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Introduction
Several practical problems in real life situations have motivated studying of label-
ings of graphs. One such labeling is the distance magic labeling, which in some
sense is a generalization of magic squares. Formally, a distance magic labeling
of a graph G = (V, E) is a bijection f : V → {1, 2 . . . , |V |} such that there is a
constant m such that for each vertex v ∈ V , ∑︁u∈N(v) f(u) = m. A survey of these
problems conducted by Arumugam et al. [1] notes that the problem of existence
of a distance magic labelings is wide and this field is ununified, with many papers
using different terminology and sometimes yielding the same results. To clean up
some results in this field, we establish a new framework for deducing the existence
of distance magic labelings on the class of Cayley graphs of Zn

2 .

One of the most common examples of distance magic labelings is in the design
of equal-sized incomplete fair tournaments [1]. Consider the problem of schedul-
ing a one-divisional sports tournament of n contestants where the skill level of
each contestant is known in advance by a ranking from 1 to n, and there are
constraints on the amount of time in which the tournament can take place. Fur-
thermore, we wish for each contestant to face the same number of r opponents
throughout the tournament, and for the total strength of opponents which a con-
testant v faces is a constant m. In this manner, the tournament is deemed fair.
The problem of constructing the format of such a tournament can be resolved
in the following manner. Let us define an r-regular graph G as the representa-
tion of the tournament, with each vertex v representing a contestant, and each
neighbourhood N(v) of v representing the set of r opponents of v. Finding a
tournament format which satisfies these constraints is thus equivalent to finding
a distance magic labeling f of graph G, where f(v) is the strength of v.

The motivation for analyzing Cayley graphs of Zn
2 comes from the most well-

studied subclass of this, the hypercube Qn. The hypercube is a well-studied
structure in multiple areas of software and hardware design. Its properties of
symmetry and recursiveness give it a desirable structure to work with. Further-
more, the natural modelling of a hypercube by binary strings under bit flips gives
an effictive base to perform a variety of computations. One such example is that
if parallel processing by an arrangement of 2n single processors into a hypercube
structure, called a hypercube interconnection scheme. By connecting each pro-
cessor to its n neighbours, problems such as routing have efficient algorithms.

A distance magic labeling on a hypercube interconnection scheme can be com-
pared to how to distribute tasks across individual processors, where each task has
a known level of computational difficulty or priority. By ensuring that the sum
of severity of each task on a given neighbourhood of each processor is constant,
the tasks are distributed such that no collection of processors with a common
neighbour receives too many “difficult” tasks, thus preventing parts of the net-
work resulting in a bottleneck. Each collection is a set of processors (vertices)
which share a common neighbour. We study a related way of distributing such
tasks by redefining what consitutes a collection of processors. This is done via
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an application of Cayley graphs of Zn
2 with different generators to alter the edge

structure of the hypercube network.

Some results on distance magic labelings of hypercube-like graphs have re-
cently been discovered. Results by Kang et al. [2] have proven the existence of
a distance magic labeling on the half cube, and results by Tian et al. [3] have
proven the existence of a distance magic labeling of the folded half cube. These
results use a different representation of the label set in the binary form, and study
bijections from Zn

2 to Zn
2 . This formulation of the label set gives us a nice prop-

erty, the notion of neighbour balance first described by Gregor and Kovář [4]. A
bijection from Zn

2 to Zn
2 is said to be neighbour balanced if for each vertex u of Qn,

and for each coordinate i ∈ [n], the number of neighbours of u which contain the
entry 0 at coordinate i is equal to the number of neighbours of u which contain
the entry 1 at coordinate i. This was used to prove the conditions of n in which
a distance magic labelings of Qn exists. Neighbour balance is a key component
of our developments, as we extend this definition to include all Cayley graphs of
Zn

2 .

We now describe the structure of this thesis. In the next chapter we introduce
some notation related to graphs, groups, linear algebra, and hypercubes to give
us the proper tools to develop the aformentioned new framework of this thesis.
In Chapter 2, we discuss distance magic labelings on Qn as a necessary step to-
wards the generalized new framework. The new framework is then derived. In
Chapter 3, we reprove some known results of hypercube-like graphs using our
new framework, which we reformulate as Cayley graphs of Zn

2 . In Chapter 4, we
introduce a new notion of component-wise distance magic labelings, a general-
ization of distance magic labelings which have a natural formulation for Cayley
graph of Zn

2 .
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1. Preliminaries

1.1 Graph Theory
We recall some relevant definitions and notations from graph theory. To gain
familiarity with these concepts, we recommend the textbook Algebraic Graph
Theory by Godsil and Royle [5].

For an undirected graph G, let V (G) be the vertex set of G, and E(G) be the
edge set of G. The distance between two vertices u and v is the length of the
shortest path between u and v. The diameter of a graph G, denoted by diam(G),
is the largest distance between any two vertices in G. A graph G is said to be
r-regular if the degree of each vertex is exactly r. A vertex u ∈ V (G) has a
self loop if there is an edge from u to itself.

The neighbourhood of a vertex u, denoted by N(u), is the set of all vertices v
such that uv is an edge of G. Clearly, all vertices v in the neighbourhood of u are
of distance exactly one. This concept can therefore be extended to a D-distance
neighbourhood ND(v), defined as the set of vertices v of distance d ∈ D from
u, where D ⊆ {1, 2, . . . , diam(G)}. Note that both of these definitions do not
include the vertex u itself. If u is included, we speak about the closed neighbour-
hood and closed D-distance neighbourhood of u, denoted by N [u] and ND[u],
respectively. Equivalently, the closed neighbourhood of u is equal to the neigh-
bourhood of u if u has a self loop. By altering the edge structure of a graph G
such that every u becomes adjacent to its D-distance neighbourhood (and exist-
ing edges are removed), we obtain the D-distance graph of G.

A graph H is said to be an induced subgraph of G if and only if H is obtained
exclusively by the deletion of vertices of V (G), along with the deletion of incident
edges.

A graph G is bipartite if there is a partition of V (G) into two classes, such that
for any two vertices u and v in a class, there is no edge between them. By taking
the {2}-distance graph of a bipartite graph G, two components are yielded, with
each component consisting of vertices of one partition classes. Each component
is called the halved graph of G.

Graph theory is closely related to linear algebra through the study of graph
spectra. Let AG be the adjacency matrix of G. The spectrum of G is then defined
to be the set of eigenvalues λ1, λ2, . . . , λn of AG.

An automorphism on a graph G is a permutation π which acts on vertices of
G such that if uv is an edge of G, then π(u)π(v) is an edge of G. That is, vertices
of G are permuted in a way such that edges are preserved. We define the group
of all automorphisms on a graph G as AUT (G), with the group action being the
usual composition of permutations. A graph G is said to be vertex-transitive if
AUT (G) acts transitively. That is, for any two vertices u, v of G, there exists an
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automorphism that maps u to v.

1.2 Group Theory and Cayley Graphs
It is assumed that the reader has elementary knowledge of group theory.

Let (Γ, ·,−1 , e) denote a group with identity element e, and binary operation
(·), where an inverse of an element a is denoted by a−1. Informally, we will simply
refer to (Γ, ·,−1 , e) by Γ. A subset S ⊆ Γ is said to be a generating set of Γ if and
only if every element of Γ can be composed by elements of S. That is, Γ = ⟨S⟩.

Given a group Γ and a subset S ⊆ Γ, the Cayley graph Cay(Γ, S) is obtained
from G and S in the following way:

• the vertices of Cay(Γ, S) are all elements of Γ,

• there is a directed edge (u, v) in E(Cay(Γ, S)) if and only if uv−1 ∈ S.

Note that if S is closed under inverses, then it is more straightforward to
consider Cay(Γ, S) as an undirected graph. Furthermore, Cay(Γ, S) is connected
if and only if S is a generating set. We also assume that the identity element e
may be in S. If so, then each vertex of Cay(Γ, S) has a self loop.

Furthermore, all Cayley graphs are vertex-transitive. Thus all connected com-
ponents of Cay(Γ, S) are isomorphic.

(123) (132)

(12)

(23) (13)

id

Figure 1.1: Example of a Cayley graph of the symmetric group S3, with the form
Cay (S3, {(12), (123)}).

We now recall the notion of direct products of two groups (Γ, ·Γ) and (∆, ·∆),
denoted by Γ × ∆. The element set of Γ × ∆ is {(g, h) | g ∈ Γ, h ∈ ∆}, and a new
binary operation (·Γ×∆) is characterized by (g1, h1)·Γ×∆(g2, h2) = (g1 ·Γg2, h1 ·∆h2)
for every g1, g2 ∈ Γ and h1, h2 ∈ ∆. It follows that the direct product of two
groups follows the group axioms, and therefore is also a group.
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While Cayley graphs can be defined on any group, we focus on the powers of
the cyclic group Z2. Z2 is the simplest nontrivial group, and consists solely of
elements {0, 1}, with the group operation being addition mod two (denoted by
⊕), and the identity element 0. The inverse of each element is then clearly the
element itself.

Taking the n-fold direct product Z2 × Z2 × · · · × Z2, we obtain the group Zn
2

which is of particular importance. Namely, each element u of Zn
2 is a tuple from

{0, 1}n, with identity element (0, 0, . . . , 0). The group operation ⊕ acts on each
index independently. In other words, this is the xor operation on binary strings
of length n. Using this operation is analogous to bit flipping, where flipping a bit
ui for some element u and index i ∈ [n] is the act of changing ui to its opposite
atomic value of 0 or 1.

We distinguish some interesting elements of Zn
2 . For each i ∈ [n], we define

ei as the element consisting of 0 in each index aside from the index i, consisting
of 1. Any element u = v ⊕ ei is obtained by flipping bit i of v. Likewise, we
also define the element 1 as (1, 1, . . . , 1). Any element u = v ⊕ 1 is obtained by
flipping every bit of v.

We define the translation of a subset A ⊆ Zn
2 by a constant c by A ⊕ c :=

{a ⊕ c | a ∈ A}.

1.3 Linear Algebra
We use the notation of a matrix A with entries aij at row i and column j.

Matrices can be written in the block form with each block consisting of a sub-
matrix A′ of A. Simple block matrices for our purposes are the constant blocks
1 of 1’s, and 0 of 0’s, along with the identity matrix I.

For a matrix A, the set of eigenvalues of A is a set of scalars λ1, λ2, . . . , λn

such that each λi has a corresponding vector xT
i (called an eigenvector) such that

AxT
i = λix

T
i .

We work with matrices over the field Z2. For a binary matrix A, we say that
A is balanced if and only if the number of columns k of A is even, and each row
ai has exactly k

2 1’s.

When working with a matrix A, we are often interested in performing elemen-
tary row operations on A. These operations are (for rows Ri, Rj):

1. row switching, Ri ↔ Rj

2. row multiplication by a scalar k, kRi → Ri

3. row addition, Ri + kRj → Ri

These operations correspond to multiplication of A on the left by a correspond-
ing row operation matrix. These matrices are well defined for each operation. In

6



the following matrices, if not shown otherwise, each entry is 0.

The row switching operation matrix with rows i and j switched is obtained
by swapping row i and j in the identity matrix.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Likewise, row i multiplication by k is obtained by multiplying A by the identity

matrix with the i-th diagonal entry replaced with k.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
k

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Lastly, the addition of k times row i to row j is obtained by multiplying A by

the altered identity matrix with aij = k.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1 k
. . .

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that when working over Zn

2 , the only nontrivial row additions occur for
k = 1, and row multiplication is not of concern.

The other aspect of linear algebra we will use is that of vector spaces. For a
given vector space V , we define the basis of V to be a set of linearly independent
vectors B = {b1, b2, . . . , bd} such that every element v ∈ V can be written as a
linear combination of vectors of B. The minimum such size d of B is called the
dimension of V .
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This formulation of vector spaces has a natural application when working over
the vector space of elements of the field Zn

2 . The standard basis of Zn
2 is naturally

defined as the set {e1, e2, . . . , en}. Furthermore, a subspace C of Zn
2 of dimension

d can be represented by a (d × n) matrix S where the rows of S span C. That is,
C is the row space of S. From the view of coding theory, C is a linear code over
Z2 of dimension d [6]. The orthogonal complement of C is defined as the set of
all elements u ∈ Zn

2 such that for every element c ∈ C, cuT = 0. The dimension
of the orthogonal complement is n − d.

1.4 Hypercubes
Definition 1. Let n be a natural number. The hypercube of dimension n, denoted
by Qn is the graph with vertices defined by the set of all binary strings Zn

2 =
{0, 1}n. Let {e1, e2, . . . , en} be the standard basis of Zn

2 . Then an edge of Qn

occurs between vertices u and v whenever u = v ⊕ ei for some i ∈ [n]

Note that the Hamming distance dH(u, v), the number of bits in which two
vertices u and v differ, is the shortest distance between u and v in Qn. Further-
more, if all n bits between u and v differ, i.e. u and v are of distance n, then u
and v are said to be antipodal.

We define the size of a vertex u by |u| := |{i ∈ [n] | ui = 1}|. This property
of vertices of Qn induces bipartition on Qn based on the parity of size. This
follows from the observation that each vertex u ∈ V (Qn) with an even size is only
adjacent to vertices with odd size, and vice versa.

A useful observation about Qn is that the subgraph induced by fixing any bit
i ∈ [n] is a hypercube of dimension n − 1. This is referred to as a subcube of
dimension n − 1 of Qn. In general, this process can be recursively repeated to
show that Qn contains all subcubes of dimension less than n. Specifically, Qn has(︂

n
n−k

)︂
2n−k subcubes of dimension k, obtained by fixing n − k bits as either 0 or

1, and thus the remaining k bits form Qk.

For our purpose, it will be useful to have an equivalent definition of Qn, de-
fined as a Cayley graph on Zn

2 . That is, Qn = Cay(Zn
2 , {e1, e2, . . . , en}), under the

group operation (⊕). Since each element of Z2 is its own inverse, each element
of Zn

2 is also its own inverse. Therefore, each edge of Cay(Zn
2 , {e1, e2, . . . , en}) is

undirected.

Using the Cayley graph definition, we can introduce the notion of hypercube-
like graphs, with altered edge structure, namely folded cubes, half cubes, and
folded half cubes.

Definition 2. The folded n-cube FQn−1 is the graph with the vertex set Zn−1
2 ,

and vertices u and v are adjacent whenever u = v ⊕ ei for some i ∈ [n − 1] or
u = v ⊕ 1.

Equivalently, we can define FQn−1 as a Cayley graph:

FQn−1 = Cay(Zn−1
2 , {ei | i ∈ [n − 1]} ∪ {1}).

8



On appearance, it may be strange why we work over Zn−1
2 instead of Zn

2 , but
there is a valid reasoning behind this. We define the gluing of two vertices u and
v as the merging of u and v into a single vertex w = {u, v}. The neighbourhood
of w is then defined as the union of N(u) and N(v). We claim that FQn−1 can be
alternatively defined in terms of gluing antipodal vertices of Qn. Clearly, there
are 2n−1 pairs of such vertices to glue, and the neighbourhood of each pair of
glued vertices {u, v} consists of all other pairs of glued vertices {s, t} such that
dH(u, s) = 1 or dH(u, s) = n − 1. Thus the generating set of FQn−1 is the set of
all vectors ei of size 1, and the vector 1 of size n − 1.

Q4 FQ3 Q3

Figure 1.2: The folded 4-cube FQ3 obtained by gluing of Q4 or by additional
edges to Q3.

Definition 3. The half cube 1
2Qn is the component of the halved graph of Qn,

with the vertex set consisting of even size vertices of Zn
2 , and vertices u and v are

adjacent whenever dH(u, v) = 2.

Equivalently,

1
2Qn = Cay({u ∈ Zn

2 | |u| ≡ 0 (mod 2)}, {ei ⊕ ej | i, j ∈ [n], i ̸= j}).

Note that the halved graph of Qn consists of two isomorphic components, on
the set of all even size vertices, and on the set of all odd size vertices. In some
scenarios, it is not sufficient to exclude half of all binary strings of length n. Thus
if we want to work over both components (denoted 1

2Q′
n), we have the Cayley

graph formulation

1
2Q′

n = Cay(Zn
2 , {ei ⊕ ej | i, j ∈ [n], i ̸= j}).

Definition 4. The folded half n-cube, denoted 1
2FQn−1 (where n is even) is the

graph with the vertex set {u ∈ Zn−1
2 | |u| ≡ 0 (mod 2)}, and vertices u and v are

adjacent whenever dH(u, v) = 2 or dH(u, v) = n − 2.

Equivalently,

1
2FQn−1 = Cay({u ∈ Zn−1

2 | |u| ≡ 0 (mod 2)},{ei ⊕ ej | i, j ∈ [n − 1], i ̸= j}

∪ {1 ⊕ ei | i ∈ [n − 1]}).
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Figure 1.3: A single component of the half cube 1
2Q3.

It is clear to see that the folded half cube can be obtained from Qn by first taking
the folded cube FQn−1 via the method of gluing antipodal vertices, and then
taking the halved graph of the result (on the even size vertices). Similarly to the
half cube, we can define a generalization of the folded half cube such that every
vertex of Zn−1

2 is included, and thus we include both components. We denote this
Cayley graph by 1

2FQ′
n−1, which has the formulation

1
2FQ′

n−1 = Cay(Zn−1
2 , {ei ⊕ ej | i, j ∈ [n − 1], i ̸= j} ∪ {1 ⊕ ei | i ∈ [n − 1]}).
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2. Distance Magic Labelings on
Cayley Graphs of Zn

2

2.1 Distance Magic Labelings
A distance magic labeling is in some sense a type of graph labeling inspired by
magic squares.
Definition 5. Let G = (V, E) be a simple, undirected graph. A bijection f : V →
{1, 2, . . . , |V |} is a distance magic labeling if there exists a constant m such that
for every vertex v, ∑︂

u∈N(v)
f(u) = m.

This definition can be generalized to a D-distance magic labeling, in which
for a subset D ⊆ {1, . . . , diam(G)}, the constant m is obtained over the D-
distance neighbourhood of every vertex v. That is, a bijective mapping f : V →
{1, 2, . . . , |V |} is a D-distance magic labeling if for every vertex v,∑︂

u∈ND(v)
f(u) = m.

A slight variation of distance magic labelings are those of closed distance magic
labelings, where label f(v) is included in the neighbourhood sum. That is, a
bijective mapping f : V → {1, 2, . . . , |V |} is a closed D-distance magic labeling
if for every vertex v, ∑︂

u∈ND[v]
f(u) = m.

5

3 4 1

2

m = 10

1

2

3

4

5

6

7

m = 14

Figure 2.1: Example of a distance magic labeling (left) and a closed distance
magic labeling (right).

A property of distance magic labelings that is not immediately obvious is
the uniqueness of the magic constant m. This is obtained from a relation to a
fractional total domination function.
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Definition 6. Given a graph G = (V, E), a function g : V → [0, 1] is a fractional
total domination function in G if for every vertex v,∑︂

u∈N(v)
g(v) ≥ 1.

The size of a total domination function g is defined by |g| := ∑︁
v∈V g(v).

The concept of fractional total domination functions gives the fractional total
domination number as follows.

Definition 7. The fractional total domination number of a graph G, denoted by
γgt(G), is the minimum size of g over all fractional total domination functions g
of G.

Theorem 1 ([7]). If a graph G with n vertices admits a distance magic labeling
with magic constant m, then m = n(n+1)

γgt (G) .

As a corollary, it is clear to see that since m has an explicit formula, then by
the uniqueness of γgt(G), m is unique.

It is an interesting question to ask which graphs can have a distance magic
labeling. An approach to this question turns to spectral graph theory. If a regular
graph has a distance magic labeling, then the following property holds.

Proposition 2 ([8]). If G is a regular graph with a distance magic labeling, then
0 is in the spectrum of G. Similarly, if G is a regular graph with a closed distance
magic labeling, then −1 is in the spectrum of G.

We present a rephrased proof originally given in [8] to illustrate the relation
between distance magic labelings and algebraic methods.

Proof. Let G be an r-regular graph with the vertex set {v1, v2 . . . , v|V |} and adja-
cency matrix AG, and let f be a distance magic labeling represented as a vector
(f(v1), f(v2), . . . , f(v|V |)). Since the neighbourhood size is exactly r for each ver-
tex v of G, the average contribution of each neighbour u of v to ∑︁u∈N(v) f(u) is
exactly m

r
. Note that this contribution is constant for any neighbourhood in which

u is included. Therefore the total sum of all labels is ∑︁v∈V (G) f(v) = ∑︁
v∈V (G)

m
r

.
Thus in the matrix multiplication form,

AGfT = m1 = AGgT

where g = (m
r

, m
r

, . . . , m
r

) ∈ Rn. This implies that AG(fT − gT ) = 0, so 0 is an
eigenvalue of AG. Similarly, if f̂ is a closed distance magic labeling of G with
magic constant m̂, then

(AG + I)f̂T = m1 = (AG + I)ĝT

where ĝ = ( m
r+1 , m

r+1 , . . . , m
r+1) ∈ Rn. Thus (AG + I)(f̂T

− ĝT ) = 0, so −1 is an
eigenvalue of AG.
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Note that if G is r-regular and f is a distance magic labeling, we can define
a bijection f ′ : V → {1 + c, 2 + c, . . . , |V | + c} such that for every vertex v,
m′ = ∑︁

u∈ND(v) f(u) = m + rc by taking f ′(u) = f(u) + c. Since m can easily be
deduced from f ′, we say that f ′ is also a distance magic labeling of G with shifted
labels by c. For example, if the labels of G are shifted by −1, then m′ = r(|V |−1)

2 .
We now focus on distance magic labelings of graphs defined on the same vertex

set as the hypercube. Recall the uniqueness of the magic constant m, and that we
can shift values of a distance magic labeling in a regular graph by −1. Since Qn

is n-regular, then clearly if Qn has a distance magic labeling where the (shifted)
magic constant is m = n(2n−1)

2 .

2.2 Neighbour Balance
Gregor and Kovář [4] first devised a method on how to obtain a magic labeling
on hypercubes. This is the notion of a neighbour-balanced mapping as follows.

Definition 8. For a given subset A ⊆ Zn
2 , an index i ∈ [n], and b ∈ Z2 let

Ab
i = {(u1, ..., un) ∈ A | ui = b}. We say that A is balanced if |A0

i | = |A1
i | for

every index i. That is, splitting A across any dimension i results in a partition
into sets of equal sizes.

Note that translation of a balanced set A by a constant vector has no effect
on balance.

Definition 9. A bijection f : Zn
2 → Zn

2 is said to be neighbour-balanced if the
set L(u) = {f(v) | v ∈ N(u)} = {f(u⊕ei) | i ∈ [n]} is balanced for every u ∈ Zn

2 .

We now discuss distance magic labelings as mapping vertices of Qn to labels in
their standard binary representation. Each neighbourhood sum is thus obtained
through regular addition of binary strings. Together with the bijectivity of f , the
neighbour balance property yields a distance magic labelling.

Proposition 3 ([4]). Every neighbour-balanced f : Zn
2 → Zn

2 is a distance magic
labeling of Qn.

Proof. Recall that Qn is n-regular. Thus a bijection which maps vertices to
{0, 1, . . . , 2n − 1} is eligible to be a distance magic labeling. Now, consider f as a
neighbour-balanced function. Then for every vertex u in Zn

2 , the neighbourhood
of u is exactly the set N(u) = {u ⊕ ei | i ∈ [n]}. Since f is neighbour-balanced,
the neighbourhood of u has an equal number of labels from Zn

2 where bit i is
equal to 1 as where bit i is equal to 0. Thus the contribution of all labels of the
neighbourhood of u, L(u) with a fixed bit i equal to 1 to the total sum of labels
is |L1

i |2n−i. Since Qn is n-regular, the size of a balanced partition of L(u) along
a fixed bit i is n

2 . Therefore,
∑︂

v∈N(u)
f(v) =

∑︂
i∈[n]

f(u ⊕ ei) =
∑︂
i∈[n]

|L1
i |2n−i =

∑︂
i∈[n]

n

2 2n−i = m.

13



In practice, since we are working exclusively in the group Zn
2 for both vertices

and labels, it is convenient to construct a neighbour-balanced function f by a n×n
invertible matrix M whose columns form a balanced set C = {c1, c2, . . . , cn}. Let
f be defined by f(u) := MuT , where MuT is computed over Z2. This method
results in the neighbour-balance property of f since for any vertex u of Qn and
index i ∈ [n],

f(u ⊕ ei) = f(u) ⊕ f(ei) = f(u) ⊕ ci.

Therefore for every vertex u, the set L(u) = C ⊕ f(u) is a translation of a
balanced set, and therefore is also balanced. The invertibility of M ensures that
f is a bijective function. From this construction of f , we obtain the following.

Theorem 4 ([4]). A neighbour-balanced mapping f : Z2 → Z2 exists for every
n ≡ 2 (mod 4).

Proof. Assume that n = 4p + 2 for some integer p. Then we can construct a
matrix M such that mij = 1 if and only if

i = j or (i ≤ 2p + 2 and j > 2p + 2) or (i > 2p + 2 and j ≤ 2p)
This gives M in the block representation

M =

⎛⎜⎝I 0 1
0 I 1
1 0 I

⎞⎟⎠
with block sizes (2p, 2, 2p) × (2p, 2, 2p). The columns of M form a balanced set,
since for the number of entries equal to 1 in the first block row is 1+0+2p = 4p+2

2 .
Likewise, the number of entries equal to 1 in the second row is 0 + 1 + 2p = 4p+2

2 ,
and in the third row it is 2p + 0 + 1 = 4p+2

2 . The invertibility of M is also
obvious, since M can be transformed into an upper triangular matrix by Gaussian
elimination on the bottom left block.

In fact, it was proven by Fronček et al. that Qn does not have any distance
magic labeling if n ̸≡ 2 (mod 4) [4]. We omit this proof as it does not fall under
our framework.

2.3 New Framework
We now extend this framework of obtaining a neighbour-balanced mapping to
all Cayley graphs of Zn

2 . Let S = {s1, s2, . . . , sk} be a subset of Zn
2 , inducing

a Cayley graph Cay(Zn
2 , S). Note that S defines a neighbourhood of a vertex

u ∈ Zn
2 by N(u) = {u ⊕ si | i ∈ [k]}.

The definition of a neighbour-balanced function f is then altered in the fol-
lowing manner. A bijection f : Zn

2 → Zn
2 is neighbour-balanced (with respect to

S) if the set

L(u) = {f(v) | v ∈ N(u)} = {f(u ⊕ si) | i ∈ [k]}

is balanced for every vertex u.

14



Assume that f is defined by the f(u) = MuT over Z2, where M is an invertible
matrix over Z2. Then we obtain that for each vertex u,

f(u ⊕ si) = f(u) ⊕ f(si) = f(u) ⊕ MsT
i .

Therefore, putting the vectors of S into matrix form as columns, i.e. S =
(sT

1 , sT
2 , . . . , sT

k ), we obtain that f is neighbour-balanced if and only if MS =
(MsT

1 , MsT
2 , . . . , MsT

k ) over Zn
2 is balanced, i.e. the number of 1s and 0s in each

row is the same (in fact, this number is k
2 ).

Schematically, by taking the inner product over Zn
2 , and the outer product

over Z, we obtain

(MS)1T =

⎛⎜⎜⎝
k
2...
k
2

⎞⎟⎟⎠ .

From this construction, a natural question to ask is whether such an invert-
ible matrix M exists for a matrix S such that MS over Zn

2 is balanced. Such
existence would be sufficient for neighbour-balanced labeling with respect to S,
and therefore it is a sufficient condition for Cay(Zn

2 , S) to have a distance magic
labeling.

2.4 Method of Row Balancing
We recall linear elementary matrix operations of swapping rows and adding a
combination of rows to a row in a matrix A. Such operations correspond to
multiplication of A by an invertible matrix A′ on the left. Therefore, given the
matrix S generating the Cayley graph Cay(Zn

2 , S), if an invertible matrix M
exists such that MS is balanced, it can be obtained by the product of all ma-
trices corresponding to elementary operations M1, M2, . . . , Mr on S that result
in a balanced matrix MS. That is, if Mi corresponds to the ith operation, then
M = MrMr−1 · · · M1.

Consider for example the hypercube Qn as a Cayley graph. Recall that the
generating set of Qn is the set of basis vectors {e1, e2, . . . , en}, thus the matrix S
is the identity matrix I. For n = 6, we obtain the following series of elementary
operations.

15



S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1
1 1 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1
1 1 0 0 1 0
1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= MS

This series of elementary operations is characterized by multiplication of the
following matrices.

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

M4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

M6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Multiplying each Mi together in the correct order, we obtain

MS = (M6M5M4M3M2M1)S,

which yields M with the (2, 2, 2) × (2, 2, 2) block form

M =

⎛⎜⎝I 0 1
0 I 1
1 0 I

⎞⎟⎠ .

Note that since M is obtained by a product of invertible matrices, M is also
invertible.

It remains to be seen for which matrices S ∈ Zn×k
2 a matrix M exists such that

MS is balanced. Some necessary properties of S are obtained by the following
conditions on its number of columns k.

Theorem 5. Let S be a n × k generating matrix of a Cayley graph Cay(Zn
2 , S).

Assume that Cay(Zn
2 , S) admits a neighbour-balanced labeling by matrix multipli-

cation with a matrix M . Clearly, k is even since MS is balanced. Then

• if k ≡ 0 (mod 4), then S has all rows of even parity,

• if k ≡ 2 (mod 4), then S has a row of odd parity.

Proof. Case 1: If k ≡ 0 (mod 4), then k
2 ≡ 0 (mod 2). By taking the product

of MS and 1T over Z2, we have

(MS)1T =

⎛⎜⎜⎝
k
2 (mod 2)

...
k
2 (mod 2)

⎞⎟⎟⎠ = 0T .

Thus S1T = M−10T = 0T over Z2, so all rows of S have even parity.

Case 2: Likewise, if k ≡ 2 (mod 4), then k
2 ≡ 1 (mod 2), so S1T = M−11T .

This implies that all rows of S have the same parity as the rows of M−1.
Suppose that all rows of S have even parity. Then the rows of M−1 span
only a subspace of vectors of even parity, which is a contradiction with the
rank n of M−1. Thus S has some row of odd parity.
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These results provide necessary conditions on S for the existence of M .

When determining the existence of M , instead of greedily trying all elementary
row operations on S, it is useful to find a way to group columns of S together such
that each group can be analyzed independently to determine some properties of
M , such as the size of each row mi.

Definition 10. The contribution of a set of columns Cj ⊆ S given a row mi ∈ M
is the number of columns cT ∈ Cj such that mic

T = 1.

Ideally, we construct a special partition of columns of S into sets called pair-
ings, such that each pairing is balanced for any given row mi. That is, the
contribution of any pairing is exactly half the size of the pairing.

Lemma 6. Let S be a n×k generating matrix of a Cayley graph Cay(Zn
2 , S), and

let M be an n×n binary matrix. Then MS is balanced if and only if for each row
mi of M , there exists a partition of columns of S into sets C1, C2, . . . , Cp each
of even size such that for each Cj = {cT

1 , cT
2 , . . . , cT

q }, j ∈ [p], ∑︁cT ∈Cj
mic

T = q
2 .

That is, for each column sT of S we can choose a pairing of columns Cj including
sT such that the number of 1’s and 0’s contributed by Cj to miS is equal.

Proof. Suppose that for an arbitrary row mi of M , S has a partition of columns
C = {C1, C2, . . . , Cp} of sizes q1, q2, . . . , qp such that each Cj ∈ C is balanced with∑︁

cT ∈Cj
mic

T = qj

2 . Then

|miS| =
∑︂

sT ∈S

mis
T =

∑︂
Cj∈C

∑︂
cT ∈Cj

mic
T =

p∑︂
j=1

qj

2 = q1 + q2 + · · · + qp

2 = k

2 .

On the other hand, suppose that MS is balanced. Then for each row mi of
M , let sT be a column of S such that mis

T = 1. Due to the balance of MS, there
exists a column ŝT such that miŝ

T = 0, then we pair sT with ŝT . Then construct
C1 as the pair {sT , ŝT }. C1 is then balanced as mi(sT ŝT ) = (10) is balanced. Let
S ′ = S\{sT , ŝT }, and let k′ = |S ′|. Since miS is balanced, and {sT , ŝT } contribute
by only one 1 to miS, then miS

′ contributes k
2 − 1 = k′+2

2 = k′

2 , and thus miS
′

is also balanced. We proceed inductively on S ′ to obtain a partition of columns
{C1, C2, . . . , C k

2
} such that |Cj| = 2 for all j ∈ [k

2 ].

While any pairing gives a nice structure to determining balance of a row miS,
we are often not so lucky in having an obvious way to construct such a strong
pairing from an observation of S. However, there may be other such ways to
partition columns of S depending on its structure that turn out to be easy to
analyze for a given M . Some particular cases of this are analyzed in the next
chapter.
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3. Application to Previous
Results
We now show the utility of the row balancing framework by reproving some known
results.

3.1 D-distance Magic Labelings of Qn

It might be asked whether there are D-distance magic labelings of Qn, and for
which values of n such a labeling is possible. By recasting the problem of finding
D-distance labelings of Qn as finding 1-distance labelings of Cayley graphs of Zn

2
by constructing edges between vertices of Hamming distance d for every d ∈ D,
the problem is sufficiently simplified. We then obtain some notable results for
which sets of D that a hypercube Qn can have a D-distance magic labeling.

Let us first focus on the case when D = {d}. Let S be the set of all vectors
of Zn

2 of size exactly d. Recall that S can be seen as a matrix with its elements
as columns. Then we obtain the following.

Proposition 7 ([9]). A d-distance magic labeling of Qn exists if n ≡ 2 (mod 4)
and 1 ≤ d ≤ n is odd.

Proof. Recall that the d-distance neighbourhood of a vertex u is N{d}(u) = {u⊕s |
sT ∈ S}. Thus finding a {d}-distance magic labeling of Qn is equivalent to finding
a {1}-distance magic labeling of Cay(Zn

2 , S). The number of columns k =
(︂

n
d

)︂
of

S is even if d is odd. Furthermore, for each column vector u in S, if a coordinate
ui = 1 is fixed, then there are

(︂
n−1
d−1

)︂
ways to arrange the remaining 1’s in the

column. Therefore there are
(︂

n−1
d−1

)︂
1’s in each row of S.

Claim 8. If
(︂

n
d

)︂
≡ 0 (mod 4), then

(︂
n−1
d−1

)︂
is even. Furthermore, if

(︂
n
d

)︂
≡ 2

(mod 4), then
(︂

n−1
d−1

)︂
is odd.

Proof. We use the well known formula from combinatorics

d

(︄
n

d

)︄
= n

(︄
n − 1
d − 1

)︄
.

• If
(︂

n
d

)︂
≡ 0 (mod 4)-then d

(︂
n
d

)︂
≡ 0 (mod 4). Thus we obtain that n

(︂
n−1
d−1

)︂
≡

0 (mod 4). However, since n ≡ 2 (mod 4), we have that
(︂

n−1
d−1

)︂
is even.

• If
(︂

n
d

)︂
≡ 2 (mod 4), then since d is odd, d

(︂
n
d

)︂
≡ 2 (mod 4). Therefore since

n ≡ 2 (mod 4) and n
(︂

n−1
d−1

)︂
≡ 2 (mod 4), we have that

(︂
n−1
d−1

)︂
is odd.
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Thus the parity conditions in Theorem 5 of a distance magic labeling are sat-
isfied.

Suppose that n = 4p + 2. Consider taking M as before in the form of a
(2p, 2, 2p) × (2p, 2, 2p) block matrix

M =

⎛⎜⎝I 0 1
0 I 1
1 0 I

⎞⎟⎠
where each row mi of M has 2p + 1 1’s. Then the linear combination of miS

over Zn
2 will also be balanced by a construction of pairings for each mi as follows.

Assume that we have a permutation π such that the permutation of n indices of
1’s and 0’s of the row mi results in a row vector mi,π = (111 . . . 100 · · · 0). Consider

a permuted column sT
π =

(︄
sT

1
sT

2

)︄
of S such that each sT

π,j has length 2p+1 (exactly

half of sT
π ). Since d is odd, then one sT

j will have an odd parity, and the other will
have an even parity. Without loss of generality, assume that sT

1 has an odd parity.

We then pair sT with the column cT such that cT
π =

(︄
sT

2
sT

1

)︄
. Since sT

1 has an odd size

and sT
2 has an even size, then by the assumption that mi,π = (111 . . . 100 · · · 0),

mis
T = mi,πsT

π = mi,πsT
1 = 1, and mic

T = mi,πcT
π = mi,πsT

2 = 0, thus the pair
{sT , cT } is a pairing. By Lemma 6, since each of the k

2 pairs is balanced, then
miS is balanced. This also holds if sT

1 has even parity and sT
2 has odd parity.

Lastly, the invertibility of M is easy to see, since it is also obtained by a
product of invertible matrices, as seen in Chapter 2.4.

Corollary 9. Qn has a D-distance magic labeling if n ≡ 2 (mod 4) and D ⊆
{1, 3, . . . , n − 1}.

Proof. This follows from constructing S as the union of d-sized vectors for every
d ∈ D. We then partition S into matrices C1, C2, . . . , C|D| for each fixed sized d
of columns. By Proposition 7, each of miCj is balanced. By Lemma 6, MS is
balanced and therefore there exists a D-distance magic labeling of Qn.

Proposition 10 ([9]). Qn has a D-distance magic labeling if n ≡ 2 (mod 4) and
D = E ⊎⋃︁i∈I{i, n− i}, where E ⊆ {1, 3, . . . , n−1} is nonempty, I ⊆ {0, 1 . . . , n

2 }
and ⊎ denotes disjoint union.

Proof. Suppose we partition S into submatrices C1, C2, . . . , C|E|, L where each
submatrix Cj denotes the sets of columns of fixed size from E, and the submatrix
L is formed by the set of columns L = ⋃︁

i∈I{i, n − i}. From Corollary 9, we have
that MCj is balanced for each set Cj of columns of fixed odd size given

M =

⎛⎜⎝I 0 1
0 I 1
1 0 I

⎞⎟⎠
and each row mi of M has 2p+1 many 1’s. It suffices to show that the remaining
columns of the form from L are also balanced with a row mi. The intuition is as
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follows. Let Li denote the set of columns of length i for each i ∈ I. Note that the
size of Li is exactly

(︂
n
i

)︂
. Likewise, the size of Ln−i is

(︂
n

n−i

)︂
=
(︂

n
i

)︂
= |Li|. There-

fore for each column sT ∈ Li, we pair sT with cT ∈ Ln−i such that cT = sT ⊕ 1T .
That is, each pairing is of complimentary columns. Since |mi| = 2p + 1 is odd,
then each pair contribute only one 1 to the row miS. Therefore, MS is balanced.

Recall from Chapter 2.4 that M is invertible, and therefore Qn has a D-
distance magic labeling for n ≡ 2 (mod 4) and D = E ⊎ ⋃︁i∈I{i, n − i}.

3.2 The Folded Cube
We now move on to the first example of a cube-like graph, the folded cube FQn−1.
Recall the Cayley graph definition of the folded cube FQn−1. That is,

FQn−1 = Cay(Zn−1
2 , {ei | i ∈ [n − 1]} ∪ {1}).

Proposition 11 ([10]). The folded cube FQn−1 has a neighbour balanced distance
magic labeling if and only if n ≡ 0 (mod 4).

Proof. The Cayley graph of FQn−1 gives us the generating matrix S with the
(n − 1) × (n − 1, 1) block representation

S =
(︂
I 1

)︂
Note that the number of 1’s in each row of S is exactly 2 for any value of n. By
Theorem 5, we must then have that n ≡ 0 (mod 4). We construct M by row
balancing as follows. Suppose we want to fix the number of 1’s in each row mi of
M . By taking a set Ĉ of p rows of S, the addition of all rows si in Ĉ together result
in a row sî with the number of 1’s determined by the contribution of columns
from I plus the contribution of the column 1T . The summation of p rows of I
give sî exactly p many 1’s in the first n−1 coordinates. Likewise, the summation
of p rows of 1T over Z2 is either 0 if p is even, or 1 if p is odd. Suppose that p
is even. Thus to count the total contribution of p rows of S by row balancing,
we set p = n

2 . Therefore by taking M with the (n−2
2 , 1, n−2

2 ) × (n−2
2 , 1, n−2

2 ) block
representation as

M =

⎛⎜⎝I 0 1
0 I 1
1 0 I

⎞⎟⎠
is sufficient. Therefore, the folded cube has a distance magic labeling for n ≡ 0
(mod 4).

As a remark, in fact Miklavič and Šparl [10] proved that the this proposition
also holds for distance magic labelings which are not neighbour balanced. That
is, if n ≡ 0 (mod 4), then FQn−1 has a distance magic labeling. To create this
proof, the authors used Proposition 2. We omit the rest of this proof.
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3.3 The Half Cube
While proving the existence of a distance magic labeling on a Cayley graph G
with vertex set V ⊆ Zn

2 , |V | = 2l for 0 ≤ l ≤ n directly is usually possible, it
can sometimes be easier to prove a stronger condition. That is, proving that
there exists a distance magic labeling for the Cayley graph G′ on Zn

2 consisting
of components G1, G2, . . . , Gn−l

2 such that each component Gi
∼= G.

Such an example of a Cayley graph with multiple components is that of the
half cube 1

2Q′
n, where each neighbourhood of a vertex u is defined by all vertices

v such that dH(u, v) = 2. Recall the formulation as

1
2Q′

n = Cay(Zn
2 , {ei ⊕ ej | i, j ∈ [n], i ̸= j}).

If S is the matrix with columns of exactly all vectors of size 2, then k =
(︂

n
2

)︂
=

n(n−1)
2 , and each row of S will have n − 1 1’s since for each column sT , if sT

i = 1,
there are n − 1 ways to choose the coordinate j where sT

j = 1. By Theorem 5,
if n − 1 is odd, then it must be that k ≡ 2 (mod 4) for MS to be balanced.
Since k = n(n−1)

2 , this occurs when n
2 ≡ 2 (mod 4), and thus n ≡ 0 (mod 4).

Likewise, if n − 1 is even, then we require k ≡ 0 (mod 4) for MS to be balanced.
If n(n−1)

2 ≡ 0 (mod 4), we have n(n − 1) ≡ 0 (mod 8). But since n is odd, then
n − 1 ≡ 0 (mod 8), and thus n ≡ 1 (mod 8). These two conditions are satisfied
when n = q2 for some natural number q such that q ≥ 2.

Proposition 12 ([2]). The half cube 1
2Qn has a distance magic labeling if n = q2

for some natural number q ≥ 2, q ̸≡ 0 (mod 4).

Proof. We first show that both component 1
2Q′

n has a distance magic label-
ing. Recall that given S as the matrix of vectors from Zn

2 all of size 2, then
k = |S| =

(︂
n
2

)︂
=
(︂

q2

2

)︂
= n(n−1)

2 .

Let f(u) = MuT , and suppose we take M as the q2 × q2 band matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 0 0 0 · · · 0
0 1 1 · · · 1 1 0 0 · · · 0
0 0 1 · · · 1 1 1 0 · · · 0

. . .
0 0 0 · · · 0 1 · · · 1
1 0 0 · · · 0 0 1 · · · 1
1 1 0 · · · 0 0 0 1 · · · 1

. . .
1 1 1 · · · 1 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with each row mi of M having exactly q2−q

2 many 1’s. Suppose that we have a per-
mutation π of coordinates such that for a fixed row mi, mi,π = (1, . . . , 1, 0, . . . , 0).
For a given column sT

π , we then have that mis
T = mi,πsπ = 1 if and only if one

of the two 1’s in sπ is in the first q2−q
2 coordinates, and the other is in the lat-

ter q2−q
2 + q coordinates. So for any given column sT of S, we partition sT

π into
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(sT
1 , sT

2 , sT
3 ) where |sT

1 | = q2−q
2 , |sT

2 | = q, and |sT
3 | = q2−q

2 . If sπ has exactly one
1 in s2, then the other 1 in sT is either in sT

1 or sT
3 . Thus if we pair sT with a

column cT of S where cT
π has the partition (sT

3 , sT
2 , sT

1 ), then we guarantee that
only one of sT , cT contribute by 1 to miS.

Likewise, if s2 has both or no 1’s, consider this entire set of columns as a
pairing. There are only

(︂
q
2

)︂
+
(︂

q2−q
2

)︂
= q(q−1)

2 + (q2−q)(q2−q−1)
2 = (q2−q)2

2 = q2(q−1)2

2
such columns of this type. So pair the columns sT from this set where s1 has
one 1 and s2 has zero 1’s with the other columns of this set where mi,πsT

π = 0.
Since there are q2−q

2 choices for the first 1 to be in sT
1 , and q2−q

2 choices from the
second 1 to be in sT

3 , the total number of columns that contribute a 1 to this set
is
(︂

q2−q
2

)︂2
= q2(q−1)2

4 = 1
2

(︂
q2(q−1)2

2

)︂
, and thus is exactly half of the size of the set.

Thus miS is balanced for each row mi, and by Lemma 6, MS is balanced.
Lastly, we check that M is invertible. Since we have that q ̸≡ 0 (mod 4), q2−q

2 is
odd. Therefore the size of each row and the size of each column is odd. Thus for
a subset of columns to be equal to 0T under addition, the subset must be of even
size. But since the column sizes are also odd and any two columns intersect on
at most q2−q

2 − 2 coordinates, no such subset exists. Thus all columns of M are
linearly independent, and thus M is invertible.

To show that the one component 1
2Qn has a distance magic labeling, we must

show that there is a bijection f ′ : {u ∈ Zn
2 | |u| ≡ 0 (mod 2)} → Zn−1

2 which
maps the 2n−1 vertices of the even component of 1

2Q′
n to the labels from Zn−1

2 .
To do this, we show that MuT preserves the parity of components. That is, if
a vertex u has |u| ≡ x (mod 2), then |MuT | ≡ x (mod 2). Therefore all even
vertices receive even labels. As f(u) = MuT is a bijection, there are no other
unassigned labels of even parity. By then removing the first bit of each label, we
obtain the entire element set of labels Zn−1

2 for the component of even vertices,
and therefore f ′ is a bijection.

The preservation of parity of f follows from the structure of M . Suppose for
each even vertex u we split u into its component basis vectors u = ei⊕ej ⊕el⊕. . . .
Then

f(u) = MuT = MeT
i + MeT

j + MeT
l ⊕ . . . .

Note that the output of each product MeT
i yields a resultant vector with a band

form (0 . . . 01 . . . 10 . . . 0) with q2−q
2 many 1’s. Since each MeT

i has an odd size,
and the number of such ei’s is even, then the addition of all such MeT

i ’s is even,
and therefore the vertex parity is preserved by f . Thus M is a distance magic
labeling of 1

2Qn.

3.4 The Folded Half-Cube
Recall that the Cayley graph definition of the folded half-cube 1

2FQn−1 where n
is even.
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1
2FQn−1 = Cay({u ∈ Zn−1

2 | |u| ≡ 0 (mod 2)},{ei ⊕ ej | i, j ∈ [n − 1], i ̸= j}

∪ {1 ⊕ ei | i ∈ [n − 1]}).

For ease of computation, we construct an equivalent formulation of 1
2FQn−1

by ignoring the first bit of each vertex. The original formulation of 1
2FQn−1 is by

taking all vertices from Zn−1
2 of even size, and applying edges uv if dH(u, v) = 2

or dH(u, v) = n − 2. Unfortunately, this formulation is not a Cayley graph of
Zn−1

2 , but a Cayley graph of all vertices of even size, a subgroup of Zn−1
2 . This

is precisely the reason we choose the formulation of 1
2FQn−1 over the vertex set

Zn−2
2 for the row balancing framework in the following manner.

1
2FQn−1 = Cay(Zn−2

2 ,{ei | i ∈ [n − 2]} ∪ {ei ⊕ ej | i, j ∈ [n − 2], i ̸= j}

∪ {1 ⊕ ei | i ∈ [n − 2]} ∪ {1})

The connection between these two formulations is in removal of (without loss
of generality) the first bit of each even sized vertex u of Zn−1

2 (otherwise known
as the parity bit), and defining a Cayley graph on the suffixes of length n − 2,
where each neighbourhood is preserved. To distinguish the generators of these
two formulations of the folded half-cube, let S be the matrix of columns of length
n − 2

S = {ei | i ∈ [n − 2]} ∪ {ei ⊕ ej | i, j ∈ [n − 2], i ̸= j} ∪ {1 ⊕ ei | i ∈ [n − 2]} ∪ {1},

and let S ′ be the matrix of columns of length n − 1

S ′ = {ei ⊕ ej | i, j ∈ [n − 1], i ̸= j} ∪ {1 ⊕ ei | i ∈ [n − 1]}
representing the original formulation of 1

2FQn−1. This matrix S ′ will have utility
later, when we work over the Cayley graph 1

2FQ′
n−1.

Since we are ignoring the first bit of each Cayley graph generator, S has the
same number of columns k from the original formulation S ′. The computation
of the degree k is as follows. We have n − 2 possible elements of size 1,

(︂
n−2

2

)︂
elements of size 2, and n − 2 elements of size n − 2, along with the constant
element 1. Therefore

k = 2(n − 2) +
(︄

n − 2
2

)︄
+ 1 = n(n − 1)

2 .

Theorem 13 ([3]). 1
2FQn−1 has a distance magic labeling if n = 16q2 for some

natural number q.

The original proof of this theorem relies on determining the rank of the
(n − 2) × (n − 1) matrix M where f(u) = MuT . Tian et al. [3] showed that given
a specific construction of M , and the (n−1)×k matrix S ′ such that the columns
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of S ′ are generators of 1
2FQn−1 (one the even size vertices of Zn−1

2 ), then since
MS is balanced and the rank of M is n − 2, then a distance magic labeling for
1
2FQn−1 exists. Note that the invertibility of M is not shown.

We construct an alternative proof by redefining the folded half cube as a
Cayley graph on all vertices of Zn−2

2 , and defining M as a (n−2)× (n−2) matrix
such that f(u) = MuT along with a (n − 2) × k matrix S of generators of this
altered Cayley graph. We then proceed by analyzing the contribution of specified
sets of columns of S to the total number of 1’s in each row of MS.

Proof. Recall that k = n(n−1)
2 . If n = 16q2, then k = (16q2)(16q2−1)

2 = 128q4 − 8q2.
Thus we need to obtain k

2 = 64q4 − 4q2 1’s for each row miS.

Suppose we construct M such that the number of 1’s in each row mi is
8q2 − 2q − 1. Then as M is a (16q2 − 2) × (16q2 − 2) matrix, the number of
0’s in each row mi is 8q2 + 2q − 1. We show that this suffices for MS to be
balanced.

For convenience, let us construct a partition of S from a partition of its
columns into the following sets.

C1 = {ei | i ∈ [n − 2]}
C2 = {ei ⊕ ej | i, j ∈ [n − 2], i ̸= j}
C3 = {1 ⊕ ei | i ∈ [n − 2]}
C4 = {1}

We proceed by analyzing the contribution of each set Cj given M as above to
the total sum of 64q4 − 4q2 for each row mi of M .

For each eT
j ∈ C1, we have that mis

T = 1 if and only if mij = 1. Thus there
are 8q2 −2q −1 such choices of j such that this holds. Therefore the total number
of 1’s contributed by C1 is 8q2 − 2q − 1.

Next, for each (eT
j ⊕ eT

l ) ∈ C2, mi(ej ⊕ el)T = 1 if and only if (without loss
of generality) mij = 1 and mil = 0. Since mi has 8q2 − 2q − 1 entries of 1, and
8q2 +2q −1 entries of 0, there are (8q2 −2q −1)× (8q2 +2q −1) = 64q4 −20q2 +1
ways that a column ej ⊕ el ∈ C2 can contribute 1 to miS.

For each sT ∈ C3, note that the number of 1’s in mi is odd. Since each sT

contains only one zero, if mis
T = 1, then the coordinate in which sT has the entry

of 0 must be one of the coordinates of mi that have an entry of 0. Therefore the
number of ways to choose this is the number of ways to choose the one 0 in sT to
have coordinate j such that mij = 0. There are 8q2 + 2q − 1 ways to choose such
a coordinate. Therefore the total contribution of 1’s to miS by C3 is 8q2 +2q −1.
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For C4, since every coordinate l such that mil = 1 also has 1T
l = 1, and since

8q2 − 2q − 1 is odd, we obtain that mi1T = 1. Thus the contribution of C4 is 1.

For the folded half-cube, we obtain that the total sum of contributions of each
Cj is

(8q2 − 2q − 1) + (64q4 − 20q2 + 1) + (8q2 + 2q − 1) + (1) = 64q4 − 4q2 = k

2 .

Therefore MS is balanced.

The structure of M remains to be shown. Tian et. al [3] showed that if we
restrict the task of finding a distance magic labeling of the half folded cube to one
component of the vertex set Zn−1

2 , then the (8q2 − 2q − 2, 8q2 − 2q − 2, 2q, 2q, 2) ×
(1, 8q2 − 2q − 2, 8q2 − 2q − 2, 2q, 2q, 2) matrix

M ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 I 1 0 0 0
0 1 I 0 0 0
0 1 0 I 0 0
0 1 0 0 I 0
0 1 0 0 0 I

⎞⎟⎟⎟⎟⎟⎟⎠
is a suitable matrix such that the mapping f defined by f(u) = MuT for every
even sized u ∈ Zn−1

2 is a distance magic labeling of 1
2FQn−1. Note that their

formulation of M ′ is that of a non-square (n − 2) × (n − 1) matrix but with rank
n − 2. For our purpose, this is insufficient as M ′ is non-invertible. This encodes
a distance magic labeling on the component with vertex set corresponding to the
elements of even size in Zn−1

2 . Thus only the labels {0, 1, . . . , 2n−2−1} are utilized.

We claim that defining M as the (n − 2) × (n − 2) matrix such that M is
equivalent to M ′ with the first column of 0’s removed is sufficient. That is, M
has the (8q2 − 2q − 2, 8q2 − 2q − 2, 4q + 2) × (8q2 − 2q − 2, 8q2 − 2q − 2, 4q + 2)
block representation

M =

⎛⎜⎝I 1 0
1 I 0
1 0 I

⎞⎟⎠ .

As before, each column mi has exactly 8q2 − 2q − 1 many 1’s and thus miS
is balanced. Through elementary row operations, we can reduce M to the lower
triangular form ⎛⎜⎝I 0 0

1 I 0
1 0 I

⎞⎟⎠
in which each column is linearly independent. Therefore M is invertible.

It remains to be shown that M can be obtained via row balancing. As before,
we require that the contribution of 1’s to each row of each set {C1, C2, C3, C4}
after row balancing is correct. Again, this is 8q2 − 2q − 1 for C1, 64q4 − 20q2 + 1
for C2, 8q2 + 2q − 1 for C3, and 1 for C4. We proceed by showing that the binary
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addition of a row si with any subset Ĉ of 8q2 − 2q − 2 rows from each partition
Cj results in the correct contribution of Cj. The illustration below summarizes
this proof sketch. In the first step, we show the structure of S. In the second
step, we illustrate taking a fixed set of rows Ĉ and a given row si partitioned in
the same manner as each type of column. In the third step, we show the total
number of 1’s in each partition of si ⊕∑︁

c∈Ĉ c is the same amount as above.

S =

⎡⎢⎣ C1 C2 C3 C4

⎤⎥⎦

→

row si

{︂

set Ĉ of 8q2 − 2q − 2 rows
⎧⎨⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

si,1 si,2 si,3 si,4

C1̂ C2̂ C3̂ C4̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ si ⊕∑︁
c∈Ĉ c

{︂
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
8q2 − 2q − 1 64q4 − 20q2 + 1 8q2 + 2q − 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For C1, the row addition of a subset of 8q2 −2q−2 rows Ĉ to si will contribute
exactly 8q2 − 2q − 1, since each row contains only one entry of 1, each in different
coordinates.

For C2, note that each row has exactly 16q2 − 3 1’s, and intersects any other
row in exactly one coordinate. Furthermore, these coordinates of intersection are
all unique, otherwise there would be a contradiction in the size of each column
being 2. Therefore each row intersects the other 8q2 − 2q − 2 rows in 8q2 − 2q − 2
coordinates. Thus the binary addition of all 8q2 − 2q − 1 rows of Ĉ ∪ si will result
in the number of 1’s being

(16q2 − 3)(8q2 − 2q − 1) − (8q2 − 2q − 2)(8q2 − 2q − 1)
= 128q4 − 32q3 − 40q2 + 6q + 3 − 64q4 + 32q3 + 20q2 − 6q − 2
= 64q4 − 20q2 − 1

For C3, each row has exactly one 0. Thus adding 8q2−2q−1 rows together will
result in a 1 at coordinate i if none of the chosen rows contain a 0 at coordinate i
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since 8q2 − 2q − 1 is odd, and will result in 0 otherwise (exactly one row will have
0 at coordinate i and thus the number of 1’s added together is even). Since there
are 8q2 − 2q − 1 coordinates which will become 0 after all of the row addition of
Ĉ ∪ si, the number of 1’s remaining is (16q2 − 2) − (8q2 − 2q − 1) = 8q2 + 2q − 1,
which is the required number of 1’s needed for row balance.

For C4, adding any odd number of rows from C4 to a row will not change the
value 1. Therefore adding 8q2 − 2q − 2 rows Ĉ to si is sufficient.

Now that it has been determined that we can add any 8q2−2q−2 rows Ĉ to any
row si (and thus 8q2−2q−1 rows together total) and each partition will contribute
the correct number of 1’s such that si is balanced, the choice of 8q2 − 2q − 2 rows
to add to row si of S does not affect the end balance. Therefore, we can choose for
each of s1, s2, . . . , s8q2−2q−2, we add all rows from s8q2−2q−1, . . . , s16q2−4q−4. Like-
wise, for every other row, we add all of s1, . . . , s8q2−2q−2. These elementary row
additions are precisely described by M .

The computation of M is as follows. For simplicity, we represent row mi by
the row index i, and the column mT

j by the column index j to the left and above
the matrix M , respectively.
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M1 =

⎛⎜⎜⎜⎜⎜⎜⎝

8q2 − 2q − 1
1 0 . . . 1 . . . 0
0 1 . . .

... . . . 0
... ... . . .

. . . ...
0 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠

M2 =

⎛⎜⎜⎜⎜⎜⎜⎝

8q2 − 2q

1 0 . . . 1 . . . 0
0 1 . . .

... . . . 0
... ... . . .

. . . ...
0 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠
...

M8q2−2q−2 =

⎛⎜⎜⎜⎜⎜⎜⎝

16q2 − 4q − 4
1 0 . . . 1 . . . 0
0 1 . . .

... . . . 0
... ... . . .

. . . ...
0 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠

M8q2−2q−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8q2 − 2q − 1
1 0 . . . 0 . . . 0
0 1 . . . 1 . . . 0
0 0 . . .

... . . . 0
... ... . . .

. . . ...
0 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
...

M(8q2−2q−2)2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16q2 − 4q − 4
1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
0 0 . . .

... . . . 0
m8q2−2q−2

... ... . . . 1 . . . ...

0 0 . . .
... . . . 0

0 0 . . . 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first (8q2 − 2q − 2)2 Mi’s therefore give

M(8q2−2q−1)2M(8q2−2q−1)2−1 · · · M2M1 =

⎛⎜⎝I 1 0
0 I 0
0 0 I

⎞⎟⎠
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The other intermediate Mi’s are found in a similar manner to form the other
1-blocks of M . In total, we perform 8q2 − 2q − 2 operations per row, over all
16q2 − 2 rows of M . Thus we can compute M by row balancing using (8q2 − 2q −
1) × (16q2 − 2) matrices corresponding to elementary row addition operations.

While the trick of working on the Cayley graph of the folded half-cube by
reducing the vertex set Zn−1

2 to Zn−2
2 is convenient (as no vertices become irrele-

vant), an interesting question to pose is whether there is a distance magic labeling
on the Cayley graph

1
2FQ′

n−1 = Cay(Zn−1
2 , {ei ⊕ ej | i, j ∈ [n − 1], i ̸= j} ∪ {1 ⊕ ei | i ∈ [n − 1]})

of all vertices u ∈ Zn−1
2 .

This Cayley graph has two components isomorphic to 1
2FQn−1, one on the

even vertices, and one on the odd vertices. Note that if we have a distance magic
labeling for a single component of a graph where all components are isomorphic,
the fact that each component can have the same labeling is trivial. Nonetheless,
we illustrate the linear algebra technique to translate labels across components
of a Cayley graph of Zn

2 using the example of the folded half cube.

Recall from the formulation of 1
2FQ′

n−1 we have the generating matrix S ′.
The method of constructing a matrix M for the vertices of size n − 2 as above
can be used to construct a matrix M ′ such that M ′S ′ is balanced. We show that
this construction of M ′ results in the same labeling on each component.

Proposition 14. There exists a (n − 1) × (n − 1) matrix M ′ such that each com-
ponent of 1

2FQ′
n−1 receives the same labeling, where n = 16q2 for some nonzero

integer q.

Proof. We construct the n − 1 × n − 1 matrix M ′ from M as

M ′ =

⎛⎜⎜⎜⎜⎝
0 · · · · · · 0
0
... M
0

⎞⎟⎟⎟⎟⎠ .

where

M =

⎛⎜⎝I 1 0
1 I 0
1 0 I

⎞⎟⎠
Due to the first column of 0’s, the first bit of each vertex u (the parity bit) is
ignored in the calculation of f(u). Furthermore, the first row of 0’s ensures that
the first bit of f(u) is set to 0. Therefore each odd size vertex v recieves the label
f(u) when u and v differ in only the first bit. Note that this is not a distance
magic labeling since M ′ is not invertible, and clearly f is not bijective.
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Figure 3.1: Ignoring the parity bit in Z3
2 of 1

2FQ2 results in both components
having the same vertex set Z2

2.

Constructing an isomorphic labeling on 1
2FQ′

n leads to a hint of a distance
magic labeling on 1

2FQn. Since we know that MS is balanced, every row of M ′S ′

after the first is balanced. Thus if we find a (n − 1) × (n − 1) matrix M ′ such
that the first row of m′

1S
′ is balanced, then we obtain a distance magic labeling

of 1
2FQ′

n−1 over both components.

Proposition 15. There exists a distance magic labeling of 1
2FQ′

n−1 for every
n = 16q2 for some nonzero integer q.

Proof. We construct the (n − 1) × (n − 1) matrix M ′ from M by

M ′ =

⎛⎜⎜⎜⎜⎝
1 · · · 1 0 · · · · · · 0
0
... M
0

⎞⎟⎟⎟⎟⎠ .

Where the first row m′
1 has 8q2 − 2q − 1 1’s. The size of each row of M ′ is

therefore the same as the row size of M . We create a partition of S ′ similarly to
a partition of S to show that M ′S ′ is also balanced.

C ′
1 = {ei ⊕ ej | i, j ∈ [n − 1], i ̸= j},

C ′
2 = {1 ⊕ ei | i ∈ [n − 1]}.
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For each (eT
j ⊕ eT

l ) ∈ C ′
1, mi(ej ⊕ el)T = 1 if and only if (without loss of

generality) m′
ij = 1, and m′

il = 0. Since m′
i has 8q2 − 2q − 1 entries of 1, and

8q2 + 2q entries of 0, there are (8q2 − 2q − 1) × (8q2 + 2q) = 64q4 − 12q2 − 2 such
ways to choose j and l such that ej ⊕ el ∈ C ′

1 can contribute 1 to miS. Therefore
the total number of columns of C ′

1 which add to the contribution is 64q4−12q2−2.

For each s′T ∈ C ′
2, note that the number of 1’s in mi is odd. Since each s′T

contains only one zero, the coordinate in which s′T has the 0 entry must be one
of the coordinates of m′

i that have a 0 entry. Therefore number of ways to choose
this is the number of ways to choose the one 0 in s′T to have coordinate j such
that m′

ij = 0. There are 8q2 + 2q ways to choose such a coordinate. Therefore
the total contribution of 1’s to m′

iS
′ by C ′

2 is 8q2 + 2q.

The total sum of contributions of the partition is therefore (64q4 − 12q2 −
2q) + (8q2 + 2q) = 64q4 − 4q2, and thus M ′S ′ is balanced.

Lastly, we check the invertibility of M ′. Recall that there is a reduction of M
to the (8q2 − 2q − 2, 8q2 − 2q − 2, 4q + 2) × (8q2 − 2q − 2, 8q2 − 2q − 2, 4q + 2)
lower triangular form

M =

⎛⎜⎝I 0 0
1 I 0
1 0 I

⎞⎟⎠ .

By adding the first 8q2 − 2q − 2 rows of M (the rows from the index range of 2 to
8q2 − 2q − 1 of M ′) to m′

1, we then reduce M ′ to have the lower triangular form

M ′ =

⎛⎜⎜⎜⎝
1 0 0 0
0 I 0 0
0 1 I 0
0 1 0 I

⎞⎟⎟⎟⎠
Therefore M ′ is invertible, and f(u) = M ′uT is thus a distance magic labeling of
1
2FQ′

n−1.
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4. Component-Wise Distance
Magic Labelings
One natural question that arises from working over Cayley graphs which contain
multiple disconnected components is whether a distance magic labeling is still
possible for the entire graph. While each component Gi may have a unique magic
constant mi given a bijection f on all vertices of G, there is no guarantee that
mi = mj for all components Gi, Gj. If such a labeling is still possible, then we
call this generalized distance magic labeling as a component-wise distance magic
labeling.

Definition 11. Let G be a graph with components G1, G2, . . . , Gk. A bijection
f : V → {1, 2, . . . , |V |} is a component-wise distance magic labeling if there
exists constants m1, m2, . . . , mk such that for every component Gi, f is a distance
magic labeling of Gi with magic constant mi.

m1 = 14

6

7 10

11

m3 = 17

1

5

8

9

2

3

4

m2 = 0

Figure 4.1: A component-wise distance magic labeling over three components
with different magic constants m1, m2, and m3.
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4.1 Prefix Identification
Recall that each component of a Cayley graph is isomorphic to every other com-
ponent. This implies that for every component Gi of Cay(Zn

2 , S), |V (Gi)| divides
2n, and therefore each component contains 2d vertices for some 0 ≤ d ≤ n. If
there exists a (n − d) × n matrix P such that for every two vertices u, v ∈ Zn

2 ,
PuT = PvT when u, and v are in the same component Gi and PuT ̸= PvT

otherwise, then each component is said to have a unique (n − d)-bit prefix. The
matrix P is called the prefix matrix.

Proposition 16. Consider a Cayley graph Cay(Zn
2 , S) with components

G1, G2, . . . , G2n−d each of size 2d. Suppose that there exists a (n − d) × n prefix
matrix P , and there exists a d × n matrix M such that (without loss of general-
ity) G1 has a distance magic labeling by from Zn

2 → Zd
2 by f(u) = MuT . Then

Cay(Zn
2 , S) has a component-wise distance magic labeling.

Proof. If we already have a d×n matrix M that defines a distance magic labeling

for G1 to Zd
2 with magic constant m1, then taking M ′ =

(︄
P
M

)︄
appends a (n−d)-

bit prefix that is unique to each component. This yields 2n−d different prefixes,
one to each component, and thus f is a bijection. All labels in a given component
Gi are then shifted by the (n−d)-bit prefix ci with a d-length suffix of 0 appended.
Thus each component Gi receives the magic constant mi = m1 + di2d where di

is the decimal representation of ci. Thus f is a component-wise distance magic
labeling.

Take for example, a component-wise distance magic labeling for the folded
half-cube 1

2FQ′
n−1 where n = 16q2 for some natural number q. Recall from

Chapter 3.4 that for the Calyey graph on one component 1
2FQn−1, we have that

a (n−2)×(n−2) labeling matrix M for Cay(Zn−2
2 , S) has the (8q2 −2q −2, 8q2 −

2q − 2, 4q + 2) × (8q2 − 2q − 2, 8q2 − 2q − 2, 4q + 2) block form

M =

⎛⎜⎝I 1 0
1 I 0
1 0 I

⎞⎟⎠ .

Note that if we add a column of 0’s to the left of M , then we obtain a sur-
jective labeling over both components of 1

2FQ′
n−1 from Zn−1

2 to Zn−2
2 . We can

then construct a component-wise distance magic labeling by adding the row
1 = (1, 1, . . . , 1) to the top of M . That is,

M ′ =

⎛⎜⎜⎜⎜⎝
1 · · · 1
0
... M
0

⎞⎟⎟⎟⎟⎠ .

This row separates the labelings in the following manner. If a vertex u ∈ Zn−1
2

has an even size, then 1uT = 0, and if a vertex v has odd size, then 1vT = 1. This
results in each odd sized vertex v where v = u ⊕ (1, 0, . . . , 0) receiving the label
f(u) ⊕ (1, 0, . . . , 0). That is, each even sized vertex of Zn−1

2 receives the labels
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{0, . . . , 2n−2 − 1}, and odd sized vertices receive the labels {2n−2, . . . , 2n−1 − 1}.
Since each vertex recieves a unique label, then f ′(u) = M ′uT is a bijection.

While Cayley graphs whose components are defined on the parity of each
vertex yields a simple row addition to M , the general question as to which Cayley
graphs which yield a prefix matrix P resulting n − d-bit prefixes for some d ∈ [n]
is non-trival. To determine such Cayley graphs, we turn to orthogonal spaces.

Proposition 17. A (n − d) × n prefix matrix P exists for every Cayley graph
Cay(Zn

2 , S) with components G1, G2, . . . , Gn−d
2 such that the prefix of G1 is the

(n − d)-length vector 0.

Proof. Recall that any matrix has two spaces, the row space and column space.
Furthermore, recall that we originally viewed S as the generating set of columns
of the Cayley graph Cay(Zn

2 , S), and that G1 is the component of Cay(Zn
2 , S)

containing the element 0. Let ⟨S⟩ be the column space of S. Let us take ⟨P ⟩ as
the matrix whose rows form a base of the orthongonal space to ⟨S⟩. That is, for
the row space ⟨P ⟩ of P , we have ⟨P ⟩ = ⟨S⟩⊥. The dimension of P is thus n − d
[6]. In another view, ⟨S⟩ = ker(P ).

Since each component Gi has size 2d, and Gi is generated by S, then it follows
that the dimension of the linear space ⟨S⟩ generated by S is d. Furthermore, the
vectors spanned by S compose the component G1 of Cay(Zn

2 , S) containing the
vertex 0. The dimension of ⟨P ⟩ is n − d, and thus P is an (n − d) × n matrix.

Since ⟨P ⟩ = ⟨S⟩⊥, and since 0 ∈ G1 = ⟨S⟩, then for every element u in G1,
and every row pi of P , piu

T = 0. Thus G1 has the prefix 0.
Now, suppose we take an affine space G1 ⊕ x = Gi for some x ̸∈ G1. Since

x ̸∈ ⟨S⟩, then PxT ̸= 0.
Let u, v be elements of G1 such that two elements û = u ⊕ x and v̂ = v ⊕ x

are elements of Gi for some i ̸= 1. Then we have that

P (ûT ⊕ v̂T ) = P ((uT ⊕ xT ) ⊕ (vT ⊕ xT )) = P (uT ⊕ vT ) = PuT ⊕ PvT = 0.

Thus any two elements û and v̂ of the same component Gi receive the same prefix.

Here are two examples of component structures of Zn
2 that have a prefix matrix

P such that g(u) = PuT maps each component to a unique element v ∈ Zn−d
2 :

1. Two components, one on even vertices, one on odd vertices.

2. Components with a fixed (n − d)-bit prefix (subcubes) for some d ∈ [n].

In the first case, we have already seen P as the 1×n matrix (1, 1, . . . , 1). This
is a sufficient matrix as every vertex of even size will intersect this row an even
number of times, mapping all even vertices to 0. It follows that ⟨P ⟩ forms the
orthogonal space to ⟨S⟩. Likewise, every vertex of odd size will intersect this row
an odd number of times, mapping all odd vertices to 1.
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In the second case, each component already has a d-bit prefix, thus taking P
as the d × n matrix with block representation d × (d, n − d),

P =
(︂
I 0

)︂
is sufficient as each prefix is maintained. Taking G1 as the component containing
the 0 vector, for any u ∈ G1, PuT = 0, and thus ⟨P ⟩ is the orthogonal space to
⟨S⟩.

Putting Propositions 16 and 17 together, the following lemma is obtained.

Lemma 18. A component-wise distance magic labeling exists for a Cayley graph
Cay(Zn

2 , S) with components G1, G2, . . . , G2n−d if there exists a distance magic
labeling of G1.

4.2 The Fixed Half Cube
Consider the following Cayley graph of Zn

2 where the first bit of each component
is fixed, and the vertex set of each component is either of even or odd size. One
such method to achieve this component structure is via the Cayley graph

Cay(Zn
2 , {ei ⊕ ej | i, j ∈ {2, . . . , n}, i ̸= j}).

This Cayley graph consists of four half cubes of dimension n − 2, called the fixed
half cube (due to the first bit being fixed).

Proposition 19. There exists a component-wise distance magic labeling for the
n-dimensional fixed half cube for n ≡ 2 (mod 8) or n ≡ 1 (mod 4).

Proof. Let S ′ be the n × k′ generating matrix of the fixed half cube. Note that
the number of columns k′ is

(︂
n−1

2

)︂
= (n−1)(n−2)

2 . Working over one component is
then equivalent to working over Zn−2

2 by ignoring the first two bits of each vertex,
with the column set S = {ei | i ∈ [n − 2]} ∪ {ei ⊕ ej | i, j ∈ [n − 2]}. Note again
that the number of columns k of S is equal to the number of columns k′ of S ′

since there are
(︂

n−2
1

)︂
elements of size one and

(︂
n−2

2

)︂
elements of size two. In total

this gives us

k =
(︄

n − 2
1

)︄
+
(︄

n − 2
2

)︄

= n − 2 + (n − 2)(n − 3)
2

= 2(n − 2) + (n − 3)(n − 2)
2

= (n − 1)(n − 2)
2

= k′.

Clearly, if one component has a distance magic labeling, then by Theorem 5
either n ≡ 1 (mod 4) or n ≡ 2 (mod 4) for (n−1)(n−2)

2 to be even. Since each row
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has n − 2 many 1’s, if (n−1)(n−2)
2 ≡ 0 (mod 4), then n − 2 is even and therefore

n ≡ 2 (mod 8). Likewise, if (n−1)(n−2)
2 ≡ 2 (mod 4), then n−2 is odd, and there-

fore n ≡ 1 (mod 4).

Suppose we want to obtain M via row balancing. Recall that if we add a
set Ĉ of p − 1 rows of S to an arbitrary row si for some natural number p such
that si becomes balanced, then the contribution of si ⊕ ∑︁

c∈Ĉ c is equal to the
contribution of each subset of a partition C of S. This is equivalent to each row
mi of M having p many 1’s. Thus the construction of M such that each row mi

has exactly p many 1’s yields the following.
Let us partition S into

C1 = {ei | i ∈ [n − 2]},
C2 = {ei ⊕ ej | i, j ∈ [n − 2]}.

We proceed by analyzing the contribution of each set Cj given that each row
mi of M has p many 1’s.

For C1, the addition of p rows together yields a contribution of p.

For C2, the addition of p rows together yields a contribution of p ((n − 2) − p)
since mi(ej ⊕ el)T = 1 if and only if (without loss of generality) mij = 1 and
mil = 0.

Therefore the total contribution of p rows of S added together is p+p(n−2−p).
Since we would like for MS to be balanced, then we set p+p(n−2−p) = (n−1)(n−2)

4
which is half of the total number of columns of S. Therefore MS is balanced when
p + p(n − 2 − p) = (n−1)(n−2)

4 for natural numbers n and p.

Now, we can construct the n × n matrix M ′ for S ′ using the 2 × n matrix

P =
(︄

1 0
1 1

)︄
.

Which yields the matrix

M ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
1 · · · · · · 1
0 · · · · · · 0
... M
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Therefore, Cay(Zn
2 , {ei⊕ej | i, j ∈ {2, . . . , n}}) has a component-wise distance

magic labeling for every n such that p + p(n − 2 − p) = (n−1)(n−2)
4 has an integer

solution. Some such solutions are n = 5, p = 1 and n = 10, p = 6.

For illustration, consider this Cayley graph on the vertex set Z5
2. This yields
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the generating matrix S ′ with the values

S ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

By using the 2 × 5 matrix P as before, the 2-bit prefixes are assigned to
components of this Cayley graph in the following manner.

00000 00011

00101

00110

0100101100

01010

01111

01000 01011

01101

01110

0000100100

00010

00111

00

01

10000 10011

10101

10110

1100111100

11010

11111

11000 11011

11101

11110

1000110100

10010

10111

10

11

Figure 4.2: Prefix assignment of the fixed half cube of dimension 5 with the first
bit fixed and the next bit as a parity bit.

By ignoring the first two rows of S ′, we obtain the generators of one component
over the vertex set Z3

2. That is,

S =

⎛⎜⎝1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎞⎟⎠ .

Clearly each row of S is already balanced, thus taking M as the 3 × 3 iden-
tity matrix is sufficient. Therefore Cay(Z5

2, {ei ⊕ ej | i, j ∈ {2, . . . , 5}}) has a
component-wise distance magic labeling with f ′(u) = M ′uT where

M ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0
1 1 1 1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Conclusion
In this thesis we have seen the current techniques used to obtain distance magic
labeling of hypercube-like graphs, the most important being the notion of neigh-
bour balance originally developed by Gregor and Kovář. The framework of row
balancing was then introduced as an application of neighbour balance. This
framework was then generalized to be suitable for determining the existence of
distance magic labelings for all Cayley graphs of Zn

2 . To achieve this, we used
the generating matrix S of the Cayley graph to obtain a matrix M such that a
function f(u) = MuT is a distance magic labeling if MS is balanced. We intro-
duced the pairing lemma (Lemma 6) and the method of counting contributions
of sets of columns of S with a common structure as tools to show whether a given
matrix M gives a neighbour balanced distance magic labeling.

Next, we used this framework of row balancing to reprove some notable re-
cent results for which values of n a distance magic labeling of a specific Cayley
graph of Zn

2 exists. In the examples of the half cube and folded half cube, new
distance magic labelings f ′ were obtained in the Cayley graphs 1

2Q′
n (half cube)

and 1
2FQ′

n−1 (folded half cube) over multiple components.

Finally, the quest for determining the existence of a distance magic labeling
over graphs with multiple components was relaxed to finding the existence of a
component-wise distance magic labeling, where each component has a different
magic constant. For Cayley graphs of Zn

2 with multiple components, the exis-
tence of a component-wise magic labeling was shown to be dependent on the
structure of components. It was stated that a component-wise distance magic
labeling for a Cayley graph Cay(Zn

2 , S) with components G1, G2, . . . , Gk exists if
and only if G1 has a distance magic labeling. The linear space orthogonal to the
space generated by S was used to obtain prefixes which are unique to each com-
ponent Gi, which are then added as a constant to all labels f(u) where u ∈ V (Gi).

We now discuss some possible continuations of the row balancing framework.

Consider the augmented cube AQn where there exists an edge between ver-
tices u and v if u and v differ by one bit or if for some coordinate l, ui = vi for
i < l and ui = vi ⊕ 1 for i ≥ l [11]. The augmented cube has desirable properties,
such as being pancyclic. Currently, it is unknown for which values of n AQn has
a distance magic labeling. Unlike the other examples we have seen, the Cayley
graph which generates AQn has the generating set of columns S with a different
number of 1’s in each column. More work is required to determine the order in
which to balance the rows of S.

In this thesis, we have restricted ourselves only to Cayley graphs of Zn
2 on the

n-length binary strings. Consider Cayley graphs of Zn
p for some p > 2. We could

possibly use this framework if we work over the group Zn
p , although the definition

of neighbour balance would need to be generalized in the following manner. A
bijection f : Zn

p → Zn
p is neighbour balanced if for every vertex v ∈ Zn

p and for
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every coordinate i ∈ [n], |{u ∈ N(v) | ui = 0}| = |{u ∈ N(v) | ui = 1}| = · · · =
|{u ∈ N(v) | ui = p − 1}|. Additional work is needed to check if this formulation
of neighbour balance is appropriate for Cayley graphs of Zn

p .
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