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1. Introduction

1.1 Molecular Electronics
The miniaturisation of electronics lead to great advancements in availability and
utility of electronic devices in the last century[1]. The current size of transistors
is in order of nanometres [2]. At this scale, quantum effects due to the wavefunc-
tions of moving electrons become apparent and dictate the transport properties.
While this poses a challenge to the design and manufacture of transistor chips,
a new field known as molecular electronics emerged from the need to accurately
describe electron transport in quantum regime inside nanoscale systems coupled
to mesoscopic/macroscopic reservoirs.

The goal of molecular electronics is not necessarily to design better transistors,
but rather to describe fundamental physics inherent to these systems. Indeed,
many interesting physical phenomena occur in molecular junctions, interested
reader might find review[3] useful. The effects range from electronic structure
influences on the conductance of junctions to correlated transport phenomena
and mechanical effects.

At present, the molecular electronics field has somewhat matured - the ex-
perimental and theoretical methods for the study are tested, with theoretical
predictions usually giving qualitatively correct description of the observed phe-
nomena, but precise quantitative agreements remain elusive[3].

From experimental methods, we mention the molecular break junction (MBJ)
technique, which uses piezoelectric bending to form a nanogap in conducting wires
that can be occupied by a molecule[1], or scanning tunnelling microscopy (STM)
technique, which scans the STM tip across a conducting surface with adsorbed
molecules.

Among the theoretical methods, the numerical calculations proved to be in-
dispensable to increase the accuracy of the predictions, taking into account many
degrees of freedom of the molecular junction system - the molecule hybridises with
the electrodes, changing the electronic structure of the molecule and the electrode
tips[1], leading to significant corrections to the observed properties. The junction
system is inherently an open, (slightly) out of equilibrium system and the non-
equilibrium Green’s function methods (NEGF) are used to describe the system
response to external voltage[1, 3].

The precise study of the electronic structure of the molecules inside junc-
tions and linking of the electronic properties to observed transport effects is the
broad focus of this work. More specifically, we investigate the effects of molec-
ular structure of two types of molecules and the associated observed properties
of the molecular junctions. Furthermore, we discuss possible improvements to
numerical calculations and their possible drawbacks. These problems are now
introduced in more detail.

1.2 Ferrocene Molecular Junction
Ferrocene is an organometallic molecule with conjugated electron structure, con-
sisting of two cyclopentadiene rings connected by an iron ion (see Fig. 1.1). It
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(a)

Fe

(b)

Figure 1.1: A three dimensional model (a) and schematic electronic structure (b)
of the ferrocene molecule. The carbon atoms are in black, hydrogen atoms are in
white and iron atom is in dark orange. The rings and the iron form a conjugated
system. The rings can rotate with respect to each other, as depicted in (b).

was previously shown to exhibit destructive interference in electronic transport[4]
for specific rotations of the two carbon rings (see Fig. 1.1b for illustration of ring
rotation).

We here discuss a possibility for different mode of electron transport across
the ferrocene molecule - without the linker groups, ferrocene interacts with the
metallic electrodes directly. This notion is motivated by relatively high conduc-
tance observed in MBJ experiments, as is presented in a our joined experimental-
theoretical paper[5]. This mode of electron transport produces molecular conduc-
tance independent of relative cyclopentadiene ring rotation. Instead, the trans-
port seems to occur directly through the iron atom which hybridises with the
atoms of the electrode tip.

We calculate the electronic structure of the extended molecule (molecule
+ part of electrodes) using density functional theory[6] (DFT) with dispersion
corrections[7] to evaluate the energy of the junction. Applying the NEGF for-
malism, we evaluate the conductance of the junction and we investigate the local
density of states (LDOS) and the shape of molecular orbitals to motivate our
conclusions.

1.3 Helical Molecules
Chiral molecules are molecules whose mirror image is structurally different from
the original molecule. Such molecules exhibit interesting properties in molecular
junctions, for example they induce spin filtering of the transported electrons,
resulting in famous chirality induced spin selectivity effect (CISS effect)[8].

Typical example of chiral molecule is a helical molecule[9]. We here however
explore a different type of helicity - helicity in the electronic structure of the
molecule rather than in the geometry of atomic nuclei. Helical molecular orbitals
are present in one-dimensional conjugated systems such as cumulenes[10, 11] or
linkers in ”Geländer”-type molecules[12] (see Fig. 1.2 for illustration).

The Geländer molecules are of special interest to us as they have been observed
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(a) Chemical
structure

(b) Example of molec-
ular orbital

Figure 1.2: (a) Schematic structure of the symmetrized version of the Geländer
molecule. The linker between the two benzene cores has incommensurate length,
causing the cores to be rotated with respect to each other. Such non-planar part
of the molecule induces ring currents and orbital helicity around the triple bonds
(see (b) for detail) at the edges of the molecule.

to rotate under current flow from STM tip to the molecules mounted on a tripod
structure attached to metallic surface [13]. We investigate the electronic structure
of these molecules and present arguments based on electronic momentum transfer
to the molecules that can explain the most puzzling feature of the rotations - the
rotation direction remains the same irrespective of the current direction.

1.4 GW Approximation for Metallic Clusters
One of the possible ways to further enhance accuracy of the numerical modelling
of molecular junctions is the application of the GW approximation[14] for calcu-
lation of the electronic structure. The GW approximation tries to build upon the
DFT and fix some of its problems, namely inaccuracies in the determination of
the charged gap[3, 15, 16]. Such inaccuracies are especially damning to attempts
to evaluate molecular conductance, as the conductance can change by orders of
magnitude for small changes in energy of the excited states of the molecule.

Some calculations have been realized previously[17], but to our knowledge,
when applying GW in cluster based junction calculation, convergence of the ob-
servables with the size of the electrode cluster has not been investigated. On a
model metallic electrodes, consisting of sodium atoms, we investigate the quasi-
particle spectrum in eigenvalue-only GW [15] (evGW ) and determine that the
finite size of the cluster induces an artificially increased gap that would not be
present in the wire of realistic size. Such increase might lead to unphysical de-
crease in conductance, overshadowing the possible increase in the accuracy given
by the evGW calculation.
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2. Theory
For our purposes of study of molecular junctions, we shall use mainly four observ-
ables - the total current through the junction under steady state conditions, the
current density in steady state conditions with the associated angular momentum
and the local density of states. In this section, we derive expressions for these
observables in the NEGF framework, with notation mostly inspired by [1] and
[18]. We work in SI units, which introduces some factors of ℏ to certain Green’s
function expressions, see A.1 for details.

The model for the effectively non-interacting, coherent transport through
molecular junctions has a form of tight-binding[19] system representing the molec-
ular junction separated into three subsystems - the left electrode (here usually
marked by lower index L), the molecule and the right electrode (here usually
marked by the lower index R). As we will show, this model is generalizable by
assuming different forms of self-energy to model the influence of the electrodes
on the molecule [20]. Such model assumes that the electrons in the molecule and
electrodes can be modelled as effectively non-interacting, with the Hamiltonian
operator Ĥ in second quantisation given as follows[1]

Ĥ =

ĤL⏟ ⏞⏞ ⏟∑︂
j∈L

ϵj â
†
j âj +

ĤR⏟ ⏞⏞ ⏟∑︂
p∈R

ϵpâ
†
pâp +

ĤM⏟ ⏞⏞ ⏟∑︂
α∈M

ϵαâ
†
αâα + (2.1)

+

ĤLM⏟ ⏞⏞ ⏟∑︂
j∈L,α∈M

tαj
(︂
â†
αâj + â†

j âα
)︂

+

ĤRM⏟ ⏞⏞ ⏟∑︂
p∈R,α∈M

tαp
(︂
â†
αâp + â†

pâα
)︂
, (2.2)

where we implicitly take the operators to be evaluated at the same time t and ĤL

is the uncoupled left-electrode Hamiltonian, ĤR is the uncoupled right electrode
Hamiltonian and ĤM is the uncoupled molecule Hamiltonian. The electrodes are
coupled by tight-binding terms Ĥ(L/R)M to the molecule. The â and â† operators
are fermionic annihilation and creation operators, respectively, of the true many
body eigenstates of the electrode/molecule systems. We use indices j, k, l, ...
to indicate degrees of freedom of the left electrode, indices p, q, r, ... to indicate
degrees of freedom of the right electrode and α, β, γ, ... to indicate degrees of
freedom of the molecule. The fermionic operators follow the anticommutation
relation {︂

âj(t), â†
k(t)

}︂
= δjk (2.3)

and same for all other types of indices. All other anticommutators for cre-
ation/annihilation operators at the same time are zero. Given this Hamiltonian,
the three observables of interest are now explored.

2.1 Total Charge Current through the Junction
Under the assumption of steady state solution for small non-equilibrium [1], we
can assume that the current through the molecule will be given by the decrease
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of the number of electrons in the left electrode (for current direction from left to
right), i.e.

Î(t) = (−e)
(︄

−∂n̂L
∂t

)︄
= e

∂n̂L
∂t

, (2.4)

where n̂L(t) = ∑︁
j∈L â

†
j(t)âj(t) is the total number operator in the left electrode.

The time derivative of the operator follows from the Schrödinger equation in
Heisenberg representation [18]

∂n̂L
∂t

= i

ℏ
[︂
Ĥ, n̂L

]︂
(t) . (2.5)

Inspecting the form of Ĥ ((2.1) and (2.2)), we can see that only ĤL and ĤLM

have operators that can produce non-commuting results the n̂L operator, since all
other terms include pairs of exactly anticommuting operators. The commutation
with ĤL is trivial (implicitly assuming same time evaluation in the following
equations)[︂

ĤL, n̂L
]︂

=
∑︂
j,k∈L

ϵj
[︂
â†
j âj, â

†
kâk

]︂
=
∑︂
j,k

ϵj
(︂
â†
j âj â

†
kâk − â†

kâkâ
†
j âj
)︂

=

=
∑︂
j,k

ϵj
(︂
â†
j âj â

†
kâk − â†

k

(︂
−â†

j âk + δjk
)︂
âj
)︂

=

=
∑︂
j,k

ϵj
(︂
â†
j âj â

†
kâk + â†

j â
†
kâj âk − â†

kâjδjk
)︂

=

=
∑︂
j,k

ϵj
(︂
â†
j âj â

†
kâk + â†

j

(︂
−âj â†

k + δjk
)︂
âk − â†

kâjδjk
)︂

=

=
∑︂
jk

ϵjδjk
(︂
â†
j âk − â†

kâj
)︂

= 0 . (2.6)

Therefore, the only two non-trivial commutators to evaluate following from ĤLM

are [︂
â†
αâj, â

†
kâk

]︂
= â†

αâj â
†
kâk − â†

kâkâ
†
αâj = â†

αâj â
†
kâk + â†

αâ
†
kâj âk =

= â†
αâj â

†
kâk + â†

α

(︂
−âj â†

k + δjk
)︂
âj = â†

αâjδjk (2.7)

and [︂
â†
j âα, â

†
kâk

]︂
= â†

j âαâ
†
kâk − â†

kâkâ
†
j âα = â†

j âαâ
†
kâk − â†

k

(︂
−â†

j âk + δjk
)︂
âα =

= â†
j âαâ

†
kâk + â†

j â
†
kâαâk − â†

kâαδjk = −â†
kâαδjk . (2.8)

Therefore [︂
ĤLM , n̂L

]︂
=

∑︂
α∈M ;j,k∈L

tαj
[︂
â†
αâj, â

†
kâk

]︂
+ tαj

[︂
â†
j âα, â

†
kâk

]︂
=

=
∑︂

α∈M ;j∈L
tαj â

†
αâj − tαj â

†
j âα . (2.9)

Overall, we have therefore

Î(t) = e
∂n̂L
∂t

= ei

ℏ
[︂
Ĥ, n̂L

]︂
= ei

ℏ
∑︂

α∈M ;j∈L
tαj â

†
α(t)âj(t) − tαj â

†
j(t)âα(t) . (2.10)
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Since the Hamiltonian does not depend explicitly on time, Green’s function
is only a function of the time difference (t − t′) (see A.1 for details). Therefore,
the expectation value of the current operator is given in terms of lesser Green’s
function

G<
ij(t− t′) = i

ℏ
⟨︂
â†
i (t′)âj(t)

⟩︂
, (2.11)

which leads to ⟨︂
Î(t)

⟩︂
= e

∑︂
α∈M ;j∈L

tαjG
<
αj(0) − tjαG

<
αj(0) , (2.12)

so we can see that the current is time independent - represents a steady state
solution.

For systems for which the spectrum ϵα is known, it is useful to transform to
energy dependent Green’s functions via Fourier transform [18]. This is done as

G<
jk(t) =

∫︂ ∞

−∞

dω

2π e
−iωtG<

jk(ℏω) =
∫︂ ∞

−∞

dE

2πℏe
−iE

ℏ tG<
jk(E)

= 1
h

∫︂ ∞

−∞
dEe−iE

ℏ tG<
jk(E) . (2.13)

Hence we can determine the current as⟨︂
Î
⟩︂

= e

h

∫︂ ∞

−∞
dE

∑︂
α∈M ;j∈L

tαjG
<
αj(E) − tαjG

<
jα(E) . (2.14)

In this form, the Green’s function still explicitly contains indices referring to
the (left) electrode. This can in fact be reformulated so that only elements of
Green’s function in the subspace of the molecule are involved. In order to do
that, we need to determine the Green’s function of the model more explicitly. We
can use the equation of motion (EoM) method [18] to proceed.

2.1.1 Determining Junction Green’s Functions via Equa-
tion of Motion Method

Equation of motion method is formulated for retarded Green’s function (see A.1)
as follows - we take the derivative of the retarded Green’s function and try to close
the hierarchy of newly generated Green’s functions. Because the Hamiltonian in
(2.2) is quadratic, this hierarchy will be closed already in the first step.

To determine the current via G< as in (2.14), we need retarded Green’s func-
tion elements of form

GR
jα(t) = −i

ℏ
θ(t)⟨{âj(t), â†

α(0)}⟩ . (2.15)

Taking the derivative and multiplying by iℏ

iℏ
∂

∂t
GR
jα(t) = δ(t)⟨{âj(t), â†

α}⟩ + θ(t)⟨{∂âj
∂t

, â†
α}⟩ . (2.16)

8



The time derivative of the operator is again determined by the Schrödinger
equation[18]

∂âj
∂t

= i

ℏ
[︂
Ĥ, âj

]︂
(t) =

∑︂
j′

iϵj′

ℏ
[︂
â†
j′ âj′ , âj

]︂
+
∑︂
j′,α′

itα′j′

ℏ
[︂
â†
j′ âα′ , âj

]︂
. (2.17)

We now decompose the commutator into anticommutators[18][︂
â†
j′ âα′ , âj

]︂
= â†

j′{âα′ , âj} − {â†
j′ , âj}âα′ = −δjj′ âα′ (2.18)

[︂
â†
j′ âj′ , âj

]︂
= â†

j′{âj′ , âj} − {â†
j′ , âj}âj′ = −δjj′ âj′ , (2.19)

where we used the fermionic anticommutation canonical quantisation conditions
(2.3). Hence

∂âj
∂t

= −i
ℏ

(︄
ϵj âj +

∑︂
α′
tα′j âα′

)︄
. (2.20)

Substituting back into (2.16) and recognizing

δ(t)⟨{âj(t), â†
α}⟩ = δ(t)⟨{âj, â†

α}⟩ = 0 , (2.21)

as the molecular indices α never overlap with (left) electrode indices j, we have

iℏ
∂

∂t
GR
jα = ϵjG

R
jα(t) +

∑︂
α′
tα′jG

R
α′,α . (2.22)

Fourier transforming to energy domain leads to [18]

(E + iη − ϵj)GR
jα(E) =

∑︂
α′
tα′jG

R
α′,α(E) . (2.23)

Notice that this equation enables us to write GR
jα(E) purely in terms of spectrum

of the uncoupled reservoir ϵj, coupling constants tα′,j and the Green’s function
restricted to the molecule subspace. Furthermore, we can recognize the matrix
structure and Green’s function of the uncoupled electrode

gRjj′(E) = δjj′

E + iη − ϵj
(2.24)

in order to write

GR
jα(E) =

∑︂
j′α′

gRjj′(E)tα′j′GR
α′,α(E) . (2.25)

Similarly, we can derive the Green’s function elements in the opposite order

iℏ
∂

∂t
GR
αj = θ(t)

⟨︄{︄
âα,

∂

∂t
(â†
j(−t))

}︄⟩︄
. (2.26)

Here, we can determine

∂

∂t
(â†
j(−t)) = ∂

∂t
e− i

ℏ Ĥtâ†
je

i
ℏ Ĥt = −i

ℏ
[︂
Ĥ, â†

j

]︂
(−t) . (2.27)
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We again determine the commutator[︂
Ĥ, â†

j

]︂
=
∑︂
j′
ϵj′

[︂
â†
j′ âj′ , â†

j

]︂
+
∑︂
α′,j′

tα′,j′

[︂
â†
α′ âj′ , â†

j

]︂
= ϵj â

†
j +

∑︂
α′
tα′j â

†
α′ . (2.28)

Substituting back leads to

iℏ
∂

∂t
GR
αj = ϵjG

R
αj(t) +

∑︂
α′
tα′jG

R
αα′(t) . (2.29)

Finally, transforming to energy domain and reordering the terms leads to

GR
αj(E) =

∑︂
α′,j′

GR
αα′(E)tα′j′gRj′j(E) . (2.30)

Therefore, we have expressed Green’s function elements present in the current
formula (2.14) via elements in the subspace of the molecule only. Solving the
equation of motion for these elements of the Green’s function further shows that
the uncoupled reservoir Green’s functions are present in the self-energy

iℏ
∂

∂t
GR
αα′ = δ(t)δαα′ + ϵαG

R
αα′ +

∑︂
j

tαjG
R
jα′ +

∑︂
p

tαpG
R
pα′ =

= δ(t)δαα′ + ϵαG
R
αα′ +

∑︂
jj′α′′

tαjg
R
jj′tj′α′′GR

α′′α′ +
∑︂
pp′α′′

tαpg
R
pp′tα′′p′GR

α′′α′ . (2.31)

We can recognize this as a form of Dyson equation with self-energies due to left
and right electrode added together

ΣR
L/R,αα′ =

∑︂
p/j,p′/j′

tαp/jg
R
p/j,p′/j′tα′p′/j′ . (2.32)

We define the matrices in the subspace of the molecule as(︂
GR(E)

)︂
αα′

= GR
αα′(E) (2.33)

in order to rewrite the equation of motion for the molecular Green’s function as(︂
GR(E)

)︂−1
= EI − ϵ − ΣR

L − ΣR
R , (2.34)

where (ϵ)αα′ = ϵαδαα′ and I is the identity matrix.
In order to determine the lesser Green’s function, we need to analytically

continue the expressions (2.25) and (2.30) onto the Keldysh contour. This results
in [21]

G<
jα(E) =

∑︂
α′j′

gRjj′(E)tα′j′G<
α′α(E) + g<jj′(E)tα′j′GA

α′j(E) (2.35)

G<
αj(E) =

∑︂
α′j′

GR
αα′(E)tα′j′g<j′j(E) +G<

αα′(E)tα′j′gAj′j(E) . (2.36)

To determine the lesser Green’s function in the molecular subspace, we use
the steady state approximation [21, 1] to generalized Kadanoff-Baym equation as

G<
αα′ =

∑︂
ββ′

GR
αβ

(︂
Σ<
L,ββ′ + Σ<

R,ββ′

)︂
GA
β′α′ . (2.37)
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Substituting into (2.14) results in⟨︂
Î
⟩︂

= e

h

∫︂
dE

∑︂
αα′,jj′

(︂
GR
αα′tα′j′g<j′jtαj+

+
∑︂
ββ′

GR
αβ

(︂
Σ<
L,ββ′ + Σ<

R,ββ′

)︂
GA
β′α′tα′j′gAj′jtαj−

−
∑︂
ββ′

tαjg
R
jj′tα′j′GR

α′β

(︂
Σ<
L,ββ′ + Σ<

R,ββ′

)︂
GA
β′α − tαjg

<
jj′tα′jG

A
α′α

⎞⎠ , (2.38)

where the energy dependence is implied for the Green’s functions and self-energies.
Recognizing the self-energies, we can leave only matrices restricted to the molec-
ular subspace and write⟨︂

Î
⟩︂

= e

h

∫︂
dE Tr

(︂
GRΣ<

L + GR (Σ<
L + Σ<

R) GAΣA
L−

− Σ<
LGA − ΣR

LGR (Σ<
L + Σ<

R) GA
)︂
, (2.39)

where Tr denotes trace over the molecular states.
The lesser self-energies are proportional to uncoupled reservoir lesser Green’s

function (see A.1 for details), and hence can be written as

Σ<
L/R =

(︂
ΣA
L/R − ΣR

L/R

)︂
fL/R , (2.40)

where fL/R is the Fermi-Dirac distribution of the left/right reservoir. Hence
⟨︂
Î
⟩︂

= e

h

∫︂
dE Tr

(︂(︂
ΣA
L − ΣR

L

)︂ (︂
fL
[︂
GR − GA + GR

(︂
ΣA
L − ΣR

L

)︂
GA

]︂
+

+ fRGR
(︂
ΣA
R − ΣR

R

)︂
GA

)︂)︂
. (2.41)

Here, we can recognize

GR − GA + GR
(︂
ΣA
L − ΣR

L

)︂
GA = GR

(︂
(GA)−1 − (GR)−1 + ΣA

L − ΣR
L

)︂
GA .

(2.42)

Substituting from (2.34) leads to

GR − GA + GR
(︂
ΣA
L − ΣR

L

)︂
GA = (2.43)

= GR
(︂
ΣR
R + ΣR

L − ΣA
R − ΣA

L + ΣA
L − ΣR

L

)︂
GA =

= GR
(︂
ΣR
R − ΣR

A

)︂
GA . (2.44)

Hence, for the current, we have⟨︂
Î
⟩︂

= e

h

∫︂
dE Tr

(︂(︂
ΣA
L − ΣR

L

)︂
GR

(︂
ΣR
R − ΣA

R

)︂
GA

)︂
(fL − fR) . (2.45)

Defining the anti-hermitian part of the advanced self-energy as

ΓA
L/R = i

(︂
ΣA
L/R − ΣR

L/R

)︂
(2.46)
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we can write the familiar Landauer formula[1] for total current through junction

⟨︂
Î
⟩︂

= e

h

∫︂ ∞

−∞
dE

T (E)⏟ ⏞⏞ ⏟
Tr
(︂
ΓA
LGR(E)ΓA

RGA(E)
)︂

(fL(E) − fR(E)) , (2.47)

where T (E) is the so-called transmission function. The problem of determining
the expected current through junction therefore becomes the problem of deter-
mining the transmission function, which involves Green’s functions restricted to
the molecular subspace with self-energy that includes the effect of coupling to the
electrodes. This self-energy can be approximated by a variety of assumptions,
here we mostly apply wide band approximation as formulated in [20]. Since the
spectrum of the (extended) molecule can be determined by numerical methods,
the only free parameters are used to determine the form of self-energy, and for
sufficiently large electrodes should not influence the junction properties[22].

2.2 Current Density
Besides the total current, the spatially resolved current density is also of interest
to us. In this work, it is mainly used to derive the angular momentum associated
with the current. Hence, we only investigate particle current density instead of
charge current density, as the angular momentum is independent of the charge
of the particles. A single particle current density operator has the following form
[23]

ĵS(r, t) = 1
2m {δ(r̂ − r), p̂} (t) , (2.48)

where p̂ is the momentum operator and r̂ is the position operator. For a state
|α⟩ with wavefunction ⟨r|α⟩ = ψα(r), the current density results in the familiar
conserved current

⟨α|ĵS(r, t)|α⟩ = 1
2m (ψ∗

α(r, t)⟨r|p̂(t)|α⟩ + ⟨α|p̂(t)|r⟩ψα(r, t)) =

= −iℏ
2m (ψ∗

α(r, t)∇ [ψα(r, t)] − ψα(r, t)∇ [ψ∗
α(r, t)]) , (2.49)

where we moved the time dependence to wavefunctions in order to show the
familiar form of the conserved current in the Schrödinger equation.

In a many particle system, the current density is obtained as summation over
current densities of all single particle states. Therefore, it can be written as [18]

ĵ(r, t) =
∑︂
α,β

⟨α|ĵS(r, 0)|β⟩â†
α(t)âβ(t) , (2.50)

where we returned to the Heisenberg representation. Evaluating the matrix ele-
ment of the single-particle operator explicitly

ĵ(r, t) =
∑︂
α,β

−iℏ
2m (ψ∗

α(r)∇ [ψβ(r)] − ψβ(r)∇ [ψ∗
α(r)]) â†

α(t)âβ(t) . (2.51)
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For eigenstates of the many-body Hamiltonian, the expectation value of the cur-
rent density is stationary and is given by lesser Green’s function

⟨︂
ĵ(r, t)

⟩︂
=
⟨︂
ĵ(r)

⟩︂
=
∑︂
α,β

ℏ2

2m (∇ [ψ∗
α(r)]ψβ − ψ∗

α(r)∇ [ψβ(r)])G<
αβ(t = 0) .

(2.52)

Again, we express the Green’s function in the energy domain as

⟨︂
ĵ(r)

⟩︂
=
∫︂ ∞

−∞

dE

2πℏ
∑︂
α,β

ℏ2

2m (∇ [ψ∗
α(r)]ψβ − ψ∗

α(r)∇ [ψβ(r)])G<
αβ(E)

⏞ ⏟⏟ ⏞
⟨ĵ(r,E)⟩

. (2.53)

Expressing the lesser Green’s function as in (2.37) and the lesser self-energy
as in (2.40), we obtain[22]

G<(E) = iGR(E)
(︂
ΓA
RfR(E) + ΓA

LfL(E)
)︂

GA(E) . (2.54)

When the junction is under bias, the left and the right electrodes no longer
have coinciding chemical potential, leading to non-zero difference fL(E) − fR(E)
at least for some E. The interval of E where the difference is non-zero is called
the transport window here. The current density difference in the biased and the
equilibrium situation can then be determined as

⟨︂
ĵbias(r, E) − ĵeq.(r, E)

⟩︂
=
∑︂
α,β

iℏ2

2m (∇ [ψ∗
α(r)]ψβ(r) − ψ∗

α(r)∇ψβ(r))
∑︂
α′,β′

×

×GR
αα′(E)

(︂
ΓAL,α′β′(E) [fL,bias(E) − fL,eq.(E)] +

+ ΓAR [fR,bias(E) − fR,eq.(E)]
)︂
GA
β′β(E) . (2.55)

In the STM case (which is where we use the current density observable in
this work), we usually vary only one electrodes potential, and the other remains
fixed. Explicitly, for varying chemical potential of the left electrode, we have
fL,eq.(E) = fR,eq.(E) = fR,bias, which leads to only the term proportional to

fL,bias(E) − fL,eq.(E) = fL,bias(E) − fR,bias(E) (2.56)

being non-zero. We usually drop the bias notation and redefine the current den-
sity as the non-equilibrium contribution only

⟨︂
ĵ(r, E)

⟩︂
=
∑︂
α,β

iℏ2

2m (∇ [ψ∗
α(r)]ψβ(r) − ψ∗

α(r)∇ψβ(r)) ×

×
(︂
GR(E)ΓA

L(E)GA(E)
)︂
αβ

(fL(E) − fR(E)) , (2.57)

where we used the matrix notation as before. We can see that the transport
window determines the contributions from the Green’s functions, same as in the
case of formula for total current (2.47).
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2.2.1 Angular Momentum
We can relate the current density to angular momentum in the system as follows.
The single particle angular momentum operator has three components defined by

L̂j,S = ϵjklr̂jkp̂l . (2.58)

Note that the position and momentum component operators commute here, as the
Levi-Civita symbol ϵjkl does not allow for the components in the same direction.
Hence, the many-body operator associated with angular momentum is given as

L̂j(t) =
∑︂
α,β

⟨α|ϵjklr̂j p̂l|β⟩â†
α(t)âβ(t) =

=
∑︂
α,β

â†
αâβϵjkl

∫︂
d3rψ∗

α(r)rj⟨r|p̂l|β⟩ =

= −iℏ
∑︂
α,β

â†
αâβϵjkl

∫︂
d3rψ∗

α(r)rj (∂lψβ(r)) . (2.59)

Since the angular momentum is an observable, we can make the Hermiticity more
apparent by setting

L̂j(t) = 1
2

(︃
L̂j(t) + L̂

†
j(t)

)︃
=

= −iℏ
2 ϵjkl

∑︂
m,n

∫︂
d3r

(︂
â†
αâβrkψ

∗
α(r)∂lψβ(r) − â†

βâαrkψα(r)∂lψ∗
β(r)

)︂
. (2.60)

Exchanging the index labels under the second term then yields

L̂j(t) = −iℏ
2 ϵjkl

∑︂
α,β

â†
α(t)âβ(t)

∫︂
d3rrk (ψ∗

α(r)∂lψβ(r) − ψβ(r)∂lψ∗
α(r)) =

= m
∫︂
d3r

⎡⎣r ×

⎛⎝−iℏ
2m

∑︂
α,β

(ψ∗
α(r)∇ψβ(r) − ψβ(r)∇ψ∗

α(r)) â†
α(t)âβ(t)

⎞⎠⎤⎦
j

.

(2.61)

As shown in (2.51), the bracketed term just corresponds to the current density
operator, and we can therefore conclude

L̂j(t) = m
∫︂
d3r

(︂
r × ĵ(r, t)

)︂
j
. (2.62)

Again, this expression can be Fourier transformed to get the energy dependent
form. Here, we refer to this Fourier transform as the angular momentum energy
density λ(E), and it follows that

λ̂j(E) = m
∫︂
d3r

(︂
r × ĵ(r, E)

)︂
j
. (2.63)

2.3 Local Density of States
Local density of states is obtained by projecting the spectral function [18] onto
a local basis of orbitals. It is a useful observable that enables us to probe the
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occupation of certain local orbitals as function of energy. Suppose we have set of
orbital indices M we want to project onto. We define local density of states on
set M as [24]

ρM(E) = − 1
π

∑︂
j∈M

ImGR
jj(E) . (2.64)

The relation of the local density of states to the transport problems can be
illustrated by further inspection of relation (2.47). The trace in the integral for
overall current can be further changed into

Tr
[︂
ΓLGRΓRGA

]︂
= iTr

[︂(︂
E − H − ΣA

L − (E − H − ΣA
L)†
)︂

GRΓRGA
]︂

=

= iTr
[︂
GA

(︂
(GA)−1 + ΣA

R − (GR)−1 − ΣR
R

)︂
GRΓR

]︂
=

= iTr

⎡⎢⎣
⎛⎜⎝GR − GA⏞ ⏟⏟ ⏞

2iImGR

+GA
(︂
ΣA
R − ΣR

R

)︂
GR

⎞⎟⎠ΓR

⎤⎥⎦ . (2.65)

We can therefore see that the spectral function and by extension the local density
of states is directly present in the formula for total current. The local projection
then leads to additional information about current flowing through specified or-
bitals.
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3. Computational Methodology

3.1 DFT for Extended Molecules

3.1.1 Kohn-Sham DFT
As a starting point to all calculations, we use the ab-initio density functional
theory (DFT) [6]. DFT is a mean field theory, replacing the problem of expo-
nentially growing Hilbert space for interacting particles with problem of finding
self-consistent electron density n such that the total energy of the system is min-
imized. In the Kohn-Sham variant, we use certain basis of states to express
electronic states as effective single particle states |ϕi >[25]

|ϕi >=
∑︂
n

cin|βn > , (3.1)

where |βn > is the basis state and cin are the expansion coefficients. The electron
density operator is then expressed as[25]

n̂ =
∑︂

i occupied
|ϕi >< ϕi| , (3.2)

where the summation runs only over the occupied orbitals, i.e. for system con-
taining N electrons, over the N least energetic orbitals (with different orbitals
for different spins).

Typically, states are expressed as wavefunctions and the electron density as
scalar field in position coordinates. The (effective) Kohn-Sham Hamiltonian then
has form[25]

Ĥ = T̂ + VI(r) + VH[n̂(r)] + Vxc[n̂(r),∇n̂(r)] , (3.3)

where T̂ is the kinetic energy operator, VI is the potential due to static background
(most commonly created by presence of ions), VH is the classical Coulomb repul-
sion of electrons, commonly denoted as Hartree term of electron interaction, and
Vxc is the exchange-correlation potential, which accounts for the more compli-
cated aspects of electron interaction. The last two potentials are functionals of
the electron density, hence the name of this approach. Furthermore, exchange-
correlation potential can also depend on the gradient of the electron density.

The exact exchange-correlation potential is unknown, but good approximate
functionals are available. For most calculations in this work, we employ the pbe
functional[26]. Besides the choice of functional, precision of the DFT calculation
is mainly tuned by the choice of basis. Larger basis allows for a more complete
expansion of the real many-body states and convergence of physical properties
should be established with respect to the basis size. Here, we mostly use localised
cartesian Gaussian orbital basis sets def2-SVP and def2-TZVP[27].

We use the DFT implementation by the TURBOMOLE[28] program and
by the FHI-AIMS[29] program. We do not use the resolution of identity (RI)
approximation[30] in TURBOMOLE.
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3.1.2 Extended Molecule
In a typical molecular break junction setup [18, 1], molecule sits between two
macroscopic electrodes. In order to describe the interaction with the electrodes
correctly, one needs to describe correctly the bonding of the molecule to these
electrodes, including the geometry and electronic density. Common approach
is to include parts of the electrodes in the DFT calculation together with the
molecule[3], forming the so called extended molecule. Then, at least a part of the
molecule-electrode bonding is described accurately with the numerical methods.
The electrode clusters themselves are coupled to reservoirs by a model self-energy,
in this work we assume wide band approximation[20], described below.

Figure 3.1: Molecule of ferrocene together with part of golden electrodes forms a
so called extended molecule. Entire extended molecule needs to be treated at the
ab-initio level to properly model the effect of molecule bonding to the electrodes.

The exact shape of the electrode clusters in the extended molecule however
plays important role. For example, symmetrical clusters can incorporate symme-
tries which would not be present in realistic (infinite) electrodes. The last part
of this work (see 4.3) illustrates the effects of the electrode size and shape.

3.2 Model Self Energy
As shown in 2, the transport observables are tied to values of Green’s function,
which relies on knowledge of self-energy. The self-energy is not known a priori
and hence needs to be either calculated or approximated.

For systems where the electrodes are wire-like (effectively 1D), we are ex-
plicitly calculating the self-energy by iteratively projecting the effects of unit
cells of the wire onto itself, as shown in Fig. 3.2 and implemented in TSaint
code[22]. Part of the wire electrode is included in the extended molecule and the
self-energy is included with it. In practice, this means that two calculations are
necessary to calculate the conductance and other properties of the junction - the
bulk calculation, where the self-energy is iteratively evaluated in the wire and
device calculation, where the self-energy is added to the extended molecule and
the transport observables are determined. This approach is used for the Geländer
molecule ab-initio calculations.
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H0 H0

H0 Σ1 +H0 H0 +Σ1 H0

H0 +Σ1 Σ2 +H0 H0 +Σ2 H0 +Σ1

...

(a) Unit cell of the electrode wire and iterative self-energy de-
termination

(b) Layers of electrodes in the extended molecule with self-
energy

Figure 3.2: (a) : Illustration of the calculation of self-energy by iterative projec-
tions of influence of unit cells onto themselves. (b) : The layers of the electrodes
included in the extended molecule with non-zero self-energy.

For a more general type of electrode (and for the other calculations presented
in this work), an approximate form of the self-energy is used, as defined in [20]
- the wide band approximation results in on-diagonal energy independent self-
energy in the basis of local atomic orbitals, which can be expressed as

Σ̂
A

=
∑︂
a∈AE

|a⟩⟨a|(ϵa + iηa) , (3.4)

where AE is the set of chosen atomic orbitals, ϵa is real energy shift caused by
the reservoir and ηa is real and sets the absorbing/creating boundary conditions.

In order to emulate coupling to the infinite reservoir, only few layers of the
electrode clusters from the extended molecule are chosen to accommodate the
self-energy - only for those orbitals |a⟩ the self-energy is non-zero. Such choice
also allows us to separate the self-energy due to left and right reservoir, as need
for formulas such as (2.47).

The model self-energy in this case contains set of free parameters ϵa and ηa.
Parameter ϵa can be further constrained by balancing it such that the extended
molecule is charge neutral. This leaves only ηa, which can be chosen to ap-
proximately model the band width of the reservoirs, but the dependence of the
transport observables on ηa is usually trivial[20].

In either case, once the self-energy and Green’s functions are determined,
various transport observables can be determined, as shown previously in 2.

3.3 Electronic Structure in the GW Approxima-
tion

In context of ab-initio electronic structure, the GW approximation is often used
[15] to refine a mean-field results (obtained for example from DFT) by including
approximate electron interactions in a self-consistent way. GW approximations
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Figure 3.3: Self-consistent set of Feynman diagrams for the GW approximation.
The vertex corrections would be present in the term for the self-energy of electrons
(Σ) and bosons (P ). By neglecting them, we are left with two Dyson equations
for electrons and bosons and two self-energy equations.

simplifies the form of the interaction self-energy derived from the Hedin equations
[14]. Specifically, the vertex corrections due to electron interaction are neglected,
leaving the self energy in a form of product of Green’s function and the screened
potentialW , hence the name of the approximation. See Fig. 3.3 for representation
of Hedin equations as Feynman diagrams[18].

Compared to DFT, GW promises to include parts of the electron correlation
that are not present in the typical DFT calculations. Specifically, DFT is known
to introduce significant errors in the estimation of LUMO-HOMO gaps [3]. The
GW approximation describes the excited state of the system more accurately,
leading to a better estimation of the gap.

The self-consistent solution to the Hedin equations requires a start solution
that is iterated until a stationary solution is found. Furthermore, many flavours
of GW are commonly used [15] which reduce the full self-consistency to only
partial self-consistency.

In our approach, we take the DFT solution to the many-body problem as
starting point for the GW calculation and only require self-consistency in the
eigenvalues of the effective Hamiltonian constructed from the Green’s function.
This so called evGW is implemented in the TURBOMOLE package as well [31].

3.4 Graphical Tools
The 3D models of the molecules/cluster were made using the VESTA[32] soft-
ware, the figures were made using python interface to matplotlib[33]. Many
of the scripts used for data visualisation are made available in python package
compphysutils[34].
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4. Results and Discussion

4.1 Molecular Conductance of Ferrocene
As stated before, we initially investigated the effect of rotation of cyclopentadiene
rings in ferrocene on the conductance (see Fig. 4.1 for extremes of the ring
rotations and Fig. 1.1b for sketch of rotation). The effect for bare ferrocene in the
junction proved to be negligible, as will be illustrated later. In order to understand
this observation together with the experimental results [5], we investigated the
electronic structure of bare ferrocene in the junction. The transport seems to
occur resonantly through the analogue of isolated lowest unoccupied molecular
orbital (LUMO) of gas phase ferrocene.

We summarize the results for the ferrocene calculations in the sections below.
Unless otherwise stated, we study the transport at the DFT level, with basis
set def2-TZVP[27], pbe functional[26] and DFT-D4 dispersion correction[7]. We
chose the model on-diagonal energy independent self-energy as described in 3
with constant parameter η = 0.1 H.

4.1.1 Ferrocene - Geometry and Electronic Structure
The ferrocene molecule consists of two cyclopentadiene rings parallel to each other
surrounding an iron ion. The unpaired electrons on the cyclopentadienes are
shared through the iron, creating a conjugate system. Depending on the relative
rotation of the (cyclopentadiene) rings, ferrocene can exist on a spectrum from
eclipsed to staggered geometry, as shown in Fig. 4.1. In gas phase, the eclipsed
geometry is reported to have minimum energy[35].

The frontier molecular orbitals of ferrocene are shown in Fig. 4.2, as calcu-
lated in the TURBOMOLE[28] suite with the aforementioned parameters. The
geometry of the molecule has been optimized so that the elements of gradient of
total energy with respect to ion coordinates is less than 0.001a.u. Note the shape
of these orbitals for the following sections, were the ferrocene molecule is placed
in the junction.

(a) The staggered geometry (b) The eclipsed geometry

Figure 4.1: Two geometries of the ferrocene molecule - staggered and eclipsed,
named after the relative rotation of the cyclopentadiene rings surrounding the
iron ion.
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(a) LUMO of eclipsed
ferrocene

(b) HOMO of eclipsed
ferrocene

Figure 4.2: The LUMO (lowest unoccupied molecular orbital) and HOMO (high-
est occupied molecular orbital) of molecular ferrocene. Plotted are the isosurfaces
of the Kohn-Sham wavefunctions at absolute value 0.01. Blue colour indicates
negative values, yellow indicates positive values. Both of these orbitals show
strong electron presence on the iron ion which binds the two rings together. The
LUMO orbital features a distinguishable two-fold rotational symmetry around
the iron ion, and resembles a d-type orbital at the iron site.

4.1.2 Junction Formation - Optimal Distance and Energy
The experimental setup[5] uses pure ferrocene (without linker groups) to bind to
two gold electrodes in a mechanical-break junction setup. The exact tip-to-tip
distance of the electrodes is not experimentally accessible, so in order to determine
possible modes of transport, number of different distances need to be investigated.

We initially tried to determine the optimal electrode distance by minimising
the energy vs. electrode distance curve. But, since the breaking of the junction is
not an equilibrium process[3], the point of minimum energy does not necessarily
correspond to the most probable state of the system. Therefore, we considered
also the symmetry of the junction - for molecule significantly tilted/moved to-
wards a single electrode, we decreased the distance in order to form a symmetric
junction.

We studied two distinct geometries, which we called the parallel and per-
pendicular geometry. For the parallel geometry (see Fig. 4.3a), the ferrocene
molecule is stable at the symmetric position in the middle of the junction for
wide range of electrode distances, and therefore we decided to minimize the en-
ergy to choose the optimum distance of 4.1 Å from central iron ion to the apex
atom of the electrode on either side.

For the perpendicular geometry (see Fig. 4.3b), the ferrocene molecule tilts
and moves towards one electrode for all distances above 2.7 Å. In order to deter-
mine the conductance and other properties of the junction, we used distance 2.6Å
from central iron ion to the apex atom of electrode. For details about energy of
the given geometries, see A.2
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(a) The parallel geometry. (b) The perpendicular geometry.

Figure 4.3: The junction geometries of the ferrocene. For perpendicular geometry
to form a symmetrical junction, the molecule has to be somewhat deformed by
the closeness to gold electrodes.

4.1.3 Conducting LUMO Channel through the Iron Ion
Firstly, we were interested in the influence of relative rotation of the rings on
the overall conductance of the junction. While in [4], the rotation of the rings is
associated with significant changes in conductance, no such change was observed
in our calculations, as shown in Fig. 4.4. We believe the cause of the interference
observed in [4] is the interaction of ferrocene with the system of phenyl linkers
- the ferrocene moves in the junction as the rings rotate, while in our case ring
rotation does not change the orientation of the ferrocene in the nanogap.

With this knowledge, further results are only presented for initially eclipsed
geometry. Then, the positions of the atoms contained in ferrocene molecule are
optimised so that the gradient of total energy with respect to atomic coordinates
of ferrocene has components of magnitude less than 0.001 a.u.

In order to account for possible amorphous structure of the electrodes (mea-
surements in [5] happen at room temperature), we added ad-atoms to break the
crystalline symmetry. We also checked that our basis set is of sufficient size.
These results are summarized for both geometries in Fig. 4.5. We should note
that while we used TURBOMOLE for the parallel geometry, calculations for the
perpendicular geometry were done using the FHI-AIMS[36] package with Van der
Waals correction due to problems with convergence in the TURBOMOLE suite.
We used the default tight basis in FHI-AIMS.

For the neighbourhood of the Fermi energy, it is clear that the junction in
the perpendicular geometry is more conducting, as the nearby resonant peak
increases the current flowing through the junction. This peak corresponds to the
LUMO molecular state, and its wavefunction on the extended molecule is shown
in Fig. 4.6.

This orbital has been identified by masking the contributions to transmission
function from other orbitals. Explicitly, in the determination of the trace that
leads to transmission function as in (2.47), we add an extra multiplication by
masking matrix Mij, where the elements of Mij are 1 if either i or j are in a set
of chosen indices and zero otherwise.

We refer the reader to [37] to compare the results for parallel calculation with
similar calculation using silver electrodes. Clearly, the transport in the parallel
geometry is also resistant to electrode changes and hence we postulate that it
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Figure 4.4: Transmission of the ferrocene molecular junction in the parallel ge-
ometry for multiple relative angles of the cyclopentadiene rings. No significant
deviations from the mean transmission is observed. The labels of the curves cor-
respond to relative rotation of the rings from the eclipsed position in degrees (36
degrees corresponds to exactly staggered position).

reflects the transport through molecular orbitals as well. The resonant orbital is
identified and visualised in Fig. 4.7.

In both geometries, the transport state is significantly associated with the iron
d-state which is present in the LUMO orbital. To further show the role of iron,
we plotted the local density of states on the iron orbitals of the molecule, shown
in Fig. 4.8. Hence, we conclude that the transport through the iron orbital is
more defining for the junction properties in this setup than the relative rotation
of the ferrocene rings.
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Figure 4.5: Robustness of transmission function with respect to geometry per-
turbations of the electrodes is demonstrated by the inclusion of ad-atoms to the
electrode structure. These do not change the overall shape of the transmission
function. Furthermore, we showcase that decreasing the basis set size does not
change the overall transmission function shape, signalling that our basis set is of
sufficient size.

24



(a) Transmission function of transport orbital. (b) Transport orbital
wavefunction.

Figure 4.6: The decomposition of the transmission function into the dominant
transport state for perpendicular junction geometry. Since the single state trans-
mission function is at certain energy points larger than the total transmission
function, there are some small interference effects present in the overall transmis-
sion function. The state resembles the molecular LUMO state of the ferrocene.
The plotted isosurfaces are given at value 0.01, with yellow surfaces representing
positive values and blue surfaces representing negative values.

(a) Transmission function of transport orbital. (b) Transport orbital
wavefunction.

Figure 4.7: The decomposition of the transmission function into the dominant
transport state. The geometry of the junction is parallel. The state resembles
the molecular LUMO state of the ferrocene. The plotted isosurfaces are given
at value 0.01, with yellow surfaces representing positive values and blue surfaces
representing negative values.
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Figure 4.8: The local density of states (LDOS) projected onto the iron orbitals in
the ferrocene molecule. The LDOS reflects the profile of overall transmission in
the states closest to the Fermi energy, and positions of others states correspond
with peaks in transmission function as well, although the relative magnitude of
the peaks differs.
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4.2 Helical Orbitals and Ring Currents
Next topic explored in our work is motivated by scanning tunnelling microscopy
experiments described in [13]. In these experiments, a Geländer molecule (see
Fig. 4.9) was observed rotating in a direction irrespective of the bias applied to
the junction. Due to the counter-intuitive nature of this observation, we decided
to investigate the system first from first principles and then to rationalize the
results using a simple toy model of the system, inspired by model discussed in
[11].

An overarching idea for the source of molecule rotation in our approach is
momentum transfer from the electronic current to the molecule. We postulate
that given a molecular current with non-zero angular momentum, the molecule
acquires angular momentum in the opposite direction. This simplistic viewpoint
does not explore the dynamics of the molecular rotation, and therefore should be
taken as a qualitative exploration of the sources of the rotation. Nevertheless,
we derive conditions for the correct bias (in)dependence of the current induced
molecular rotation.

4.2.1 Ab-Initio Calculations
In order to determine the angular momentum, we follow the formulas derived
in 2.2.1, specifically (2.63). For ab-initio calculations, we use the TURBOMOLE
[28] program to get the effective Hamiltonian, which is then used in the TSaint[22]
program to determine the current density as function of energy. The molecule
model is shown in Fig. 4.9. The electrodes used in ab-initio calculations are
nanoribbons of graphene, as the TSaint code is optimised to work with such
electrodes.

The bulk calculation is done on a graphene nanoribbon supercell. The result
of the bulk calculation is the self-energy on central two cells due to presence of
surrounding nanoribbon cells, as described in [22] and previously in 3. The self-
energy is determined in iterations, which effectively elongates the nanoribbon.
The convergence checks for the number of iterations of self-energy calculations,
basis set size and more are included in A.3.

The consequent device calculation uses the self-energy determined in bulk
calculation to induce current across the molecular junction and to determine
the associated current density. We integrate the current density to determine
the angular momentum density in energy space. The actual angular momentum
at given bias is determined by integrating the angular momentum density with
difference of occupations between left and right electrode, as dictated by formulas
(2.57) and (2.63).

4.2.2 Helical Orbitals and Currents in Ab-Initio
For orbitals near Fermi energy, one observes the helical structure around the
triple bonds that connect the molecule to the graphene nanoribbons, as shown in
Fig. 4.10

The helical orbitals are associated with circular ring currents along the triple
bond, as discussed in [10]. The angular momentum of these ring currents switches
around the Fermi energy, as shown in Fig. 4.11
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(a) Molecule with electrodes

(b) Detail of the central region

Figure 4.9: The molecule consists of two benzene rings which are forced into
relative rotation by a linker group (see detail (b)). The molecule is connected to
electrodes by triple bonds of carbon. The electrodes in ab-initio calculations are
taken as 2D graphene slices.

Consider now the following - the angular momentum acquired by the electrons
through transport is given by integrating the angular momentum energy density
(see (2.63)) in the transport window (see Fig. 4.11 for visualisation)

Lz =
∫︂ ∞

−∞
dEλz(E)(fL(E;µ0 − eV ) − fR(E;µ0)) ≈

∫︂ µ0−eV

µ0
dEλz(E) , (4.1)

where µ0 is the equilibrium chemical potential of both electrodes and V is the
applied bias.

For negative bias the integral probes the energies above the Fermi energy,
while for positive bias, the integral runs over energies below Fermi energy and
introduces an extra minus sign. Therefore, if the angular momentum energy
density for the states below Fermi energy is opposite to angular momentum en-
ergy density of states above the Fermi energy, the observed angular momentum
remains the same, irrespective of the bias direction.

This is the basic postulate by which we explain the experimental observation
of molecule rotating in a directed way. Furthermore, in the next few sections,
we try to explore what gives rise to this asymmetry of the angular momentum
energy density.

We also provide more explicit view of the changing current circulation in Fig.
4.12.
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Figure 4.10: The helical orbitals present along the triple bonds in the Geländer
molecule. The top orbital has energy above Fermi energy of the system, the
bottom one has energy below it. The sense of rotation of the helicities is different
for the two orbitals and same for both sides at the same orbital. The isosurface
level is chosen to be 0.005, yellow implies positive values, blue negative values.

(a) Momentum energy density and trans-
mission function

(b) Momentum at given bias

Figure 4.11: Angular momentum density λz(E) along the easy axis of the molec-
ular junction is shown in (a). The asymmetry around the Fermi energy means
that the angular momentum for both positive and negative bias has the same
direction, as shown in (b), where λz(E) is integrated in the transport window.
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Figure 4.12: A cross-section of the Geländer molecule showing the current density
profile around the carbon atoms forming the triple bond. The generated current
is the same for both cross-sections for a given energy, and switches direction
for opposite energies. Energies are given with respect to the equilibrium Fermi
energy of the system.
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4.2.3 Toy Model for Helical Orbitals and Currents
The triple bonds are the drivers of the angular momentum generation and are
known to have helical orbitals with switching helicities, so we will try to replicate
and extend the results of some previous works [11, 10] to discover what lies at the
core of this switching behaviour. We shall define a toy model describing a triple
bond conjugated system in a Hückel-like Hamiltonian[25]. We consider a chain
of carbon atoms of length N , each with 2 perpendicular p-type orbitals, pointing
in direction also perpendicular to the axis of the system. In general, the pairs of
p-type orbitals could be rotated by an arbitrary angle, but this rotation can be
removed by unitary transformation (see A.5). Hence, without loss of generality,
we can assume that the orbital pairs are aligned, as shown in Fig. 4.13, with
Hamiltonian

H = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 ...
I 0 I 0 ...
0 I 0 I ...
... ... ... ... ...
... 0 0 I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (4.2)

where I is the 2x2 identity matrix and t > 0 determines the energy scale.
The Hamiltonian follows from the overlaps of p orbitals restricted to nearest

neighbour elements, for which

⟨pβ|pγ⟩ = cos(γ − β)e−ad2/2 , (4.3)

where

⟨x|pβ⟩ = Nρ cos(ϕ− β)e−a(ρ2+z2) (4.4)

is the wavefunction of the p-orbital in the cylindrical polar coordinates (ρ, ϕ, z)
with z axis coinciding with the axis of the chain and a is inverse distance param-
eter - product ad2 together sets the effective distance of the p-orbitals. From this
form of the overlap matrix, one can deduce that for β, γ ∈ {0, π2 }, orbitals along
initial direction, say x, only couple to other orbitals along the x direction.

We exchange the overlap parameter for generic energy parameter t, but oth-
erwise, we retain the same matrix structure to construct the Hamiltonian matrix.

Figure 4.13: The illustration of orbitals present in the toy model. The N carbon
atoms form a linear chain with equal distance d between sites. At each site, pair
of p-orbitals is present. At the end of the chain, a perturbation is introduced
which effectively rotates the orbital pair by twist angle θT.

31



In order to create helical orbitals, one must couple the x and y sectors (sectors
with p-orbital angles β, γ taking values 0 and π/2, respectively) orbitals to each
other. The analytical solution presented in [11] used a lone rotated p-orbital to
couple the two ”strands” of orbitals to each other. Here, we slightly generalize
this approach by introducing an energy penalty for one strand of orbitals in the
original Hamiltonian, i.e. we define perturbation V

V =

⎛⎜⎜⎜⎜⎝
ϵ 0 0 0 ...
0 0 0 0 ...
... ... ... ... . . .
... 0 0 0 R(θT)ϵR(θT)†

⎞⎟⎟⎟⎟⎠ , (4.5)

where

ϵ =
(︄

0 0
0 ϵ

)︄
, (4.6)

where ϵ > 0 is the energy penalty and θT is the twist angle of the last pair of
bases - the energy penalty is split between the two basis states as if the basis was
rotated by θT. Our next goal is to determine how this coupling matrix brings
forth the helicity in the orbitals. We will employ the degenerate perturbation
theory to this goal [38, 39].

4.2.4 Helicity via Perturbation Theory
Before we embark onto the journey of perturbation theory, we define the helicity
more rigorously. Since the Hamiltonian in (4.2) is real, eigenstates can be in
general chosen real as well. In order to represent the helicity, one can represent
the eigenstates projected onto single carbon sites as vector in real space with
components along the two perpendicular p-orbital directions [11]. The helicity
can then be defined as measure of misalignment of consecutive vectors. Such
measure is provided by vector product in three dimensions.

More rigorously, we define the local polarisation vector Pk,ψ of state |ψ⟩ at
site k as

Pk =
(︄

⟨pk,x|ψ⟩
⟨pk,y|ψ⟩

)︄
(4.7)

and the helicity at site k as

hk,ψ = Pk,ψ × Pk+1,ψ = (⟨pk,x|ψ⟩⟨pk+1,y|ψ⟩ − ⟨pk,y|ψ⟩⟨pk+1,x|ψ⟩) . (4.8)

Since the eigenvectors can be chosen real, we can symmetrize the expression
to get

hk,ψ = 1
2 (⟨ψ|pk+1,y⟩⟨pk,x|ψ⟩ + ⟨ψ|pk,x⟩⟨pk+1,y|ψ⟩− (4.9)

⟨ψ|pk,y⟩⟨pk+1,x|ψ⟩ − ⟨ψ|pk+1,x⟩⟨pk,y|ψ⟩) , (4.10)

which leads us to a definition of total helicity operator

ĥ = 1
2

N−1∑︂
k=1

|pk,x⟩⟨pk+1,y| − |pk,y⟩⟨pk+1,x| + h.c. , (4.11)
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where h.c. stands for Hermitian conjugate of the previous two terms.
The matrix structure of such operator is also very simple

h = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 R
(︂
−π

2

)︂
0 ...

R
(︂
π
2

)︂
0 R

(︂
−π

2

)︂
...

0 R
(︂
π
2

)︂
0 ...

... ... ... . . .
... 0 R

(︂
π
2

)︂
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.12)

We can test our helicity operator by inquiring its expectation value for simple
rotated state

|ψ⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0
cos γ√

2
sin γ√

2
0
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.13)

We find that

⟨ψ|ĥ|ψ⟩ = 1
2 sin γ , (4.14)

which is a good measure of the polarisation vector rotation. The 1
2 factor occurs

due to product of magnitudes of polarisation vectors at site 1 and site 2.
We should also note that while we are in the end interested in the angular

momentum, orbital helicity is a good proxy for the presence of non-zero net
orbital angular momentum, because the two operators commute in our model.
The angular momentum operator along the axis of the site chain is defined in
position representation as[38]

L̂ = −iℏ ∂

∂ϕ
(4.15)

Resolving this operator in the basis states written in (4.4) leads to matrix
(neglecting the matrix elements proportional to intersite overlaps)

L = ℏ

⎛⎜⎜⎜⎜⎝
σ2 0 0 . . .
0 σ2 0 . . .
... ... ... . . .
. . . 0 0 σ2

⎞⎟⎟⎟⎟⎠ , (4.16)

where

σ2 =
(︄

0 −i
i 0

)︄
(4.17)
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is the second Pauli matrix. The commutator with the helicity operator matrix is
then

[L,h] = Lh − hL = ℏ
2

⎛⎜⎜⎜⎜⎝
0 σ2iσ2 0 0 . . .

σ2(−i)σ2 0 σ2iσ2 . . .
... ... ... . . .
. . . 0 σ2(−i)σ2 0

⎞⎟⎟⎟⎟⎠− (4.18)

−ℏ
2

⎛⎜⎜⎜⎜⎝
0 iσ2σ2 0 . . .

(−i)σ2σ2 0 iσ2σ2 . . .
... ... ... . . .
... 0 (−i)σ2σ2 0

⎞⎟⎟⎟⎟⎠ = 0 , (4.19)

where we used the fact that R(±π/2) = ∓iσ2.
With this definition of helicity operator as a proxy to angular momentum

operator, we can move to the perturbation theory. Without the perturbation V ,
the eigenvectors of H can be determined exactly [11] and take the following form

|ϕ0
n,α⟩ = Z

⎛⎜⎜⎜⎜⎜⎜⎝
sin

(︂
nπ
N+1

)︂
vα

sin
(︂

2nπ
N+1

)︂
vα

...
sin

(︂
Nnπ
N+1

)︂
vα

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.20)

where vα is a polarisation vector that remains constant through the entire chain,
n is a quantum number and Z is the normalisation constant (see A.4 for details)

Z =
√︄

2
N + 1 . (4.21)

We can determine the eigenvalue of such eigenvector by application of the Hamil-
tonian

Ĥ|ϕ0
n,α⟩ = (−t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 ...
I 0 I 0 ...
0 I 0 I ...
... ... ... ... . . .
... 0 0 I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
sin

(︂
nπ
N+1

)︂
vα

sin
(︂

2nπ
N+1

)︂
vα

...
sin

(︂
Nnπ
N+1

)︂
vα

⎞⎟⎟⎟⎟⎟⎟⎠ = (4.22)

= (−t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin
(︂

2nπ
N+1

)︂
vα

...[︂
sin

(︂
(k−1)nπ
N+1

)︂
+ sin

(︂
(k+1)nπ
N+1

)︂]︂
vα

...
sin

(︂
(N−1)nπ
N+1

)︂
vα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −2t cos

(︃
nπ

N + 1

)︃
|ϕ0
n,α⟩ ,

(4.23)

where we used

sin
(︃
Nnπ

N + 1

)︃
= sin

(︄
(N + 1 − 1)nπ

N + 1

)︄
= − sin

(︃
nπ

N + 1

)︃
cos(nπ) = (4.24)

= (−1)n+1 sin
(︃

nπ

N + 1

)︃
, (4.25)
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and similarly

cos
(︃
Nnπ

N + 1

)︃
= (−1)n cos

(︃
nπ

N + 1

)︃
. (4.26)

Hence, the eigenvalues are given as

E0
n = −2t cos

(︃
nπ

N + 1

)︃
. (4.27)

The quantum number n clearly takes integer values from 1 to N . It is clear
that the spectrum of the Hamiltonian is double degenerate - we can always choose
at least two perpendicular polarisation vectors vα/β, which will have the same
energy. In order to get the first order corrections to the eigenstates due to the
perturbation V , and hence the first order corrections to the expectation value of
helicity, we need to find a suitable polarisation basis that diagonalizes elements
of V in the polarisation vector subspace. To that end, we determine the matrix
elements of the V matrix in an arbitrary basis and solve the eigenvalue problem,
as the eigenvectors of the matrix restricted to the polarisation vector subspace
can be used to diagonalize it.

We choose v†
x =

(︂
1 0

)︂
and v†

y =
(︂
0 1

)︂
as our initial guess polarisation basis,

which leads to matrix elements of type (for ξ, ξ′ ∈ {x, y}, see A.6, here element
at first row and second column corresponds to ⟨ϕ0

n,x|V̂ |ϕ0
n,y⟩ etc.)

⟨ϕ0
n,ξ|V̂

′
|ϕ0
n,ξ′⟩ = ϵZ2 sin2

(︃
nπ

N + 1

)︃(︄ sin2(θT) − sin(θT) cos(θT)
− sin(θT) cos(θT) 1 + cos2(θT)

)︄
,

(4.28)

The eigenvalues of this matrix are

Enα = 2ϵZ2 sin2
(︃

nπ

N + 1

)︃
cos2

(︄
θT

2

)︄
(4.29)

Enβ = 2ϵZ2 sin2
(︃

nπ

N + 1

)︃
sin2

(︄
θT

2

)︄
(4.30)

with associated eigenvectors

vα =
(︄

sin(θT/2)
− cos(θT/2)

)︄
, vβ =

(︄
cos(θT/2)
sin(θT/2)

)︄
. (4.31)

With this choice of polarisation vectors, the matrix elements of V are diagonal.
The first order energy corrections due to V are the eigenvalues Enα and Enβ,
which are added to the unperturbed energy (4.27).

With this knowledge, we can proceed to determine the first order corrections
to these states. These are given only in terms of states for different quantum
numbers, i.e. (for ξ ∈ {α, β}) [38]

|ϕ1
n,ξ′⟩ =

∑︂
m̸=n,ξ

−⟨ϕ0
m,ξ|V̂ |ϕ0

n,ξ′⟩
E0
m − E0

n

|ϕ0
m,ξ⟩ . (4.32)

Therefore, to proceed, we need to determine the matrix elements for different
quantum numbers. These are determined in A.6.1 as (again, element at first
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row and first column corresponds to ξ = α, ξ′ = α, second row first column
corresponds to ξ = β, ξ′ = α etc.)

⟨ϕ0
m,ξ|V̂ |ϕ0

n,ξ′⟩ = ϵZ2 sin
(︃

nπ

N + 1

)︃
sin

(︃
mπ

N + 1

)︃
× (4.33)

×
(︄

cos2(θT/2) ((−1)m+n + 1) sin(θT/2) cos(θT/2) ((−1)m+n − 1)
sin(θT/2) cos(θT/2) ((−1)m+n − 1) sin2(θT/2) ((−1)m+n + 1)

)︄
.

(4.34)
We can see that the diagonal terms are only non-zero for m + n even, while

off-diagonal elements are only non-zero for m+ n odd. Hence, the corrections to
the state with polarisation α is given as

|ϕ1
n,α⟩ = ϵZ2

⎛⎝ ∑︂
m̸=n,(m+n) even

sin
(︂

nπ
N+1

)︂
sin

(︂
mπ
N+1

)︂
cos2(θT/2)

t
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂ |ϕ0
m,α⟩− (4.35)

−
∑︂

m ̸=n,(m+n) odd

sin
(︂

nπ
N+1

)︂
sin

(︂
mπ
N+1

)︂
sin(θT/2) cos(θT/2)

t
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂ |ϕ0
m,β⟩

⎞⎠ . (4.36)

Similarly,

|ϕ1
n,β⟩ = ϵZ2

⎛⎝ ∑︂
m ̸=n,(m+n) even

sin
(︂

nπ
N+1

)︂
sin

(︂
mπ
N+1

)︂
sin2(θT/2)

t
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂ |ϕ0
m,β⟩− (4.37)

−
∑︂

m ̸=n,(m+n) odd

sin
(︂

nπ
N+1

)︂
sin

(︂
mπ
N+1

)︂
sin(θT/2) cos(θT/2)

t
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂ |ϕ0
m,α⟩

⎞⎠ . (4.38)

With these corrections to the state, we can calculate the corrections to helicity
h1
nα,nα =

(︂
⟨ϕ0

n,α| + ⟨ϕ1
n,α|

)︂
ĥ
(︂
|ϕ0
n,α⟩ + |ϕ1

n,α⟩
)︂

≈ ⟨ϕ0
n,α|ĥ|ϕ1

n,α⟩ + ⟨ϕ1
n,α|ĥ|ϕ0

n,α⟩ ,
(4.39)

where we kept only contributions to the first order and used ⟨ϕ0
n,α|ĥ|ϕ0

n,α⟩ = 0.
Again, we will need to calculate matrix elements, this time of the helicity operator.
The general form is

⟨ϕ0
n,ξ|ĥ|ϕ0

m,µ⟩ = Z2

2
(︂
sin

(︂
nπ
N+1

)︂
v†
ξ sin

(︂
2nπ
N+1

)︂
v†
ξ ...

)︂
× (4.40)

×

⎛⎜⎜⎜⎜⎜⎜⎝
sin

(︂
2mπ
N+1

)︂
R(−π/2)vµ

sin
(︂

3mπ
N+1

)︂
R(−π/2)vµ + sin

(︂
mπ
N+1

)︂
R(π/2)vµ

...
sin

(︂
(N−1)mπ
N+1

)︂
R(π/2)vµ

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.41)

Using R(π/2) = −R(−π/2), we determine

⟨ϕ0
n,ξ|ĥ|ϕ0

m,µ⟩ = Z2 sin
(︃

mπ

N + 1

)︃ (︂
sin

(︂
nπ
N+1

)︂
v†
ξ sin

(︂
2nπ
N+1

)︂
v†
ξ ...

)︂
× (4.42)

×

⎛⎜⎜⎜⎜⎜⎜⎝
cos

(︂
mπ
N+1

)︂
R(−π/2)vµ

cos
(︂

2mπ
N+1

)︂
R(−π/2)vµ
...

cos
(︂
Nmπ
N+1

)︂
R(−π/2)vµ

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.43)

36



⟨ϕ0
n,ξ|ĥ|ϕ0

m,µ⟩ = Z2 sin
(︃

mπ

N + 1

)︃ (︂
v†
ξR(−π/2)vµ

)︂
× (4.44)

×
(︄

N∑︂
k=1

sin
(︄
knπ

N + 1

)︄
cos

(︄
kmπ

N + 1

)︄)︄
= (4.45)

= Z2

2 sin
(︃

mπ

N + 1

)︃ (︂
v†
ξR(−π/2)vµ

)︂
× (4.46)

×
(︄

N∑︂
k=1

sin
(︄
k(n+m)π
N + 1

)︄
+ sin

(︄
k(n−m)π
N + 1

)︄)︄
. (4.47)

The formulas for these sine summations are best derived by transforming the
sines to complex exponentials as shown in A.4, which lead to the following result

N∑︂
k=1

(︄
sin

(︄
(n+m)π
N + 1

)︄
+ sin

(︄
(n−m)π
N + 1

)︄)︄
=

2 sin
(︂

nπ
N+1

)︂
cos

(︂
nπ
N+1

)︂
− cos

(︂
mπ
N+1

)︂ . (4.48)

Substituting back into expression for matrix element of helicity, we get

⟨ϕ0
n,ξ|ĥ|ϕ0

m,µ⟩ =
(︂
v†
ξR(−π/2)vµ

)︂ (−Z2) sin
(︂
mπ
N+1

)︂
sin

(︂
nπ
N+1

)︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂ (4.49)

for odd m+n, otherwise the matrix element is zero. We can very simply see that
the term has to be off-diagonal in polarization degree of freedom, as the bracketed
term with vectors has matrix structure (first row second column corresponds to
ξ = α and µ = β) (︄

0 1
−1 0

)︄
. (4.50)

Therefore, we have only two possibilities for non-zero helicity matrix elements,
which also require that m+ n is odd

⟨ϕ0
n,α|ĥ|ϕ0

m,β⟩ =
(−Z2) sin

(︂
mπ
N+1

)︂
sin

(︂
nπ
N+1

)︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂ = −⟨ϕ0
n,β|ĥ|ϕ0

m,α⟩ . (4.51)

Therefore, after substituting from (4.36) to ⟨ϕ0
n,α|ĥ|ϕ1

n,α⟩ and applying the
above result, we have

⟨ϕ0
n,α|ĥ|ϕ1

n,α⟩ =
∑︂

m̸=n,(m+n) odd

ϵZ4 sin(θT) sin2
(︂

nπ
N+1

)︂
sin2

(︂
mπ
N+1

)︂
2t
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂2 = ⟨ϕ1
n,α|ĥ|ϕ0

n,α⟩ .

(4.52)

Similarly

⟨ϕ0
n,β|ĥ|ϕ1

n,β⟩ = −
∑︂

m ̸=n,(m+n) odd

ϵZ4 sin2
(︂

nπ
N+1

)︂
sin2

(︂
mπ
N+1

)︂
sin(θT)

2t
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂2 = ⟨ϕ1
n,β|ĥ|ϕ0

n,β⟩ ,

(4.53)
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Figure 4.14: The energy of LUMO+1,LUMO, HOMO and HOMO-1 as function
of the perturbation ϵ. Match in the slopes of the numerical and analytical results
for ϵ → 0 indicates validity of the perturbative approach.

which leads to our final result

h1
n,α = ϵ

t
Z4 sin(θT)ζnm , (4.54)

h1
n,β = −ϵ

t
Z4 sin(θT)ζnm , (4.55)

ζnm =
∑︂

m̸=n,(m+n) odd

sin2
(︂

nπ
N+1

)︂
sin2

(︂
mπ
N+1

)︂
(︂
cos

(︂
mπ
N+1

)︂
− cos

(︂
nπ
N+1

)︂)︂2 . (4.56)

Notice that ζnm is always positive and hence that opposite polarisations acquire
opposite helicity to the first order.

4.2.5 Comparison of Perturbative Analytic Solution and
Full Numerical Solution

We evaluated the eigenstates and helicity of the states also numerically, giving us
access to comparison of the perturbation theory with numerically exact results.
The numerical solution uses exact numerical diagonalisation of the Hamiltonian,
using the julia [40] language. The script is presented in [41]. Fig. 4.14 shows the
energy of initially degenerate states, calculated both analytically and numerically.
Analytically, the energy is of course linearly proportional to perturbation ϵ, as
we included first order corrections. Importantly, slopes close to ϵ → 0 seem to
match well, proving that the perturbation approach is valid.

We now compare the numerically calculated helicity to the analytically pre-
dicted helicity to the first order. We choose a constant ϵ and scan through all θT.
We overlay the helicity prediction with the energy of the orbitals.

As can be seen in Fig. 4.15, the states with different polarisation α and β
switch in energy order for θT = π

2 ,
3π
2 . This causes rapid change of the helicity

that is numerically attributed to HOMO/HOMO-1. From Fig. 4.15 it is also
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Figure 4.15: The HOMO-1 and HOMO helicities and energies, overlayed. This
shows that at θT = π/2, 3π/2 the order of the orbitals swaps, while their helicities
remain opposite. This results in a jump in numerically observed helicity, as the
numerical solution switches the HOMO label from polarization α to β. The
analytical first order corrections to both energy and helicity describe qualitative
properties of the system well. Perturbation ϵ is kept constant at ϵ = 0.15t.

clear that the majority of the helicity expectation value is explainable by the first
order correction in this regime.

Finally, we provide a phase diagram of the numerically calculated helicity as
function of both the angle θT and the perturbation ϵ in Fig. 4.16

4.2.6 Numerically Calculated Angular Momentum
While the presence of helicity is important for understanding of the switching
behaviour around the neighbouring orbitals, the ultimate observable we are in-
terested in is the angular momentum. The matrix representing the angular mo-
mentum operator was already derived in (4.16).

We can check that matrix elements for states |ϕ0
m,γ⟩ are almost always zero

as follows below.

⟨ϕ0
m,γ|L̂z,S|ϕ0

n,ξ⟩ = ℏZ2
(︂
sin

(︂
mπ
N+1

)︂
v†
γ sin

(︂
2mπ
N+1

)︂
v†
γ ...

)︂
× (4.57)

×

⎛⎜⎜⎜⎝
sin

(︂
nπ
N+1

)︂
σ2vξ

sin
(︂

2nπ
N+1

)︂
σ2vξ

...

⎞⎟⎟⎟⎠ = (4.58)

= ℏZ2
(︂
v†
γσ2vξ

)︂(︄ N∑︂
k=1

sin
(︄
kmπ

N + 1

)︄
sin

(︄
knπ

N + 1

)︄)︄
. (4.59)

The last sum in the brackets is the same sum as present in the orthogonali-
sation sum of the original eigenvectors (see A.4) and hence equals to zero for all
m ̸= n. For m = n, we the summation is exactly inverse of Z2 and we have

⟨ϕ0
n,γ|L̂z,S|ϕ0

n,ξ⟩ = ℏv†
γσ2vξ (4.60)
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Figure 4.16: From top left clockwise : LUMO+1, LUMO, HOMO and HOMO-1
numerically calculated helicities. We observe the abrupt change of helicity at the
switching of each orbital around θT = π/2, 3π/2. We also see that states on the
opposite side of the Fermi energy have the opposite helicity.

and we recover the analogous elements on planar eigenstates

⟨ϕ0
n,α|L̂z,S|ϕ0

n,β⟩ = −iℏ = −⟨ϕ0
n,β|L̂z,S|ϕ0

n,α⟩ , (4.61)
⟨ϕ0

n,α|L̂z,S|ϕ0
n,α⟩ = 0 = ⟨ϕ0

n,β|L̂z,S|ϕ0
n,β⟩ . (4.62)

From the form of the state corrections in (4.36) and (4.38), it is clear that
not even first order corrections to the state induce the angular momentum in
the system. This is because the system is still in equilibrium. For any angular
momentum to occur, a current through the system must be flowing. We there-
fore apply standard NEGF transport formalism, as described in 2. We choose
simplified form of self-energy

ΣR =

⎛⎜⎜⎜⎜⎝
iηI 0 0 ...
0 0 0 ...
... ... ... . . .
... 0 0 iηI

⎞⎟⎟⎟⎟⎠ , (4.63)

which is imaginary and independent of energy. The expectation value of the
many-body angular momentum operator will be given by (in the basis of |pn,x/y⟩)
[18]⟨︂
L̂z
⟩︂

=
∑︂

n,γ,m,ξ

⟨ϕ0
n,γ|L̂z,S|ϕ0

m,ξ⟩
⟨︂
â†
n,γ âm,ξ

⟩︂
=
∑︂
n

(−iℏ)
⟨︂
â†
n,xân,y

⟩︂
+ iℏ

⟨︂
â†
n,yân,x

⟩︂
.

(4.64)

40



(a) Angular momentum energy den-
sity

(b) Angular momentum at given bias

Figure 4.17: The angular momentum energy density (a) calculated from the lesser
Green’s function. The imaginary part of the coupling self-energy is η = 0.1t. Note
that for different θT, the peaks can change in sign, while for different ϵ, they differ
mainly in magnitude. The steps in (b) correspond to locations of peaks in λz(E),
as
⟨︂
L̂z
⟩︂

is obtained by integrating λz(E) in the transport window.

Recognizing the lesser Green’s function allows us to rewrite this as
⟨︂
L̂z
⟩︂

=
∫︂ dE

2πℏλz(E) =
∫︂ dE

2πℏℏ
2∑︂

n

(︂
G<
ny,nx(E) −G<

nx,ny(E)
)︂
. (4.65)

Notice that since in equilibrium, the angular momentum is zero, only the non-
equilibrium part contributes, which is non-zero only in the transport window, i.e.
in the energy interval given by differences in Fermi-Dirac distributions of left and
right reservoir

⟨︂
L̂z
⟩︂

=
∫︂ dE

2πℏλz(E) (fL(E) − fR(E)) , (4.66)

where fL/R(E) is the Fermi-Dirac distribution of the left/right electrode. Besides
θT and ϵ, we therefore add a third free parameter to the model - η, but the role of
the parameter is rather trivial - the angular momentum is directly proportional
to it.

We show numerically calculated values of λz(E) for chosen set of parameters
in Fig. 4.17a.

The peaks in the Green’s function follow same qualitative dependencies as
the helicity, as is shown in Fig. 4.18 (to be compared with Fig. 4.15). The total
angular momentum generated at specific bias is then shown in Fig. 4.17b.

4.2.7 Angular Symmetry and Persistent Rotation
So far, our analysis deals with a static situation - the momentum is generated by
current flowing in Born-Oppenheimer approximation[25], i.e. with static nuclei.
The dynamics of the molecular rotation will undoubtedly present additional as-
pect of the rotation. One example that we can check is whether the momentum
generated for specific voltage is net positive for the whole range of angles of the
molecular rotation.
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Figure 4.18: Fitted peak positions and amplitudes for λz(E) for range of angles
and constant penalty ϵ = 0.2. The qualitative behaviour of the energy correc-
tions coincides with energy corrections in first order perturbation theory, but the
energies are somewhat offset. The amplitude of the peaks more closely resembles
the helicity dependence observed in equilibrium situation.

From the shape of the dependence of peak amplitude on the twist angle as
in Fig. 4.18, we suspect that over these angles, angular momentum averages to
zero, and this is indeed observed, as shown in Fig. 4.19.

This would seem to predict that the molecule should not rotate continuously,
but just oscillate between certain rotations with opposite momentum. But, the
dynamics of the molecule can in fact play an important role and can cause the
molecule to rotate faster through regions where it would gain significant angular
momentum in opposite direction.

4.2.8 Conclusions for Helical Orbitals and Ring Currents
We have shown that both in a simplistic Hückel-like model and in ab-initio cal-
culations, triple bond cumulene systems can host helical orbitals. These helical
orbitals, when the system is brought out of equilibrium by applying a bias and
letting electrons flow through it, induce symmetric angular momentum direction
of the current with respect to the sign of the bias.

In the model system, we have shown that the operators of helicity and angular
momentum commute and that the helicity is a good proxy for the behaviour of
the angular momentum, indicating possibility of presence of angular momentum
based only on equilibrium orbital calculations.
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Figure 4.19: The dependence of generated angular momentum on the additional
angle ξ which rotates the last basis pair, effectively transforming θT → θT + ξ.
As expected, θT then only sets the start position of a cyclic pattern with average
zero angular momentum. The bias was chosen large enough to ensure transport
through all unoccupied angular momentum energy density peaks.

4.3 Gap Scaling in Sodium Clusters
In cluster based molecular conductance calculations[1], the extended molecule
includes part of the electrodes and is coupled to the rest of the electrodes via
self-energy, as explained in 3. But, the exact amount of the electrode that needs
to be included in the ab-initio calculation is a priori unknown. One expects
that sufficient part of the electrodes has been included in the calculation if the
properties of the junction are not changing with the electrode size. We would call
such calculation converged with respect to electrode size.

While such convergence calculations were done on the level of DFT [42], we
are not aware of such calculations at the level of evGW . Our contribution is
therefore calculations of electronic structure at the evGW level of metallic clus-
ters of different sizes. For the sake of computational simplicity, we chose the
sodium clusters as these have simple metallic character while containing only few
electrons. From the properties of electronic structure, we investigate the LUMO-
HOMO gap of the electrodes and energy level separation of clusters, as these are
known to influence the conductance significantly[42, 43, 44].

Furthermore, geometric perturbations are known to have significant effect on
the desired electronic structure properties [42]. We therefore calculate average
properties by choosing different random geometries of clusters with same number
of atoms. These ”cluster realisations” allow for systematic estimate of uncertainty
due to geometry perturbations of the finite clusters.

4.3.1 DFT Starting Point
A starting point for evGW calculation in our methodology is a DFT calcula-
tion. We can therefore also note the observed electronic structure properties for
comparison. We focus on the LUMO-HOMO gap of the cluster and the average
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Figure 4.20: Spectrum of chosen sodium clusters calculated in DFT is shown
around the LUMO-HOMO gap. Occupied quasiparticle energy levels are shown in
blue and unoccupied in red. With the increasing cluster volume, the density of the
states increases and the gap closes. In each cluster, symmetry degeneracies cause
the spectrum to not be equidistant in energy. In order to study the convergence
properties of the spectrum with cluster volume, we need to consider average values
derived from ensemble of clusters.

energy level spacing of valence orbitals. The precise definitions of the gap, the
average energy level spacing and their uncertainties is given in A.7. In short, the
gap in DFT is determined as the average of differences between the LUMO and
HOMO Kohn-Sham orbitals over available cluster realisations. The energy spac-
ing is determined as average difference between M consecutive highest occupied
or lowest unoccupied levels, where M is given as half the number of valence elec-
trons for sodium, i.e. for 2M sodium atoms, M levels are taken into the averaging
set. The systems are closed-shell - the orbitals are exactly pair occupied.

The Kohn-Sham spectrum of DFT calculation is shown in Fig. 4.20. The
shape of the clusters was chosen to be spherical, in order to minimize possible
influence of discrete symmetries present for example in pyramidal/cubic clusters -
these cause energy level separation, which pollutes the statistics of the electronic
structure. Examples of cluster geometries are given in Fig. 4.21.

All spherical clusters are fully geometrically optimised in the def2-TZVP basis
at the DFT level. For the behaviour of the electronic structure properties as
function of the basis set size and functional choice, see A.8, which also includes
information about the convergence criteria for the calculations. The resultant
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Figure 4.21: Several examples of spherical clusters of different volumes. More
realisations of the spherical clusters are present in the calculations, usually dif-
ferentiated by add-atom positions.

indicators of the electronic structure at the DFT level are summarized in Fig.
4.22.

The LUMO-HOMO gap scales with an exponent similar to scaling of occupied
energy level spacings. The scaling is proportional to 1/V , which is an expected
result from the random matrix theory [45]. On the other hand, the unoccupied
levels tend to converge slower.

4.3.2 Sodium Clusters in evGW
As correction to the DFT, evGW gives increased precision for the excited state
energies while not requiring unreasonable calculation cost. The electronic struc-
ture indicators of clusters geometrically optimised in DFT and recalculated with
evGW are summarized in Fig. 4.23

Clearly, the value of the LUMO-HOMO gap is significantly increased in evGW
and its scaling is much slower. Our claim is that this behaviour is caused by the
Coulombic repulsion of the extra charge localised on the cluster in the first ex-
cited state. To support this claim, we provide two comparisons - simple analytical
scaling argument and numerical Hartree-Fock calculation, which is known to in-
clude extra single electron repulsion across the LUMO-HOMO gap[25]. Both are
discussed below.

4.3.3 Charge on a Sphere - Scaling Analysis
Consider a sphere of radius R with homogeneous charge density

ρ = e
4
3πR

3 , (4.67)

i.e. single electron charge dispersed across the sphere volume. The energy due to
self-interaction of the charge density is given by Coulomb integral

U =
∫︂
d3r′

∫︂
d3r

ρ(r)ρ(r′)
4πϵ0|r − r′|

= e2

4πϵ0V 2

∫︂
d3r

∫︂
d3r′ 1

|r − r′|
, (4.68)
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Figure 4.22: Above is presented the average spacing between quasiparticle energy
levels for occupied valence orbitals (blue) and unoccupied conduction orbitals
(red) of sodium clusters. In green, the average LUMO-HOMO gap of the clusters
is shown. In both cases, the values reduce with cluster size, which is indicative of
more and more discrete states present in any chosen energy interval. The LUMO-
HOMO gap does not differ significantly in value nor in scaling from the spacing of
occupied orbitals. Unoccupied orbital spacings tend to scale slower than occupied
orbital spacings, but the value is overall smaller than for the occupied orbitals.
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Figure 4.23: The scaling of the average quasiparticle energy level spacing for occu-
pied and unoccupied orbitals of spherical sodium clusters in evGW and LUMO-
HOMO gap in the same approach. While the occupied level spacing scales at
speeds similar to DFT, the LUMO-HOMO gap scales significantly slower and
acquires larger value.
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where V = 4
3πR

3 is the volume of the sphere. The integrations run over the
volume of the sphere. For the inner integral, we introduce the spherical polar co-
ordinates with z axis along the r direction. Then, the magnitude of the difference
of the two position vectors is given only in terms of their respective magnitudes
and polar angle θ.

|r − r′| =
√︂
r2 + (r′)2 − 2rr′ cos(θ′) . (4.69)

Clearly, there is no dependence on azimuthal angle in either integration, therefore
we can write the parametrized integration as

U = πe2

ϵ0V 2

∫︂ R

0
r2dr

∫︂ π

0
sin θdθ

∫︂ R

0
(r′)2dr′

∫︂ π

0
sin(θ′)dθ′ 1√︂

r2 + (r′)2 − 2rr′ cos(θ′)
.

(4.70)

The innermost integration is carried out by substitution z = cos θ′, which leads
to integral∫︂ 1

−1
dz

1√︂
r2 + (r′)2 − 2rr′z

=
[︃−1
rr′

√︂
r2 + (r′)2 − 2rr′z

]︃1

−1
= (4.71)

= 1
rr′ (r + r′ − |r − r′|) . (4.72)

Since there is no dependence on the θ variable, the integration in θ is trivial and
results in an extra factor of 2 and we are left with double integration

U = 2πe2

ϵ0V 2

∫︂ R

0
rdr

∫︂ R

0
dr′r′(r + r′ − |r − r′|) . (4.73)

We eliminate the absolute value by splitting the inner integral into two parts∫︂ R

0
dr′r′(r + r′ − |r − r′|) =

∫︂ r

0
dr′r′(r + r′ − r + r′)+ (4.74)

+
∫︂ R

r
dr′r′(r + r′ − r′ + r) = 2

3r
3 +

[︂
r(r′)2

]︂R
r

= rR2 − 1
3r

3 . (4.75)

The outer integration therefore reads

U = 2πe2

ϵ0V 2

(︄∫︂ R

0
r2R2dr − 1

3

∫︂ R

0
r4dr

)︄
= 2πe2

ϵ0V 2

(︃1
3 − 1

15

)︃
R5 = 2e2

5ϵ0V
R2 , (4.76)

where we used V = 4
3πR

3. From this definition of V we can also see that this
interaction energy scales as U ∝ V 1/3. This supports our claim that the LUMO-
HOMO energy gap is increased by extra electron repulsion, since we observe the
same scaling of the gap.

4.3.4 Extra Interaction via Hartree-Fock Method
In the Hartree-Fock method, the many-body state of the interacting electron
system is approximated by a Slater determinant - an antisymmetric combination
of single particle states[25]. The Hamiltonian matrix - which is constructed in
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Figure 4.24: The average energy level spacing as produced by the Hartree-Fock
approach, together with the LUMO-HOMO gap. The LUMO-HOMO gap scales
approximately as V −1/3, where V is the volume of the spherical sodium cluster,
which is consistent with the charge on a sphere model. The occupied and unoc-
cupied gaps scale similarly as in DFT.

the atomic orbital basis by letting the basis become Slater determinant of basis
states - then acquires Hartree mean field term and Fock exchange term. Using
the same notation as [25] for closed shell Hartree-Fock calculation, we can write
the Hartree-Fock Hamiltonian as

HHF
ij = hij +

N/2∑︂
k

2Jk,ij −Kk,ij , (4.77)

where i, j are atomic basis indices, k are molecular orbital indices (molecular
orbitals are obtained by diagonalisation of the Hamiltonian - HF method needs
to be solved self-consistently), hij is the single particle part of the Hamiltonian
(kinetic and potential energies), Jk,ij is the Hartree repulsion felt by electron due
to occupied state k and Kk,ij is the Fock exchange energy of the electron due to
interaction with state k.

While for occupied levels, the electron always feels repulsion only from other
occupied levels, the unoccupied levels include repulsion from all occupied levels.
Therefore, across the LUMO-HOMO gap, the repulsion due to an additional
orbital should be present, which should scale in the same way as predicted by
our scaling argument. The LUMO-HOMO gap and energy level spacings for HF
calculations on the DFT geometrically optimized ensemble of clusters are shown
in Fig. 4.24.
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(a) Smaller sodium pyramid (b) Larger sodium pyramid

Figure 4.25: Local density of states (LDOS) on the carbon atom of methanethiol
adsorbed on pyramidal sodium electrode surface. The density is significantly
reduced when using Hartree-Focks spectrum and somewhat reduced when using
evGW spectrum.

4.3.5 Discussion and Cluster GW Outlook
From the exponent of power law that describes the LUMO-HOMO gap conver-
gence (gap decreases as V −1/3 with cluster volume in evGW ), we suspect that for
finite clusters, the Coulomb (Hartree) interaction term dominates the gap value
in evGW approximation for finite metallic clusters. In a realistic molecular break
junction setup, the clusters would be effectively infinite and the charging effect
of the electrodes would be significantly weaker. In order to account for this in a
cluster setup, a very large cluster has to be considered, such that the gap induced
on the electrodes is not the dominant gap in the system.

In order to show the influence of the electrode gap on the molecular proper-
ties, we also calculated local density of states (LDOS) for methanethiol (MTTL)
adsorbed on a pyramidal sodium cluster. In more detail, we calculated the DFT,
HF and evGW electronic structure of the pyramidal cluster with the adsorbed
molecule and then coupled the pyramidal cluster to reservoirs via model self-
energy as in (3.4). This approach is implemented in the AITRANSS package
mentioned earlier[20].

The LDOS is calculated for two cluster realisations of different sizes, as shown
in Fig. 4.25.

The local density of state is depleted by the effects of the repulsion. Our
conclusion is that while DFT systematically overestimates the conductance [3],
evGW in cluster approach may underestimate it if care is not taken to include
sufficient number of atoms of finite cluster electrodes.
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5. Conclusion and Outlook
In this work, we discussed the effects of the electronic structure of molecules
on their transport properties. In the first part, we have shown how the inter-
action with electrodes can induce atypicial conductances via hybridisation with
just parts of the molecule. In the second part, we investigated how the current
is spatially distributed in the molecule and how this might induce mechanical
response by the molecule, specifically in the form of rotation. Lastly, we inquired
about the possibility of improving the cluster based calculations via GW to more
accurately describe the electronic structure of the electrodes, however we found
that for small clusters, the charging energy on the metallic clusters might create
unphysical depletion of local density of states on the clusters, leading to artificial
decrease in conductance.

There are still many open questions in these problems, exemplifying the rich-
ness of the molecular electronics problems. In the first case, we might wonder
about the effect of other central metals, for example, vanadocene is known to
share some conductance properties with ferrocene[46]. What would be the effect
of yet another different metallic ion in place of the iron? In the second part, a
true dynamic treatment of the problem should yield description that discrimi-
nates between oscillatory and consistent rotation behaviour. In the last part, one
could instead of cluster based approximations use periodic boundary conditions.
But will this change lead to true elimination of the charging energy, or will this
just cause the charging energy to be reduced by effectively doubling the size of
the electrode pyramid?

We hope that the broadness of the topics researched in the field of molec-
ular electronics has been introduced to the reader, accenting the necessary col-
laboration of experimental results, numerical modelling and analytic theoretical
understanding of the systems. Our work supports this approach and we believe
that the community finds the results of this work interesting and the useful in its
endeavour to describe and predict the properties of molecules in junctions more
accurately.
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A. Attachments

A.1 Green’s Function Formalism
Green’s functions are defined here as propagators of single particle excitations
in (generally) many-body state systems. They are widely adopted due to their
prevalence in perturbation theory expansions of quantum many-body Hamiltoni-
ans. Throughout the text, we use mainly these 6 different Green’s functions[19]

Retarded Green’s Function is defined on a many body state characterised
by a density matrix ρ̂ as a matrix in single particle basis

GR
i,j(t, t′) = − i

ℏ
θ(t− t′) Tr

(︂
ρ̂
{︂
âi(t), â†

j(t′)
}︂)︂

= (A.1)

= − i

ℏ
θ(t− t′)

⟨︂{︂
âi(t), â†

j(t′)
}︂⟩︂

, (A.2)

where θ(t− t′) is the Heaviside step function, Tr marks the trace over all many-
body states, â(†)

i (t) is the annihilation (creation) operator for fermion in state
i, Heisenberg propagated to time t, {â, b̂} denotes the anticommutator of â and
b̂ and < . . . > represents a shorthand for the trace with density matrix, which
corresponds to the expectation value of the operator structure within.

Similarly, one can define the advanced Green’s function

GA
i,j(t, t′) = i

ℏ
θ(t′ − t)

⟨︂
{âi(t), â†

j(t′)}
⟩︂
. (A.3)

These Green’s functions are relevant for their relation to observable param-
eters. In the perturbation series, one often encounters also the following four
Green’s functions

Greater Green’s Function

G>
i,j(t, t′) = − i

ℏ
⟨︂
âi(t)â†

j(t′)
⟩︂
. (A.4)

Lesser Green’s Function

G<
i,j(t, t′) = i

ℏ
⟨︂
â†
i (t′)âj(t)

⟩︂
. (A.5)

Causal Green’s Function

Gc
i,j(t, t′) = − i

ℏ
⟨︂
T̂
[︂
âi(t)â†

j(t′)
]︂⟩︂

, (A.6)

where T̂ is the time ordering operator - for t′ > t, it swaps the creation and
annihilation operator and introduces a minus sign.

Anti-causal Green’s Function

Gc̄
i,j(t, t′) = − i

ℏ
⟨︂
T̂
[︂
âi(t)â†

j(t′)
]︂⟩︂

. (A.7)

Unless otherwise stated, the ”time loop”/Keldysh contour trajectory[19] for
the adiabatic application of the perturbing potential is used in the perturbative
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approach in this work. The complex contour ordering of the operators can be
recast as a coupled system of Dyson equations as(︄

Gc G<

G> Gc̄

)︄
=
(︄

gc g<

g> gc̄

)︄(︄
I +

(︄
Σc Σ<

Σ> Σc̄

)︄(︄
Gc G<

G> Gc̄

)︄)︄
, (A.8)

where g are the unperturbed Green’s function matrices, Σ are the self-energy
matrices[19, 1] and inner matrix multiplication also implies time convolution, i.e.

ΣcGc →
∫︂
dt′′Σc(t, t′′)GC(t′′, t′) .

A.1.1 Important Green’s Function Identities
From the definitions of Green’s functions, we can derive a number of useful iden-
tities which have further restrictions on number of free parameters in the Dyson
equation (A.8). By taking difference of (A.2) and (A.3), we get

GR
i,j(t, t′) −GA

i,j(t, t′) = − i

ℏ
⟨︂
θ(t− t′)âi(t)â†

j(t′) + θ(t− t′)â†
j(t′)âi(t)+

+θ(t′ − t)âi(t)â†
j(t′) + θ(t′ − t)â†

j(t′)âi(t)
⟩︂
,

GR(t, t′) − GA(t, t′) = G>(t, t′) − G<(t, t′) . (A.9)

Similarly, by taking a sum of the same pair of equations, we get

GR + GA = Gc + Gc̄ , (A.10)

where we left out the time indices. Finally, by taking difference of (A.6) and (A.5)
or (A.4) and evaluating the separate cases for time index ordering, we obtain

Gc − G< = GR , (A.11)
Gc − G> = GA . (A.12)

A.1.2 Green’s Functions of Free Particles
For a diagonal Hamiltonian of form

Ĥ =
∑︂
j

ϵj â
†
j âj , (A.13)

the Green’s functions can be determined explicitly. The retarded Green’s function
is given as

gRjk(t, t′) = − i

ℏ
θ(t− t′)

⟨︂{︂
âj(t), â†

k(t′)
}︂⟩︂

= − i

ℏ
θ(t− t′)

⟨︂{︂
âj(t− t′), â†

k(0)
}︂⟩︂

,

(A.14)

where we used the fact that the Hamiltonian is not explicitly dependent on time
and used lower case g to imply non-interacting Green’s function, as in [1]. Solving
the Schrödinger equation for âj leads to

∂âj
∂t

= i

ℏ
[︂
Ĥ, âj

]︂
(t) = i

ℏ
ϵj(−âj(t)) . (A.15)
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The solution is then

âj(t) = e− i
ℏ ϵjtâj(0) (A.16)

and the Green’s function is given by

gRjk(t, t′) = − i

ℏ
θ(t− t′)e− i

ℏ ϵj(t−t′)δjk . (A.17)

Similarly, we can obtain

gAjk = i

ℏ
θ(t′ − t)e− i

ℏ ϵj(t−t′)δjk (A.18)

and

g<jk = i

ℏ
e− i

ℏ ϵj(t−t′)
⟨︂
â†
j âk
⟩︂
. (A.19)

Since for the free Hamiltonian, the operator in the brackets above only has
diagonal elements [18], we can write the following identity (for the Fourier trans-
form of the lesser Green’s function)

g<(E) = (gA(E) − gR(E))f(E) , (A.20)

where f(E) is the Fermi-Dirac distribution on the equilibrium system.
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A.2 Determination of the Electrode Distance
For both the perpendicular and parallel geometry of the ferrocene MBJ, we re-
quired that the geometry of the junction is as close to being symmetric as possible.
This was not a necessary requirement for the parallel geometry, where the fer-
rocene molecule positions itself symmetrically for many electrode distances, but
for perpendicular geometry, the symmetric junction is only possible for electrodes
very close to each other (see Fig. A.1). Once we have a range of distances where
the junction is symmetric, we choose the distance which minimizes the energy of
the junction. Both of these results are shown in the figure below.

(a) Perpendicular (b) Parallel

Figure A.1: The energy dependence and junction geometry for different electrode-
iron distances for perpendicular (a) and parallel (b) geometries. The parallel
geometry has stable symmetric junction for all plotted values, illustration is pre-
sented in main text in Fig. 4.3a. Energies are calculated by DFT with pbe
functional in FHI-AIMS for perpendicular geometry and TURBOMOLE for par-
allel geometry.
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A.3 Convergence of TSaint Calculations
We increased the bulk unit cell to 2x1 supercell, increased the basis set size
from def2-SVP to def2-TZVP and increased the number of iterations used for the
determination of self-energy from 200 to 400. Furthermore, we employed both
trapezoidal rule and Simpson’s rule [48] for numerical spatial integration of the
current density. Results are summarized in Fig. A.2
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SVP (400 iter.) Trapez.

Figure A.2: While the basis size has some quantitative effect on the observed
angular momentum energy density, the qualitative features do not change. The
number of iterations and the integration scheme used have even weaker influence
on the resulting dependence. We conclude that def2-TZVP basis is sufficient for
our purposes.
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A.4 Trigonometric Series for Normalisation
The normalisation constant of the eigenvectors defined in (4.20) can be derived
as follows

1 = ⟨ϕ0
n,α|ϕ0

n,α⟩ = Z2
(︂
sin

(︂
nπ
N+1

)︂
v†
α sin

(︂
2nπ
N+1

)︂
v†
α ...

)︂
× (A.21)

×

⎛⎜⎜⎜⎝
sin

(︂
nπ
N+1

)︂
vα

sin
(︂

2nπ
N+1

)︂
vα

...

⎞⎟⎟⎟⎠ = Z2
N∑︂
k=1

sin2
(︄
knπ

N + 1

)︄
. (A.22)

We see that we are in need of analytic formula for series of trigonometric
functions. These are best derived by converting the trigonometric functions to
complex exponentials. For γ ̸= 0, we can derive

N∑︂
k=1

sin(kγ) = 1
2i

N∑︂
k=1

eikγ − e−ikγ = 1
2i

N−1∑︂
k=0

eiγeikγ − e−iγeikγ . (A.23)

Using the geometric series formula
N∑︂
k=1

sin(kγ) = 1
2ie

iγ 1 − eiγN

1 − eiγ
− 1

2ie
−iγ 1 − e−iγN

1 − e−iγ = (A.24)

= eiγeiγ
N
2 e−i γ

2

2i
e−iγN

2 − eiγ
N
2

e−i γ
2 − ei

γ
2

− e−iγe−iγN
2 ei

γ
2

2i
eiγ

N
2 − e−iγN

2

ei
γ
2 − e−i γ

2
= (A.25)

=
sin

(︂
N γ

2

)︂
sin

(︂
γ
2

)︂ sin
(︃

(N + 1)γ2

)︃
. (A.26)

Similarly, we can derive

N∑︂
k=1

cos(kγ) =
sin

(︂
N γ

2

)︂
sin

(︂
γ
2

)︂ cos
(︃

(N + 1)γ2

)︃
. (A.27)

Using (A.27) in (A.22) leads to

1 = Z2 1
2

N∑︂
k=1

(︄
1 − cos

(︄
2knπ
N + 1

)︄)︄
= Z2

2

⎛⎝N −
sin

(︂
Nnπ
N+1

)︂
sin

(︂
nπ
N+1

)︂ cos (nπ)
⎞⎠ . (A.28)

Here, we can use

sin
(︃
Nnπ

N + 1

)︃
= sin

(︄
(N + 1 − 1)nπ

N + 1

)︄
= (A.29)

= sin (nπ) cos
(︃

nπ

N + 1

)︃
− sin

(︃
nπ

N + 1

)︃
cos (nπ) = (A.30)

= (−1)n+1 sin
(︃

nπ

N + 1

)︃
. (A.31)

Similarly, we could derive

cos
(︃
Nnπ

N + 1

)︃
= (−1)n cos

(︃
nπ

N + 1

)︃
. (A.32)
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Therefore, the normalisation condition is

1 = Z2

2 (N + 1) , (A.33)

Z =
√︄

2
N + 1 . (A.34)

One can also check the orthogonality of the eigenstates for m ̸= n

⟨ϕ0
m,α|ϕ0

n,α⟩ = Z2
N∑︂
k=1

sin
(︄
kmπ

N + 1

)︄
sin

(︄
knπ

N + 1

)︄
= (A.35)

= Z2

2

N∑︂
k=1

cos
(︄
k(m− n)π
N + 1

)︄
− cos

(︄
k(m+ n)π
N + 1

)︄
= (A.36)

= Z2

2

⎛⎝sin
(︂
N(m−n)π
N+1

)︂
sin

(︂
(m−n)π
N+1

)︂ cos ((m− n)π) − (A.37)

−
sin

(︂
N(m+n)π
N+1

)︂
sin

(︂
(n+m)π
N+1

)︂ cos((m+ n)π)
⎞⎠ = 0 . (A.38)

A.4.1 Trigonometric Series for Helicity Matrix Elements
In the expression for helicity matrix elements, the following trigonometric series
are present

N∑︂
k=1

sin
(︄
k(n±m)π
N + 1

)︄
(A.39)

Applying (A.26) leads to

N∑︂
k=1

sin
(︄
k(n±m)π
N + 1

)︄
=

sin
(︂

(n±m)πN
2(N+1)

)︂
sin

(︂
(n±m)π
N+1

)︂ sin
(︄

(n±m)π
2

)︄
. (A.40)

The last sine is non-zero only for n±m odd. We can also change the sine in the
numerator

sin
(︄

(n±m)Nπ
2(N + 1)

)︄
= sin

(︄
(n±m)π

2

)︄
cos

(︄
(n±m)π
2(N + 1)

)︄
− (A.41)

− sin
(︄

(n±m)π
2(N + 1)

)︄
cos

(︄
(n±m)π

2

)︄
. (A.42)

For n±m odd, the cosine in the last term is always zero and hence we have, for
odd n±m

N∑︂
k=1

sin
(︄
k(n±m)π
N + 1

)︄
= cot

(︄
(n±m)π
2(N + 1)

)︄
sin2

(︃
(n±m)π2

)︃
= cot

(︄
(n±m)π
2(N + 1)

)︄
,

(A.43)
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since the square of the sine of (n±m)π/2 is always 1 for odd n±m. Therefore,
we have
N∑︂
k=1

(︄
sin

(︄
(n+m)π
N + 1

)︄
+ sin

(︄
(n−m)π
N + 1

)︄)︄
= cot

(︄
(n+m)π
2(N + 1)

)︄
+ cot

(︄
(n−m)π
2(N + 1)

)︄
(A.44)

for odd n±m and zero otherwise. This can be further simplified by recognizing

cot(γ + η) + cot(γ − η) = (cos γ cos η − sin γ sin η)(sin γ cos η − sin η cos γ)
(sin γ cos η + sin η cos γ)(sin γ cos η − sin η cos γ)+

(A.45)

+ (cos γ cos η + sin γ sin η)(sin γ cos η + sin η cos γ)
(sin γ cos η + sin η cos γ)(sin γ cos η − sin η cos γ) =

(A.46)

= 2 sin γ cos γ
sin2 γ cos2 η − sin2 η cos2 γ

= (A.47)

= sin(2γ)
(1 − cos2 γ) cos2 η − (1 − cos2 η) cos2 γ

= (A.48)

= 2 sin(2γ)
cos(2γ) − cos(2η) . (A.49)

Therefore

N∑︂
k=1

(︄
sin

(︄
(n+m)π
N + 1

)︄
+ sin

(︄
(n−m)π
N + 1

)︄)︄
=

2 sin
(︂

nπ
N+1

)︂
cos

(︂
nπ
N+1

)︂
− cos

(︂
mπ
N+1

)︂ . (A.50)

A.5 Removing Rotations of p-orbital Pairs
Assume we have a generalized version of the Hückel-type Hamiltonian

HR = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 R(θ2 − θ1) 0 0 ...
R(θ1 − θ2) 0 R(θ3 − θ2) 0 ...

0 R(θ2 − θ3) 0 R(θ4 − θ3) ...
... ... ... ... . . .
... ... 0 R(θN−1 − θN) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.51)

which corresponds to local rotation of each basis pair(︄
|xn⟩
|yn⟩

)︄
→ R(θn)

(︄
|xn⟩
|yn⟩

)︄
(A.52)

The unitary transformation

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R(−θ1) 0 0 ...
0 R(−θ2) 0 ...
0 0 R(−θ3) ...
... ... ... . . .
... 0 0 R(−θN)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.53)
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transforms the Hamiltonian to the aligned Hamiltonian given in (4.2)

U †HRU = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R(θ1) 0 0 ...
0 R(θ2) 0 ...
0 0 R(θ3) ...
... ... ... . . .
... 0 0 R(θN)

⎞⎟⎟⎟⎟⎟⎟⎟⎠× (A.54)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 R(θ2 − θ1) 0 ...
R(θ1 − θ2) 0 R(θ3 − θ2) ...

0 R(θ2 − θ3) 0 ...
... ... ... . . .
... 0 R(θN−1 − θN) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠× (A.55)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R(−θ1) 0 0 ...
0 R(−θ2) 0 ...
0 0 R(−θ3) ...
... ... ... . . .
... 0 0 R(−θN)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = (A.56)

= −t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R(θ1) 0 0 ...
0 R(θ2) 0 ...
0 0 R(θ3) ...
... ... ... . . .
... 0 0 R(θN)

⎞⎟⎟⎟⎟⎟⎟⎟⎠× (A.57)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 R(−θ1) 0 ...
R(−θ2) 0 R(−θ2) ...

0 R(−θ3) 0 ...
... ... ... . . .
... 0 R(−θN) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 ...
I 0 I ...
0 I 0 ...
... ... ... . . .
... 0 I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.58)

A.6 Diagonalizing the Perturbation Matrix
With polarisation vector basis

vx =
(︄

1
0

)︄
, vy =

(︄
0
1

)︄
, (A.59)

the matrix elements of V with same quantum number n states are given as (for
ξ, ξ′ ∈ {x, y})
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⟨ϕ0
n,ξ|V̂

′
|ϕ0
n,ξ′⟩ = Z2

(︂
sin

(︂
nπ
N+1

)︂
v†
ξ sin

(︂
2nπ
N+1

)︂
v†
ξ ... sin

(︂
Nnπ
N+1

)︂
v†
ξ

)︂
× (A.60)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin
(︂

nπ
N+1

)︂
ϵvξ′

0
...
0

sin
(︂
Nnπ
N+1

)︂
R(θT)ϵR(θT)†vξ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (A.61)

= Z2 sin2
(︃

nπ

N + 1

)︃ (︂
v†
ξϵvξ′ + v†

ξR(θT)ϵR(−θT)vξ′

)︂
, (A.62)

The second term in the bracket evaluates to

v†
ξ

(︄
cos(θT) − sin(θT)
sin(θT) cos(θT)

)︄(︄
0 0
0 ϵ

)︄
× (A.63)

×
(︄

cos(θT) sin(θT)
− sin(θT) cos(θT)

)︄
vξ′ = (A.64)

= ϵv†
ξ

(︄
sin2(θT) − sin(θT) cos(θT)

− sin(θT) cos(θT) cos2(θT)

)︄
vξ′ = (A.65)

= ϵ
(︂
(vξ)1(vξ′)1 sin2(θT)− (A.66)

− ((vξ)1(vξ′)2 + (vξ)2(vξ′)1) sin(θT) cos(θT)+ (A.67)
+ (vξ)2(vξ′)2 cos2 (θT)

)︂
. (A.68)

Therefore, for different combinations of basis vectors vξ, we have

⟨ϕ0
n,x|V̂ |ϕ0

n,x⟩ = ϵZ2 sin2
(︃

nπ

N + 1

)︃
sin2(θT) (A.69)

⟨ϕ0
n,x|V̂ |ϕ0

n,y⟩ = ϵZ2 sin2
(︃

nπ

N + 1

)︃
(− sin(θT) cos(θT)) = ⟨ϕ0

n,y|V̂ |ϕ0
n,x⟩ (A.70)

⟨ϕ0
n,y|V̂ |ϕ0

n,y⟩ = ϵZ2 sin2
(︃

nπ

N + 1

)︃ (︂
1 + cos2(θT)

)︂
(A.71)

A.6.1 Matrix Elements for Different Quantum Numbers
For different quantum numbers m ̸= n, the matrix elements of V can be derived
as

⟨ϕ0
m,ξ|V̂ |ϕ0

n,ξ′⟩ = Z2
(︂
sin

(︂
mπ
N+1

)︂
v†
ξ sin

(︂
2mπ
N+1

)︂
v†
ξ ...

)︂
× (A.72)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin
(︂

nπ
N+1

)︂
ϵvξ′

0
...
0

sin
(︂
Nnπ
N+1

)︂
R(θTϵR(θT)†vξ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.73)
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⟨ϕ0
m,ξ|V̂ |ϕ0

n,ξ′⟩ = ϵZ2 sin
(︃

nπ

N + 1

)︃
sin

(︃
mπ

N + 1

)︃
((vξ)2(vξ′)2+ (A.74)

+ (−1)m+n

ϵ
v†
ξR(θTϵR(θT)†vξ′

)︄
. (A.75)

Now, choosing the polarisation basis which diagonalizes the perturbation for
same quantum number (see (4.31)), we obtain

⟨ϕ0
m,ξ|V̂ |ϕ0

n,ξ′⟩ = ϵZ2 sin
(︃

nπ

N + 1

)︃
sin

(︃
mπ

N + 1

)︃
× (A.76)

×
(︄

cos2(θT/2) ((−1)m+n + 1) sin(θT/2) cos(θT/2) ((−1)m+n − 1)
sin(θT/2) cos(θT/2) ((−1)m+n − 1) sin2(θT/2) ((−1)m+n + 1)

)︄
.

(A.77)
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A.7 Cluster Averages
We expect that for the metallic clusters, energy levels around the Fermi energy
are described by combination of true uniform spacing and random error on these
spacings, i.e. energy level indexed by number n lies at

En,c = ϵ0 + n∆ + δn,c , (A.78)

where ϵ0 is some reference quasiparticle level, ∆ is the average level spacing and
δn,c is the random energy shift of the level n in cluster c, caused by various factors,
such as presence of unintended symmetries in the cluster geometry etc.

In our ensemble of clusters, clusters of the same size are present in multiple
realisations through the addition of extra atoms (add-atoms), which are meant to
break some of the unintended symmetries of the clusters. Therefore, we expect
that δn,c is different for different cluster realisations.

We model the energy shift δn,c as uncorrelated between different cluster real-
isations and between different levels. Therefore, each δn,c is treated as separate
realisation of some random variable δ.

The central question is how to determine ∆ and standard error on its estimate
based on different cluster realisations. One approach is to determine the average
spacing for a single cluster and then do averaging over different realisations, other
approach is to first determine average electronic structure for different cluster
realisations and only then move to level differences. In the following text, we
show that both approaches lead to the same results.

A.7.1 Mean and Variance of Energy Levels
Taking average energy difference for a single cluster gives us average

< ∆ >c = 1
M − 1

M−1∑︂
n=0

En+1,c − En,c = ∆ + 1
M − 1

M−1∑︂
n=0

δn+1,c − δn,c = (A.79)

= ∆ + 1
M − 1(δM,c − δ0,c) , (A.80)

where M is the number of energy levels of the same kind (occupied or unoccupied)
and c determines the specific cluster realisation. Averaging the result over the N
different cluster realisations leads to true average

< ∆ >= 1
N

N∑︂
c

< ∆ >c= ∆ + 1
N(M − 1)

N∑︂
c

δM,c − δ0,c . (A.81)

Swapping the order of the summation does not change the final sum over the
energy shifts - if we first summed over the different cluster realisations, we would
get average energy level placement

< En >= 1
N

N∑︂
c

En,c = ϵ0 + n∆ + 1
N

∑︂
c

δn,c . (A.82)
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Now, averaging over the different energy levels leads to the same final expression

1
M − 1

M−1∑︂
n=0

< En+1 > − < En > = ∆+ (A.83)

+ 1
N(M − 1)

N∑︂
c

M−1∑︂
n=0

δn+1,c − δn,c =< ∆ > .

(A.84)

The standard error σ(∆) is then determined from the variance as determined
on the whole ensemble of clusters + levels. The variance of the spacing ∆ is
determined as

var(∆) = 1
N(M − 1)

N∑︂
c

M−1∑︂
n=0

(En+1,c − En,c− < ∆ >)2 (A.85)

and so the standard error

σ(∆) =

⌜⃓⃓⎷ var(∆)
N(M − 1) . (A.86)
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A.8 Convergence in Cluster Calculations
The TURBOMOLE DFT and HF calculations converge to relative error in to-
tal energy of 10−7, i.e. for total energy E0 and change in energy ∆E between
iterations, the convergence criterion is⃓⃓⃓⃓

⃓∆EE0

⃓⃓⃓⃓
⃓ ≤ 10−7 (A.87)

The geometrical relaxation is carried out so that the elements of the gradient
of total energy with respect to the atomic positions of ions are less than 0.001a.u.
and the relative energy change in the geometric optimisation steps is less than
10−6.

The effect of basis set size is shown in Fig. A.3 for DFT calculations, in Fig.
A.4 for evGW calculations and in Fig. A.5 for HF calculations.

The effect of different exchange-correlation functional is shown in Fig. A.6.
The evGW calculation starting from the DFT calculation with given functional
can also show some functional dependence, but it is weak, as shown in Fig. A.7.

A.8.1 Basis Size

Figure A.3: Electronic structure indicators for different basis set sizes from DFT.
The average values are essentially indistinguishable between the smaller and
larger basis set.
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Figure A.4: Electronic structure indicators for different basis set sizes from
evGW . The average values are essentially indistinguishable between the smaller
and larger basis set.

Figure A.5: Electronic structure indicators for different basis set sizes from HF.
The unoccupied states show some unconverged behaviour, but the gap and the
occupied states are converged for given basis set sizes.
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A.8.2 Functional

Figure A.6: Electronic structure indicators for different exchange-correlation
functionals in DFT. The average values are essentially indistinguishable for dif-
ferent functionals.

Figure A.7: Electronic structure indicators for different exchange-correlation
functionals in evGW . The average values are essentially indistinguishable for
different functionals.
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