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Abstract: From the onset of AI research, games have played an important part, serving

as a benchmark for progress in arti®cial intelligence. Recent approaches using search in

combination with learning from self-play have shown strong performance and the ability

to generalize across a wide range of perfect information games. In contrast, the leading

algorithms for imperfect information traditionally used a small, abstract version of a game

and solved this abstraction in one go. This thesis introduces a chain of improvements for

imperfect information algorithms that culminates in two signi®cant milestones that helped

bridge the gap between perfect and imperfect information games. The ®rst milestone is

DeepStack Ð the ®rst agent that successfully used a combination of sound search and a

learned value function in imperfect information games. This led to the ®rst AI to achieve

victory over human professional players in no-limit poker. The second milestone is Player

of Games Ð a universal algorithm that can master both perfect and imperfect information

games starting from scratch.
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1. Introduction

Games have played a key role in AI history, engaging top minds and serving as important

benchmarks. They can model a wide range of real-world situations, have well-de®ned

objectives, and the performance of agents can be directly compared with that of humans.

Also, games are fun to play and even more fun to do research on.

1.1 Types of Games

Game theory includes a diverse set of games, each with unique structures, rules, and

outcomes, ranging from simple games like tic-tac-toe to complex scenarios like economic

markets. This diversity demands different agents or algorithms for different types of games.

There are few categories that can help us determine algorithmic properties of a game.

1.1.1 Number of Players

The de®nition of optimal policy for a single player game is straightforward - it is a set of

actions that maximize the reward in each reachable state.

However, when multiple players are involved, the reward is not just based on the actions

of one player, but also on the actions of all other players in the game. Since the policies

of the opponents are unknown, determining the optimal policy becomes more complex.

The objective remains the same - to maximize the reward - but without knowledge of the

opponents’ policies, this becomes much more challenging to achieve.

Fortunately, the case of two-player games can be relatively simple. If the game is strictly

competitive (i.e., zero-sum, as the rewards of both players sum to zero) and symmetrical,

such that players get to play both positions (e.g., small and big blind in poker, or black and

white in chess), in expectation, an optimal policy cannot lose to any opponent and often can

still bene®t substantially from opponent mistakes. This allows us to disregard what the exact

policy of the opponent will be and to focus on near-optimal policies instead. In the rest of

this thesis, we will consider only two-player zero-sum games.

1.1.2 Perfect and Imperfect Information

In perfect information games, the information available to players is symmetrical - if one

player knows a piece of information, all the other players know it too. This makes reasoning

about the optimal play relatively straightforward - it is always possible to choose a single

best action to play in any state of the game. Common examples of perfect information

games are checkers, chess, and Go.

In imperfect information games, some information can be known only by a subset

of players, while being hidden from the rest. This asymmetric nature of the information

makes reasoning about the optimal play signi®cantly more complex. Players have to play

stochastically and carefully mix their actions to reduce the leakage of hidden information.

Canonical examples for such a game are poker or rock-paper-scissors.

1.2 History of AI In Games

From the 1950s to the present, there have been signi®cant developments in algorithms

resulting in multiple milestones. Until recently, this development was largely separate for
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perfect and imperfect information games. In this section, we will ®rst look at the historical

development of perfect information games, then at imperfect information games, and ®nally

at algorithms that unify approaches from both areas. Given the extent of the research in this

area, the mentioned milestones are by no means exhaustive; we will only look at a few of

the most prominent and illustrative results.

1.3 Perfect Information Games

1.3.1 Turing chess

One of the earliest examples was Turochamp , a chess program developed by Alan Turing

and David Champernowne in 1948 [Copeland, 2004]. Though it was not executed on a real

computer due to its complexity for contemporary machines, it was run manually step by

step by Turing himself, showing it could handle a full game against a human. While this

was a ®rst attempt, it already had important concepts that would repeatedly appear in later

algorithms - namely, search and heuristic evaluation function.

1.3.2 Samuel’s Checkers

The next important milestone was Samuel’s checkers program [Samuel, 1959]. It improved

both the search and the value function. For the search, it used minimax search with alpha-

beta pruning Ð an algorithm that is still used today in top chess engines [The Stock®sh

Development Team, 2021]. Even more important and interesting are the improvements in

the heuristic value function. Instead of hard coding, the function was trained using self-play

and machine learning. This was one of the ®rst big successes of machine learning. The ®nal

version of the program achieved a strong amateur level in checkers - much better than the

author himself.

1.3.3 TD-Gammon

The concept of using machine learning with self-play to learn value was then taken one

step further by TD-Gammon, a Backgammon player program developed by Gerald Tesauro

[Tesauro, 1995]. It used neural networks to approximate the value function and a TD-update

rule borrowed from reinforcement learning, combined again with search. It was one of the

®rst programs approaching the level of top human players in a large game.

1.3.4 Deep Blue

In 1997, almost 50 years after Samuel’s checkers program, Deep Blue became the ®rst

computer program to defeat a reigning world champion after winning a match against Garry

Kasparov [Campbell et al., 2002]. This came after a close defeat in the previous year. The

program used alpha-beta search in combination with a sophisticated value function. While

the value function was largely hand-crafted, it was tuned using a large database of human

games. The program was also accelerated using special chess chips.

1.3.5 AlphaGo

Even after mastering chess, the game of Go remained a long-standing challenge for computer

players. Two sources of dif®culty hindered classical search approaches. The ®rst was the

9



large branching factor of Go - this made delving deeper into the search tree exponentially

harder. The other signi®cant problem was the absence of a known strong value function.

AlphaGo solved both these problems with the help of machine learning using deep networks

[Silver et al., 2016].

The search was based on Monte Carlo Tree Search (MCTS) [Kocsis and Szepesvári,

2006], previously used successfully for Go, but the space of searched actions was greatly

reduced thanks to the use of a policy network that suggested the most promising actions to

investigate. The evaluation of positions was composed of a combination of two different

approaches. Firstly, there was a value function implemented by a convolutional neural

network that took a representation of the board and returned a corresponding value. The

other evaluation approach used a fast policy network to quickly unroll the game - simulating

the actions of both players until the eventual end of the game. This end value was then

returned as a ®nal estimate. A linear combination of both these approaches was then used to

provide a single value estimate for MCTS.

To train the agent, a large dataset of human Go games was ®rst used for supervised

training of the policy and value functions. These functions were then improved using

self-play training.

AlphaGo was able to defeat Lee Sedol, one of the world’s best Go players.

1.3.6 AlphaGo Zero

AlphaGo Zero was a successor of AlphaGo [Silver et al., 2017b]. It demonstrated that

even such a complex game as Go could be trained in a zero-knowledge fashion - that

means without human data, using only self-play, the rules of the game, and minimal prior

knowledge. Not only was it able to surpass the performance of the original AlphaGo, but it

did so using a simpler and more general algorithm.

In contrast to AlphaGo, value estimation came only from the value network, and both

policy and value estimation were trained directly from self-play.

1.3.7 AlphaZero

Most high-performance computer programs were designed to play just a single game. For

example, Deep Blue would not be able to play Go or checkers. However, the general

architecture of AlphaGo Zero allowed one to simply take the same algorithm without any

big modi®cations and train it to play two more games. The resulting agent Ð AlphaZero

Ð achieved state-of-the-art performance on chess, Go and shogi, all of this using the same

network architecture and almost identical hyper-parameters [Silver et al., 2017a].

1.3.8 Summary

Most successful algorithms for perfect information games share a few common traits. The

®rst is the use of search methods, either minimax or MCTS, which allows for real-time

reasoning about complex situations as they occur during gameplay. The second is the

utilization of a heuristic value function at the leaves of the search tree. More general

approaches that use less expert knowledge also share the use of self-play Ð a technique

from reinforcement learning where an AI agent repeatedly plays games against itself, using

the outcomes of these games as learning input. As a result, both the value and the policy can

be learned without human input.
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1.4 Imperfect Information

There is a small but crucial difference between perfect information games such as chess and

Go, and imperfect information games such as poker or rock-paper-scissors. In chess, all

necessary information is known by both players. In contrast, poker players don’t know what

cards their opponents hold. This allows chess players to simply choose the single best action

to play an optimal maximin strategy. It’s easy to see that this cannot be done in games like

rock-paper-scissors or poker. Instead, the player has to act strategically and mix actions to

carefully conceal information. Moreover, in contrast to perfect information games, where

one can just examine possible future actions, in imperfect information games, the optimal

policy also depends on the past actions of the players and their opponent. Because of this,

classical approaches solve the whole game at once using some optimization technique.

Let’s now consider some examples of these games, alongside the classical techniques

used.

1.4.1 Matrix Games

Matrix games, also known as normal form games, represent the simplest form of imperfect

information games. They depict a situation where all players make decisions simultaneously.

In the case of two-player, zero-sum games, such a game can be described by a single payoff

matrix. The possible actions for Player 1 are to choose a row from the matrix, while Player

2 must choose a column. The value of the corresponding matrix element is then equal to

the utility of Player 1 at the end of the game. Since we are considering zero-sum games,

this value also corresponds to the negative utility of Player 2. A simple example of such a

game is rock-paper-scissors. Note that actions can be stochastic Ð each player can choose a

probability distribution over their actions.

In 1928, Von Neumann developed the minimax theorem, which has become a founda-

tional principle of game theory, demonstrating what the optimal solution of matrix games

looks like [Neumann, 1928]. In 1951, Dantzig showed the equivalence of zero-sum games

and linear programs [Dantzig, 1951]. This allows for ef®cient solutions of large normal

form games, using any available LP solver.

1.4.2 Sequential Decision Making

Extensive form Games

In many real-world situations, players do not act simultaneously but instead take sequences

of actions. This is the case for the majority of board games, including Checkers, Chess, Go,

and Poker. The extensive form game formalism represents all possible action sequences

using a game tree. The leaves of the tree correspond to terminal states where the game’s

terminal utility is de®ned. Nodes in the tree represent decision points for the players and the

edges represent players’ actions. If the game involves imperfect information, as in Poker, a

player must apply the same strategy in all states that he cannot distinguish between. These

states form an information set. If there’s a stochastic element in the game, such as dealing

cards in Poker, an additional player called a ºchance playerº is introduced to model this

stochasticity. This player acts according to a known ®xed probability distribution. The

formal de®nition of the extensive form game is introduced in chapter 2.
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Shortcomings of the Formalism

One of the shortcomings of the extensive game formalism is that it is too general. It allows

the de®nition of games where players are forced to forget their past actions. If this situation

occurs, the game is called an imperfect recall game. Imperfect recall is not only unrealistic,

but it also has unfortunate algorithmic consequences. The existence of the Nash equilibrium

becomes an NP-hard problem [Hansen et al., 2007], and even the computation of the best

strategy given a ®xed opponent becomes very complicated [Piccione et al., 1996, Piccione

and Rubinstein, 1997].

Thus, in this thesis, we will only consider perfect recall games, and when mentioning an

extensive form game, we mean a two-player, zero-sum, perfect recall extensive form game.

Factored-Observation Stochastic Games

The Factored-Observation Stochastic Game formalism is similar to the Extensive Form

Game formalism, but there are a few signi®cant changes that make the de®nition of modern

algorithms easier [Kovařı́k et al., 2021]. The observability of the states is described more

clearly: there is a private component that only a player can see, and a public component that

all players can observe. There is also a notion of a player’s state even when he is not acting.

Virtually all board games can be described as Factored-Observation Stochastic Games.

Solution Techniques

Conversion to Normal Form

It is possible to convert any extensive form game to a normal form game simply by enu-

merating every possible combination of decisions for each information set and for each

player. Once this conversion is done, one can use an LP solver to ®nd the optimal policy.

Unfortunately, this conversion can be exponential in the size of the game tree, so it is usable

only for very small games.

Sequence Form

A more ef®cient solution is to use the sequence form - an LP formulation that is linear in

size to the game tree [Nisan et al., 2007]. While this approach allows for solving much

larger games, it requires memory proportional to the number of all game states. For games

like poker, where the number of possible game states is several orders of magnitude higher

than the number of information sets, the memory requirement is still too large.

Counterfactual Regret Minimization

Recently, most of the successful solving techniques for large extensive form games have been

using some version of Counterfactual Regret Minimization (CFR) [Zinkevich et al., 2007].

It is an iterative algorithm that operates directly on information sets, thus requiring several

orders of magnitude less memory. In each iteration, both players update their strategies, and

the average of these strategies provably converges to a Nash equilibrium. The algorithm can

be stopped at any time.

1.4.3 Computer Poker

Poker is the canonical game of imperfect information where players cannot see their oppo-

nent’s cards.Strong play involves bluf®ng and insights into potential opponent strategies,
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qualities that have traditionally not been considered computer-like. In their groundbreaking

work ºTheory of Games and Economic Behavior,º von Neumann and Morgenstern dedicated

an entire section (over 30 pages) to poker [Morgenstern and Von Neumann, 1953].

Over the years, there has been a substantial body of research in imperfect information

games, with poker game variants being the only domain used for evaluating the algorithms.

Kuhn Poker

The Kuhn poker is a two-player, zero-sum game used to model the decision-making process

in scenarios where complete information is not available. It was ®rst introduced by Harold

W. Kuhn in the 1950s [Kuhn, 1950]. In Kuhn poker, each player is dealt one card from

a three-card deck and must choose to either bet or pass. If both players pass, the player

with the higher card wins the pot. If one player bets and the other passes, the betting player

wins the pot. If both players bet, the player with the higher card wins the pot. The game is

very simple, yet it contains all the essential elements of a more complex games, including

incomplete information and sequential decision-making. It’s easy to verify that there isn’t a

deterministic optimal strategy. Kuhn demonstrated in his paper that there is a continuum of

optimal stochastic strategies for the ®rst player and a single optimal strategy for the second

player.

1.4.4 Annual Computer Poker Competition

The Annual Computer Poker Competition [Bard et al., 2013] was started in 2006 as an effort

to develop a system to evaluate poker agents that were being developed by the University of

Alberta and Carnegie Mellon University. It has been held annually since 2006 until 2018,

open to all competitors, in conjunction with top-tier arti®cial intelligence conferences: AAAI

and IJCAI. Multiple university teams and individuals participated each year, submitting

dozens of poker agents.

1.4.5 Game Abstraction

Classical solution approaches for imperfect information games require reasoning about the

entire game tree at once and producing a complete strategy prior to play. Since a lot of

poker variants, like Heads-Up No Limit Texas Hold’em, are too large to be solved directly,

the common technique is to solve a smaller, abstracted game that is similar to the original

game. To play the original game, one must ®rst translate actions from the original game

to the abstracted game, then choose an action based on the abstracted game’s policy, and

®nally translate this action back to the original game. This entire process is called game

abstraction.

The majority of the top Annual Computer Poker Competition entries used game abstrac-

tion along with counterfactual regret minimization.

1.4.6 Success of Classical Techniques

The combination of the counterfactual regret minimization and abstraction resulted in

important milestones for imperfect information games.
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Polaris

In 2007 and 2008, the Computer Poker Research Group at the University of Alberta orga-

nized the Man-vs-Machine Poker Championships, using the game of Heads-Up Limit Texas

Hold’em [Bowling et al., 2009]. In 2007, a poker agent named Polaris competed against

human professional players but lost narrowly. In 2008, the improved versions of Polaris

narrowly won. This was the ®rst time that a poker-playing AI defeated human professionals.

Cepheus

In January of 2015, the poker agent Cepheus reached another milestone by essentially

solving the entire game of Heads-Up Limit Texas Hold’em [Bowling et al., 2015]. While

other large games, such as checkers or Connect Four, had been solved previously, this was

the ®rst time that any large imperfect information game played professionally by humans

was solved.

1.4.7 Limitations of Classical Techniques

While abstraction techniques were very successful in Limit Heads-Up Texas Hold’em poker,

their success in No-Limit Texas Hold’em poker, a more complex but also more popular

version of poker, was modest. In 2015, the abstraction-based computer program Claudico

lost to a team of professional poker players in a No-Limit Texas Hold’em poker match by a

margin of 91 mbb/g, which is considered a ’huge margin of victory’ [Moravčı́k et al., 2017].

Furthermore, the local best-response technique showed that abstraction-based programs from

the Annual Computer Poker Competition have massive flaws, and moreover, these flaws are

relatively easy to ®nd. All evaluated abstraction-based programs lost by at least 3,000 mbb/g

against the local best response, which is four times more than if they had simply folded each

game [Lisý and Bowling, 2017b]. To illustrate the naivety of the abstraction-based approach

for use in large extensive games, one can imagine its application to chess. It would require

constructing an abstracted version of chess small enough to solve directly and then mapping

states and actions between this abstraction and the original game [Schmid, 2021].

1.4.8 Search Based Techniques

In perfect information, the combination of decision-time search with a heuristic value

function leads to strong performance. Some popular perfect information search methods,

like Monte Carlo tree search can be also used in imperfect information settings [Whitehouse,

2014]. Unfortunately they fail to produce optimal policies even in very small games.

Until recently, it had been even thought that sound search is impossible in imperfect

information games[Frank et al., 1998, Lisý et al., 2015]. Fortunately, a signi®cant milestone

in computational game theory has been reached recently Ð a sound search in imperfect

information games.

DeepStack

DeepStack was the ®rst algorithm to introduce the combination of sound decision-time

search and heuristic value function for imperfect information games [Moravčı́k et al., 2017].

This was made possible by a technique called continual-resolving. It is analogous to the

search in perfect information games, but with a few important modi®cations that make

it theoretically sound. The lookahead tree contains not only states in which the player is

acting, but also all the states that are sharing the same publicly known information. This
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allows for coordination of the policy between states that either player cannot distinguish.

In poker, this means that the search always takes into consideration all possible private

cards a player and his opponent could hold. To reason within this complex search tree, the

value function also has to be more intricate. In contrast to perfect information games, it

outputs a vector of values for each player. The root of the lookahead tree is also signi®cantly

modi®edÐit forms a gadget game. This gadget ensures that if the policy is optimal in the

lookahead tree, it is also optimal in the whole game. The search algorithm must be able

to compute a precise stochastic policy, therefore DeepStack uses a version of CFR instead

of simple minimax. DeepStack’s value function was implemented by a neural network

and trained using a large number of examples generated from random poker situations.

Continual resolving allowed DeepStack to ditch the abstraction and reason about situations

independently as they arise during play, which led to a signi®cant improvement over prior

methods. In December of 2016, DeepStack became the ®rst program to beat professional

human players in no-limit Texas hold’em poker. In contrast to previous abstraction-based

agents, DeepStack is unexploitable by the local best response.

Libratus

Subsequent to DeepStack, the computer program Libratus defeated a team of four profes-

sional heads-up poker specialists in a HUNL competition held in January 2017 [Brown and

Sandholm, 2018]. Libratus could be described as a hybrid approach. Near the end of the

game, it used a ’nested endgame solving’ technique similar to the continuous re-solving

used by DeepStack. Since it did not utilize a value function, it couldn’t execute the search in

the early stages of the game and instead used classical abstraction techniques. The use of

abstraction resulted in weaknesses in the strategy. To address this, the abstract strategy was

augmented with the help of human analysis during match breaks.

Both DeepStack and Libratus demonstrated that real-time decision-making is crucial to

achieving high-level performance.

Player of Games

Even after the introduction of decision time search, the worlds of perfect and imperfect

games remained separate. Imperfect information agents were usually designed to handle

just a single speci®c game. The Player of Games (PoG) bridges this gap [Schmid et al.,

2021]. It was the ®rst algorithm to achieve strong empirical performance in large perfect

information games Ð chess and Go, as well as in imperfect information games Ð poker

and Scotland Yard. This marked an important step toward creating general algorithms for

arbitrary environments. The algorithm combines ideas from DeepStack and AlphaZero

in a theoretically sound fashion. Continual-resolving introduced by DeepStack is used to

ensure that the policy is consistent during online play. Growing-tree counterfactual regret

minimization (GT-CFR) builds a lookahead tree non-uniformly, expanding the tree toward

the most relevant states similarly to the MCTS used by AlphaZero. Sound self-play is used

to train the policy and value network. Both networks are speci®ed in a ºzero-likeº fashion

with minimal domain-speci®c knowledge

Limitations of Sound Search

The main limitation of the sound search used by DeepStack and Player of Games is the

need to enumerate all possible information states contained in a public state, which can be

prohibitively expensive for some games.
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This could be an interesting area for future research; one possible solution is to use

sampling of the information states.

1.5 Author’s Contribution

The remaining sections of this Ph.D. thesis delve into my contributions to the ®eld of

algorithmic game theory. These contributions can be broadly categorized into two main

areas: theoretical advancements and novel algorithms.

1.5.1 Theoretical Advancements

Revisiting CFR+ and Alternating Updates

Many successful imperfect information game agents, such as Polaris, Libratus, DeepStack,

and Player of Games, leverage a variant of the Counterfactual Regret Minimization (CFR)

algorithm. A recent and widely adopted version of CFR is CFR+ due to its superior empirical

performance across various problem domains, making it one of the key factors contributing

to the success of Cepheus [Burch, 2017]. Although CFR+ was initially introduced with

a theoretical upper bound on solution error, subsequent research revealed an error in one

of the proof steps [Farina et al., 2019]. We provide updated proofs to recover the original

bound [Burch et al., 2019].

Bounding the Support Size in Extensive Form Games with Imperfect Information

Optimal play in imperfect information games often necessitates the use of stochastic policies.

This stands in contrast to perfect information games, where a simple deterministic optimal

strategy always exists. Naturally, one may wonder about the impact on the number of

optimal actions as the level of uncertainty increases.

We have established a linear relationship between the level of uncertainty and the support

size, which refers to the number of actions with non-zero probability [Schmid et al., 2014].

Sound Algorithms in Imperfect Information Games

The concept of Nash equilibrium is traditionally de®ned for a ®xed offline set of strategies.

However, extending this concept to online settings, where the entire strategy is not computed

in advance, is not a straightforward task. Naively attempting to do so may result in the

disappearance of certain guarantees for two-player zero-sum games. To tackle this issue, we

introduced the concept of a consistency hierarchy, which enables the analysis of algorithms

that perform online search, such as those employed in DeepStack or Player of Games [Šustr

et al., 2020].

1.5.2 Novel Algorithms

Variance Reduction in Monte Carlo Counterfactual Regret Minimization for Exten-

sive Form Games Using Baselines

Monte Carlo Counterfactual Regret Minimization (MCCFR) [Lanctot et al., 2009] is a

family of game-solving algorithms designed for imperfect information games. In contrast to

the vanilla CFR implementation, MCCFR doesn’t require traversing the entire game tree

in each iteration. Instead, it samples a limited number of trajectories, similar to algorithms
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used in reinforcement learning. While MCCFR still offers good probabilistic convergence

guarantees, the introduction of sampling introduces variance in value estimates, which can

considerably slow down the convergence speed [Burch, 2017].

In the realm of reinforcement learning, this variance issue has traditionally been ad-

dressed using baselines in policy-based methods. In VR-MCCFR (Variance-Reduced

MCCFR) [Schmid et al., 2019], we employed similar ideas to obtain unbiased value esti-

mates and reduce variance. In the ideal scenario of perfect estimates, the variance can be

reduced to zero. In experimental evaluations, VR-MCCFR achieved an order of magnitude

speedup and decreased empirical variance by three orders of magnitude.

Re®ning Subgames in Large Imperfect Information Games

Traditionally, state-of-the-art game algorithms have employed an abstraction approach,

where they solve a smaller, abstracted version of the game and then map the strategy from

this reduced game back to the original game at decision time. However, to enable online

improvement of strategies, particularly in situations close to the game end where the problem

is more tractable, we introduced the concept of safe re®nement of sub-games [Moravčı́k

et al., 2016]. The ideas from this work have since been utilized by Libratus, DeepStack, and

Player of Games.

AIVAT: A New Variance Reduction Technique for Agent Evaluation in Imperfect In-

formation Games

Evaluation of agents in imperfect information games is inherently noisy, especially when

compared to perfect information games. Traditionally, evaluating agents in computer poker

competitions required millions of matches to obtain statistically signi®cant results. While

this approach worked for simple, abstraction-based agents that don’t require complex compu-

tation at run-time, it becomes computationally expensive when agents employ decision-time

search. Furthermore, comparing agent performance to human players exacerbates the prob-

lem. To address these challenges, we developed AIVAT, a provably unbiased method that

signi®cantly reduces variance during evaluation [Burch et al., 2018].

Deepstack: Expert-level arti®cial intelligence in heads-up no-limit poker

DeepStack was the ®rst algorithm to use a theoretically sound combination of limited

search depth and machine learning for imperfect information games [Moravčı́k et al., 2017].

This approach reduced the gap between approaches for perfect and imperfect information.

Signi®cantly, it was also the ®rst AI system to outperform professional poker players in

No-Limit Texas Hold’em, representing a major accomplishment in the ®eld of AI.

Player of Games

The Player of Games represents the culmination of our efforts to unify the domains of perfect

and imperfect information games [Schmid et al., 2021]. It synthesizes techniques employed

in both DeepStack and AlphaZero, demonstrating strong empirical performance in both

types of games. This achievement is a signi®cant step towards developing truly general

algorithms for arbitrary environments. The approach gradually builds a search tree, similar

to Monte Carlo Tree Search, and learns from self-play with minimal prior information,

similar to AlphaZero. At the same time, it incorporates sound game theoretic reasoning,

akin to DeepStack. We have proved that the Player of Games is theoretically sound, and

have evaluated its performance in two perfect information games Ð chess and Go - and two
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imperfect information games Ð Heads-Up No-Limit Texas Hold’em Poker and Scotland

Yard.
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2. Background

De®nitions in this chapter are based on [Burch et al., 2019].

2.1 Extensive Form Games

An extensive form game [Von Neumann and Morgenstern, 1947] is a sequential decision-

making problem where players have imperfect (asymmetric) information. The formal

description of an extensive form game is given by a tuple ⟨H, P, p, σc, u, I⟩.
H is the set of all states h, which are a history of actions from the beginning of the

game ∅. Given a history h and an action a, ha is the new state reached by taking action a at

h. To denote a descendant relationship, we say h ⊑ j if j can be reached by some (possibly

empty) sequence of actions from h, and h ⊏ j ⇐⇒ h ⊑ j, h ̸= j.

We will use Z := ¶h ∈ H ♣ ∄j ∈ H s.t. h ⊏ j♢ to denote the set of terminal histories,

where the game is over. We will use Z(h) := ¶z ∈ Z ♣ h ⊑ z♢ to refer to the set of terminal

histories that can be reached from some state h.

A(h) gives the set of valid actions at h ∈ H \ Z. We assume some ®xed ordering

a1, a2, ..., a♣A♣ of the actions, so we can speak about a vector of values or probabilities across

actions. a ≺ b denotes that action a precedes b, with a ≺ b ⇐⇒ ai = a, aj = b, i < j.

P (often also denoted as N ) is the set of players, and p : H \ Z → P
⎷ ¶c♢ gives the

acting player for state h, or the special chance player c for states where a chance event

occurs according to probabilities speci®ed by σc(h) ∈ ∆♣A(h)♣. σc is often also denoted as

fc. The scope of this thesis is restricted to two-player games, so we will say P = ¶1, 2♢.
The only exception is Chapter 4 that presents results that hold for an arbitrary number of

players P = ¶1, . . . , n♢.
The utility of a terminal history z for Player p is given by up(z). We will restrict

ourselves to zero-sum games, where
∑︁

p∈P up(z) = 0.

A player’s imperfect information about the game state is represented by a partition I of

states H based on player knowledge. For all information sets I ∈ I and all states h, j ∈ I
are indistinguishable to Player p(h) = p(j), with the same legal actions A(h) = A(j).
Given this equality, we can reasonably talk about p(I) := p(h) and A(I) := A(h) for any

h ∈ I . For any h, we will use I(h) := I ∈ I such that h ∈ I to refer to the information set

containing h. It is convenient to group information sets by the acting player, so we will use

Ip := ¶I ∈ I ♣ p(I) = p♢ to refer to Player p’s information sets.

We will also restrict ourselves to extensive form games where players have perfect

recall. Informally, Player p has perfect recall if they do not forget anything they once knew:

for all states h, j in some information set, both h and j passed through the same sequence of

Player p information sets from the beginning of the game ∅, and made the same Player p
actions.

2.2 Strategies and Equilibrium

A strategy σp : Ip → ∆♣A(I)♣ for Player p gives a probability distribution σp(I) over legal

actions for Player p information sets. For convenience, let σp(h) := σp(I(h)). A strategy

pro®le σ := (σ1, σ2) is a tuple of strategies for both players. Given a pro®le σ, we will use

σ−p to refer to the strategy of p’s opponent.
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Because states are sequences of actions, we frequently need to refer to various products

of strategy action probabilities. Given a strategy pro®le σ,

πσ(h) :=
∏︂

ia⊑h

σp(i)(h)a (2.1)

refers to a reach probabilityÐthe probability of a game reaching state h when players

sample actions according to σ and chance events occur according to σc.

πσ(h ♣ j) :=
∏︂

ia⊑h

j⊑i

σp(i)(h)a (2.2)

refers to the probability of a game reaching h given that j was reached.

πσ
p (h) :=

∏︂

ia⊑h

p(h)=p

σp(i)(h)a

πσ
−p(h) :=

∏︂

ia⊑h

p(h) ̸=p

σp(i)(h)a (2.3)

refer to probabilities of Player p or all actors but p making the actions to reach h, given that

p’s opponent and chance made the actions in h. Note that there is a slight difference in the

meaning of the label −p here, with πσ
−p considering actions by both Player p’s opponent and

chance, whereas σ−p refers to the strategy of p’s opponent.

πσ
p (h ♣ j) :=

∏︂

ia⊑h
j⊑i

p(h)=p

σp(i)(h)a (2.4)

refers to the probability of Player p making the actions to reach h, given j was reached and

p’s opponent and chance make the actions to reach h. There are a few useful relationships:

πσ(h) = πσ
p (h)πσ

−p(h)

∀j ⊑ h, πσ(h) = πσ(j)πσ(h ♣ j) (2.5)

The expected utility of a strategy pro®le σ is

uσ
p :=

∑︂

z∈Z

πσ(z)up(z) (2.6)

The counterfactual value of a history or information set are de®ned as

vσ
p (h) :=

∑︂

z∈Z(h)

πσ
−p(z)πσ

p (z ♣ h)up(z)

vσ(I) :=
∑︂

h∈I

(vσ
p(h)(ha1), ..., vσ

p(h)(ha♣A(I)♣)) (2.7)

For later convenience, we will assume that for each player there exists an information set I∅p
at the beginning of the game, containing a single state with a single action, leading to the

rest of the game. This lets us say that uσ
p = vσ(I∅p )a0 .

Given a sequence σ0
p, ..., σt

p of strategies, we denote the average strategy from a to b as

σ̄[a,b]
p :=

b∑︂

i=a

σi
p

b− a + 1
(2.8)
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Given a sequence σ0, ..., σt−1 of strategy pro®les, we denote the average Player p regret as

rt
p := max

σ∗
p

t−1∑︂

i=0

(u
(σ∗

p ,σi
−p)

p − uσi

p )/t

= max
σ∗

p

u
(σ∗

p ,σ̄
[0,t−1]
−p )

p −
t−1∑︂

i=0

uσi

p /t (2.9)

The exploitability of a strategy pro®le σ is a measurement of how much expected utility

each player could gain by switching their strategy:

expl(σ) := max
σ∗

1

u
(σ∗

1 ,σ2)
1 − uσ

1 + max
σ∗

2

u
(σ1,σ∗

2)
2 − uσ

2

= max
σ∗

1

u
(σ∗

1 ,σ2)
1 + max

σ∗
2

u
(σ1,σ∗

2)
2 by zero-sum (2.10)

Achieving zero exploitability ± a Nash equilibrium [Nash, 1950] ± is possible. In two player,

zero-sum games, ®nding a strategy with low exploitability is a reasonable goal for good

play.
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3. Revisiting CFR+ and Alternating

Updates

This chapter is based on [Burch et al., 2019].

3.1 Introduction

CFR+ was introduced [Tammelin, 2014] as an algorithm for approximately solving imperfect

information games, and was subsequently used to essentially solve the game of heads-up

limit Texas Hold’em poker [Bowling et al., 2015]. Another paper associated with the poker

result gives a correctness proof for CFR+, showing that approximation error approaches

zero [Tammelin et al., 2015].

CFR+ is a variant of the CFR algorithm [Zinkevich et al., 2007], with much better

empirical performance than CFR. One of the CFR+ changes is switching from simultaneous

updates to alternately updating a single player at a time. A crucial step in proving the cor-

rectness of both CFR and CFR+ is linking regret, a hindsight measurement of performance,

to exploitability, a measurement of the solution quality.

Later work pointed out a problem with the CFR+ proof [Farina et al., 2019], noting

that the CFR+ proof makes reference to a folk theorem making the necessary link between

regret and exploitability, but fails to satisfy the theorem’s requirements due to the use of

alternating updates in CFR+. Farina[Farina et al., 2019] give an example of a sequence of

updates which lead to zero regret for both players, but high exploitability.

We state a version of the folk theorem that links alternating update regret and exploitabil-

ity, with an additional term in the exploitability bound relating to strategy improvement. By

proving that CFR and CFR+ generate improved strategies, we can give a new correctness

proof for CFR+, recovering the original bound on approximation error.

3.2 De®nitions

We need a fairly large collection of de®nitions to get to the correctness proof. CFR and

CFR+ make use of the regret-matching algorithm [Hart and Mas-Colell, 2000] and regret-

matching+ algorithm [Tammelin, 2014], respectively, and we need to show some properties

of these component algorithms. Both CFR and CFR+ operate on extensive form games

de®ned in chapter 2.

3.2.1 Regret-Matching and Regret-Matching+

Regret-matching is an algorithm for solving the online regret minimisation problem. External

regret is a hindsight measurement of how well a policy did, compared to always selecting

some action. Given a set of possible actions A, a sequence of value functions vt ∈ R♣A♣, and

sequence of policies σt ∈ ∆♣A♣, the regret for an action is

rt+1 := rt + vt − σt · vt

r0 := 0 (3.1)

An online regret minimisation algorithm speci®es a policy σt based on past value functions

and policies, such that maxa rt
a/t→ 0 as t→∞.
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Let x+ := max (x, 0), x+ :=
[︂
x+

1 , ..., x+
n

]︂
, and

σrm(x) :=

∮︂
x+/(1 · x+) if ∃a s.t. xa > 0
1/♣A♣ otherwise

(3.2)

Then for any t ≥ 0, regret-matching uses a policy

σt := σrm(rt) (3.3)

Regret-matching+ is a variant of regret-matching that stores a set of non-negative regret-

like values

qt+1 := (qt + vt − σt · vt)+

q0 := 0 (3.4)

and uses the same regret-matching mapping from stored values to policy

σt := σrm(qt) (3.5)

3.2.2 CFR and CFR+

CFR and its variant CFR+ are both algorithms for ®nding an extensive form game strategy

with low exploitability. They are all iterative self-play algorithms that track the average of a

current strategy that is based on many loosely coupled regret minimisation problems.

CFR and CFR+ track regret-matching values rt(I) or regret-matching+ values qt(I)
respectively, for all I ∈ I. At time t, CFR and CFR+ use strategy pro®le σt(I) :=
σrm(rt(I)) and σt(I) := σrm(qt(I)), respectively. When doing alternating updates, with

the ®rst update done by Player 1, the values used for updating regrets are

vt(I) :=

∮︂
vσt

(I) if p(I) = 1

v(σt+1
1 ,σt

2)(I) if p(I) = 2
(3.6)

and the output of CFR is the pro®le of average strategies (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 ), while the output of

CFR+ is the pro®le of weighted average strategies ( 2
t2+t

∑︁t
i=1 iσi

1,
2

t2+t

∑︁t−1
i=0(i + 1)σi

2).

3.3 Theoretical Results

The CFR+ proof of correctness [Tammelin et al., 2015] references a folk theorem that links

regret and exploitability. [Farina et al., 2019] show that the folk theorem only applies to

simultaneous updates, not alternating updates, giving an example of a sequence of alternating

updates with no regret but constant exploitability [Farina et al., 2019]. Their observation is

reproduced below using the de®nitions from this work.

Observation 3.1. Let P = ¶X, Y ♢, A = ¶0, 1♢, and Z = ¶00, 01, 10, 11♢. A game

consists of each player selecting one action. Let uX(11) = 1, and uX(z) = 0 for all z ̸= 11.

Consider the sequence of strategies σt
X = σt

Y = t mod 2, with Player X regrets computed

using v(σt
X

,σt
Y

) and Player Y regrets computed using v(σt+1
X

,σt
Y

). Then at any time 2T the

accumulated regret for both players is 0 and the average strategy is σ̄
[1,2T ]
X = σ̄

[0,2T−1]
Y = 0.5,

with exploitability expl(σ̄
[1,2T ]
X , σ̄

[0,2T−1]
Y ) = 0.5. So both players have 0 regret, but the

exploitability does not approach 0.
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As a ®rst step in correcting the CFR+ proof, we introduce an analogue of the folk

theorem, linking alternating update regret and exploitability.

Theorem 3.2. Let σt be the strategy pro®le at some time t, and rt
p be the regrets computed

using alternating updates so that Player 1 regrets are updated using v(σt
1,σt

2) and Player

2 regrets are updated using v(σt+1
1 ,σt

2). If the regrets are bounded by rt
p ≤ ϵp, then the

exploitability of (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 ) is bounded by ϵ1 + ϵ2 − 1

t

∑︁t−1
i=0(u

(σi+1
1 ,σi

2)
1 − u

(σi
1,σi

2)
1 ).

Proof. Consider the sum of regrets for both players, rt
1 + rt

2

= max
σ∗

1

u
(σ∗

1 ,σ̄
[0,t−1]
2 )

1 − 1

t

t−1∑︂

i=0

u
(σi

1,σi
2)

1 + max
σ∗

2

u
(σ̄

[1,t]
1 ,σ∗

2)
2 − 1

t

t−1∑︂

i=0

u
(σi+1

1 ,σi
2)

2 by Eq. 2.9

= expl (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 )− 1

t

t−1∑︂

i=0

(u
(σi

1,σi
2)

1 + u
(σi+1

1 ,σi
2)

2 ) by Eq. 2.10

Given rt
p ≤ ϵp for all players p, we have expl (σ̄

[1,t]
1 , σ̄

[0,t−1]
2 )

≤ϵ1 + ϵ2 +
1

t

t−1∑︂

i=0

(u
(σi

1,σi
2)

1 + u
(σi+1

1 ,σi
2)

2 )

=ϵ1 + ϵ2 +
1

t

t−1∑︂

i=0

(u
(σi

1,σi
2)

1 − u
(σi+1

1 ,σi
2)

1 ) by zero-sum

=ϵ1 + ϵ2 −
1

t

t−1∑︂

i=0

(u
(σi+1

1 ,σi
2)

1 − u
(σi

1,σi
2)

1 )

The gap between regret and exploitability in Observation 3.1 is now apparent as a trailing

sum in Theorem 3.2. Each term in the sum measures the improvement in expected utility

for Player 1 from time t to time t + 1. Motivated by this sum, we show that regret-matching,

CFR, and their + variants generate new policies which are not worse than the current policy.

Using these constraints, we construct an updated correctness proof for CFR+.

3.3.1 Regret-Matching and Regret-Matching+ Properties

We will show that when using regret-matching or regret-matching+, the expected utility

σt+1 · vt is never less than σt · vt. To do this, we will need to show these algorithms have a

couple of other properties. We start by showing that once there is at least one positive stored

regret or regret-like value, there will always be a positive stored value.

Lemma 3.3. For any t, let st be the stored value rt used by regret-matching or qt used by

regret-matching+, and σt be the associated policy. Then for all t where ∃a ∈ A such that

st
a > 0, there ∃b ∈ A such that st+1

b > 0.

Proof. Consider any time t where ∃a ∈ A such that st
a > 0. The policy at time t is then

σt = st,+/(1 · st,+) by Eqs. 3.2, 3.3, 3.5 (3.7)

Consider the stored value st+1
a . With regret-matching st+1

a = rt+1
a = rt

a + vt
a − σt · vt by

Equation 3.1, and with regret-matching+ st+1
a = qt+1

a = (qt
a +vt

a−σt ·vt)+ by Equation 3.4.

For both algorithms, the value of st+1
a depends on vt

a − σt · vt. There are two cases:
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1. vt
a − σt · vt ≥ 0

st+1
a > 0 by Lemma assumption, Eq. 3.1, 3.4

2. vt
a − σt · vt < 0

σt
a(vt

a − σt · vt) < 0 by st
a > 0, Eq. 3.7

0 < σt · vt − σt · vt − σt
a(vt

a − σt · vt)

0 <
∑︂

b∈A

(︂
σt

b(v
t
b − σt · vt)

)︂
− σt

a(vt
a − σt · vt) by

∑︁
b∈A σt

b = 1

0 <
∑︂

b̸=a

(︂
σt

b(v
t
b − σt · vt)

)︂

∃b s.t. σt
b > 0, vt

b − σt · vt > 0 by σt
a′ ≥ 0 for all a′ ∈ A

st
b > 0, vt

b − σt · vt > 0 by Eq. 3.7

st+1
b > 0 by Eqs. 3.1, 3.4

In both cases, ∃b such that st+1
b > 0.

There is a corollary to Lemma 3.3, that regret-matching and regret-matching+ never

switch back to playing the default uniform random policy once they switch away from it.

Corollary 3.4. When using regret-matching or regret-matching+, if there exists a time t
such that σt = st,+/(1 · st,+) where st are the stored regrets rt or regret-like values qt at

time t, then σt′

= st′,+/(1 · st′,+) for all t′ ≥ t.

Proof. Assume that at some time t, σt = st,+/(1 · st,+). We can show by induction that

σt′

= st′,+/(1 · st′,+) for all t′ ≥ t. The base case t′ = t of the hypothesis holds by

assumption. Now, assume that σt′

= st′,+/(1 · st′,+) for some time t′ ≥ t. We have

∃a ∈ A s.t. st′

a > 0 by Eq. 3.2

∃b ∈ A s.t. st′+1
b > 0 by Lemma 3.3

σt′+1 = st′+1,+/(1 · st′+1,+) by Eq. 3.2

Therefore, by induction the hypothesis holds for all t′ ≥ t.

Lemma 3.5. For any t, let st be the stored value rt used by regret-matching or qt used by

regret-matching+, and σt be the associated policy. Then for all t and a ∈ A,

(st+1,+
a − st,+

a )(vt
a − σt · vt) ≥ 0.

Proof. Consider whether vt
a − σt · vt is positive. There are two cases.

1. vt
a − σt · vt ≤ 0

For regret-matching, where st
a = rt

a, we have

rt+1
a = rt

a + vt
a − σt · vt by Eq. 3.1

rt+1
a ≤ rt

a

rt+1,+
a ≤ rt,+

a

For regret-matching+, where st
a = qt

a, we have

qt+1,+
a = (qt

a + vt
a − σt · vt)+ by Eq. 3.4

qt+1,+
a = (qt,+

a + vt
a − σt · vt)+ by Eq. 3.4

qt+1,+
a ≤ qt,+

a by monotonicity of (·)+

25



Therefore for both algorithms we have

st+1,+
a − st,+

a ≤ 0

(st+1,+
a − st,+

a )(vt
a − σt · vt) ≥ 0

2. vt
a − σt · vt > 0

st+1
a = st

a + vt
a − σt · vt by Eqs. 3.1, 3.4

st+1
a > st

a

st+1,+
a ≥ st,+

a

(st+1,+
a − st,+

a )(vt
a − σt · vt) ≥ 0

In both cases, we have (st+1,+
a − st,+

a )(vt
a − σt · vt) ≥ 0.

Theorem 3.6. If σ0, σ1, ... is the sequence of regret-matching or regret-matching+ policies

generated from a sequence of value functions v0, v1, ..., then for all t, σt+1 · vt ≥ σt · vt.

Proof. Let st be the stored value rt used by regret-matching or qt used by regret-matching+.

Consider whether all components of st or st+1 are negative. By Lemma 3.3 we know that it

can not be the case that ∃a st
a > 0 and ∀b st+1

b ≤ 0. This leaves three cases.

1. ∀a st
a ≤ 0 and ∀a st+1

a ≤ 0

σt = σt+1 = 1/♣A♣ by Eqs. 3.2, 3.3, 3.5

σt+1 · vt = σt · vt

2. ∀a st
a ≤ 0 and ∃a st+1

a > 0

σt+1 = st+1,+/(1 · st+1,+) by Eqs. 3.2, 3.3, 3.5

∀b, σt+1
b > 0 =⇒ st+1

b > 0

∀b, σt+1
b > 0 =⇒ vt

b > σt · vt by Eqs. 3.1, 3.4
∑︂

b∈A

σt+1
b vt

b >
∑︂

b

σt+1
b σt · vt by σt+1

b ≥ 0

σt+1 · vt > σt · vt by
∑︁

b∈A σt+1
b = 1

3. ∃a st
a > 0 and ∃b st+1

b > 0
Let

σ(w) := w+/(w+ · 1) (3.8)

Then we have

σt = σ(st), σt+1 = σ(st+1) by Eqs. 3.2, 3.3, 3.5 (3.9)

Consider any ordering a1, a2, ..., a♣A♣ of actions such that b ≺ a. Let

wi
j :=

∮︂
st+1

j j ≤ i
st

j j > i
(3.10)

Note that ∀i < a, wi
a = st

a > 0, and ∀i ≥ a, wi
b = st+1

b > 0, so that σ(wi) is always

well-de®ned. We can show by induction that for all i ≥ 0

σ(wi) · vt ≥ σt · vt (3.11)
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For the base case of i = 0, we have

w0 = st by Eq. 3.10

σ(w0) · vt = σ(st) · vt

σ(w0) · vt = σt · vt by Eq. 3.9

Now assume that Equation 3.11 holds for some i ≥ 0. By construction,

∀j ̸= i + 1, wi+1
j = wi

j by Eq. 3.10 (3.12)

For notational convenience, let ∆w := wi+1,+
i+1 − wi,+

i+1 = st+1,+
i+1 − st,+

i+1.

σ(wi+1) · vt − σt · vt

=
wi+1,+ · vt

wi+1,+ · 1 − σt · vt by Eq. 3.8

=
∆wvt

i+1 + wi,+ · vt

∆w + wi,+ · 1 − σt · vt by Eqs. 3.10, 3.12

=
∆wvt

i+1 + (wi,+ · 1)σ(wi) · vt

∆w + wi,+ · 1 − σt · vt by Eq. 3.8

≥ ∆wvt
i+1 + (wi,+ · 1)σt · vt

∆w + wi,+ · 1 − σt · vt by ind. hypothesis

=
∆wvt

i+1 + (wi,+ · 1)σt · vt

∆w + wi,+ · 1 − ∆wσt · vt + (wi,+ · 1)σt · vt

∆w + wi,+ · 1

=
∆w(vt

i+1 − σt · vt)

∆w + wi,+ · 1
≥ 0 by Lemma 3.5

σ(wi+1) ·vt ≥ σt ·vt, so by induction Equation 3.11 holds for all i ≥ 0. In particular,

we can now say

σ(w♣A♣) · vt ≥ σt · vt

σ(st+1) · vt ≥ σt · vt by Eq. 3.10

σt+1 · vt ≥ σt · vt by Eq. 3.9

In all cases, we have σt+1 · vt ≥ σt · vt.

3.3.2 CFR and CFR+ Properties

We now show that CFR and CFR+ have properties that are similar to Theorem 3.6. After a

player updates their strategy, that player’s counterfactual value does not decrease for any

action at any of their information sets. Similarly, the expected value of the player’s new

strategy does not decrease. Finally, using the property of non-decreasing value, we give an

updated proof of an exploitability bound for CFR+.

Lemma 3.7. Let p be the player that is about to be updated in CFR or CFR+ at some time

t. Let σt
p be the current strategy for p, and σo be the opponent strategy σt

−p or σt+1
−p used by

Equation 3.6. Then ∀I ∈ Ip and ∀a ∈ A(I), v(σt+1
p ,σo)(I)a ≥ v(σt

p,σo)(I)a.
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Proof. We will use some additional terminology. Let the terminal states reached from I by

action a ∈ A(I) be

Z(I, a) :=
⋃︂

h∈I

Z(ha) (3.13)

and for any descendant state of I , we will call the ancestor h in I

hI(j) := h ∈ I s.t. h ⊑ j (3.14)

Let D(I, a) be the set of information sets which are descendants of I given action a ∈ A(I),

and let C(I, a) be the set of immediate children:

D(I, a) := ¶J ∈ Ip(I) ♣ ∃h ∈ I, j ∈ J s.t. ha ⊑ j♢
C(I, a) := D(I, a) \

⋃︂

J∈C(I,a),b∈A(J)

D(J, b) (3.15)

Note that by perfect recall, for J ∈ C(I, a), ∃h ∈ I such that ha ⊑ j for all j ∈ J : if one

state in J is reached from I by action a, all states in J are reached from I by action a. Let

the distance of an information set from the end of the game be

d(I) :=

∮︂
maxa∈A(I),J∈C(I,a)(d(J) + 1) if ∃a s.t. C(I, a) ̸= ∅
0 if ∀a, C(I, a) = ∅ (3.16)

Using this new terminology, we can re-write

vσ
p (I)a =

∑︂

h∈I

∑︂

z∈Z(h)

πσ
−p(z)πσ

p (z ♣ ha)up(z) by Eq. 2.7

=
∑︂

z∈Z(I,a)

πσ
−p(z)πσ

p (z ♣ hI(z)a)up(z) by Eqs. 3.13, 3.14 (3.17)

We will now show that ∀i ≥ 0

∀I ∈ Ip s.t. d(I) ≤ i, ∀a ∈ A(I), v(σt+1,σo)(I)a ≥ v(σt
p,σo)(I)a (3.18)

For the base case i = 0, consider any I ∈ Ip such that d(I) = 0. Given these assumptions,

∀a ∈ A(I), C(I, a) = ∅ by Eqs. 3.15, 3.16

∀σ, ∀a ∈ A(I), ∀z ∈ Z(I, a), πσ
p (z ♣ hI(z)a) = 1 by Eq. 2.4 (3.19)

Now consider v
(σt+1

p ,σo)
p (I)a

=
∑︂

z∈Z(I,a)

π
(σt+1

p ,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z) by Eq. 3.17

=
∑︂

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z) by Eq. 2.3

=
∑︂

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z ♣ hI(z)a)up(z) by Eq. 3.19

= v(σt
p,σo)(I)a by Eq. 3.17

Assume the inductive hypothesis, Equation 3.18, holds for some i ≥ 0. If ∀I ∈ Ip, d(I) ≤ i,
Equation 3.18 trivially holds for i+1. Otherwise, consider any I ∈ Ip such that d(I) = i+1.
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Let T (I, a) be the (possibly empty) set of terminal histories in Z(I, a) that do not pass

through another information set in Ip(I).

T (I, a) := Z(I, a) \
⋃︂

J∈C(I,a),b∈A(J)

Z(J, b) (3.20)

Because we require players to have perfect recall, terminal histories which pass through

different child information sets are disjoint sets.

Z(J, b) ∩ Z(J ′, b′) = ∅ ⇐⇒ J = J ′, b = b′

Therefore, we can construct a partition P of Z(I, a) from these disjoint sets and the terminal

histories T (I, a) which do not pass through any child information set.

P :=¶Z(J, b) ♣ J ∈ C(I, a), b ∈ A(J)♢ ∪ ¶T (I, a)♢ (3.21)

Note that by the induction assumption, because d(I) = i + 1

∀J ∈ C(I, a), d(J) ≤ i by Eqs. 3.15, 3.16

∀J ∈ C(I, a), b ∈ A(J), v(σt+1,σo)(J)b ≥ v(σt
p,σo)(J)b (3.22)

Given this, we have v(σt+1
p ,σo)(I)a

=
∑︂

z∈Z(I,a)

π
(σt+1

p ,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z) by Eq. 3.17

=
∑︂

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z) by Eq. 2.3

=
∑︂

J∈C(I,a)

∑︂

b∈A(J)

∑︂

z∈Z(J,b)

π
(σt

p,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z)

+
∑︂

z∈T (I,a)

π
(σt

p,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z) by Eq. 3.21

=
∑︂

J∈C(I,a)

∑︂

b∈A(J)

∑︂

z∈Z(J,b)

π
(σt

p,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z)

+
∑︂

z∈T (I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z ♣ hI(z)a)up(z) by Eqs. 2.4, 3.20 (3.23)

Looking at the terms inside
∑︁

J we have

∑︂

b∈A(J)

∑︂

z∈Z(J,b)

π
(σt

p,σo)
−p (z)π(σt+1

p ,σo)
p (z ♣ hI(z)a)up(z)

=
∑︂

b∈A(J)

∑︂

z∈Z(J,b)

π
(σt

p,σo)
−p (z)σt+1

p (J)bπ
(σt+1

p ,σo)
p (z ♣ hJ(z)b)up(z) by Eqs. 2.4, 3.15

=
∑︂

b∈A(J)

σt+1
p (J)bv

(σt+1
p ,σo)(J)b by Eq. 3.17

= σt+1
p (J) · v(σt+1

p ,σo)(J)

≥ σt+1
p (J) · v(σt

p,σo)(J) by Eq. 3.22

≥ σt
p(J) · v(σt

p,σo)(J) by Theorem 3.6

=
∑︂

b∈A(J)

∑︂

z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z ♣ hI(z)a)up(z)
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Substituting the terms back into Equation 3.23, we have v(σt+1
p ,σo)(I)a

≥
∑︂

J∈C(I,a)

∑︂

b∈A(J)

∑︂

z∈Z(J,b)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z ♣ hI(z)a)up(z)

+
∑︂

z∈T (I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z ♣ hI(z)a)up(z)

=
∑︂

z∈Z(I,a)

π
(σt

p,σo)
−p (z)π

(σt
p,σo)

p (z ♣ hI(z)a)up(z) by Eq. 3.21

=v(σt
p,σo)(I)a by Eq. 3.17

Therefore Equation 3.18 holds for i + 1, and by induction holds for all i. In particular, it

holds for i = maxI∈Ip
d(I), and applies to all I ∈ Ip.

Theorem 3.8. Let p be the player that is about to be updated in CFR or CFR+ at some time

t. Let σt
p be the current strategy for p, and σo be the opponent strategy σt

−p or σt+1
−p used by

the values de®ned in Equation 3.6. Then u
(σt+1

p ,σo)
p ≥ u

(σt
p,σo)

p .

Proof. This immediately follows from Lemma 3.7 and uσ
p = vσ(I∅p )a0 .

As a corollary of Theorems 3.2 and 3.8, when using alternating updates with either CFR

or CFR+, the average strategy (σ̄
[1,t]
1 , σ̄

[0,t−1]
2 ) has O(

√
t) exploitability. From the original

papers, both algorithms have an O(
√

t) regret bound, and the trailing sum in Theorem 3.2 is

non-negative by Theorem 3.8. However, this only applies to a uniform average, so we need

yet another theorem to bound the exploitability of the CFR+ weighted average.

Theorem 3.9. Let σt be the CFR+ strategy pro®le at some time t, using alternating updates

so that Player 1 regret-like values are updated using v(σt
1,σt

2) and Player 2 regrets are updated

using v(σt+1
1 ,σt

2). Let l = maxy,z∈Z(u1(y)− u2(z)) be the bound on terminal utilities. Then

the exploitability of the weighted average strategy ( 2
t2+t

∑︁t
i=1 iσi

1,
2

t2+t

∑︁t−1
i=0(i + 1)σi

2) is

bounded by 2♣I♣l
√︂

k/t, where k := maxI ♣A(I)♣.

Proof. Consider two expanded sequences S1 and S2 of strategy pro®les where the original

strategy pro®le σt occurs t + 1 times

S1 :=
(σ0

1, σ0
2),

⏞ ⏟⏟ ⏞
(σ1

1, σ1
2), (σ1

1, σ1
2),

⏞ ⏟⏟ ⏞
..., (σt−1

1 , σt−1
2 ), ..., (σt−1

1 , σt−1
2 )

⏞ ⏟⏟ ⏞
1 copy 2 copies t copies

S2 :=
(σ1

1, σ0
2),

⏞ ⏟⏟ ⏞
(σ2

1, σ1
2), (σ2

1, σ1
2),

⏞ ⏟⏟ ⏞
..., (σt

1, σt−1
2 ), ..., (σt

1, σt−1
2 )

⏞ ⏟⏟ ⏞
1 copy 2 copies t copies

Then with respect to Sp, the total Player p regret for any information set I and action a is

r
t2+t

2
p (I)a ≤ tl

√
kt by CFR+ Lemma 4 [Tammelin et al., 2015]

and the average Player p regret is

r
t2+t

2
p ≤ 2

t2 + t

∑︂

I∈Ip

max
a

r
t2+t

2 (I)a by CFR Theorem 3 [Zinkevich et al., 2007]

≤ 2

t2 + t

∑︂

I∈Ip

tl
√

kt

≤ 2♣Ip♣l
√︂

k/t (3.24)
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Because we have two sequences of pro®les, we can not directly use Theorem 3.2, but we

can follow the same form as that proof to get

r
t2+t

2
1 + r

t2+t
2

2

= max
σ∗

1

t2+t
2
−1∑︂

i=0

(︄
u

(σ∗
1 ,S1

i,2)

1 − u
S1

i
1

)︄
2

t2 + t
+ max

σ∗
2

t2+t
2
−1∑︂

i=0

(︄
u

(σ∗
2 ,S2

i,1)

2 − u
S2

i
2

)︄
2

t2 + t

= max
σ∗

1

u

(︂
σ∗

1 ,S̄1
[0,

t2+t
2 −1]

2

)︂

1 + max
σ∗

2

u

(︂
S̄2

[0,
t2+t

2 −1]

1 ,σ∗
2

)︂

2 −
t2+t

2∑︂

i=0

(︄
u

S1
i

1 + u
S2

i
2

)︄
2

tt + t

= max
σ∗

1

u

(︂
σ∗

1 , 2
t2+t

∑︁t−1

i=0
(i+1)σi

2

)︂

1 + max
σ∗

2

u

(︂
2

t2+t

∑︁t

i=1
iσi

1,σ∗
2

)︂

2 −
t−1∑︂

i=0

2(i + 1)

tt + t

(︄
u

(σi
1,σi

2)
1 − u

(σi+1
1 ,σi

2)
1

)︄

= expl

(︄
2

t2 + t

t∑︂

i=1

iσi
1,

2

t2 + t

t−1∑︂

i=0

(i + 1)σi
2

)︄
−

t−1∑︂

i=0

2(i + 1)

tt + t

(︄
u

(σi
1,σi

2)
1 − u

(σi+1
1 ,σi

2)
1

)︄

Given Equation 3.24, we have expl
(︂

2
t2+t

∑︁t
i=1 iσi

1,
2

t2+t

∑︁t−1
i=0(i + 1)σi

2

)︂

≤ 2♣I♣1♣l
√︂

k/t + 2♣I♣2♣l
√︂

k/t +
2

tt + t

t−1∑︂

i=0

(︄
i + 1

)︄(︄
u

(σi
1,σi

2)
1 − u

(σi+1
1 ,σi

2)
1

)︄

≤ 2♣I♣1♣l
√︂

k/t + 2♣I♣2♣l
√︂

k/t by Theorem 3.8

= 2♣I♣l
√︂

k/t

3.4 Conclusions

The original CFR+ convergence proof makes unsupported use of the folk theorem linking

regret to exploitability. We re-make the link between regret and exploitability for alternat-

ing updates, and provide a corrected CFR+ convergence proof that recovers the original

exploitability bound. The proof uses a speci®c property of CFR and CFR+, where for any

single player update, both algorithms are guaranteed to never generate a new strategy which

is worse than the current strategy.

With a corrected proof, we once again have a theoretical guarantee of correctness to fall

back on, and can safely use CFR+ with alternating updates, in search of its strong empirical

performance without worrying that it might be worse than CFR.

The alternating update analogue of the folk theorem also provides some theoretical

motivation for the empirically observed bene®t of using alternating updates. Exploitability

is now bounded by the regret minus the average improvement in expected values. While

we proved that the improvement is guaranteed to be non-negative for CFR and CFR+, we

would generally expect non-zero improvement on average, with a corresponding reduction

in the bound on exploitability.

3.5 Author’s contributions

While Neil Burch served as the primary author, I collaborated with him and Martin Schmid

in developing the proof for the main theorem.
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4. Bounding the Support Size in

Extensive Form Games with Imperfect

Information

This chapter is based on [Schmid et al., 2014]. In contrast to the other chapters from the

thesis, results from this chapter hold also for general-sum and multi-player games.

4.1 Introduction

Arguably the most important solution concept in non-cooperative games is the notion of

Nash equilibrium, where no player improves by deviating from this strategy pro®le. Support

is de®ned as the set of actions played with non-zero probability and there are many crucial

implications related to it.

Once the support is known, it is easy to compute the equilibrium in polynomial time

even for general-sum games. Performance of some algorithms, namely the double-oracle

algorithm for extensive form games, is tightly bound to the size of the support [Bošanský

et al., 2013]. Other work shows that minimizing the support in abstracted games can lead to

better strategies in the original game [Ganzfried et al., 2012]. Finally, it is advantageous to

prefer strategies having a small support. Such strategies are both easier to store and play.

Extensive form games model a wide class of games with a varying levels of uncertainty.

In the case of perfect information, there is an optimal strategy using only one action in any

information set. In contrast, in some extensive games with imperfect information, the player

can be forced to use all the possible actions to play optimally.

In this chapter, we focus on the relation between the level of uncertainty and the support

size. We present an upper bound for the support size based on the uncertainty level.

Some games, such as Bayesian extensive games with observable actions or card games

(such as no-limit Texas hold’em poker) have most of the information about the current state

observable by all players, and therefore a low level of uncertainty. In these games, our bound

guarantees the existence of Nash equilibrium having the support size considerably smaller

than the number of all possible actions.

Instead of explicitly de®ning a level of uncertainty, we use the concept of the public

tree. This concept provides a nice interpretation of uncertainty and public actions. Using the

public tree, we present a new technique called the equilibrium preserving transformation,

which transforms some equilibrium strategy pro®le into another. We provide an upper bound

on the number of public actions used in the transformed Nash equilibrium.

Our approach also applies to games with non-observable actions, where it simply limits

the number of public actions.

Applying our result to speci®c games, we present a new bound for the support size in

these games.

For example, in no-limit Texas hold’em poker, there can be any ®nite number of actions

available in some information sets. Our result implies the existence of an optimal strategy

for which the number of actions used in every information set depends only on the number

of players and the number of card combinations players can be dealt.

In Bayesian extensive games with observable actions, the bound equals to the number of

different player types the chance can reveal.
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Moreover, our proof is constructive. Given an extensive form game and an optimal

strategy, the equilibrium preserving transformation ®nds another optimal strategy satisfying

our bound in polynomial time.

4.2 Public Game Tree

The essential concept in our approach is that of a public game tree. Informally, a public

game tree is a game view for an observer that knows no private information.

Figure 4.1: Extensive form game tree for one-card poker.

Public game tree, as introduced in [Johanson et al., 2011] is a partition of the histories.

P is a public partition and ρ ∈ P is a public state if

• No two histories in the same information set are in different public states.

• Two histories in different public states have no descendants in the same public state.

• No public state contains both terminal and non-terminal histories (public states are

either terminal or non-terminal).

The public tree offers a nice interpretation of imperfect information. For games with

perfect information, the public tree is the same as the game tree. As the uncertainty grows,

more and more information sets collapse into a single public state.

For the public game tree, we also de®ne:

• The set of acting players in ρ ∈ P as p(ρ).

• If the same player acts in all histories h ∈ ρ, then we de®ne the acting player in ρ as:

p(ρ) = p(h) for some h ∈ ρ.

• C(ρ) to be set of child public states of ρ.

• For any public state ρ and any player i, we de®ne prev(ρ, i) to be the set of player’s

last information sets he could play in before reaching ρ. I ∈ prev(ρ, i) if:

p(I) = i, there are histories h ∈ ρ, h′ /∈ ρ, h′ ∈ I: h′ ⊑ h and there is no

history h′′ /∈ ρ : h′′ ⊑ h, h′ ⊑ h′′, p(h′′) = i

• For any public state ρ, we de®ne last(ρ) to be the last information sets the player

p(ρ) plays before leaving ρ. I ∈ last(ρ) if I ∈ ρ, there is some history (h, a) /∈ ρ and

h ∈ ρ.
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Figure 4.2: The public tree of a game in Figure (4.1). The structure of public states

C, E, H, I is:

prev(E, 1) = ¶I1, I2♢, last(E) = ¶I4, I6♢
C(E) = ¶H, I♢, A(I1 ↝ E) = [4]→ [10]
Ap(C ↝ E) = ¶(I1, [4] → [10]), (I1, [5] → [14]), (I2, [6] → [11]), (I2, [7] →
[15])♢

• We call a non-terminal public state ρ simple if an observer knows which player acts

and there are no information sets that contain actions going to a different public state

as well as the actions that aren’t. Formally, p(h) = p(h′) ̸= c for all h, h′ ∈ ρ and no

history has pre®x in two different information states from last(ρ).

• We de®ne A(I ↝ ρ) to be actions that a player can take in I ∈ I in order to get to

the public state ρ:

A(I ↝ ρ) = ¶a ∈ A(I)♣h ∈ I, (h, a) ⊑ h′, h′ ∈ ρ♢

• Intuitively, actions are the edges connecting any two nodes (histories) in Figure (4.1).

We want public actions to be the edges connecting any two public states as seen on

Figure (4.2). We de®ne the public action going from public state ρ to ρ′ as a set of

pairs (information set, action):

Ap(ρ ↝ ρ′) = ¶(I, a) ♣ I ∈ last(ρ), a ∈ A(I ↝ ρ′)♢

See the box under the Figure (4.2) for examples of these de®nitions.

4.3 Strategies and Equilibrium

4.3.1 Support

The support of a strategy pro®le σ, supportσ(I), is the set of actions that the player players

with non-zero probability in I .

We say that the public action Ap(ρ ↝ ρ′) is supported given the strategy pro®le σ, if

for any (I, a) ∈ Ap(ρ ↝ ρ′), a ∈ supportσ(I). Let supportσ
p(ρ) be the set of all supported

public actions in ρ:

supportσ
p(ρ) = ¶Ap(ρ ↝ ρ′)♣Ap(ρ ↝ ρ′) is supported in σ♢
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4.3.2 Overall Regret

Overall regret Rσ
i is the difference between the player’s utility given the strategy pro®le σ

and the single strategy that would maximize his value:

Rσ
i = max

σ∗
i
∈Σi

ui(σ
∗
i , σ−i)− ui(σ)

Clearly, Ri is always non-negative and there is a simple relation between the overall

regret and Nash equilibrium:

Rσ
i = 0 ∀i ∈ N ⇐⇒ σ is Nash equilibrium

4.3.3 Counterfactual Values, Regret and Equilibrium

To show that some strategy pro®le σ is an equilibrium, we could show that the regret Rσ
i = 0

for all players.

There is a way to bound this full regret Rσ
i using partial regrets in all information sets.

These partial regrets are called counterfactual regrets.

The Counterfactual utility ui(σ, I) is the expected utility given that information set

I is reached and all players play using strategy σ, except that player i plays to reach I
[Zinkevich et al., 2007]:

ui(σ, I) =

∑︁
h∈I,h′∈Z πσ

−i(h)πσ(h′♣h)ui(h
′)

πσ
−i(I)

The Counterfactual regret [Zinkevich et al., 2007] is then de®ned as

Rσ
i (I) = max

a∈A(I)
πσ
−i(I)(ui(σ♣I→a, I)− ui(σ, I))

Theorem 4.1. [Zinkevich et al., 2007]

Rσ
i ≤

∑︂

I∈Ii

Rσ
i (I)

Note that in contrast to [Zinkevich et al., 2007], we are not interested in the relation

between average regret and ϵ-equilibrium (which holds only for two players, zero-sum

games). We are interested only in bounding the regret of strategy pro®le σ using the

Theorem (4.1). Directly from that theorem, we get the following corollary

Corollary 4.2. If Rσ
i (I) = 0 for all I ∈ Ii, i ∈ N , the strategy pro®le σ forms a Nash

equilibrium.

The converse implication is not true in general. There can be an equilibrium with

Rσ
i (I) > 0 for some I ∈ Ii. But there is always some Nash equilibrium for which

Rσ
i (I) = 0 for all I ∈ Ii. (It is easy too see that if Rσ

i (I) > 0 for some I , the player i plays

not to reach I , πσ
i (I) = 0. One can make the counterfactual regret zero in these sets using

backward induction.)

Finally, there is a simple way to show that the strategy pro®le σ′ is a Nash equilibrium

by comparing it with another Nash equilibrium.

Lemma 4.3. Given a Nash equilibrium σ, for which
∑︁

I∈Ii
Rσ

i (I) = 0, if we ®nd a strategy

pro®le σ′ such that for all i ∈ N , I ∈ Ii and A ∈ A(I)

ui(σ♣I→a, I) = ui(σ
′♣I→a, I)
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and in every information set, the strategy σ′i assigns a non zero probability only to actions

used with non-zero probability in σ, the strategy pro®le σ′ forms a Nash equilibrium for

which
∑︁

I∈Ii
Rσ′

i (I) = 0.

The proof follows directly from the de®nition of counterfactual regret.

4.4 Main Theorem

Our main result shows the existence of optimal strategy with a limited number of supported

public actions in simple public states.

Theorem 4.4. In any ®nite extensive form game, there is an equilibrium strategy pro-

®le σ such that for every simple public state ρ, the number of supported public actions,

♣supportσ
p(ρ)♣, is bounded by

♣last(ρ)♣+
∑︂

j∈N\¶p(ρ)♢

∑︂

I∈prev(ρ,j)

♣A(I ↝ ρ)♣

This bound has a nice interpretation for some speci®c games. For example in games

with publicly observable actions, the bound depends only on the uncertainty presented by

the chance.

We limit our technique only to simple public states, but it is possible to generalize the

result. If there are some information sets containing actions going to a different public state

as well as the actions that don’t, it’s easy to come up with an equivalent game where all

actions are public. We are not aware of any well-known extensive form game having public

states that are not simple.

4.5 Overview of our Approach

The core of our approach is a new technique we call equilibrium preserving transforma-

tion. We start with a Nash equilibrium for which Rσ
i (I) = 0 for all i ∈ N and I ∈ Ii,

which is guaranteed to exist. An equilibrium preserving transformation carefully shifts

probabilities locally, using the public tree. Given a public state ρ, it shifts some probabilities

in information sets in ρ. The point is to keep the strategy optimal for all players, while

minimizing the number of supported public actions.

Applying this transformation to a single public state ρ, we get a new equilibrium where

the number of supported public actions satis®es our bound. Thus, we bound the public

actions used in that information set, but we don’t touch the strategies in any other public

state.

Applying this transformation again to the new equilibrium, but in a different public state,

we bound the number of supported public actions in that public state. Since we don’t touch

actions in any other public state, we do not violate the bound from the previous step.

Repeating this for all public states, we ®nally get a Nash equilibrium where the bound

holds for all simple public states.

4.5.1 Optimality of the New Strategy

To show that the new strategy is an equilibrium, we leverage the concept of counterfactual

values. These values are de®ned at the level of information sets and we can show that the
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strategy is optimal by showing that these values remain unchanged thanks to Lemma (4.3).

Since we change the strategy only in the information sets that are highly structured (they are

in the same public state), it’s relatively easy to compute the changed counterfactual values

in all information sets.

4.6 Equilibrium Preserving Transformations

Given a Nash equilibrium σ where Rσ
i (I) = 0 for all I ∈ I, the core idea of our approach is

to transform this strategy pro®le to another strategy pro®le σ′. We refer to this transformation

as equilibrium preserving transformation or EPT and we denote the transformed strategy as

σ′ = EPT (σ).
EPT shifts probabilities for a player locally, using the public tree. Given some public

state ρ, we carefully change probabilities of outgoing actions. Since there’s only one player

acting in ρ, we change strategy only for this player p(ρ) = i.
We change the strategy only in last(ρ), which are the last information sets in which the

player acts just before reaching some ρ′ ∈ C(ρ).
We will continuously add some restrictions to our transformation and show what these

restrictions imply for the new strategy pro®le σ′. Finally, we will see that if we transform

the strategy such that all these restrictions hold, σ′ is a Nash equilibrium.

The transformed strategy pro®le σ′ differs from σ only in information sets I ∈ last(ρ)

Figure 4.3: In the new strategy σ′, we bound the number of supported public actions (bold

arrows).

The trick is to shift the probabilities in these information sets to use as few actions as pos-

sible, while keeping the strategy pro®le equilibrium. To do that, we keep the counterfactual

values unchanged for all information sets and all actions.

To insure this, we impose two restrictions. The ®rst one ®xes counterfactual values for

all information sets after ρ. The second one (together with the ®rst one) ®xes counterfactual

values for all other information sets.

4.6.1 Information Sets after ρ

To ®x the counterfactual values for the information sets after ρ, we do not shift the strategies

arbitrarily. We only multiply some action probabilities with carefully chosen constants.

The last information sets the player p(ρ) acts in before leaving ρ are last(ρ).
We consider the probability of all actions a ∈ A(I ↝ ρ′) for any I ∈ last(ρ). Our

transformation is only allowed to multiply these action probabilities using some constant,

which we call κ(ρ ↝ ρ′).
The probabilities of all outgoing actions from ρ to some child public state ρ′ are all

multiplied with some constant κ(ρ ↝ ρ′). For all I ∈ last(ρ) and a ∈ A(I ↝ ρ′)

πσ′

(I, a) = κ(ρ ↝ ρ′)πσ(I, a) (4.1)
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We show later how to ensure that once we multiply the probabilities with corresponding

κ, we get a valid strategy in every information set.

Figure 4.4: Transformation multiplies probabilities of all

actions that go from ρ to some ρ′ with corresponding κ.

In this case κ(ρ ↝ ρ′1) = 1
5

and κ(ρ ↝ ρ′2) = 9
5
.

The reason why the transformation is not allowed to change the probabilities arbitrarily,

but can only multiply action probabilities of actions going from ρ to ρ′ with some corre-

sponding κ(ρ ↝ ρ′), is to keep the counterfactual values in all information sets after ρ
unchanged.

Lemma 4.5. If σ′ = EPT (σ, ρ), counterfactual values in all information sets after ρ remain

unchanged.

uj(σ
′♣I→a, I) = uj(σ♣I→a, I) for all j ∈ N and for all I after ρ.

The proof (in Appendix A) follows directly form the de®nition of uj(σ
′♣I→a, I).

Multiplying the strategies with corresponding κ is the only transformation we do. Clearly,

if κ(ρ ↝ ρ′) = 0 for some ρ′, Ap(ρ ↝ ρ′) is not supported in the new strategy pro®le. In

other words, we are interested in ®nding as many zero variables κ as possible.

4.6.2 Other Information Sets

The previous constraints keep the counterfactual values unchanged for all players and all

information sets after ρ.

To ensure that the counterfactual values don’t change in other information sets, we shift

strategies such that the countefactual values are unchanged in every I ∈ prev(ρ, j) for all

players j ̸= p(ρ).
For all players j ̸= p(ρ), for all I ∈ prev(ρ, j) and for all a ∈ A(I ↝ ρ)

uj(σ
′♣I→a, I) = uj(σ♣I→a, I) (4.2)

The point is that if we keep counterfactual values unchanged only in these information

sets, counterfactual values in all other information sets remain the same.

Lemma 4.6. If σ′ = EPT (σ, ρ), counterfactual values in all information sets remain

unchanged.

For the proof see Appendix A.
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4.7 System of Linear Equations to Find κ

Now we will show how to ®nd κ(ρ ↝ ρ′) such that all restrictions are satis®ed. We

are interested only in ρ′ such that Ap(ρ ↝ ρ′) is supported, all other actions have zero

probability anyway. We ®nd all κ using a systems of linear equations (linearity is the crucial

part), with variables κ ≥ 0.

First set of equations makes sure that σ′ is a valid strategy. Adding another set of

equations ensures that the counterfactual values remain unchanged.

Finally, using the simple property of linear equations, there must be a basic solution

having limited number of non-zero variables κ.

4.7.1 First System of Equations

First, we write a simple equation for every I ∈ last(ρ) to make sure that we get a valid

strategy after multiplying with corresponding κ

∑︂

ρ′∈C(ρ)

∑︂

a∈A(I↝ρ′)

πσ(I, a)κ(ρ ↝ ρ′) = 1 (4.3)

Since we write down this equation for every I ∈ last(ρ), there are ♣last(ρ)♣ of equations

in total. Note that these equations are indeed linear in the variable κ.

4.7.2 Second System of Equations

The second system of linear equations makes sure that the restriction (3) is satis®ed.

First, we compute the counterfactual values for the strategy pro®le σ′ using the variables

κ and the strategy pro®le σ.

Lemma 4.7. There are some constants c0(I, a) . . . c♣C(ρ)♣(I, a) such that the counterfactual

utility for all players j ̸= p(ρ), for all I ∈ prev(ρ, j) and for all a ∈ A(I ↝ ρ)

uj(σ
′♣I→a, I) = c0(I, a) +

∑︂

i=¶1...♣C(ρ)♣♢

κ(ρ ↝ ρ′i) ci(I, a)

For the proof see Appendix A.

In the proof of the above lemma, we leverage the fact that the values are unchanged in

all information sets ρ′ ∈ ρ. The history either passes through some ρ′ and its probability

gets multiplied with corresponding κ, or it doesn’t and the probability remains unchanged.

Using this result, we can simply add linear equations for all players j ̸= p(ρ), for all

I ∈ prev(ρ, j) and for all a ∈ A(I ↝ ρ)

∑︂

i=¶1...♣C(ρ)♣♢

κ(ρ ↝ ρ′i) ci(I, a) = uj(σ♣I→a, I)− c0 (4.4)

Again, these equations are linear in the variable κ.

4.7.3 Final System of Equations

Putting together all equations from (4.3) and (4.4), we are interested in κ ≥ 0 such that

∀I ∈ last(ρ)
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∑︂

ρ′∈C(ρ)

∑︂

a∈A(I→ρ′)

πσ(I, a)κ(ρ→ ρ′) = 1

∀j ∈ N \ ¶p(ρ)♢, I ∈ prev(ρ, j), a ∈ A(I)
∑︂

i=¶1...♣C(ρ)♣♢

κ(ρ ↝ ρ′i) ci(I, a) = uj(σ♣I→a, I)− c0 (4.5)

Combining previous results, we get a straightforward corollary

Corollary 4.8. Any solution to (4.5) de®nes a valid equilibrium preserving transformation.

This polyhedron is clearly bounded and non-empty (κ = 1 is a solution to (4.5)). Finally,

we use the well known property of basic solutions. There must be some basic solution where

the number of non-zero variables κ is no larger than the number of equations [Bertsimas

and Tsitsiklis, 1997]. Since number of equations is

♣last(ρ)♣+
∑︂

j∈N\¶p(ρ)♢

∑︂

I∈prev(ρ,j)

♣A(I ↝ ρ)♣ (4.6)

our main theorem is proven. Moreover, we can ®nd this solution ef®ciently in polynomial

time using linear programming [Ye, 1991].

4.8 Example Games

In this section, we mention few existing games and show how our bound applies to these.

As far as we know, these are the ®rst bounds on the support size presented for these games.

Games where the players see the actions of all other players are called games with

publicly observable actions. The only uncertainty comes from the actions of chance. In

these games, all public states are simple and all information sets in any public state ρ form

last(ρ).
Because all actions are public, ♣A(I ↝ ρ)♣ = 1 for all ρ and for all I ∈ prev(ρ, j).

Consequently, the second term of (4.6) becomes
∑︁

j∈N\¶p(ρ)♢ ♣prev(ρ, j)♣.
Finally, the bound for supported public actions implies an upper bound on the size of

supportσ(I) for every I ∈ ρ.

♣supportσ(I)♣ ≤ ♣supportσ
p(ρ)♣

4.8.1 Bayesian Extensive Games with Observable Actions

Bayesian extensive games with observable actions [Osborne and Rubinstein, 1994, p. 231]

are games with publicly observable actions, where the only uncertainty comes from the

initial move of chance. Chance selects a player type θ ∈ Θi for each player i where Θi is

the set of possible types of player i. Because chance acts at the very beginning of the game,

the number of information sets grouped in every public state ρ, equals ♣Θp(ρ)♣ = ♣last(ρ)♣.
Similarly, ♣prev(ρ, j)♣ = ♣Θj♣.

Corollary 4.9. For any Bayesian extensive games with observable actions, there’s a Nash

equilibrium where the size of supportσ(I) for any I ∈ I is bounded by

∑︂

i∈N

♣Θi♣ (4.7)
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4.8.2 No-limit Texas Hold’em Poker

In Texas hold’em poker, players are dealt two private cards out of a deck of 52 cards. Four

betting rounds follow and dealer deals some more publicly visible cards between these

betting rounds.

In no-limit version, players can bet any amount of money up to their stack in every

betting round. For example in the 2014 AAAI Computer Poker Competition, there are up to

20000 actions available in information sets [Bard et al., 2013].

All betting is publicly visible, and the only uncertainty is about the private cards the

players were dealt. ♣prev(ρ, j)♣ = last(ρ) =
(︂

52
2

)︂
for any player j and any public state ρ.

Corollary 4.10. In Texas hold’em poker, there’s a Nash equilibrium where the size of

supportσ(I) for any I ∈ I is bounded by

(︄
52

2

)︄
♣N ♣ (4.8)

Using some isomorphisms, we can further decrease the bound in some situations. In

Texas hold’em poker, there are 169 non-isomorphic [Waugh, 2013] pairs in the ®rst round

(called preflop).

Corollary 4.11. In Texas hold’em poker, there’s a Nash equilibrium where the size of

supportσ(I) for all information set in the ®rst round (preflop) is bounded by

169 ♣N ♣ (4.9)

4.9 Conclusion

We present a new technique called equilibrium preserving transformation, that implies the

existence of Nash equilibrium having a bounded support. Our bound shows a relation

between the level of uncertainty and the support size.

For Bayesian extensive games with observable actions and card games, our bound

implies relatively small support. Finally, given any Nash equilibrium, EPT ®nds another

equilibrium having the bounded support in polynomial time.

4.10 Author’s contributions

Original observation that there is a linear formulation that ensure upper limit of suppoprt

size came form Martin Schmid. I have helped ®nd precise formulation for the constraints on

the value of opponent information sets, and to formalize the proofs.
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5. Sound Algorithms in Imperfect

Information Games

This chapter is based on [Šustr et al., 2020]

5.1 Introduction

From the very dawn of computer game research, search was a fundamental component

of many algorithms. Turing’s chess algorithm from 1950 was able to think two moves

ahead [Copeland, 2004], and Shannon’s work on chess from 1950 includes an extensive

section on how an evaluation function can be used within search [Shannon, 1950]. Samuel’s

checkers algorithm from 1959 already combines search and learning of a value function,

approximated through a self-play method and bootstrapping [Samuel, 1959]. The combi-

nation of search and learning has been a crucial component in the remarkable milestones

where computers outperformed their human counterparts in challenging games: DeepBlue in

Chess [Campbell et al., 2002], AlphaGo in Go [Silver et al., 2016], DeepStack and Libratus

in Poker [Moravčı́k et al., 2017, Brown and Sandholm, 2018].

Online methods for approximating Nash equilibria in sequential imperfect information

games appeared only in the last few years [Lisý et al., 2015, Brown and Sandholm, 2017,

Moravčı́k et al., 2017, Brown and Sandholm, 2018, 2019, Brown et al., 2020]. We thus

investigate what it takes for an online algorithm to be sound in imperfect information settings.

While it has been known that search with imperfect information is more challenging than

with perfect information [Frank and Basin, 1998, Lisý et al., 2015], the problem is more

complex than previously thought. Online algorithms ªliveº in a fundamentally different

setting, and they need to be evaluated appropriately.

Previously, a common approach to evaluate online algorithms was to compute a corre-

sponding offline strategy by ªqueryingº the online algorithm at each state (ªtabularizationº

of the strategy) [Lisý et al., 2015, Šustr et al., 2019]. One would then report the exploitability

of the resulting offline strategy. We show that this is not generally possible and that naive

tabularization can also lead to incorrect conclusions about the online algorithm’s worst-case

performance. As a consequence we show that some algorithms previously considered to be

sound are not.

We ®rst give a simple example of how an online algorithm can lose to an adversary

in a repeated game setting. Previously, such an algorithm would be considered optimal

based on a naive tabularization. We build on top of this example to introduce a framework

for properly evaluating an online algorithm’s performance. Within this framework, we

introduce the de®nition of a sound and ϵ-sound algorithm. Like the exploitability of a

strategy in the offline setting, the soundness of an algorithm is a measure of its performance

against a worst-case adversary. Importantly, this notion collapses to the previous notion of

exploitability when the algorithm follows a ®xed strategy pro®le.

We then introduce a consistency framework, a hierarchy that formally states in what sense

an online algorithm plays ªconsistentlyº with an ϵ-equilibrium. The hierarchy allows stating

multiple bounds on the algorithm’s soundness, based on the ϵ-equilibrium and consistency

type. The stronger the consistency is in our hierarchy, the stronger are the bounds. This

further illustrates the discrepancy of search in perfect and imperfect information settings, as

these bounds sometimes differ for perfect and imperfect information games.

The de®nitions of soundness and the consistency hierarchy ®nally provide appropriate
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tools to analyze online algorithms in imperfect information games. We thus inspect some of

the previous online algorithms in a new light, bringing new insights into their worst-case

performance guarantees. Namely, we focus on the Online Outcome Sampling (OOS) [Lisý

et al., 2015] algorithm. Consider the following statement from the OOS publication: ªWe

show that OOS is consistent, i.e., it is guaranteed to converge to an equilibrium strategy as

search time increases. To the best of our knowledge, this is not the case for any existing

online game playing algorithm. . . ’ The problem is that OOS provides only the weakest of the

introduced consistencies Ð local consistency. As the local consistency gives no guarantee

for imperfect information games (in contrast to perfect information games), OOS (and

potentially other locally consistent algorithms) can be highly exploited by an adversary. The

experimental section then con®rms this issue for OOS in two small imperfect information

games.

5.2 Background

We present our results using the recent formalism of factored-observations stochastic

games [Kovařı́k et al., 2021]. The entirety of this chapter trivially applies to the exten-

sive form formalism [Osborne and Rubinstein, 1994] as well* (as we are only relying on

the notion of states and rewards). We believe this choice of formalism makes it easier to

incorporate our de®nitions in the future online algorithms, as sound search in imperfect

information critically relies on the notion of common/public information [Burch et al.,

2014, Seitz et al., 2019]. Indeed, all the recently introduced online algorithms in imperfect

information games rely on these notions [Moravčı́k et al., 2017, Brown and Sandholm, 2018,

Šustr et al., 2019].

De®nition 5.1. A factored-observations stochastic game is a tuple

G = ⟨N ,W , wo,A, T ,R,O⟩,

where:

• N = ¶1, 2♢ is a player set. We use symbol n for a player and -n for its opponent.

• W is a set of world states and w0 ∈ W is a designated initial world state.

• A = A1 × A2 is a space of joint actions. The subsets An(w) ⊂ An and A(w) =
A1(w)×A2(w) ⊂ A specify the (joint) actions legal at w ∈ W . For a ∈ A, we write

a = (a1, a2). An(w) for n ∈ N are either all non-empty or all empty. A world state

with no legal actions is terminal.

• After taking a (legal) joint action a at w, the transition function T determines the

next world state w′, drawn from the probability distribution T (w, a) ∈ ∆(W).

• R = (R1,R2), andRn(w, a) is the reward player n receives when a joint action a is

taken at w.

• O = (Opriv(1),Opriv(2),Opub) is the observation function, where O(·) : W × A ×
W → O(·) speci®es the private observation that player n receives, resp. the public

observation that every player receives, upon transitioning from world state w to w′

via some joint action a.

*Under the assumption the games are perfect-recall and 1-timeable [Kovařı́k et al., 2021].
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A legal world history (or trajectory) is a ®nite sequence h = (w0, a0, w1, a1, . . . , wt),
where wk ∈ W , ak ∈ A(wk), and wk+1 ∈ W is in the support of T (wk, ak). We denote the

set of all legal histories byH, and the set of all sub-sequences of h that are legal histories as

H(h) ⊆ H.

Since the last world state in each h ∈ H is uniquely de®ned, the notation forW can

be overloaded to work withH (e.g., A(h) := A(the last w in h), h being terminal, ...). We

use Z to denote the set of all terminal histories, i.e. histories where the last world state is

terminal.

The cumulative reward of n at h is
∑︁t−1

k=0 rk
n :=

∑︁t−1
k=0Rn(wk, ak). When h is a terminal

history, cumulative rewards can also be called utilities, and denoted as un(z). We assume

games are zero-sum, so un(z) = −u-n(z) ∀z ∈ Z . The maximum difference of utilities is

∆ = ♣maxz∈Z u1(z)−minz∈Z u1(z)♣
Player n’s information state or private history at h = (w0, a0, w1, a1, . . . , wt) is the

action-observation sequence

sn(h) := (O0
n, a0

n, O1
n, a1

n, . . . , Ot
n), where Ok

n = On(wk−1, ak−1, wk) and O0
n is some

initial observation. The space Sn of all such sequences can be viewed as the private tree of

n.

A strategy pro®le is a pair σ = (σ1, σ2), where each (behavioral) strategy σn : sn ∈
Sn ↦→ σn(sn) ∈ ∆(An(sn)) speci®es the probability distribution from which player n draws

their next action (conditional on having information sn). We denote the set of all strategies

of player n as Σn and the set of all strategy pro®les as Σ.

The reach probability of a history h ∈ H under σ is de®ned as

πσ(h) = πσ
1 (h) πσ

2 (h) πσ
c (h), where each πσ

n(h) is a product of probabilities of the actions

taken by player n between the root and h, and πσ
c (h) is the product of stochastic transitions.

The expected utility for player n of a strategy pro®le σ is un(σ) =
∑︁

z∈Z πσ(z)un(z).
We de®ne a best response of player n to the other player’s strategies σ-n as a strategy

br (σ-n) ∈ arg maxσ′
n∈Σn

un(σ′n, σ-n) and

best response value brv(σ-n) = maxσ′
n∈Σn

un(σ′n, σ-n). The pro®le σ is an ϵ-Nash equi-

librium if (∀n ∈ N ) : un(σ) ≥ maxσ′
n∈Σn

un(σ′n, σ-n) − ϵ, and we denote the set of all

ϵ-equilibrium strategies of player n as NE ϵ
n. The strategy exploitability is expln(σn) :=[︂

un(σ∗) − minσ′
-n∈Σ-n un(σn, σ′-n)

]︂
where σ∗ is an equilibrium strategy. The game value

u∗ = u1(σ
∗) is the utility player 1 can achieve under a Nash equilibrium strategy pro®le.

5.3 Online Algorithm

The environment we are concerned with is that of a repeated game, consisting of a sequence

of individual matches. As a match progresses, the algorithm produces a strategy for a

visited information state on-line: that is, once it actually observes the state. This common

framework of repeated games is particularly suitable for analysis of online algorithms, as

the online algorithm can be conditioned on the past experience (e.g. by trying to adapt to

the opponent or by re-using parts of the previous computation). We are then interested in

the accumulated reward of the agent during the span of the repeated game. Of particular

interest will be the expected reward against a worst-case adversary.

5.3.1 Coordinated Matching Pennies

We now introduce a small imperfect information game that will be used throughout the article

± ªCoordinated Matching Penniesº (CMP). It is a variation on the well-known Matching

Pennies game [Osborne and Rubinstein, 1994], where players choose either Heads or Tails
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Figure 5.1: Coordinated Matching Pennies. After the ®rst player acts, chance randomly

chooses whether the second player will be playing in the information state s1 or s2. The ®rst

player receives utility of 1 if players’ actions match and −1 if they mismatch.

and receive a utility of ±1 if their actions (mis)match. For CMP, we additionally introduce a

publicly observable chance event just after the ®rst player acts. See Figure 5.1 for details.

Let p and q denote the probability of playing Heads in information states s1 and s2

respectively. An equilibrium strategy for the second player (Blue) is then any strategy

where the average of p and q is 1
2
. He thus has to coordinate the actions between his two

information states, while the ®rst player has a unique uniform equilibrium strategy. Similar

equilibrium coordination happens also in Kuhn Poker [Kuhn, 1950].

5.3.2 Naive Tabularization

We now show that if one naively tries to convert an online algorithm into a ®xed strategy,

the resulting exploitability is not always representative of the worst-case performance of

the online algorithm. Consider the following algorithm PlayCache for the repeated game

of CMP. PlayCache keeps an internal state, a cache ± a mapping of information state to

probability distribution over the actions, and it gradually ®lls the cache during the game.

Concretely, PlayCache plays for the second player as follows:

• Initialize algorithm’s state θ0 to an empty cache.

• Given an information state s visited during a game, there are three possible cases: i)

The cache is empty: play Heads and store ¶s, Heads♢ into the cache. ii) The cache is

non-empty and contains s: play the cached strategy for s. iii) The cache is non-empty

and does not contain s: play Tails and store ¶s, Tails♢.

Consider what happens if one tries to naively tabularize the PlayCache by querying

the algorithm for all the information states. If we query the algorithm for states s1, s2, we

get the resulting offline strategy s1 : Heads, s2 : Tails. Querying the algorithm for states in

reverse order, i.e. s2, s1 results in s1 : Tails, s2 : Heads. And while both of these offline

strategies have zero exploitability, one can still exploit the algorithm during the repeated

game. This follows from the fact that the very ®rst time the PlayCache gets to act, it
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always plays Heads. The ®rst player can thus simply play Heads during the ®rst match and

is guaranteed to win the match. As we will show later, PlayCache falls within a class of

algorithms that can be exploited, but where the average reward is guaranteed to converge to

the game value as we repeatedly keep playing the game.

Where did this discrepancy between the exploitability of the tabularized strategy and

the exploitability of the online algorithm come from? It is simply because the tabularized

strategy does not properly describe the game dynamics of PlayCache. In fact, there is no

®xed strategy that does so! We will now formalize an appropriate framework to describe the

rewards and dynamics of online algorithms, which will allow us to de®ne notions for the

expected reward and the worst-case performance in the online setting.

5.3.3 Online Settings

The repeated game p consists of a ®nite sequence of k individual matches

m = (z1, z2, . . . , zk), where each match zi ∈ Z is a sequence of world states and

actions zi = (w0
i , a0

i , w1
i , a1

i . . . , ali−1
i , wli

i ), ending in a terminal world state wli
i . For each

visited world state in the match, there is a corresponding information state, i.e. a player’s

private perspective of the game (for perfect information games, the notion of information

state and world state collapse as the player gets to observe the world perfectly). An online

algorithm Ω then simply maps an information state observed during a match to a strategy,

while possibly using its internal algorithm state (Def. 5.2).

Given two players that use algorithms Ω1, Ω2, we use P k
Ω1,Ω2

to denote the distribution

over all the possible repeated games m of length k when these two players face each other.

The average reward of m isRn(m) = 1/k
∑︁k

i=1 un(zi) and we denote Em∼P k
Ω1,Ω2

[Rn(m)]

to be the expected average reward when the players play k matches. From now on, if player

n is not speci®ed, we assume without loss of generality it is player 1. The proofs of the

theorems can be found in the Appendix.

De®nition 5.2. Online algorithm Ω is a function Sn × Θ ↦→ ∆(An(sn)) × Θ, that maps

an information state sn ∈ Sn to the strategy σn(sn) ∈ ∆(An(sn)), while possibly making

use of algorithm’s state θ ∈ Θ and updating it. We denote the algorithm’s initial state as

θ0. A special case of an online algorithm is a stateless algorithm, where the output of the

function is independent of the algorithm’s state (thus independent of the previous matches).

If the output depends on the algorithm’s state, we say the algorithm is stateful.

As the game progresses, the online algorithm produces strategies for the visited infor-

mation states and updates its algorithm state. This allows it to potentially output different

strategies for the same information state visited in different matches. We thus use Ωm(sn)
to denote the resulting strategy in the information state sn after the algorithm has already

played the matches m = z1, . . . , zk. Note that players can not visit the same information

state twice in a single match.

Remark 5.3. If we need to encode a stochastic algorithm, we can do it formally as taking

the initial state to be a realization of a random variable. The initial state should be extended

to encode how the algorithm should act (seemingly) randomly in any possible game-play

situation beforehand.

5.3.4 Soundness of Online Algorithm

We are now ready to formalize the desirable properties of an online algorithm in our settings.

Exploitability, resp. ϵ-equilibrium considers the expected utility of a ®xed strategy against a
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worst-case adversary in a single match. We thus de®ne a similar concept for the settings of

an online algorithm in a repeated game: (k, ϵ)-soundness. Intuitively, an online algorithm

is (k, ϵ)-sound if and only if it is guaranteed the same reward as if it followed a ®xed

ϵ-equilibrium after k matches.

De®nition 5.4. For an (k, ϵ)-sound online algorithm Ω, the expected average reward against

any opponent is at least as good as if it followed an ϵ-Nash equilibrium ®xed strategy σ for

any number of matches k′:

∀k′ ≥ k ∀Ω2 : Em∼P k′

Ω,Ω2

[R(m)] ≥ Em∼P k′

σ,Ω2

[R(m)] . (5.1)

If algorithm Ω is (k, ϵ)-sound for ∀k ≥ 1, we say the algorithm is ϵ-sound.

Note that this de®nition guarantees that an online algorithm that simply follows a ®xed ϵ-

equilibrium is ϵ-sound. And while the online algorithm can certainly play as a ®xed strategy,

online algorithms are far from limited to doing so, e.g. PlayCache from Section 5.3.

PlayCache is 1-sound (ϵ = 1) as this algorithm is highly exploitable in the ®rst match.

Additionally, an online algorithm may be sound (ϵ = 0), but there might not be any offline

equilibrium that produces the same distribution of matches.

5.3.5 Response Game

To compute the expected reward Em∼P k′

Ω,Ω2

[R(m)] as in Def. 5.4, we construct a repeated

game [Osborne and Rubinstein, 1994] in the FOSG formalism, where we replace the

decisions of the online algorithm with stochastic (chance) transitions. As we allow the online

algorithm to be stateful and thus produce strategies depending on the game trajectory, the

response game must also reflect this possibility. The resulting game Gk
Ω is thus exponential

in size as it reflects all possible trajectories of k matches. We call this single-player game a

k-step response game.

The k-step response game allows us to compute the best response value of a worst-case

adversary in k-match game-play. We will use overloaded notation brv(Gk
Ω) to denote this

value.

Theorem 5.5. If ∀k′ ≥ k brv(Gk′

Ω ) ≤ k′ϵ, then algorithm Ω is (k, ϵ)-sound.

Proof. If we used a ®xed ϵ-equilibrium strategy σ in each match (repetition) of a response

game Gk′

σ , then the brv(Gk′

σ ) = k′ϵ because adversary can gain at most ϵ in each match. Since

ϵ-sound algorithm should play at least as well as some offline ϵ-equilibrium, it must have

brv(Gk
Ω) ≤ kϵ ∀k ≥ 1. For a (k, ϵ)-sound algorithm we add the condition of ∀k′ ≥ k.

5.3.6 Tabularized Strategy

When an online algorithm produces the same strategy for an information state regardless

of the previous matches, there is no need for the k-response game. Fixed strategy notion

suf®ciently describes the behavior of the online algorithm and thus the exploitability of the

®xed strategy matches the soundness. To compute this ®xed strategy, one simply queries the

online algorithm for all the information states in the game.
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5.4 Relating (k, ϵ)-Soundness and ϵ-Nash

Unfortunately, our notion of (k, ϵ)-soundness is often infeasible to reason about, as it

requires checking that the algorithm does not make strategy errors for ∀k′ ≥ k. In this

section, we introduce the concept of consistency that allows one to formally state that

the online algorithm plays ªconsistentlyº with an ϵ-equilibrium. Our consistency notion

allows us to directly bound the (k, ϵ)-soundness of an online algorithm. We introduce

three hierarchical levels of consistency, with varying restrictions and corresponding bounds.

Notice that they differ mainly in the order of quanti®ers.

5.4.1 Local Consistency

Local consistency simply guarantees that every time we query the online algorithm, there is

an ϵ-equilibrium that has the same local behavioral strategy σ(s) for the queried state s.

De®nition 5.6. Algorithm Ω is locally consistent with ϵ-equilibria if

∀k ∀m = (z1, z2, . . . , zk) ∀h ∈ H(zk) ∃σ ∈ NE ϵ
n

such that Ω(z1, ..., zk−1)(s(h)) = σ(s(h)).

While this suggests that the algorithm plays like some equilibrium, it is not so, and

the resulting strategy can be highly exploitable. This is because one cannot combine local

behavioral strategies from different ϵ-equilibria and hope to preserve their exploitability. In

another perspective, as soon as one starts to condition the selection of the strategy on private

information, it risks computing strategies that can be exploited in a repeated game. This is a

motivation behind introducing (k, ϵ)-soundness, as it allows us to analyze algorithms that

use such conditioning.

Consider the CMP game with two strategies σ1 = ¶(s1, p = 1), (s2, q = 0)♢ and

σ2 = ¶(s1, p = 0.5), (s2, q = 0.5)♢. While both strategies are equilibria, if one plays in the

states s1 and s2 based on the ®rst and second equilibrium respectively, it corresponds to an

exploitable strategy ¶(s1, p = 1), (s2, q = 0.5)♢.
An algorithm that is locally consistent with ϵ-equilibria might not be (k, ϵ)-sound.

Note that this can happen even in perfect information games (example in Appendix B.1).

Interestingly, local consistency is suf®cient if the algorithm is consistent with a subgame

perfect equilibrium.

In perfect information games, an algorithm that is locally consistent with a subgame

perfect equilibrium is sound.

A particularly interesting example of an algorithm that is only locally consistent is Online

Outcome Sampling [Lisý et al., 2015] (OOS). See Section 5.6 for detailed discussion and

experimental evaluation, where we show that this algorithm can produce highly exploitable

strategies in imperfect information games.

5.4.2 Global Consistency

Local consistency guarantees consistency only for individual states. The problem we have

then seen is that the combination of these local strategies might produce highly exploitable

overall strategy. A natural extension is then to guarantee consistency with some equilibria

for all the states in combination: a global consistency.
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De®nition 5.7. Algorithm Ω is globally consistent with ϵ-equilibria if

∀k ∀m = (z1, z2, . . . , zk) ∃σ ∈ NE ϵ
n ∀h ∈ H(zi)

holds that Ω(z1, ..., zi−1)(s(h)) = σ(s(h)) for ∀i ∈ ¶1, . . . , k♢.

However:

An algorithm that is globally consistent with ϵ-equilibria might not be ϵ-sound.

Proof. A counter-example: The PlayCache algorithm is globally consistent, but it is not

sound (ϵ = 0), as we have seen that it is exploitable during the ®rst match (k = 1).

But what if the algorithm keeps on playing the repeated game? While the global

consistency with equilibria does not guarantee soundness, it guarantees that the expected

average reward converges to the game value in the limit.

For an algorithm Ω that is globally consistent with ϵ-equilibria,

∀k ∀Ω2 : Em∼P k
Ω,Ω2

[R(m)] ≥ u∗ − ϵ−
\︄\︄\︄S1

\︄\︄\︄∆
k

. (5.2)

Corollary 5.8. An algorithm Ω that is globally consistent with ϵ-equilibria is (k, ϵ)-sound

as k →∞.

5.4.3 Strong Global Consistency

The problem with global consistency is that it guarantees the existence of consistent equi-

librium for any game-play after the game-play is generated. Strong global consistency

additionally guarantees that the game-play itself is generated consistently with an equilib-

rium; and as in global consistency, the partial strategies for this game-play also correspond

to an ϵ-equilibrium. In other words, the online algorithm simply exactly follows a prede®ned

equilibrium.

De®nition 5.9. Online algorithm Ω is strongly globally consistent with ϵ-equilibrium if

∃σ ∈ NE ϵ
n ∀k ∀m = (z1, z2, . . . , zk) ∀h ∈ H(zk)

holds that Ω(z1, ..., zk−1)(s(h)) = σ(s(h)).

Strong global consistency guarantees that the algorithm can be tabularized, and the

exploitability of the tabularized strategy matches ϵ-soundness of the online algorithm.

Online algorithm Ω that is strongly globally consistent with ϵ-equilibrium is ϵ-sound.

Canonical examples of strongly globally consistent online algorithms are DeepStack and

Libratus. In general, an algorithm that uses a notion of safe (continual) resolving is strongly

globally consistent as it essentially re-solves some ϵ-equilibrium (albeit an unknown one)

that it follows. Another, more recent example is ReBeL [Brown et al., 2020], as it essentially

imitates CFR-D iterations in conjunction with a neural network.
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Proving Strong Global Consistency

While we are not aware of an algorithm that is only globally consistent (besides the toy

PlayCache), reasoning about global consistency can be bene®cial for showing the strong

global consistency. Doing so just based on its de®nition might not be straightforward.

However, proving global consistency can be easier. If applicable, we can then use the

following theorem to extend the proof to the strong global consistency.

If a globally consistent algorithm is stateless then it is also strongly globally consistent.

Proof. The de®nition of a stateless algorithm implies that for an information state s the al-

gorithm always produces the same behavioral strategy σ(s) as the algorithm is deterministic

(all stochasticity is encoded within the algorithm state θ, see Remark 5.3).

This means that whatever ϵ-equilibria the algorithm is globally consistent with is inde-

pendent of the current game-play or match number. This allows us to swap the quanti®ers

from

∀k ∀m = (z1, z2, . . . , zk) ∃σ ∈ NE ϵ
n ∀i ∈ ¶1, . . . , k♢ ∀h ∈ H(zi) :

Ω(z1, ..., zi−1)(s(h)) = σ(s(h))

to

∃σ ∈ NE ϵ
n ∀k ∀m = (z1, z2, . . . , zk) ∀i ∈ ¶1, . . . , k♢ ∀h ∈ H(zi) :

Ω(z1, ..., zi−1)(s(h)) = σ(s(h)).

Using the same argument we can treat the different matches zi as an iteration over k,

leading us to strong global consistency

∃σ ∈ NE ϵ
n ∀k ∀m = (z1, z2, . . . , zk) ∀h ∈ H(zk) :

Ω(z1, ..., zk−1)(s(h)) = σ(s(h)).

5.5 Relating (k, ϵ)-Soundness and Regret

Regret is an online learning concept that has triggered design of a family of powerful

learning algorithms. Indeed, many algorithms that approximate Nash equilibria use regret

minimization [Zinkevich et al., 2007]. There is a well-known connection between regret

and the Nash equilibrium solution concept. In a zero-sum game at time k, if both players’

overall regret Rk is less than kϵ, the average strategy pro®le is a 2ϵ-equilibrium [Zinkevich

et al., 2007]. The use of k in (k, ϵ)-soundness allows us to relate it with regret, and show

how it is different from the consistency hierarchy.

Corollary 5.10. Any regret minimizer with a regret bound of Rk is (k, Rk

2k
)-sound.

5.6 Experiments

A particularly interesting example of an algorithm that is only locally consistent is Online

Outcome Sampling (OOS) [Lisý et al., 2015]. We use it to demonstrate the theoretical ideas

in this chapter with empirical experiments. We show that local consistency does in fact

fail to result in ϵ-soundness in the online setting. The problem we demonstrate is also not
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Figure 5.2: While individual MCCFR strategies have low exploitability of ∼ 10−3, the tabu-

larized OOS strategy has high exploitability of 0.17 even after 106 iterations.

speci®c to OOS, but in general to any adaptation of an offline algorithm to the online setting

where the algorithm attempts to improve its strategy during online play.

At high level, OOS runs the offline MCCFR algorithm in the full game (while also

gradually building the tree), parameterized to increase the sampling probability of the

current information state. The algorithm then plays based on the resulting strategy for that

particular state. The problem is that these individual MCCFR runs can converge to different

ϵ-equilibria as the MCCFR is parameterized differently in each information state. In other

words, the OOS algorithm exactly suffers from the fact that it is only locally consistent.

We use two games in our experiments: Coordinated Matching Pennies from Section 5.3

and Kuhn Poker [Kuhn, 1950]. We present the Coordinated Matching Pennies results here.

See Appendix B.4 for the complete experimental details and a similar experiment for Kuhn

Poker.

Within a single match of Coordinated Matching Pennies, the second player will act

either in s1 or s2. OOS will therefore bias MCCFR samples to whichever information state

that actually occurs in the match. These two situations are distinct and result in two different

strategies for the whole game (including the non-visited state), similarly to the example

in Section 5.4.1. To emulate what OOS does, we parametrize MCCFR runs to bias samples

into s1 and s2 respectively, and initialize the regrets in s1, s2 so that the MCCFR is likely to

produce diverse sets of strategies. As MCCFR is stochastic, we average the strategies over

3 · 104 random seeds.

In Figure 5.2 we plot exploitability for the average strategies, and unbiased MCCFR for

reference. The two biased variants of MCCFR actually converge at a similar rate to unbiased

MCCFR, con®rming that OOS is locally consistent: it quickly converges to an ϵ-equilibria

for s1 and s2 individually. However, the tabularized strategy Ð the strategy OOS follows

online Ð is many orders of magnitude more exploitable even with hundreds of thousands of

online iterations. The problem is that adapting its strategy online at s1 and s2 causes it to

not be globally consistent with any ϵ-equilibria.

5.7 Related literature

There are several known pathologies that occur in imperfect information games that are not

present in the perfect information case. The pathologies that happen in the offline setting

also present a problem in the online setting. In [Frank and Basin, 1998] the authors identi®ed

two problems: strategy-fusion and non-locality.

These two problems can easily arise for algorithms designed to solve only perfect-

information games, such as minimax or reinforcement learning algorithms, and lead to

computation of exploitable strategies. The proposed local consistency is similar in its spirit

to non-locality, as composition of partial strategies (that correspond to parts of distinct

equilibria) produced by an online algorithm may not be an overall equilibrium strategy.

However local consistency identi®es sub-optimal play also across repeated games.

In [Moravčı́k et al., 2017, Brown and Sandholm, 2018], they use some form of continual
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re-solving, which is strongly globally consistent. This guarantees soundness of the algo-

rithms. Continual resolving uses value functions de®ned over public belief spaces [Brown

et al., 2020] to compute consistent strategies. Indeed, the minimal amount of information

needed to properly de®ne value functions are ranges (beliefs) over common knowledge

public states [Seitz et al., 2019].

We are not aware of algorithms in the literature that are only globally consistent. This

may lead to interesting future work: the algorithm may try to reduce its sub-optimal play of

the ®rst matches, while possibly not using all of the required player’s ranges.

Tabularization has been used in [Šustr et al., 2019] to compute an offline strategy and its

exploitability. In [Lisý et al., 2015] they consider computing this tabularization (they refer

to it as ªbrute-forceº approach), but it is a very expensive procedure. Instead they use an

ªaggregate methodº, which ªstitchesº strategy from a small number of matches and de®nes

the strategy as uniform in non-visited information states. They do not state whether such

approximation of tabularization is indeed correct.

5.8 Conclusion

We introduced the game of Coordinated Matching Pennies (CMP). This game illustrates the

consistency issues that can arise for online algorithms in imperfect information games. We

observed that exploitability is not an appropriate measure of an algorithm’s performance

in online settings. This motivated us to introduce a formal framework for studying online

algorithms and allowed us to de®ne ϵ-soundness. Just like ϵ-exploitability, it measures

the performance against the worst-case adversary. Soundness generalizes exploitability to

repeated sequential games and it collapses to it when an online algorithm follows a ®xed

strategy. We then introduced a hierarchical consistency framework that formalizes in what

sense an online algorithm can be consistent with a ®xed strategy. Namely, we introduced

three levels of consistency: i) local, ii) global and iii) strongly global. These connect an

online algorithm’s behavior to that of a ®xed strategy with increasingly tight bounds on

the average expected utility against a worst-case adversary. We also stated various bounds

on soundness based on the exploitability of a consistent ®xed strategy. Interestingly, the

implications are different in some cases for perfect and imperfect information games.

Within this framework, we saw that local consistency in imperfect information games

does not guarantee correct evaluation of worst-case performance by computing exploitability.

Based on this result, we argued that OOS, previously considered sound, can be exploited.

This illustrates that these subtle problems with online algorithms can easily be missed and

lead to wrong conclusions about their performance. Our experimental section included

experiments in CMP and Kuhn Poker and showed a large discrepancy between OOS’s actual

performance and the bound previously thought to hold.

5.9 Author’s contributions

When working on theory of search based agents, I have discovered fact that even when

strategy of the agent in the whole game converges to a ϵ-Nash equilibrium, this surprisingly

does not guarantee good worst case performance. This observation motivated further

research in the the theory of sound search.
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6. Variance Reduction in Monte Carlo

Counterfactual Regret Minimization

(VR-MCCFR) for Extensive Form

Games using Baselines

This chapter is based on [Schmid et al., 2019].

6.1 Introduction

Policy gradient algorithms have shown remarkable success in single-agent reinforcement

learning (RL) [Mnih et al., 2016, Schulman et al., 2017]. While there has been evidence

of empirical success in multiagent problems [Foerster et al., 2017, Bansal et al., 2018], the

assumptions made by RL methods generally do not hold in multiagent partially-observable

environments. Hence, they are not guaranteed to ®nd an optimal policy, even with tabular

representations in two-player zero-sum (competitive) games [Littman, 1994]. As a result,

policy iteration algorithms based on computational game theory and regret minimization

have been the preferred formalism in this setting. Counterfactual regret minimization [Zinke-

vich et al., 2007] has been a core component of this progress in Poker AI, leading to solving

Heads-Up Limit Texas Hold’em [Bowling et al., 2015] and defeating professional poker

players in No-Limit [Moravčı́k et al., 2017, Brown and Sandholm, 2018].

The two ®elds of RL and computational game theory have largely grown independently.

However, there has been recent work that relates approaches within these two communities.

Fictitious self-play uses RL to compute approximate best responses and supervised learning

to combine responses [Heinrich et al., 2015]. This idea is extended to a uni®ed training

framework that can produce more general policies by regularizing over generated response

oracles [Lanctot et al., 2017]. RL-style regressors were ®rst used to compress regrets in game

theorietic algorithms [Waugh et al., 2015]. DeepStack introduced deep neural networks

as generalized value-function approximators for online planning in imperfect information

games [Moravčı́k et al., 2017]. These value functions operate on a belief-space over all

possible states consistent with the players’ observations.

This chapter similarly unites concepts from both ®elds, proposing an unbiased variance

reduction technique for Monte Carlo counterfactual regret minimization using an analog

of state-action baselines from actor-critic RL methods. While policy gradient methods

typically involve Monte Carlo estimates, the analog in imperfect information settings is

Monte Carlo Counterfactual Regret Minimization (MCCFR) [Lanctot et al., 2009]. Policy

gradient estimates based on a single sample of an episode suffer signi®cantly from variance.

A common technique to decrease the variance is a state or state-action dependent baseline

value that is subtracted from the observed return. These methods can drastically improve

the convergence speed. However, no such methods are known for MCCFR.

MCCFR is a sample based algorithm in imperfect information settings, which approxi-

mates counterfactual regret minimization (CFR) by estimating regret quantities necessary

for updating the policy. While MCCFR can offer faster short-term convergence than orig-

inal CFR in large games, it suffers from high variance which leads to slower long-term

convergence.

CFR+ provides signi®cantly faster empirical performance and made solving Heads-Up
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c) VR-MCCFRb) MCCFRa) CFR

Figure 6.1: High-level overview of Variance Reduction MCCFR (VR-MCCFR) and related

methods. a) CFR traverses the entire tree on every iteration. b) MCCFR samples trajectories

and computes the values only for the sampled actions, while the off-trajectory actions are

treated as zero-valued. While MCCFR uses importance sampling weight to ensure the

values are unbiased, the sampling introduces high variance. c) VR-MCCFR follows the

same sampling framework as MCCFR, but uses baseline values for both sampled actions (in

blue) as well as the off-trajectory actions (in red). These baselines use control variates and

send up bootstrapped estimates to decrease the per-iteration variance thus speeding up the

convergence.

Limit Texas Hold’em possible [Bowling et al., 2015]. Unfortunately, CFR+ has so far did

not outperform CFR in Monte Carlo settings [Burch, 2017] (also see Figure ( C.1) in the

appendix for an experiment).

In this work, we reformulate the value estimates using a control variate and a state-action

baseline. The new formulation includes any approximation of the counterfactual values,

which allows for a range of different ways to insert domain-speci®c knowledge (if available)

but also to design values that are learned online.

Our experiments show two orders of magnitude improvement over MCCFR. For the

common testbed imperfect information game ± Leduc Poker ± VR-MCCFR with a state-

action baseline needs 250 times fewer iterations than MCCFR to reach the same solution

quality. In contrast to RL algorithms in perfect information settings, where state-action

baselines bring little to no improvement over state baselines [Tucker et al., 2018], state-

action baselines lead to signi®cant improvement over state baselines in multiagent partially-

observable settings. We suspect this is due to variance from the environment and different

dynamics of the policies during the computation.

6.2 Related Work

There are standard variance reduction techniques for Monte Carlo sampling methods [Owen,

2013] and the use of control variates in these settings has a long history [Boyle, 1977]. Re-

ducing variance is particularly important when estimating gradients from sample trajectories.

Consequentially, the use of a control variates using baseline has become standard practice in

policy gradient methods [Williams, 1992, Sutton and Barto, 2017]. In RL, action-dependent

baselines have recently shown promise [Wu et al., 2018, Liu et al., 2018] but the degree to

which variance is indeed reduced remains unclear [Tucker et al., 2018]. We show that in our

setting of MCCFR in imperfect information multiplayer games, action-dependent baselines

necessarily influence the variance of the estimates, and we con®rm the reduction empirically.

This is important because lower-variance estimates lead to better regret bounds [Gibson

et al., 2012].

There have been a few uses of variance reduction techniques in multiplayer games,
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within Monte Carlo tree search (MCTS). In MCTS, control variates have used to augment

the reward along a trajectory using a property of the state before and after a transition [Veness

et al., 2011] and to augment the outcome of a rollout from its length or some pre-determined

quality of the states visited [Pepels et al., 2014].

Our baseline-improved estimates are similar to the ones used in AIVAT [Burch et al.,

2018]. AIVAT de®nes estimates of expected values using heuristic values of states as

baselines in practice. Unlike this work, AIVAT was only used for evaluation of strategies.

To the best of our knowledge, there has been two applications of variance reduction in

Monte Carlo CFR: by manipulating the chance node distribution [Lanctot, 2013, Section

7.5] and by sampling (ªprobingº) more trajectories for more estimates of the underlying

values [Gibson et al., 2012]. The variance reduction (and resulting drop in convergence rate)

is modest in both cases, whereas we show more than a two order of magnitude speed-up in

convergence using our method.

6.3 Background

In this chapter we will be leveraging de®nition of the extensive form games from chapter 2.

6.3.1 Augmented Information Sets

In addition to the standard de®nition of the information sets it is also often useful to consider

the augmented information sets [Burch et al., 2014]. While an information set I groups

histories h that player i = p(h) cannot distinguish, an augmented information set groups

histories that player i can not distinguish, including these where p(h) ̸= i. For a history h,

we denote an augmented information set of player i as Ii(h). Note that the if p(h) = i then

Ii(h) = I(h) and I(h) = Ip(h)(h).

6.3.2 Counterfactual Regret Minimization

Counterfactual Regret (CFR) Minimization is an iterative algorithm that produces a sequence

of strategies σ0, σ1, . . . , σT , whose average strategy σ̄T converges to an approximate Nash

equilibrium as T →∞ in two-player zero-sum games [Zinkevich et al., 2007]. Speci®cally,

on iteration t, for each I , it computes counterfactual values. De®ne ZI = ¶(h, z) ∈
H × Z ♣ h ∈ I, h ⊑ z♢, and uσt

i (h, z) = πσt

(h, z)ui(z). We will also sometimes use the

short form uσ
i (h) =

∑︁
z∈Z,h⊑z uσ

i (h, z). A counterfactual value is:

vi(σ
t, I) =

∑︂

(h,z)∈ZI

πσt

−i(h)uσt

i (h, z). (6.1)

We also de®ne an action-dependent counterfactual value,

vi(σ, I, a) =
∑︂

(h,z)∈ZI

πσ
−i(ha)uσ(ha, z), (6.2)

where ha is the sequence h followed by the action a. The values are analogous to the differ-

ence in Q-values and V -values in RL, and indeed we have vi(σ, I) =
∑︁

a σ(I, a)vi(σ, I, a).
CFR then computes a counterfactual regret for not taking a at I:

rt(I, a) = vi(σ
t, I, a)− vi(σ

t, I), (6.3)
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This regret is then accumulated RT (I, a) =
∑︁T

t=1 rt(I, a), which is used to update the

strategies using regret-matching [Hart and Mas-Colell, 2000]:

σT +1(I, a) =
(RT (I, a))+

∑︁
a∈A(I)(RT (I, a))+

, (6.4)

where (x)+ = max(x, 0), or to the uniform strategy if
∑︁

a(RT (I, a))+ = 0. CFR+ works

by thresholding the quantity at each round [Tammelin et al., 2015]: de®ne Q0(I, a) = 0
and QT (I, a) = (QT−1 + rT (I, a))+; CFR+ updates the policy by replacing RT by QT in

equation 6.4. In addition, it always alternates the regret updates of the players (whereas

some variants of CFR update both players), and the average strategy places more (linearly

increasing) weight on more recent iterations.

If for player i we denote u(σ) = ui(σi, σ−i), and run CFR for T iterations, then we can

de®ne the overall regret of the strategies produced as:

RT
i = max

σ′
i

T∑︂

t=1

(︂
vi(σ

′
i, σt
−i)− vi(σ

t)
)︂

.

CFR ensures that RT
i /T → 0 as T → ∞. When two players minimize regret, the folk

theorem then guarantees a bound on the distance to a Nash equilibrium as a function of

RT
i /T .

To compute vi precisely, each iteration requires traversing over subtrees under each

a ∈ A(I) at each I . Next, we describe variants that allow sampling parts of the trees and

using estimates of these quantities.

6.3.3 Monte Carlo CFR

Monte Carlo CFR (MCCFR) introduces sample estimates of the counterfactual values, by

visiting and updating quantities over only part of the entire tree. MCCFR is a general family

of algorithms: each instance de®ned by a speci®c sampling policy. For ease of exposition

and to show the similarity to RL, we focus on outcome sampling [Lanctot et al., 2009];

however, our baseline-enhanced estimates can be used in all MCCFR variants. A sampling

policy ξ is de®ned in the same way as a strategy (a distribution over A(I) for all I) with a

restriction that ξ(h, a) > 0 for all histories and actions. Given a terminal history sampled

with probability q(z) = πξ(z), a sampled counterfactual value ṽi(σ, I♣z)

= ṽi(σ, h♣z) =
πσ
−i(h)uσ

i (h, z)

q(z)
, for h ∈ I, h ⊑ z, (6.5)

and 0 for histories that were not played, h ̸⊑ z. The estimate is unbiased: E z∼ξ[ṽi(σ, I♣z)] =
vi(σ, I), by [Lanctot et al., 2009, Lemma 1]. As a result, ṽi can be used in Equation 6.3 to

accumulate estimated regrets r̃t(I, a) = ṽi(σ
t, I, a)− ṽi(σ

t, I) instead. The regret bound

requires an additional term 1
minz∈Z q(z)

, which is exponential in the length of z and similar

observations have been made in RL [Arjona-Medina et al., 2018]. The main problem with

the sampling variants is that they introduce variance that can have a signi®cant effect on

long-term convergence [Gibson et al., 2012].

6.3.4 Control Variates

Suppose one is trying to estimate a statistic of a random variable, X , such as its mean,

from samples X = (X1, X2, · · · , Xn). A crude Monte Carlo estimator is de®ned to be
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X̂mc = 1
n

∑︁n
i=1 Xi. A control variate is a random variable Y with a known mean µY =

E[Y ], that is paired with the original variable, such that samples are instead of the form

(X, Y) [Owen, 2013]. A new random variable is then de®ned, Zi = Xi + c(Yi − µY ). An

estimator Ẑcv = 1
n

∑︁n
i=1 Zi. Since E[Zi] = E[Xi] for any value of c, Ẑcv can be used in

place of X̂mc. with variance Var[Zi] = Var[Xi] + c2Var[Yi] + 2cCov[Xi, Yi]. So when X
and Y are positively correlated and c < 0, variance is reduced when Cov[X, Y ] > c2

2
Var[Y ].

6.3.5 Reinforcement Learning Mapping

There are several analogies to make between Monte Carlo CFR in imperfect information

games and reinforcement learning. Since our technique builds on ideas that have been

widely used in RL, we end the background by providing a small discussion of the links.

First, dynamics of an imperfect information game are similar to a partially-observable

episodic MDP without any cycles. Policies and strategies are identically de®ned, but in

imperfect information games a deterministic optimal (Nash) strategy may not exist causing

most of the RL methods to fail to converge. The search for a minmax-optimal strategy

with several players is the main reason CFR is used instead of, for example, value iteration.

However, both operate by de®ning values of states which are analogous (counterfactual

values versus expected values) since they are both functions of the strategy/policy; therefore,

can be viewed as a kind of policy iteration which computes the values and from which a

policy is derived. However, the iterates σt are not guaranteed to converge to the optimal

strategy, only the average strategy σ̄t does.

Monte Carlo CFR is an off-policy Monte Carlo analog. The value estimates are unbiased

speci®cally because they are corrected by importance sampling. Most applications of

MCCFR have operated with tabular representations, but this is mostly due to the differences

in objectives. Function approximation methods have been proposed for CFR [Waugh et al.,

2015] but the variance from pure Monte Carlo methods may prevent such techniques in

MCCFR. The use of baselines has been widely successful in policy gradient methods, so

reducing the variance could enable the practical use of function approximation in MCCFR.

6.4 Monte Carlo CFR with Baselines

We now introduce our technique: MCCFR with baselines. While the baselines are analo-

gous to those from policy gradient methods (using counterfactual values), there are slight

differences in their construction.

Our technique constructs value estimates using control variates. Note that MCCFR

is using sampled estimates of counterfactual values ṽi(σ, I) whose expected value is the

counterfactual value vi(σ, I). First, we introduce an estimated counterfactual value v̂i(σ, I)
to be any estimator of the counterfactual value (not necessarily ṽi as de®ned above, but this

is one possibility).

We now de®ne an action-dependent baseline bi(I, a) that, as in RL, serves as a basis

for the sampled values. The intent is to de®ne a baseline function to approximate or be

correlated with E[v̂i(σ, I, a)]. We also de®ne a sampled baseline b̂i(I, a) as an estimator

such that E[b̂i(I, a)] = bi(I, a). From this, we construct a new baseline-enhanced estimate

for the counterfactual values:

ˆ︁vb
i (σ, I, a) = ˆ︁vi(σ, I, a)− b̂i(σ, I, a) + bi(σ, I, a) (6.6)

First, note that b̂i is a control variate with c = −1. Therefore, it is important that b̂i be
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(a) CFR (b) MCCFR (c) VR-MCCFR

Figure 6.2: Values and updates for the discussed methods: (a) CFR udpates the full tree and

thus uses the exact values for all the actions, (b) MCCFR updates only a single path, and uses

the sampled values for the sampled actions and zero values for the off-trajectory actions, (c)

VR-MCCFR also updates only a single path, but uses the bootstrapped baseline-enhanced

values for the sampled actions and baseline-enhanced values for the off-trajectory actions.

correlated with v̂i. The main idea of our technique is to replace ṽi(σ, I, a) with v̂b
i (σ, I, a).

A key property is that by doing so, the expectation remains unchanged.

Lemma 6.1. For any i ∈ N − ¶c♢, σi, I ∈ I, a ∈ A(I), if E[b̂i(I, a)] = bi(I, a) and

E[v̂i(σ, I, a)] = vi(σ, I, a), then E[v̂b
i (σ, I, a)] = vi(σ, I, a).

The proof is in the appendix. As a result, any baseline whose expectation is known

can be used and the baseline-enhanced estimates are consistent. However, not all baselines

will decrease variance. For example, if Cov[v̂i, b̂i] is too low, then the Var[b̂i] term could

dominate and actually increase the variance.

6.4.1 Recursive Bootstrapping

Consider the individual computation (6.1) for all the information sets on the path to a

sampled terminal history z. Given that the counterfactual values up the tree can be computed

from the counterfactual values down the tree, it is natural to consider propagating the already

baseline-enhanced counterfactual values (6.6) rather than the original noisy sampled values -

thus propagating the bene®ts up the tree. The Lemma (6.2) then shows that by doing so, the

updates remain unbiased. Our experimental section shows that such bootstrapping a crucial

component for the proper performance of the method.

To properly formalize this bootstrapping computation, we must ®rst recursively de®ne

the expected value:

ûi(σ, h, a♣z) =

∮︂
ûi(σ, ha♣z)/ξ(h, a) if ha ⊑ z
0 otherwise

, (6.7)

and

ûi(σ, h♣z) =

⎧
⋁︂⨄︂
⋁︂⎩

ui(h) if h = z∑︁
a σ(h, a)ûi(σ, h, a♣z) if h ⊏ z

0 otherwise

. (6.8)

Next, we de®ne a baseline-enhanced version of the expected value. Note that the baseline

bi(I, a) can be arbitrary, but we discuss a particular choice and update of the baseline in the

later section. For every action, given a speci®c sampled trajectory z, then ûb
i(σ, h, a♣z) =
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⎧
⋁︂⋁︂⨄︂
⋁︂⋁︂⎩

bi(Ii(h), a) +
ûb

i
(σ,ha♣z)−bi(Ii(h),a)

ξ(h,a)
if ha ⊑ z

bi(Ii(h), a) if h ⊏ z, ha ̸⊑ z
0 otherwise

(6.9)

and

ûb
i(σ, h♣z) =

⎧
⋁︂⨄︂
⋁︂⎩

ui(h) if h = z∑︁
a σ(h, a)ûb

i(σ, h, a♣z) if h ⊏ z
0 otherwise

. (6.10)

These are the values that are bootstrapped. We estimate counterfactual values needed for

the regret updates using these values as:

v̂b
i (σ, I(h), a♣z) = v̂b

i (σ, h, a♣z) =
πσ
−i(h)

q(h)
ûb

i(σ, h, a♣z). (6.11)

We can now formally state that the bootstrapping keeps the counterfactual values unbi-

ased:

Lemma 6.2. Let v̂b
i be de®ned as in Equation 6.11. Then, for any i ∈ N − ¶c♢, σi, I ∈

I, a ∈ A(I), it holds that Ez[v̂b
i (σ, I, a♣z)] = vi(σ, I, a).

The proof is in the appendix. Since each estimate builds on other estimates, the bene®t

of the reduction in variance can be propagated up through the tree.

Another key result is that there exists a perfect baseline that leads to zero-variance

estimates at the updated information sets.

Lemma 6.3. There exists a perfect baseline b∗ and optimal unbiased estimator v̂∗i (σ, h, a)
such that under a speci®c update scheme: Varh,z∼ξ,h∈I,h⊑z[v̂∗i (σ, h, a♣z)] = 0.

The proof and description of the update scheme are in the appendix. We will refer to b∗

as the oracle baseline. Note that even when using the oracle baseline, the convergence rate

of MCCFR is still not identical to CFR because each iteration applies regret updates to a

portion of the tree, whereas CFR updates the entire tree.

Finally, using unbiased estimates to tabulate regrets r̂(I, a) for each I and a leads to a

probabilistic regret bound:

Theorem 6.4. [Gibson et al., 2012, Theorem 2] For some unbiased estimator of the counter-

factual values v̂i and a bound on the difference in its value ∆̂i = ♣v̂i(σ, I, a)− v̂i(σ, I, a′)♣,
with probability 1-p,

RT
i

T

≤
∏︁
∐︂∆̂i +

√︂
maxt,I,a Var[rt

i(I, a)− r̂t
i(I, a)]

√
p

∫︁
⎠ ♣Ii♣♣Ai♣√

T
.

6.4.2 Choice of Baselines

How does one choose a baseline, given that we want these to be good estimates of the

individual counterfactual values? A common choice of the baseline in policy gradient

algorithms is the mean value of the state, which is learned online [Mnih et al., 2016].
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Inspired by this, we choose a similar quantity: the average expected value ¯̂ui(Ii, a). That is,

in addition to accumulating regret for each I , average expected values are also tracked.

While a direct average can be tracked, we found that an exponentially-decaying average

that places heavier weight on more recent samples to be more effective in practice. On the

kth visit to I at iteration t,

¯̂uk
i (Ii, a) =

∮︂
0 if k = 0

(1− α)¯̂uk−1
i (Ii, a) + αûb

i(σ
t, Ii, a) if k > 0

We then de®ne the baseline bi(Ii, a) = ¯̂ui(Ii, a), and

b̂i(Ii, a♣z) =

∮︂
bi(Ii, a)/ξ(Ii, a) if ha ⊑ z, h ∈ Ii

0 otherwise.

The baseline can therefore be thought as local to Ii since it depends only on quantities

de®ned and tracked at Ii. Note that Ea∼ξ(Ii)[b̂i(Ii, a♣z)] = bi(Ii, a) as required.

6.4.3 Summary of the Full Algorithm

We now summarize the technique developed above. One iteration of the algorithm consists

of:

1. Repeat the steps below for each i ∈ N − ¶c♢.

2. Sample a trajectory z ∼ ξ.

3. For each history h ⊑ z in reverse order (longest ®rst):

(a) If h is terminal, simply return ui(h)

(b) Obtain current strategy σ(I) from Eq. 6.4 using cumulative regrets R(I, a) where

h ∈ I .

(c) Use the child value ûb
i(σ, ha) to compute ûb

i(σ, h) as in Eq. 6.9.

(d) If p(h) = i then for a ∈ A(I), compute v̂b
i (σ, I, a) = π−i(h)

q(h)
ûb

i(σ, ha) and

accumulate regrets R(I, a)← R(I, a) + v̂b
i (σ, I, a)− v̂b

i (σ, I).

(e) Update ¯̂u(σ, Ii, a).

(f) Finally, return ûb
i(σ, h).

Note that the original outcome sampling is an instance of this algorithm. Speci®cally,

when bi(Ii, a) = 0, then v̂b
i (σ, I, a) = ṽi(σ, I, a). Step by step example of the computation

is in the appendix.

6.5 Experimental Results

We evaluate the performance of our method on Leduc poker [Southey et al., 2005], a

commonly used benchmark poker game. Players have an unlimited number of chips, and

the deck has six cards, divided into two suits of three identically-ranked cards. There are

two rounds of betting; after the ®rst round a single public card is revealed from the deck.

Each player antes 1 chip to play, receiving one private card. There are at most two bet or

raise actions per round, with a ®xed size of 2 chips in the ®rst round, and 4 chips in the

second round.
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For the experiments, we use a vectorized form of CFR that applies regret updates to each

information set consistent with the public information. The ®rst vector variants were intro-

duced in [Johanson et al., 2012], and have been used in DeepStack and Libratus [Moravčı́k

et al., 2017, Brown and Sandholm, 2018]. See the appendix for more detail on the imple-

mentation. Baseline average values ¯̂ub
i(I, a) used a decay factor of α = 0.5. We used a

uniform sampling in all our experiments, ξ(I, a) = 1
♣A(I)♣

.

We also consider the best case performance of our algorithm by using the oracle baseline.

It uses baseline values of the true counterfactual values. We also experiment with and

without CFR+, demonstrating that our technique allows the CFR+ to be for the ®rst time

ef®ciently used with sampling.

6.5.1 Convergence

We compared MCCFR, MCCFR+, VR-MCCFR, VR-MCCFR+, and VR-MCCFR+ with

the oracle baseline, see Fig. 6.3. The variance-reduced VR-MCCFR and VR-MCCFR+

variants converge signi®cantly faster than plain MCCFR. Moreover, the speedup grows as

the baseline improves during the computation. A similar trend is shown by both VR-MCCFR

and VR-MCCFR+, see Fig. 6.4. MCCFR needs hundreds of millions of iterations to reach

the same exploitability as VR-MCCFR+ achieves in one million iterations: a 250-times

speedup. VR-MCCFR+ with the oracle baseline signi®cantly outperforms VR-MCCFR+

at the start of the computation, but as time progresses and the learned baseline improves,

the difference shrinks. After one million iterations, exploitability of VR-MCCFR+ with a

learned baseline approaches the exploitability of VR-MCCFR+ with the oracle baseline.

This oracle baseline result gives a bound on the gains we can get by constructing better

learned baselines.

6.5.2 Observed Variance

To verify that the observed speedup of the technique is due to variance reduction, we

experimentally observed variance of counterfactual value estimates for MCCFR+ and

MCCFR, see Fig. 6.5. We did that by sampling 1000 alternative trajectories for all visited

information sets, with each trajectory sampling a different estimate of the counterfactual

value. While the variance of value estimates in the plain algorithm seems to be more or

less constant, the variance of VR-MCCFR and VR-MCCFR+ value estimates is lower, and

continues to decrease as more iterations are run. This con®rms that the combination of

baseline and bootstrapping is reducing variance, which implies better performance given the

connection between variance and MCCFR’s performance (Theorem 6.4).

6.5.3 Evaluation of Bootstrapping and Baseline Dependence on Ac-

tions

Recent work that evaluates action-dependent baselines in RL [Tucker et al., 2018], shows

that there is often no real advantage compared to baselines that depend just on the state. It is

also not common to bootstrap the value estimates in RL. Since VR-MCCFR uses both of

these techniques it is natural to explore the contribution of each idea. We compared four

VR-MCCFR+ variants: with or without bootstrapping and with baseline that is state or state-

action dependant, see Fig. 6.6. The conclusion is that the improvement in the performance

is very small unless we use both bootstrapping and an action-dependant baseline.
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Figure 6.3: Convergence of exploitability for different MCCFR variants on logarithmic scale.

VR-MCCFR converges substantially faster than plain MCCFR. VR-MCCFR+ bring roughly

two orders of magnitude speedup. VR-MCCFR+ with oracle baseline (actual true values are

used as baselines) is used as a bound for VR-MCCFR’s performace to show possible room

for improvement. When run for 106 iterations VR-MCCFR+ approaches performance of the

oracle version. The ribbons show 5th and 95th percentile over 100 runs.
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Figure 6.4: Speedup of VR-MCCFR and VR-MCCFR+ compared to plain MCCFR. Y-

axis show how many times more iterations are required by MCCFR to reach the same

exploitability as VR-MCCFR or VR-MCCFR+.
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Figure 6.5: Variance of counterfactual values in VR-MCCFR and plain MCCFR with both

regret matching and regret matching+. The curves were smoothed by computing moving

average over a sliding window of 100 iterations.
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Figure 6.6: Detailed comparison of different VR-MCCFR variants on logarithmic scale.

The curves for MCCFR, VR-MCCFR and VR-MCCFR+ are the same as in the previous

plot, the other lines show how the algorithm performs when using state baselines instead

of state-action baselines, and without bootstrapping. All of these reduced variants perform

better than plain MCCFR, however they are worse than full VR-MCCFR. This ablation study

shows that the combination of all VR-MCCFR features is important for ®nal performance.

6.6 Conclusions

We have presented a new technique for variance reduction for Monte Carlo counterfactual

regret minimization. This technique has close connections to existing RL methods of state

and state-action baselines. In contrast to RL environments, our experiments in imperfect

information games suggest that state-action baselines are superior to state baselines. Using

this technique, we show that empirical variance is indeed reduced, speeding up the conver-

gence by an order of magnitude. The decreased variance allows for the ®rst time CFR+ to

be used with sampling, bringing the speedup to two orders of magnitude.
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6.7 Author’s contributions

I signi®cantly contributed to the formation of the theory, the implementation of the algorithm

and experiments.
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7. Re®ning Subgames in Large

Imperfect Information Games

This chapter is based on [Moravčı́k et al., 2016]

7.1 Introduction

Extensive form games are a powerful model capturing a wide class of real-world problems.

The games can be either perfect information (Chess) or imperfect information (poker).

Applications of imperfect information games range from security problems [Pita et al.,

2009] to card games [Bowling et al., 2015]

The largest imperfect information game to be (essentially) solved today is the limit

version of two-player Texas Hold’em poker [Bowling et al., 2015], with approximately 1017

nodes [Johanson, 2013]. Unfortunately, many games remain that are much too large to

be solved with current techniques. For example, the more popular ªNo-Limitº variant of

two-player Texas Hold’em poker has approximately 10165 nodes [Johanson, 2013].

The leading approach to solving imperfect information games of this magnitude is to

create a simpli®ed abstraction of the game, compute an ϵ-equilibrium in the abstract game,

and ®nally use the strategy from the abstracted game to play the original, unabstracted game

[Billings et al., 2003a] [Sandholm, 2010] [Johanson et al., 2013] [Gibson, 2014]. The amount

of simpli®cation needed to produce the abstracted game is determined by the maximum size

of the game tree that we are able to learn with the computing resources available. While

abstraction pathologies mean that larger abstractions are not guaranteed to produce better

strategies [Waugh et al., 2009], empirical results have shown that ®ner-grained abstractions

are generally better [Johanson et al., 2013]

An appealing compromise is to pre-calculate the largest possible abstraction we can

handle for the entire game and then improve this in real-time with re®nements. The original

strategy is used to play the early parts of the game (the trunk) and once the remaining portion

of the game tree (the subgame) becomes tractable, we can re®ne the strategy for the subgame

in real-time using even ®ner-grained abstraction. Figure 7.1 illustrates the approach.

Figure 7.1: Subgame re®nement framework. (i) the strategy for the game is pre-computed

using coarse-grained abstraction (ii) during the play, once we reach a node de®ning a

suf®ciently small subgame, we re®ne the strategy for that subgame (iii) this together with the

original strategy for the trunk creates a combined strategy. The point is to produce improved

combined strategy

Note that not only can we enlarge the size of the abstraction in the subgame, we can also

reduce the ªoff the tree problemº. When an opponent takes an action that is not found in the

abstraction, it needs to be mapped onto a (similar) one in the abstraction. This mapping can

destroy relevant game information. To reduce this effect, we can construct the subgame so

that it starts in the exact state of the game so far [Ganzfried and Sandholm, 2015].

66



Subgame re®nement has been successfully used in perfect information games to improve

the strategies [Müller and Gasser, 1996] [Müller, 2002]. Unfortunately, the nature of

imperfect information games means that it is dif®cult to isolate subgames. Current attempts

to apply subgame re®nement to imperfect information games have lead to marginal gains

or potentially result in a more exploitable ®nal solution. The reason for this is that if we

change our strategy in the subgame then this gives our opponent the opportunity to exploit

our combined strategy by altering their behavior in the trunk of the game. See [Burch et al.,

2014] or [Ganzfried and Sandholm, 2015] for details and several nice examples of this flaw.

The ®rst approach, ªendgame solvingº, does not guarantee a decrease in exploitability,

and can instead produce a strategy that is drastically more exploitable. [Ganzfried and

Sandholm, 2015]. The second approach, re-solving, was originally designed for subgame

strategy re-solving. In other words, it aims to reproduce the original strategy from a compact

representation. The resulting strategy is guaranteed to be no more exploitable than the

original one. Although this technique can be used to re®ne the subgame strategy, there is no

explicit construction that forces the re®ned strategy to be any better than the original, even

if much stronger strategies exist. [Burch et al., 2014]

In this chapter, we present a new technique, max-margin subgame re®nement, that is

tailor-made to reduce exploitability in imperfect information games. We introduce the notion

of subgame margin, a simple value with appealing properties, which motivates subgame

re®nements that result in large positive margins.

We regard the problem of safe subgame re®nement as a linear optimization problem.

This perspective demonstrates the drawbacks and connections between the two previous

approaches, and ultimately introduce linear optimization to maximize the subgame margin.

Subsequently, we describe an imperfect information game construction that can be used to

®nd such a strategy (rather than solving the resulting linear optimization problem). This

allows us to solve larger subgames using recently introduced techniques, namely the CFR+

[Tammelin et al., 2015] and domain-speci®c speedup tricks [Johanson et al., 2012].

Finally, we experimentally evaluate all the approaches - endgame solving, re-solving

and max-margin subgame re®nement. For the ®rst time, we evaluate these techniques on

the safe-re®nement task as part of a large-scale game by using one of the top participating

agents in AAAI-14 Computer Poker Competition as the baseline strategy to be re®ned in

subgames.

7.2 Previous Work

Despite the lack of theoretical guarantees, variants of subgame re®nement have been used

in imperfect information games for some time. The poker agent GS1-G4 [Gilpin and

Sandholm, 2006] [Gilpin et al., 2007] and its successor Tartanian [Ganzfried and Sandholm,

2013] [Ganzfried and Sandholm, 2015] used various techniques to either re®ne or solve the

endgame. The authors call their newest version of their approach ªendgame solvingº, and

report both positive practical performance results as well as potentially negative impacts

on the exploitability of the combined strategy [Ganzfried and Sandholm, 2015]. This is a

property shared by all of these variants - the resulting strategy can be substantially more

exploitable than the original strategy started with.

We are aware of only one prior subgame re®nement technique that is guaranteed to

produce a combined strategy that is no-more exploitable than the original strategy, re-solving

[Burch et al., 2014] The technique works by computing the best response values for the

opponent and using these values to construct a gadget game. Unfortunately, there is no

explicit mechanism to cause the re®ned strategy to be any better than the original one, even
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if much stronger strategies are possible. By formulating this technique as an optimization

problem, we can easily see this property.

7.3 Background and Notation

Notation of this chapter is based on the de®nition of extensive form game from chapter 2

7.3.1 Counterfactual Best Response

A counterfactual best response CBRp(σ) is a strategy where

σp(I, a) > 0 iff vσ♣I→a
p (I) = maxa′v

σ♣I→a′
p (I). It maximizes counterfactual value at

every information set. CBRp is a always a best response but best response may not be

contractual best response since it can choose an arbitrary action in information sets where

πp(I) = 0.

The well-known recursive tree walk algorithm for best response computation produces a

counterfactual best response.

To simplify the notation we de®ne a counterfactual best response value CBV σ
p (I). It

is very similar to standard de®nition of counterfactual value, with exception that player p
plays according to CBRp(σ) instead of σ. Formally CBV σ

p (I) = v(σ−p,CRBp(σ))
p (I)

7.3.2 Subgame

In a perfect information game, a subgame is a subtree of the original game tree rooted at any

node. This de®nition is problematic for imperfect information games, since such subtree

could include one part of an information set and exclude another. To de®ne a subgame for an

imperfect information game, a generalized concept of information set is used. Information

set I(h) groups histories that the acting player p = P (h) cannot distinguish. Augmented

information set set adds also histories that any of the remaining players cannot distinguish

[Burch et al., 2014]. Using this notion, one can de®ne subgame.

De®nition 7.1. An imperfect information subgame [Burch et al., 2014] is a forest of trees,

closed under both the descendant relation and membership within augmented information

sets for any player.

Note that root of the subgame, denoted R(S), will not typically be a single (augmented)

information set because different players typically have different information available to

them, thus grouping of histories to augmented information sets will be different. We denote

the set of all information sets of the player p at the root of the subgame as IR(S)
p .

7.3.3 Formulating Subgame Re®nement using Optimization

In this section, we briefly describe the two current techniques - (i) endgame solving

[Ganzfried and Sandholm, 2015] and (ii) re-solving [Burch et al., 2014] We also refor-

mulate both of them as equivalent optimization problems. Regarding these techniques as

optimizations helps us to see the underlying properties of these two techniques. Subse-

quently, we use these insights to motivate our new, max-margin technique. cWe will assume,

without loss of generality, that we are re®ning the strategy for player 1 (p1) for the rest of

this chapter.
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7.3.4 Endgame Solving

We start by constructing a ®ne-grained subgame abstraction. The original strategies for the

subgame are discarded and only the strategies prior to the subgame (trunk) are needed. The

strategies in the trunk are used to compute the joint distribution (belief) over the states at

the beginning of the subgame. Finally, we add a chance node just before the ®ne-grained

subgame. The node leads to the states at the root of the subgame. The chance node plays

according to the computed belief. Adding the chance node roots the subgame, thus making

it well-de®ned game. See Figure 7.2.

Figure 7.2: Endgame solving construction - Gadget 1. The (c)hance plays according to the

belief computed using the trunk’s strategy. The ®ner-grained (S)ubgame follows.

The following is a formulation of the linear optimization problem corresponding to the

game construction. LP1 is the standard sequence form LP for the Gadget 1.

max
v,x

f⊤v

Ex = e

F⊤v − A⊤1 x ≤ 0

x ≥ 0

LP1 - optimization problem corresponding to endgame solving. A1 is the sequence form

payoff matrix, x is the vector of p1 strategies, v is the vector of (negative) counterfactual

best response values for p2, E and F are sequence constraint matrices and e is sequence

constraint vector [Nisan et al., 2007] [Čermák et al., 2014]

The flaw in this technique stems from the fact that even if the trunk strategy (and thus

the starting distribution) is optimal, the combined strategy can become drastically more

exploitable. [Ganzfried and Sandholm, 2015] [Burch et al., 2014]

7.3.5 Re-solving

Again, we start by creating a ®ne-grained abstraction for the subgame. The original strategy

for the subgame (from the coarse abstraction) is then translated into the ®ne-grained abstrac-

tion as σS
1 . The translated strategy is now used to compute CBV

σS
1

2 (I) for every information

set I at the root of the subgame. These values will be useful for the gadget construction to

guarantee the safety of the resulting strategy.

To construct the gadget, we add one chance node at the root of the game, followed by

additional nodes for p2 - one for every state at the root of the subgame. At each of these

nodes, p2 may either accept the corresponding counterfactual best response value calculated

earlier or play the subgame (to get to the corresponding state at the root of the subgame).

The chance player distributes the p2 into these states using the (normalized) πσ
−2 (how likely

is the state given that p2 plays to reach it). Since the game is zero sum, this forces p1 to play

the subgame well enough that the opponent’s value is no greater than the original CBV .

See Figure 7.3 for a sketch of the construction. For more details see [Burch et al., 2014].
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Figure 7.3: re-solving gadget construction - Gadget 2. The opponent chooses in every state

prior to the endgame to either (F)ollow the action into the endgame or to (T)erminate. His

utility after the (T)erminal action is set to his counterfactual best response in that state.

Next, we formulate a linear optimization problem corresponding to the gadget construc-

tion. This time, the presented LP is not a straightforward sequential-form representation

of the construction. Although such a representation would be possible, it would not help

provide the insight we are seeking. Instead, we formulate a LP that solves the same game

(for the p1) while demonstrating the underlying properties of the re-solving approach. The

formulation uses the fact that any strategy for which the opponent’s current counterfactual

best response is no greater than the original one, is a solution to the game (this follows form

the construction of Gadget 2).

max
v,x

0

vI ≥ CBV σ
2 (I), I ∈ IR(S)

2

Ex = e

F⊤v − A⊤2 x ≤ 0

x ≥ 0

LP2 - IR(S)
2 denotes the root information sets, CBV σ

2 (I) is the original counterfactual

best response value of p2 in the information set I . The sequence payoff matrices A1 and

A2 are slightly different to reflect different strategy of the chance player in Gadget 1 and

Gadget 2.

It is worth noting three critical points here.

1. LP2 is not maximizing any value, but rather ®nding a feasible solution (though

theoretically equivalent, it is semantically different for the strategy in this case).

2. The original, unre®ned strategy is a solution to LP2

3. Although 1) and 2) suggest that the strategy might not improve, empirical evaluations

show that if one uses a CFR algorithm to solve the corresponding game (Gadget 2),

the re®ned strategy’s performance improves upon the original[Burch et al., 2014]. Our

experiments further con®rm this.

7.3.6 Discussion

Looking at the LP1 and LP2, it’s easy to see the properties of existing approaches. The

LP1 (endgame solving) lacks the constraints (vI ≥ CBV σ
2 (I)) that bound the exploitabil-

ity, possibly producing strategy drastically more exploitable than the original one. LP2
(re-solving) bounds the exploitability, but lacks maximization factor, possibly producing

strategies no better than the original one. As we will see, our approach both bounds the

exploitability while maximizing some well-motivated function.
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7.4 Our Technique

The outline of this section is following: 1. we list the steps used by our technique 2. we use

the problem of re®ning imperfect information subgames to motivate a value to maximized 3.

we formalize this value as the subgame margin 4. we discuss and formalize its properties

5. we formulate an LP optimizing the subgame margin 6. we describe a corresponding

extensive form game construction - Gadget 3
Our technique follows the steps of the subgame re®nement framework: (i) Create an

abstraction for the game. (ii) Compute an equilibrium approximation within the abstraction.

(iii) Play according to this strategy. (iv) When the play reaches ®nal stage of the game,

create a ®ne-grained abstraction for the endgame. (v) Re®ne the strategy in the ®ne-grained

abstraction. (vi) Use the resulting strategy in that subgame (creating a combined strategy).

Since all the steps except of the step ®ve are identical to already described techniques,

we describe only this steps in details.

7.4.1 Subgame Margin

To address the potential increase in exploitability caused by an opponent altering his behavior

in the trunk, we ensure that there is no distribution of starting states that would allow him to

increase his CBV when confronted by subgame re®nement. The simplest way to ensure

this is to decrease his CBV in all possible starting states. We can put a lower bound on

this improvement by measuring the state with the smallest decrease in CBV . Our goal is to

maximize this lower bound. We refer to this values as the subgame margin.

De®nition 7.2. Subgame Margin

Let σ1, σ′1 be a pair of p1 strategies for subgame S. Then a subgame margin

SM1(σ1, σ′1, S) = min
I2∈I

R(S)
2

CBV σ1
2 (I2)− CBV

σ′
1

2 (I2)

Subgame margin has several useful properties. The exploitability is strongly related to

the value of the margin. If it is non-negative, the new combined strategy is guaranteed to be

no more exploitable than original one. Furthermore, given that the opponent’s best response

reaches the subgame with non-zero probability, the exploitability of our combined strategy

is reduced. This improvement is at least proportional to the subgame margin (and may be

greater).

Theorem 7.3. Given a strategy σ1, a subgame S and a re®ned subgame strategy σS
1 , let σ′1 =

σ1[S ← σS
1 ] be a combined strategy of σ1 and σS

1 . Let the subgame margin SM1(σ1, σ′1, S)
be non-negative. Then u1(σ

′
1, CBR(σ′1))− u1(σ1, CBR(σ1)) ≥ 0. Furthermore, if there is

a best response strategy σ∗2 = BR(σ′1) such that π(σ′
1,σ∗

2)(I2) > 0 for some I2 ∈ IR(S)
2 , then

u1(σ
′
1, CBR(σ′1))− u1(σ1, CBR(σ1)) ≥ π

σ′
1
−2(I2) SM1(σ1, σ′1, S).

This theorem is generalization of the Theorem 1 in [Burch et al., 2014]. Intuitively, it

follows from the way one computes a best response using the bottom-up algorithm. For the

formal proof, see appendix A or the authors’ homepage.

Though this lower bound might seem arti®cial at ®rst, it has promising properties for

subgame re®nement. Since we re®ne the strategy once we reach the subgame, we are

either facing p2’s best response that reaches S or he has made a mistake earlier in the game.

Furthermore, the probability of reaching a subgame is proportional to π
σ′

1
−2(I2). As this term

(and by extension, the bound) increases, the probability of reaching that subgame grows.

Thus, we are more likely to reach a subgame with larger bound.
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7.4.2 Optimization Formulation

To ®nd a strategy that maximizes the subgame margin, we can easily modify the LP2.

max
v,x

m

vI−m ≥ CBV σ
2 (I), I ∈ IR(S)

2

Ex = e

F⊤v − A⊤2 x ≤ 0

x ≥ 0

LP3 - maximizing the subgame margin, m is scalar corresponding to the subgame

margin that we aim to maximize.

The similarities between LP3 and LP2 make it easier to see that where the LP2
optimization guarantees non-negative margin, we maximize it. While the optimization

formulation is almost identical to the re-solving, our gadget construction is different.

7.4.3 Gadget Game

One way to ®nd the re®ned strategy is to solve the corresponding linear program. However,

algorithms that are tailor-made for extensive form games often outperform the optimization

approach [Bošanský, 2013]. These algorithms often permit the use of domain-speci®c

tricks to provide further performance gains [Johanson et al., 2012]. Thus, formulating our

optimization problem LP3 as an extensive form game will mean that we can compute larger

subgame abstractions using the available computing resources. Essentially, the construction

of a Gadget 3 corresponding to the LP3 will allow us to compute larger subgames than

would be possible if we simply used LP3. We now provide the construction of such a

gadget game.

7.4.4 Gadget Game Construction

All states in the original subgame are directly copied into the resulting gadget game. We

create the gadget game by making two alterations to the original subgame. (i) we shift

p2’s utilities using the CBV2 (To initialize all p2 values to zero) and (ii) we add a p2 node

followed by chance nodes at the top of the subgame (to allow the opponent to pick any

starting state, relating the game values to margin) We will distinguish the states, strategies,

utilities, etc. for the gadget game by adding a tilde to corresponding notation. The following

is a description of the steps (see also Figure 7.4 that visualizes the constructed Gadget 3)

1. We establish a common baseline. To compare the changes in the performance of

each of p2’s root information sets, it is necessary to give them a common baseline.

We use the original strategy σS
1 as the starting point. For every I ∈ IR(S)

2 , we

subtract the opponent’s original counterfactual best response value, setting the utility

at each terminal node z ∈ Z(I) to ũ2(z) = u2(z) − CBV
σS

1
2 (I) (we also update

ũ1(z̃) = −ũ2(z̃) since we need the game to remain zero-sum). This shifting gives all

of our opponent’s starting states a value of zero if we do not deviate from our original

strategy σS
1 .

2. p2 is permitted to choose his belief at the start of the subgame, while p1 retains his

belief from the original strategy at the point where the subgame begins. Since p2
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is aiming to maximize ũ2, he will always select the information set with the lowest

margin. The minimax nature of the zero-sum game forces p1 to ®nd a strategy

that maximizes this value. We add additional decision node d̃ for p2. Each action

corresponds to choosing an information set I to start with, but we do not connect this

action directly to this state. Instead, each action leads to a new chance node sĨ , where

the chance player chooses the histories h ∈ Ĩ based on the probability πσ
−2(h).

Figure 7.4: Max margin gadget - Gadget 3. Notice that given the original strategy of p1 ,

opponent’s best response utility is zero (thanks to the offset of terminal utilities).

Lemma 7.4. Strategy for the Gadget 3 is Nash Equilibrium if and only if it’s a solution to

the LP3

Follows from the construction of the Gadget 3.

7.5 Experiments

In this section, we evaluate endgame solving, re-solving and max-margin subgame re®ne-

ment on the safe-re®nement task for a large-scale game. We use an improved version of the

Nyx agent, the second strongest participant at the 2014 Annual Computer Poker Competition

(heads-up no-limit Texas Hold’em Total Bankroll) as the baseline strategy to be re®ned in

subgames.

All three of the subgame re®nement techniques tested here used the same abstractions

and trunk strategy. Following [Ganzfried and Sandholm, 2015], we begin the subgame at

start of the last round (the river). While we used card abstraction to compute the original

(trunk) strategy (speci®cally [Schmid et al., 2015] and [Johanson et al., 2013]), the ®ne-

grained abstraction for the endgame is calculated without the need for card abstraction. This

is an improvement over the original implementation [Ganzfried and Sandholm, 2015], where

both the trunk strategy and the re®ned subgame used card abstraction. This is a result of the

improved ef®ciency of the CFR+ algorithm (and the domain-speci®c speedups it enables),

whereas the endgame solving in [Ganzfried and Sandholm, 2015] used linear programming

to compute the strategy.

The original strategy uses action abstraction with up to 16 actions in an information

set. While this number is relatively large compared to other participating agents, it is still

distinctly smaller compared to the best-known upper-bound on the size of the support of

an optimal strategy [Schmid et al., 2014]. In contrast to the action abstraction used for

the original Nyx strategy that uses imperfect recall for the action abstraction, the re®ned

subgame uses perfect recall. We use the same actions in the re®ned subgame as in the

original strategy.

We re®ne only the subgames that (after creating the ®ne-grained abstraction) are smaller

than 1, 000 betting sequences - this is simply to speed up the experiments. The original

agent strategy is used for both p1 and p2 in the trunk of the game. Once gameplay reaches
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the subgame (river), we re®ne the P1 strategy using each of the three techniques. We ran

10, 000 iterations of the CFR+ algorithm in the corresponding gadget games. Exponential

weighting is used to update the average strategies [Tammelin et al., 2015]. Each technique

was used to re®ne around 2, 000 subgames. Figure 7.5 visualizes the average margins for

the evaluated techniques.

Figure 7.5: Subgame margins of the re®ned strategies. One big blind corresponds to 100
chips. The max-margin technique produces the optimal value. We see that the optimal

value is much greater than the one produced by either re-solving or endgame solving

(which produces even negative margins). The 95% con®dence intervals for the results (after

10, 000 iterations) are: maxmargin 101.49± 7.09, re-solving 8.79± 2.45, endgame solving

−518.5± 49.19

Endgame Solving The largely negative margin values for the endgame solving suggest

that the produced strategy may indeed be much more exploitable.

Re-solving The positive margin for re-solving shows that, although there’s no explicit

construction that forces the margin to be greater than zero, it does increase in practice.

Notice, however, that the margin is far below the optimal level.

Max-margin Re®nement This technique produces a much larger subgame margin

than the previous techniques. The size of the margin suggests that the original strategy is

potentially quite exploitable, and our technique can substantially decrease the exploitability

- see Theorem 7.3.

7.6 Conclusion

We have introduced max-margin subgame re®nement, a new technique for subgame re-

®nement of large imperfect information games. The subgame margin is a well-motivated

value with appealing properties for endgame solving, namely regarding the resulting ex-

ploitability. We formalized and proved these properties in Theorem 1. As the name of the

our technique suggests, the technique aims to maximize this well-motivated value. We also

formulated our approach using both linear optimization and extensive form game (gadget)

construction. Experimental results have con®rmed that our gadget game successfully ®nds

re®ned strategies with substantially larger margins than previous approaches. The rather

large values of the margin that the technique provided suggest that even though we evaluated

the technique using a state-of-the-art strategy, such strategies still contain tremendous space

for improvement in such large games.
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7.7 Author’s contributions

I signi®cantly contributed to the formulation of the original algorithm idea, which included

LP formulation and gadget game design, as well as to the implementation of the algorithm.
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8. AIVAT: A New Variance Reduction

Technique for Agent Evaluation in

Imperfect Information Games

This chapter is based on [Burch et al., 2018]

8.1 Introduction

Evaluating an agent’s performance in stochastic settings can be hard. Non-zero variance in

outcomes means the game must be played multiple times to compute a con®dence interval

that likely contains the true expected value. Regardless of whether the variance arises from

player actions or from chance events, we might need to observe many samples before we get

a narrow enough interval to draw desirable conclusions. In many situations, it is simply not

feasible (e.g., when the evaluation involves human participation) to simply observe more

samples, so we must turn to statistical techniques that use additional information to help

narrow the con®dence interval.

This agent evaluation problem is commonly encountered in games, where the goal is to

estimate the expected performance difference between players. For example, consider poker

games. Poker is not only a long-standing challenge problem for AI [von Neumann, 1928,

Koller and Pfeffer, 1997, Billings et al., 2002] with annual competitions [Zinkevich and

Littman, 2006, Bard et al., 2013], but also a very popular game played by an estimated 150

million players worldwide [Economist, 2007]. Heads-up no-limit Texas hold’em (HUNL) is

a particular variant of the game that has received considerable attention in the AI community

in recent years, including a ªBrains vs. AIº event pitting Claudico [cmu, 2015], a top HUNL

computer program, against professional poker players. That match involved 80,000 hands of

poker, played over seven days, involving four poker players, playing dozens of hours each.

Despite Claudico losing by over 9 big blinds per 100 hands (a margin that is considered

huge by poker professionals) [Wood, 2015], the result is only on the edge of statistical

signi®cance, making it hard to draw a conclusion from this large investment of human time.

Previous techniques for variance reduction to achieve stronger statistical conclusions

in this setting have used two broad classes of statistical techniques. Techniques like MI-

VAT [White and Bowling, 2009] use the method of control variates with heuristic value

estimates to reduce the variance caused by chance events. The technique of importance

sampling over imaginary observations [Bowling et al., 2008] takes a different approach,

using knowledge of a player strategy to evaluate multiple states given a single observation.

Imaginary observations can be used to reduce the variance caused by privately observed

chance events, as well as the player’s randomly chosen choice of whether to make any

actions which would immediately end the game.

Techniques from the two classes can be combined, but are not speci®cally designed

to work together for the greatest reduction in variance, and none of the techniques deal

with the variance caused by non-terminal action selection. Because good play in imperfect

information games generally requires randomised action selection, ignoring action variance

is an important shortcoming. We introduce the action-informed value assessment tool

(AIVAT), an unbiased low-variance estimator for imperfect information games which extends

the use of control variates to player actions, and makes explicit use of imaginary observations

to exploit knowledge of the game structure and player strategies.
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8.2 Value Estimation

When talking about estimating the value for players in a game, we are trying to ®nd the

expected value Ez[vp(z)] =
∑︁

z∈Z π(z)vp(z). An estimator e(z) is said to be unbiased if

the expected value Ez[e(z)] = Ez[vp(z)]. Having an estimator be provably unbiased is

important because it is in some sense truthful: a player can not appear to do better by

changing their play to take advantage of the estimation method.

8.3 MIVAT and Imaginary Observations

AIVAT is an extension of two earlier techniques, MIVAT and importance sampling over

imaginary observations. MIVAT [White and Bowling, 2009] and its precursor DIVAT [Zinke-

vich et al., 2006] use value functions for a control variate that estimates the expected utility

given observed chance events. Conceptually, the techniques subtract the expected chance

utility to get a lower variance value which mostly depends on the player actions. For

example, in poker, it is likely that good hands end in positive outcomes and bad hands end

in negative outcomes. Starting with the observed outcome, we could subtract some value for

good hands and add a value for bad hands, and we would expect the corrected value to have

lower variance. If the expected value of the correction terms is zero, we can use the lower

variance corrected value as an unbiased estimator of player value.

DIVAT requires a strategy for all players to generate value estimates for states through

self-play, which MIVAT generalised by allowing for arbitrary value functions de®ned after

chance events. MIVAT adds a correction term for each chance event in an observed state. In

order to remain unbiased despite using an arbitrary value estimation function u(a), MIVAT

uses a correction term of the form Ea[u(a)] − u(o) for an observation with outcome o.

Computing this expectation requires us to know the probability distribution that o was drawn

from, which is true in the case of chance events as σpc
is public knowledge. These terms are

guaranteed to have an expected value of zero, making the MIVAT value (observed value plus

correction terms) an unbiased estimate of player value. In a game like poker, MIVAT will

account for the dealer giving a player favourable or unfavourable cards, but not for lucky

player actions selected from a randomised strategy.

Imaginary observations with importance sampling [Bowling et al., 2008] use knowledge

of a player’s strategy to compute an expected value of multiple states given an observation

of a single state. Due to imperfect information, there may be many states which are all

guaranteed to have the same probability of the opponent making their actions. If we consider

importance sampling over these imaginary observations, the opponent’s probability of

reaching the state cancels out so we do not need the opponent’s strategy. By taking an

expectation over a set of states for every observation, we get a lower variance value.

There are two kinds of situations where we can use imaginary observations. First, for

any states h where player p could have made an action a which ends the game, we can add

the imaginary observation of the terminal state h · a. For example, in poker this lets us

consider player p folding to a bet they called or raised, or calling a bet we folded to in the

®nal round. Second, because of the information partitions in imperfect information games,

there may be other states that have identical opponent probabilities. In poker, this lets us

consider all the states where the public player actions are the same, the opponent private

cards and public board cards are the same, but player p has different private cards. Imaginary

observations do not let us reduce the variance caused by choosing non-terminal actions or

the outcomes of publicly visible chance events.

MIVAT and imaginary observations consider different information and can be combined
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to get a value estimate with lower variance than either technique used individually. Instead

of using the terminal value v(z) for an imaginary observation z, we could use the MIVAT

value estimate given z. However, because neither technique has terms which address the

effect of non-terminal actions, we would never expect this combination of techniques to

produce a zero variance value estimate. Even with a ªperfectº value function that correctly

estimates the expected value of a state and action for the players, there would still be some

variance in the value estimate due to the random action selection by players.

8.4 AIVAT

Conceptually, AIVAT combines the chance correction terms of MIVAT with imaginary

observations across private information, along with new MIVAT-like correction terms for

player actions. The AIVAT estimator is the sum of a base value using imaginary observations,

plus imaginary observation correction terms for both player actions and chance events.

Roughly speaking, moving backwards through the choices in an observed game, the AIVAT

correction terms are constructed in a fashion that shifts an estimate of the expected value

after a choice was made towards an estimate of the expected value before the choice.

Because imaginary observations with importance sampling provides an unbiased estimate

of the expected value of the players, and the MIVAT-like terms have an expected value of

zero, AIVAT is also an unbiased estimator of the expected player value. Furthermore, with

well-structured games, ªperfectº value functions, and knowledge of all player strategies, we

could see zero variance: the imaginary observation values and the correction terms would

sum to the expected player value, regardless of the observed game.

Figure 8.1 gives a high level overview of MIVAT, imaginary observations, and AIVAT.

In this example, we are interested in the expected value for player 1, and know player 1’s

strategy. We use an observation of one hand of Leduc hold’em poker, a small synthetic game

constructed for arti®cial intelligence research [Southey et al., 2005]. Leduc hold’em is a two

round game with one private card for each player, and one publicly visible board card that

is revealed after the ®rst round of player actions. In the example, player 1 is dealt Q♠ and

player 2 is dealt K♠. Player 1 makes the check action followed by a player 2 check action.

The public board card is revealed to be J♥. After the round two actions check, raise, call,

player 1 loses 5 chips.

8.4.1 AIVAT Correction Terms

We start by describing the correction terms added for chance events and actions. Given

information about a player’s strategy, we can treat that player’s choice events as chance

events and construct MIVAT-like correction terms for them. The player strategy also

allows imaginary observations considering alternative histories with identical opponent

probabilities, so we can compute an expectation over a set of compatible histories rather

than using the single observed outcome.

The correction term at a decision point will be the expectation across all compatible

histories of the expected value before a choice, minus the value after the observed choice.

As with MIVAT, the values are estimated using an arbitrary ®xed value function to estimate

the value after every decision. Value estimates which more closely approximate the true

expected value will result in greater variance reduction.

To consider imaginary observations, we need at least one player for which we know the

know the strategy. Let Pa be a non-empty set of players, including pc, such that ∀p ∈ Pa we

know σp, and Po = P \ Pa be the set of opponent players for which we do not know the
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+

E[v(hand)] E[v(hand)]
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Figure 8.1: Comparison of MIVAT, imaginary observations, and AIVAT. On the left, there

are all the actions that occurred in the game and the corresponding trajectory in the game tree.

Next, for each variance reduction technique, we show the correction terms corresponding to

these actions. Note that for MIVAT, corrections are non-zero only for the chance actions

and for imaginary observations there there is only one correction correction at the game

end. In contrast AIVAT leverages combination of correction terms corresponding to each

action (except the ®rst) and to the game end. This allows for a signi®cantly larger variance

reduction than previous techniques.

strategy. If Pa = ¶pc♢ then AIVAT would be identical to MIVAT. We must also partition the

states into the sets we can evaluate given an observation of a completed game. LetH be a

partition of states ¶h♣p(h) ∈ Pa♢ such that ∀H ∈ H and ∀h, h′ ∈ H ,

1. ∀p ∈ Po ∀σp πp(h) = πp(h′). For example, this can be enforced by requiring h and

h′ to pass through the same sequence of player p information sets and make the same

actions at those information sets.

2. h ̸⊏ h′. This implies a uniqueness property, where for any terminal z, ¶h′′♣h′′ ⊏
z, h′′ ∈ H♢ is either empty or a singleton.

3. We will extend the actions so that A′(h) =
⎷

h′′∈H A(h′′) and let σ(h, a) = 0 ∀a ∈
A′(h) \ A(h). Because A′(h) = A′(h′) we will say A(H) = A′(h).

Similar to MIVAT, we need value functions that give an estimate of the expected value

after an action. Let there be arbitrary functions uh(a) : A′(h) ↦→ R for each state h where

p(h) ∈ Pa. Say we have seen a terminal state z. Consider a part H ∈ H. If ∄h ∈ H such

that h ⊏ z, then the correction term kH(z) = 0. Otherwise, property 2 ofH implies there
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is a unique observed action aO such that h · aO ⊑ z, h ∈ H, aO ∈ A(h), and the correction

term is

kH(z) =

∑︁
a∈A(H)

∑︁
h∈H πPa

(h · a)uh(a)
∑︁

h∈H πPa
(h)

−
∑︁

h∈H πPa
(h · aO)uh(aO)

∑︁
h∈H πPa

(h · aO)

AIVAT uses the sum of kH(z) across all H ∈ H.

8.4.2 AIVAT Base Value

The AIVAT correction terms have an expected value of zero, and are not a value estimate

by themselves. They must be combined with an unbiased estimate of player value. For

improved variance reduction, the form of the correction terms must match the choice of base

value estimate.

To see how the terms match, consider a simpli®ed version of AIVAT where the ®nal

correction term for a terminal state h · o has the form Ea[uh(a)]− uh(o). Ideally, we would

like the value estimate for h · a to be uh(a). The value estimate plus the correction term will

then have the same value Ea[uh(a)] for all actions at h, resulting in zero variance.

For the AIVAT correction terms, the correct choice is to use imaginary observations of

all possible private information for players in Pa, as in ªExample 3: Private Informationº of

the paper by Bowling et al. [Bowling et al., 2008]. In poker, it corresponds to evaluating the

game with all possible private cards, weighted by the likelihood of holding the cards given

the observed game. For completeness, we formally describe the particular instance of this

existing estimator using the notation of this chapter.

Given the correction term partition H of player Pa states, we construct a matching

partitionW of terminal states such that ∀W ∈ W and ∀z, z′ ∈ W ,

• ∀p ∈ Po ∀σp πp(z) = πp(z′).

• a player in Pa made an action in z ⇐⇒ a player in Pa made an action in z′.

• if a player in Pa made an action in z, then for the longest pre®x h ⊏ z and h′ ⊏ z′

such that p(h) ∈ Pa and p(h′) ∈ Pa, both h and h′ are in the same part ofH.

The last two conditions on W ensure that the imaginary observation estimate does not

include terminal states that the correction terms will also account for. This rules out a form

of double counting which would not produce a biased estimator, but would increase the

variance when using high quality estimates in the correction terms.

If we observe a terminal state z, let W ∈ W be the part such that z ∈ W . The base

estimated value for player p is
∑︁

z′∈W πPa
(z′)vp(z′)

∑︁
z′∈W πPa

(z′)

8.4.3 AIVAT Value Estimate

The AIVAT estimator gives an unbiased estimate of the expected value Ez[vp(z)]. If we use

partitions H andW as described above, and are given an observation of a terminal state

z ∈ W ∈ W , the value estimate is

AIVAT(z) =

∑︁
z′∈W πPa

(z′)vp(z′)
∑︁

z′∈W πPa
(z′)

+
∑︂

H∈H

kH(z) (8.1)
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Note that there is a subtle difference between AIVAT and a simple combination of imag-

inary observations and an extended MIVAT framework using player strategy information to

add control variates for actions. Using an extended MIVAT plus imaginary observations, we

would consider the expected MIVAT value estimate across all terminal histories compatible

with the observed terminal state. In AIVAT, for each correction term we would consider all

histories compatible with the state at that decision point.

As a concrete example of the difference, consider the game used in Figure 8.1. MIVAT

with imaginary observations would only consider private cards for player 1 that do not

conflict with the opponent’s K♠ or the public card J♥, even when computing the E[u(c)]−
u(J♥) control variate term for the public card. In contrast, AIVAT considers J♥ as a

possible player card for the term.

8.5 Unbiased Value Estimate

It is desirable to have an unbiased value estimate for games, so that players can not improve

their estimated value by changing their strategy to ®t the estimation technique. We prove that

AIVAT is unbiased. The value estimate AIVAT(z) in Equation 8.1 is a sum of two parts. The

fraction in the ®rst part is an unbiased estimator based on imaginary observations [Bowling

et al., 2008], so we only need to show that the sum of all kH terms has an expected value of

0.

Lemma 8.1. ∀H ∈ H Ez∈Z [kH(z)] = 0

Proof. Consider an arbitrary H ∈ H. Let Z(H) = ¶z ∈ Z♣∃h ∈ H, h ⊏ z♢ be the set

of terminal states passing through H . Expanding de®nitions, using property 1 of H and

multiplying by πPo
(H)/πPo

(H) = 1 we get

E
z∈Z

[kH(z)] =
∑︂

z∈Z

π(z)kH(z) =
∑︂

z∈Z(H)

π(z)kH(z)

=
∑︂

z∈Z(H)

π(z)
πPo

(H)

πPo
(H)

∑︁
a∈A(H)

∑︁
h∈H πPa

(h · a)uh(a)
∑︁

h∈H πPa
(h)

−
∑︂

z∈Z(H)

π(z)
πPo

(H)

πPo
(H)

∑︁
h∈H πPa

(h · aO)uh(aO)
∑︁

h∈H πPa
(h · aO)

Using πPo
(h)πPa

(h) = π(h)

=
∑︂

z∈Z(H)

π(z)

∑︁
a∈A(H)

∑︁
h∈H π(h · a)uh(a)

∑︁
h∈H π(h)

−
∑︂

z∈Z(H)

π(z)

∑︁
h∈H π(h · aO)uh(aO)
∑︁

h∈H π(h · aO)

Using
∑︁

z,h⊏z π(z) = π(h) and
∑︁

z,h·a⊏z π(z) = π(h · a)

=
∑︂

h′∈H

π(h′)

∑︁
a∈A(H)

∑︁
h∈H π(h · a)uh(a)

∑︁
h∈H π(h)

−
∑︂

h′∈H

∑︂

a∈A(h′)

π(h′ · a)

∑︁
h∈H π(h · a)uh(a)
∑︁

h∈H π(h · a)
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Using property 3 ofH

=
∑︂

h′∈H

π(h′)

∑︁
a∈A(H)

∑︁
h∈H π(h · a)uh(a)

∑︁
h∈H π(h)

−
∑︂

a∈A(H)

∑︂

h′∈H

π(h′ · a)

∑︁
h∈H π(h · a)uh(a)
∑︁

h∈H π(h · a)

=
∑︂

a∈A(H)

∑︂

h∈H

π(h · a)uh(a)−
∑︂

a∈A(H)

∑︂

h∈H

π(h · a)uh(a)

= 0

Because the expected value is 0 for an arbitrary H , the expected value is 0 for the sum of all

H ∈ H.

Theorem 8.2. Ez∈Z [
∑︁

H∈H kH(z)] = 0

Proof. This immediately follows from Lemma 8.1, as the expected value of a sum of terms

is the sum of the expected values of the terms, which are all 0.

8.6 Experimental Results

We demonstrate the effectiveness of AIVAT in two poker games, Leduc hold’em and heads-

up no-limit Texas hold’em (HUNL). Both Leduc hold’em and HUNL have a convenient

structure where all actions are public, and there is a mix of chance events in the form

of completely public board cards and completely private hole cards. The uncomplicated

structure leads to a clear choice for the partitionH. Each H ∈ H has states with identical

betting, public board cards, and private hole cards for any players in Po.

In all experiments the value functions uh(a) are self-play values, generated by solving

the game to ®nd a Nash equilibrium strategy using a variant of the Monte Carlo CFR

algorithm [Lanctot et al., 2009]. For each player px and partition H , we save the av-

erage observed values for opponent py across all iterations, giving us a value wH(a) ≈∑︁
h∈H πpx

(h · a)E[vpy
(h)]/

∑︁
h∈H πpx

(h · a). wH(a) is an expected self-play value for py

at H , given the probability distribution of hands for px that reach H and play a. Because

we are playing a zero-sum game and vpx
(h) = −vpy

(h), we can use uh(a) = −wH(a)
∀h ∈ H . In HUNL, which is too large to solve directly, we solve a very small abstraction

of the game [Billings et al., 2003a, Ganzfried and Sandholm, 2014] with only 8 million

information sets, which gives us a rough estimate of wH(a) that is identical across many

partitions of HUNL states.

Poker is played in an alternating fashion, where agents take turns playing in different

positions. Let us say we have two agents, x and y. In poker, in odd-numbered games

(starting at game 1) we would have x as player 1 and y as player 2, and in even-numbered

games we would have y as player 1 and x as player 2. For the experiments, we model this

as an extended game where there is an initial 50/50 chance event that assigns a position to

the agent, along with a AIVAT correction term for the position.

All experiments will compare AIVAT value estimates with the unmodi®ed game values

from counting chips, the MIVAT value estimate, and the combination of MIVAT and

imaginary observations using the strategy for agent x (MIVAT+IOx). Because poker is a

zero-sum game, it is suf®cient to present results from the point of view of agent x.
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8.6.1 Leduc Hold’em

The small size of Leduc hold’em lets us test both the case where Pa only contains one

non-chance player, as well as the full-knowledge case where Pa = P . AIVAT and chip

count results are generated from observations of 100,000 games. All of the numbers are in

units of chips, where Leduc hold’em has a 1 chip ante, and 2 chip and 4 chip bets in the ®rst

and second rounds, respectively.

Figure 8.2 looks at self-play, where both x and y play the same Nash equilibrium that

was used to generate uh(a). The true expected value for player x is 0. Because we are

using value functions computed from their self-play, this experiment represents a best-case

situation. With knowledge of both player’s strategies, the only remaining variance comes

from noise in the uh(a) value function that arises from the sampling and averaging used in

the MCCFR computation.

Estimator v̄x SD(vx)
chips 0.01374 3.513

MIVAT 0.00448 2.327

MIVAT+IOx 0.00987 1.928

Pa = ¶pc, x♢ -0.00009 0.00643

Pa = ¶pc, x, y♢ -0.00001 0.00377

Figure 8.2: Value estimates for self-play in Leduc hold’em

With knowledge of both player’s strategies, we reduce the per-game standard deviation

of the estimated player value by a little less than 99.9%. This situation might be unlikely in

practice, but does demonstrate that the AIVAT computation correctly shifts every observed

outcome to the expected player value, given full correct information. Surprisingly, the one-

sided evaluation where we use only one player’s strategy still reduces the standard deviation

by 99.8%. Using MIVAT or MIVAT+IOx, we only see a 33.8% and 45.1% reduction,

respectively.

Moving away from the best-case situation, Figure 8.3 looks at games where x is the

same Nash equilibrium from above, and y is an agent that randomly calls or raises. Given

these strategies, the true expected value for player x is 0.69358.

Estimator v̄x SD(vx)
chips 0.71673 5.761

MIVAT 0.68932 4.412

MIVAT+IOx 0.69968 4.295

Pa = ¶pc, x♢ 0.69050 1.437

Pa = ¶pc, x, y♢ 0.68698 1.782

Pa = ¶pc, y♢ 0.69614 2.983

Figure 8.3: Value estimates for dissimilar strategies in Leduc hold’em

Using the call/raise strategy for y demonstrates that the amount of variance reduction

does depend on how well the value functions estimates the true expected value of a situation.

We used value functions which encode self-play values for x, and while y is suf®ciently

similar to x that the true values are still positively correlated with the estimated values for

both players, they are no longer an almost-perfect match. Despite the strategic mismatch,

using AIVAT we see a reduction in the standard deviation of 48% to 75% compared to the

basic chip-count estimate. All of the AIVAT estimators outperform the 25% reduction using

MIVAT plus imaginary observations.
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8.6.2 No-limit Texas Hold’em

The game of HUNL better represents a potential real-world application. The game is

commonly played, it is too large to easily compute exact expected values directly even when

the strategy of both agents is known, average win rate is a statistic of interest to players and

observers, and the high per-game variance of outcomes obscures the win rate even after

hundreds of thousands of hands.

The variant of HUNL that we use has a small blind of 1 chip and big blind of 2 chips,

and each player has 200 chips (that is, 100 big blinds.) Due to the large branching factor

of chance events, we can only present results for AIVAT analysis using the strategy of one

agent. All results are generated from observations of 1 million games.

We start by looking at self-play, using a low-quality Nash equilibrium approximation

for both players x and y. The value functions uh(a) are generated using this same weak

approximation. Figure 8.4 gives the results for the different estimation methods. The true

expected value for x is 0.

Estimator v̄x SD(vx)
chips 0.03871 25.962

MIVAT 0.02038 21.293

MIVAT+IOx 0.02596 16.073

Pa = ¶pc, x♢ 0.00186 8.095

Figure 8.4: Value estimates for self-play in HUNL

In Figure 8.5 we look at games where x uses the same low-quality approximation of a

Nash equilibrium, and y is a much stronger agent using a high-quality approximation of

a Nash equilibrium. The value functions uh(a) are still generated using the low-quality

approximation. The true expected value for player x is not known.

Estimator v̄x SD(vx)
chips -0.10017 26.308

MIVAT -0.11565 21.546

MIVAT+IOx -0.11297 16.051

Pa = ¶pc, x♢ -0.10971 8.301

Figure 8.5: Value estimates for dissimilar strategies in HUNL

In both experiments, we see a 39% reduction in the standard deviation when using

MIVAT with imaginary observations, and a bit more than a 68% reduction using AIVAT. It

must be noted that our value function could be improved, as the 18% reduction for MIVAT

in this experiment does not match the 23% improvement previously demonstrated using

values learned from data [White and Bowling, 2009]. The small abstract game used to

generate the value functions does not do a good job of understanding the consequences of

cards being dealt, as it can not distinguish most card situations. Despite this handicap, the

full AIVAT estimator still signi®cantly improves on the state of the art for low-variance

value estimators for imperfect information games.

8.7 Conclusions

We introduce a technique for value estimation in imperfect information games that extends

and combines existing techniques. AIVAT uses heuristic value functions, knowledge of

84



game structure, and knowledge about player strategies to both add a control variate term

for chance and player decisions, and to average over multiple possible outcomes given a

single observation. We prove AIVAT is unbiased, and demonstrate that with (almost) perfect

value functions we see (almost) complete elimination of variance. Even with imprecise

value functions, we show variance reduction in a real-world game that signi®cantly exceeds

existing techniques. AIVAT’s three times reduction in standard deviation allows us to achieve

the same statistical signi®cance with ten times less data. A factor of ten is substantial: for

problems with limited data, like human play against bots, ten times as many games could be

the distinction between practical and impractical.

8.8 Author’s contributions

I contributed signi®cantly to the conception of the variance reduction algorithm, its initial

implementation and the evaluation of DeepStack.
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9. DeepStack: Expert-level arti®cial

intelligence in heads-up no-limit poker

This chapter is based on [Moravčı́k et al., 2017]

9.1 Introduction

Games have long served as benchmarks and marked milestones of progress in arti®cial

intelligence (AI). In the last two decades, computer programs have reached a performance

that exceeds expert human players in many games, e.g., backgammon [Tesauro, 1995],

checkers [Schaeffer et al., 1996], chess [Campbell et al., 2002], Jeopardy! [Ferrucci, 2012],

Atari video games [Mnih et al., 2015], and go [Silver et al., 2016]. These successes all

involve games with information symmetry, where all players have identical information

about the current state of the game. This property of perfect information is also at the heart

of the algorithms that enabled these successes, e.g., local search during play [Samuel, 1959,

Kocsis and Szepesvári, 2006].

The founder of modern game theory and computing pioneer, von Neumann, envisioned

reasoning in games without perfect information. ªReal life is not like that. Real life consists

of bluf®ng, of little tactics of deception, of asking yourself what is the other man going to

think I mean to do. And that is what games are about in my theory.º [Bronowski, 1973] One

game that fascinated von Neumann was poker, where players are dealt private cards and

take turns making bets or bluf®ng on holding the strongest hand, calling opponents’ bets, or

folding and giving up on the hand and the bets already added to the pot. Poker is a game

of imperfect information, where players’ private cards give them asymmetric information

about the state of game.

Heads-up no-limit Texas hold’em (HUNL) is a two-player version of poker in which

two cards are initially dealt face-down to each player, and additional cards are dealt face-up

in three subsequent rounds. No limit is placed on the size of the bets although there is an

overall limit to the total amount wagered in each game. AI techniques have previously

shown success in the simpler game of heads-up limit Texas hold’em, where all bets are of

a ®xed size resulting in just under 1014 decision points [Bowling et al., 2009, 2015]. By

comparison, computers have exceeded expert human performance in go [Silver et al., 2016],

a perfect information game with approximately 10170 decision points [Allis, 1994]. The

imperfect information game HUNL is comparable in size to go, with the number of decision

points exceeding 10160 [Johanson, 2013].

Imperfect information games require more complex reasoning than similarly sized

perfect information games. The correct decision at a particular moment depends upon the

probability distribution over private information that the opponent holds, which is revealed

through their past actions. However, how our opponent’s actions reveal that information

depends upon their knowledge of our private information and how our actions reveal it.

This kind of recursive reasoning is why one cannot easily reason about game situations in

isolation, which is at the heart of heuristic search methods for perfect information games.

Competitive AI approaches in imperfect information games typically reason about the entire

game and produce a complete strategy prior to play [Zinkevich et al., 2007, Gilpin et al.,

2007]. Counterfactual regret minimization (CFR) [Zinkevich et al., 2007, Burch et al., 2014,

Bowling et al., 2015] is one such technique that uses self-play to do recursive reasoning

through adapting its strategy against itself over successive iterations. If the game is too
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large to be solved directly, the common response is to solve a smaller, abstracted game. To

play the original game, one translates situations and actions from the original game to the

abstract game.

Although this approach makes it feasible for programs to reason in a game like HUNL, it

does so by squeezing HUNL’s 10160 situations down to the order of 1014 abstract situations.

Likely as a result of this loss of information, such programs are behind expert human play.

In 2015, the computer program Claudico lost to a team of professional poker players by

a margin of 91 mbb/g, which is a ªhuge margin of victoryº [Wood, 2015]. Furthermore,

it has been recently shown that abstraction-based programs from the Annual Computer

Poker Competition have massive flaws [Lisý and Bowling, 2017a]. Four such programs

(including top programs from the 2016 competition) were evaluated using a local best-

response technique that produces an approximate lower-bound on how much a strategy can

lose. All four abstraction-based programs are beatable by over 3,000 mbb/g, which is four

times as large as simply folding each game.

DeepStack takes a fundamentally different approach. It continues to use the recursive

reasoning of CFR to handle information asymmetry. However, it does not compute and

store a complete strategy prior to play and so has no need for explicit abstraction. Instead

it considers each particular situation as it arises during play, but not in isolation. It avoids

reasoning about the entire remainder of the game by substituting the computation beyond

a certain depth with a fast approximate estimate. This estimate can be thought of as

DeepStack’s intuition: a gut feeling of the value of holding any possible private cards in any

possible poker situation. Finally, DeepStack’s intuition, much like human intuition, needs

to be trained. We train it with deep learning using examples generated from random poker

situations. We show that DeepStack is theoretically sound, produces strategies substantially

more dif®cult to exploit than abstraction-based techniques, and defeats professional poker

players at HUNL with statistical signi®cance.

9.2 DeepStack

DeepStack is a general-purpose algorithm for a large class of sequential imperfect informa-

tion games. For clarity, we will describe its operation in the game of HUNL. The state of

a poker game can be split into the players’ private information, hands of two cards dealt

face down, and the public state, consisting of the cards laying face up on the table and the

sequence of betting actions made by the players. Possible sequences of public states in

the game form a public tree with every public state having an associated public subtree

(Fig. 9.1).

A player’s strategy de®nes a probability distribution over valid actions for each decision

point, where a decision point is the combination of the public state and the hand for the

acting player. Given a player’s strategy, for any public state one can compute the player’s

range, which is the probability distribution over the player’s possible hands given that the

public state is reached.

Fixing both players’ strategies, the utility for a particular player at a terminal public

state, where the game has ended, is a bilinear function of both players’ ranges using a payoff

matrix determined by the rules of the game. The expected utility for a player at any other

public state, including the initial state, is the expected utility over reachable terminal states

given the players’ ®xed strategies. A best-response strategy is one that maximizes a player’s

expected utility against an opponent strategy. In two-player zero-sum games, like HUNL, a

solution or Nash equilibrium strategy [Nash, 1950] maximizes the expected utility when

playing against a best-response opponent strategy. The exploitability of a strategy is the
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Figure 9.1: A portion of the public tree in HUNL. Nodes represent public states, whereas

edges represent actions: red and turquoise showing player betting actions, and green

representing public cards revealed by chance. The game ends at terminal nodes, shown as a

chip with an associated value. For terminal nodes where no player folded, the player whose

private cards form a stronger poker hand receives the value of the state.

difference in expected utility against its best-response opponent and the expected utility

under a Nash equilibrium.

The DeepStack algorithm seeks to compute and play a low-exploitability strategy for the

game, i.e., solve for an approximate Nash equilibrium. DeepStack computes this strategy

during play only for the states of the public tree that actually arise. Although computed

during play, DeepStack’s strategy is static, albeit stochastic, because it is the result of a

deterministic computation that produces a probability distribution over the available actions.

The DeepStack algorithm (Fig. 9.2) is composed of three ingredients: a sound local

strategy computation for the current public state, depth-limited lookahead using a learned

value function to avoid reasoning to the end of the game, and a restricted set of lookahead

actions. At a conceptual level these three ingredients describe heuristic search, which is

responsible for many of AI’s successes in perfect information games. Until DeepStack,

no theoretically sound application of heuristic search was known in imperfect information

games. The heart of heuristic search methods is the idea of ªcontinual re-searchingº, where

a sound local search procedure is invoked whenever the agent must act without retaining

any memory of how or why it acted to reach the current state. At the heart of DeepStack is

continual re-solving, a sound local strategy computation which only needs minimal memory

of how and why it acted to reach the current public state.

9.2.1 Continual re-solving

Suppose we have taken actions according to a particular solution strategy but then in some

public state forget this strategy. Can we reconstruct a solution strategy for the subtree without

having to solve the entire game again? We can, through the process of re-solving [Burch

et al., 2014]. We need to know both our range at the public state and a vector of expected

values achieved by the opponent under the previous solution for each opponent hand. With

these values, we can reconstruct a strategy for only the remainder of the game, which does

not increase our overall exploitability. Each value in the opponent’s vector is a counterfactual
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value, a conditional ªwhat-ifº value that gives the expected value if the opponent reaches

the public state with a particular hand. The CFR algorithm also uses counterfactual values,

and if we use CFR as our solver, it is easy to compute the vector of opponent counterfactual

values at any public state.

Re-solving, however, begins with a strategy, whereas our goal is to avoid ever main-

taining a strategy for the entire game. We get around this by doing continual re-solving:

reconstructing a strategy by re-solving every time we need to act; never using the strategy

beyond our next action. To be able to re-solve at any public state, we need only keep track of

our own range and a suitable vector of opponent counterfactual values. These values must be

an upper bound on the value the opponent can achieve with each hand in the current public

state, while being no larger than the value the opponent could achieve had they deviated

from reaching the public state. This is an important relaxation of the counterfactual values

typically used in re-solving, with a proof of suf®ciency included in our proof of Theorem 9.1

below.

At the start of the game, our range is uniform and the opponent counterfactual values

are initialized to the value of being dealt each private hand. When it is our turn to act we

re-solve the subtree at the current public state using the stored range and opponent values,

and act according to the computed strategy, discarding the strategy before we act again.

After each action, either by a player or chance dealing cards, we update our range and

opponent counterfactual values according to the following rules: (i) Own action: replace

the opponent counterfactual values with those computed in the re-solved strategy for our

chosen action. Update our own range using the computed strategy and Bayes’ rule. (ii)

Chance action: replace the opponent counterfactual values with those computed for this

chance action from the last re-solve. Update our own range by zeroing hands in the range

that are impossible given new public cards. (iii) Opponent action: no change to our range or

the opponent values are required.

These updates ensure the opponent counterfactual values satisfy our suf®cient conditions,

and the whole procedure produces arbitrarily close approximations of a Nash equilibrium

(see Theorem 9.1). Notice that continual re-solving never keeps track of the opponent’s range,

instead only keeping track of their counterfactual values. Furthermore, it never requires

knowledge of the opponent’s action to update these values, which is an important difference

from traditional re-solving. Both will prove key to making this algorithm ef®cient and

avoiding any need for the translation step required with action abstraction methods [Gilpin

et al., 2008, Schnizlein et al., 2009].

Continual re-solving is theoretically sound, but by itself impractical. While it does not

ever maintain a complete strategy, re-solving itself is intractable except near the end of

the game. In order to make continual re-solving practical, we need to limit the depth and

breadth of the re-solved subtree.

9.2.2 Limited depth lookahead via intuition

As in heuristic search for perfect information games, we would like to limit the depth of

the subtree we have to reason about when re-solving. However, in imperfect information

games we cannot simply replace a subtree with a heuristic or precomputed value. The

counterfactual values at a public state are not ®xed, but depend on how players play to

reach the public state, i.e., the players’ ranges [Burch et al., 2014]. When using an iterative

algorithm, such as CFR, to re-solve, these ranges change on each iteration of the solver.

DeepStack overcomes this challenge by replacing subtrees beyond a certain depth with

a learned counterfactual value function that approximates the resulting values if that public

state were to be solved with the current iteration’s ranges. The inputs to this function are the
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ranges for both players, as well as the pot size and public cards, which are suf®cient to specify

the public state. The outputs are a vector for each player containing the counterfactual

values of holding each hand in that situation. In other words, the input is itself a description

of a poker game: the probability distribution of being dealt individual private hands, the

stakes of the game, and any public cards revealed; the output is an estimate of how valuable

holding certain cards would be in such a game. The value function is a sort of intuition, a

fast estimate of the value of ®nding oneself in an arbitrary poker situation. With a depth limit

of four actions, this approach reduces the size of the game for re-solving from 10160 decision

points at the start of the game down to no more than 1017 decision points. DeepStack uses a

deep neural network as its learned value function, which we describe later.

9.2.3 Sound reasoning

DeepStack’s depth-limited continual re-solving is sound. If DeepStack’s intuition is ªgoodº

and ªenoughº computation is used in each re-solving step, then DeepStack plays an arbitrar-

ily close approximation to a Nash equilibrium.

Theorem 9.1. If the values returned by the value function used when the depth limit is

reached have error less than ϵ, and T iterations of CFR are used to re-solve, then the

resulting strategy’s exploitability is less than k1ϵ + k2/
√

T , where k1 and k2 are game-

speci®c constants. For the proof, see supplementary material.

9.2.4 Sparse lookahead trees

The ®nal ingredient in DeepStack is the reduction in the number of actions considered so

as to construct a sparse lookahead tree. DeepStack builds the lookahead tree using only

the actions fold (if valid), call, 2 or 3 bet actions, and all-in. This step voids the soundness

property of Theorem 9.1, but it allows DeepStack to play at conventional human speeds.

With sparse and depth-limited lookahead trees, the re-solved games have approximately 107

decision points, and are solved in under ®ve seconds using a single NVIDIA GeForce GTX

1080 graphics card. We also use the sparse and depth-limited lookahead solver from the start

of the game to compute the opponent counterfactual values used to initialize DeepStack’s

continual re-solving.

9.2.5 Relationship to heuristic search in perfect information games

There are three key challenges that DeepStack overcomes to incorporate heuristic search

ideas in imperfect information games. First, sound re-solving of public states cannot be

done without knowledge of how and why the players acted to reach the public state. Instead,

two additional vectors, the agent’s range and opponent counterfactual values, must be

maintained to be used in re-solving. Second, re-solving is an iterative process that traverses

the lookahead tree multiple times instead of just once. Each iteration requires querying the

evaluation function again with different ranges for every public state beyond the depth limit.

Third, the evaluation function needed when the depth limit is reached is conceptually more

complicated than in the perfect information setting. Rather than returning a single value

given a single state in the game, the counterfactual value function needs to return a vector

of values given the public state and the players’ ranges. Because of this complexity, to

learn such a value function we use deep learning, which has also been successful at learning

complex evaluation functions in perfect information games [Silver et al., 2016].
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Figure 9.2: DeepStack overview (A) DeepStack reasons in the public tree always producing

action probabilities for all cards it can hold in a public state. It maintains two vectors while

it plays: its own range and its opponent’s counterfactual values. As the game proceeds,

its own range is updated via Bayes’ rule using its computed action probabilities after it

takes an action. Opponent counterfactual values are updated as discussed under ªContinual

re-solvingº. To compute action probabilities when it must act, it performs a re-solve using

its range and the opponent counterfactual values. To make the re-solve tractable it restricts

the available actions of the players and lookahead is limited to the end of the round. During

the re-solve, counterfactual values for public states beyond its lookahead are approximated

using DeepStack’s learned evaluation function. (B) The evaluation function is represented

with a neural network that takes the public state and ranges from the current iteration as

input and outputs counterfactual values for both players (Fig. 9.3). (C) The neural network

is trained prior to play by generating random poker situations (pot size, board cards, and

ranges) and solving them to produce training examples. Complete pseudocode can be found

in supplementary material.

9.2.6 Relationship to abstraction-based approaches

Although DeepStack uses ideas from abstraction, it is fundamentally different from abstraction-

based approaches. DeepStack restricts the number of actions in its lookahead trees, much

like action abstraction [Gilpin et al., 2008, Schnizlein et al., 2009]. However, each re-solve

in DeepStack starts from the actual public state and so it always perfectly understands the

current situation. The algorithm also never needs to use the opponent’s actual action to

obtain correct ranges or opponent counterfactual values, thereby avoiding translation of

opponent bets. We used hand clustering as inputs to our counterfactual value functions,

much like explicit card abstraction approaches [Gilpin et al., 2007, Johanson et al., 2013].

However, our clustering is used to estimate counterfactual values at the end of a lookahead

tree rather than limiting what information the player has about their cards when acting. We

later show that these differences result in a strategy substantially more dif®cult to exploit.

9.3 Deep Counterfactual Value Networks

Deep neural networks have proven to be powerful models and are responsible for major

advances in image and speech recognition[Krizhevsky et al., 2012, Hinton et al., 2012],

automated generation of music [Oord et al., 2016], and game-playing [Mnih et al., 2015,

Silver et al., 2016]. DeepStack uses deep neural networks with a tailor-made architecture,

as the value function for its depth-limited lookahead (Fig. 9.3). Two separate networks are

trained: one estimates the counterfactual values after the ®rst three public cards are dealt

(flop network), the other after dealing the fourth public card (turn network). An auxiliary

91



Input
Bucket

ranges

7 Hidden Layers
• fully connected

• linear, PReLU

Output
Bucket

values

F E E D F O R W A R D
N E U R A L  N E T

Z E R O - S U M  
N E U R A L  N E T

Output
Counterfactual

values

C A R D  
C O U N T E R F A C T U A L

V A L U E S

Zero-sum
Error

B U C K E T I N G
( I N V E R S E )

B U C K E T I N G

C A R D  
R A N G E S  

500500500500500500500
1000

1
P2

P1

P1

P2

1326

P1
P2

Pot
Public

1326

22100

1

1000

P2
P1

1000

P2
P1

Figure 9.3: Deep counterfactual value network The inputs to the network are the pot size,

public cards, and the player ranges, which are ®rst processed into hand clusters. The output

from the seven fully connected hidden layers is post-processed to guarantee the values

satisfy the zero-sum constraint, and then mapped back into a vector of counterfactual values.

network for values before any public cards are dealt is used to speed up the re-solving for

early actions.

9.3.1 Architecture

DeepStack uses a standard feedforward network with seven fully connected hidden layers

each with 500 nodes and parametric recti®ed linear units [He et al., 2015] for the output.

This architecture is embedded in an outer network that forces the counterfactual values to

satisfy the zero-sum property. The outer computation takes the estimated counterfactual

values, and computes a weighted sum using the two players’ input ranges resulting in

separate estimates of the game value. These two values should sum to zero, but may not.

Half the actual sum is then subtracted from the two players’ estimated counterfactual values.

This entire computation is differentiable and can be trained with gradient descent. The

network’s inputs are the pot size as a fraction of the players’ total stacks and an encoding of

the players’ ranges as a function of the public cards. The ranges are encoded by clustering

hands into 1,000 buckets, as in traditional abstraction methods [Shi and Littman, 2001,

Gilpin et al., 2007, Johanson et al., 2013], and input as a vector of probabilities over the

buckets. The output of the network are vectors of counterfactual values for each player and

hand, interpreted as fractions of the pot size.

9.3.2 Training

The turn network was trained by solving 10 million randomly generated poker turn games.

These turn games used randomly generated ranges, public cards, and a random pot size. The

target counterfactual values for each training game were generated by solving the game

with players’ actions restricted to fold, call, a pot-sized bet, and an all-in bet, but no card

abstraction. The flop network was trained similarly with 1 million randomly generated flop

games. However, the target counterfactual values were computed using our depth-limited

solving procedure and our trained turn network. The networks were trained using the Adam
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Figure 9.4: Performance of professional poker players against DeepStack Performance

estimated with AIVAT along with a 95% con®dence interval. The solid bars at the bottom

show the number of games the participant completed.

gradient descent optimization procedure[Kingma and Ba, 2014] with a Huber loss [Huber,

1964].

9.4 Evaluating DeepStack

We evaluated DeepStack by playing it against a pool of professional poker players recruited

by the International Federation of Poker. Thirty-three players from 17 countries were

recruited. Each was asked to complete a 3,000 game match over a period of four weeks

between November 7th and December 12th, 2016. Cash incentives were given to the top

three performers ($5,000, $2,500, and $1,250 CAD).

Evaluating performance in HUNL is challenging because of the large variance in per-

game outcomes owing to randomly dealt cards and stochastic choices made by the players.

The better player may lose in a short match simply because they were dealt weaker hands or

their rare bluffs were made at inopportune times. As seen in the Claudico match [Wood,

2015], even 80,000 games may not be enough to statistically signi®cantly separate players

whose skill differs by a considerable margin. We evaluate performance using AIVAT [Burch

et al., 2018], a provably unbiased low-variance technique for evaluating performance in

imperfect information games based on carefully constructed control variates. AIVAT requires

an estimated value of holding each hand in each public state, and then uses the expected

value changes that occur due to chance actions and actions of players with known strategies

(i.e., DeepStack) to compute the control variate. DeepStack’s own value function estimate is

perfectly suited for AIVAT. Indeed, when used with AIVAT we get an unbiased performance

estimate with an impressive 85% reduction in standard deviation. Thanks to this technique,

we can show statistical signi®cance in matches with as few as 3,000 games.

In total 44,852 games were played by the thirty-three players with 11 players completing

the requested 3,000 games. Over all games played, DeepStack won 492 mbb/g. This is over

4 standard deviations away from zero, and so, highly signi®cant. Note that professional

poker players consider 50 mbb/g a sizable margin. Using AIVAT to evaluate performance,

we see DeepStack was overall a bit lucky, with its estimated performance actually 486
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Table 9.1: Exploitability bounds from Local Best Response. For all listed programs, the

value reported is the largest estimated exploitability when applying LBR using a variety of

different action sets. ‡: LBR was unable to identify a positive lower bound for DeepStack’s

exploitability.

Program LBR (mbb/g)

Hyperborean (2014) 4675

Slumbot (2016) 4020

Act1 (2016) 3302

Always Fold 750

DeepStack 0 ‡

mbb/g. However, as a lower variance estimate, this margin is over 20 standard deviations

from zero.

The performance of individual participants measured with AIVAT is summarized in

Figure 9.4. Amongst those players that completed the requested 3,000 games, DeepStack is

estimated to be winning by 394 mbb/g, and individually beating 10 out of 11 such players

by a statistically signi®cant margin. Only for the best performing player, still estimated to be

losing by 70 mbb/g, is the result not statistically signi®cant. More details on the participants

and their results are presented in supplementary material.

9.4.1 Exploitability

The main goal of DeepStack is to approximate Nash equilibrium play, i.e., minimize

exploitability. While the exact exploitability of a HUNL poker strategy is intractable

to compute, the recent local best-response technique (LBR) can provide a lower bound

on a strategy’s exploitability [Lisý and Bowling, 2017a] given full access to its action

probabilities. LBR uses the action probabilities to compute the strategy’s range at any public

state. Using this range it chooses its response action from a ®xed set using the assumption

that no more bets will be placed for the remainder of the game. Thus it best-responds locally

to the opponent’s actions, providing a lower bound on their overall exploitability. As already

noted, abstraction-based programs from the Annual Computer Poker Competition are highly

exploitable by LBR: four times more exploitable than folding every game (Table 9.1).

However, even under a variety of settings, LBR fails to exploit DeepStack at all Ð itself

losing by over 350 mbb/g to DeepStack. Either a more sophisticated lookahead is required

to identify DeepStack’s weaknesses or it is substantially less exploitable.

9.5 Discussion

DeepStack defeated professional poker players at HUNL with statistical signi®cance, a

game that is similarly sized to go, but with the added complexity of imperfect information.

It achieves this goal with little domain knowledge and no training from expert human games.

The implications go beyond being a milestone for arti®cial intelligence. DeepStack repre-

sents a paradigm shift in approximating solutions to large, sequential imperfect information

games. Abstraction and offline computation of complete strategies has been the dominant

approach for almost 20 years [Shi and Littman, 2001, Billings et al., 2003b, Sandholm,

2010]. DeepStack allows computation to be focused on speci®c situations that arise when

making decisions and the use of automatically trained value functions. These are two
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of the core principles that have powered successes in perfect information games, albeit

conceptually simpler to implement in those settings. As a result, the gap between the largest

perfect and imperfect information games to have been mastered is mostly closed.

With many real world problems involving information asymmetry, DeepStack also has

implications for seeing powerful AI applied more in settings that do not ®t the perfect

information assumption. The abstraction paradigm for handling imperfect information

has shown promise in applications like defending strategic resources [Lisý et al., 2016]

and robust decision making as needed for medical treatment recommendations [Chen and

Bowling, 2012]. DeepStack’s continual re-solving paradigm will hopefully open up many

more possibilities.

9.6 Author’s contributions

I contributed signi®cantly to formulation of the original idea, implementation of the algo-

rithm, experiments, and the statistical evaluation of the matches against human professionals.
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10. Player of Games

This chapter is based on [Schmid et al., 2021]

10.1 Introduction

In the 1950s, Arthur L. Samuel developed a Checkers-playing program that employed what

is now called minimax search (with alpha-beta pruning) and ªrote learningº to improve its

evaluation function via self-play [Samuel, 1959]. This investigation inspired many others,

and ultimately Samuel co-founded the ®eld of arti®cial intelligence [Russell and Norvig,

2003] and popularized the term ªmachine learningº. A few years ago, the world witnessed

a computer program defeat a long-standing professional at the game of Go [Silver et al.,

2016]. AlphaGo also combined learning and search. Many similar achievements happened

in between such as the race for super-human chess leading to DeepBlue [Hsu, 2006] and

TD-Gammon teaching itself to play master-level performance in Backgammon through

self-play [Tesauro, 1994], continuing the tradition of using games as canonical markers of

mainstream progress across the ®eld.

Throughout the stream of successes, there is an important common element: the focus on

a single game. Indeed, DeepBlue could not play Go, and Samuel’s program could not play

chess. Likewise, AlphaGo could not play chess; however its successor AlphaZero [Silver

et al., 2018] could, and did. AlphaZero demonstrated that a single algorithm could master

three different perfect information games using a simpli®cation of AlphaGo’s approach, and

with minimal human knowledge. Despite this success, AlphaZero could not play poker, and

the extension to imperfect information games was unclear.

Meanwhile, approaches taken to achieve super-human poker AI were signi®cantly dif-

ferent. Strong poker play has relied on game-theoretic reasoning to ensure that private

information is concealed effectively. Initially, super-human poker agents were based pri-

marily on computing approximate Nash equilibria offline [Johanson, 2016]. Search was

then added and proved to be a crucial ingredient to achieve super-human success in no-limit

variants [Moravčı́k et al., 2017, Brown and Sandholm, 2018, 2019]. Training for other large

games have also been inspired by game-theoretic reasoning and search, such as Hanabi [Bard

et al., 2020, Lerer et al., 2020], The Resistance [Serrino et al., 2019], Bridge [Lockhart et al.,

2020], AlphaStar [Vinyals et al., 2019], and (no-press) Diplomacy [Anthony et al., 2020,

Gray et al., 2020, Bakhtin et al., 2021]. Here again, however, despite remarkable success:

each advance was still on a single game, with some clear uses of domain-speci®c knowledge

and structure to reach strong performance.

In this chapter, we introduce Player of Games (POG), a new algorithm that generalizes

the class of games in which strong performance can be achieved using self-play learning,

search, and game-theoretic reasoning. POG uses growing-tree counterfactual regret mini-

mization (GT-CFR): an anytime local search that builds subgames non-uniformly, expanding

the tree toward the most relevant future states while iteratively re®ning values and policies.

In addition, POG employs sound self-play: a learning procedure that trains value-and-policy

networks using both game outcomes and recursive sub-searches applied to situations that

arose in previous searches.

Player of Games is the ®rst algorithm to achieve strong performance in challenge

domains with both perfect and imperfect information Ð an important step towards truly

general algorithms that can learn in arbitrary environments. Applications of traditional

search suffer well-known problems in imperfect information games [Russell and Norvig,

96



2003]. Evaluation has remained focused on single domains (e.g. poker) despite recent

progress toward sound search in imperfect information games [Moravčı́k et al., 2017, Brown

and Sandholm, 2017, Šustr et al., 2020]. Player of Games ®lls this gap, using a single

algorithm with minimal domain-speci®c knowledge. Its search is sound [Šustr et al., 2020]

across these fundamentally different game types: it is guaranteed to ®nd an approximate

Nash equilibrium by re-solving subgames to remain consistent during online play, and

yielding low exploitability in practice in small games where exploitability is computable.

POG demonstrates strong performance across four different games: two perfect information

(chess and Go) and two imperfect information (poker and Scotland Yard). Finally, unlike

poker, Scotland Yard has signi®cantly longer search horizons and game lengths, requiring

long-term planning.

10.2 Background and Terminology

We start with necessary background and notation to describe the main algorithm and results.

We relate our algorithm to other approaches in Section 10.5. Here, we give a concise

introduction to necessary concepts, which are based on the Factored-Observation Stochastic

Games (FOSG) formalism. For further details on the formalism, see [Kovařı́k et al., 2021,

Schmid, 2021].

A game between two players starts in a speci®c world state winit and proceeds to the

successor world states w ∈ W as a result of players choosing actions a ∈ A until the game

is over when a terminal state is reached. At any world state w, we will use the notation

A(w) ⊆ A to refer to those actions that are available, or legal, in world state w. Sequences

of actions taken along the course of the game are called histories and denoted h ∈ H , with

h′ ⊑ h denoting a pre®x history (subsequence). At terminal histories, z ⊂ H , each player i
receives a utility ui(z).

An information state (private state) is a state with respect to one player’s information.

Speci®cally, si ∈ Si for player i is a set of histories that are indistinguishable due to missing

information. A simple example is a speci®c decision point in poker where player i does not

know the opponent’s private cards; the histories in the information state are different only

r

h0

h1

h2

h3

h4

s0

s1

s2

s0 s1

Figure 10.1: An example structure of pub-

lic belief state β = (spub, r). spub trans-

lates to two sets of information states, one

for player 1, S1(spub) = ¶s̄0, s̄1♢, and

one for player 2, S2(spub) = ¶s0, s1, s2♢.
Each information state includes different

partitions of possible histories. Finally r
contains reach probabilities for informa-

tion states for both players.

Figure 10.2: A depiction of a public belief

state in Scotland Yard: circles are locations,

edges are transportation links, and red bars

indicate beliefs of the private (unrevealed)

information state of Mr. X’s location.
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in the chance event outcomes that determine the opponent’s private cards, since everything

else is public knowledge. A player i plays a policy πi : Si → ∆(A), where ∆(A) denotes

the set of probability distributions over actions A. The goal of each player is to ®nd a policy

that maximizes their own expected utility.

Every time a player takes an action, each player gets a private observation

Opriv(i)(w, a, w′) and a public observation Opub(w, a, w′) as a result of applying action

a, changing the game’s state from w to w′. A public state spub = spub(h) ∈ Spub is the

sequence of public observations encountered along the history h. For example, a public state

in Texas hold’em poker is represented by initial public information (stack sizes and antes),

the betting history, and any publicly revealed board cards. Let Si(spub) be the set of possible

information states for player i given spub: each information state si ∈ Si(spub) is consistent

with public observations in spub but has different sequences of private observations. For

example, in poker the information states would contain the private cards of player i. A full

example of a FOSG is shown in Appendix F.1.

A public belief state β = (spub, r), where the range (or beliefs) r ∈ ∆(S1(spub)) ×
∆(S2(spub)) is a pair of distributions over possible information states for both players

representing the beliefs over information states in spub. A basic depiction of the various

components of a public belief state is depicted in Figure 10.1. In the game of Scotland

Yard, for instance, the information states correspond to the location of the evader (Mr. X). A

speci®c example is shown in Figure 10.2. The true location of the evader is hidden but can

be one of four different locations, and detectives have a stronger suspicion that the evader is

on location 63 than 35, 62, or 78. In Scotland Yard, one of the distributions in r is a point

mass because the detectives do not have any private information hidden from Mr. X.

Suppose players use joint policy π = (π1, π2). Denote the expected utility to player

to player i as ui(π1, π2) and −i as the opponent of player i. Recall that best response

policy is any policy πb
i that achieves maximal utility against some π−i: ui(π

b
i , π−i) =

maxπ′
i
ui(π

′
i, π−i). A joint policy π is a Nash equilibrium if and only if π1 is a best

response to π2 and π2 is a best response to π1. There are also approximate equilibria: π
is an ϵ-Nash equilibrium if and only if ui(π

b
i , π−i) − ui(πi, π−i) ≤ ϵ for all players i. In

two-player zero-sum games, Nash equilibria are optimal because they maximize worst-case

utility guarantees for both players. Also, equilibrium strategies are interchangeable: if πA

and πB are Nash equilibria, then (πA
1 , πB

2 ) and (πB
1 , πA

2 ) are also both equilibria. Hence, the

agent’s goal is to compute one such optimal (or approximately optimal) equilibrium strategy.

10.2.1 Tree Search and Machine Learning

The ®rst major milestones in the ®eld of AI were obtained by ef®cient search techniques

inspired by the minimax theorem [Samuel, 1959, Hsu, 2006]. In a two-player zero-sum game

with perfect information, the approach uses depth-limited search starting from the current

world state wt, along with a heuristic evaluation function to estimate value of the states

beyond the depth limit, h(wt+d) and game-theoretic reasoning to back up values [Knuth

and Moore, 1975]. Researchers developed signi®cant search enhancements [Marsland and

Campbell, 1981, Schaeffer and Plaat, 1996] which greatly improved performance, leading

to IBM’s super-human DeepBlue chess program [Hsu, 2006].

This classical approach was, however, unable to achieve super-human performance in

Go, which has signi®cantly larger branching factor and state space complexity than chess.

Prompted by the challenge of Go [Gelly et al., 2012], researchers proposed Monte Carlo

tree search (MCTS) [Kocsis and Szepesvári, 2006, Coulom, 2007]. Unlike minimax search,

MCTS builds trees via simulations, starting with an empty tree rooted by wt and expanding

the tree by adding the ®rst state encountered in simulated trajectories not currently in the tree,
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and ®nally estimating values from rollouts to the end of the game. MCTS led to signi®cantly

stronger play in Go and other games [Browne et al., 2012], attaining 6 dan amateur level in

Go. However, heuristics in the form of domain knowledge were still necessary to achieve

these milestones.

In AlphaGo [Silver et al., 2016], value functions and policies are incorporated, learned

initially from human expert data, and then improved via self-play. A deep network approxi-

mates the value function and a prior policy helps guide the selection of actions during the

tree search. The approach was the ®rst to achieve super-human level play in Go [Silver

et al., 2016]. AlphaGo Zero removed the initial training from human data and Go-speci®c

features [Silver et al., 2017b]. AlphaZero reached state-of-the-art performance in Chess and

Shogi as well as Go, using minimal domain knowledge [Silver et al., 2018].

POG, like AlphaZero, combines search and learning from self-play, using minimal

domain knowledge. Unlike MCTS, however, which is not sound for imperfect information

games, POG’s search algorithm is based on counterfactual regret minimization and is sound

for both perfect and imperfect information games.

10.2.2 Game-Theoretic Reasoning and Counterfactual Regret Mini-

mization

In imperfect information games, the choice of strategies that arise from hidden information

can be crucial to determining each player’s expected rewards. Simply playing too predictably

can be problematic: in the classic example game of Rock, Paper, Scissors, the only thing a

player does not know is the choice of the opponent’s action, however this information fully

determines their achievable reward. A player choosing to always play one action (e.g. rock)

can be easily beaten by another playing the best response (e.g. paper). The Nash equilibrium

plays each action with equal probability, which minimizes the bene®t of any particular

counter-strategy. Similarly, in poker, knowing the opponent’s cards or their strategy could

yield signi®cantly higher expected reward, and in Scotland Yard, players have a higher

chance of catching the evader if their current location is known. In these examples, players

can exploit any knowledge of hidden information to play the counter-strategy resulting

in higher reward. Hence, to avoid being exploited, players must act in a way that does

not reveal their own private information. We call this general behavior game-theoretic

reasoning because it emerges as the result of computing (approximate) minimax-optimal

strategies. Game-theoretic reasoning has been paramount to the success of competitive

poker AI over the last 20 years.

One algorithm for computing approximate optimal strategies is counterfactual regret

minimization (CFR) [Zinkevich et al., 2007]. CFR is a self-play algorithm that produces

policy iterates πt
i(s) for each player i at each of their information states s in a way that

minimizes long-term average regret. As a result, the average policy over T iterations, π̄T ,

employed by CFR in self-play converges to an ϵ-Nash equilibrium, at a rate of O(1/
√

T ).
At each iteration, t, counterfactual values vi(s, a) are computed for each action a ∈ A(s)
and immediate regrets for not playing a, r(s, a) = vi(s, a) −∑︁a∈A(s) π(s, a)vi(s, a), are

computed and tabulated in a cumulative regret table storing RT (s, a) =
∑︁T

t=1 rt(s, a). A

new policy is computed using regret-matching [Hart and Mas-Colell, 2000]: πt+1(s) =
[Rt(s,a)]+∑︁
a

[Rt(s,a)]+
, where [x]+ = max(x, 0), and reset to uniform if all the regrets are non-positive.

CFR+ [Tammelin et al., 2015] is a successor of CFR that played a key role in fully

solving the game of heads-up limit hold’em poker, the largest imperfect information game

to be solved to date [Bowling et al., 2015]. A main component of CFR+ is a different policy

update mechanism, regret-matching+, which de®nes cumulative values slightly differently:
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Qt(s, a) = (Qt−1(s, a) + rt(s, a))+, and πt+1(s, a) = Qt(s, a)/
∑︁

b Qt(s, b).
A common form of CFR (or CFR+) is one that traverses the public tree, rather than the

classical extensive-form game tree. Quantities required to compute counterfactual values,

such as each player’s probabilities of reaching each information state under their policy

(called their range) are maintained as beliefs. Finally, leaf nodes can be evaluated directly

using the ranges, chance probabilities, and utilities (often more ef®ciently [Johanson et al.,

2012]).

10.2.3 Imperfect Information Search, Decomposition, and Re-Solving

Solution concepts like Nash equilibria and minimax are de®ned over joint policies. The

policy is ®xed during play. Search could instead be described as a process, which might

return different action distributions at subsequent visits to the same state. In search-based

decision-making, new solutions are computed at the decision-time. Each state could depend

on the past game-play, time limits, and samples of stochastic (chance) events, which

introduces important subtleties such as solution compatibility across different searches [Šustr

et al., 2020].

CFR has been traditionally used as a solver, computing entire policies via self-play. Each

iteration traverses the entire game tree, recursively computing values for information states

from other values at subgames deeper in the tree. Suppose one wanted a policy for a part

of the game up to some depth d > 0. If there was an oracle to compute the values at depth

d, then each iteration of CFR could be run to depth d and query the oracle to return the

values. As a result, the policies would not be available at depths d′ > d. Summarizing the

policies below depth d by a set of values which can be used to reconstruct policies at depth

d and beyond is the basis of decomposition in imperfect information games [Burch et al.,

2014]. A subgame in an imperfect information game is a game rooted at a public state spub.

In order for a subgame to be a proper game, it is paired with a belief distribution r over

initial information states, s ∈ Si(spub). This is a strict generalization of subgames in perfect

information games, where every public state has exactly one information state (which is, in

fact, no longer private as a result) and a single belief with probability 1.

Subgame decomposition has been a crucial component of most recent developments

of poker AI that scale to large games such as no-limit Texas hold’em [Moravčı́k et al.,

2017, Brown and Sandholm, 2018, Brown et al., 2020]. Subgame decomposition enables

local search to re®ne the policy during play analogously to the classical search algorithms

in perfect information games and traditional Bellman-style bootstrapping to learn value

functions [Moravčı́k et al., 2017, Serrino et al., 2019, Zarick et al., 2020, Brown et al., 2020].

Speci®cally, a counterfactual value network (CVN) represented by parameters θ encodes

the value function vθ(β) = ¶vi(si)♢si∈Si(spub),i∈¶1,2♢, where β includes player’s beliefs over

information states for the public information at spub. The function vθ can then be used in

place of the oracles mentioned above to summarize values of the subtrees below spub. An

example of depth-limited CFR solver using decomposition is shown in Figure 10.3.

Safe re-solving is a technique that generates subgame policies from only summary

information of a previous (approximate) solution: a player’s range and their opponent’s

counterfactual values. This is done by constructing an auxiliary game with speci®c con-

straints. The subgame policies in the auxiliary game are generated in a way that preserves

the exploitability guarantees of the original solve, so they can replace the original policies in

the subgame. Thorough examples of the auxiliary game construction are found in [Burch

et al., 2014] and [Brown and Sandholm, 2017, Section 4.1].

Continual re-solving is an analogue of classical game search, adapted to imperfect

information games, that uses repeated applications of safe re-solving to play an episode of a
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Figure 10.3: An example game with two speci®c subgames shown. Standard CFR would

require traversing all the subgames. Depth-limited CFR decomposes the solve into running

down to depth d = 2 and using v = vθ(β) to represent the second subgame’s values. On

the downward pass, ranges r are formed from policy reach probabilities. Values are passed

back up to tabulate accumulating regrets. Re-solving a subgame would require construction

of an auxiliary game [Burch et al., 2014] (not shown).

game [Moravčı́k et al., 2017]. It starts by solving a depth-limited game tree rooted at the

beginning of the game, and search is a re-solving step. As the game progresses, for every

subsequent decision at some information state si, continual re-solving will re®ne the current

strategy by re-solving at si. Like other search methods, it is using additional computation

to more thoroughly explore a speci®c situation encountered by the player. The continual

re-solving method of [Moravčı́k et al., 2017] uses a few properties of poker which are not

found in other games like Scotland Yard, so we use a more general re-solving method which

can be applied to a broader class of games. We discuss the details of this more general

re-solving variant in Appendix F.2.1.

10.3 Player of Games

We now describe our main algorithm. As POG has several components, we describe them

each individually ®rst, and then describe how they are all combined toward the end of the

section.

For clarity, many of the details (including full pseudocode) are presented in Appendix F.2.

10.3.1 Counterfactual Value-and-Policy Networks

The ®rst major component of POG is a counterfactual value-and-policy network (CVPN)

with parameters θ, depicted in Figure 10.4. These parameters represent a function fθ(β) =
(v, p), where outputs v are counterfactual values (one per information state per player), and

prior policies p, one per information state for the acting player, in the public state spub(h) at

some history of play h.

In our experiments, we use standard feed-forward networks and residual networks. The

details of the architecture are described in Section F.2.3.
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Figure 10.4: A counterfactual value-and-policy network (CVPN). Each query, β, to the

network includes beliefs r and an encoding of spub to get the counterfactual values v for both

players and policies p for the acting player in each information state si ∈ spub(h), producing

outputs fθ. Since players may have different actions spaces (as in for example, Scotland

Yard) there are two sets of policy outputs: one for each player, and p refers to the one for

the acting player at spub only (depicted as player 1 in this diagram by greying out player 2’s

policy output).

10.3.2 Search via Growing-Tree CFR

Growing-tree CFR (GT-CFR) is a new algorithm that runs a CFR variant on a public game

tree that is incrementally grown over time. GT-CFR starts with an initial tree, L0, containing

β and all of its child public states. Then each iteration, t, of GT-CFR consists of two phases:

1. The regret update phase (described in detail in subsection 10.3.2) runs several public

tree CFR updates on the current tree Lt.

2. The expansion phase (described in detail in subsection 10.3.2) expands Lt by adding

new public states via simulation-based expansion trajectories, producing a new larger

tree Lt+1.

When reporting the results we use the notation POG(s, c) for POG running GT-CFR with

s total expansion simulations, and c expansion simulations per regret update phase, so the

total number of GT-CFR iterations is then s
⌈c⌉

. For example, POG(8000, 10) refers to 8000

expansion simulations at 10 expansions per regret update (800 GT-CFR iterations). The c
can be fractional, so for example, 0.1 indicates a new node every 10 regret update phases.

Figure 10.5 depicts the whole GT-CFR cycle. We chose this speci®c notation to directly

compare total expansion simulations, s, to AlphaZero.

The Regret Update Phase of Growing-Tree CFR

The regret update phase runs
⌈︂

1
c

⌉︂
updates (iterations) of public tree CFR on Lt using

simultaneous updates, regret-matching+, and linearly-weighted policy averaging [Tammelin

et al., 2015]. At public tree leaf nodes, a query is made to the CVPN at belief state β′,
whose values fθ(β′) = (v, p) are used as estimates of counterfactual values for the public

subgame rooted at β′.
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Figure 10.5: Overview of phases in one iteration of Growing-Tree CFR. The regret update

phase propagates beliefs down the tree, obtains counterfactual values from the CPVN at leaf

nodes (or from the environment at terminals), and passes back counterfactual values to apply

the CFR update. The expansion phase simulates a trajectory from the root to leaf, adding

public states to the tree. In this case the trajectory starts in the public belief state spub by

sampling the information state s0, after that the sampled action a0 leads to the information

state s0
0 in public state s0

pub ®nally the action a1 leads to a new public state that is added to

the tree.

The Expansion Phase of Growing-Tree CFR

In the expansion phase, new public tree nodes are added to L. Search statistics, initially

empty, are maintained over information states si, accumulated over all expansion phases

within the same search. At the start of each simulation, a information state si is sampled

from the beliefs in βroot. Then, a world state wroot is sampled from si, with associated

history hroot. Actions are selected according to a mixed policy that takes into account

learned values (via πPUCT(si(h))) as well as the currently active policy (πCFR(si(h))) from

search: πselect(si(h)) = 1
2
πPUCT(si(h)) + 1

2
πCFR(si(h)). The ®rst policy is determined by

PUCT [Silver et al., 2016] using counterfactual values vi(si, a) normalized by the sum of

the opponent’s reach probability at si to resemble state-conditional action values, and the

prior policy p obtained from the queries. The second is simply CFR’s current policy at si(h).

As soon as the simulation encounters a information state si ∈ spub such that spub ̸∈ L, the

simulation ends, spub is added to L, and visit counts are updated along nodes visited during

the trajectory. Similarly to AlphaZero [Silver et al., 2018], virtual losses [Segal, 2010] are

added to the PUCT statistics when doing ⌈c⌉ simulations inside one GT-CFR iteration.

AlphaZero always expands a single action/node at the end of the iteration (the action with

the highest UCB score). Optimal policies in perfect information games can be deterministic

and thus expanding a single action/node is suf®cient. In imperfect information games,

optimal policies might be stochastic, having non-zero probability over multiple actions (the

number of such actions is then referred to as the support size). There is a direct link between

the level of uncertainty in the game (in terms of information states per public state) and

the support size [Schmid et al., 2014]. In other words, the number of actions potentially

required by an optimal policy is a function of the number of information states per public

state, and we refer to this number as the minimum support size k. Rather than expanding

a single action, POG thus expands the top k actions as ranked by the prior. All the public

states corresponding to the expanded actions are then added to the tree (together with all the
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actions leading to those public states). When POG expands a previously expanded node,

only a single action is additionally expanded as the minimum support size requirement is

already satis®ed. Note that for perfect information games, the expansion acts the same as

AlphaZero as the support size k = 1 and thus a single action having the highest prior is

added.

Convergence Guarantees

Growing the tree in GT-CFR allows the search to selectively focus on parts of the space that

are important for local decisions. Starting with a small tree and adding nodes over time does

not have an additional cost in terms of convergence:

Theorem 10.1. Let Lt be the public tree at time t. Assume public states are never removed

from the lookahead tree, so Lt ⊆ Lt+1. For any given tree L, let N (L) be the interior of

the tree: all non-leaf, non-terminal public states where GT-CFR generates a policy. Let

F(L) be the frontier of L, containing the non-terminal leaves where GT-CFR uses ϵ-noisy

estimates of counterfactual values. Let U be the maximum difference in counterfactual value

between any two strategies, at any information state, and A be the maximum number of

actions at any information state. Then, the regret at iteration T for player i is bounded:

RT,full
i ≤

T∑︂

t=1

♣F(Lt)♣ϵ +
∑︂

spub∈N (LT )

♣Si(spub)♣U
√

AT

The regret RT,full in Theorem 10.1 is the gap in performance between GT-CFR iterations

and any possible strategy. Theorem 10.1 shows that the average policy returned by GT-

CFR converges towards a Nash equilibrium at a rate of 1/
√

T , but with some minimum

exploitability due to ϵ-error in the value function. There is also no additional cost when

using GT-CFR as the game-solving algorithm for each re-solving search step in continual

re-solving:

Theorem 10.2. Assume we have played a game using continual re-solving, with one initial

solve and D re-solving steps. Each solving or re-solving step ®nds an approximate Nash

equilibrium through T iterations of GT-CFR using an ϵ-noisy value function, public states

are never removed from the lookahead tree, the maximum interior size
∑︁

spub∈N (LT ) ♣Si(spub)♣
of all lookahead trees is bounded by N , the sum of frontier sizes across all lookahead trees

is bounded by F , the maximum number of actions at any information sets is A, and the

maximum difference in values between any two strategies is U . The exploitability of the ®nal

strategy is then bounded by (5D + 2)
(︂
Fϵ + NU

√︂
A
T

)︂
.

Theorem 10.2 is similar to Theorem 1 of [Moravčı́k et al., 2017], adapted to GT-CFR

and using a more detailed error model which can more accurately describe value functions

trained on approximate equilibrium strategies. It shows that continual re-solving with

GT-CFR has the general properties we might desire: exploitability decreases with more

computation time and decreasing value function error, and does not grow uncontrollably

with game length. Proofs of the theorems are presented in Appendix F.5.

10.3.3 Data Generation via Sound Self-play

Player of Games generates episodes of data in self-play by running searches at each decision

point. Each episode starts at the initial history h0 corresponding to the start of the game,

and produces a sequence of histories (h0, h1, · · · ). At time t, the agent runs a local search
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and then selects an action at, and the next history ht+1 is obtained from the environment by

taking action at at ht. Data for training the CVPN is collected via resulting trajectories and

the individual searches.

When generating data for training the CVPN, it is important that searches performed at

different public states be consistent with both the CVPN represented by θ and with searches

made at previous public states along the same trajectory (for example, two searches should

not be computing parts of two different optimal policies). This is a critical requirement for

sound search [Burch et al., 2014, Moravčı́k et al., 2017, Šustr et al., 2020], and we refer to

the process of a sound search algorithm generating data in self-play as sound self-play.

To achieve sound self-play, searches performed during data generation run GT-CFR on

the standard safe resolving auxiliary game (as described in Section 10.2.3). The auxiliary

game includes an option at the initial decision for the opponent to decide to enter the

subgame, or take the alternative values returned by fθ(β). For a detailed construction of this

resolving process, see Section F.2.1.

10.3.4 Training Process

The quality of the policies produced by GT-CFR and data generated by sound self-play

depends critically on the values returned by the CVPN. Hence, it is important for the

estimates to be accurate in order to produce high-performance searches and generate high-

quality data. In this subsection, we describe the procedure we use to train the CVPN. The

process is summarized in Figure 10.6.
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Figure 10.6: POG Training Process. Actors collect data via sound self-play and trainers run

separately over a distributed network. (A) Each search produces a number of CVPN queries

with input β. (B) Queries are added to a query buffer and subsequently solved by a solver

that studies the situation more closely via another invocation of GT-CFR. During solving,

new recursive queries might be added back to the query buffer; separately the network is (C)

trained on minibatches sampled from the replay buffer to predict values and policy targets

computed by the solver.

Query Collection

As described in sections 10.3.2 and 10.3.3, episodes are generated by each player running

searches of GT-CFR from the current public state. Each search produces a number of

network queries from public tree leaf nodes β (depicted as pink nodes in Figure 10.6).
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The training process improves the CVPN via supervised learning. Values are trained

using Huber loss [Huber, 1964] based on value targets and the policy loss is cross entropy

with respect to a target policy. Value and policy targets are added to a sliding window data

set of training data that is used to train the CVPN concurrently. The CVPN is updated

asynchronously on the actors during training.

Computing Training Targets

Policy targets are assembled from the searches started at public states along the main line of

episodes (the histories reached in self-play) generated by sound self-play described in 10.3.3.

Speci®cally, they are the output policies for all information states within the root public

state, computed in the regret update phase of GT-CFR.

Value targets are obtained in two different ways. Firstly, the outcome of the game is

used as a (TD(1)) value target for states along the main line of episodes generated by sound

self-play. Secondly, value targets are also obtained by bootstrapping: running an instance

of GT-CFR from subgames rooted at input queries. In principle, any solver could be used

because any subgame rooted at β has well-de®ned values. Thus, this step acts much like a

policy improvement operator via decomposition described in Section 10.2.3. Speci®cally,

the value targets are the ®nal counterfactual values after T iterations of GT-CFR for all the

information states within the public state that initiated the search. The speci®c way that

the different value targets are assigned is described by the pseudocode in Section F.2.5 and

determined by a hyperparameter described in Section F.2.4.

Recursive Queries

While the solver is computing targets for a query, it is also generating more queries itself by

running GT-CFR. Some of these recursive queries are also added to the buffer for future

solving. As a result, at any given time the buffer may include queries generated by search

in the main self-play game or by solver-generated queries off the main line. To ensure that

the buffer is not dominated by recursive queries, we set the probability of adding a new

recursive query to less than 1 (in our experiments, the value is typically 0.1 or 0.2; see

Section F.2.4 for the exact values).

Consistency of Training Process

One natural question is whether, or under what circumstances, the training process could

ensure convergence to the optimal values? The answer is positive: the training process

converges to the optimal values, asymptotically, as T →∞ and with very large (exponential)

memory.

Informally, imagine an oracle function f(β) that can simply memorize the values and

policy for the particular β similar to a tabular value or policy iteration algorithm except with

continuous keys. For any subgame rooted at some β with a depth of 1 (every action leads to

terminal states), the values and policies can be computed and stored for β after T iterations

of the solver. This can then be applied inductively: since CFR is deterministic, for any

subgame on the ®rst iteration of GT-CFR, a ®nite number of queries will be generated. Each

of these queries will be solved using GT-CFR. Eventually, the query will be a speci®c one

that is one step from the terminal state whose values can be computed exactly and stored in

f(β). As this value was generated in self-play or by a query solver, and CFR is deterministic,

it will produce another self-play game with the identical query, except it will load the solved

value from f(β), and inductively the values will get propagated from the bottom up. Since
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CFR is deterministic and T is ®nite, these ensure that the memory requirement is not in®nite

despite the continuous-valued keys.

Practically, the success of the training process will depend on the representational capac-

ity and training ef®cacy of the function approximation (that is, neural network architecture).

10.3.5 Bringing it all Together: Full Algorithm Overview

The POG algorithm learns via sound self-play: each player, when faced with a decision

to make, employs a sound growing-tree CFR search equipped with a counterfactual value-

and-policy network to generate a policy, which is then used to sample an action to take.

This process generates two types of training data: search queries, which are then solved

separately (sometimes recursively generating new queries), and full-game trajectories. The

training process uses the data in different ways: outcomes of the games and solved queries

to train the value head of the network, and policies output from search along the main line to

train the policy head of the network. In practice, the self-play data generation and training

happen in parallel: actors generate the self-play data (and solve queries) while trainers learn

new networks and periodically update the actors.

For a fully-detailed description of the algorithm, including hyperparameter values and

speci®c descriptions of each process described above, see Appendix F.2.

10.4 Evaluation

We evaluate POG on four games: chess, Go, heads-up no-limit Texas hold’em poker, and

Scotland Yard. We also evaluate POG on a smaller benchmark poker game Leduc hold’em

and a custom Scotland Yard map, where the approximation quality compared to the optimal

policy can be computed exactly.

Chess and Go are well-known classic games, both seen as grand challenges of AI [Hsu,

2006, Gelly et al., 2012] which have driven progress in arti®cial intelligence since its

inception. The achievement of DeepBlue beating Kasparov in 1997 is widely regarded to

be the ®rst big milestone of AI. Today, computer-playing programs remain consistently

super-human, and one of the strongest and most widely-used programs is Stock®sh [The

Stock®sh Development Team, 2021]. Go emerged as the favorite new challenge domain,

which was particularly dif®cult for classical search techniques [Gelly et al., 2012]. Monte

Carlo tree search [Coulom, 2007, Kocsis and Szepesvári, 2006, Browne et al., 2012] emerged

as the dominant search technique in Go. The best of these programs, Crazy Stone and Zen,

were able to reach the level of 6 dan amateur [Silver et al., 2016]. It was not until 2016 that

AlphaGo defeated the ®rst human professional Lee Sedol in the historical 2016 match, and

also defeated the top human Ke Jie in 2017.

Heads-up no-limit Texas hold’em is the most common two-player version of poker

played by humans, also played by DeepStack and Libratus [Moravčı́k et al., 2017, Brown

and Sandholm, 2018]. Human-level poker has been the standard challenge domain among

imperfect information games, inspiring the ®eld of game theory itself. no-limit Texas

hold’em adds the complexity of stochastic events (card draws), imperfect information

(private cards), and a very large state space [Johanson, 2013]. We use blinds of 100 and 50

chips, and stack sizes of 200 big blinds (20,000 chips).

Scotland Yard is a compelling board game of imperfect information, receiving Spiel des

Jahres award in 1983 as well as being the ªThe most popular game ’83º by SpielBox [piel-

des jahres, 2020]. The game is played on a map of London, where locations are connected

by edges representing different modes of transportation. One player plays as ªMr. Xº (the
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Figure 10.7: Exploitability of POG as a function of the number of training steps under

different number of simulations of GT-CFR in (a) Leduc poker, and (b) Scotland Yard

(glasses map). All networks were trained using a single training run of POG(100, 1), and the

x-values correspond to a network trained for the corresponding number of steps. Each line

corresponds to a different evaluation condition, for example, POG(s, c) used at evaluation

time. The ribbon shows minimum and maximum exploitability out of 50 seeded runs for

each setup. The units of the y-axis in Leduc poker are milli big blinds per hand (where a

milli big blind is corresponds to one thousandth of a chip in Leduc), in Scotland Yard the

reward is either -1 (loss) or +1 (win).

evader) and other controls detectives (pursuers). Mr. X is not visible for most of the game,

but detectives get to see the mode of transportation Mr. X uses (e.g. taxi, bus, subway). In

order to win, detectives need to catch Mr. X within 24 rounds. Scotland Yard is a perfect

example of a game that combines search and imperfect information: agents have to search

future position while correctly reasoning about the likelihood of Mr. X’s current location.

Also, Scotland Yard has partially-observable actions, so private information is coupled with

the effects of the choices in a way that is not present in Texas hold’em poker. More detailed

explanation of Scotland Yard is in Appendix F.4.

This suite of games covers the classic challenge domains across game types (perfect

information and imperfect information, some with stochastic elements and others not), as

well as a new challenging imperfect information game with signi®cantly longer sequences

of actions and a fundamentally different type of uncertainty over hidden actions.

When reporting the results we use POG(s, c) notation from Section 10.3.2. As a re-

minder, s is the total number of expansion trajectories, c is the number of expansion

trajectories per regret update phase, and ⌈ s
c
⌉ is the total number of GT-CFR iterations.

10.4.1 Exploitability in Leduc Poker and Small Scotland Yard Map

We evaluate POG in Leduc poker [Southey et al., 2005], a commonly used benchmark poker

game, and Scotland Yard on a custom map. The full description of Leduc poker and map

are presented in Appendix F.3.

Exploitability is a standard metric to represent empirical convergence rates: it rep-

resents the average amount a player can gain by deviating to a best response, which is

zero at equilibrium. For a given joint policy in a two-player zero-sum game π = (π1, π2),
EXPLOITABILITY(π) = (maxπ′

1
u1(π

′
1, π2) + maxπ′

2
u2(π1, π′2))/2, where ui(π) is the ex-

pected utility to player i under joint policy π. Exploitability is a function of a speci®c (®xed)

joint policy. However, for a search algorithm like POG, previous searches may affect policies

computed at later points within the same game, as explained in Section 10.2.3. Hence, we
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construct multiple samples of the POG policy by choosing a random seed, running the search

algorithm at every public state in a breadth-®rst manner such that every search is conditioned

on previous searches at predecessor states, and composing together the policies obtained

from each search. We then show the minimum, average, and maximum exploitabilities over

policies constructed in this way from 50 different choices of seeds. If the minimum and

maximum exploitability values are tight, then they represent an accurate estimate of overall

exploitability.

Figure 10.7 shows the convergence rates of POG in Leduc poker and the glasses map

of Scotland Yard, as a function of the number of CVPN training steps. For these graphs,

we evaluate multiple networks (each trained for a different number of steps) generated by

a single training run of POG(100, 1). Each data point corresponds to a speci®c network

(determined by number of steps trained) being evaluated under different settings during play.

For each speci®c x-value, a single network was used to obtain each exploitability value of

POG using the network under different evaluation conditions. We observe that exploitability

drops down fairly quickly as the training steps increase. Also, even using only 1 CFR update

per simulation, there is signi®cant difference in exploitability when more simulations are

used.

As Theorem 10.1 suggests, more training (by reducing ϵ) and more search (by increasing

T ) reduces the exploitability of POG. Standard RL algorithms in self-play are not guaranteed

to reduce exploitability with continued training in this setting. We show this lack of

convergence in practice in Section F.3.4.

10.4.2 Results in Challenge Domains

We now present our main results: the performance of POG in chess, Go, heads-Up no-limit

Texas hold’em, and Scotland Yard.

We trained a version of AlphaZero using its original settings in Chess and Go using

3500 concurrent actors using one TPUv4 each, for a total of 800k training steps. POG was

trained using a similar amount of concurrent resources.

In chess, we evaluated POG against Stock®sh 8, level 20 [The Stock®sh Development

Team, 2021] and AlphaZero.

POG(800, 1) was run in training for 3M training steps. During evaluation, Stock®sh uses

various search controls: number of threads, and time per search. We evaluate AlphaZero

and POG up to 60000 simulations. A tournament between all of the agents was played at

200 games per pair of agents (100 games as white, 100 games as black). Table 10.1a shows

the relative Elo comparison obtained by this tournament, where a baseline of 0 is chosen for

Stock®sh(threads=1, time=0.1s).

In Go, we evaluate POG(60000, 10) using a similar tournament as in Chess, against

two previous Go programs: GnuGo (at its highest level, 10) [Team, 2009] and Pachi

v7.0.0 [Baudis et al., 2016] with 10k and 100k simulations, as well as AlphaZero [Silver

et al., 2018]. The POG network was trained for 1M training steps. Table 10.1b shows the

relative Elo comparison for a subsset of the agents that played in this tournament, where a

baseline of 0 is chosen for GnuGo. The full results are presented in Appendix F.3.

For chess and Go, we also present direct Elo comparisons when increasing the number of

neural network evaluations in Figure 10.8. Note that while the neural networks evaluations

account for the majority of the run time, the complexity of the regret update phase is linear

in the size of the tree. The run time is thus quadratic in the number of GT-CFR iterations.

The absolute time cost could be reduced by an implementation that runs the regret update

and expansion phase in parallel. For a more detailed analysis of POG’s complexity, see

Section F.2.2.
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Agent Rel. Elo

AlphaZero(sims=60k) +592

Stock®sh(threads=16, time=4s) +530

AlphaZero(sims=8k) +455

PoG(s=60k, c=10) +420

Stock®sh(threads=4, time=1s) +382

PoG(s=8k, c=10) +268

Stock®sh(threads=1, time=0.1s) 0

(a) Chess results. Elo of Stock®sh with a single

thread and 100ms thinking time was set to be 0.

The other values are relative to that.

Agent Rel. Elo

AlphaZero(s=16k, t=800k) +3139

AlphaZero(s=8k, t=800k) +2875

PoG(s=16k, c=10) +1970

PoG(s=8k, c=10) +1902

Pachi(s=100k) +869

Pachi(s=10k) +231

GnuGo(l=10) 0

(b) Go results. Elo of GnuGo was set to be 0. Al-

phaZero(s=16k, t=800k) refers to 16000 search

simulations. For full results, see Appendix F.3.

Table 10.1: A table with relative Elo of different agents. Each agent played 200 matches

(100 as white and 100 as black) against every other agent in the tournament.
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Figure 10.8: Scalability of POG with increasing number of neural network evaluations

compared to AlphaZero measured on relative Elo scale. The x-axis corresponds to the

number of simulations in AlphaZero and s in POG(s, c).

We notice in both chess and Go that POG reaches strong performance. In Chess,

PoG(60000,10) is stronger than Stock®sh using 4 threads and one second of search time.

In Go, PoG(16000, 10) is more than 1100 Elo stronger than Pachi with 100,000 sim-

ulations. Also, PoG(16000, 10) wins 0.5% (2/400) of its games against the strongest

AlphaZero(s=8000,t=800k). As a result, POG appears to be performing at the level of

top human amateur, possibly even professional level. In both cases, PoG is weaker than

AlphaZero, with the gap being smaller in Chess. We hypothesize that this difference is the

result of MCTS being more ef®cient than CFR on perfect information games, as the price of

POG’s generality.

In heads-up no-limit Texas hold’em, we evaluate POG against Slumbot2019 [Jackson,

2013, unspeci®ed], the best openly-available computer poker player. When training poker,

POG uses randomized betting abstractions described in Section F.2.7 to reduce the number

of actions from 20,000 to 4 or 5. POG(10, 0.1) is trained for up to 1.1M training steps

and then evaluated. Since poker has particularly high variance, we use AIVAT [Burch

et al., 2018] to compute a more accurate estimate of performance. Head-to-head results are

shown in Table 10.9. POG(10, 0.01) wins on average 7± 3 milli big blinds (0.7 chips) per

hand, with 95% con®dence intervals (3.1M matches). We also evaluate POG against a local

best-response (LBR) player that can use only fold and call actions with a poker-speci®c
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Agent Name Slumbot LBR [Lisý and Bowling, 2017b]

Slumbot (2016) - -522 ± 50

ARMAC [Gruslys et al., 2020] - -460 ± 260

DeepStack [Moravčı́k et al., 2017] - 428± 87
Modicum [Brown et al., 2018b] 11 ± 5 -

ReBeL [Brown et al., 2020] 45 ± 5 -

Supremus [Zarick et al., 2020] 176 ± 44 951 ± 96

POG(10, 0.01) 7 ± 3 434 ± 9

Figure 10.9: Head-to-head results showing

expected winnings of PoG (mbb/h) against

Slumbot and LBR together with results of

other recently published agents. The LBR

agent use either fold or call (FC) actions in

the all four rounds. The ± shows one stan-

dard deviation. LBR results for Slumbot are

from [Lisý and Bowling, 2017b]. The other

results are from the papers describing the

agents.
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Figure 10.10: Win rate of POG(400, 1)
against PimBot with varying simulations.

2000 matches were played for each data

point, with roles swapped for half of the

matches. Note that the x-axis has log-

arithmic scale. The ribbon shows 95%

con®dence interval.

heuristic which has shown to ®nd exploits in previous poker agents [Lisý and Bowling,

2017b]. LBR fails to ®nd an exploit of POG’s strategy, and POG wins on average by 434

± 9 milli big blinds per hand. Table 10.9 summarizes the results of PoG along with other

recent poker agents.

In Scotland Yard, the current state-of-the-art agent in this game is based on MCTS

with game-speci®c heuristic enhancements [Nijssen and Winands, 2012]. We call this

agent ªPimBotº based on its main author, Joseph Antonius Maria (ªPimº) Nijssen. PimBot

implements a variant of MCTS that uses determinization and heuristic evaluations and

playout policies [Nijssen and Winands, 2012, Nijssen, 2013]. PimBot won 34 out of 50

manually played games against the Nintendo DS Scotland Yard AI.

In our experiment POG is trained up to 17M steps. In evaluation we play a head-to-head

match with POG(400, 1) against PimBot at different number of simulations per search. The

results are shown in Figure 10.10. These results show that POG is winning signi®cantly even

against PimBot with 10M search simulations (55% win rate), compared to POG searching a

tiny fraction of the game. Interestingly PimBot doesn’t seem to play stronger with more

search at this point, as both the 1M abd 10M iteration versions have the same preformance

against POG.

As in chess and Go, POG also demonstrates strong performance in these complex

imperfect information games. In the case of poker, in addition to beating Slumbot it

also beats the local best-response agent which was not possible for some previous agents

(including Slumbot). Finally, POG signi®cantly beats the state-of-the-art agent in Scotland

Yard, an imperfect information game with longer episodes and fundamentally different kind

of imperfect information than in poker. Together, these results indicate that POG is capable

of strong performance across four games, two fundamentally different game types, and can

act as a truly uni®ed algorithm combining search, learning, and game-theoretic reasoning

for competitive games.
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10.5 Related Work

Player of Games builds upon several components that have been developed in previous work.

In this section, we describe the most relevant of these past works and how they relate to

POG.

POG combines many elements that were originally proposed in AlphaZero and its

predecessors, as well as DeepStack [Silver et al., 2016, 2017b, 2018, Moravčı́k et al., 2017].

Speci®cally, POG uses the combined search and learning using deep neural networks from

AlphaGo and DeepStack, along with game-theoretic reasoning and search in imperfect

information games from DeepStack. The use of public belief states and decomposition in

imperfect information games has been a critical component of success in no-limit Texas

Hold’em poker [Burch et al., 2014, Brown and Sandholm, 2017, Moravčı́k et al., 2017,

Brown and Sandholm, 2018, Brown et al., 2018b, Brown and Sandholm, 2019, Brown et al.,

2020]. The main difference from AlphaZero is that the search and self-play training in POG

are also sound for imperfect information games, and evaluation across game types. The main

difference from DeepStack is the use of signi®cantly less domain knowledge: the use of

self-play (rather than poker-speci®c heuristics) to generate training data and a single network

for all stages of the game. The most closely related algorithm is Recurrent Belief-based

Learning (ReBeL) [Brown et al., 2020]. Like POG, ReBeL combines search, learning, and

game-theoretic reasoning via self-play. The main difference is that POG is based on (safe)

continual resolving and sound self-play. To achieve ReBeL’s guarantees, its test-time search

must be conducted with the same algorithm as in training, whereas POG can using any

belief-based value-and-policy network of the form described in Section 10.3.1 (similarly

to e.g. AlphaZero, which trains using 800 simulations but then can use substantially larger

simulation limits at test-time). POG is also validated empirically across many different

challenge games of different game types.

There has been considerable work in search for imperfect information games. One

method that has been quite successful in practice is determinization: at decision-time, a set

of of candidate world states are sampled, and some form of search is performed [Cowling

et al., 2012, Long et al., 2010]. In fact, PimBot [Nijssen and Winands, 2012, Nijssen, 2013] is

based on these methods and achieved state-of-the art results in Scotland Yard. However, these

methods are not guaranteed to converge to an optimal strategy over time. We demonstrate

this lack of convergence in practice over common search algorithms and standard RL

benchmarks in Section F.3.4. In contrast, the search in POG is based on game-theoretic

reasoning. Other algorithms have proposed adding game-theoretic reasoning to search:

Smooth UCT [Heinrich and Silver, 2015] combines UCT [Kocsis and Szepesvári, 2006]

with ®ctitious play, however its convergence properties are not known. Online Outcome

Sampling [Lisý et al., 2015] derives an MCTS variant of Monte Carlo CFR [Lanctot et al.,

2009]; however, OOS is only guaranteed to approach an approximate equilibrium at a

single information state (local consistency) and has not been evaluated in large games.

GT-CFR used by POG makes use of sound search based on decomposition and is globally

consistent [Burch et al., 2014, Šustr et al., 2020].

There have been a number of RL algorithms that have been proposed for two-player zero-

sum games: Fictitious Self-Play [Heinrich et al., 2015, Heinrich and Silver, 2016], Policy-

Space Response Oracles (PSRO) [Lanctot et al., 2017, Muller et al., 2020, McAleer et al.,

2020], Double Neural CFR [Li et al., 2019], Deep CFR and DREAM [Brown et al., 2018a,

Steinberger et al., 2020], Regret Policy Gradients [Srinivasan et al., 2018], Exploitability

Descent [Lockhart et al., 2019], Neural Replicator Dynamics (NeuRD) [Hennes et al., 2020],

Advantage Regret-Matching Actor Critic [Gruslys et al., 2020], Friction FoReL [Perolat

et al., 2021], MAIO [Munos et al., 2020], Extensive-form Double Oracle (XDO) [McAleer
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et al., 2021], and Neural Auto-curricula (NAC) [Feng et al., 2021]. These methods adapt

classical algorithms for computing (approximate) Nash equilibria to the RL setting with

sampled experience and general function approximation. As such, they combine game-

theoretic reasoning and learning. Several of these methods have shown promise to scale:

Pipeline PSRO defeated the best openly available agent in Stratego Barrage; Deep CFR,

DREAM, and ARMAC showed promising results on large poker games. Combined with

human data, AlphaStar was able to use game-theoretic reasoning to create master-level

real-time strategy policy [Vinyals et al., 2019]. However, none of them can use search at

test-time to re®ne their policy.

Lastly, there have been works that use some combination of search, learning, and/or

game-theoretic reasoning applied to speci®c domains. Neural networks have been trained

via Q-learning to learn to play Scotland Yard [Dash et al., 2018]; however, the overall play

strength of the resulting policy was not directly compared to any other known Scotland Yard

agent. In poker, Supremus proposed a number of improvements to DeepStack and demon-

strated that they make a big difference when playing human experts [Zarick et al., 2020].

Another work used a method inspired by DeepStack applied to The Resistance [Serrino et al.,

2019]. In the cooperative setting, several works have made use of belief-based learning (and

search) using public subgame decomposition [Foerster et al., 2019, Lerer et al., 2020, Sokota

et al., 2021], applied to Hanabi [Bard et al., 2020]. Search and reinforcement learning

were combined to produce a bridge bidding player that cooperated with a state-of-the-art

bot (WBridge5) and with humans [Lockhart et al., 2020]. Learning and game-theoretic

reasoning were also recently combined to produce agents that play well with humans without

human data on the collaborative game Overcooked [Strouse et al., 2021]. Of considerable

note is the game of (no-press) Diplomacy. Game-theoretic reasoning was combined with

learning in Best Response Policy Iteration [Anthony et al., 2020]. Game-theoretic search and

supervised learning were employed in [Gray et al., 2020] reaching human-level performance

on the two-player variant. Recently, all three were combined in DORA [Bakhtin et al.,

2021] which learned to play Diplomacy without human data, and also reached human-level

performance on the two-player variant. The main difference between POG and these works

is that they focus on speci®c games and exploit domain-speci®c knowledge to attain strong

performance.

10.6 Conclusion

In this chapter, we describe Player of Games (POG) a uni®ed algorithm that combines search,

learning, and game-theoretic reasoning. POG is comprised of two main components: a novel

growing-tree counterfactual regret minimization (GT-CFR), and sound self-play whichs

learn counterfactual value-and-policy networks via self-play. Most notably, POG is a sound

algorithm for both perfect and imperfect information games: as computational resources

increase, POG is guaranteed to produce better approximation of minimax-optimal strategies.

This ®nding is also veri®ed empirically in Leduc poker, where additional search leads to

test-time approximation re®nement, unlike any pure reinforcement learning algorithms that

do not use search.

POG is the ®rst sound algorithm in this class to demonstrate strong performance on

challenge domains, using minimal domain knowledge. In the perfect information games

of chess and Go, POG performs at the level of human experts or professionals, but can be

signi®cantly weaker than specialized algorithms for this class of games, like AlphaZero,

when given the same resources. In the imperfect information game no-limit Texas hold’em

poker, POG beats Slumbot, the best openly available poker agent, and is shown not to be
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exploited by a local best-response agent using poker-speci®c heuristics. In Scotland Yard,

POG defeats the state-of-the-art agent.

There are some limitations of POG that are worth investigating in future work. First, the

use of betting abstractions in poker could be removed in favor of a general action-reduction

policy for large action spaces. Second, POG currently requires enumerating the information

states per public state which can be prohibitively expensive in some games; this might

be approximated by a generative model that samples world states and operates on the

sampled subset. Finally, signi®cant computational resources are used to attain strong play in

challenge domains; an interesting question is whether this level of play is achievable with

less computational resources.

10.7 Author’s contributions

Player of Games was culmination of an extensive research endeavor involving multiple

authors spanning several years. I have signi®cantly contributed to various aspects of the

research, including the theoretical and experimental work related to growing search trees, the

self-play process, the application of deep learning techniques, and the appropriate evaluation

of the agent.
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11. Conclusion

Combination of the decision-time search with a heuristic value function allowed AI agents

to outperform the best human players in games such as Backgammon, Chess, Go, and

Arimaa [Tesauro, 1995, Campbell et al., 2002, Silver et al., 2016, Wu, 2015]. More recently,

universal agents that learned through self-play and can master multiple games using ºzeroº

prior knowledge have emerged [Silver et al., 2017a, Schrittwieser et al., 2020].

On the other hand, traditional techniques used in imperfect information games worked

very differently. They created a small, abstract version of a game and solved this abstraction

in one go. This process was game-speci®c and had to be manually redone for each new

game. While this approach was successful when used in smaller games, it resulted in severe

weaknesses in play when applied to larger games, as shown by local best response [Lisý

and Bowling, 2017a].

Techniques discussed in this thesis help to bridge the gap between perfect and imperfect

information.

DeepStack introduced generalization of the search with the learned value function to

imperfect-information settings. This has led to the ®rst AI victory over human professional

players in no-limit poker completing a long-standing AI challenge.

Similarly, the generalization of self-play combined with a growing search tree introduced

by the Player of Games resulted in a universal algorithm that can master both perfect and

imperfect information games starting from scratch.

11.1 Potential Applications

The concepts introduced in this thesis hold potential for new and exciting applications, as

many real-world problems lack perfect information.

Sound search from DeepStack is used by GTO Wizard [GTO Wizzard Development

Team, 2023], software leveraged by top professional poker players to analyze and improve

their play.

A lot of previous work on AI for large imperfect information games was focused on

poker. One speci®city of poker is that all actions of a player can be observed by their

opponents. The game of Scotland Yard tackled by Player of Games is more general and it

resembles patrolling games used for real world problems like airport security [Pita et al.,

2009] and wildlife protection [Fang et al., 2015].

11.2 Future Work

The main limitation of the sound search used by DeepStack and Player of Games is the

need to enumerate all possible information states contained in a public state. This prohibits

straightforward use of these algorithms in games with large belief spaces such as full

Stratego. This could be an interesting area of future research; potential solutions could

involve Monte Carlo subsampling of information sets or learned implicit representations of

belief states.

A signi®cant recent milestone in perfect information games was MuZero [Schrittwieser

et al., 2020]. It is not only able to learn to play a game without prior knowledge, it is also

capable of learning the rules of the game itself just from interaction with the environment.

Extending this capability to imperfect information games would produce even more general

agents capable of mastering environments with unknown dynamics.
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A. Attachments for Chapter 4

A.1 Proof of Lemma 4.5

Proof. To prove the lemma, we look at de®nition of ui

ui(σ♣I→a, I) =

∑︁
h∈I,h′∈Z π

σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)

Because I is in some descendant of ρ and all action probabilities after I remain un-

changed, πσ′♣I→a(h′♣h) = πσ♣I→a(h′♣h).

If i = p(ρ), clearly π
σ′♣I→a

−i (h) = π
σ♣I→a

−i (h), π
σ′♣I→a

−i (I) = π
σ♣I→a

−i (I) and the lemma

holds.

If i ̸= p(ρ), let ρ′ be the ®rst public node after ρ on the path form ρ to I . For each h ∈ I ,

we decompose h = (h1, b, h2), where h1 ∈ ρ and (h1, b) ∈ ρ′. Only the probability of action

b could be changed (multiplied with κ), therefore

π
σ′♣I→a

−i (h) = κ(ρ ↝ ρ′) π
σ♣I→a

−i (h)

π
σ′♣I→a

−i (I) = κ(ρ ↝ ρ′) π
σ♣I→a

−i (I)

After substitution to the de®nition of ui, we get ui(σ
′♣I→a, I) = ui(σ♣I→a, I).

A.2 Proof of Lemma 4.6

Proof. From the previous lemma, we know the property holds for any information set I
after p. We look at all other information sets. There are two cases we consider, based on the

acting player in I , p(I).

Information sets for all players except of the player p(ρ)
p(I) ̸= p(ρ) and since the public state ρ is simple, I /∈ p(ρ).
For I ∈ prev(ρ, i), lemma holds directly from the restrictions on EPT. In these informa-

tion sets, also ui(σ
′, I) = ui(σ, I).

For I /∈ prev(ρ, i), player i = p(I) and public set ρ, we de®ne O(I, ρ) as the set of

nearest descendants in prev(ρ, i).

O(I, ρ) = ¶I ′ ∈ prev(ρ, i); ♣ h′ ∈ I ′ =⇒ ∃h ∈ I, h ⊑ h′ and there is no other

I ′′ ∈ prev(ρ, i), h′′ ∈ I ′′, h′′ ⊑ h′♢

Because the game satis®es perfect recall, any history h ∈ ρ having a pre®x in I has also

a pre®x in O(I, ρ).
Next step is to divide the set of terminal histories Z to two disjoint subsets

Z1 = terminal histories with pre®x in O(I, ρ).
Z2 = Z \ Z1.

Since these sets are disjoint, we can compute ui as
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ui(σ
′♣I→a, I) =

∑︁
h∈I,h′∈Z1

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
+ (A.1)

∑︁
h∈I,h′∈Z2

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
(A.2)

We compute the value of (A.1) as

(A.1) =

∑︁
h∈I,h′∈Z1

π
σ′♣I→a

−i (h)πσ′♣I→a(h′)ui(h
′)

π
σ′♣I→a

−i (I)
=

(A.3)
∑︁

I∗∈O(I,ρ)

∑︁
h∈I,h′∈Z,h∗∈I∗ π

σ′♣I→a

−i (h)π
σ′♣I→a

i (h∗♣h)π
σ′♣I→a

−i (h∗♣h)πσ′♣I→a(h′♣h∗)ui(h
′)

π
σ′♣I→a

−i (I)
=

(A.4)
∑︁

I∗∈O(I,ρ) π
σ′♣I→a

i (I∗♣I)
∑︁

h∈I,h′∈Z,h∗∈I∗ π
σ′♣I→a

−i (h)π
σ′♣I→a

−i (h∗♣h)πσ′♣I→a(h′♣h∗)ui(h
′)

π
σ′♣I→a

−i (I)
=

(A.5)
∑︁

I∗∈O(I,ρ) π
σ′♣I→a

i (I∗♣I)
∑︁

h′∈Z,h∗∈I∗ π
σ′♣I→a

−i (h∗)πσ′♣I→a(h′♣h∗)ui(h
′)

π
σ′♣I→a

−i (I)
=

(A.6)
∑︁

I∗∈O(I,ρ) π
σ′♣I→a

i (I∗♣I)π
σ′♣I→a

−i (I∗)ui(σ
′♣I→a, I∗)

π
σ′♣I→a

−i (I)
=

(A.7)
∑︂

I∗∈O(I,ρ)

ui(σ
′♣I→a, I∗)πσ′♣I→a(I∗♣I) =

(A.8)
∑︂

I∗∈O(I,ρ)

ui(σ♣I→a, I∗)πσ♣I→a(I∗♣I) =

(A.9)
∑︁

h∈I,h′∈Z1
π

σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)
(A.10)

(A.5) follows from the fact that π
σ′♣I→a

i (h∗♣h) = π
σ′♣I→a

i (I∗♣I)∀h∗ ∈ I∗

(A.7) follows from de®nition of ui(σ
′♣I→a, I ′)

(A.9) from the properties of equilibrium transformation.

Computing (A.2) is easy, because σ′♣I→a differs form σ♣I→a only in ρ

(A.2) =

∑︁
h∈I,h′∈Z2

π
σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)

This ®nalizes the lemma for all information set where p(I) ̸= p(ρ).
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Information sets for the player acting in ρ .

If I ∈ last(ρ), ui(σ
′♣I→a, I) = ui(σ♣I→a, I) for each a ∈ A(I) because equilibrium

preserving transformation can’t doesn’t change the probabilities in any information set after

ρ.

If I /∈ last(ρ), we again divide the set of terminal histories Z to two disjoint subsets,

and use them to compute ui

Z1 = histories with pre®x in last(ρ).
Z2 = Z \ Z1.

ui(σ
′♣I→a, I) =

∑︁
h∈I,h′∈Z1

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
+ (A.11)

∑︁
h∈I,h′∈Z2

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
(A.12)

σ′♣I→a can differ form σ♣I→a only in ρ therefore

(A.12) =

∑︁
h∈I,h′∈Z2

π
σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)

Analogically to the case when p(I) ̸= p(ρ), we can get value of (A.11) as

(A.11) =
∑︂

I∗∈last(ρ)

ui(σ
′♣I→a, I∗)πσ′♣I→a(I∗♣I) (A.13)

Because any information set has zero regret in strategy σ, for any I ∈ last(ρ)

ui(σ, I) = max
a∗∈A(I)

(ui(σ♣I→a∗ , I)) = ui(σ
′, I) (A.14)

First equality in (A.14) follows from the de®nition of regret, second equality form the

fact that if some some action in σ′ have nonzero probability, this action must have nonzero

probability in σ.

This gives us
∑︂

I∗∈last(ρ)

ui(σ
′♣I→a, I∗)πσ′♣I→a(I∗♣I) =

∑︂

I∗∈last(ρ)

ui(σ♣I→a, I∗)πσ♣I→a(I∗♣I) (A.15)

Which ®nalizes the lemma.

A.3 Proof o Lemma 4.7

Proof. We divide set of terminal histories Z to two subsets

Z1 - histories with pre®x in (ρ).
Z2 = Z − Z1.

Now we can compute ui as

ui(σ
′♣I→a, I) =

∑︁
h∈I,h′∈Z1

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
+ (A.16)

∑︁
h∈I,h′∈Z2

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
(A.17)
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σ′♣I→a can differ form σ♣I→a only in ρ therefore

(A.17) =

∑︁
h∈I,h′∈Z2

π
σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)

This value is constant, and corresponds to c0 from the lemma. To get other constants, we

split Z1 to disjoint sets. De®ne Z1,i as the set of terminal histories with pre®x in i-th child

of ρ. Z1 =
⎷

i=¶1...♣C(ρ)♣♢ Z1,i Now we compute (A.16) as

(A.16) =

∑︁
h∈I,h′∈Z1

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
= (A.18)

∑︁
i=¶1...♣C(ρ)♣♢

∑︁
h∈I,h′∈Z1,i

π
σ′♣I→a

−i (h)πσ′♣I→a(h′♣h)ui(h
′)

π
σ′♣I→a

−i (I)
= (A.19)

∑︁
i=¶1...♣C(ρ)♣♢

∑︁
h∈I,h′∈Z1,i

π
σ′♣I→a

−i (h)κ(ρ ↝ ρ′i)π
σ♣I→a(h′♣h)ui(h

′)

π
σ′♣I→a

−i (I)
= (A.20)

∑︂

i=¶1...♣C(ρ)♣♢

κ(ρ ↝ ρ′i)

∑︁
h∈I,h′∈Z1,i

π
σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)
(A.21)

Last equation gives us a value of ci (see that this expression is constant)

ci =

∑︁
h∈I,h′∈Z1,i

π
σ♣I→a

−i (h)πσ♣I→a(h′♣h)ui(h
′)

π
σ♣I→a

−i (I)
(A.22)
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B. Attachments for Chapter 5

B.1 Consistency Examples

Example B.1. An online algorithm may be sound (ϵ = 0), but there might not be any offline

equilibrium that produces the same distribution of matches.

Suppose we have a game where each player acts once, chooses from actions ¶A, B, C♢
and receives zero utility (i.e. a normal-form game with 3x3 zero payoff matrix). All strate-

gies are equilibria. If we play k = 3 matches and the players play pure strategies A, B and C
in each match, we get a distribution of matches m = (z1, z2, z3) that cannot be achieved with

®xed offline equilibrium. In this case, the distribution is ((w0, (A, A)), (w0, (B, B)), (w0, (C, C)))
with probability one, and all other terminal histories with probability zero.

Example B.2. An algorithm that is locally consistent with equilibria can be exploited in a

perfect information game.

1

1

0

L R

X Y

Suppose we have a single player game as in ®gure on the right. Both blue

L, Y and red R, X pure strategies are equilibria. However, if the top node is

locally consistent with the blue strategy, and the bottom node with the red strategy,

the resulting strategy the algorithm actually plays is L, X , which is sub-optimal.

B.2 Tabularization

We can consider two ways how the online setting can be realized, with respect to how

players’ state changes between k matches in the repeated game: i) no-memory, where the

players take turns in a match, and their memory is reset when each match is over (players

are allowed to retain memory within the individual matches), or ii) with-memory, where the

players are allowed to retain memory between the matches.

As exploitability of tabularized strategy is guaranteed to reflect ϵ-soundness only for

strongly globally consistent algorithms, we assume their use only. The with-memory case

then collapses to the no-memory case: strongly globally consistent algorithm simply plays

as some prede®ned (offline) equilibrium. The following text then simply de®nes how to

compute the offline equilibrium by querying the algorithm in all states.

De®nition B.3 (Partial strategy). For a terminal history

z = (w0, a0, w1, a1, . . . , wl, al, wl+1)

player n has a corresponding sequence of information states*

s = (s0, s1, . . . , sl, sl+1).

We say a partial strategy σΩ,θ0
n (z) for player n who uses search Ω and starts with state

θ0, is an expected behavioral strategy de®ned only for the visited information states:

σΩ,θ0
n (z) = ¶(st, µt) ♣ (µt, θt+1) = Eθt

[︂
Ω(st, θt)♣st

]︂
∀ t ∈ ¶0, . . . , l♢♢.

*We omit the index n for information state sn for clarity.
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Note that when we compute the strategy µt from Eθt
[Ω(st, θt)♣st], we must compute

it as a weighted average to respect the structure of the private tree. The weights are

reach probabilities of the information state st: cumulative product of the player’s strategy

over the sequence of information states s0, . . . st−1, leading to target information state st.

See [Zinkevich et al., 2007, Eq. 4] for more details.

De®nition B.4. A composition of partial strategies for terminals Z is a tabularized strategy

σΩ,θ0
n (Z) =

⋃︂

zi∈Z

σΩ,θ0
n (zi).

B.3 Proofs of Theorems

In perfect information games, an algorithm that is locally consistent with a subgame perfect

equilibrium is sound.

Proof. In perfect information games the notions of an information state and a history blend

together, as there is a one-to-one correspondence between them. Expected utility of a history

is the same for all subgame perfect equilibria. It corresponds to the best achievable value

against worst-case adversary, given that the history occurred. This property implies that the

worst-case expected utility of a history remains optimal, if the player plays only actions that

are in the support of any subgame perfect equilibrium in the consequent states. A formal

proof can be constructed by induction on the maximal distance from a terminal history.

Notice that this exactly happens if the player plays according to an algorithm locally

consistent with subgame perfect equilibria. The expected worst-case utility for any history

will be optimal, and the worst-case expected utility of a match will correspond to the worst-

case expected utility of the history at the beginning of the game. Therefore the worst-case

expected utility of each match is also optimal and the algorithm is sound.

We will now prepare the ground to prove Thm. 5.4.2.

When an algorithm that is globally consistent with an ϵ-equilibrium is queried in some

information states in a match in the repeated game, it will always keep playing the same

behavioral strategy in these situations in subsequent matches. We call this as ª®lling inº

strategy. Once the algorithm ®lls the strategy in all player’s information states, we are

guaranteed to get match reward of uϵ = u∗ − ϵ on average against a worst-case adversary.

Informally speaking, the bound in Thm. 5.4.2 can be easily seen to be true for a game like

Coordinated Matching Pennies, or some generalization which will have a larger number of

information states that need to be coordinated (think of ªCoordinated Rock-Paper-Scissorsº).

At every match, we can incur a loss of at most ∆ when reaching an un®lled history. This is

a rather pessimistic lower bound on the value, but it lets us ignore the algorithm state: we

are either playing at ®lled information states, or achieving the worst possible value. The

problematic part is making sure the bound holds also when we (repeatedly) visit previously

®lled information states. For each of the possible future subgames, there are two cases. In

both cases, the number of ∆-sized losses in utility plus the number of un®lled information

states does not increase, so we can use induction on the length of the game to prove the

claim. Along branches where the opponent had an opportunity to exploit the algorithm by

playing into an un®lled information state, the algorithm loses at most ∆ utility compared

to the equilibrium, but must ®ll in at least one information state to do so. Along branches

where the agent played through ®lled information states, the algorithm is playing identically

to the equilibrium strategy and thus achieves the same value.
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To prove Thm. 5.4.2 we will need to establish a Lemma B.5, a bound of difference of

utilities a player can gain if he plays according to a partially ®lled ϵ-equilibrium strategy

compared to uϵ within an arbitrary match. The idea of the proof for Thm. 5.4.2 is then to

bound this difference for any number of non-visited information states and any number of

remaining matches within the response game using induction.

An online algorithm can ®ll in the strategy only into information states found on the

trajectory to a terminal history, as it will be queried only in these situations. So after playing

through a match z = (w0, a0, w1, a1, . . . , wl, al, wl+1), the algorithm’s response at sn(wi)
will be ®xed as σ(sn(wi)) for all visited worlds wi on the trajectory z.

To talk about possible ®lled strategies within a single match, we will partition Z into two

non-empty sets of terminal histories Z• (pronounced ª®lledº) and Z◦ (pronounced ªemptyº

or ªun®lledº). The partition has a special property of ªbeing possible to realize in online

settingº: all information states on the trajectory to terminals Z• are ®lled, and all terminals

that can be reached just through these ®lled information states are also in Z• (we are not

taking into consideration the opponent’s information states, i.e. we operate only on the

online player’s private tree).

Lemma B.5. For a probability of reaching a ®lled terminal P (•) =
∑︁

z•∈Z•
πσ(z•), an

expected received utility for ®lled terminals u(•) =

∑︁
z•∈Z•

πσ(z•)u1(z•)∑︁
z•∈Z•

πσ(z•)
and an utility of

playing outside of ®lled histories u(×), it holds that

P (•)(u(•)− uϵ) ≥ −(1− P (•))(u(×)− uϵ + ∆), (B.1)

assuming 0 < P (•) < 1.

Proof. For any strategy pro®le σ = (σϵ
1, σ2) with an ϵ-equilibrium strategy σϵ

1 and arbitrary

opponent strategy σ2 it holds that

∑︂

z•∈Z•

πσ(z•)u1(z•) +
∑︂

z◦∈Z◦

πσ(z◦)u1(z◦) ≥ uϵ. (B.2)

The terms can be simpli®ed and rewritten as factorization of product of probabilities and

(weighted) utilities as

P (•)u(•) =
∑︂

z•∈Z•

πσ(z•)

⏞ ⏟⏟ ⏞
P (•)

·
∑︁

z•∈Z•
πσ(z•)u1(z•)∑︁

z•∈Z•

πσ(z•)

⏞ ⏟⏟ ⏞
u(•)

,

and similarly for the ª◦º partition. It also holds that P (•) + P (◦) = 1, as the probability of

reaching a terminal history within a match is equal to one.

We can restate (B.2) as

P (•)(u(•)− uϵ) + (1− P (•)(u(◦)− uϵ) ≥ 0. (B.3)

Suppose that for the partition ª◦º we didn’t use an equilibrium strategy for player 1, but

arbitrary strategy pro®le σ′ satisfying P σ(•) + P σ′

(◦) = 1. We will denote its utility

u(×) =

∑︁
z◦∈Z◦

πσ′

(z◦)u1(z◦)∑︁
z◦∈Z◦

πσ′(z◦)
. (B.4)
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The value of any two strategies cannot differ by more than the maximum difference of

utilities in the game:

u(◦) ≤ u(×) + ∆. (B.5)

Putting (B.5) back to (B.3), we get the lemma that lower bounds the difference of ®lled

partition and uϵ for an arbitrary match:

P (•)(u(•)− uϵ) ≥ −(1− P (•))(u(×)− uϵ + ∆). (B.6)

For an algorithm Ω that is globally consistent with ϵ-equilibria,

∀k ∀Ω2 : Em∼P k
Ω,Ω2

[R(m)] ≥ u∗ − ϵ−
\︄\︄\︄S1

\︄\︄\︄∆
k

. (5.2)

Proof. Let us rewrite the theorem slightly:

∀k ∀Ω2 : k Em∼P k
Ω,Ω2

[R(m)]− kuϵ ≥ −
\︄\︄\︄S1

\︄\︄\︄∆.

SinceR(m) is average reward, multiplying by k we get cumulative utilities in the game-play

m = (z1, z2, . . . , zk):

∀k ∀Ω2 : Em∼P k
Ω,Ω2

[︄
k∑︂

i=1

u1(zi)

⟨︂
− kuϵ ≥ −

\︄\︄\︄S1

\︄\︄\︄∆. (B.7)

So on the left side of the inequality we have a difference of cumulative (expected)

utilities and of cumulative uϵ. We use cumulative values because we are now in the setting

of a k-repeated game.

Let v be the number of non-visited information states of player 1 (resp. the number

of un®lled information states) in a match, i.e. 0 ≤ v ≤ ♣S1♣, and let l be the number of

next matches (including the current one), i.e. 1 ≤ l ≤ k. We will use av,l to denote the

difference between expected cumulative rewards and cumulative uϵ from the current match

(inclusively) until the end of the game, if we are playing against worst-case adversary. The

left side of (B.7) corresponds to a value equal or greater than a♣S1♣,k, so we need to prove

that a♣S1♣,k ≥ −
\︄\︄\︄S1

\︄\︄\︄∆. It is suf®cient to consider only the worst-case adversary, as the bound

on av,l will hold for any other opponent as well.

We will prove the theorem by induction on av,l using v and l simultaneously. Let us

characterize the base case. If we have visited all information states (v = 0), we ®lled

ϵ-equilibrium strategy everywhere. So at each visit of such a match we receive a reward of

uϵ, and the difference between expected cumulative rewards and cumulative uϵ is zero:

a0,l = 0 ∀l. (B.8)

The induction hypothesis is

ax,y ≥ −x∆ ∀x ≤ v ∀y < l. (B.9)

There are two possibilities of what can happen in a match. We either ªhitº the ®lled

information states, receive some (expected) reward u(v, l) and possibly continue into next
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match where we receive av,l−1 (if the current match is not the last one, i.e. l > 1). Or we

ªmissº the ®lled information states, meaning we visit arbitrary number of new information

states previously not visited. This will also change v to be smaller for all subsequent

matches.

We state this with an abuse of notation as

av,l = P (v, l)(u(v, l)− uϵ + av,l−1)

+ P (v − 1, l)(u(v − 1, l)− uϵ + av−1,l−1)

+ P (v − 2, l)(u(v − 2, l)− uϵ + av−2,l−1)

+ . . .

+ P (v − v, l)(u(v − v, l)− uϵ + av−v,l−1),

(B.10)

where the terms P (v − i, l) and u(v − i, l) are de®ned similarly to how we de®ned them for

P (•) and u(•). They correspond to the probability and utilities received when we visit i new

(previously un®lled) information states with l remaining matches (including current one). It

holds that P (v, l) + P (v − 1, l) + P (v − 2, l) + · · ·+ P (v − v, l) = 1 as the probability of

reaching a terminal history within a match is equal to one.

By using the induction hypothesis (B.9) on terms ax,l−1 ∀x < v we get a lower bound

ax,l−1 ≥ −x∆ on all of x. By comparing these bounds we can deduce that av−1,l−1 lower

bounds all of ax,l−1 with

av−1,l−1 ≥ −(v − 1)∆. (B.11)

Using this bound in (B.10) we get

av,l ≥P (v, l)(u(v, l)− uϵ + av,l−1)

+ P (v − 1, l)(u(v − 1, l)− uϵ − (v − 1)∆)

+ P (v − 2, l)(u(v − 2, l)− uϵ − (v − 1)∆)

+ . . .

+ P (v − v, l)(u(v − v, l)− uϵ − (v − 1)∆).

(B.12)

We can factor it out as

av,l ≥P (v, l)(u(v, l)− uϵ + av,l−1)

+ (1− P (v, l))(−(v − 1)∆− uϵ)

+ P (v − 1, l)u(v − 1, l) + P (v − 2, l)u(v − 2, l)

+ . . . + P (v − v, l)u(v − v, l).

(B.13)

We replace the utilities u(v − 1), u(v − 2), . . . , u(v − v) by u(×) from (B.4):

av,l ≥P (v, l)(u(v, l)− uϵ + av,l−1) (B.14)

+ (1− P (v, l))(u(×)− uϵ − (v − 1)∆). (B.15)

By using the induction hypothesis (B.9) we get

av,l ≥P (v, l)(u(v, l)− uϵ − v∆) (B.16)

+ (1− P (v, l))(u(×)− uϵ − (v − 1)∆). (B.17)

Expanding the terms

av,l ≥P (v, l)(−v∆)

+ (1− P (v, l))(−(v − 1)∆)

+ P (v, l)(u(v, l)− uϵ)

+ (1− P (v, l))(u(×)− uϵ)

(B.18)
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and using Lemma B.5 with • = v, l we have

av,l ≥P (v, l)(−v∆) + (1− P (v, l))(−(v − 1)∆)

− (1− P (v, l))(u(×)− uϵ + ∆)

+ (1− P (v, l))(u(×)− uϵ).

(B.19)

Simplifying, we get a bound on av,l:

av,l ≥ −v∆. (B.20)

Note that this bound holds also if P (v, l) = 1 or P (v, l) = 0:

• P (v, l) = 0: Then (B.16) becomes

av,l ≥ u(×)− uϵ − (v − 1)∆.

Using the same argument as in (B.5),

av,l ≥ −∆− (v − 1)∆ = −v∆.

• P (v, l) = 1: We use (B.3), which becomes u(v, l)− uϵ ≥ 0. Then (B.16) becomes

av,l ≥ u(v, l)− uϵ − v∆ ≥ −v∆.

Since at the beginning of the game-play there are ♣S1♣ un®lled information states, we

arrive at the original theorem

a♣S1♣,k ≥ −♣S1♣∆.

B.4 Experiment details

As OOS runs MCCFR samples biased to particular information states, individual MCCFR

runs can converge to different ϵ-equilibria, as the MCCFR is parametrized differently in

each information state. Additionally OOS runs in an online setting, where the algorithm

is given a time budget for computing the strategy, and it may make different numbers of

samples in each targeted information state.

We emulate this experimentally by slightly modifying initial regrets to produce distinct

convergence trajectories. We show it is possible to highly exploit the online algorithm: in

fact, it is possible to exploit the algorithm more than the worst of any individual biased

strategies it produces, not just the expected strategies. This modi®cation is sound: the initial

regrets will ªvanishº over longer sampling and the strategies will converge to an equilibrium

in the limit. This is justi®ed by the MCCFR regret bound [Lanctot et al., 2009, Theorem 5].

We use two games: Coordinated Matching Pennies (CMP) from Section 5.3 and Kuhn

Poker [Kuhn, 1950]. We use the no-memory online setting. Nash equilibria in both games

are parametrized with a single parameter α ∈ ⟨0, 1⟩ for one player, while the opponent has

only a single unique equilibrium². In both games, equilibria require the strategies to be

²In CMP, p = α (playing Heads in s1) and q = 1− α (playing Heads in s2). In Kuhn Poker, constructing

equilibrium strategy based on α is more complicated and we refer the reader to [Kuhn, 1950] or [Hoehn et al.,

2005] for more details.

143



102 103 104 105 106

iterations

10 3

10 2

10 1

ex
pl

2

Bias to s1 (MCCFR)
Bias to s2 (MCCFR)
Worst biased strategy
No biasing (MCCFR)
Worst unbiased strategy
Tabularized strategy (OOS)

0.0

0.1

0.2

p

Bias to s1

Mean: 0.49915
Std:  0.16670

0.0 0.5
0.0

0.1q

Mean: 0.50085
Std:  0.16668

Bias to s2

Mean: 0.32807
Std:  0.16117

0.0 0.5

Mean: 0.67193
Std:  0.16117

No biasing
Mean: 0.50069
Std:  0.20343

0.0 0.5 1.0

Mean: 0.49931
Std:  0.20341

Figure B.1: Coordinated Matching Pennies. Left: While individual MCCFR strategies have

low exploitability of ∼ 10−3, the tabularized OOS strategy has high exploitability of 0.17
after 106 iterations. Right: Normalized histograms of probabilities of playing Heads in s1

- p and s2 - q after 106 iterations. The histograms within columns are correlated, as they

approximately satisfy equilibrium condition p + q = 1. Tabularized strategy, combination

of (p, s1) and (q, s2) violates this constraint, resulting in high exploitability.
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Figure B.2: Kuhn Poker

appropriately balanced, an effect of non-locality problem [Frank and Basin, 1998] present

only in imperfect information games. When we compose the ®nal strategy from partial

online strategies, this balance can be lost, resulting in high exploitability of the composed

strategy.

We modify the initial regrets with following procedure:

• Choose a distinct value of α, one for each of the player’s top-most information states

in the game. Compute an equilibrium strategy according to α.

• Directly copy the behavioral strategy into regret accumulators, and multiply them by

a constant µ.

This simple procedure effectively kick-starts the algorithm to produce distinct trajectories

based on α.

In Figure B.1 and in Figure B.2 , we show that individual biased strategies converge to

Nash equilibria, but the tabularized strategy has higher exploitability even than the worst

individual strategy. In CMP, we bias the second player to play in information state s1

(α = 0.5) or s2 (α = 1) information states. In Poker, we bias the ®rst player to play Jack

(α = 0), Queen (α = 1/2) or King (α = 1) card. For both experiments, exploration was set

to 0.6, biasing to 0.1, and µ = 500, a small regret that can be accumulated after less than 500

samples. Within our online framework, the state θ consists of regrets and average strategy

144



accumulators for all information states, and from the state of the pseudo-random number

generator, which has distinct initial seeds for each match. The expected strategies are

estimated as an average over 3 · 104 seeds. We plot the worst strategy from these individual

biased strategies over all the seeds for all iterations. We plot also MCCFR strategy for

reference, to see the influence of biasing and regret initialization.
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C. Attachments for Chapter 6

C.1 MCCFR and MCCFR+ comparison

While it is known in that MCCFR+ is outperformed by MCCFR [Burch, 2017], we are

not aware on any explicit comparison of these two algorithms in literature. Fig. C.1 shows

experimental evaluation of these two techniques on Leduc poker.
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Iterations

10-4

10-3

10-2

10-1

100

101

E
x
p
lo

it
a
b
ili

ty

Convergence on Leduc poker

MCCFR+

MCCFR

Figure C.1: Convergence of MCCFR and MCCFR+ on logarithmic scale. For the ®rst 106

iterations, MCCFR+ performs similllary to the MCCFR. After approximately 107 iterations,

the difference in favor of MCCFR starts to be visible and the gap in exploitability widens as

the number of iterations grows.

C.2 Vector Form of CFR

The ®rst appearance of the vector form was presented in [Johanson et al., 2011]. In our

work, the best response computation, needed to compute exploitability, was sped-up by

re-de®ning the computation using the notion of a public tree. At the heart of a public tree

is the notion of a public state which contains a set of information sets whose histories are

consistent with the public information revealed so far [Johanson et al., 2011, De®nition 2].

This allowed the method to compute quantities for all information sets consistent with a

public state at once (stored in vectors) and operations to compute them could be vectorized

during a traversal of the public tree. There are also game-speci®c optimizations that could

be applied at leaf nodes to asymptotically reduce the total computation necessary.

A similar construction was used in several sampling variants introduced in [Johanson

et al., 2012]. Here, instead of computing necessary for best response, counterfactual values

were vectorized and stored instead. The paper describes several ways to sample at various

types of chance nodes (ones which reveal public information, or private information to each
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player), but the concept of a vectorized form of CFR was general. In fact, a vector form of

vanilla CFR is possible in any game: when traversing down the tree, these vectors store the

probability of reaching each information set (called a range in [Moravčı́k et al., 2017]) and

return vectors of counterfactual values. Both DeepStack and Libratus used vector forms of

CFR and CFR+ in No-Limit poker.

For the MCCFR variants in our work, the idea is the same as the previous sample variants.

For any sequence of public actions, we concurrently maintain and update all information sets

consistent with the sequence of public actions. For example in Leduc poker, six trajectories

per player are maintained which all share the same sequence of public actions.

The main difference in our implementation is that baselines are kept as vectors at each

public state, each representing a baseline for the information sets corresponding to the public

state. Also, the average values tracked are counterfactual and normalized by the range. So,

for example in Leduc, for ®ve information sets in some public state, (I1, I2, . . . , I5), quantity

tracked by the baseline at this public state for action a is:

v̂b
i (σ, Ik, a)

∑︁
k′ πσ

opp(Iopp
k′ )

,

where πσ
opp is the reach probability of the opponent only (excluding chance), and Iopp refers

to the augmented information set belonging to the opponent at I . Then, when using the

baseline values to compute the modi®ed counterfactual values, we need to multiply them by

the current
∑︁

k′ πσ
opp(Iopp

k′ ) to get the baseline values under the current strategy σ.

C.3 Proofs

C.3.1 Proof of Lemma 6.1

E[v̂b(σ, I, a)] = E[v̂i(σ, I, a)]− E[b̂i(I, a)] + E[bi(I, a)]

= vi(σ, I, a)− bi(I, a) + bi(I, a)

= vi(σ, I, a).

C.3.2 Proof of Lemma 6.2

We begin by proving a few supporting lemmas regarding local expectations over actions at

speci®c histories:

Lemma C.1. Given some h ∈ H , for any z ∈ Z generated by sampling ξ : H ↦→ A and all

actions a, Ez∼ξ[û
b
i(σ, h, a♣z)] =

∑︁
z,ha⊑z q(z)ûb

i(σ, ha♣z)/ξ(h, a):
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Proof. ûb
i(σ, h, a♣z) has three cases, from which we get Ez∼ξ[û

b
i(σ, h, a♣z)]

=
∑︂

z,ha⊑z

q(z)

(︄
bi(Ii(h), a) +

−bi(Ii(h), a) + ûb
i(σ, ha♣z)

ξ(h, a)

)︄

+
∑︂

z,h⊏z,ha ̸⊑z

q(z)(bi(Ii(h), a))

+
∑︂

h ̸⊑z

0

=
∑︂

z,ha⊑z

q(z)ûb
i(σ, ha♣z)/ξ(h, a)

+ (q(ha)− q(ha)/ξ(h, a))bi(Ii(h), a)

+ q(h)(1− ξ(h, a))bi(Ii(h), a)

=
∑︂

z,ha⊑z

q(z)ûb
i(σ, ha♣z)/ξ(h, a)

Lemma C.2. Given some h ∈ H , for any z ∈ Z generated by sampling ξ : H ↦→ A, the

local baseline-enhanced estimate is an unbiased estimate of expected values for all actions

a:

Ez∼ξ[û
b
i(σ, h, a♣z)] = Ez∼ξ[ûi(σ, h, a♣z)].

Proof. We prove this by induction on the maximum distance from ha to any terminal. The

base case is ha ∈ Z. Ez∼ξ[û
b
i(σ, h, a♣z)]

=
∑︂

z,ha⊑z

q(z)ûb
i(σ, ha♣z)/ξ(h, a) by Lemma C.1

=
∑︂

z,ha⊑z

q(z)ûi(σ, ha♣z)/ξ(h, a) by Eq. 6.10

= Ez∼ξ[ûi(σ, h, a♣z)] by Eq. 6.7, 6.8

Now assume for i ≥ 0 that the lemma property holds for all h′a′ that are at most j ≤ i
steps from a terminal. Consider history ha being i + 1 steps from some terminal, which

implies that ha ̸∈ Z. We have Ez∼ξ[û
b
i(σ, h, a♣z)]

=
∑︂

z,ha⊑z

q(z)ûb
i(σ, ha♣z)/ξ(h, a) by Lemma C.1

=
∑︂

z,ha⊑z

q(z)
∑︂

a′

σ(ha, a′)ûb
i(σ, ha, a′♣z)/ξ(h, a)

by Eq. 6.10

=
∑︂

z,ha⊑z

q(z)
∑︂

a′

σ(ha, a′)ûi(σ, ha, a′♣z)/ξ(h, a)

by assumption

=
∑︂

z,ha⊑z

q(z)ûi(σ, ha♣z)/ξ(h, a) by Eq. 6.8

= Ez∼ξ[ûi(σ, h, a♣z)] by Eq. 6.7

The lemma property holds for distance i + 1, and so by induction the property holds for all

h and a.
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Lemma C.3. Given some h ∈ H , for any z ∈ Z generated by sampling ξ : H ↦→ A and for

all actions a, the local baseline-enhanced estimate is an unbiased estimate of the original

sampled counterfactual value: Ez∼ξ[v̂
b
i (σ, Ii(h), a♣z)] = Ez∼ξ[ṽi(σ, Ii(h), a♣z)].

Proof. First, Ez∼ξ[v̂
b
i (σ, Ii(h), a♣z)]

= Ez∼ξ

[︄
πσ
−i(h)

q(h)
ûb

i(σ, h, a♣z)

⟨︂
by Eq. 6.11

=
πσ
−i(h)

q(h)
Ez∼ξ[û

b
i(σ, h, a♣z)]

=
πσ
−i(h)

q(h)
Ez∼ξ[ûi(σ, h, a♣z)] by Lemma C.2

= Ez∼ξ[ṽi(σ, Ii(h), a♣z)] by Eq. 6.5, 6.7.

Proof of Lemma 2. The proof now follows directly:

Ez∼ξ[v̂
b
i (σ, I, a♣z)]

= Ez∼ξ[ṽi(σ, I, a♣z)] by Lemma C.3

= vi(σ, I, a) by [Lanctot et al., 2009, Lemma 1].

C.3.3 Proof of Lemma 6.3

We start by proving that given an oracle baseline, the baseline-enhanced expected value is

always equal to the true expected value, and therefore has zero variance.

Lemma C.4. Using an oracle baseline de®ned over histories, b∗i (h, a) = uσ
i (ha), then for

all z such that h ⊑ z, ûb∗

i (σ, h, a♣z) = uσ
i (ha).

Proof. Similar to above, we prove this by induction on the maximum distance from ha to z.

The base case is ha ∈ Z. By assumption h ⊑ z so we have ûb∗

i (σ, h, a♣z)

=

⎧
⨄︂
⎩

b∗i (h, a) +
ûb∗

i
(σ,ha♣z)−b∗

i
(h,a)

ξ(h,a)
if ha = z

b∗i (h, a) otherwise

by Eq. 6.9

=

∮︂
uσ

i (ha) +
uσ

i
(ha)−uσ

i
(ha)

ξ(h,a)
if ha = z

uσ
i (ha) otherwise

by Eq. 6.10 and de®nition of b∗i (h, a)

= uσ
i (ha)

Now assume for i ≥ 0 that the lemma property holds for all h′a′ that are at most j ≤ i
steps from a terminal. Consider history ha being i + 1 steps from some terminal, which

implies ha ̸∈ Z. We have

ûb∗

i (σ, ha♣z) = uσ
i (ha) (C.1)
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because ûb∗

i (σ, ha♣z)

=
∑︂

a′

σ(ha, a′)ûb∗

i (σ, ha, a′♣z) by Eq. 6.10

=
∑︂

a′

σ(ha, a′)uσ
i (haa′) by assumption

= uσ
i (ha) by de®nition of uσ

i

We now look at ûb∗

i (σ, h, a♣z)

=

⎧
⨄︂
⎩

uσ
i (ha) +

ûb∗

i
(σ,ha♣z)−uσ

i
(ha)

ξ(h,a)
if ha ⊏ z

uσ
i (ha) otherwise

by Eq. 6.9 and de®nition of b∗i (h, a)

=

∮︂
uσ

i (ha) +
uσ

i
(ha)−uσ

i
(ha)

ξ(h,a)
if ha ⊏ z

uσ
i (ha) otherwise

by Eq. C.1

= uσ
i (ha)

The lemma property holds for distance i + 1, and so by induction the property holds for all

h and a.

Proof of Lemma 6.3. Given z such that h ⊑ z, we have v̂∗i (σ, h, a♣z)

=
πσ
−i(h)

q(h)
ûb∗

i (σ, h, a♣z) by Eq. 6.11

=
πσ
−i(h)

q(h)
uσ

i (ha) by Lemma C.4

None of the terms above depend on z, and so we have Varh,z∼ξ,h∈I,h⊑z[v̂∗i (σ, h, a♣z)] = 0.

Note as well that πσ
−i(h)uσ

i (ha) corresponds to the terms in the summation of Equation 6.2,

so abusing notation, we have v̂∗i (σ, h, a♣z) = vi(σ, h, a)/q(h): the counterfactual value of

taking action a at h, with an importance sampling weight to correct for the likelihood of

reaching h.

In MCCFR, the optimal baseline b∗ is not known, as it would require traversing the

entire tree, taking away any advantages of sampling. However, b∗ can be approximated

(learned online), which motivates the choice for tracking its average value presented in the

main chapter.

C.4 Kuhn Example

In this section, we present a step-by-step example of one iteration of the algorithm on Kuhn

poker [poker, 2018]. Kuhn poker is a simpli®ed version of poker with three cards and is

therefore suitable for demonstration purposes. Table C.1 show forward pass of VR-MCCFR

algorithm, Table C.2 shows backward pass.
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Forward pass

h Game tree trajectory πσ
−1(h) q(h) I1 = I1(h) I2 = I2(h)

History Reach prob. Sampling prob. Infoset for Pl1 Infoset for Pl2

Fo
rw

ar
d 

pa
ss

∅
C

 (J)ack

 ⅓
(K)ing

⅓

(Q)ueen

⅓
 

1 1 ∅ ∅

K

C
(J)ack

½ (Q)ueen

½

1
3

1
3

K ?

KQ
1

(C)heck

⅓
b=-1

(B)et

⅔
b=+0.5

1
6

1
6

K? ?Q

KQB
2

(F)old

¾
b=-2

(C)all

¼
b=+1

1
6

1
12

K?B ?QB

KQBC +2 
1
24

1
24

K?BC ?QBC

Table C.1: Detailed example of updates computed for player 1 in Kuhn poker during forward

pass of the algorithm. Backward pass that uses these values is shown in Table C.2. In

our representation history h is a concatenation of all public and private actions. The game

tree trajectory column shows the path in the game tree that was sampled. Solid arrows

denote sampled actions while dashed arrows show other available actions, all actions have

their probability under current strategy σ next to them. The sampled history in this case is:

chance deals (K)ing to player 1, chance deals (Q)ueen to player 2, player 1 (B)ets, player

2 (C)alls. We will use shorter notation KQBC to refer to this history. For each history

h reach probability πσ
−1(h) shows how likely the history is reached when player 1 plays

in a way to get to this history. The sampling probabilities q(h) are computed following

sampling policy ξ which is uniform in this case, i.e. for each history all available actions

have the same probability that they will be sampled. The last two columns show augmented

information sets for each player in each history. For example for player 1 history KQB is

represented by information set K?B since he does not know what card was dealt to PLAYER

2. Light gray background marks cells where the values are well de®ned however they are

not used in our example update for player 1.
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Backward pass

h Game tree trajectory û1
b(σ, h, a♣z) û1

b(σ, h♣z) v̂1
b(σ, I1, a♣z)

History Sampled corrected history-action utility Sampled corrected history utility Sampled corrected cf-value

Def. Eq. 6.9 Eq. 6.10 Eq. 6.11

B
ac

kw
ar

d 
pa

ss

∅
C

 (J)ack

 ⅓
(K)ing

⅓

(Q)ueen

⅓
 

K

C
(J)ack

½ (Q)ueen

½

KQ
1

(C)heck

⅓
b=-1

(B)et

⅔
b=+0.5

û1
b(σ, h, B♣z) =

û1
b(σ,hB♣z)−b(I1,B)

ξ(h,B)
+ b(I1,B)

=
− 3

4
−0.5
1
2

+ 0.5

= −2

û1
b(σ,h,C♣z) = b(I1,C)

= −1

ûb

1
(σ, h♣z) =∑︁

a σ(h, a)ûb
1(σ, h, a♣z)

= 1
3
∗ (−1) + 2

3
∗ (−2)

= −5
3

v̂b

1
(σ, I1, B♣z) =

πσ
−1(h)

q(h)
ûb

1(σ, h, B♣z)

=
1
6
1
6

∗ (−2)

= −2
v̂b

1
(σ, I1, C♣z) =

πσ
−1(h)

q(h)
ûb

1(σ, h, C♣z)

=
1
6
1
6

∗ (−1)

= −1

KQB
2

(F)old

¾
b=-2

(C)all

¼
b=+1

û1
b(σ,h,C♣z) =

û1
b(σ,hC♣z)−b(I1,c)

ξ(h,C)
+ b(I1,C)

= 2−1
1
2

+ 1

= 3

û1
b(σ,h,F♣z) = b(I1,F)

= −2

ûb

1
(σ, h♣z) =∑︁

a σ(h, a)ûb
1(σ, h, a♣z)

= 3
4
∗ (−2) + 1

4
∗ 3

= −3
4

KQBC +2 
û1

b(σ,h,♣z) = u1(h)
= 2

Table C.2: The backward pass starts by evaluating utility of the terminal history:

û1
b(σ, KQBC♣KQBC) = +2 since player 1 has (K)ing which is better card than op-

ponent’s (Q)ueen. In the next step computation updates values for history KQB. Expected

baseline corrected history-action value û1
b(σ, KQB, Call♣KQBC) is computed based

on current sample and then used together with û1
b(σ, KQB, Fold♣KQBC) to compute

û1
b(σ, KQB♣KQBC). When updating values for history KQ baseline corrected sampled

counterfactual values are computed based on just updated û1
b(σ, KQ, Bet♣KQBC) for the

sampled Bet action and on a baseline value û1
b(σ, KQ, Check♣KQBC) for Check action

that was not sampled. Reach probability πσ
−1(KQ) and sampling probability q(KQ) that are

also needed to compute counterfactual-values v̂1
b(σ, K?, a♣KQBC) were already computed

in the forward pass. The counterfactual values are then used to compute actions’ regrets

(Eq. 6.3) which is not shown in the table. Values in cell with light gray background are not

used in computation of v̂1
b(σ, K?, a♣KQBC).

152



D. Attachments for Chapter 7

Theorem D.1. Given a strategy σ1, a subgame S and a re®ned subgame strategy σS
1 , let σ′1 =

σ1[S ← σS
1 ] be a combined strategy of σ1 and σS

1 . Let the subgame margin SM1(σ1, σ′1, S)
be non-negative. Then u1(σ

′
1, CBR(σ′1))− u1(σ1, CBR(σ1)) ≥ 0. Furthermore, if there’s

a best response strategy σ∗2 = BR(σ′1) such that π(σ′
1,σ∗

2)(I2) > 0 for some I2 ∈ IR(S)
2 , then

u1(σ
′
1, CBR(σ′1))− u1(σ1, CBR(σ1)) ≥ π

σ′
1
−2(I2) SM1(σ1, σ′1, S).

See [Burch et al., 2014] for proof of the following inequity: u1(σ
′
1, CBR(σ′1)) −

u1(σ1, CBR(σ1)) ≥ 0. Directly from the proof also, we get that CBV
σ′

1
2 (I) ≤ CBV

σ′
1

2 (I)
for any information set I ⊈ S\R(S)

Now, we will prove that lover bound for improvement holds in case when there exists a

σ∗2 = BR(σ′1) such that π(σ′
1,σ∗

2)(I2) > 0 for some I2 ∈ IR(S)
2 . Without loss of generality we

can assume that σ∗2 = CBR2(σ
′
1) (since we can just change strategy in information sets I ′

where π
σ∗

2
2 (I ′) = 0) and that σ∗2(I2) = 1 (since we can choose any action from best response

support with probability 1).

First, we show that if p(I) = 2 and I lays on a path from ∅ (root of the whole game) to

I2, then CBV
σ′

1
2 (I) ≤ CBV σ1

2 (I)− π
σ′

1
−2(I → I2)SM1(σ1, σ′1, S).

We will use induction on length (measured in count of p2 information sets) of the path

(I → I2).
We can see (directly from the de®nition of the subgame margin) that the claim holds for

I2.

Lets take I ̸= I2 form the path and denote I ′ next p2 information set on the path. Then,

for an action a leading to the I2 we have πσ∗

(I, a) = 1, π
(σ′

1,σ∗)
2 (I → I ′) = 1 and we can

express counterfactual best response value in I as:

CBV
σ′

1
2 (I) = v

(σ′
1,σ∗)

2 (I, a) ≤
v

(σ1,CBR2(σ1))
2 (I, a)− πσ′

1,σ∗

(I → I ′)π
σ′

1
−2(I

′ → I2)SM1(σ1, σ′1, S) =

v
(σ1,CBR2(σ1))
2 (I, a)− π

σ′
1
−2(I → I ′)π

σ′
1
−2(I

′ → I2)SM1(σ1, σ′1, S) =

v
(σ1,CBR2(σ1))
2 (I, a)−π

σ′
1
−2(I → I2)SM1(σ1, σ′1, S) ≤ maxa′v

(σ1,CBR2(σ1))
2 (I, a′)−π

σ′
1
−2(I →

I2)SM1(σ1, σ′1, S) =

CBV2(σ1)(I)− π
σ′

1
−2(I → I2)SM1(σ1, σ′1, S)

If P (∅) = 2 then u1(σ
′
1, CBR(σ′1) = −CBV2(σ

′
1)(∅), u1(σ1, CBR(σ1) = −CBV2(σ1)(∅)

and the theorem holds. If this is not the case then we can simply add a new player’s 2
information set at the beginning of the game where the player 2 has only one action leading

to ∅.
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E. Attachments for Chapter 9

E.1 Game of Heads-Up No-Limit Texas Hold’em

Heads-up no-limit Texas hold’em (HUNL) is a two-player poker game. It is a repeated

game, in which the two players play a match of individual games, usually called hands,

while alternating who is the dealer. In each of the individual games, one player will win

some number of chips from the other player, and the goal is to win as many chips as possible

over the course of the match.

Each individual game begins with both players placing a number of chips in the pot:

the player in the dealer position puts in the small blind, and the other player puts in the big

blind, which is twice the small blind amount. During a game, a player can only wager and

win up to a ®xed amount known as their stack. In the particular format of HUNL used in the

Annual Computer Poker Competition [Zinkevich and Littman, 2006] and this article, the

big blind is 100 chips and the stack is 20,000 chips or 200 big blinds. Resetting the stacks

after each game is called ªDoyle’s Gameº, named for the professional poker player Doyle

Brunson who publicized this variant [Gilpin et al., 2008]. It is used in the Annual Computer

Poker Competitions because it allows for each game to be an independent sample of the

same game.

A game of HUNL progresses through four rounds: the pre-flop, flop, turn, and river.

Each round consists of cards being dealt followed by player actions in the form of wagers

as to who will hold the strongest hand at the end of the game. In the pre-flop, each player

is given two private cards, unobserved by their opponent. In the later rounds, cards are

dealt face-up in the center of the table, called public cards. A total of ®ve public cards are

revealed over the four rounds: three on the flop, one on the turn, and one on the river.

After the cards for the round are dealt, players alternate taking actions of three types:

fold, call, or raise. A player folds by declining to match the last opponent wager, thus

forfeiting to the opponent all chips in the pot and ending the game with no player revealing

their private cards. A player calls by adding chips into the pot to match the last opponent

wager, which causes the next round to begin. A player raises by adding chips into the pot

to match the last wager followed by adding additional chips to make a wager of their own.

At the beginning of a round when there is no opponent wager yet to match, the raise action

is called bet, and the call action is called check, which only ends the round if both players

check. An all-in wager is one involving all of the chips remaining the player’s stack. If the

wager is called, there is no further wagering in later rounds. The size of any other wager can

be any whole number of chips remaining in the player’s stack, as long as it is not smaller

than the last wager in the current round or the big blind.

The dealer acts ®rst in the pre-flop round and must decide whether to fold, call, or raise

the opponent’s big blind bet. In all subsequent rounds, the non-dealer acts ®rst. If the river

round ends with no player previously folding to end the game, the outcome is determined by

a showdown. Each player reveals their two private cards and the player that can form the

strongest ®ve-card poker hand (see ªList of poker hand categoriesº on Wikipedia; accessed

January 1, 2017) wins all the chips in the pot. To form their hand each player may use any

cards from their two private cards and the ®ve public cards. At the end of the game, whether

ended by fold or showdown, the players will swap who is the dealer and begin the next

game.

Since the game can be played for different stakes, such as a big blind being worth

$0.01 or $1 or $1000, players commonly measure their performance over a match as their
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average number of big blinds won per game. Researchers have standardized on the unit

milli-big-blinds per game, or mbb/g, where one milli-big-blind is one thousandth of one big

blind. A player that always folds will lose 750 mbb/g (by losing 1000 mbb as the big blind

and 500 as the small blind). A human rule-of-thumb is that a professional should aim to

win at least 50 mbb/g from their opponents. Milli-big-blinds per game is also used as a unit

of exploitability, when it is computed as the expected loss per game against a worst-case

opponent. In the poker community, it is common to use big blinds per one hundred games

(bb/100) to measure win rates, where 10 mbb/g equals 1 bb/100.

E.2 Poker Glossary

all-in A wager of the remainder of a player’s stack. The opponent’s only response can be

call or fold.

bet The ®rst wager in a round; putting more chips into the pot.

big blind Initial wager made by the non-dealer before any cards are dealt. The big blind is

twice the size of the small blind.

call Putting enough chips into the pot to match the current wager; ends the round.

check Declining to wager any chips when not facing a bet.

chip Marker representing value used for wagers; all wagers must be a whole numbers of

chips.

dealer The player who puts the small blind into the pot. Acts ®rst on round 1, and second

on the later rounds. Traditionally, they would distribute public and private cards from

the deck.

flop The second round; can refer to either the 3 revealed public cards, or the betting round

after these cards are revealed.

fold Give up on the current game, forfeiting all wagers placed in the pot. Ends a player’s

participation in the game.

hand Many different meanings: the combination of the best 5 cards from the public cards

and private cards, just the private cards themselves, or a single game of poker (for

clarity, we avoid this ®nal meaning).

milli-big-blinds per game (mbb/g) Average winning rate over a number of games, mea-

sured in thousandths of big blinds.

pot The collected chips from all wagers.

pre-flop The ®rst round; can refer to either the hole cards, or the betting round after these

cards are distributed.

private cards Cards dealt face down, visible only to one player. Used in combination with

public cards to create a hand. Also called hole cards.

public cards Cards dealt face up, visible to all players. Used in combination with private

cards to create a hand. Also called community cards.
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raise Increasing the size of a wager in a round, putting more chips into the pot than is

required to call the current bet.

river The fourth and ®nal round; can refer to either the 1 revealed public card, or the betting

round after this card is revealed.

showdown After the river, players who have not folded show their private cards to determine

the player with the best hand. The player with the best hand takes all of the chips in

the pot.

small blind Initial wager made by the dealer before any cards are dealt. The small blind is

half the size of the big blind.

stack The maximum amount of chips a player can wager or win in a single game.

turn The third round; can refer to either the 1 revealed public card, or the betting round

after this card is revealed.

E.3 Performance Against Professional Players

To assess DeepStack relative to expert humans, players were recruited with assistance from

the International Federation of Poker to identify and recruit professional poker players

through their member nation organizations. We only selected participants from those who

self-identi®ed as a ªprofessional poker playerº during registration. Players were given four

weeks to complete a 3,000 game match. To incentivize players, monetary prizes of $5,000,

$2,500, and $1,250 (CAD) were awarded to the top three players (measured by AIVAT) that

completed their match. The participants were informed of all of these details when they

registered to participate. Matches were played between November 7th and December 12th,

2016, and run using an online user interface [Morrill, 2012] where players had the option

to play up to four games simultaneously as is common in online poker sites. A total of 33

players from 17 countries played against DeepStack. DeepStack’s performance against each

individual is presented in Table E.1, with complete game histories available as part of the

supplementary online materials.

E.4 Local Best Response of DeepStack

The goal of DeepStack, and much of the work on AI in poker, is to approximate a Nash

equilibrium, i.e., produce a strategy with low exploitability. The size of HUNL makes

an explicit best-response computation intractable and so exact exploitability cannot be

measured. A common alternative is to play two strategies against each other. However,

head-to-head performance in imperfect information games has repeatedly been shown to

be a poor estimation of equilibrium approximation quality. For example, consider an exact

Nash equilibrium strategy in the game of Rock-Paper-Scissors playing against a strategy

that almost always plays ªrockº. The results are a tie, but their playing strengths in terms of

exploitability are vastly different. This same issue has been seen in heads-up limit Texas

hold’em as well (Johanson, IJCAI 2011), where the relationship between head-to-head play

and exploitability, which is tractable in that game, is indiscernible. The introduction of local

best response (LBR) as a technique for ®nding a lower-bound on a strategy’s exploitability

gives evidence of the same issue existing in HUNL. Act1 and Slumbot (second and third

place in the previous ACPC) were statistically indistinguishable in head-to-head play (within
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Table E.1: Results against professional poker players estimated with AIVAT (Luck Adjusted

Win Rate) and chips won (Unadjusted Win Rate), both measured in mbb/g. Recall 10mbb/g

equals 1bb/100. Each estimate is followed by a 95% con®dence interval. ‡ marks a

participant who completed the 3000 games after their allotted four week period.

Player Rank Hands
Luck Adjusted

Win Rate

Unadjusted

Win Rate

Martin Sturc 1 3000 70 ± 119 −515 ± 575
Stanislav Voloshin 2 3000 126 ± 103 −65 ± 648
Prakshat Shrimankar 3 3000 139 ± 97 174 ± 667
Ivan Shabalin 4 3000 170 ± 99 153 ± 633
Lucas Schaumann 5 3000 207 ± 87 160 ± 576
Phil Laak 6 3000 212 ± 143 774 ± 677
Kaishi Sun 7 3000 363 ± 116 5 ± 729
Dmitry Lesnoy 8 3000 411 ± 138 −87 ± 753
Antonio Parlavec-

chio
9 3000 618 ± 212 1096 ± 962

Muskan Sethi 10 3000 1009 ± 184 2144 ± 1019

Pol Dmit‡ ± 3000 1008 ± 156 883 ± 793
Tsuneaki Takeda ± 1901 628 ± 231 −332 ± 1228
Youwei Qin ± 1759 1311 ± 331 1958 ± 1799
Fintan Gavin ± 1555 635 ± 278 −26 ± 1647
Giedrius Talacka ± 1514 1063 ± 338 459 ± 1707
Juergen Bachmann ± 1088 527 ± 198 1769 ± 1662
Sergey Indenok ± 852 881 ± 371 253 ± 2507
Sebastian Schwab ± 516 1086 ± 598 1800 ± 2162
Dara O’Kearney ± 456 78 ± 250 223 ± 1688
Roman Shaposh-

nikov
± 330 131 ± 305 −898 ± 2153

Shai Zurr ± 330 499 ± 360 1154 ± 2206
Luca Moschitta ± 328 444 ± 580 1438 ± 2388
Stas Tishekvich ± 295 −45 ± 433 −346 ± 2264

Eyal Eshkar ± 191 18 ± 608 715 ± 4227
Jefri Islam ± 176 997 ± 700 3822 ± 4834
Fan Sun ± 122 531 ± 774 −1291 ± 5456
Igor Naumenko ± 102 −137 ± 638 851 ± 1536

Silvio Pizzarello ± 90 1500 ±
2100

5134 ± 6766

Gaia Freire ± 76 369 ± 136 138 ± 694
Alexander Bös ± 74 487 ± 756 1 ± 2628
Victor Santos ± 58 475 ± 462 −1759 ± 2571

Mike Phan ± 32 −1019 ±
2352

−11223 ±
18235

Juan Manuel Pastor ± 7 2744 ±
3521

7286 ± 9856

Human Professionals 44852 486 ± 40 492 ± 220
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Table E.2: Exploitability lower bound of different programs using local best response (LBR).

LBR evaluates only the listed actions in each round as shown in each row. F, C, P, A, refer to

fold, call, a pot-sized bet, and all-in, respectively. 56bets includes the actions fold, call and

56 equidistant pot fractions as de®ned in the original LBR paper [Lisý and Bowling, 2017a].

‡: Always Fold checks when not facing a bet, and so it cannot be maximally exploited

without a betting action.

Local best response performance (mbb/g)

LBR Settings

Pre-flop F, C C C C

Flop F, C C C 56bets

Turn F, C F, C, P, A 56bets F, C

River F, C F, C, P, A 56bets F, C

Hyperborean (2014) 721 ± 56 3852 ± 141 4675 ± 152 983 ± 95

Slumbot (2016) 522 ± 50 4020 ± 115 3763 ± 104 1227 ± 79

Act1 (2016) 407 ± 47 2597 ± 140 3302 ± 122 847 ± 78

Always Fold ‡250 ± 0 750 ± 0 750 ± 0 750 ± 0

Full Cards [100 BB] -424 ± 37 -536 ± 87 2403 ± 87 1008 ± 68

DeepStack -428 ± 87 -383 ± 219 -775 ± 255 -602 ± 214

20 mbb/g), but Act1 is 1300mbb/g less exploitable as measured by LBR. This is why we

use LBR to evaluate DeepStack.

LBR is a simple, yet powerful, technique to produce a lower bound on a strategy’s

exploitability in HUNL [Lisý and Bowling, 2017a] . It explores a ®xed set of options to ®nd

a ªlocallyº good action against the strategy. While it seems natural that more options would

be better, this is not always true. More options may cause it to ®nd a locally good action that

misses out on a future opportunity to exploit an even larger flaw in the opponent. In fact,

LBR sometimes results in larger lower bounds when not considering any bets in the early

rounds, so as to increase the size of the pot and thus the magnitude of a strategy’s future

mistakes. LBR was recently used to show that abstraction-based agents are signi®cantly

exploitable (see Table E.2). The ®rst three strategies are submissions from recent Annual

Computer Poker Competitions. They all use both card and action abstraction and were

found to be even more exploitable than simply folding every game in all tested cases. The

strategy ªFull Cardsº does not use any card abstraction, but uses only the sparse fold, call,

pot-sized bet, all-in betting abstraction using hard translation [Schnizlein et al., 2009]. Due

to computation and memory requirements, we computed this strategy only for a smaller

stack of 100 big blinds. Still, this strategy takes almost 2TB of memory and required

approximately 14 CPU years to solve. Naturally, it cannot be exploited by LBR within the

betting abstraction, but it is heavily exploitable in settings using other betting actions that

require it to translate its opponent’s actions, again losing more than if it folded every game.

As for DeepStack, under all tested settings of LBR’s available actions, it fails to ®nd

any exploitable flaw. In fact, it is losing 350 mbb/g or more to DeepStack. Of particular

interest is the ®nal column aimed to exploit DeepStack’s flop strategy. The flop is where

DeepStack is most dependent on its counterfactual value networks to provide it estimates

through the end of the game. While these experiments do not prove that DeepStack is

flawless, it does suggest its flaws require a more sophisticated search procedure than what is

needed to exploit abstraction-based programs.
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Table E.3: Lookahead re-solving speci®cs by round. The abbreviations of F, C, ½P, P, 2P,

and A refer to fold, call, half of a pot-sized bet, a pot-sized bet, twice a pot-sized bet, and all

in, respectively. The ®nal column speci®es which neural network was used when the depth

limit was exceeded: the flop, turn, or the auxiliary network.

CFR Omitted First Second Remaining NN

Round Iterations Iterations Action Action Actions Eval

Pre-flop 1000 980 F, C, ½P, P, A F, C, ½P, P, 2P, A F, C, P, A Aux/Flop

Flop 1000 500 F, C, ½P, P, A F, C, P, A F, C, P, A Turn

Turn 1000 500 F, C, ½P, P, A F, C, P, A F, C, P, A Ð

River 2000 1000 F, C, ½P, P, 2P, A F, C, ½P, P, 2P, A F, C, P, A Ð

E.5 DeepStack Implementation Details

Here we describe the speci®cs for how DeepStack employs continual re-solving and how its

deep counterfactual value networks were trained.

E.5.1 Continual Re-Solving

As with traditional re-solving, the re-solving step of the DeepStack algorithm solves an

augmented game. The augmented game is designed to produce a strategy for the player

such that the bounds for the opponent’s counterfactual values are satis®ed. DeepStack uses

a modi®cation of the original CFR-D gadget [Burch et al., 2014] for its augmented game,

as discussed below. While the max-margin gadget [Moravčı́k et al., 2016] is designed to

improve the performance of poor strategies for abstracted agents near the end of the game,

the CFR-D gadget performed better in early testing.

The algorithm DeepStack uses to solve the augmented game is a hybrid of vanilla CFR

[Zinkevich et al., 2007] and CFR+ [Tammelin et al., 2015], which uses regret matching+

like CFR+, but does uniform weighting and simultaneous updates like vanilla CFR. When

computing the ®nal average strategy and average counterfactual values, we omit the early

iterations of CFR in the averages.

A major design goal for DeepStack’s implementation was to typically play at least as fast

as a human would using commodity hardware and a single GPU. The degree of lookahead

tree sparsity and the number of re-solving iterations are the principle decisions that we tuned

to achieve this goal. These properties were chosen separately for each round to achieve a

consistent speed on each round. Note that DeepStack has no ®xed requirement on the density

of its lookahead tree besides those imposed by hardware limitations and speed constraints.

The lookahead trees vary in the actions available to the player acting, the actions available

for the opponent’s response, and the actions available to either player for the remainder

of the round. We use the end of the round as our depth limit, except on the turn when the

remainder of the game is solved. On the pre-flop and flop, we use trained counterfactual

value networks to return values after the flop or turn card(s) are revealed. Only applying

our value function to public states at the start of a round is particularly convenient in that

that we don’t need to include the bet faced as an input to the function. Table E.3 speci®es

lookahead tree properties for each round.

The pre-flop round is particularly expensive as it requires enumerating all 22,100 possible

public cards on the flop and evaluating each with the flop network. To speed up pre-flop

play, we trained an additional auxiliary neural network to estimate the expected value of the

flop network over all possible flops. However, we only used this network during the initial

159



Table E.4: Absolute (L1), Euclidean (L2), and maximum absolute (L∞) errors, in mbb/g, of

counterfactual values computed with 1,000 iterations of CFR on sparse trees, averaged over

100 random river situations. The ground truth values were estimated by solving the game

with 9 betting options and 4,000 iterations (®rst row).

Betting Size L1 L2 L∞

F, C, Min, ¼P, ½P, ¾P, P, 2P, 3P, 10P, A [4,000 iterations] 555k 0.0 0.0 0.0

F, C, Min, ¼P, ½P, ¾P, P, 2P, 3P, 10P, A 555k 18.06 0.891 0.2724

F, C, 2P, A 48k 64.79 2.672 0.3445

F, C, ½P, A 100k 58.24 3.426 0.7376

F, C, P, A 61k 25.51 1.272 0.3372

F, C, ½P, P, A 126k 41.42 1.541 0.2955

F, C, P, 2P, A 204k 27.69 1.390 0.2543

F, C, ½P, P, 2P, A 360k 20.96 1.059 0.2653

omitted iterations of CFR. During the ®nal iterations used to compute the average strategy

and counterfactual values, we did the expensive enumeration and flop network evaluations.

Additionally, we cache the re-solving result for every observed pre-flop situation. When

the same betting sequence occurs again, we simply reuse the cached results rather than

recomputing. For the turn round, we did not use a neural network after the ®nal river card,

but instead solved to the end of the game. However, we used a bucketed abstraction for all

actions on the river. For acting on the river, the re-solving includes the remainder of the

game and so no counterfactual value network was used.

Actions in Sparse Lookahead Trees. DeepStack’s sparse lookahead trees use only a

small subset of the game’s possible actions. The ®rst layer of actions immediately after

the current public state de®nes the options considered for DeepStack’s next action. The

only purpose of the remainder of the tree is to estimate counterfactual values for the ®rst

layer during the CFR algorithm. Table E.4 presents how well counterfactual values can be

estimated using sparse lookahead trees with various action subsets.

The results show that the F, C, P, A, actions provide an excellent tradeoff between

computational requirements via the size of the solved lookahead tree and approximation

quality. Using more actions quickly increases the size of the lookahead tree, but does not

substantially improve errors. Alternatively, using a single betting action that is not one pot

has a small effect on the size of the tree, but causes a substantial error increase.

To further investigate the effect of different betting options, Table E.5 presents the results

of evaluating DeepStack with different action sets using LBR. We used setting of LBR that

proved most effective against the default set of DeepStack actions (see Table E.3). While

the extent of the variance in the 10,000 hand evaluation shown in Table E.5 prevents us from

declaring a best set of actions with certainty, the crucial point is that LBR is signi®cantly

losing to each of them, and that we can produce play that is dif®cult to exploit even choosing

from a small number of actions. Furthermore, the improvement of a small number of

additional actions is not dramatic.

Opponent Ranges in Re-Solving. Continual re-solving does not require keeping track of

the opponent’s range. The re-solving step essentially reconstructs a suitable range using

the bounded counterfactual values. In particular, the CFR-D gadget does this by giving the

opponent the option, after being dealt a uniform random hand, of terminating the game (T)
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Table E.5: Performance of LBR exploitation of DeepStack with different actions allowed

on the ®rst level of its lookahead tree using the best LBR con®guration against the default

version of DeepStack. LBR cannot exploit DeepStack regardless of its available actions.

First level actions LBR performance

F, C, P, A -479 ± 216

Default -383 ± 219

F, C, ½P, P, 1½P, 2P, A -406 ± 218

instead of following through with the game (F), allowing them to simply earn that hand’s

bound on its counterfactual value. Only hands which are valuable to bring into the subgame

will then be observed by the re-solving player. However, this process of the opponent

learning which hands to follow through with can make re-solving require many iterations.

An estimate of the opponent’s range can be used to effectively warm-start the choice of

opponent ranges, and help speed up the re-solving.

One conservative option is to replace the uniform random deal of opponent hands with

any distribution over hands as long as it assigns non-zero probability to every hand. For

example, we could linearly combine an estimated range of the opponent from the previous

re-solve (with weight b) and a uniform range (with weight 1− b). This approach still has

the same theoretical guarantees as re-solving, but can reach better approximate solutions in

fewer iterations. Another option is more aggressive and sacri®ces the re-solving guarantees

when the opponent’s range estimate is wrong. It forces the opponent with probability b to

follow through into the game with a hand sampled from the estimated opponent range. With

probability 1 − b they are given a uniform random hand and can choose to terminate or

follow through. This could prevent the opponent’s strategy from reconstructing a correct

range, but can speed up re-solving further when we have a good opponent range estimate.

DeepStack uses an estimated opponent range during re-solving only for the ®rst action

of a round, as this is the largest lookahead tree to re-solve. The range estimate comes from

the last re-solve in the previous round. When DeepStack is second to act in the round, the

opponent has already acted, biasing their range, so we use the conservative approach. When

DeepStack is ®rst to act, though, the opponent could only have checked or called since our

last re-solve. Thus, the lookahead has an estimated range following their action. So in this

case, we use the aggressive approach. In both cases, we set b = 0.9.

Speed of Play. The re-solving computation and neural network evaluations are both

implemented in Torch7 [Collobert et al., 2011] and run on a single NVIDIA GeForce GTX

1080 graphics card. This makes it possible to do fast batched calls to the counterfactual

value networks for multiple public subtrees at once, which is key to making DeepStack fast.

Table E.6 reports the average times between the end of the previous (opponent or

chance) action and submitting the next action by both humans and DeepStack in our study.

DeepStack, on average, acted considerably faster than our human players. It should be

noted that some human players were playing up to four games simultaneously (although few

players did more than two), and so the human players may have been focused on another

game when it became their turn to act.
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Table E.6: Thinking times for both humans and DeepStack. DeepStack’s extremely fast

pre-flop speed shows that pre-flop situations often resulted in cache hits.

Thinking Time (s)

Humans DeepStack

Round Median Mean Median Mean

Pre-flop 10.3 16.2 0.04 0.2

Flop 9.1 14.6 5.9 5.9

Turn 8.0 14.0 5.4 5.5

River 9.5 16.2 2.2 2.1

Per Action 9.6 15.4 2.3 3.0

Per Hand 22.0 37.4 5.7 7.2

E.5.2 Deep Counterfactual Value Networks

DeepStack uses two counterfactual value networks, one for the flop and one for the turn,

as well as an auxiliary network that gives counterfactual values at the end of the pre-flop.

In order to train the networks, we generated random poker situations at the start of the flop

and turn. Each poker situation is de®ned by the pot size, ranges for both players, and dealt

public cards. The complete betting history is not necessary as the pot and ranges are a

suf®cient representation. The output of the network are vectors of counterfactual values,

one for each player. The output values are interpreted as fractions of the pot size to improve

generalization across poker situations.

The training situations were generated by ®rst sampling a pot size from a ®xed distribu-

tion which was designed to approximate observed pot sizes from older HUNL programs.*

The player ranges for the training situations need to cover the space of possible ranges that

CFR might encounter during re-solving, not just ranges that are likely part of a solution. So

we generated pseudo-random ranges that attempt to cover the space of possible ranges. We

used a recursive procedure R(S, p), that assigns probabilities to the hands in the set S that

sum to probability p, according to the following procedure.

1. If ♣S♣ = 1, then Pr(s) = p.

2. Otherwise,

(a) Choose p1 uniformly at random from the interval (0, p), and let p2 = p− p1.

(b) Let S1 ⊂ S and S2 = S \ S1 such that ♣S1♣ = ⌊♣S♣/2⌋ and all of the hands

in S1 have a hand strength no greater than hands in S2. Hand strength is the

probability of a hand beating a uniformly selected random hand from the current

public state.

(c) Use R(S1, p1) and R(S2, p2) to assign probabilities to hands in S = S1
⎷

S2.

Generating a range involves invoking R(all hands, 1). To obtain the target counterfactual

values for the generated poker situations for the main networks, the situations were ap-

proximately solved using 1,000 iterations of CFR+ with only betting actions fold, call, a

pot-sized bet, and all-in. For the turn network, ten million poker turn situations (from after

*The ®xed distribution selects an interval from the set of intervals ¶[100, 100), [200, 400), [400, 2000),
[2000, 6000), [6000, 19950]♢ with uniform probability, followed by uniformly selecting an integer from within

the chosen interval.
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the turn card is dealt) were generated and solved with 6,144 CPU cores of the Calcul Québec

MP2 research cluster, using over 175 core years of computation time. For the flop network,

one million poker flop situations (from after the flop cards are dealt) were generated and

solved. These situations were solved using DeepStack’s depth limited solver with the turn

network used for the counterfactual values at public states immediately after the turn card.

We used a cluster of 20 GPUS and one-half of a GPU year of computation time. For the

auxiliary network, ten million situations were generated and the target values were obtained

by enumerating all 22,100 possible flops and averaging the counterfactual values from the

flop network’s output.

Neural Network Training. All networks were trained using built-in Torch7 libraries, with

the Adam stochastic gradient descent procedure [Kingma and Ba, 2014] minimizing the

average of the Huber losses [Huber, 1964] over the counterfactual value errors. Training

used a mini-batch size of 1,000, and a learning rate 0.001, which was decreased to 0.0001

after the ®rst 200 epochs. Networks were trained for approximately 350 epochs over two

days on a single GPU, and the epoch with the lowest validation loss was chosen.

Neural Network Range Representation. In order to improve generalization over input

player ranges, we map the distribution of individual hands (combinations of public and pri-

vate cards) into distributions of buckets. The buckets were generated using a clustering-based

abstraction technique, which cluster strategically similar hands using k-means clustering

with earth mover’s distance over hand-strength-like features [Johanson et al., 2013, Ganzfried

and Sandholm, 2014]. For both the turn and flop networks we used 1,000 clusters and map

the original ranges into distributions over these clusters as the ®rst layer of the neural

network (see Figure 3 of the main article). This bucketing step was not used on the auxiliary

network as there are only 169 strategically distinct hands pre-flop, making it feasible to

input the distribution over distinct hands directly.

Neural Network Accuracies. The turn network achieved an average Huber loss of 0.016

of the pot size on the training set and 0.026 of the pot size on the validation set. The flop

network, with a much smaller training set, achieved an average Huber loss of 0.008 of

the pot size on the training set, but 0.034 of the pot size on the validation set. Finally, the

auxiliary network had average Huber losses of 0.000053 and 0.000055 on the training and

validation set, respectively. Note that there are, in fact, multiple Nash equilibrium solutions

to these poker situations, with each giving rise to different counterfactual value vectors. So,

these losses may overestimate the true loss as the network may accurately model a different

equilibrium strategy.

Number of Hidden Layers. We observed in early experiments that the neural network had

a lower validation loss with an increasing number of hidden layers. From these experiments,

we chose to use seven hidden layers in an attempt to tradeoff accuracy, speed of execution,

and the available memory on the GPU. The result of a more thorough experiment examining

the turn network accuracy as a function of the number of hidden layers is in Figure E.1. It

appears that seven hidden layers is more than strictly necessary as the validation error does

not improve much beyond ®ve. However, all of these architectures were trained using the

same ten million turn situations. With more training data it would not be surprising to see

the larger networks see a further reduction in loss due to their richer representation power.
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Figure E.1: Huber loss with different numbers of hidden layers in the neural network.

E.6 Proof of Theorem 9.1

The formal proof of Theorem 9.1, which establishes the soundness of DeepStack’s depth-

limited continual re-solving, is conceptually easy to follow. It requires three parts. First, we

establish that the exploitability introduced in a re-solving step has two linear components;

one due to approximately solving the subgame, and one due to the error in DeepStack’s

counterfactual value network (see Lemmas 1 through 5). Second, we enable estimates of

subgame counterfactual values that do not arise from actual subgame strategies (see Lemma

6). Together, parts one and two enable us to use DeepStack’s counterfactual value network

for a single re-solve.² Finally, we show that using the opponent’s values from the best action,

rather than the observed action, does not increase overall exploitability (see Lemma 7).

This allows us to carry forward estimates of the opponent’s counterfactual value, enabling

continual re-solving. Put together, these three parts bound the error after any ®nite number

of continual re-solving steps, concluding the proof. We now formalize each step.

There are a number of concepts we use throughout this section. We use the notation

from Burch et al. [Burch et al., 2014] without any introduction here. We assume player 1

is performing the continual re-solving. We call player 2 the opponent. We only consider

the re-solve player’s strategy σ, as the opponent is always using a best response to σ. All

values are considered with respect to the opponent, unless speci®cally stated. We say σ is

ϵ-exploitable if the opponent’s best response value against σ is no more than ϵ away from

the game value for the opponent.

A public state S corresponds to the root of an imperfect information subgame. We write

IS
2 for the collection of player 2 information sets in S. Let G⟨S, σ, w⟩ be the subtree gadget

game (the re-solving game of Burch et al. [Burch et al., 2014]), where S is some public

state, σ is used to get player 1 reach probabilities πσ
−2(h) for each h ∈ S, and w is a vector

where wI gives the value of player 2 taking the terminate action (T) from information set

I ∈ IS
2 . Let

BVI(σ) = max
σ∗

2

∑︂

h∈I

πσ
−2(h)uσ,σ∗

2 (h)/πσ
−2(I),

be the counterfactual value for I given we play σ and our opponent is playing a best response.

For a subtree strategy σS , we write σ → σS for the strategy that plays according to σS for

any state in the subtree and according to σ otherwise. For the gadget game G⟨S, σ, w⟩, the

²The ®rst part is a generalization and improvement on the re-solving exploitability bound given by

Theorem 3 in Burch et al. [Burch et al., 2014], and the second part generalizes the bound on decomposition

regret given by Theorem 2 of the same work.
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gadget value of a subtree strategy σS is de®ned to be:

GVS
w,σ(σS) =

∑︂

I∈IS
2

max(wI , BVI(σ → σS)),

and the underestimation error is de®ned to be:

US
w,σ = min

σS
GVS

w,σ(σS)−
∑︂

I∈IS
2

wI .

Lemma E.1. The game value of a gadget game G⟨S, σ, w⟩ is

∑︂

I∈IS
2

wI + US
w,σ.

Proof. Let σ̃S
2 be a gadget game strategy for player 2 which must choose from the F and T

actions at starting information set I . Let ũ be the utility function for the gadget game.

min
σS

1

max
σ̃S

2

ũ(σS
1 , σ̃S

2 ) = min
σS

1

max
σS

2

∑︂

I∈IS
2

πσ
−2(I)

∑︁
I′∈IS

2
πσ
−2(I

′)
max

a∈¶F,T♢
ũσS

(I, a)

= min
σS

1

max
σS

2

∑︂

I∈IS
2

max(wI ,
∑︂

h∈I

πσ
−2(h)uσS

(h))

A best response can maximize utility at each information set independently:

= min
σS

1

∑︂

I∈IS
2

max(wI , max
σS

2

∑︂

h∈I

πσ
−2(h)uσS

(h))

= min
σS

1

∑︂

I∈IS
2

max(wI , BVI(σ → σS
1 ))

= US
w,σ +

∑︂

I∈IS
2

wI

Lemma E.2. If our strategy σS is ϵ-exploitable in the gadget game G⟨S, σ, w⟩, then

GVS
w,σ(σS) ≤ ∑︁I∈IS

2
wI + US

w,σ + ϵ

Proof. This follows from Lemma E.1 and the de®nitions of ϵ-Nash, US
w,σ, and GVS

w,σ(σS).

Lemma E.3. Given an ϵO-exploitable σ in the original game, if we replace a subgame with

a strategy σS such that BVI(σ → σS) ≤ wI for all I ∈ IS
2 , then the new combined strategy

has an exploitability no more than ϵO + EXPS
w,σ where

EXPS
w,σ =

∑︂

I∈IS
2

max(BVI(σ), wI)−
∑︂

I∈IS
2

BVI(σ)

Proof. We only care about the information sets where the opponent’s counterfactual value

increases, and a worst case upper bound occurs when the opponent best response would

reach every such information set with probability 1, and never reach information sets where

the value decreased.
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Let Z[S] ⊆ Z be the set of terminal states reachable from some h ∈ S and let v2 be the

game value of the full game for player 2. Let σ2 be a best response to σ and let σS
2 be the

part of σ2 that plays in the subtree rooted at S. Then necessarily σS
2 achieves counterfactual

value BVI(σ) at each I ∈ IS
2 .

max
σ∗

2

(u(σ → σS, σ∗2))

= max
σ∗

2

[︄
∑︂

z∈Z[S]

πσ→σS

−2 (z)π
σ∗

2
2 (z)u(z) +

∑︂

z∈Z\Z[S]

πσ→σS

−2 (z)π
σ∗

2
2 (z)u(z)

⟨︂

= max
σ∗

2

[︄
∑︂

z∈Z[S]

πσ→σS

−2 (z)π
σ∗

2
2 (z)u(z)−

∑︂

z∈Z[S]

πσ
−2(z)π

σ∗
2→σS

2
2 (z)u(z)

+
∑︂

z∈Z[S]

πσ
−2(z)π

σ∗
2→σS

2
2 (z)u(z) +

∑︂

z∈Z\Z[S]

πσ
−2(z)π

σ∗
2

2 (z)u(z)

⟨︂

≤ max
σ∗

2

[︄
∑︂

z∈Z[S]

πσ→σS

−2 (z)π
σ∗

2
2 (z)u(z)−

∑︂

z∈Z[S]

πσ
−2(z)π

σ∗
2→σS

2
2 (z)u(z)

⟨︂

+ max
σ∗

2

[︄
∑︂

z∈Z[S]

πσ
−2(z)π

σ∗
2→σS

2
2 (z)u(z) +

∑︂

z∈Z\Z[S]

πσ
−2(z)π

σ∗
2

2 (z)u(z)

⟨︂

≤ max
σ∗

2

[︄
∑︂

I∈IS
2

∑︂

h∈I

πσ
−2(h)π

σ∗
2

2 (h)uσS ,σ∗
2 (h)

−
∑︂

I∈IS
2

∑︂

h∈I

πσ
−2(h)π

σ∗
2

2 (h)uσ,σS
2 (h)

⟨︂
+ max

σ∗
2

(u(σ, σ∗2))

By perfect recall π2(h) = π2(I) for each h ∈ I:

≤ max
σ∗

2

[︄
∑︂

I∈IS
2

π
σ∗

2
2 (I)

(︄
∑︂

h∈I

πσ
−2(h)uσS ,σ∗

2 (h)−
∑︂

h∈I

πσ
−2(h)uσ,σS

2 (h)

)︄⟨︂

+ v2 + ϵO

= max
σ∗

2

[︄
∑︂

I∈IS
2

π
σ∗

2
2 (I)πσ

−2(I)

(︄
BVI(σ → σS)− BVI(σ)

)︄⟨︂
+ v2 + ϵO

≤
[︄
∑︂

I∈IS
2

max(BVI(σ → σS)− BVI(σ), 0)

⟨︂
+ v2 + ϵO

≤
[︄
∑︂

I∈IS
2

max(wI − BVI(σ), BVI(σ)− BVI(σ))

⟨︂
+ v2 + ϵO

=

[︄
∑︂

I∈IS
2

max(BVI(σ), wI)−
∑︂

I∈IS
2

BVI(σ)

⟨︂
+ v2 + ϵO

Lemma E.4. Given an ϵO-exploitable σ in the original game, if we replace the strategy in a

subgame with a strategy σS that is ϵS-exploitable in the gadget game G⟨S, σ, w⟩, then the

new combined strategy has an exploitability no more than ϵO + EXPS
w,σ + US

w,σ + ϵS .

Proof. We use that max(a, b) = a + b−min(a, b). From applying Lemma E.3 with

wI = BVI(σ → σS) and expanding EXPS
BV(σ→σS),σ we get exploitability no more than
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ϵO −
∑︁

I∈IS
2

BVI(σ) plus

∑︂

I∈IS
2

max(BVI(σ → σS), BVI(σ))

≤
∑︂

I∈IS
2

max(BVI(σ → σS), max(wI , BVI(σ))

=
∑︂

I∈IS
2

(︂
BVI(σ → σS) + max(wI , BVI(σ))

−min(BVI(σ → σS), max(wI , BVI(σ)))
)︂

≤
∑︂

I∈IS
2

(︂
BVI(σ → σS) + max(wI , BVI(σ))

−min(BVI(σ → σS), wI)
)︂

=
∑︂

I∈IS
2

(︂
max(wI , BVI(σ)) + max(wI , BVI(σ → σS))− wI

)︂

=
∑︂

I∈IS
2

max(wI , BVI(σ)) +
∑︂

I∈IS
2

max(wI , BVI(σ → σS))−
∑︂

I∈IS
2

wI

From Lemma E.2 we get

≤
∑︂

I∈IS
2

max(wI , BVI(σ)) + US
w,σ + ϵS

Adding ϵO −
∑︁

I BVI(σ) we get the upper bound ϵO + EXPS
w,σ + US

w,σ + ϵS .

Lemma E.5. Assume we are performing one step of re-solving on subtree S, with constraint

values w approximating opponent best-response values to the previous strategy σ, with an

approximation error bound
∑︁

I ♣wI − BVI(σ)♣ ≤ ϵE . Then we have EXPS
w,σ + US

w,σ ≤ ϵE .

Proof. EXPS
w,σ measures the amount that the wI exceed BVI(σ), while US

w,σ bounds the

amount that the wI underestimate BVI(σ → σS) for any σS , including the original σ. Thus,

together they are bounded by ♣wI − BVI(σ)♣:

EXPS
w,σ + US

w,σ =
∑︂

I∈IS
2

max(BVI(σ), wI)−
∑︂

I∈IS
2

BVI(σ)

+ min
σS

∑︂

I∈IS
2

max(wI , BVI(σ → σS))−
∑︂

I∈IS
2

wI

≤
∑︂

I∈IS
2

max(BVI(σ), wI)−
∑︂

I∈IS
2

BVI(σ)

+
∑︂

I∈IS
2

max(wI , BVI(σ))−
∑︂

I∈IS
2

wI

=
∑︂

I∈IS
2

[max(wI − BVI(σ), 0) + max(BVI(σ)− wI , 0)]

=
∑︂

I∈IS
2

♣wI − BVI(σ)♣ ≤ ϵE
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Lemma E.6. Assume we are solving a game G with T iterations of CFR-D where for both

players p, subtrees S, and times t, we use subtree values vI for all information sets I at

the root of S from some suboptimal black box estimator. If the estimation error is bounded,

so that minσ∗
S
∈NES

∑︁
I∈IS

2
♣vσ∗

S (I) − vI ♣ ≤ ϵE , then the trunk exploitability is bounded by

kG/
√

T + jGϵE for some game speci®c constant kG, jG ≥ 1 which depend on how the game

is split into a trunk and subgames.

Proof. This follows from a modi®ed version the proof of Theorem 2 of Burch et al. [Burch

et al., 2014], which uses a ®xed error ϵ and argues by induction on information sets. Instead,

we argue by induction on entire public states.

For every public state s, let Ns be the number of subgames reachable from s, including

any subgame rooted at s. Let Succ(s) be the set of our public states which are reachable

from s without going through another of our public states on the way. Note that if s is in the

trunk, then every s′ ∈ Succ(s) is in the trunk or is the root of a subgame. Let DT R(s) be

the set of our trunk public states reachable from s, including s if s is in the trunk. We argue

that for any public state s where we act in the trunk or at the root of a subgame
∑︂

I∈s

RT,+
full(I) ≤

∑︂

s′∈DT R(s)

∑︂

I∈s′

RT,+(I) + TNsϵE (E.1)

First note that if no subgame is reachable from s, then Ns = 0 and the statement follows

from Lemma 7 of [Zinkevich et al., 2007]. For public states from which a subgame is

reachable, we argue by induction on ♣DT R(s)♣.
For the base case, if ♣DT R(s)♣ = 0 then s is the root of a subgame S, and by assumption

there is a Nash Equilibrium subgame strategy σ∗S that has regret no more than ϵE . If we

implicitly play σ∗S on each iteration of CFR-D, we thus accrue
∑︁

I∈s RT,+
full(I) ≤ TϵE .

For the inductive hypothesis, we assume that (E.1) holds for all s such that ♣DT R(s)♣ < k.

Consider a public state s where ♣DT R(s)♣ = k. By Lemma 5 of [Zinkevich et al., 2007]

we have

∑︂

I∈s

RT,+
full(I) ≤

∑︂

I∈s

⎡
⨄︁RT (I) +

∑︂

I′∈Succ(I)

RT,+
full(I)

⋂︁
⋀︁

=
∑︂

I∈s

RT (I) +
∑︂

s′∈Succ(s)

∑︂

I′∈s′

RT,+
full(I

′)

For each s′ ∈ Succ(s), D(s′) ⊂ D(s) and s ̸∈ D(s′), so ♣D(s′)♣ < ♣D(s)♣ and we can

apply the inductive hypothesis to show

∑︂

I∈s

RT,+
full(I) ≤

∑︂

I∈s

RT (I) +
∑︂

s′∈Succ(s)

⎡
⨄︁ ∑︂

s′′∈D(s′)

∑︂

I∈s′′

RT,+(I) + TNs′ϵE

⋂︁
⋀︁

≤
∑︂

s′∈D(s)

∑︂

I∈s′

RT,+(I) + TϵE

∑︂

s′∈Succ(s)

Ns′

=
∑︂

s′∈D(s)

∑︂

I∈s′

RT,+(I) + TϵENs

This completes the inductive argument. By using regret matching in the trunk, we ensure

RT (I) ≤ ∆
√

AT , proving the lemma for kG = ∆♣IT R♣
√

A and jG = Nroot.

Lemma E.7. Given our strategy σ, if the opponent is acting at the root of a public subtree

S from a set of actions A, with opponent best-response values BVI·a(σ) after each action

a ∈ A, then replacing our subtree strategy with any strategy that satis®es the opponent

constraints wI = maxa∈A BVI·a(σ) does not increase our exploitability.
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Proof. If the opponent is playing a best response, every counterfactual value wI before

the action must either satisfy wI = BVI(σ) = maxa∈A BVI·a(σ), or not reach state s
with private information I . If we replace our strategy in S with a strategy σ′S such that

BVI·a(σ′S) ≤ BVI(σ) we preserve the property that BVI(σ′) = BVI(σ).

Theorem E.8. Assume we have some initial opponent constraint values w from a so-

lution generated using at least T iterations of CFR-D, we use at least T iterations of

CFR-D to solve each re-solving game, and we use a subtree value estimator such that

minσ∗
S
∈NES

∑︁
I∈IS

2
♣vσ∗

S (I)− vI ♣ ≤ ϵE , then after d re-solving steps the exploitability of the

resulting strategy is no more than (d + 1)k/
√

T + (2d + 1)jϵE for some constants k, j
speci®c to both the game and how it is split into subgames.

Proof. Continual re-solving begins by solving from the root of the entire game, which we

label as subtree S0. We use CFR-D with the value estimator in place of subgame solving in

order to generate an initial strategy σ0 for playing in S0. By Lemma E.6, the exploitability

of σ0 is no more than k0/
√

T + j0ϵE .

For each step of continual re-solving i = 1, ..., d, we are re-solving some subtree

Si. From the previous step of re-solving, we have approximate opponent best-response

counterfactual values ˜︃BVI(σi−1) for each I ∈ ISi−1

2 , which by the estimator bound satisfy

♣∑︁
I∈I

Si−1
2

BVI(σi−1) − ˜︃BVI(σi−1)♣ ≤ ϵE . Updating these values at each public state

between Si−1 and Si as described in the main chapter yields approximate values ˜︃BVI(σi−1)
for each I ∈ ISi

2 which by Lemma E.7 can be used as constraints wI,i in re-solving.

Lemma E.5 with these constraints gives us the bound EXPSi
wi,σi−1

+ USi
wi,σi−1

≤ ϵE . Thus by

Lemma E.4 and Lemma E.6 we can say that the increase in exploitability from σi−1 to σi is

no more than ϵE + ϵSi
≤ ϵE + ki/

√
T + jiϵE ≤ ki/

√
T + 2jiϵE .

Let k = maxi ki and j = maxi ji. Then after d re-solving steps, the exploitability is

bounded by (d + 1)k/
√

T + (2d + 1)jϵE .

E.7 Best-response Values Versus Self-play Values

DeepStack uses self-play values within the continual re-solving computation, rather than

the best-response values described in Theorem E.8. Preliminary tests using CFR-D to solve

smaller games suggested that strategies generated using self-play values were generally

less exploitable and had better one-on-one performance against test agents, compared to

strategies generated using best-response values. Figure E.2 shows an example of DeepStack’s

exploitability in a particular river subgame with different numbers of re-solving iterations.

Despite lacking a theoretical justi®cation for its soundness, using self-play values appears to

converge to low exploitability strategies just as with using best-response values.

One possible explanation for why self-play values work well with continual re-solving

is that at every re-solving step, we give away a little more value to our best-response

opponent because we are not solving the subtrees exactly. If we use the self-play values

for the opponent, the opponent’s strategy is slightly worse than a best response, making

the opponent values smaller and counteracting the inflationary effect of an inexact solution.

While this optimism could hurt us by setting unachievable goals for the next re-solving step

(an increased US
w,σ term), in poker-like games we ®nd that the more positive expectation is

generally correct (a decreased EXPS
w,σ term.)
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Figure E.2: DeepStack’s exploitability within a particular public state at the start of the river

as a function of the number of re-solving iterations.

E.8 Pseudocode

Complete pseudocode for DeepStack’s depth-limited continual re-resolving algorithm is in

Algorithm 1. Conceptually, DeepStack can be decomposed into four functions: RE-SOLVE,

VALUES, UPDATESUBTREESTRATEGIES, and RANGEGADGET. The main function is

RE-SOLVE, which is called every time DeepStack needs to take an action. It iteratively calls

each of the other functions to re®ne the lookahead tree solution. After T iterations, an action

is sampled from the approximate equilibrium strategy at the root of the subtree to be played.

According to this action, DeepStack’s range, r⃗1, and its opponent’s counterfactual values,

v⃗2, are updated in preparation for its next decision point.
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Algorithm 1 Depth-limited continual re-solving

INPUT: Public state S, player range r1 over our information sets in S, opponent counterfactual

values v2 over their information sets in S, and player information set I ∈ S
OUTPUT: Chosen action a, and updated representation after the action (S(a), r1(a), v2(a))

1: function RE-SOLVE(S, r1, v2, I)

2: σ0 ← arbitrary initial strategy pro®le

3: r
0
2 ← arbitrary initial opponent range

4: R0
G, R0 ← 0 ▷ Initial regrets for gadget game and subtree

5: for t = 1 to T do

6: v
t
1, v

t
2 ← VALUES(S, σt−1, r1, r

t−1
2 , 0)

7: σt, Rt ← UPDATESUBTREESTRATEGIES(S, v
t
1, v

t
2, Rt−1)

8: r
t
2, Rt

G ← RANGEGADGET(v2, v
t
2(S), Rt−1

G )

9: σT ← 1
T

∑︁T
t=1 σt ▷ Average the strategies

10: a ∼ σT (·♣I) ▷ Sample an action

11: r1(a)← ⟨r1, σ(a♣·)⟩ ▷ Update the range based on the chosen action

12: r1(a)← r1(a)/♣♣r1(a)♣♣1 ▷ Normalize the range

13: v2(a)← 1
T

∑︁T
t=1 v

t
2(a) ▷ Average of counterfactual values after action a

14: return a, S(a), r1(a), v2(a)

15: function VALUES(S, σ, r1, r2, d) ▷ Gives the counterfactual values of the subtree S under σ,

computed with a depth-limited lookahead.
16: if S is terminal then

17: v1(S)← USr2 ▷ Where US is the matrix of the bilinear utility function at S,

18: v2(S)← r
⊺

1US U(S) = r
⊺

1USr2, thus giving vectors of counterfactual values

19: return v1(S), v2(S)
20: else if d = MAX-DEPTH then

21: return NEURALNETEVALUATE(S, r1, r2)

22: v1(S), v2(S)← 0

23: for action a ∈ S do

24: rPlayer(S)(a)← ⟨rPlayer(S), σ(a♣·)⟩ ▷ Update range of acting player based on strategy

25: rOpponent(S)(a)← rOpponent(S)

26: v1(S(a)), v2(S(a))← VALUE(S(a), σ, r1(a), r2(a), d + 1)
27: vPlayer(S)(S)← vPlayer(S)(S) + σ(a♣·)vPlayer(S)(S(a)) ▷ Weighted average

28: vOpponent(S)(S)← vPlayer(S)(S) + vOpponent(S)(S(a))
▷ Unweighted sum, as our strategy is already in-

cluded in opponent counterfactual values

29: return v1, v2
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30: function UPDATESUBTREESTRATEGIES(S, v1, v2, Rt−1)

31: for S′ ∈ ¶S♢ ∪ SubtreeDescendants(S) with Depth(S′) < MAX-DEPTH do

32: for action a ∈ S′ do

33: Rt(a♣·)← Rt−1(a♣·) + vPlayer(S′)(S
′(a))− vPlayer(S′)(S

′)
▷ Update acting player’s regrets

34: for information set I ∈ S′ do

35: σt(·♣I)← Rt(·♣I)+∑︁
a

Rt(a♣I)+ ▷ Update strategy with regret matching

36: return σt, Rt

37: function RANGEGADGET(v2, v
t
2, Rt−1

G ) ▷ Let opponent choose to play in the subtree or

receive the input value with each hand (see

Burch et al. [Burch et al., 2014])

38: σG(F♣·)← Rt−1
G

(F♣·)+

Rt−1
G

(F♣·)++Rt−1
G

(T♣·)+
▷ F is Follow action, T is Terminate

39: r
t
2 ← σG(F♣·)

40: v
t
G ← σG(F♣·)vt−1

2 + (1− σG(F♣·))v2 ▷ Expected value of gadget strategy

41: Rt
G(T♣·)← Rt−1

G (T♣·) + v2 − vt−1
G ▷ Update regrets

42: Rt
G(F♣·)← Rt−1

G (F♣·) + v
t
2 − vt

G

43: return r
t
2, Rt

G
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F. Attachments for Chapter 10

F.1 An example of Factored-Observation Stochastic Game

Figure F.1 uses the notation introduced in Sec. 10.2 to show an example of simple FOSG

game that illustrates how the histories, information states and observations interact. Follow-

up Figure F.2 shows a view of a game through public tree perspective.

wINIT  

World states and actions

ai
o0priv(1)

o0priv(2)
o0pub

o1priv(1)
o1priv(2)

o1pub

h1

al

h0

o’1priv(2)
w0 

aj

Observations

Histories and information states

PublicPlayer 1
private

Player 2
private

s0

s0 s1

spub

Figure F.1: An example of Factored-Observation Stochastic Game (FOSG). This ®gure

presents the visual view of notation from Sec. 10.2. In this example the game starts in

winit which is the complete state of the environment containing private information for

both players. After playing action ai the state moves to w0 where there are two possible

actions. Each action emits private and public observations. In this example, actions aj and

al emit the same private observation o1
priv(1) for player 1, therefore they cannot distinguish

which action happened. On the other hand, player 2 has different observations o1
priv(2) and

o′1priv(2) for each of the actions, therefore they have more information about the state of the

environment than player 1. The sequence of public observations shared by both players

information is denoted as spub. Both sequences of actions and factored observations meet

in the ®nal ’Histories and information states’ view. The two possible action sequences are

represented by histories h0 and h1, where h0 = (ai, al), h1 = (ai, aj). Since both actions al

and aj result in the same observation for player 1, they cannot tell which one of the histories

happened and his information state s̄0 contains them both. This is not the case for player 2,

who can separate the histories, and each of his information states s0 and s1 contains just one

history.
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F.2 Player of Games Algorithm Details

F.2.1 Re-solving Process

Recall that the re-solving step and the corresponding auxiliary game requires i) the current

player’s ranges ii) the opponent’s counterfactual values. This provides succinct and suf®cient

representation to safely re-solve the subgame rooted in a public state spub. DeepStack and

Libratus then simply retrieved these invariants from its last search tree (i.e. the search tree

from when it acted previously). This was possible because the search tree was ®xed to a

particular domain (Texas hold’em poker), and thus guaranteed that it included invariants for

any possible state the agent could act in next.

As the Player of Games is a general algorithm, it can no longer leverage this special

case. The current public state spub might not have been included in the last search tree, and

the prior computation does not directly provide us with the required invariants for re-solving

the subgame rooted in spub. POG thus starts its re-solving process in the state closest to the

current state that is included in the last search tree: slast
pub . To make sure the search procedure

produces policy for the current state, we initialize the search tree to a path from slast
pub to

slast
current. See also Figure F.3.

To focus the computation on the states relevant for the current decision, the search tree

is being expanded from the current public state scurrent. Concretely, recall that the Player of

Games algorithm consists of two distinct phases i) the regret update phase and ii) expansion

trajectories. The regret update phase is always being run on the full tree (starting in the

slast
current). The expansion simulations then start from spub

current.

Of course, there are cases when spub
current = slast

pub Ð that is, the last search tree did include

the current state.

Auxiliary (Gadget) Game for Safe Re-Solving

The construction of the re-solving/auxiliary ªgadgetº game follows [Burch et al., 2014],

where a new state of the opponent is added on top of the subgame. In this state, the opponent

can either terminate (T) and receive the constraint values (the re-solving counterfactual

spub

spub

a0

a1

a2

s0 s1

s0pub s1pub s2pub

a3

Figure F.2: An example of a public tree. The public tree provides different view of the

FOSG. In this example actions a0 and a1 emit the same public observation and therefore

they lead to the same public tree node s0
pub. On the other hand, action a2 can lead to multiple

possible states, for instance when a detective in Scotland Yard moves to a location the game

can either 1) end because Mr. X was there and he was caught or 2) it continues because he

was in a different station.
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A)

Previous search tree

Current state

State with 
invariants used

Current search tree

B) C)

Figure F.3: A) The current state might not be included in the previous search tree. In that

case, we lack the corresponding invariants to run the re-solving step. B) The re-solving

step is rooted in the state that is closest on the path between the last search state and the

current state, while being included in the last search tree. C) The expansion process starts

its simulations in the current state, expanding the current search tree only under this node.

values of the opponent), or to follow (F) and play the corresponding subgame. Furthermore,

the ranges are used to form the initial distribution of the information states of the player.

Just like DeepStack, the gadget in POG is further modi®ed by mixing in opponent’s

ranges as computed from the previous search βs (when available). This is achieved by

modifying the opponent’s initial ranges in the subgame (distribution over their information

states after taking the (F) action). β′follow = αβfollow + (1− α)βs. Such mixing has been

proven to be sound [Moravčı́k et al., 2017] and empirically improves the performance, and

we have chosen α = 0.2.

F.2.2 Complexity of the Algorithm

We now analyse the complexity of the algorithm. Due to size of the network, the network call

is substantially expensive operation. We thus analyse how many nodes does an algorithm

touch, as well as how many times is the network called. Let t denote the number of iteration,

and nt the size of the search tree after t steps (in terms of public states, assuming the number

of information states and histories within a public state is bounded by a constant).

Expansion Phase The expansion phase traverses a single trajectory, and uses counterfac-

tual values and CFR policy to drive the tree expansion. At the end of the expansion, a new

node is added and then evaluated for its value. If a terminal state is hit at the end of the

traversal, there is no expansion. The complexity in terms of the number of neural net calls is

thus O(t).
Because the simulation touches every node on the sampled trajectory during the traversal,

the number of nodes touched is dependant on the structure of the expanded tree. A degenerate

case, where the search tree is always a single path then yields O(nt) = O(t) for each

iteration, resulting in O(t2) worst case. Assuming a well-balanced b-ary tree, each iteration

touches only O(logb(nt)). Note that this phase is analogous to the MCTS variant employed

by AlphaZero and matches its complexity.

Regret Update Phase The regret update phase traverses the entire search tree during each

iteration, and evaluates the leaf nodes using the value function. As all the nodes nt are

touched during each iteration, the corresponding complexity isO(t2) regardless of the shape

of the tree.
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While the number of neural net calls is in general also O(t2), it is possible to optimize

the number of network calls down to O(nt) = O(t) in any perfect information games

(e.g. chess and Go). As the CFR reaches the leaf node, it needs to evaluate vθ(spub, r1, r2)
where ri represents the reach probabilities of individual information states in the public

(leaf) state spub. In perfect information games, there is a single information state of each

player ♣S1(spub)♣ = ♣S2(spub)♣ = 1. Furthermore, by scaling reach probabilities of player

i, the resulting counterfactual values for player −i are scaled accordingly. Let v1, v2 =
vθ(spub, r1, r2), v′1, v′2 = vθ(spub, ar1, br2), then v′1 = bv1, v′2 = av2 for any a, b ∈ R. We

can leverage this fact for perfect information games and simply scale the value that was

returned by the very ®rst neural net call for that public state. This way, there is only a single

network call per public state as subsequent evaluations simply scale the previously returned

value. Current implementation of POG indeed uses this optimization, substantially speeding

up the search process.

Currently, POG uses CFR for the policy improvement and thus needs to traverse the

full search tree at each iteration, resulting in O(t2) complexity even for a well balanced

tree. There are CFR variants that do not have to traverse the full tree. Namely, MCCFR is a

family of sampling based regret minimization methods that only visit and update part of the

entire tree and still provide strong convergence guarantees [Lanctot et al., 2009]. Outcome

sampling is then a particular variant of MCCFR that samples a single trajectory, and thus

its complexity matches the expansion phase. While the sampling introduces variances

which can slow down the convergence, it is possible to substantially decrease it using the

VR-MCCFR method [Schmid et al., 2019].

F.2.3 Network Architecture and Optimization

Table F.1 lists neural network architectures and input features used for each game. For chess

and Go we use exactly the same architecture and inputs as used by AlphaZero [Silver et al.,

2018]. In poker and Scotland Yard we process concatenated belief and public state features

by a MLP with ReLU activations [Fukushima, 1980].

The counterfactual value head is optimized by Huber loss [Huber, 1964], while policy

for each information state i is optimized by KL divergence:

l(v, p, vtarget, ptarget) = wv ∗ lhuber(v, vtarget) + wp ∗
∑︂

i

lKL(πi, πi
target)

where each head is weighted with the corresponding weight wv and wp. During training

we smoothly decay the learning rate by a factor of d every Tdecay steps. Formally learning

rate α at training step t is de®ned as:

αt = αinit ∗ dt/Tdecay

When using the policy head’s prediction as prior in PUCT formula the logits are pro-

cessed with softmax with temperature Tprior. This can decrease weight of the prior in some

games and encourage more exploration in the search phase.

F.2.4 Hyperparameters

Table F.2 lists hyperparameters used for each game, most of these parameters are used in

algorithms in Section F.2.5.
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Game Architecture Belief features Public state features

Chess ResNet Redundant Ð there

is no uncertainty over

players state.

One 8x8 plane for

each piece type (6) of

each player (2) and

repetitions planes (2)

for last eight moves +

scalar planes (7), 119

8x8 planes in total.

Go ResNet Redundant One 19x19 plane for

stones of each player

(2) for last eight

moves plus a single

plane encoding player

to act, 17 19x19

planes in total.

Poker MLP 6 x 2048 1326 (possible private

card combinations) *

2 (num of players).

N hot encoding of

board cards (52) +

commitment of each

player normalized by

his stack (2) + 1 hot

encoding of who acts

next, including chance

player (3).

Scotland Yard MLP 6 x 512 1 (detectives’ position

is always certain) +

199 (possible Mr X’s

position).

1 hot encoding of po-

sition of each detec-

tive (5*199) + cards

of each detective (5*3)

+ cards of Mr X

(5) + who is playing

next (6) + was dou-

ble move just used (1)

+ how many rounds

were played (1).

Table F.1: A neural network architecture and features used for each game.

F.2.5 Pseudocode

Here we provide pseudocode for the most important parts of the POG algorithm. Algorithm 2

speci®es GT-CFR, the core of POG’s sound game-theoretic search that scales to large perfect

information games introduced in Section 10.3.2. Algorithm 3 presents how GT-CFR is

used during selfplay that generates training examples for the neural network, this part was

covered in Section 10.3.4. Hyperparameters used in selfplay are speci®ed in Table F.2.

When POG plays against an opponent the search tree is rebuilt also for the opponent’s

actions (as discussed in Section F.2.1). This way, POG reasons about the opponent’s behavior

since it directly influences the belief distribution for the current state β where POG is to act.

Note that unlike AlphaZero, POG currently starts its search procedure from scratch. That
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Hyperparam Symbol Chess Go Scot. Yard HUNL

Batch size 2048 2048 1024 1024

Optimizer sgd sgd sgd adam

Initial learning rate (LR) αinit 0.1 0.02 0.1 0.0001

LR decay steps Tdecay 40k 200k 2M 2M

LR decay rate d 0.8 0.1 0.5 0.5

Policy head weight wp 1 1 0.05 0.01

Value head weight wv 0.25 0.5 1 1

Replay buffer size 50M 50M 1M 1M

Max grad updates per example 1 0.2 5 10

TD(1) target sample probability ptd1 0 0.2 0 0

Queries per search qsearch 1 0 0.3 0.9

Recursive queries per search qrecursive 0.2 0 0.1 0.1

Selfplay uniform policy mix ϵ 0 0 0 0.1

Resign enabled True True False False

Resign threshold resign threshold -0.9 -0.9 - -

Min ratio of games without resign pno resign 0.2 0.2 - -

Greedy play after move movesgreedy after 30 30 never never

Max moves in one episode movesmax 512 722 unlim. unlim.

Prior softmax temperature Tprior 1.5 1.5 1 1

Table F.2: Hyperparameters for each game.

is, the previous computation only provides invariants for the next resolving step. AlphaZero

rather warm-starts the MCTS process by initializing values and visit counts from the previous

search. For POG, this would also require warm-starting CFR. And while possible [Brown

and Sandholm, 2016], there is no warm-starting in the current implementation of POG.

F.2.6 Implementation

POG is implemented as a distributed system with decoupled actor and trainer jobs. Each

actor runs several parallel games and the neural network evaluations are batched for better

accelerator utilization. The networks were implemented using TensorFlow [Abadi et al.,

2016].

F.2.7 Poker Betting Abstraction

There are up to 20000 possible actions in no-limit Texas hold’em. To make the problem

easier, AI agents are typically allowed to use only a small subset of these [Moravčı́k et al.,

2017, Brown et al., 2018b, 2020, Zarick et al., 2020]. This process of selecting a set of

allowed actions for a given poker state is called betting abstraction. Even using betting

abstraction the players are able to maintain strong performance in the full game [Moravčı́k

et al., 2017, Brown et al., 2020, Zarick et al., 2020]. Moreover, the local best response
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Algorithm 2 Growing Tree CFR. Note that GT-CFR is logging all neural net queries it does

since they might be used later in training.

procedure GT-CFR(L0, β, s, c)

▷ L0 Ð a tree including β build as described in Sec. F.2.1.

▷ β Ð a public belief state under which the new nodes will be added.

▷ s, c Ð total number of expansion simulations and number of simulations per CFR

update.

for i ∈ ¶0, 1, · · · , s
⌈c⌉
− 1♢ do

CFR(Li,
⌈︂

1
c

⌉︂
) ▷ Store average policy and counterfactual values in the tree.

Li+1 ← GROW(Li)

▷ Return counterfactual values and average policy from CFR and all NN calls.

return v, p, nn queries

procedure GROW(L, β)

for i ∈ ¶0, 1, · · · , ⌈c⌉ − 1♢ do

path← SAMPLEPATHDOWNTHETREE(L, β) ▷ The path starts at β.

ADDTOPKCHILDREN(L, path, k) ▷ Choice of k is discussed in Sec. 10.3.2.

UPDATEVISITCOUNTSUP(L, path)

return L

evaluation [Lisý and Bowling, 2017b] suggests that there is not an easy exploit for such

simpli®cation as long as the agent is able to see full opponent actions [Moravčı́k et al.,

2017].

We use a betting abstraction in the Player of Games to speed up the training and simplify

the learning task. Our agent’s action set was limited to just 3 actions: fold (give up),

check/call (match the current wager) and bet/raise (add chips to the pot). To improve

generalization we used stochastic betting size similarly to ReBeL [Brown et al., 2020].

The single allowed bet/raise size is randomly uniformly selected at the start of each poker

hand from the interval ⟨0.5, 1.0⟩ ∗ pot size. This amount is anecdotally similar to one used

by human players and had also good performance in our experiments. The same random

selection was used in both training and evaluation.

As in [Brown et al., 2020], we have also randomly varied number stack size (number of

chips available to the players) at the start of the each round during the training. This number

stays ®xed during evaluation.

F.3 Evaluation Details and Additional Experimental Re-

sults

F.3.1 Description of Leduc poker

Leduc is a simpli®ed poker game with two rounds and a 6-card deck in two suits. Each

player initially antes a single chip to play and obtains a single private card and there are

three actions: fold, call and raise. There is a ®xed bet amount of 2 chips in the ®rst round

and 4 chips in the second round, and a limit of two raises per round. After the ®rst round, a

single public card is revealed. A pair is the best hand, otherwise hands are ordered by their

high card (suit is irrelevant). A player’s reward is their gain or loss in chips after the game.
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Algorithm 3 Sound Self-play

procedure SELFPLAY

Get initial history state w ← wINIT and corresponding public state β
▷ Decide whether the game has to be played till the end.

do not resign← coin flip with probability pno resign

while w is not terminal AND played less than movesmax do

if chance acts in w then

a← uniform random action.

else

▷ POG acts for all non-chance players.

vw, πcontroller
w ← POGSELFPLAYCONTROLLER(w)

if vw < resign threshold AND not(do not resign) then

▷ Don’t waste compute on already decided game.

return

▷ Mix controller’s policy with uniform prior to encourage exploration.

πselfplay
w ← (1− ϵ) · πcontroller

w + ϵ · πuniform

if moves played < movesgreedy after then

a← sample action from πselfplay
w

else

a← arg max πselfplay
w

w ← apply action a on state w

▷ Sampling states with TD(1) targets.

for each belief state β ∈ played trajectory tr do

if uniform random sample from unit interval < ptd1 then

v← outcome of tr assigned to information state visited in β
p← policy used in β
replay buffer.append(⟨β, (v, p)⟩)

procedure POGSELFPLAYCONTROLLER(w)

β ← public state including w
L ← the tree including β build as described in Sec. F.2.1.

v, p← TRAINING-GT-CFR(L)

return v(w), p(w)

procedure TRAINING-GT-CFR(L)

v, p, nn queries← GT-CFR(L)

queries← Pick on average qsearch neural net queries β from nn queries.

queries to solve.extend(queries)

return v, p

procedure QUERYSOLVER

for β ← queries to solve.pop() do

v, p, nn queries← GT-CFR(β)

▷ Send the example to the trainer.

replay buffer.append(⟨β, (v, p)⟩)
▷ Create recursive queries.

queries← Pick on average qrecursive neural net queries β from nn queries.

queries to solve.extend(queries)
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Figure F.4: Initial situation on the glasses map for Scotland Yard. Mr. X starts at station 6

while the two detectives start at stations 1 and 11. All of them have 5 taxi cards (all edges in

this map are of the same type) and the game is played for 5 rounds.

F.3.2 Custom Glasses Map for Scotland Yard

Figure F.4 shows the layout and describes the custom ªglassesº map for Scotland Yard.

F.3.3 Full Results of Go Agent Tournament

Full performance results of the Go tournament are shown in Table F.3.

F.3.4 Reinforcement Learning and Search in Imperfect Information

Games

In this section, we provide some experimental results showing that common RL and widely-

used search algorithms can produce highly exploitable strategies, even in small imperfect

information games where exploitability is computable exactly. In particular, we show how

exploitable Information Set Monte Carlo Tree Search is in Leduc poker, as well as three

standard RL algorithms (DQN, A2C and tabular Q-learning) in both Kuhn poker and Leduc

poker using OpenSpiel [Lanctot et al., 2019].

Information Set Monte Carlo Tree Search

Information Set Monte Carlo Tree Search (IS-MCTS) is a search method that, at the start

of each simulation, ®rst samples a world state± consistent with the player’s information

state± and uses it for the simulation [Cowling et al., 2012]. Reward and visit count statistics

are aggregated over information states so that players base their decisions only on their

information states rather than on private information inaccessible to them.

Figure F.4 shows the exploitability of a policy obtained by running separate independent

IS-MCTS searches from each information state in the game, over various parameter values.

The lowest exploitability of IS-MCTS we found among this sweep was 465 mbb/h.
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Agent Rel. Elo

AlphaZero(s=16k, t=800k) +3139

AlphaZero(s=16k, t=400k) +3021

AlphaZero(s=8k, t=800k) +2875

AlphaZero(s=8k, t=400k) +2801

AlphaZero(s=4k, t=800k) +2643

AlphaZero(s=16k, t=200k) +2610

AlphaZero(s=4k, t=400k) +2584

AlphaZero(s=2k, t=800k) +2451

AlphaZero(s=8k, t=200k) +2428

AlphaZero(s=2k, t=400k) +2353

AlphaZero(s=4k, t=200k) +2234

AlphaZero(s=800, t=800k) +2099

AlphaZero(s=16k, t=100k) +2088

AlphaZero(s=2k, t=200k) +2063

AlphaZero(s=800, t=400k) +2036

PoG(s=16k, c=10) +1970

AlphaZero(s=8k, t=100k) +1940

PoG(s=8k, c=10) +1902

AlphaZero(s=800, t=200k) +1812

PoG(s=4k, c=10) +1796

AlphaZero(s=4k, t=100k) +1783

PoG(s=2k, c=10) +1672

AlphaZero(s=2k, t=100k) +1618

PoG(s=800, c=1) +1426

AlphaZero(s=800, t=100k) +1360

Pachi(s=100k) +869

Pachi(s=10k) +231

GnuGo(l=10) +0

Table F.3: Full Go results. Elo of GnuGo with a single thread and 100ms thinking time was

set to be 0. AlphaZero(s=16k, t=800k) refers to 16000 search simulations.

Standard RL algorithms in Imperfect Information Games

As imperfect information games generally need stochastic policies to achieve an optimal

strategy, one might wonder how exploitable standard RL algorithms are in this class of

games. To test this, we trained three standard RL agents: DQN, policy gradient (A2C) and

tabular Q-learning. We used MLP neural networks in DQN and A2C agents. Table F.5

shows the hyper parameters we swept over to train these RL agents.

In Kuhn poker, the best performing A2C agent converges to exploitability of 52 mbb/h,

and tabular Q-learning and DQN agents converge to around 250 mbb/h. Similarly, in Leduc

poker, the best performing A2C agent converges to exploitability of 78 mbb/h, tabular

Q-learning and DQN agents converge to about 1300 mbb/h and 900 mbb/h respectively.

Figure F.5 shows the exploitability of RL agents in Kuhn poker and Leduc poker.
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Num. Sims UCT const. (C) Expl. (mvd) Expl. (mvis) Expl. (mval)

10 1.0 2168 2449 2173

10 2.0 2058 2408 2341

10 5.0 1902 2615 2517

10 10.0 1738 2555 2360

10 13.0 1799 2517 2598

10 20.0 1821 2830 2349

10 26.0 1888 2861 2669

100 1.0 1489 1509 1333

100 2.0 1404 1587 1395

100 5.0 1239 1145 1094

100 10.0 1213 1195 1245

100 13.0 1218 1292 1227

100 20.0 1350 1456 1342

100 26.0 1448 1747 1568

1000 1.0 1323 1218 1177

1000 2.0 1069 1212 864

1000 5.0 699 778 681

1000 10.0 697 601 632

1000 13.0 741 759 744

1000 20.0 859 962 991

1000 26.0 966 1029 1057

10000 1.0 1348 948 1134

10000 2.0 911 877 763

10000 5.0 516 582 538

10000 10.0 490 485 480

10000 13.0 511 465 470

10000 20.0 572 505 505

10000 26.0 631 575 570

Table F.4: Average exploitability (in mbb/h) over ®ve policy constructions obtained by

independent searches of IS-MCTS runs at each information state in Leduc Poker. The

parameter C is the value of the UCT exploration constant. The ®nal policy is obtained either

by normalizing the visit counts (mvd), choosing the action with maximum visits (mvis), or

choosing the action with the maximal Monte Carlo value estimate (mval).
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Parameter DQN Tabular A2C

Q-Learning

Learning rate (lr) 1e-1, 1e-2, 1e-3, 1e-4 NA Actor lr: 1e-3, 1e-4, 1e-5

Critic lr: 1e-2, 1e-3

Decaying exploration rate 1., 0.8, 0.5, 0.2, 0.1 NA NA

Replay buffer size 100, 1000, 10000, 100000 NA NA

Hidden layer size ’32’, ’64’, ’128’, NA ’32’, ’64’, ’128’,

’32, 32’, ’64, 64’ ’32, 32’, ’64, 64’

Num. of critic updates NA NA 4, 8, 16

before every actor update

Step size NA 0.1, 0.2, 0.5, 0.8, 1.0

Table F.5: Hyper parameters swept over in each RL algorithm.

(a) Exploitability in 2-player Kuhn poker (b) Exploitability in 2-player Leduc poker

Figure F.5: Comparing performance of DQN, A2C, tabular Q-learning and uniform random

policy in (a) Kuhn poker and (b) Leduc poker

F.4 Scotland Yard example

Figure F.6 describes an example situation from Scotland Yard.
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Figure F.6: An example situation in Scotland Yard. The centre shows a game map abstracted

as a graph with different types of edges (yellow for taxi, blue for bus, red for subway and

black for boat). Both the detectives and Mr. X have corresponding cards that allow them to

move edges of the same type. In the current situation, the game is in round 5 and Mr. X is to

act. He is in location 63, however the detectives (locations 65, 67, 79, 82 and 111) saw his

exact location last time in round 3 when he was in location 47 (he will have to reveal himself

again in rounds 8, 13, 18 and the ®nal round 24). Since then the detectives observed just

the type of the edge Mr. X moved along (in this case taxi and bus) and they have to ºguessº

where he is and subsequently where he is going to be in order to catch him. While Mr. X is

hidden locations of detectives are public. In single move Mr. X can get to locations 48, 64 or

80 by taxi and to locations 34 or 100 by bus. He can use a card of the corresponding colour

(taxi or bus) however that will give unwanted hint to the detectives. He can also use º?º card

(he has 5 at the moment) that hides his mode of transport, therefore it increases detectives’

uncertainty about his location. Finally, he can use double move card (he has only 2) that

would allow him to do two moves instead of one.

F.5 Proofs of Theorems

There are three substantive differences between the PoG algorithm and DeepStack. First,

PoG uses a growing search tree, rather than using a ®xed limited-lookahead tree. Second, the

PoG search tree may depend on the observed chance events. Finally, PoG uses a continuous

self-play training loop operating throughout the entire game, rather than the strati®ed bottom-

up training process used by DeepStack. We address each of these differences below, in turn,

after considering how to describe an approximate value function for search in imperfect

information games.

F.5.1 Value Functions for Subgames

Like DeepStack, the PoG algorithm uses a value function, so the quality of its play depends

on the quality of the value function. We will describe a value function in terms of its distance

to a strategy with low regret. We start with some value and regret de®nitions that are better

suited to subgames.
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Consider some strategy pro®le π which is a tuple containing a strategy for each player,

public tree subgame S rooted at public state spub with player range vectors Bi[si ∈
Si(spub)] := Pi(si♣π). First, note that we can re-write counterfactual value v so that it

depends only on B and π restricted to S, with no further dependence on π. Let si be a

Player i information state in Si(spub), and q be the opponent of Player i, then:

vB,πS

(si) :=
∑︂

h∈I(si)

∑︂

z⊐h

Bq[sq(h)]Pc(h)P (z♣h, πS)ui(z)

=
∑︂

h∈I(si)

∑︂

z⊐h

P−p(h♣π)P (z♣h, π)ui(z) = vπ(si)

We can write a number of quantities in terms of the best-response value at information

state si:

BV B,πS

(si) := max
π∗

i

vB,πS←π∗
i (si)

where π ← π′ is the strategy pro®le constructed by replacing action probabilities in π with

those in π′. The value function is a substitute for an entire subgame strategy pro®le, so the

regret we are interested in is player i’s full counterfactual regret [Zinkevich et al., 2007] at

si, which considers all possible strategies within subgame S:

Rfull
si

(B, πS) := BV B,πS

(si)− vB,πS

(si)

With these de®nitions in hand, we can now consider the quality of a value function f in

terms of a regret bound ϵ and value error ξ. Recall that f maps ranges B and public state

spub to a vector of values ṽ(si) for each player i.
First, we consider versions of the regret bound and value error which are parameterised

by a strategy π. There is some associated bound ϵ(π) on the sum of regrets across all

information states at any subgame, valid for both players.

ϵ(π) := max
B

max
spub

max
i

∑︂

si∈Si(spub)

Rfull
si

(B, π)

There is also some bound ξf (π) on the distance between f(spub, B) and the best-response

values to π.

ξf (π) := max
B

max
spub

max
i

∑︂

si∈Si(spub)

♣f(spub, B)[si]− vB,π(si)♣

We then say that f has ϵ, ξ quality bounds if there exists some strategy π such that

ϵ(π) ≤ ϵ and ξf (π) ≤ ξ. As desired, if both ϵ and ξ are low then f(spub, B) is a good

approximation of the best-response values to a low-regret strategy, for a subgame rooted at

spub with initial beliefs B.

The DeepStack algorithm [Moravčı́k et al., 2017] used a similar error metric for value

functions, but only considered zero-regret strategies. We introduce a more complicated error

measure because the space of values corresponding to low-regret strategies may be much

larger than the space of values corresponding to no-regret strategies. For example, consider

the public subgame of a matching pennies game after the ®rst player acts with the policy

0.501 heads, 0.499 tails. There are two ®rst-player information states, from playing either

heads or tails, with an empty ®rst-player strategy as there are no further ®rst player actions.

Let us assume a value function f is returning the values [0 0] for these two information

states. How good is f , assuming we restrict our attention to this one subgame?
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The unique zero-regret strategy for the second player is to play tails 100% of the time,

resulting in ®rst player counterfactual values of -1 for playing heads and 1 for playing tails.

The error metric based on zero-regret strategies is therefore measuring ♣f([0.501 0.499])−
[−1 1]♣1, so that the DeepStack metric states that f has an error of 2. However, [0 0] seems

like a very reasonable choice: these are exactly the ®rst player counterfactual values when

the second player has a strategy of 0.5 heads, 0.5 tails, which has a regret of only 0.002 in

this subgame. Rather than saying f is a poor quality value function with an error of 2 in

a game with utilities in [−1, 1], we can now say f is a great 0.002, 0 value function which

exactly describes a low-regret strategy.

The new quality metric also addresses an issue the old DeepStack metric had with

discontinuities in the underlying 0-regret value functions. This means that the space of

functions with a low DeepStack error metric may not be well suited for learning from data.

Continuing with the previous example, if we shifted B slightly to be 0.499 heads and 0.501

tails for the ®rst player, the unique 0-regret strategy in the subgame flips to playing tails

0% of the time, while the uniform random strategy is still a low-regret strategy for this

subgame. In this example, a function can only have a low error with the DeepStack metric

if it accurately predicts the values everywhere around the discontinuity at 0.5 heads and

0.5 tails, whereas the new metric can avoid this discontinuity by picking an ϵ > 0. More

generally, for any constant c, the objective ϵ + cξ is a continuous function in B, making it a

potentially more attractive learning target than the discontinuous function de®ned by exact

Nash equilibrium values, and which matches a learning procedure based on approximately

solving example subgames.

F.5.2 Growing Trees

One major step in showing soundness of the PoG algorithm is demonstrating that Growing

Tree CFR (GT-CFR) can approximately solve games. As a quick recap, GT-CFR is a

variant of the CFR algorithm [Zinkevich et al., 2007] that uses limited lookahead and a

value function, storing values within a tree that grows over time, in a fashion similar to

UCT [Kocsis and Szepesvári, 2006]. We use this new algorithm as a component to solve

the problems that the PoG algorithm sets up. At every non-terminal public leaf state spub

of the lookahead tree, GT-CFR uses estimated counterfactual values ṽ, generated from a

value function f(spub, B) with player ranges B induced by Bayes’ rule at spub for the current

strategy pro®le π.

Like DeepStack, PoG has two steps which involve solving subgames of the original

game. One of the steps is the re-solving step used to play through a game, where we solve a

modi®ed subgame based on constraints on opponent values and beliefs about our possible

private information, in order to get our policy and new opponent values. The other step

is only in the training loop, where we are solving a subgame with ®xed beliefs for both

players, in order to get values for both players. While the (sub)games for these two cases are

slightly different, they are both well-formed games and we can ®nd an approximate Nash

equilibrium using GT-CFR.

When running GT-CFR, even though a policy is explicitly de®ned only at information

states in the lookahead tree L, at each iteration t there is implicitly some complete strategy

pro®le πt. For any information state s in L which is not a leaf, πt(s) is explicitly de®ned by

the regret-matching policy. For all other s ± either a leaf of L or outside of the lookahead

tree ± πt(s) is de®ned by the ϵ-regret subgame strategy pro®le π∗,S associated with the value

function’s ϵ, ξ quality bounds. Note that this πt only exists as a concept which is useful

for theoretical analysis: GT-CFR does not have access to the probabilities outside of its

lookahead tree, only a noisy estimate of the associated counterfactual values provided by
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the value function.

Lemma F.1. Let p and q be vectors in [0, 1]n, and v and w be vectors in Rn such that

v[i] > w[i] for all i. Then p · v − q · w ≤ 1 · (v − w) + p · w − q · w

Proof.

p · v − q · w = p · v − p · w + p · w − q · w
= p · (v − w) + p · w − q · w
≤ 1 · (v − w) + p · w − q · w

Lemma F.2. Let p and q be vectors in [0, 1]n, and v and w be vectors in Rn such that∑︁n
i=1 ♣v[i]− w[i]♣ ≤ ξ. Then (p− q) · v ≤ ξ + (p− q) · w.

Proof.

(p− q) · v = (p− q) · (v − w) + (p− q) · w

≤
n∑︂

i=1

♣(p[i]− q[i])(v[i]− w[i])♣+ (p− q) · w

≤
n∑︂

i=1

♣(v[i]− w[i])♣+ (p− q) · w

≤ ξ + (p− q) · w

In GT-CFR, the depth-limited public tree used for search may change at each iteration.

Let Lt be the public tree at time t. For any given tree L, let N (L) be the interior of the tree:

all non-leaf, non-terminal public states. The interior of the tree is where regret matching

is used to generate a policy, with regrets stored for all information states in interior public

states. Let F(L) be the frontier of L, containing non-terminal leaves, and Z(L) be the

terminal public states. GT-CFR uses the value function at all public states in the frontier,

receiving noisy estimates ṽ(s) of the true counterfactual values v(s). We will distinguish

between the true regrets RT
s computed from the entire policy, and the regret R̃T

s computed

using the estimated values ṽ(s). Given a sequence of trees across T iterations, let Tn(spub)
be the set of maximal length intervals [a, b] ⊆ [1, T ] where spub is in N (Lt) for all t ∈ [a, b].
Let U be the maximum difference in counterfactual value between any two strategies, at any

information state, and A be the maximum number of actions at any information state.

Lemma F.3. After running GT-CFR for T iterations starting at some initial public state s0,

using a value function with quality ϵ, ξ, regret for the strategies satis®es the bound

∑︂

si∈Si(s0)

RT
si
≤

T∑︂

t=1

♣F(Lt)♣(ϵ + ξ)

+
∑︂

spub∈
⎷T

t=1
Lt

♣Si(spub)♣U
√

A
∑︂

[a,b]∈Tn(spub)

√︂
♣[a, b]♣
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Proof. Starting with the de®nition of regret, and noting that regrets are independently

maximised in a perfect recall game, we can rearrange terms to get

∑︂

si∈Si(s0)

RT
si

=
∑︂

si∈Si(s0)

(︄
max

π∗
i

T∑︂

t=1

vπt←π∗
i (si)−

T∑︂

t=1

vπt

(si)

)︄

= max
π∗

i

∑︂

si∈Si(s0)

(︄
T∑︂

t=1

vπt←π∗
i (si)−

T∑︂

t=1

vπt

(si)

)︄

= max
π∗

i

T∑︂

t=1

∑︂

si∈Si(s0)

(︂
vπt←π∗

i (si)− vπt

(si)
)︂

We can rewrite the counterfactual values of information state si in terms of the counterfactual

value of leaves and terminals of the tree.

= max
π∗

i

T∑︂

t=1

∏︁
∐︂ ∑︂

spub∈F(Lt)

∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )vπt←π∗

i (si)− Pi(si♣πt)vπt

(si)
)︂

+
∑︂

spub∈Z(Lt)

∑︂

z∈I(spub)

(︂
Pi(z♣πt ← π∗i )vπt

(z)− Pi(z♣πt)vπt

(z)
)︂
∫︁
⎠ (F.1)

Examining part of the ®rst term inside the sum, we can independently maximise the coun-

terfactual values at each information state si. As above, this is equivalent to maximising at

public state spub.

∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )vπt←π∗

i (si)− Pi(si♣πt)vπt

(si)
)︂

≤
∑︂

si∈Si(spub)

max
π∗∗

(︂
Pi(si♣π∗i )vπt←π∗∗

i (si)− Pi(si♣πt)vπt

(si)
)︂

= max
π∗∗

∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )vπt←π∗∗

i (si)− Pi(si♣πt)vπt

(si)
)︂

Given that we individually maximised over each minuend, we satisfy the requirements of

Lemma F.1. We can then use the value function quality bounds.

≤ max
π∗∗

∑︂

si∈Si(spub)

(︂
vπt←π∗∗

i (si)− vπt

(si)
)︂

+
∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )vπt

(si)− Pi(si♣πt)vπt

(si)
)︂

≤ ϵ +
∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )vπt

(si)− Pi(si♣πt)vπt

(si)
)︂

Up to this point, we have used the true counterfactual values for the current strategy pro®le.

At leaves, however, GT-CFR only has access to the value function’s noisy estimates of the

true values. Applying Lemma F.2, we get

≤ ϵ + ξ +
∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )ṽπt

(si)− Pi(si♣πt)ṽπt

(si)
)︂
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Placing this back into line F.1 and collecting ϵ and ξ terms, we have

∑︂

si∈Si(s0)

RT
si
≤

T∑︂

t=1

♣F(Lt)♣(ϵ + ξ) + max
π∗

i

T∑︂

t=1
∏︁
∐︂ ∑︂

spub∈F(Lt)

∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )ṽπt

(si)− Pi(si♣πt)ṽπt

(si)
)︂

+
∑︂

spub∈Z(Lt)

∑︂

z∈I(spub)

(︂
Pi(z♣πt ← π∗i )vπt

(z)− Pi(z♣πt)vπt

(z)
)︂
∫︁
⎠

We can rearrange the sums to consider the regret contribution for each public state

=
T∑︂

t=1

♣F(Lt)♣(ϵ + ξ) + max
π∗

i

∑︂

spub∈
⎷T

t=1
Lt

∏︁
∐︂ ∑︂

t s.t. spub∈F(Lt)

∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )ṽπt

(si)− Pi(si♣πt)ṽπt

(si)
)︂

+
∑︂

t s.t. spub∈Z(Lt)

∑︂

z∈I(spub)

(︂
Pi(z♣πt ← π∗i )vπt

(z)− Pi(z♣πt)vπt

(z)
)︂
∫︁
⎠

As before we can use Lemma F.1 to separate out regrets at the interior states in N :=
F(N (

⎷T
t=1 Lt)), which always depend only on leaves and terminals. Let L′,t be Lt minus

all public states in N and any successor states.

≤
T∑︂

t=1

♣F(Lt)♣(ϵ + ξ) +
∑︂

spub∈N

∑︂

[a,b]∈Tn(spub)

∑︂

si∈spub

R̃a,b
si

+ max
π∗

i

∑︂

spub∈
⎷T

t=1
L′,t

∏︁
ˆ︂∐︂

∑︂

t s.t. spub∈F(L′,t)

∑︂

si∈Si(spub)

(︂
Pi(si♣π∗i )ṽπt

(si)− Pi(si♣πt)ṽπt

(si)
)︂

+
∑︂

t s.t. spub∈Z(L′,t)

∑︂

z∈I(spub)

(︂
Pi(z♣πt ← π∗i )vπt

(z)− Pi(z♣πt)vπt

(z)
)︂
∫︁
ˆ︃⎠

Note that the states which were separated out are now effectively terminals in smaller trees.

We can repeat this process until regrets for all public states have been separated out.

≤
T∑︂

t=1

♣F(Lt)♣(ϵ + ξ) +
∑︂

spub∈
⎷T

t=1
Lt

∑︂

[a,b]∈Tn(spub)

∑︂

si∈spub

R̃a,b
si

Finally, from bounds on regret-matching[Hart and Mas-Colell, 2000],

≤
T∑︂

t=1

♣F(Lt)♣(ϵ + ξ) +
∑︂

spub∈
⎷T

t=1
Lt

♣Si(spub)♣U
√

A
∑︂

[a,b]∈Tn(spub)

√︂
♣[a, b]♣

Note that the form of Lemma F.3 implies that regret might not be sub-linear if public

states are repeatedly added and removed from the lookahead tree. If we only add states and

never remove them, however, we get a standard CFR regret bound plus error terms for the

value function.
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Theorem F.4. Assume the conditions of Lemma F.3 hold, and public states are never

removed from the lookahead tree. Then

RT,full
i ≤

T∑︂

t=1

♣F(Lt)♣(ϵ + ξ) +
∑︂

spub∈N (LT )

♣Si(spub)♣U
√

AT

Proof. This follows from Lemma F.3, noting that the interior of Lt monotonically grows

over time.

F.5.3 Self-play Values as Re-solving Constraints

By using a value network in solving, we lose the ability to compute our opponent’s counter-

factual best response values to our average strategy [Šustr et al., 2019]. It is easy to track

the opponent’s average self-play value across iterations of a CFR variant, but using these

values as re-solving constraints does not trivially lead to a bound on exploitability for the

re-solved strategy. We show here that average CFR self-play values lead to reasonable,

controllable error bounds in the context of continual re-solving. We will use (x)+ to mean

max¶x, 0♢. For simplicity, we will also assume that the subgame that is being re-solved is

in the GT-CFR lookahead tree for all iterations.

Theorem F.5. Assume we have some average strategy π̄ generated by T iterations of GT-

CFR solver using a value function with quality ϵ, ξ, with ®nal lookahead tree LT where

public states were never removed from the lookahead tree, and a ®nal average regret RT
i for

the player of interest. Further assume that we have re-solved some public subgame S rooted

public state spub, using the average counterfactual values v̄(so) := 1
T

∑︁T
t=1 vπt

(so) as the

opt-out values in the re-solving gadget. Let πS be the strategy generated from the re-solving

game, with some player and opponent average regrets R̄S
i and R̄S

o , respectively. Then

BVπ̄←πS

o − BVπ̄
o ≤(R̄S

o )+ + (R̄S
i )+ + R̄i

+ 2(max
t
♣F(Lt

spub
)♣(ϵ + ξ) +

∑︂

spub∈N (LT
spub

)

♣Si(spub)♣U
√︄

A

T
)

Proof. The general outline of the proof has two parts, both asking the question ºhow much

can the opponent best response value increase?º As in Lemma 4 of [Moravčı́k et al., 2017],

we can consider breaking the error in re-solving opt-out values into separate underestimation

and overestimation terms. The ®rst part of this proof is a bound that takes into account

the re-solving solution quality, and how much the average values underestimate the best

response to the average. This underestimation is bounded by the opponent regret at a

subgame, which requires the solving algorithm to have low regret everywhere in the game:

low regret for the opponent does not directly imply that the opponent has low regret in

portions of the game that they do not play. The second part of the proof is placing a bound

on the overestimation, using the player’s regret rather than the opponent’s regret.

We start by noting that from the opponent player o’s point of view, we can replace an

information set so with a terminal that has utility BV π̄(so), and the best response utility

BVπ̄,so←BV π̄(so)
o in this modi®ed game will be equal to BVπ̄

o . We can extend this to the entire

subgame S, replacing each so with a terminal giving the opponent the best response value:

BVπ̄,S←BV π̄(S)
o = BVπ̄

o . Using this notation, we can rewrite BVπ̄←πS

o :

BVπ̄←πS

o − BVπ̄
o

=BVπ̄,S←BV πS
(S)

o − BVπ̄
o
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Next, note that BV πS

(so), the opponent’s counterfactual best response to the re-solved

subgame strategy πS at any so at the root of S, is no greater than the value of max¶BV πS

(so), v̄(so)♢,
the value of so within the re-solving game before the gadget where the opponent has decision

to opt-out for a ®xed value v̄(so). That is, adding an extra opponent action which terminates

the game never decreases the opponent’s best response utility. Extending this to the entire

subgame S again, we get

BVπ̄,S←BV πS
(S)

o − BVπ̄
o

≤BVπ̄,S←max¶BV πS
(S),v̄♢

o − BVπ̄
o (F.2)

From Lemma 1 of [Moravčı́k et al., 2017], the game value of a re-solving game with

opt-out values v̄(so) is US
v̄,π̄ +

∑︁
so∈So(spub) v̄(so), for some underestimation error on the

opt-out values that is given by

US
v̄,π̄ := min

π∗S

∑︂

so∈So(spub)

(BV π̄←π∗S

(so)− v̄(so))
+

Given the re-solving regrets, we have BVπS

o ≤ (R̄S
o )+ + (R̄S

i )+ + US
v̄,π̄ +

∑︁
so∈So(spub) v̄(so).

Because BVπ̄,so←w+ϵ
o ≤ BVπ̄,so←w

o + ϵ for ϵ ≥ 0, we can use this inequality to update

Equation F.2. That is, there is some component-wise non-negative vector ϵ such that

BV πS

(S̃) = v̄(·) + ϵ and ϵ · 1 ≤ (R̄S
o )+ + (R̄S

i )+ + US
v̄,π̄, so that

BVπ̄,S←max¶BV πS
(S),v̄♢

o − BVπ̄
o

=BVπ̄,S←v̄+ϵ
o − BVπ̄

o

≤BVπ̄,S←v̄
o + ϵ · 1− BVπ̄

o

≤BVπ̄,S←v̄
o + (R̄S

o )+ + (R̄S
i )+ + US

v̄,π̄ − BVπ̄
o (F.3)

Looking at US
v̄,π̄, we note that this minimum is no greater than the case when π∗ = π̄.

The difference BV π̄←π∗S

(so)− v̄(so) is the average full counterfactual regret Rso
of strategy

π̄ at so. Restricting our attention to Lt
spub

, the portion of the lookahead tree restricted to spub

and its descendants, Theorem F.4 gives us a bound on US
v̄,π̄ and we can update Equation F.3

BVπ̄,S←v̄
o + (R̄S

o )+ + (R̄S
i )+ + US

v̄,π̄ − BVπ̄
o

≤BVπ̄,S←v̄
o − BVπ̄

o (F.4)

+ (R̄S
o )+ + (R̄S

i )+ max
t
♣F(Lt

spub
)♣(ϵ + ξ) +

∑︂

spub∈N (LT
spub

)

♣Si(spub)♣U
√︄

A

T

Looking at just the difference in opponent counterfactual best response values, we can

again get an upper bound by giving the opponent the choice at all information sets at the

root of subgame S of playing a best response against the unmodi®ed strategy π̄ to get value
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BV π̄(S), or opting out to get value v̄.

BVπ̄,S←v̄
o − BVπ̄

o

≤BVπ̄,S←max¶BV π̄(S),v̄♢
o − BVπ̄

o

=(BVπ̄,S←max¶BV π̄(S),v̄♢
o − v̄o)− (BVπ̄

o − v̄o)

≤(BVπ̄,S←max¶BV π̄(S),v̄♢
o − v̄o)− (BVπ∗

o − v̄o)

=(BVπ̄,S←max¶BV π̄(S),v̄♢
o − v̄o)− (vπ∗

o − v̄o)

=(BVπ̄,S←max¶BV π̄(S),v̄♢
o − v̄o) + (vπ∗

i − v̄i)

≤(BVπ̄,S←max¶BV π̄(S),v̄♢
o − v̄o) + (BVπ̄

i − v̄i)

=(BVπ̄,S←max¶BV π̄(S),v̄♢
o − v̄o) + R̄i (F.5)

The difference of the ®rst two terms is the regret in the opt-out game game described

above, where we have lifted each iteration strategy πt into this game by never selecting

the opt-out choice. Consider the immediate counterfactual regret R̃T (so) in this situation

for any information state so in this augmented game. Writing this in terms of the original

immediate counterfactual regret RT (so) and the opt-out value, we get

R̃T (so) = max¶T (v̄[so]− v̄[so]), RT (so)♢
= (RT (so))

+

Because the positive immediate regret in the opt-out game is the same as the positive regret

in the original game, we can use the Theorem F.4 bound, which is composed from immediate

regrets. Putting this together with Equation F.4 and Equation F.5, we get

BVπ̄←πS

o − BVπ̄
o

≤(R̄S
o )+ + (R̄S

i )+ + R̄i

+ 2(max
t
♣F(Lt

spub
)♣(ϵ + ξ) +

∑︂

spub∈N (LT
spub

)

♣Si(spub)♣U
√︄

A

T
)

F.5.4 Continual Re-solving

Continual re-solving puts GT-CFR together with re-solving the previously solved subgame.

A bound on ®nal solution quality then follows directly from applications of Theorem F.4

and Theorem F.5.

Theorem F.6. Assume we have played a game using continual re-solving, with one ini-

tial solve and D re-solving steps. Each solving or re-solving step ®nds an approximate

Nash equilibrium through T iterations of GT-CFR using a value function with quality

ϵ, ξ, public states are never removed from the lookahead tree, the maximum interior size∑︁
spub∈N (LT ) ♣Si(spub)♣ of all lookahead trees is bounded by N , the sum of frontier sizes

across all lookahead trees is bounded by F , the maximum number of actions at any informa-

tion sets is A, and the maximum difference in values between any two strategies is U . The

exploitability of the ®nal strategy is then bounded by (5D + 2)
(︂
F (ϵ + ξ) + NU

√︂
A
T

)︂
.
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Proof. The exploitability EXP0 of the player’s initial strategy from the original solve is

bounded by the sum of the regrets for both players. Theorem F.4 provides regret bounds for

GT-CFR, so

EXP0 ≤ 2

∏︁
∐︂F (ϵ + ξ) + NU

√︄
A

T

∫︁
⎠

Each subsequent re-solve is operating on the strategy of the previous step, using the

average values for the opt-out values. That is, the ®rst re-solve will be updating the strategy

from the initial solve, the second re-solve will be updating the subgame strategy from the

®rst re-solve, and so on. Theorem F.5 provides a bound on how much the exploitability

increases after each re-solving step, with Theorem F.4 providing the necessary regret bounds

EXPd ≤EXPd−1 + (R̄S
o )+ + (R̄S

i )+ + R̄i + 2

∏︁
∐︂F (ϵ + ξ) + NU

√︄
A

T

∫︁
⎠

≤EXPd−1 + 5

∏︁
∐︂F (ϵ + ξ) + NU

√︄
A

T

∫︁
⎠

Unrolling for D re-solving steps leads to the ®nal bound.
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