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Introduction

1 Prologue
The theory of the real interpolation, now regarded as an independent branch of
mathematics, originated from the classical work of Riesz (1927) [R] and Marcinkiewicz
(1939) [M39]. It was only until 1960s, through the work of many famous math-
ematicians such as Aronszajn [AG], Calderón, and Gagaliardo ([GE60, GE63]),
that its importance was realized. The method of real interpolation has many
applications in the fields of harmonic analysis, approximation theory, theoretical
numerical analysis, geometry of Banach spaces, and functional analysis.
In Section 3, we have provided a brief introduction to slowly varying functions
along with a few examples, followed by the introduction of the Lorentz- Karamata
spaces. Sections 4, 5, and 6 discuss Papers 1, 2, and 3 respectively.
In section 4, we have defined a few important functionals and spaces that play
a pivotal role in this thesis. We have also mentioned two of the main results of
Paper 1.
The next section is related to the behaviour of operators on limiting interpolation
spaces. In this section, we have defined the measure of non-compactness followed
by one of the main results of Paper 2. In Paper 2, we work with a set of quasi-
Banach spaces.
In section 6, we study the dual spaces of limiting interpolation spaces. We have
mentioned an important assertion that plays a key role in Paper 3, followed by
one of the main results of the paper.
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2 Notations and Definitions
Let M(0, ∞) be the set of all Lebesgue-measurable functions on (0, ∞). The set
M+(0, ∞) is a subset of M(0, ∞) consisting of all non-negative functions. For
f ∈ M(0, ∞), we define the distribution function µf , for λ ≥ 0, as

µf (λ) = µ{x ∈ (0, ∞); |f(x)| > λ}.

The non-increasing rearrangement of f is the function f ∗ : [0, ∞) → [0, ∞],
defined as

f ∗(t) = inf{λ; µf (λ) ≤ t}.

The maximal function f ∗∗ : (0, ∞) → [0, ∞) of f ∗ is defined by

f ∗∗(t) = 1
t

∫︂ t

0
f ∗(s) ds.

To know more about these functions, one can refer the book [BS].
Next we define a compatible couple. Given two Banach (or quasi-Banach) spaces,
let’s say X0 and X1, the pair (X0, X1) is called a compatible couple if there is some
Hausdorff topological vector space in which each of these spaces is continuously
embedded. Further, the space X is said to be an intermediate space between X0
and X1, if X is continuously embedded between X0 ∩ X1 and X0 + X1, i.e.,

X0 ∩ X1 ↪→ X ↪→ X0 + X1.

An intermediate space X of a compatible couple (X0, X1) is said to be an
interpolation space for (X0, X1) if every admissible operator T (i.e., T maps X0
into X0 and X1 into X1) maps X onto itself. For example, every rearrangement-
invariant Banach function space over a resonant measure space is an interpolation
space for (L1, L∞) (cf. [BS], p. 106, Theorem 2.2). We also define the set W(0, ∞)
of weights on the interval (0, ∞) as

W(0, ∞) := {w ∈ M+(0, ∞), w < ∞ a.e. on (0, ∞)}.

For two non-negative expressions (i.e. functions or functionals) A, B the symbol
A ≲ B (or A ≳ B) means that A ≤ c B (or c A ≥ B), where c is a positive
constant independent of significant quantities involved in A and B. If A ≲ B and
A ≳ B, we write A ≈ B and say that A and B are equivalent.
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3 Slowly Varying Functions
The notion of the slowly varying function, first introduced by J. Karamata, were
inspired from the work of Issai Schur and R. Schmidt. J. Karamata (cf. [K30])
defined this function, let’s say L, given on the interval [a, ∞), where a > 0, as
slowly varying if L is a positive continuous function satisfying lim

x→∞
L(tx)
L(x) = 1 for

all t > 0. Another, but the equivalent definition, was used by Zygmund [ZYG57].
A positive continuous function L, defined on the interval [a, ∞), where a > 0, is
called a slowly varying if, for any δ > 0, L(x)xδ is a non-decreasing, and L(x)x−δ

is a non-increasing, function of x for x large enough. We refer to [EE] or [NEV02]
for another definitions.
The definition used in this thesis was introduced by Gogattishvili, Opic, and
Trebels in the paper [GOT]. They say:
A positive, finite and Lebesgue-measurable function b is slowly varying on (0, ∞),
and write b ∈ SV (0, ∞), if, for each ε > 0, tεb(t) is equivalent to a non-decreasing
function on (0, ∞) and t−εb(t) is equivalent to a non-increasing function on (0, ∞).
An example of such a function is a broken logarithmic function, denoted by ℓA(t)
for A = (α0, α∞) ∈ R2, and defined by

ℓA(t) :=

⎧⎨⎩(1 + | log t|)α0 if 0 < t ≤ 1,

(1 + | log t|)α∞ if 1 < t < ∞.
(1)

One can find much theory related to this particular example of slowly varying
function in the papers [EO, EOP, CCKU, CS]. Another example of slowly vary-
ing functions are powers of iterated logarithms (see [EGO]) and exp(| log t|α),
α ∈ (0, 1). To know about the various properties of SV functions, one can refer
to the papers [GOT, GNO] [ZYG57, Chap 5, p. 186], [BGT, MAR, NEV02].
With the help of slowly varying functions, we define the Lorentz-Karamata spaces.
Let (R, µ) be a non-atomic σ-finite measure space. For 0 < p, q ≤ ∞ and
b ∈ SV (0, ∞), the Lorentz-Karamata space Lp,q;b(R) is formed by all (equivalent
classes of) measurable functions f on R such that

∥f∥Lp,q;b := ∥t1/p−1/qb(t)f ∗(t)∥q,(0,∞) < ∞.

These spaces generalise many other important spaces. If b(t) = 1 for all t > 0,
then the Lorentz-Karamata space coincides with the Lorentz space Lp,q(R). If b is
the broken logarithm from (1), then the Lorentz-Karamata space is the generalised
Lorentz-Zygmund space Lp,q(log L)A(R) from [OP]. If b(t) = (1 + | log t|)a, t > 0,
we get Lorentz-Zygmund space Lp,q(log L)a(R) (see [BR, BS]). Moreover, if a = 0
and p = q, we obtain the Lebesgue space Lp(R).
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4 Paper 1
The introduction of K- and J-functionals by J. Peetre in [CP], [P68] played a key
role in the advancement of the real interpolation theory. Note also that similar
ideas appeared in the work of E. Gagliardo [GE59, GE60].

Let (X0, X1) be a compatible couple. The K-functional is defined, for each
f ∈ X0 + X1 and for all t > 0, as

K(f, t) := K(f, t; X0, X1) = inf{∥f0∥X0 + t∥f1∥X1 : f = f0 + f1},

where the infimum extends over all representations of f = f0 + f1 with f0 ∈ X0
and f1 ∈ X1. The J-functional is defined, for all f ∈ X0 ∩ X1 and for all t > 0,
by

J(f, t) := J(f, t; X0, X1) = max{∥f∥X0 , t∥f∥X1}.

One immediately gets interested in knowing how these functionals would look
like for some particular compatible couple. If we consider the couple (L1, L∞),
then the K(f, t; L1, L∞) = tf ∗∗(t) for all f ∈ L1 + L∞ and t > 0. This result was
then generalized by P. Kree [K67], who found K-functionals for the compatible
couples (Ls, L∞), (Ls,∞, L∞) with s > 0.
Using the K-functionals, we define K-spaces. Let (X0, X1) be a compatible couple.
Let 0 < θ < 1, 1 ≤ q ≤ ∞, and v ∈ W(0, ∞). The K- space (X0, X1)θ,q,v;K is
defined by

(X0, X1)θ,q,v;K := {f ∈ X0 + X1 : ∥f∥θ,q,v;K < ∞},

where
∥f∥θ,q,v;K := ∥t−θ−1/qv(t)K(f, t)∥q,(0,∞).

The J-space (X0, X1)θ,q,v;J is the set of all those f ∈ X0 + X1, for which there
exists a Bochner integral representation such that

f =
∫︂ ∞

0
u(s) ds

s
(convergence in X0 + X1) (2)

where u : (0, ∞) → X0 ∩ X1 is strongly measurable function and for which the
functional

∥f∥θ,q,v;J := inf ∥t−θ−1/qv(t)J(u(t), t)∥q,(0,∞)

is finite (the infimum is taken over all the representations (2) of f).
If 1 ≤ q ≤ ∞ and X0, X1 are Banach spaces, then the K- and J-spaces are also
Banach-spaces. In the classical case when v(t) = 1 for all t > 0, 0 < θ < 1,
and 1 ≤ q ≤ ∞ the equivalence theorem (see, e.g., [BS, Chapter 5, Theorem
2.8]) shows that the constructions (X0, X1)θ,q,1;K and (X0, X1)θ,q,1;J give the same
spaces. If θ ∈ (0, 1) and v ∈ SV (0, ∞), then the corresponding space (X0, X1)θ,q,v

is a particular case of an interpolation space with a function parameter and, by
[Gu78, Theorem 2.2], the equivalence theorem continues to hold. However, some
problems in mathematical analysis have motivated the investigation of the real
interpolation with the limiting values θ = 0 or θ = 1. If θ takes the limiting value
i.e., θ ∈ {0, 1}, then, in order for the K- and J-spaces to be meaningful, we need
some extra conditions on the parameters and the weight functions (cf., Paper 1,
Theorem 2.3 and Theorem 2.4).
Now a natural question arises: Given θ ∈ {0, 1}, q ∈ [1, ∞] and v ∈ SV (0, ∞),
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can we describe the space (X0, X1)θ,q,v;K as a (X0, X1)θ,q,w;J space with a conve-
nient w ∈ SV (0, ∞)?
If v is of logarithmic form, then the answer is given in [CK] for the case that a
pair (X0, X1) of Banach spaces X0 and X1 is ordered, and in [CS] and [BCFC20]
for a general pair (X0, X1) of Banach spaces X0 and X1.
The aim of this paper is to answer the given question for a general v ∈ SV (0, ∞).
We also study the reverse problem, i.e., we establish conditions on w ∈ SV (0, ∞)
that ensure that the space (X0, X1)θ,q,w;J coincides with some (X0, X1)θ,q,v;K
space. In paper 1, we have proved results for the limiting case θ = 0 only.
The results for the limiting case θ = 1 would follow, since (X0, X1)0,q,v;K =
(X1, X0)1,q,u;K , or (X0, X1)0,q,v;J = (X1, X0)1,q,u;J , where u(t) = v(1/t) for all t > 0
(which is a consequence of the fact that K(f, t; X0, X1) = tK(f, t−1; X1, X0) if
f ∈ X0 + X1 and t > 0, or J(f, t; X0, X1) = tJ(f, t−1; X1, X0) if f ∈ X0 ∩ X1 and
t > 0, and a change of variables).
One of the main results of our paper reads as follows:

Theorem 4.1. Let (X0, X1) be a compatible couple and 1 ≤ q < ∞. If b ∈
SV (0, ∞) satisfies∫︂ ∞

x
t−1b q(t) dt < ∞ for all x > 0,

∫︂ ∞

0
t−1b q(t) dt = ∞, (3)

and a ∈ SV (0, ∞) is defined by

a(x) := b−q/q′(x)
∫︂ ∞

x
t−1b q(t) dt for all x > 0, (4)

then there are constants c1, c2 > 0 such that

c1 ∥f∥0,q,b;K ≤ ∥f∥0,q,a;J ≤ c2 ∥f∥0,q,b;K for all f ∈ X0 + X1. (5)

In particular,
(X0, X1)0,q,b;K = (X0, X1)0,q,a;J . (6)

Some important applications of the equivalence theorem includes the density
and the duality theorems (cf. Paper 3). For example, Theorem 4.1 can be applied
to get the following density result:

Theorem 4.2 (Density theorem). Let (X0, X1) be a compatible couple and 1 ≤
q < ∞. If b ∈ SV (0, ∞) satisfies (3), then the space X0 ∩ X1 is dense in
(X0, X1)0,q,b;K.
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5 Paper 2
In Paper 2 we work with compatible couples of quasi-Banach spaces (unlike Paper
1 and Paper 3). Studying the behaviour of operators on function spaces can
be regarded as one of the important applications of the interpolation theory.
First of all boundedness of operators but then also other useful properties of
operators. For example, techniques used by Davis, Figiel, Johnson and Pelczyński
[DFJP] in the proof of their famous factorization theorem for weakly compact
operators motivated the investigation of the behaviour of weak compactness under
interpolation.
If T : X → Y is a bounded linear operator between quasi-Banach spaces X
and Y, then T is compact if it maps every bounded set in X into a set with
compact closure in Y. The behaviour under interpolation of compactness have
been also deeply studied (see [Cw, CKS, C]). Quantitative estimates in terms of
the measure of non-compactness have been established, too.
In this paper we determine estimates for the measure of non-compactness of
operators interpolated by the limiting perturbations of the real method involving
slowly varying functions. The (ball) measure of non-compactness can be defined
as follows:
Let A, B be a quasi-Banach spaces and T ∈ L(A, B) (i.e., T is a bounded linear
operator from A to B). The (ball) measure of non-compactness β(T ) = β(T :
A → B) is defined to be the infimum of the set of numbers σ > 0 for which there
is a finite subset {z1, . . . , zn} ⊆ B such that

T (UA) ⊆
n⋃︂

j=1
{zj + σUB}.

Here UA, UB are the closed unit balls of A and B, respectively. Note that β(T ) ≤
∥T∥A,B and that β(T ) = 0 if and only if T is compact.
Concerning the real method, the first result in this direction is due to Edmunds
and Teixeira [TE]. The case of general Banach couples has been studied by Cobos,
Fernández-Mart́ınez and Mart́ınez [CMM]. Results for the real method with a
function parameter and 0 < θ < 1 are due to Cordeiro [C99], Szwedek [S06] and
Cobos, Fernández-Cabrera and Mart́ınez [CCM07]. Besides, the case of limiting
methods involving logarithms have been considered by Cobos, Fernández-Cabrera
and Mart́ınez [CCM12, CCM16] and Besoy and Cobos [BC].

Next, we state one of the important result that plays a key role in this paper:
Let A = (A0, A1) and B = (B0, B1) be compatible couples of quasi-Banach
spaces. Let T ∈ L(A, B), i.e., T is a bounded linear operator from A0 + A1 into
B0 + B1 such that the restrictions T : Aj → Bj are bounded for j = 0, 1 and let
b ∈ SV (0, ∞). Then the restriction

T : (A0, A1)0,q;b → (B0, B1)0,q;b

is also bounded. If Mj is bigger than or equal to the norm of T : Aj → Bj,
j = 0, 1, then

∥T∥Ā0,q;b,B̄0,q;b
≤

⎧⎨⎩M0 if M1 ≤ M0,

cM0b̄
(︂

M0
M1

)︂
if M0 < M1,

(7)
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where c > 0 is a constant depending only on b. One of the main result of this
paper states:

Theorem 5.1. Let A = (A0, A1), B = (B0, B1) be quasi-Banach couples and let
T ∈ L(A, B). Let 0 < q ≤ ∞ and b ∈ SV (0, ∞) satisfying

∥t−1/qb(t)∥q,(1,∞) < ∞ (8)

and ⎧⎨⎩(
∫︁ 1

0 b(t)q dt/t)1/q = ∞ if 0 < q < ∞,

lim
t→0

b(t) = ∞ if q = ∞.
(9)

Then we have
(i) β(T : A0,q;b → B0,q;b) = 0 if β(T : A0 → B0) = 0,
(ii) β(T : A0,q;b → B0,q;b) ≤ Cβ(T : A0 → B0) if 0 ≤ β(T : A1 → B1) < β(T :

A0 → B0),

(iii) β(T : A0,q;b → B0,q;b) ≤ C max
{︃

β(T : A0 → B0),

β(T : A0 → B0)b
(︄

β(T : A0 → B0)
β(T : A1 → B1)

)︄}︃
if 0 < β(T : A0 → B0) ≤ β(T : A1 → B1).

Here C is a constant independent of T .

In section 4 of this paper, as applications we have derived estimates for
the measure of non-compactness of operators acting between certain Lorentz-
Karamata spaces. In particular, one of our results can be considered as a quanti-
tative extension of a compactness result of Edmunds and Opic [EO] for operators
acting between Lorentz-Zygmund spaces.
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6 Paper 3
One of the applications of the results from Paper 1 is the description of duals of
K- and J-spaces. In paper 3 we found duals of the limiting real interpolation K-
and J-spaces (X0, X1)0,q,v;K and (X0, X1)0,q,v;J , where (X0, X1) is a compatible
couple of Banach spaces, 1 ≤ q < ∞, v is a slowly varying function on the interval
(0, ∞), and the symbols K and J stand for the Peetre K- and J-functionals.
In the classical case, when v(t) = 1 for all t > 0, θ ∈ (0, 1), and 1 ≤ q < ∞, the
dual spaces have been described by Lions and Peetre in their fundamental paper
[LP] (see also [Li61]).
If θ ∈ (0, 1), q ∈ [1, ∞), and v ∈ SV (0, ∞), then the description of duals of the
given spaces follow from [P86, Theorem 2.4].
If θ ∈ {0, 1}, q ∈ [1, ∞), and the weight v is of the logarithmic form, then the
duals of the spaces (X0, X1)θ,q,v;K have been determined in [CS].
In Paper 3 we describe the duals of limiting interpolation spaces with θ = 0. Note
that the description of duals if θ = 1 follows again from the results with θ = 0.

We also used an important assertion mentioned in [BL, p. 53]: If X0 ∩ X1 is
dense in X0 and X1, then

K(f ′, t; X ′
0, X ′

1) = sup
f∈X0∩X1

| ⟨f ′, f⟩ |
J(f, t−1; X0, X1)

for all f ′ ∈ X ′
0 + X ′

1 and t > 0, (10)

and

J(f ′, t; X ′
0, X ′

1) = sup
f∈X0+X1

| ⟨f ′, f⟩ |
K(f, t−1; X0, X1)

for all f ′ ∈ X ′
0 ∩ X ′

1 and t > 0, (11)

where ⟨·, ·⟩ denotes the duality between X0 ∩X1 and X ′
0 +X ′

1 in (10), and between
X0 + X1 and X ′

0 ∩ X ′
1 in (11).

One of the main result of this paper is the following assertion:

Theorem 6.1 (1. duality theorem for K-spaces and θ = 0). Let (X0, X1) be a
compatible couple, 1 ≤ q < ∞, and let X0 ∩ X1 be dense in X0 and X1. If
b ∈ SV (0, ∞) satisfies∫︂ ∞

x
t−1b q(t) dt < ∞ for all x > 0,

∫︂ ∞

0
t−1b q(t) dt = ∞, (12)

and a ∈ SV (0, ∞) is defined by

a(x) := b−q/q′(x)
∫︂ ∞

x
t−1bq(t) dt for all x > 0, (13)

then
(X0, X1)′

0,q,b;K = (X ′
0, X ′

1)0,q′,b̃;J = (X ′
0, X ′

1)0,q′,ã;K , (14)

where b̃(x) := 1
b(1/x) and ã(x) := 1

a(1/x) for all x > 0.
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