feminine				-0.30			
				(0.28)			
Dominant					-0.01		
Dominant					(0.17)		
T (1						-0.01	
Trustworthy						(0.37)	
							-0.14
Threatening							(0.20)
Ν	457	457	457	457	457	457	457
Number of clusters	191	191	191	191	191	191	191
$Pseudo R^2$	0.017	0.019	0.018	0.021	0.017	0.017	0.019
	1.017	1 1	1. 1 1	* 0.1			

Table C.27: Estimates of Discrete Choice Model – Other characteristics: Latino

applicants

Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01. Various characteristics from the Chicago Face Database are added to the main specification in this table.

Dependent variable: <i>Choice</i>	(1)	(2)	(3)	(4)	5	6	7
Attractiveness	-0.24*** (0.08)	-0.23** (0.09)	-0.17** (0.08)	-0.07 (0.11)	-0.23** (0.08)	-0.28*** (0.09)	-0.22*** (0.08)
Female prop	0.42*** (0.13)	0.42*** (0.13)	-0.34 (0.37)	-0.49 (0.45)	0.42*** (0.14)	0.45*** (0.13)	0.42*** (0.13)
Angry	0.04 (0.10)						
Нарру		0.00 (0.12)					
Masculine			-0.31** (0.14)				
Feminine				0.34** (0.16)			
Dominant					-0.00 (0.11)		
Trustworthy						-0.21 (0.22)	
Threatening							-0.04 (0.12)
Ν	1133	1133	1133	1133	1133	1133	1133
Number of clusters	421	421	421	421	421	421	421
Pseudo R^2	0.033	0.033	0.040	0.039	0.033	0.034	0.033

Table C.28: Estimates of Discrete Choice Model – Other characteristics: White

applicants

Notes: Standard errors are clustered at the subject level. * p<0.1, ** p<0.05, *** p<0.01. Various characteristics from the Chicago Face Database are added to the main specification in this table.