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Chapter 1

Introduction

Modern software is becoming increasingly complex. We shall make no effort
to quantify this proposition, nor do we wish to fully examine the reasons for
why it is true. Nevertheless, as unsubstantiated as our claim is, it seems fairly
uncontroversial to suggest that on average, the complexity of software has been
increasing as a function of time.

This phenomenon, of course, is not new. As early as the nineteen sixties,
computer scientists had to contend with what was at the time dubbed the software
crisis [1], as the increasing power of new hardware and correspondingly increasing
demands made of said hardware outpaced the programmers’ ability to efficiently
develop new software. In time, various software engineering techniques were
developed that aimed to address these issues. Still, the theoretical capabilities of
computers have kept growing, and so have the expectations we have of software
today. We can but wonder what the computer scientists of half a century ago
would have to say about the beginner web developer of today who struggles
to even start working on their ”Hello world” website because their Typescript
compiler has suddenly become incompatible with their version of Webpack and
one of their six code analysis tools does not support ESM modules, which is
coincidentally the only way a dependency of a dependency can be imported.1

Perhaps nowhere is this complexity more readily apparent than in the realm of
enterprise software. Large corporations now have the resources and inclination to
tackle unimaginably sophisticated problems, combining the efforts of thousands
of developers to do so. On such scales, any one person may have a firm grasp on
the inner workings of one small part of the system and, given a sufficient level of
abstraction, may have some understanding of its overall structure, but singular
intimate knowledge of every single part—not to mention how it interacts with all
the other parts—becomes impossible to maintain.

1Based loosely on conversations between the author and several aspiring web developers, as
well as his own experiences.

4



Unable to rely purely on human knowledge, we once again turn to software
for assistance. Using automated code analysis tools, a stakeholder can examine
even large projects for detailed insights that would be nearly impossible to obtain
otherwise. One domain of such examination that is of particular interest to us is
data lineage, that is, the process of tracking and visualizing where data originates,
how it changes, and where it ultimately ends up in the data pipeline. Whether
it is for assessing regulatory compliance, performing impact analysis, or simply
trying to gain a more complete understanding of some aggregated piece of data,
data lineage is becoming a useful tool for businesses with sizeable software stacks.

Manta, with its automated data lineage platform Manta Flow, has become
one of the key players in this space. It is able to scan more than fifty different
technologies, encompassing a broad suite of databases, reporting tools, modeling
platforms, and data integration tools. However, in this work, we focus on one
scanner in particular, which is the Python scanner.

In the field of data science—and to some extent also in general-purpose
programming—Python has become a popular language of choice, providing some
interface for most commonly used frameworks and technologies. In addition,
tools used for data transformations have begun introducing the ability to define
those transformations using general-purpose programming languages. As a result,
there is a demand for tools that are able to generate lineage information for source
code written in Python. After all, trying to track the data lineage of a process will
not be very fruitful unless you are able to analyze the whole process. If there’s an
errant script in the middle of the pipeline that you cannot scan, what happens
after it is anybody’s guess.

Manta responded to this demand by adding a Python scanner to its platform.
This development started as a student software project in 2021 and has been
continuing ever since. However, Python is by its nature a very dynamic language,
which, as one might expect, makes it challenging to analyze.

For example, let us consider such a fundamental concept as function invoca-
tion. When we encounter an expression in the form of x.foo(), which function is
actually being called? In languages with a more static type system, we can make a
fairly accurate prediction based on the type of the expression x, possibly allowing
for minor variance with constructs such as the virtual method table. Python gives
us no such luxury. It always determines the invocation target dynamically, at
runtime, depending on the exact type of the object stored in x at the time of the
call. As we are working with a dynamic language, the variable gives absolutely
no indication of which types it may contain. For any static analysis tool working
with Python, this makes such determinations difficult at the best of times, and
impossible in general. The example in listing Listing 1.1 illustrates just one of the
difficulties a static analysis tool may encounter.
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Listing 1.1 Statically Undecidable Invocation

1 from module import A, B
2
3 if input() == "a":
4 x = A()
5 else:
6 x = B()
7
8 # A and B may be fully disjoint types
9 # They just both contain a method named foo

10 x.foo()

1.1 Goals
Due to the challenges associated with analyzing Python code discussed above, the
current implementation of the Python scanner in Manta Flow suffers from a lack
of accuracy when trying to resolve the targets of function invocations. This leads
to over-approximation and therefore reduced overall usefulness of the results it
produces. One way to address those problems is to imbue the scanner with more
information about the types of objects that can be stored within variables, based
on the idea that the more we know about those types, the more precise we can be
in determining which functions could be called. The main goal of this thesis is to
find a way to track this type information throughout the analyzed program. The
potential ways this information could then be used are many. This thesis focuses
on one of them, namely designing and implementing a better way of resolving
function invocation targets.

1.2 Outline
Before we can describe the proposed improvement in more detail, we need to
gain some fundamental understanding of the current state of affairs and its
limitations. Chapter 2 gives a brief overview of the Manta Flow platform as
a whole and outlines the structure and the main components of the Python
scanner, and Chapter 3 expands in more detail on the issues that this work aims
to address. Chapter 4 contains a detailed analysis of areas important to this
work. In particular, it focuses on Python’s type system, its rules for function
invocation, and known approaches used for type inference. Chapter 5 builds on
this analysis and describes the overall design used in this thesis and describes the
type analysis algorithm chosen for this work, object origin tracking. Chapters 6
to 9 each describe the design and implementation of one part of this work, namely
the algorithm for tracking runtime types, the extension of the scanner’s plugin
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system to accommodate type analysis, the creation of a new call graph, and
integration into the scanner. Chapter 10 then provides a detailed evaluation of the
impact this work has on the scanner in terms of both performance and precision.
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Chapter 2

Manta Flow Overview

The Manta Flow platform has been the subject of several theses and student
projects in the past. As such, it has already been extensively covered by others [2,
3, 4] and its various intricacies are unimportant to this work. Nevertheless,
it would be remiss of us not to give at least a brief outlook on its design and
structure, which we do in the first section of this chapter. The rest of the chapter
then explains in more detail the specifics of the Python scanner, with a special
focus on those components with which this work has to interact in some fashion.

2.1 Manta Flow
Manta Flow is a platform for automated analysis of data lineage. Given a soft-
ware system, it produces a data lineage flow graph, which shows how data can
travel throughout that system. Using Manta Flow, customers can simplify data
governance tasks, lower the time necessary to resolve data incidents, and overall
gain better insight into their data pipelines. Where a manual analysis of a large
interconnected system could take several people weeks to complete, the auto-
mated nature of Manta Flow means that, even in enterprise-scale deployments,
it can produce results in at most a small number of days, and possibly even in a
matter of hours.

Instead of generating the lineage dynamically by observing the system as it
runs—an approach taken by some data lineage tools—Manta Flow uses metadata
for its analysis. In a database, for example, the actual values stored are irrelevant,
it is only interested in the schema; for a business intelligence tool, it does not
need any generated reports, just the scripts used to generate them, and so on.
The upside of this strategy is that the platform doesn’t have to rely on an event
happening in order to notice it. A dependency between two services can be found
even if it was not utilized during the time the system was observed. The obvious
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challenge is that this approach has to rely on statically analyzing the metadata,
which is overall more difficult and, depending on the analyzed technology, can
lead to over-approximations, finding some connections that are not realistically
possible.

Because the platform supports many different technologies, it has to allow
for many different strategies for extracting and analyzing said metadata. A
PostgreSQL database cannot be processed the same way as a PowerBI script or a
Kafka schema. This problem lends itself to a modular solution, and Manta Flow
indeed has a highly modular design. Each of the more than forty scanners that
are currently implemented uses the same basic interface, which consists of two
parts:

1. The connector, further subdivided into two components:

(a) The extractor, which gathers all the necessary inputs from the analyzed
software and transfers it into a central well-defined location.

(b) The reader, which then processes those inputs to create a general
model of the analyzed application.

2. The dataflow generator, which takes the output of the reader and uses it to
generate a data lineage graph.

Once all the scanners finish their work, the resulting individual graphs are
then centrally combined into the final interconnected graph, which is presented to
the user. This design allows each scanner to handle the particularities of its own
technology while providing a common abstraction that is able to interconnect
anything from databases to general-purpose programming languages.

2.2 Python Scanner
As mentioned in the previous section, each scanner in Manta Flow consists of two
main parts—the connector and the dataflow generator. The dataflow generator
processes the results of the connector to generate the actual lineage graph. It
is not necessary to delve into the details of its operation for Python, as they
are unimportant to our work. The connector is further subdivided into two
components—the extractor and the reader. The work of those components can be
described in five individual steps (see Figure 2.1).

2.2.1 Extraction
In every scanner, the extractor is responsible for gathering data relevant for
the analysis and transferring it to the machine running Manta, in a format and
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Extract Source Code Process Input Create Call Graph

Compute AliasesSymbolic AnalysisCreate a Data Lineage Graph
from the Result

Figure 2.1 Steps Performed by the Python Scanner

location that the reader can work with. For the Python scanner, this essentially
means collecting the source code of all analyzed files. The main focus is on
extracting application code, that is, code written by the user. To provide the most
accurate lineage possible though, it may be also necessary to extract some library
code, i.e. code from another package—not written by the client—that is used from
the application.

The reader is designed to work directly with Python code, so the extractor
does not need to perform any transformations on the files it gathers. Simply
transferring them to a predetermined location is enough.

2.2.2 Input Processing
The syntax of Python is full of syntactic sugar and constructs that may be generally
useful for programmers but are of no importance to the reader. The first step
performed by the reader is therefore transforming the code into a representation
that is easier to work with. This bespoke processing tailored specifically to the
reader allows us to make actually working with the code easier and gives us
complete control over how it is presented to the rest of the scanner.

One illustrative example of such a transformation can be found in the so-called
magic methods. In Python, virtually every operator can be replaced with a call to
a specially named function. For example, the expression 'Hello' + 'world'
can be equivalently written as 'Hello'.__add__('world'). Similarly, list[x]
can be represented as list.__getitem__(x) and a for loop can be replaced by
a call to __iter__() followed by successive calls to __next__().

This is a feature that is mainly intended for operator overloading, but it is also
very useful for our purposes here. By transforming each such operator expression
into its equivalent method call, not only does the scanner not need to worry about
overridden operators, it does not need to explicitly handle almost any operators
in the first place. All that is necessary is the ability to handle called functions.
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2.2.3 Call Graph Construction
The third step, internally named infrastructure analysis, is concerned with con-
structing the call graph. The call graph can be thought of as a directed graph that
encapsulates which functions are called from any other function in the application.
Determining which functions are reachable from any given scope can be difficult,
so pre-computing this information can save a lot of time during analysis. (At
least, that is the hope. The deficiencies of this process, as described in Chapter 3
are in fact one of the main motivators of this work.)

Infrastructure analysis works with executables. An executable is simply some
part of the program that can be executed. Specifically, an executable is either a
function, a class, or a module that exists somewhere within the application.

There are two steps to infrastructure analysis. The first is the creation of a de-
scriptor map. Each executable in the analyzed application is assigned a descriptor.
Stored within this descriptor are parent–child relationships between executables.
If one executable is contained within another (say a function is defined within
a class), the latter is marked as the parent of the former. Each descriptor also
contains a map of import statements that appear within it, with links to the
executables being imported. This is a necessary part of call graph construction, as
functions are—unsurprisingly—often called from different modules. Being unable
to traverse the module boundaries would amount to a significant loss of available
information.

The second step is the actual construction of the call graph. The nodes of this
graph are the descriptors created in the first step. The edges represent caller–
callee relationships; an edge exists between two descriptors if the body of one
contains an invocation of the other.

2.2.4 Alias Computation
Within a program, some variables may be aliasing the same object. Consider the
following simple example:

1 a = [1, 2]
2 b = a
3 b.append(3)

At the end of this snippet, b contains the value [1, 2, 3], but so does a, as
they are both aliasing the same underlying value. This is not necessarily obvious
just from looking at the individual instructions, and it has to be accounted for in
the analysis in order to correctly detect and propagate data flows.

As a precursor to the actual analysis, the reader visits assign statements and
computes all aliases in different scopes of the analyzed application. Aliases are
context-sensitive, so this computation doesn’t store the actual values being aliased,

11



but merely the equivalence classes between expressions in a given scope (i.e. “in
function foo, variable a is an alias of variable b”).

2.2.5 Symbolic Analysis of Data Flows
Once all the prerequisite steps are completed, the actual symbolic data lineage
analysis starts. The analysis being symbolic means that the code is analyzed
statically, without any runtime information. This leads to some obvious losses in
precision. For example, in any non-trivial if/else statement, it is impossible to
statically determine which branch will be taken, meaning both possibilities have
to always be considered.

The analysis starts from the entry point of the application, which is the
executable (function or module) in which the application starts. It then proceeds
using a mainstay of data flow analysis, a worklist algorithm.

Each entry that is placed inside the worklist is represented by an invocation
context. An invocation context encompasses the function being called, the place
it is being called from, and any flows associated with the provided arguments.
When processing an executable, the analyzer computes an executable summary,
which represents the complete data flow information for that particular invocation
context. Whenever an executable summary changes, all the callers and all the
callees of that executable must be (re-)added to the worklist, as their flows may
be affected by this change as well. The analysis ends when the worklist becomes
empty, which marks a fixed point and means no new flows are being generated.

Within the analysis of each invocation context, the analyzer maintains a list
of tracked expressions and their associated flows. At the beginning of a function,
this list includes the parameters of the function, and their associated flows are
based on those of the provided arguments. Subsequent assignments and function
calls inside the body of the executable may introduce new tracked expressions.
For example, in an assignment expression, all flows associated with the expression
on the right-hand side are propagated to the expression on the left-hand side.

After symbolic analysis concludes, its output is passed to the dataflow gen-
erator, which transforms it into the final lineage graph that can be visualized in
Manta Flow.

2.2.6 Plugin-Handled Libraries
While introducing extraction, we touched on the need to handle library code as
well as application code. However, one important way in which libraries differ
from code provided by a customer is that library code is stable and its behavior
is well-known in advance. The Python scanner takes advantage of this with its
concept of plugins.
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For specific often-used libraries (such as the standard library or Pyspark), the
scanner never directly analyzes the code that defines the library implementation.
Instead, for relevant functions in that library, an explicit propagation mode is
defined, which emulates just the effect that function has on its inputs and outputs.
When a call to such a function is found inside the application, it completely
bypasses the worklist and just directly applies the configured propagation modes.
This has massive benefits for both performance (as analysis of library code doesn’t
explode the worklist) and precision (as automatic analysis of library code would
produce over-approximations and other faults which would then permeate the
main application). On the other hand, these benefits are offset by the need to
manually create and configure these propagation modes, so plugins are developed
judiciously only for libraries that are actually used by customers.
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Chapter 3

Limitations and Improvements

With the newfound understanding of how the Python scanner operates, we turn
our focus to the issues that cause the aforementioned lack of precision and discuss
the steps necessary for improvement.

3.1 Causes of Imprecision
The previous section makes note of infrastructure analysis and the call graph
as one of the structures computed before the analysis begins. As it turns out,
this concept has some major flaws. To explain those flaws, let us first dig a little
deeper into what actually happens during infrastructure analysis.

3.1.1 Descriptor Map
The creation of the descriptor map works without issue. This need not be a
surprise—after all, the structure of the descriptor map is influenced solely by
factors that can be computed statically. Whether an executable is contained
within another is apparent from the structure of the code and doesn’t change
during execution. What is imported by any given import statement is similarly
straightforward to figure out. We therefore have all we need to construct a correct
descriptor map without relying on any information produced at runtime.1

1An attentive reader may object that this statement is not completely accurate. Indeed, the
dynamic nature of Python code grants it practically unlimited potential for modifying its own
structure at runtime, including generating code and importing modules. We can name the
__import__() and setattr() functions as representative examples. Usage of such mechanisms
is however generally considered bad practice and is in fact so uncommon that the scanner is not
required to support them, so they merit no further consideration.
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3.1.2 Call Graph
Armed with the descriptor map, infrastructure analysis computes the call graph.
In this graph, nodes are the executable descriptors, and an edge leads from one
executable to another if the former contains an invocation of the latter.

There is the obvious problem of how these edges are computed. As we
hinted at in the introduction, determining which invocation corresponds to which
function in Python is difficult at the best of times, and impossible generally. The
infrastructure analysis is therefore resigned to a fairly straightforward approach,
which can be described in three steps:

1. Find the descriptor of the module in which the invocation was made.

2. From that module, recursively descending through imports and child de-
scriptors, find all functions with a matching name.

3. For each function found, try to match the invocation arguments to the
function parameters. If successful, include it in the result set.

This method is rooted in a general principle guiding the scanner, which is
that considering impossible options is preferable to leaving out possible ones. It
clearly doesn’t miss any possibilities, and any actual executable that is invoked
will always be found.

On the other hand, it is not hard to see why such a simplistic process results in
wild over-approximation. For one, it doesn’t take into account what the function
is actually being called on, or if it’s being called on anything at all. Static functions
may be matched on what is a call of an instance method, and vice versa. The
identifiers used in import statements are also completely ignored, gleefully passing
through modules that couldn’t possibly have been referenced by the invocation
expression.

Listing 3.1, consisting of two modules, illustrates the issue. On line 20, we see
the invocation x.foo(). Purely intuitively, we are able to determine that A.foo
is the only possible target for that invocation, as x always holds an instance of
A. The algorithm is unable to come to the same conclusion. It also considers
B.foo as a possible target, despite it being on a class that’s never instantiated. It
even considers module.foo a possibility, as it is reachable from the main module
through an import, even though the module isn’t even referenced after being
imported. There are some heuristics in place that prevent it from matching
main.foo, as that function cannot be called on an object, but in practice, those
don’t help very much.

This example is admittedly contrived, but it shows a real issue with the scanner.
In larger codebases, and especially in libraries, certain standard function names
are omnipresent, which results in a highly connected call graph and an untenable
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Listing 3.1 Ambiguous Function Call

1 ## module.py ##
2 def foo(x):
3 print('module.foo')
4
5 ## main.py ##
6 import module
7
8 class A:
9 def foo(self):

10 print('A')
11
12 class B:
13 def foo(self):
14 print('B')
15
16 def foo(x):
17 print('foo')
18
19 x = A()
20 x.foo()

increase in superfluous generated data flows. This work aims to improve the way
invocation targets are found, increasing precision to a point when any remaining
over-approximations are generally acceptable and don’t hinder the usefulness of
the scanner.

3.2 Goals
Some problems with the algorithm are easier to solve. Returning to the example
above, we can eliminate foo (line 16) as a possibility purely by considering the
syntactic form of the invocation—line 20 calls a method on an object, so it clearly
cannot end up resolving a global function. A similar thought process can eliminate
module.foo.

Other improvements are harder. To decide that B.foo is not a possible target,
we need to look at not only the invocation itself but the surrounding context as
well. The only way to make sure of that is to make sure that A is the only type
that is present in x. Our example makes that obvious, as the variable was assigned
on the very previous line. In the general case, getting the necessary context is
trickier. The variables may enter scope as function parameters, and they may
arbitrarily change their value at runtime. What’s more, the object of concern
doesn’t even have to be stored in a variable—any expression may produce an
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object on which we can directly call a method (foo().bar().baz()).
Behind this line of reasoning stands the core idea of this thesis. If we can

accurately track the types of objects that are possibly stored in each expression, we
can use those types to determinewhich functions are invoked on those expressions
and improve the overall accuracy as a result.

With this more complete understanding of the problems with invocation
target resolution, we can now specify that the desired improvement should occur
in two ways:

• For calls to functions that are “static” (i.e. not instance methods), improve
the search by taking into account more context surrounding the invocation.

• For calls to instance methods, create an algorithm that finds the types of
those instances and uses them to find the targets.

In order to achieve those improvements, the thesis has the following concrete
goals:

1. Analyze the mechanisms of function invocation in Python, its type system,
and existing approaches used to analyze it.

2. Create a module that is able to parse the class hierarchy of Python applica-
tions.

3. Design and implement an algorithm for tracking runtime types of expres-
sions in analyzed Python code.

4. Use the acquired data to create an improved method of finding targets of
function invocations.

5. Integrate the above into the Python scanner and adjust the scanner based
on the resulting improvements.

Besides these main goals, the thesis has one more slightly aspirational goal.
The Python scanner is currently incapable of working with function objects that
are assigned to variables or passed as callbacks to parameters of other functions.
This deficiency is only tangentially related to the main goals of the thesis, in that it
is a long-awaited area of improvement for the scanner which is somewhat related
to locating function invocations. If we are able, we would like to implement
support for this reassignment of function objects.
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Chapter 4

Background Analysis

In this chapter, we look at some background information necessary for designing
and implementing our extension to the scanner. First, since we are in the field
of type analysis, we naturally look at the rules that govern the type system in
Python. Then we analyze the ways functions are declared and invoked in a
Python program. We also show some existing approaches to type inference that
we considered and took inspiration from during this work.

As the first two sections are focused on various language features of Python,
the information gathered within them was collected primarily from the official
language documentation [5].

4.1 Python Type System
Python describes itself as an object-oriented language. As is the case with almost
any modern language, the practicalities of writing code have eroded some of the
purity attributed to any single programming paradigm, so this is not quite the
whole story. If nothing else, Python is also well suited for a more procedural
approach, to the point that someone opening a Python project could conceivably
be greeted with a file containing just a series of plain functions, top-level state-
ments, and some imports from other files written in a similar manner, giving an
impression of a structure that seems more akin to C than Java.

Similarly, the apparent embrace of a dynamic program structure and disregard
for any semblance of static typing may lead someone to think of the phrase
“Python type system” as almost oxymoronic.

Despite these impressions, the language at its core is fundamentally object-
oriented, and its type system is surprisingly robust, as we shall shortly demon-
strate. If we want to be able to analyze how objects of different types propagate
throughout the execution of a program, understanding these concepts is a neces-
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sary prerequisite. This section explains some key fundamentals in this area.

4.1.1 Data Model Basics
In Python, everything is an object. This includes all the data stored during
execution as well as the executed code itself. The former is unsurprising, though
we must point out that unlike in other object-oriented languages, there are no
so-called primitive values—the number 1 is represented as an object like any other.
The latter—representing parts of the program itself using objects—deserves some
more attention.

The concept of “code as objects” is as old as object-oriented languages them-
selves, and is by no means unique to Python. Still, it is a notable point of differen-
tiation from some other mainstream OOP languages. C++, for example, makes
clear syntactic and semantic distinctions between objects and classes. In Java, pro-
grammers have access to class objects (those being instances of the Class class),
but there are still restrictions imposed on classes that make them conceptually
separate entities. In comparison, Python’s approach is remarkably consistent.

If the interpreter finds a class definition, it interprets the body of that defi-
nition as a block statement and creates a new class object with the result. If a
function is defined within that class, a function object is added as a property of
the enclosing class object. Importing a module results in a module object being
created, containing the variables defined within that module. This makes work-
ing with different kinds of objects homogeneous; the mechanism for accessing a
function defined in an imported module is the same as getting a field of a class
instance. It also means some constructs can be found in places one might not
expect. It is entirely possible for a function to declare a class inside its body,
return an instance of that class, and then effectively discard it once execution
leaves its scope. Multiple invocations of such a function would produce objects
that are each an instance of a completely disparate class, even if all the classes
could effectively have the same name. Another common example of this is putting
import statements inside if/else blocks, such that some modules are imported
only under certain conditions, which can be determined completely at runtime1

4.1.2 Inheritance
As a class-based object-oriented language, Python of course has its own imple-
mentation of class inheritance. The topmost class in the entire class hierarchy is
object, which all other classes inherit from, be it directly or indirectly. On the

1For example, big modules containing class definitions used only for type hints may be
imported when a type checker is running, but omitted during “real” execution.
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other side, there are single-valued bottom types, which are not acceptable as base
classes. These are None, Ellipsis, and NotImplemented.

Each class can have one or more base classes. If a class defines no base classes
explicitly, it is implicitly a direct descendant of object. Conversely, multiple
base classes can be declared. This leads to obvious diamond problems—any two
parents will have at least object as a common ancestor.

Such hierarchies present a challenge when invoking functions, especially
when a super() call is used to explicitly invoke functions of base classes. When,
for example, a class is first initialized, we want all the initializers defined on every
superclass (and recursively, every superclass of those classes) to be executed so
that the initial state of the object is configured as expected. On the other hand,
none of these initializers should be run more than once for the same reason.
Similarly, if multiple base classes define an override of the same method, how do
we determine which one is called?

In languages with single class inheritance, the solution is trivial—simply walk
through the chain of inheritance, starting with the instantiated class and moving
up until the topmost point (whatever the language’s equivalent of object is) is
reached. For languages with multiple inheritance, where the ancestry of a class
can look like any directed acyclic graph, that’s not an option.

To address this, Python computes a method resolution order (MRO) of each
class to determine how methods are overridden. An MRO results in a linear
ordering of a class and all its ancestors, which can then be traversed much in
the same way as in single class inheritance situations. This ordering is called a
linearization of the class. Since version 2.3, it uses the C3 method [6] to generate
MROs.

Let us consider a class 𝐶 with base classes 𝐶1, 𝐶2, ..., 𝐶𝑁. The linearization of
𝐶, denoted 𝐿(𝐶), is calculated recursively as

𝐿(𝐶) = [𝐶] +merge(𝐿(𝐶1), 𝐿(𝐶2), ..., 𝐿(𝐶𝑁), [𝐶1, 𝐶2, ..., 𝐶𝑁]),

where [𝐶1, 𝐶2, ..., 𝐶𝑁] is a list of the enclosed elements and + a concatenation of
lists. The merge operation itself can be calculated as follows. Starting with the
head2 of the first argument, check whether it is in the tail of any other argument.
If it isn’t, remove it from all lists and add it to the result. Otherwise, check
again with the head of the next argument. This process repeats until either all
the arguments are empty, or no suitable head has been found, in which case
linearization is impossible and an exception is raised.

Another quirk of Python’s inheritance mechanism is that the base classes
need not be known until the class is constructed. As previously mentioned, a

2In this explanation, the head is the first element in a list, and the tail is the list of all other
elements.
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class definition is merely a kind of statement that creates a class object. The list of
base classes is therefore also only resolved once the class definition is interpreted.
This means, among other things, that any expression can be used as a base class
definition, as long as that expression results in a class object. Listing 4.1 shows
these possibilities in action.

Listing 4.1 Some Valid Ways to Specify Superclasses

1 class A: pass
2
3 class B(A): pass # direct usage
4
5 import m
6 class C(m.A): pass # using an attribute
7
8 def foo(): return A
9 class D(foo()): pass # using the result of a function call

10
11 class E(B, A): pass # multiple inheritance
12
13 x = [B, A]
14 class F(*x): pass # multiple inheritance using list unpacking

Python also adds the concept of metaclasses. A metaclass is, to put it simply,
a class that creates other classes. If regular classes can create instance objects,
metaclasses can create class objects. If a class definition contains a metaclass
keyword argument, after the definition is parsed and the corresponding class
object created, that object is passed as an argument to the __new__() method
of the declared metaclass, along with its assigned name, list of base classes, and
some optional attributes. The output of that method, rather than the original
object, is then bound to the specified name.

Metaclasses enable programmers to dynamically add additional methods and
other features to a class while avoiding boilerplate, or they can replace the class
definition with something entirely different. An example of declaring and using
metaclasses is shown in Listing 4.2.

Listing 4.2 Metaclass Example

1 class A:
2 def foo(self):
3 print('A.foo')
4
5 class Meta:
6 def __new__(cls, clsname, bases, attrs):
7 return A
8
9 class B(metaclass=Meta):

10 def foo(self):
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11 print('B.foo')
12
13 # Because of the metaclass , B is now equal to A
14 b = B() # b refers to an instance of A
15 b.foo() # prints 'A.foo'

4.2 Function Invocation Rules
If we want to be able to create a better search for targets of function invocations,
we must first understand the ways in which functions can be created and invoked.
This section focuses on just that topic.

4.2.1 Namespaces and Scopes
Before progressing further, we need to introduce two concepts, namespaces and
scopes. They will be important for the rest of this chapter.

A namespace is a mapping between names and objects. Whenever an identifier
is used in a program, a namespace—or rather, a series of namespaces—is used
to determine which object that identifier is currently referring to. Whereas in
other languages namespaces can be thought of as a more conceptual term, Python
gives them a literal meaning, implementing each namespace as its own internal
dictionary. As we would expect, the mapping defined by each namespace is
independent, and two namespaces can refer to two distinct objects by the same
name.

Different syntactical elements create new namespaces at different times. A
function creates its local namespace when it is called, and it ceases to exist at the
end of the function’s execution. The namespace of an imported module is created
when that module is imported, and the one containing all built-in names exists as
soon as the Python interpreter is started.

A scope is a textual region that uses a namespace. This means that that names-
pace is searched when an unqualified identifier is used within the corresponding
scope. At any given time, up to four kinds of nested scopes are present:

1. The innermost scope, containing local names.

2. The scopes of any enclosing functions, which contain non-local, non-global
identifiers.

3. The global scope of the current module.

4. The scope of built-in names.
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When resolving a name, the namespaces associated with these scopes are searched
in that order, with the enclosing function scopes searched from the innermost
one outward.

This implementation has some consequences that may be surprising to some-
one unfamiliar with the language. For one, scopes and namespaces don’t always
correspond to syntactic blocks. In other words, assignment to a variable done
within an if statement is reflected outside of it and may even overwrite a previous
value associated with that name. Another potential oddity is that not all names-
paces represent a scope. For example, names assigned within a class definition
cannot be accessed without a qualifier from the body of a function declared within
that class, as demonstrated in Listing 4.3

Listing 4.3 Scope vs. Namespace vs. Block

1 a = 0
2 class X:
3 b = 0
4 def foo():
5 c = 0
6 def bar():
7 d = 0
8 if True:
9 e = 0

10 print(a) # Works, accessible through the global scope
11 print(b) # Fails, no scope uses the X class namespace
12 print(c) # Works, nonlocal scope of foo()
13 print(d) # Works, local scope of bar()
14 print(e) # Works, also in local scope of bar()

The last notable consequence we will mention is that the names of built-in func-
tions and classes aren’t reserved; on the contrary, they have the lowest priority
of all the scopes. Declaring a variable named int or print is perfectly legal and
will effectively override the built-in identifiers with those names.

When assigning to a name, the local namespace is always used, even if that
name was previously found in some parent scope. The only exception to this
rule is when the global or nonlocal keywords are used with those names, in
which case the assignment happens in the global or innermost nonlocal scope
respectively, as seen in Listing 4.4

Listing 4.4 Assignments in Different Scopes

1 def foo():
2 a = 0
3 def local_assign():
4 a = 1
5
6 def nonlocal_assign():
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7 nonlocal a
8 a = 2
9

10 def global_assign():
11 global a
12 a = 3
13
14 local_assign()
15 print(a) # 0
16 nonlocal_assign()
17 print(a) # 2
18 global_assign()
19 print(a) # 2
20
21 foo()
22 print(a) # 3

4.2.2 Function Declaration
A function is declared with a function definition statement. The definition consists
of a header, which specifies the name of the function and its parameters, and a
body, which includes the code to be executed when the function is run. When
the interpreter encounters a function definition, it creates a new function object
(as described in Section 4.1), which is itself a wrapper around the code object that
represents the function body. This newly minted function object is then assigned
to the local namespace with the name declared in the header. We can check that
this is a regular namespace assignment for example by using the global keyword
with a function:

1 def outer():
2 global inner
3 def inner():
4 print('inner')
5
6 outer()
7 # 'inner' is accessible in the global scope
8 inner()

Because function definitions are just statements and functions themselves
are just regular named objects, they can appear anywhere a statement could
appear. We can have functions declared inside other functions, in if/else blocks,
inside class definitions, or directly at the top level of a module. Functions can be
re-assigned with new definitions or even replaced with regular objects.

Aside from the name, the definition header also includes the list of parameters.
A parameter can be one of five kinds, depending on how it can be assigned during
invocation:

24



• positional-only Can be assigned only positionally, i.e. foo(1).

• keyword-only Can be assigned only as a keyword argument, i.e foo(arg=1).

• positional-or-keyword Can be assigned either positionally or as a keyword
argument.

• var-positional Variadic parameter, specifies that any number of subsequent
positional arguments can be passed.

• var-keyword Variadic parameter, specifies that any number of subsequent
keyword arguments can be passed.

By default, all parameters are positional-or-keyword. To specify some subset of
parameters as positional-only, a special “/” token is inserted after them in the
parameter list. A var-positional parameter (commonly named args), of which
there can be at most one, can only appear after all positional-only and positional-
or-keyword parameters and is labeled by prepending a “*” before the parameter
name. To specify some subset of parameters as keyword-only, a special “*” token
can be inserted before them in the parameter list, or if a var-positional parameter
is present, following parameters are keyword-only by default. A var-keyword
parameter (commonly named kwargs), of which there can be at most one, can
only appear after all other parameters and is labeled by prepending “**” before
the parameter name. The combination of these rules can result in several forms
of the signature, some of which are shown in Listing 4.5

Listing 4.5 Examples of Valid Parameter Lists

1 def foo(pos_or_kw_1 , pos_or_kw_2): ...
2 def foo(pos_or_kw , *args, **kwargs): ...
3 def foo(pos_only , /, pos_or_kw): ...
4 def foo(pos_or_kw , *, kw_only): ...
5 def foo(pos_only , /, pos_or_kw , *, kw_only, **kwargs): ...
6 def foo(pos_only , /, pos_or_kw , *args, kw_only, **kwargs): ...

Aside from the name, each parameter can declare a default value by appending
“=” and an expression (e.g. def foo(a=0): ...). If a value for a parameter with
a default value isn’t supplied, the result of the expression is used instead. We
should note that the number and kinds of parameters are irrevocably tied to the
signature of a function, and aside from default or variadic parameters, a function
call cannot supply more or fewer values than the parameter list requires. It is also
notable that it is illegal for a positional-only or positional-or-keyword parameter
to have a default value if it is followed by other parameters of those kinds that do
not have one. This limitation does not apply to keyword-only parameters, which
can be interleaved at will.

25



A function can also be decorated with one or more decorators (see Listing 4.6).
After a function definition is processed into a function object, if any decorators
are assigned to the function, the function object is passed as an argument to the
decorator, and the result is bound to the specified name instead of the original
object. In a sense, decorators serve a similar function to metaclasses described
in Section 4.1.2, and in fact when applied to class definitions instead of function
definitions, they can be in some circumstances used for the same purpose.

Listing 4.6 Decorator Syntax

1 def positive_arg(func):
2 def inner(x):
3 if x < 0:
4 return func(-x)
5 else:
6 return func(x)
7 return inner
8
9 @positive_arg

10 def foo(x):
11 return math.sqrt(x)
12
13 # Equivalent way of applying the transformation:
14 foo = positive_arg(foo)

4.2.3 Calling Functions
When a call expression is encountered by the Python interpreter, first the target
of the call is found, using the scoping rules described in Section 4.2.1. Then, the
supplied arguments are matched to the function parameters. To do so, first, the
positional arguments are matched into the corresponding parameter slots. Then,
any keyword arguments are put into their appropriate slots using their name.
Lastly, if any parameters don’t have an assigned argument, their default value
is used, and any leftover arguments are collected into the variadic parameters.
If any step of this matching fails, for example, because a non-default parameter
wasn’t supplied a value, an exception is raised.

One feature—shown in Listing 4.7—that further complicates this process is
unpacking. When a star-prefixed collection is supplied in the argument list, it
is unpacked and each of its values is taken as a separate positional argument.
Moreover, if the collection is a mapping, it can be supplied with a “**” prefix,
in which case each key–value pair it contains is taken as a separate keyword
argument.
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Listing 4.7 Argument Unpacking

1 collection = [2, 3]
2 mapping = {b: 2, c: 3}
3
4 def foo(a, b, c):
5 print(a, b, c)
6
7 # These are all equivalent
8 foo(1, 2, 3)
9 foo(1, *collection)

10 foo(1, b=2, c=3)
11 foo(1, **mapping)

This makes matching arguments to parameters noticeably more difficult for
any kind of static analysis. Especially when variadic parameters interact with
unpacked arguments, there can be many different possible mappings, which we
must all consider to ensure that no valid assignment is missed.

One last particularity concerns instance methods. When an instance c of class
C is created, for each function defined on C (other than functions explicitly marked
as static or class functions), an instance method object is created and bound to
that instance. That instance method has the same name as its corresponding
function and is accessible as an attribute of the instance. The one place where
they differ is in their parameter lists.

Python has no concept of an implicit this value inside a method body. Instead,
the first parameter is used to contain the instance upon which the method is
being called (this parameter is conventionally named self). The instance method
object does this by taking its parameter list, converting it into a new one with
the first argument added to be the instance on which it is bound, and then
calling its corresponding method. This way, C.foo(c, x, y) is equivalent to
c.foo(x, y).

Finally, we must mention that functions (and instance methods) are not the
only callable objects in Python. We have already seen through examples that
calling a class object creates an instance of that class. The instance is created by
calling a static __new__() function (which is supplied any arguments passed to
the class call) and typically initialized using the instance’s __init__() method
(which is supplied the newly created instance as self, as well as any arguments
passed to the class call). Class instances can themselves be callable if they define
a special __call__() method, though this is seldom used.
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4.3 Type Inference Mechanisms
Despite its challenges, some techniques for generating type inference in Python
code have been developed. Since this work treads in similar waters, we would
like to use this section to look at some of these techniques and consider their
usefulness with regard to our problem domain.

4.3.1 Hindley–Milner Type System
Well-known and extensively studied, Hindley–Milner [7] is a system of typed
lambda calculus that has the ability to determine the most general type of any
expression in a given program. Built-in type inference features based on this
system are available in several programming languages, most notably in functional
languages such as ML or Elm. These languages are a natural fit for this approach,
as their structure more closely resembles the typed lambda calculus Hindley–
Milner is based on.

The quick gist of how type inference works in Hindley–Milner is by creating
a set of rules that specify some consequence of an expression in a given context,
then applying those rules until every expression in the program has been labeled.
We shan’t go into much more detail, because as we found, this isn’t particularly
useful in our case.

The type system of Python is vastly different from that of a statically typed
functional language. We would have to deal with issues such as heterogeneous
collections, dynamically changing types of variables, and OOP features such as
subclassing, none of which this type system is inherently equipped to handle.
Moreover, its high theoretical complexity would make any implementation—much
less a highly customized one required for Python—extremely difficult to build and
maintain. This combination of factors makes it a subpar choice for our use case.

4.3.2 Aggressive Type Inference
As a relatively obscure option, aggressive type inference [8] is a proposed method
initially conceived as part of a translation tool from Python to Perl. The main
idea behind this approach is that although Python is nominatively a dynamic
language, most programs don’t actually make use of this dynamicism all that
often. We can therefore make a fairly well-informed estimate of the types of a
variable based on just a few simple rules:

1. Flow insensitivity. Itself a core tenant of data flow analysis, it basically
means that the algorithm ignores any control flow structures and considers
every possible path through a procedure. A fitting rule for usage in an
application focused on analyzing data flows.
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2. Type consistency within a scope. This rule codifies the core thought out-
lined above. When a variable has some type T during its lifetime, it is
considered to have that type at every point in the scope where it is bound
to a value.

To look at a practical example of how these rules work together, let’s consider
the following method:

1 def foo(x):
2 print(x)
3 if input():
4 x = 123
5 else:
6 x = "foo"
7 print(x)

By the rule of flow insensitivity, the algorithm would determine the type
of x to be the union of str and int on lines 4, 6, and 7. By the rule of scope
consistency, it would also apply the same type to x on line 2. The implementation
of this approach could be fairly quick and straightforward and potentially produce
consistent results in a large percentage of situations. However, there are also
some problems we have to consider.

This method does not appear to have been expanded upon in a significant
capacity since its introduction, and the literature covering it is very scarce. This
includes any sample implementations—while the author reportedly developed
an implementation capable of generating type inference this way, that imple-
mentation doesn’t seem to have been made available, meaning we would have
to develop our own version using only the description provided in the paper.
Lastly, the rule of scope consistency is an issue. While most code may adhere
to the “mostly static” limitations as outlined, we are operating in an area where
over-approximation is always preferable to the loss of information, which is what
we risk when making that assumption. There will be situations where a variable
will completely change types within a scope, and we must be able to detect and
handle those situations. In other words, we cannot afford to be as aggressive as
this method suggests. Since this is a load-bearing part of the whole process, it
renders aggressive type inference impractical for the scanner.

4.3.3 Pyan
Pyan [9] is a library that aims to statically generate a call graph of a Python
program that boasts some impressive features. Unfortunately, while the appeal of
using a ready-made solution is clear, there are some glaring problems with using
it in our project.
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The last supported version of Python is 3.6, and based on the communication
from the developer, there don’t seem to be any current plans to develop the
project further. Furthermore, it is itself written in Python. Since Manta Flow is
distributed as a Java binary and may run on computers without a Python runtime,
this poses a distribution challenge. Finally, it is licensed under the GPL-2.0 license,
which would make it incompatible for use in a closed-source application.

4.3.4 MaxSMT-Based Type Inference
Typpete [10] was created as a novel approach to generating type annotations for
Python 3 programs. This program encodes the type constraints as a MaxSMT
problem, then uses an off-the-shelf SMT solver such as Z3 [11] to generate solu-
tions for that problem. According to the authors of this tool, the results of this
tool are competitive and scale to real-world programs.

The issues we encounter with this solution are similar to those we have seen
before. It makes some restrictions on what language constructs are acceptable
and disallows e.g. heterogeneous collections and dynamically changing the type
of a variable throughout the program. It would also require adding a whole
SMT solver into Manta Flow, which seems somewhat excessive for just this one
use case, it doesn’t support newer versions of the language, and the licensing is
ambiguous.

4.3.5 Machine Learning
There have been some recent advancements in type inference methods based
on deep learning methodologies. For example, Saifullah et al. [12] propose a
technique that, based on their experimentation, achieves up to 80 % precision in
correctly determining types in analyzed code with over 70 % recall.

While we would be remiss not to mention this group of tools, for the uses we
envision in our work with Manta Flow, we must reject machine learning at the
outset. Partially because of the lack of familiarity the team as a whole has with
such techniques and the lack of visibility into the results that we would expect
as a consequence. For the most part, though, it is because these methods are
necessarily probabilistic, and even though the confidence of any particular result
may be high, we simply cannot afford to misrepresent the type of an expression
and possibly mischaracterize the data flows connected to it as a result.
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Chapter 5

Overall Design

In the previous chapter, we explored some type inference mechanisms and
whether they fit our needs. To understand one reason why they didn’t, we
must realize that the goals and constraints of general-purpose type inference
algorithms tend to slightly differ from ours. The question they aim to answer is,
roughly, “Given a piece of possibly incomplete code, what type information can
we assume about it?” (In this context, we can imagine “possibly incomplete code”
as, for example, a function definition without any invocations or a module that
accesses a locally undefined global variable).

In our analyzer, we have complete information about the code we analyze.
Every argument of every function invocation has been previously defined some-
where, we have access to the full code of every imported module1. This simplifies
our task. Our objective is also different; rather than inferring types for general use
or for checking correctness, we are interested purely in increasing the precision
of the analysis of data flows inside the program. To put it another way, we don’t
care about the most general type a function could possibly return; we only care
about which types it returns in the invocations we specifically analyze.

5.1 Note on Precision
While we obviously want to reduce the number of possible targets of function
calls as much as we can, it is important to realize that we do not have to aim
for perfection. Since we’re performing type analysis largely as an optimization
measure, there can be approaches that would produce more specific results in
certain situations, but the performance and complexity of those approaches
would disqualify them from being useful. This fact has direct consequences on
our design.

1With the exception of plugin-handled libraries, which require special treatment.
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There may also be situations where we are unable to correctly infer type
information for an expression, or where an expression could literally be of any
possible type. Because we always prefer over-approximation over loss of infor-
mation, in cases where the target of a function invocation depends on such an
expression, we can (and must) fall back on the existing approach of matching
function names and parameter counts. To identify such cases, our type system
must include an explicit type denoting that no information is available. This type
is henceforth referred to as Any.

There are also some limitations that arise from any static analysis of Python,
and we should note situations that we can definitely not take into account up-
front. Unsurprisingly, these will be situations where some form of dynamic code
generation is performed. Functions such as eval, exec, or __import__ are not
generally statically analyzable, and while partial support could be added e.g. in
situations where they are called on a string literal, those don’t tend to be the
situations where these functions are used in the first place. Also unsupported are
constructs such as declaring classes through a type() call or changing inheri-
tance by setting the __bases__ property. The ways to dynamically mess with
the structure of Python classes and functions are too numerous to cover fully,
suffice it to say that if a program is doing something really strange, it’s probably
not supported.

Support is also currently not assumed for decorators and metaclasses, as those
are as a whole not supported by the scanner at the time of writing.

5.2 Main Idea
We are using a process we shall call object origin tracking. The thought behind
this process is simple: we have all the application code available to us. For every
function call, we know the arguments passed into it. For each assignment, we
know what expressions are on both sides. Using this information, we can track
known types of any variable—in fact, of any expression—throughout the program,
much in the same way that we track data flows.

Let us recall the worklist algorithm introduced in Chapter 2. The scanner
processes one executable, propagating the data flows throughout its execution,
then adds all the callers and callees of that executable to the worklist. The same
approach can work for propagating known types. Starting with the instruction
duringwhich an object is created (hence the name), we track the object throughout
assignments, function calls, and other operations to figure out what types are
contained in the result of those operations.

One benefit we gain with an approach that closely resembles the inner work-
ings of symbolic analysis is the possibility of the reuse of a lot of the existing
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infrastructure in the scanner. Instead of creating the solution wholly from scratch,
for some parts we only need to generalize existing components, which makes the
implementation simpler and more maintainable.

The similarities between these two concepts even led to a previous effort
that tracked so-called type flows directly alongside data flows during symbolic
analysis. However, the inflexibility of this solution—as well as the fact that
symbolic analysis was already by far the most complex part of the scanner—led
to the inevitable outcome in which these type flows were never successfully used
and had been removed from the scanner before this work began. Instead, we
propose type analysis as a separate preliminary step that happens before symbolic
analysis but can inform it. Chapters 6 and 7 provide a detailed explanation of
how type analysis was implemented.

To use any gathered information for a better search of possible targets of
function invocations, we construct a revised call graph. The call graph will be
based on the types gathered during type analysis and, for instance functions, will
only find invocations on types found in those instances. By converting the type
data into a call graph, we utilize an interface through which symbolic analysis
can yield the benefits of type analysis without having to know anything about
it—the new call graph is simply injected as a dependency, just as the old one was.
Chapter 8 documents the implementation of this new call graph.

5.3 Possibilities of Type Propagation
In order to successfully track expression types throughout the program, we must
examine how they can change during the course of program execution. There
are only two situations which can affect the type of an expression.2

• When a value is assigned to an expression, the type of the assigned value is
added to the list of possible types for that expression.

• At the end of a control flow segment (e.g. an if-else block), the possible
type of an expression becomes the union of all types determined in each
branch of that segment. (A union of any type and Any can be simplified to
Any.)

This section describes how different types of assignments can be processed.

2Since we’re using the worklist algorithm, we can never remove or replace possible types from
an expression, as that could cause the worklist to run indefinitely. We can only add new ones.
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5.3.1 Literal Value Assignment
The most straightforward case is when a literal value is assigned directly to an
expression. In those cases, we can clearly determine that the expression can have
the type of that literal. For example, x = 2 or x = ["a", "b", "c"] let us infer
the possible type of x as int and list[string], respectively.

5.3.2 Constructor Call Assignment
When a new object is initialized we can determine the type of that initialization
based on the invoked class. For example, x = A()means A is now a possible type
for x.

5.3.3 Expression Assignment
When one expression is assigned to another (as in x = y), the type of y is added
to the list of possible types for x.

5.3.4 Function Call
The interesting case occurs when we assign the return of a function invocation
into an expression (x = foo() or x = y.foo()). To determine the return value
of such an invocation, we must first resolve the target of the invocation itself, and
only once we do that can we actually process the resolved function.

Moreover, the return type can vary between invocations. If a function or
method accepts arguments, it can change its execution almost arbitrarily based
on the values passed into those arguments. The simplest example of this is the
identity function, which merely returns its input as an output—the return type
of such a function is wholly dependent on the type of its argument. Aside from
argument values, functions can also vary their flow based on the current state of
the program (for example by checking a global or instance variable), the result of
another function call, etc.

Given these complexities, it seems that in the general case, we have no better
option than to take the information we have about each invocation and the
provided arguments and use that to determine the correct return type.

It is here that the worklist algorithm comes in handy. When encountering
a function call, we can use whatever data was gathered for that function in this
context. We then schedule the function into the worklist, and any change in the
flows produced by the function will trigger another iteration of processing its
callers until we reach a fixed point. This way we can be sure that each expression
eventually gets all the data that was possible to find for it.
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It is worth noting that this is the one place where we could theoretically
be aided by an existing general-purpose type inference algorithm; producing
a general type of a function could alleviate some of the burden of this shifting
nature of function invocations. However, after careful analysis of the existing
approaches, it was deemed that their inclusion would be too complex and costly
for the potential benefit they might bring.

5.3.5 Plugin-Handled Functions
So far, we have been operating under the assumption that all code utilized by the
analyzed program is directly readable during the analysis. There is, however, one
situation where this assumption does not hold, and that is when dealing with
functions handled by plugins. For specific libraries where full implementation
either is not available (due to being written in another language), or its inner
complexities significantly overshadow its public API, we emulate calls to those
libraries through the use of predefined propagation modes. In order for type
tracking to function properly for these functions, their propagation modes also
have to add runtime type information to their return value.

In the simplest case, this information could be declared purely as an enumer-
ation of possible literal types. To accommodate basic functionality, we should
also extend such an enumeration with at least references to the type of one of the
arguments. For example, being able to define that a method can return self is a
prerequisite for any API that supports method chaining.

If it was deemed necessary, this declaration could be extended with some
more general kind of reference (i.e. a method could be declared as returning the
same type as another method with the same arguments). In the most generalized
version, we could even implement some sort of decision tree that would accurately
describe the return type based on the types (and possibly values) of the arguments
passed, though such generality seems unnecessarily ambitious.

To avoid any potential loss of information, any function that does not have a
defined return type must be implicitly assumed to return Any.

Details of the implementation that solves these issues are present in Chapter 7.
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Chapter 6

Tracking Runtime Types

This chapter describes how we implemented the tracking of types in the scanner.
The first section provides a more detailed explanation of what happens during
symbolic analysis, and the rest of the chapter shows how we utilized and extended
that process for the purposes of type analysis.

6.1 Symbolic Analysis Architecture
As previously alluded to, the core of the symbolic analysis is a worklist algorithm.
When describing the worklist algorithm in Section 2.2, we spoke of the way new
entries are added to the worklist based on invocation contexts, but little attention
was paid to the way the executables are actually processed. To understand howwe
can utilize the existing infrastructure for type analysis, we first have to understand
how it works in symbolic analysis.

6.1.1 Execution Simulator
We do not want a static analyzer to work directly with code (or directly with the
parsed statements created from the code). Such an analyzer would have to be
concerned with unnecessary detail about the exact representation of the program,
and it would obfuscate the analysis logic behind minutiae around the specifics of
handling expressions.

Instead, an intermediary layer is introduced that creates an abstraction over
this representation and, in essence, turns the parsed tree of statements into a linear
stream of events to be used by the analyzer. This layer is called the execution
simulator (or just simulator for short).

The simulator operates on symbolic expressions, meaning it does not care
about any values of the expressions it processes. Each kind of expression or state-
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Figure 6.1 Simplified Diagram of Processing One Executable During Symbolic Analysis

ment the simulator handles has a separate handler registered, which contains the
logic for simulating that kind of statement. For example, handlers for compound
statements (statements that contain a block of statements, such as a for loop) are
programmed to simulate the outer expression (the loop condition), and then in
turn each statement present within the block.

There are also special expression-transforming handlers, which convert the
parsed expressions created during the input processing stage (per Section 2.2.2)
into a different representation that is more suitable for the analyzer. This is
another way that the simulator makes implementing the analysis simpler.

6.1.2 Execution Visitor
Not all statements and expressions processed by the simulator are relevant to
the analysis. We know that data flow analysis is context-independent, for a start,
which means we do not have to care that much about the starts and ends of
control flow segments. Conversely, when a relevant statement does appear in
the simulator, we need some way of notifying the analyzer about it. This job is
performed by the Execution Visitor interface. Whenever the scanner needs to
process something using the simulator, it injects a visitor instance as a dependency,
and this dependency is then called whenever suitable expressions are found.

There are three execution visitor implementations in the scanner. Alias anal-
ysis uses two to collect all assign statements and return statements respectively.
Symbolic analysis uses its own visitor to implement the logic of how data flows
are created and propagated during the processing of a single executable. Note
that the visitor interface has default empty implementations for all statements,
so implementations can provide overrides only for the methods that they are
interested in and ignore the rest.
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6.1.3 Flows and Flow Sets
There are many types of flows in the scanner, depending on what data needs to
be propagated. When x = "str" is processed, a ConstantFlow containing the
literal is associated with x. A dictionary may have several DictionaryItemFlows
describing its contents. Even function and class definitions produce a type of
flow.1 The set of flows associated with any given expression is called a flow set.

The most important flows, however, are the kinds that represent some move-
ment of data. Reading from a file will result in a FileReadFlow being created,
which will contain a FilePathFlow describing which file was accessed. Similarly,
writing to a file produces a FileWriteFlow.

While these are the flows we are ultimately interested in, we have to track the
others as well for the scanner to be at all useful. Consider the following simple
example:

1 x = "file.txt"
2 with open(x) as f:
3 y = f.read()

Only by tracking the string literal that is assigned to x can we determine which
file was opened on the following line.

For every invocation context of every executable we analyze, a mapping
between expressions in that executable (including its parameters) and their flow
sets is maintained. This mapping is called the executable summary.

To be able to actually resolve the path of some data flow from beginning to end,
each “data sink” operation (i.e. a write of some kind) is also tracked separately
in the executable summary. The “important” flows also track their origins. For
example, if we read from a file to a variable x, associating a FileReadFlow with
it, and then we write that variable to a different file, the FileWriteFlow that
results will include a pointer to the read flow that was included in the flow set of
the written expression. When generating the final linage graph, we can look at
all the end operations we collected, then walk back through these links to obtain
the full path.

6.1.4 Method Invoke Manager
Invocations hold a unique place in the context of the analysis, as they represent
the connections between different executables. They must be handled uniquely
as a result. When processing an invocation expression, the analyzer finds all
possible targets for the invocation, then for each performs the following:

1Though those flows are not currently used for anything.
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• The invocation is recorded (for worklist purposes).

• The executable summary of the target is found.

• The flows currently associated with the parameters of the function are
propagated to the arguments of the invocation.

• The flows currently associated with a return expression of the function
are propagated to the invocation itself.

• Any nonlocal and global scoped variables are propagated to their outer
scope if necessary.

At least, that is what happens for application functions. Basing flows on a
return expression only works when there is a return expression that we can
see, i.e. when we have the code of the function available. For functions which are
defined via plugins, or even totally unknown to the scanner, we need a different
strategy.

The MethodInvokeManager class is responsible for ensuring all invocations
are handled correctly based on the semantics of the target. For application func-
tions, it completes the steps outlined above. For plugin-handled functions, it
delegates them to the plugin manager, which is able to apply the correct propaga-
tions based on the provided configuration for the function.2 And for functions
that do not fall into either of those categories, a specially designated identity
handler is used.

The identity handler is a consequence of the idea that the scanner should
try not to lose potential data flows, even when it does not have all the relevant
information. When an invocation of an unknown function is found, be it because
it is from a library the scanner does not have a plugin for or because it was
defined using a construct the scanner does not support, we have no notion of
what the effect of that function might be. The best we can do, then, if we do not
want to lose all the potential flows, is to simply take flows from all arguments
of the invocation and pass them into the return value, which is precisely what
the identity handler does. For single-argument invocations, this is equivalent to
applying the identity function, hence the name.

While better than simply dropping flows, applying the identity handler can
still spoil the result of the analysis, especially when combined with an imprecise
search for invocation targets. When the possible targets of an invocation are
found to be both a function that we can process regularly as well as one that
has to be processed using the identity handler, we have to apply both, effectively

2More on this process in Chapter 7.
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mixing the unprocessed arguments into the result. This can then have a cascading
effect for the rest of the analysis.

To determine how the MethodInvokeManager should process any given call,
each function is assigned a processing mode during infrastructure analysis, which
then informs how to handle said function. There are four main processing modes:3

• Application-Handled—The function is a regular application function for
which we can analyze the source code directly.

• Plugin-Handled—The function has defined propagations in a plugin.

• Skipped—The function is configured in a plugin to explicitly note that its
result is not relevant to data flow analysis and no propagations should be
applied for it.

• Identity-Handled—The function should be processed using the identity
handler.

6.1.5 Data Flow Analyzer
Now that all the component pieces have been introduced, we can show how they
are combined. The DataflowAnalyzer class is the top-level class through which
symbolic analysis is run. After some initial setup, it begins the worklist algorithm,
starting from the entry point of the analysis (see Figure 6.2).

In each iteration, it takes one invocation context from the work list, copies its
execution summary, then runs the simulator on the invoked executable.4 After
the simulation is finished, it stores the resulting execution summary in a map
under its invocation context.

If the summary changed in any way (meaning new flows were added), the
worklist is updated. We add the invocation context of each registered caller and
each registered callee, and we also re-add the context we just processed. Doing
so ensures that the analysis stops only once a fixed point is reached. If any new
invocation contexts were created during the simulation, they are always added to
the worklist, even if the flow of the current function did not change.

The result of the analyzer is the collection of invocation contexts and their
corresponding executable summaries that were encountered during the analysis.

3There is one more processing mode, group-handled. Its semantics are a bit more complicated
and we explore them in detail in Chapter 9.

4Remember that only application executables enter the worklist, calls to plugin functions are
propagated directly.
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6.2 Reusing Existing Infrastructure
In Chapter 5, we introduced the idea that due to the way we approach type
analysis, we want to utilize as much of existing code from symbolic analysis as
possible. We initially considered only the reuse of certain components, such as
the worklist and the concept of flows. However, after further consideration, we
discovered that the overall structure of type analysis would very closely mimic
that of symbolic analysis.

Instead of implementing these structures separately, then, which would
result in large amounts of code duplication, we therefore directly utilize
DataflowAnalyzer for type analysis, parameterized in a way that enables
us to use it for our purpose. That way, the crux of type analysis will run using
exactly the same codebase as symbolic analysis, with changes made only where
necessary (and of course with different semantics). This realization somewhat
shifts the focus of this work. Rather than describing only the additions we’ve
made to implement type analysis, significant attention must also be given to what
was changed in the existing codebase.

Much of the code used by symbolic analysis is what we might call “glue”. We
use this term to describe code that is necessary for the analysis to work but is
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not specific to the particular semantics of symbolic analysis. In this group, we
include for example all classes related to administering the worklist, calling the
simulator on invocations, creating and managing invocation contexts, handling
variable scopes, and so on. All such code is available for reuse to type analysis.

We identified three parts as being specific to symbolic analysis:

• The flows. While the general concept of propagating flows can be reused
for type analysis, the actual implementations of flows that are created in
symbolic analysis are not reusable.

• The execution visitor of symbolic analysis, ExecutableAnalysisVisitor.
This class implements the logic of how different statements are processed
during symbolic analysis. As such, it cannot be used for other purposes.

• The plugin handlers. Plugin-handled functions use specific propagation
modes to create flows. The results of these propagations are specific for sym-
bolic analysis—because they produce the flows used by symbolic analysis
if nothing else—and a separate way to manage those functions is necessary
for type analysis.

These findings give us a natural way to parameterize DataflowAnalyzer:

• New classes for type flows are created.

• A new execution visitor specific to type analysis is implemented, which
propagates type flows as described in Section 5.3. A new dependency to
DataflowAnalyzer is added that lets us specify which visitor instances
are used.

• A new set of plugins for type analysis is created. DataflowAnalyzer is
already parameterized by the plugin manager, so type analysis needs only
to create a new one containing this new set of plugins.

After these adjustments, we are able to generate executable summaries for
either type analysis or symbolic analysis by running DataflowAnalyzerwith the
appropriate parameters set. The rest of this chapter describes in detail how each
of the first two changes are implemented. The implementation of new plugins is
then discussed in Chapter 7.

6.3 Type Flows
The flows used in symbolic analysis are all implementers of the PythonFlow
interface. This interface defines only a few basic methods, all of which have default
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implementations and are therefore usable in type analysis. We implemented
PythonFlow with our own abstract base class, TypeFlow, from which all other
flows inherit (see Figure 6.3). This allows all structures that expect to work with
flows—such as flow sets or executable summaries—to seamlessly work with type
flows as well.

Every type flow needs to store the information about which type it represents.
Since each executable—and in particular, each class—is assigned a descriptor in
infrastructure analysis, we use these class descriptors to determine the type stored
in the type flow.

For the most basic type flow, aptly named SimpleTypeFlow, this is all it stores.
Not all types can be represented that simply, though, and one outlier in particular
would cause problems if we tried to do so—collections.

6.3.1 Collection Types
Let us imagine the following snippet:

1 l = [1, 2, 3]
2 x = l[0]

We see that l is of type list, as it was just assigned a list literal. What is
the type of x? If those two lines follow each other, then we can tell it is int,
but there is no way to make that determination just based on the fact that l is a
list. We need a way to also store the inner types stored within the collection.
In the parlance of Python, we could more accurately describe the type of l to be
list[int].

To that end, we created a second class of type flows, CollectionTypeFlow.
This class is a subclass of SimpleTypeFlow because every collection type is also
a regular type. If we called type(l), the answer we would get is just list. In
addition, it stores a TypeFlow instance that describes which inner type it contains.

43



We need this to be represented by a type flow rather than just a second descriptor
since we have to support nested collections as well—list[list[list[int]]]
is a perfectly valid type signature.

Python collections are also heterogeneous, and the inner type of one can
change at any moment, as shown by Listing 6.1. To simplify things, we do
not try to store all of the inner types within one collection flow. Instead, for
each inner type, we create a wholly separate type flow that has that inner type.
To put it another way, we take advantage of the fact that for our purposes,
list[int, str] is equivalent to list[int], list[str].

Listing 6.1 Collections Changing Inner Types

1 lst = [1, 2, 3] # list[int]
2 lst.append("foo") # list[int, str]
3 lst.pop() # list[int]
4 lst += [2.0, "foo"] # list[int, float, str]
5 lst.clear() # list

To see why this assertion is true, let us examine the two main operations
we want to perform on a flow set containing type flows. Firstly, we might want
a set of all possible types of the expression that is associated with that flow
set. This is the same as getting the class descriptor that is associated with each
flow in the set, and in the aforementioned example of list[int, str] versus
list[int], list[str], both interpretations give us the same answer, list;
twice in one case, but that is not a problem. Secondly, in case the associated
expression is a collection, we might want a set of all possible inner types contained
within that collection. This is the same as getting the inner type flow from each
flow in the set, and then getting its class descriptor. Again, both cases provide
the same two answers: int and str.

This representation can lead to counter-intuitive results when used with
nested collections. The flows of such a collection, say [(1, 2.0), ("foo", 3)],
would result in the following set of flows:

list[tuple[int]], list[tuple[float]], list[tuple[string]]

This happens even though none of the individual flows exist by themselves as
types within the expression, and we even lose the connections of which innermost
types are together in the same tuple. Nevertheless, applying the same two main
operations, even recursively, we still always get the correct result. This is in
large part because we process expressions symbolically, so the actual positions
of elements within a collection are irrelevant; whenever an expression returns
one element, we must consider all of the possible inner types for it, whether it is
accessed using a complex sub-expression or a constant index.
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6.3.2 Mapping Types
There is a special kind of collection in Python called a key–value collection
(sometimes also called a mapping). Not only do such collections contain values,
they contain explicit key–value pairs. Accessing such a collection using a key
gets you its corresponding value. The dict class is the prototypical example of a
mapping inside the standard library.

Formappings, we need to remember both the key and the value associatedwith
the flow. Thus, a new KeyValueTypeFlow class is introduced. It is a descendant of
CollectionTypeFlow, as every key–value collection is conceptually a collection.
In addition, it adds a key field that contains the type flow associated with a
particular key–value pair.

There is an argument to be made that all collections are actually key–value
collections. What is a list, if not a particular kind of mapping where all the keys
are integers? This is in fact the view taken by symbolic analysis, where only
one kind of flow exists to represent lists and dictionaries alike. The reason type
analysis explicitly separates the two is twofold.

First, it conceptually tracks more closely the way these types are represented
in Python. A list is not defined as a variant of a dictionary, it is its own type.
Even the typing module, which provides definitions for type hints used in the
standard library, contains separate Collection and Mapping definitions. The
second, much more pragmatic reason, has to do with iteration.

When a collection such as a list or tuple is iterated over, it returns all of its
values in sequence, as expected. This is illustrated in Listing 6.2. When a mapping
such as a dict is iterated over, it returns all of its keys instead. To help differentiate
the two, a getIterationElementType() is defined on CollectionTypeFlow
and overridden on KeyValueTypeFlow to return the inner value and the inner
key respectively.

Listing 6.2 Iteration of Collections and Mappings

1 l = [1, 2, 3]
2 for element in l:
3 print(element) # prints 1, 2, 3
4
5 d = {"a": 1, "b": 2, "c": 3}
6 for element in d:
7 print(element) # prints "a", "b", "c"
8 print(d[element]) # prints 1, 2, 3
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6.3.3 Unknown Types
There are situations that type analysis explicitly cannot handle. Some library
function may not have any configured propagations (recall the identity handler
from Section 6.1.4). Some functions may be declared using syntax we do not
support, or may be accessed through a superclass definition we are unable to
parse. For such situations, we need to mark the flow set accordingly and fall back
to the older, less precise way of finding invocation targets where the associated
expression is involved.

The UndeterminedTypeFlow class serves this purpose. It is a singleton and
does not contain any data. Instead, it serves as a marker that we are unable to
properly figure out the possible types of an expression. In a sense, it is a semantic
equivalent to Python’s Any type, representing that something could be literally
anything.

Once UndeterminedTypeFlow is in a flow set, it is pointless to add any
further flows to it. A union of Any and anything else is just Any. It can still be
used as a component of other flows without issue, though, with signatures such
as list[Any] and dict[str, Any] being both possible and meaningful.

The existence of this type flow means that the getter for returning the descrip-
tor associated with a flow returns an Optional instance rather than the descriptor
itself. For all other flows, it can be unwrapped to get the underlying value. For
UndeterminedTypeFlow, an Optional.EMPTY value is returned, indicating no
class descriptor is associated with this flow. Coincidentally, this is the way we
can detect whether this flow is present in the flow set.

6.4 Type Analysis Execution Visitor
The execution visitor used for type analysis is implemented in a class named
TypeInferenceVisitor. This class is responsible for creating and propagating
types correctly throughout the flow of a function. Here are the statements it
handles.

6.4.1 Tuple Definition
(1, 2, "foo", 4, (a, "b"))

This expression is handled straightforwardly. From its parsed represen-
tation, we get a list of its items. For each item in this list, we create new
CollectionTypeFlows of the tuple built-in class that contain the flows in that
item’s flow set. The newly created collection flows are then added to the flow set
of the tuple definition.
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We should note that list definitions are not handled explicitly. Instead, the pars-
ing service decomposes them by transforming the initialization from [1, 2, 3]
into the equivalent #__builtins__.list((1, 2, 3)), turning them into a
tuple definition and a call to the list constructor.

6.4.2 Dictionary Definition
{"x": a, "y": b, "z": 4}

Dictionary definitions are similar to tuple definitions. We get a list of
key–value pairs from the parsed representation of the code and create a new
KeyValueTypeFlow of the dict class for flows associated with those pairs.

6.4.3 Assign Statement
x = a.b

We take all flows associated with the expression on the right-hand side and
propagate it into the flow set of the expression on the left-hand side. We do the
same for all aliases of the left-hand side that were found by alias analysis.

6.4.4 Return Statement
return x

We create an instance of a specially designated ReturnExpression class. We
then propagate the flow set of the expression being returned (x) into its flow set.
This class is used to find flows that are propagated as the result of an invocation
of this function.

6.4.5 Invoke Expression
x.foo()

To process an invocation, we first need to find its possible target. Here we
seemingly run into a kind of chicken-and-egg problem, since one of the goals of
type analysis is to create a better way of resolving invocation targets. However,
our usage of the worklist algorithm allows us to solve it in a way that we cover
in Chapter 8.

For each target found, we create a mapping (or rather, mappings—remember
the unpacking feature from Listing 4.7) between the arguments of the invocation
and the parameters of the executable. This mapping, along with the flow sets of
the arguments and information about the caller, is used to create a new invocation
context for this call. That context is then passed to the method invoke manager,
which facilitates the actual propagation of flows resulting from that call.
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Special handling is required for targets that are classes, i.e. for invocations that
create a new class instance. In those cases, we check if the class has a constructor
declared on it, and if so, we handle it as though it was the constructor that was
being invoked. Constructors do not have any return statements, but that is not
an issue—we already know that the result of such an invocation will be a new
instance of the class being created, so we can add a type flow of that class directly
to the flow set for the invocation.5

6.4.6 Other Statements
The five kinds of statements described above are all we need to analyze the
entire application. This is mostly thanks to two reasons. First, the context-
insensitivity of the analysis means we do not need to care about control flow
statements. Second is the fact that most of the expressions available in Python
are transformed into invocations during parsing. We do not need special logic
for a + b, because it is converted into a.__add__(b). This transformation is
possible for just about every operator in the language, saving us work we would
have to do by implementing them all explicitly.

6.4.7 Inline Flow Generator
We have not yet considered how we process expressions such as numeric or string
constants. Consider, for example, the tuple definition (1, 2, "foo"). The first
step in processing it is to take the flows associated with each item in the tuple.
We would imagine that this would result in simple type flows of int and str,
but where do those flows come from? There is no visitor method for processing
constants, and we cannot replace a constant with a method call (not without
using another constant, anyway).

It is important to understand that such expressions are useless to store in
the executable summary because their flows can always be computed ad-hoc as
needed. No matter where we write "foo", its value (and its type) will always
be the same. For this reason, the scanner introduced the concept of inlined
expressions.

When propagating flows from some expression, the scanner does not just
look up the flow set and do a simple copy. It also checks the type of the source
expression, and if it is one of these inlined expressions, it creates the inline flows
for them based on their value.

This used to be hard-wired into the propagation code and created flows used
in symbolic analysis. For example, 1 would correspond to a ConstantFlow with

5The constructor still has to be processed though, because it may create e.g. some properties
on the created instance.
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a value of one. That does not work for type analysis, where the desired flow
would instead be a SimpleTypeFlow of type int.

To address this, we extracted that logic into a separate abstract class named
InlineFlowGenerator. This class is responsible for generating flows on the fly
for string and numeric constants, as well as the unary not and the individual
key–value pairs in a dictionary definition. Each execution visitor provides its
own implementation of this class when propagating types, which deals with the
specifics of what flows should be included for inlined expressions.

As we said, we do not want to have these flows waste space in the executable
summary. That is why, at the end of every method in the execution visitor, a
clean-up operation is performed that prunes all inlined expressions from it.
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Chapter 7

Plugin-Handled Functions

The newly added execution visitor can work with application code that is run
through the simulator, but it has no ability to handle functions that are only
configured through library plugins. This chapter describes how we added type
information to such plugins, as well as an alternate approach that was considered,
but ultimately rejected.

7.1 Type Hints
This section describes a considered approach that, while ultimately rejected, is
nevertheless worth discussing.

Since Python 3.0, the language syntax allows for annotations that add arbitrary
metadata to functions [13] (and since Python 3.6, to variables as well [14]). These
annotations simply allow a user to associate some expressions with various parts
of a function definition, they do not by themselves affect the semantics of the
code. For variables (and function parameters), they are added by appending a
colon followed by the annotation directly after the variable. For function return
values, a “->” followed by the annotation is inserted between the parameter list
and the colon that ends the function header.

Although practically any expression is usable as a function annotation, by far
the most prominent use case of them became adding type information to function
signatures. This practice was standardized in Python 3.5 [15], with clearly defined
syntax and semantics of how these so-called type hints are to be written. We can
see an example of this syntax in Listing 7.1. Notably, these are still completely
optional and do not have a direct effect on the annotated code. They do not serve
to restrict the runtime to be statically typed, they merely inform programmers
and/or static analysis tools of expected types in the signature of a function.
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Listing 7.1 Type Hints Syntax for Function Signature and Variables

1 from typing import Union
2
3 def visit(edges: dict, start: str, visited: set[str]) -> set:
4 visited.add(start)
5 neighbors: Union[set[str], None] = edges.get(start)
6 if neighbors is not None:
7 for neighbor in new_neighbors:
8 if neighbor not in visited:
9 visit(edges, neighbor , visited)

10 return visited

Since type hints are just metadata, nothing in the language itself enforces or
ensures their correctness. Annotations such as x: str = 3 are legal and will
not cause the running program any difficulty, though there are external tools that
can detect and warn against such errors.

Utilizing type hints is tricky for application code because we do not know
how much it will be annotated, or how correct any provided annotations are.
As a reference point, at the time of writing, no prospective customer of Manta
interested in the Python scanner provided a single code sample that contained
any type hints.

Libraries are a different story. The APIs of at least commonly used libraries
tend to be well-annotated to inform developers on how to use them. If we were
able to parse the type hints associated with return values of functions, we could
use those to generate appropriate type flows whenever handling such functions.
These annotations are present either directly in the source code of the library or
in separate repositories containing stub files—files containing only the annotated
signatures of classes and functionswithout implementations. Appendix B contains
a list of places we could use to find type hints for each plugin currently in our
scanner.

Tempting as this idea undoubtedly is, we found several issues that made it
undesirable to implement.

7.1.1 Return Type Polymorphism
Suppose we have a class A, and a class B which is a subclass of A. If a function foo
is annotated as returning A, it does not necessarily mean it returns only instances
of class A; rather, it means that either A or any of its specializations (such as B)
could be returned.

Any implementation relying on type hints for return values therefore must be
able to traverse the class hierarchy not only upwards—for situations such as those
described in Section 4.1.2—but also downwards, to determine all possible types
returned from a function. In situations where these two problems combine, e.g.
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when calling a method on an object returned from a library function, we would
even have to do a combination of both, due to Python’s multiple inheritance.

Note that we cannot even simplify this search by restricting ourselves to
types that originate from the same library, as one might initially expect. Consider
a scenario where a library function is passed a function object annotated as
returning A, and then returns the result of calling that function (and is therefore
also annotated as returning A). The actual return value can be defined in the scope
of the caller, invisible to the library itself.

7.1.2 Hinting Complexity
After careful study, we must point out that the type hinting mechanism of Python
is farmore complex than initially thought. Following their initial introduction [15],
no less than twenty-four subsequent PEPs1 related to typing have been accepted,
with three more open at the time of writing. Some of these extensions are fairly
straightforward, such as simplifying the syntax for type unions [16] or adding a
type for Self. These could be easily added to the scanner once initial support is
established. Some, however, are muchmore problematic, and could even introduce
completely new concepts to the analyzer such as structural typing [17], which is
currently wholly out of scope for this work.

It must be said that this complexity need not be an issue by itself. We could
initially support only the most relevant subset of these features, and add more as
time goes on. Furthermore, it is our belief that outside of libraries most uses of
type hints tend to stay fairly simple, if they are used at all.2

The real issue becomes apparent when examining the library stub files. In
their desire to be both maximally correct and maximally expressive, the APIs of
some libraries often create a lot of complicated, difficult-to-parse general types,
which then permeate the entire library through importing, aliasing, subclassing,
and combinations thereof. As such, it seems that a host of specific complex
features would have to be supported before any meaningful percentage of these
libraries was successfully parsed. Furthermore, the annotated source or the stub
files can contain language features that our scanner either does not support or
are not compatible with being analyzed symbolically. To name but one example,
if statements that provide different function definitions based on which version
of Python is used are common in API stubs.

1Python Enhancement Proposals.
2This was likely a contributing factor to our initial underestimation of the complexity of the

type hint system.
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Illustrative Example: dict

To see this complexity in action, let us look at a class as fundamental and (seem-
ingly) simple as dict, the built-in dictionary. Its (abridged) stub definition3 is
shown in Listing 7.2.

Listing 7.2 Abridged API Stub of dict
1 _KT = TypeVar("_KT")
2 _VT = TypeVar("_VT")
3
4 class dict(MutableMapping[_KT, _VT]):
5 @overload
6 def __init__(self) -> None: ...
7 @overload
8 def __init__(self: dict[str, _VT], **kwargs: _VT) -> None:
9 ...

10 @overload
11 def __init__(self, __map: SupportsKeysAndGetItem[_KT, _VT]):
12 ...
13 @overload
14 def __init__(self: dict[str, _VT],
15 __iterable: Iterable[tuple[str, _VT]],
16 **kwargs: _VT) -> None: ...
17 def __new__(cls, *args: Any, **kwargs: Any) -> Self: ...
18 def copy(self) -> dict[_KT, _VT]: ...
19 def keys(self) -> dict_keys[_KT, _VT]: ...
20 def values(self) -> dict_values[_KT, _VT]: ...
21 def items(self) -> dict_items[_KT, _VT]: ...
22
23 @overload # type: ignore[override]
24 def get(self, __key: _KT) -> _VT | None: ...
25 @overload
26 def get(self, __key: _KT, __default: _VT) -> _VT: ...
27 @overload
28 def get(self, __key: _KT, __default: _T) -> _VT | _T: ...

Just based on this partial definition of a single class (the actual dict stub is
over twice as long), let us list the features we would need to support to be able to
parse the class properly:

• The @overload decorator and overloaded methods, including overloads
that have the same signature except for type hints.

• Generic classes and type variables, including partially specified generics.

• The Self return type.

3From https://github.com/python/typeshed/

53

https://github.com/python/typeshed/


• Type unions using the simplified syntax.

• The Any type.

• The typing.MutableMapping class, which inherits from the Mapping
class, which inherits from the Collection class, which inherits from the
Iterable class, the Container class, and the Protocol class. Each with
its own set of methods to parse.

• Structural subtyping (due to the transitive inheritance from a class imple-
menting Protocol).

• The SupportsKeysAndGetItem internal protocol.

• Matching the correct overload to an invocation based on the type hints of
the arguments, including protocols.

• The dict_keys, dict_values, and dict_items internal generic classes,
each with its own inheritance chain.

That is a fairly substantial list already, and we have barely scratched the surface.
Even looking a bit deeper into just the dict class, we find such features as
covariant and contravariant type variables (dict is covariant in its value type,
but invariant in its key type), definitions that change based on the Python version,
type aliases, and more.

For a more comprehensive overview of the claimed complexity, Appendix C
gives an analysis of every approved PEP related to typing and the extent to which
it would impact the implementation of this proposed parser.

7.1.3 Accuracy
As was already said, type hints are not enforced by the runtime. Libraries—
especially reputable ones—are probably more vigilant than most in keeping ev-
erything correct, errors still happen, whether because of a mistake made by the
developers or because of inaccuracies caused by our scanner.

7.2 Plugin Configuration
Not only did we initially underestimate the full intricacies of type hints, it seems
we also somewhat overestimated the effort required to add propagation types
manually. For context, Table 7.1 shows the total number of functions handled
by each data flow plugin. With this in mind, we decided to extend the existing
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Plugin Number of Configured Functions

builtin 202
pyspark 63
pandas 11
databricks 9
sqlalchemy 6
delta-spark 5
awsglue 3
boto3 3
Total 302

Table 7.1 Configuration Size of Plugins For Different Libraries

configuration to also provide propagations for type analysis, then manually
configure those propagations.

The configuration of data flow plugins is defined in XML files. Each plugin
is encapsulated in a top-level <Plugin/> tag. Each module in the plugin has
its own <Module/> tag, which stores the name of the module as an attribute
and any classes or functions handled within that module as children. The most
notable part of the configuration is the <Function/> tag, which describes the
actual configuration of a single function. It naturally contains a name attribute,
describing the function’s name. As its children, it first has a list of <Argument/>
tags, describing the number and names of parameters the function has. Then
comes a list of <Propagation/> tags (see Listing 7.3 for an abridged example of
such a configuration).

Listing 7.3 Abridged Plugin Configuration of list
1 <Module name="builtins.py">
2 <Class name="list">
3 <Function name="append">
4 <Argument name="self"/>
5 <Argument name="object"/>
6 <Propagation mode="collectionAdd"
7 from="arg(object)" to="receiver"/>
8 </Function>
9 <Function name="pop">

10 <Argument name="self">
11 <Argument name="index">
12 <Propagation mode="getItem"
13 from="receiver ,arg(index)" to="returnValue"/>
14 </Function>
15 </Class>
16 </Module>
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A <Propagation/> tag defines a single propagation that should happen when
a function is processed. It does so using three attributes. The first two, from
and to, specify the source and target endpoints of this propagation and can have
several values. An endpoint in the format of "arg(name)" refers to the parame-
ter of the function named name. For instance methods, a "receiver" value can
be used as a shorthand for "arg(self)". A "returnValue" target means the
result of the propagation is assigned to the return value of the function. Finally,
specifying "context(name)" lets us reference a special ephemeral context vari-
able that only exists while processing the function. This endpoint allows us to
store intermediate values and chain different propagations together into the final
result. The endpoints need not have just a single such value, they can contain a
comma-separated list of them.

The third attribute is mode. The handler for each propagation mode is im-
plemented as its own class that encapsulates its name and internal logic. When
processing a function, the value of the mode attribute is used to find and invoke the
appropriate handler with flows from places specified in the from endpoint. The
flows resulting from this invocation are assigned according to the specified target
endpoint. The invocation also receives an instance of the PropagationContext
class, which stores metadata about the invocation such as the caller context and
the executable summary of the processed function. It is also used to store the
current context endpoint data.

The list of propagations is optional. If a function is configured without having
any <Propagation/> tags, it is taken as an indicator that no interesting flows
are created by it. Such a function is marked as skipped and is not handled at all
when encountered.

7.2.1 Type Analysis Extension
This configuration system is surprisingly versatile, and because we are using flows
to propagate type information, only a few changes were needed to add support
for type analysis. First, a new <TypePropagation/> tag was added. This tag has
the exact same syntax as <Propagation/>, with the only difference being that
one is only considered during type analysis and the other only during symbolic
analysis.

Second, we created a new source endpoint marked as "type(name)". This
endpoint is used when the source of a propagation is a predetermined type.
For example, a function always returning a string may be configured with a
type propagation passing flows directly from type(str) to returnValue. For
situations where we know we cannot figure out the returned type, a special
type(#Undetermined) variant of the endpoint may be used, which returns
UndeterminedTypeFlow.
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This configuration of course has to be manually added to each plugin. As
part of this work, we have added the configuration for the builtin plugin where
appropriate. The configuration of the other seven plugins mentioned in Table 7.1
is left as future work, though we feel there should be no major obstacles to their
addition using the current system.

Third, new propagation modes had to be added to implement the specifics
of type propagation. We introduced eight new modes, which we can group into
three conceptual categories.

Initializers

The collectionType propagation mode takes two source endpoints: a collection
type and an inner type. It wraps each flow from the inner type endpoint in a
CollectionTypeFlow with the collection type and propagates it to the target.
The setKeyValueType propagation mode is similar, except it takes three source
endpoints instead of two and creates KeyValueTypeFlow instances. The third
mode in this category is initializeCollection, which is used for creating
collections from other collections. It takes two source endpoints, then for every
CollectionTypeFlow in the second source propagates a copy of that flow, except
its collection type is changed to that of the first source endpoint.

Unwrappers

The getCollectionValueTypes takes all CollectionTypeFlow instances in
the source and propagates their inner value type flows into the target. The
getCollectionKeyTypes mode does the same with the key type flows of only
KeyValueTypeFlow instances, and getCollectionIterationTypes unwraps
the correct flow that would be returned when iterating the collection. Lastly,
getCollectionItemTypes is used to emulate the behavior of dict.items(). It
turns each KeyValueTypeFlow in the source into a two-tuple containing the key
and value flows, then propagates a tuple of those two-tuples.

Superclasses

The final propagation is getSuperclasses and exists to emulate the call to
super(). With no source endpoints required, it only looks at the class containing
the called method, takes its superclasses, and propagates a SimpleTypeFlow of
each of those superclasses to the target.
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7.3 Plugin Composition
The additions to the configuration require support in the plugin handler and
parser of plugin definitions. As with much of the design of type analysis, the
goal is to be as transparent as possible to the inner components utilized by the
analyzer, i.e. as few components as possible should care whether symbolic or type
analysis is running. The implementation is a reflection of this general principle.

We should start with the simple observation that <Propagation/> and
<TypePropagation/> elements never need to be accessed at the same time—they
are each used only during one part of the analysis. Besides this differentiation,
the tags have basically identical semantics. This means we need hardly any new
constructs to create the parsed representation of a <TypePropagation/> tag.
The classes used for parsing <Propagation/> suffice.

7.3.1 Parsing Plugins
The configuration of each plugin is parsed into an object of the DataflowPlugin
class. Each instance of this class stores a map of all functions configured
in that plugin and their associated handlers, which are represented by the
DataflowPluginHandler class. Each handler contains a list of instances of
the PropagationModeHandler class. These instances represent parsed han-
dlers of individual <Propagation/> tags in the function, and they contain the
resolved source and target endpoints as well as the PropagationMode object
corresponding to the mode set on that tag (see Figure 7.1).

At the top of this hierarchy is the DataflowPluginManager class. The plugin
manager is a container for all the plugins and is responsible for providing an
interface the rest of the scanner can communicate with, as well as delegating
any requests to the appropriate plugin. To that end, each plugin implements a
canHandle()method that checks whether a given function is in its configuration,
and the plugin manager then dispatches requests using the chain of responsibility
pattern.

The hierarchy is composed using the Spring IoC container, with relevant
classes configured as Spring beans and automatically injected with necessary
dependencies (see Figure 7.2). Some parts are created directly, with dependencies
passed into their constructor, others are made using dedicated factory methods
or classes. The process of composing the final structure goes approximately as
follows:

1. The beans for each propagation mode are created and registered into the
bean for PropagationModeHandlerFactory.

2. The bean for DataflowPluginFlowHandlerFactory is created.
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AnalyzerConfiguration

DataflowPluginManager

1

1

1

0..*

DataflowPluginFlowHandler

1

0..*

PropagationModeHandler

1

0..*

PropagationMode

Global scanner configuration

All reader plugins in the scanner

One reader plugin

One plugin-handled  <Function/>

One function <Propagation/>

A propagation mode

0..*

1

DataflowPluginFlowHandlerFactory

<<creates flow handlers with>>

<<instantiates>>

PropagationModeHandlerFactory
<<instantiates>>

<<creates propagation handlers with>>

<<resolves>>

DataflowPlugin

- configure(): void

- configureFunction(DataflowPluginConfigurationFunction): void

<<parses>>

<<creates>>

JaxbConfigurationSerializer

Configuration XML file

<<calls>>

<<configures functions with>>

<<hardcoded path to>>

<<gets propagations from>>

Deserialized XML

Figure 7.1 Plugin manager construction. The center column shows the main con-
structed hierarchy, with the left column explaining its semantic equivalent and the right
column containing other auxiliary classes. Underlined classes are created as Spring
beans.
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3. The beans for each data flow plugin are created. During that process,

(a) The XML configuration of the plugin is deserialized.

(b) Using a visitor that was passed to the deserializer, the plugin’s
configureFunction() method is called on each deserialized func-
tion.

(c) This method in turn uses DataflowPluginFlowHandlerFactory.
That factory extracts all deserialized propagation tags and uses
PropagationModeHandlerFactory to create all propagation mode
handlers.

(d) The resolved propagation mode handlers for a single function are
wrapped in a DataflowPluginPropagationHandler, which are
then all stored in the plugin we are currently constructing.

4. With all reader plugins composed, the DataflowPluginManager bean is
constructed.

7.3.2 Type Analysis Extension
As we described in Section 5.3.5, we can accomplish the support for type analysis
plugins by injecting a different plugin manager into the data flow analyzer. To do
that, we had to change the construction and composition of the plugins so that
two managers are created instead of one. These plugin managers are practically
identical in structure, except one is constructed using only <Propagation/> tags
and the other using only <TypePropagation/> tags. This necessitated a few
updates.

DataflowPluginFlowHandlerFactory used to be a regular class and
got the list of propagations assigned to a function directly from the deseri-
alized XML configuration. We turned it into an abstract class with an abstract
getPropagations() method. It has two implementations, one for each kind
of analysis, with each implementing that method to return the appropriate list
of propagations. Since both tags have the same syntax (and virtually identical
semantics), they can be represented by the same type once deserialized, so this
approach is sound and the rest of the parsing code can work the same way
regardless of which one is used.

Changes were also necessary in the Spring configuration. Each of the now
two instances of the flow handler factory needs to be created in its own bean.
Each of the newly created type analysis plugins also needs to be created in a bean.
All plugins are represented using DataflowPlugin, the only difference between
those used in symbolic analysis and those used in type analysis is which flow
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DataflowPluginManager
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DataflowPlugin DataflowPlugin...

Type Analysis Additions

Figure 7.2 Structure of the Spring configuration. An arrow from bean A to bean B
represents “A is dependent on B”.
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handler factory is injected into them. To be able to differentiate the two when
composing the plugin managers, a qualifier4 of either "symbolicAnalysis" or
"typeAnalysis" was added to each plugin bean.

With those changes made, we can parse the configuration into two separate
plugin managers that are appropriately passed into the data flow analyzer.

7.4 Propagation Context
There was still one issue left to address, and it was related to the propagation
context. We can recall from Section 7.2 that the propagation handler is passed
an instance of the PropagationContext class with metadata about the analyzed
invocation. We needed to add fields relevant to type analysis into this context.
Specifically, the type() source endpoint needs access to the call graph and the
getSuperclasses propagation mode needs access to the class hierarchy. Con-
versely, there are some fields in the context that type analysis either should not
care about or might not even be available during type analysis.

To remedy this, the PropagationContext class was turned into an abstract
class, containing only the fields relevant to both analyses, and two subclasses were
created for it, containing those fields that weren’t. This meant that most of the
propagation mode handlers—children of the PropagationMode class—now had to
depend on one specific PropagationContext subclass rather than on the generic
version. That led us to implement two abstract subclasses of PropagationMode
that cast the provided context into one of its implementations. The actual prop-
agation modes were changed to inherit from one of those subclasses and use
its corresponding propagation context subclass. Only a few modes that can be
feasibly used in both variants were kept depending on the generic versions.

Once that was settled, we still had to find a way to create instances of the
appropriate propagation context. These instances used to be created in the plugin
manager and then passed down into the individual plugins, but since the plugin
manager should be independent of the type of analysis it is used for, that is no
longer an option. Instead, we lifted the creation outside of the plugin manager
and made it accept an already-created context.

The plugin manager implemented a general interface for classes able to pro-
cess executables called IExecutableHandler. This is the interface implemented
by ExecutableHandler (responsible for processing application functions),
IdentityHandler, and other auxiliary handlers. It is also the interface used
to access the plugin manager from the method invoke manager. However, that
interface naturally does not include any dependency on PropagationContext,

4https://docs.spring.io/spring-framework/reference/core/beans/
annotation-config/autowired-qualifiers.html
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so it does not make sense to implement once we introduce that dependency
to the plugin manager. Instead, we created two different adapters over the
plugin manager. These adapters implement IExecutableHandler by taking the
passed arguments, creating the desired propagation context from them, and then
delegating the call to the plugin manager. These adapters are what is actually
passed into the data flow analyzer instead of the plugin managers themselves.
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Chapter 8

Replacing the Call Graph

One of the main motivators for implementing type analysis in the scanner was to
provide a better, more precise way to resolve targets of function invocations. In
this chapter, we show how that was accomplished.

There are mentions of “statically resolvable” expressions throughout the
chapter. In this context, that means expressions we can properly trace to the
function/class/module they are referencing without needing to know the values
of any variables or the results of any function calls. For example, if the statement
import m exists in a module and module m contains a class C, then m.C is statically
resolvable. The same is true for the expression n.C used under the statement
import m as n and for C under the statement from m import C. Conversely,
if we later make a variable assignment such as x = m, or define a function foo
that returns the module m, then x.C or foo().c are not statically resolvable.

In practical terms, a statically resolvable expression is one that we can properly
determine using only the results of infrastructure analysis.

8.1 Class Hierarchy
Suppose we know x is of type A. When considering the expression x.foo(), the
definition of foo can be inside A, but it can also be inside any of its superclasses, or
transitively in any of their superclasses. As a consequence, a properly constructed
class hierarchy is a necessary part of any type-based call graph. The scanner had
no preexisting mechanism to parse the class hierarchy of the analyzed application,
so we had to create one.
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8.1.1 Finding Superclass Descriptors
Superclasses are declared using a comma-separated argument list in the header
of the class definition. To parse the class hierarchy, we need a way to map the
expressions that define these superclasses to the classes they correspond to.

In this work, we limit ourselves to statically resolvable superclass expressions.
As we have shown in Section 4.1.2, any expressions can be used as long as they
resolve to a class object at the moment they are interpreted. However, trying to
analyze them statically in their most general form is impossible, and most super-
class expressions tend to be limited to straight names of classes, specified either
directly or through an imported module, so this approach should be sufficient to
cover most use cases. There are also ways to modify the superclasses of a class
after it has been defined, for example by accessing the __bases__ property of
the class object. Such operations are also explicitly not supported.

Statically resolvable expressions come in one of two forms. Either a simple
identifier (x), or a chain of identifiers (x.y.z.C). These can conceptually be
thought of as the same thing, with a simple identifier being a chain of length one.
To find the (statically resolvable) targets of such an expression, we mimic the
scoping rules of the language.

First, we find possible targets of the first identifier in the chain (see Listing 8.1).
We do this by starting at the current scope (the scope in which the class is defined),
then moving upwards through enclosing scopes until we reach the module. In
each scope, we look for possible executables that are defined in that scope under
that identifier. We collect the descriptors of those executables into our starting
set.

Listing 8.1 Finding the Start of an Identifier Chain

1 Set<IExecutableDescriptor > findExpressionBase(
2 IExecutableDescriptor scope, String identifier) {
3 var targets = new HashSet<IExecutableDescriptor >();
4 // Walk up the enclosing scopes, searching each of them
5 while (parent.getDescriptorType() != MODULE) {
6 targets.add(scope.findIdentifier(identifier));
7 scope = scope.getParentDescriptor();
8 }
9 targets.addAll(scope.findIdentifier(identifier));

10
11 // Search the builtins module
12 targets.addAll(builtinsModule.findIdentifier(identifier);
13 return targets;
14 }

Luckily, the descriptor map provides us with the findIdentifier()method
on each descriptor that allows us to search for executables found in that descriptor
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under the provided name. This method handles class and function definitions
as well as import statements, including import aliases and star imports, greatly
simplifying this process for us.

One thing wemust not forget is that the built-in namespace is always available,
so we must also look in the builtins module for the start of the chain. In
str.count, the str identifier is part of builtins.

We should also consider whether it is necessary to always walk through all the
enclosing scopes. In real execution, the innermost scope that contains the desired
identifier is always used. However, definitions and imports can be conditional, so
we cannot rely on them always existing at runtime. For this reason, we have to
take the safer option of always going all the way to the level of the module.

Once we have found the base of the chain this way, we traverse iteratively
through the rest of the identifiers (see Listing 8.2). Taking the starting set from
the previous iteration, we try to find executables under the current identifier in
each executable from the set. This results in the starting set for the next iteration.
We then repeat this process until we have gone through the entire identifier chain.

Listing 8.2 Updating the Set of Found Descriptors

1 identifiers.remove(0); // remove the head of the chain
2
3 // iterate through the other identifiers in it
4 for (String identifier : identifiers) {
5 targets = targets.stream()
6 .flatMap(descriptor -> descriptor
7 .findIdentifier(identifier).stream())
8 .collect(Collectors.toSet());
9 }

10
11 // remove non-class results
12 targets = targets.stream()
13 .filter(desc -> desc.getDescriptorType() == CLASS)
14 .collect(Collectors.toSet());

Since—by definition—only classes can be superclasses, the resulting set is
filtered to only the class descriptors contained within, and those descriptors are
the final result of the search.

Once we do this for all expressions in the argument list of the class, we
get a set of all its possible superclasses. Repeating this for all classes in the
analyzed application (we do not need it for plugin-handled functions, as those
have explicitly defined propagations), we get a map from every application class
to a set of its possible superclasses. This map serves as our class hierarchy.
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Example

To fully illustrate this process, let us consider an example of a Python program
with several modules found in Listing 8.3. In this example, we will be searching
for all possible superclasses of MainClass. The class only has one superclass,
defined by the expression base.Class.Subclass, which we are trying to find
the possible targets for. The first step is finding the “base” of this identifier chain,
in this case aptly named base.

We start with the scope in which MainClass is defined, which is the scope
of the function foo. There is one dependency with the name base found in that
scope, specified by an import statement. We add it to the set of possible targets.
Then we move on to the parent descriptor, which is that of the mainmodule. This
module contains another dependency with the name base created by an import
statement, as well as a class of that name. Both of these are added to our set.
Since there are no more parents to go to from the module, we stop the search
there. There is no class or function with the name base in the built-in namespace,
so they do not contribute in this case.

targets == {main.base, module, package}

Next, we go through the rest of the expression segment by segment, trying to
look for nested identifiers within found descriptors.

The first segment considered is Class, so we iterate through the three targets
found so far to find a matching descriptor within them. The main.base class
contains a Class class, so we add its descriptor to the new targets. The module
module contains three possible matches for this identifier: two classes and one
import dependency. All three are also added. The package package contains the
module Class.py, which is accessed under the name Class from it, so we also
add it to our set. Thus concludes the first iteration. To disambiguate between the
targets, we will refer to some of them using the aliases added in the comments
next to their definition.

targets == {main.base.Class, classes.Something,
module.Class_1, module.Class_2, package.Class}

Wemove on to search for the next segment, Subclass. There is an executable
of that name in main.base.Class, so we mark it as a possible target. The same
is true for classes.Something, module.Class_2 and package.Class. Notice
that module.Class_1 has no Subclass, so we simply drop that path from the
list of possibilities. Thus concludes the second iteration.

targets == {Subclass_1, Subclass_3, Subclass_4, Subclass_5}
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Listing 8.3 Superclass Resolution Example

1 ## main.py ##
2 import module as base
3
4 def foo():
5 import package as base
6 class MainClass(base.Class.Subclass):
7 ...
8 return MainClass()
9

10 class base:
11 class Class:
12 def Subclass(self): # Subclass_1
13 ...
14
15 class Class:
16 class Subclass: # Subclass_2
17 ...
18
19
20 ## module.py ##
21 from classes import Something as Class
22
23 if False:
24 class Class: # module.Class_1
25 ...
26 else:
27 class Class: # module.Class_2
28 class Subclass: # Subclass_3
29 ...
30
31 ## package/Class.py ##
32 class Subclass: # Subclass_4
33 ...
34
35 ## classes.py ##
36 class Something:
37 class Subclass: # Subclass_5
38 ...
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This is the final iteration, as we have reached the end of the superclass ex-
pression. As the final step, we remove all results that are not classes. This leaves
us with Subclass_3, Subclass_4, and Subclass_5 as the final possible targets
for the expression.

Careful examination of the source reveals that these are in fact exactly the
valid possibilities for that expression. We discarded Subclass_1 due to being
a function, and Subclass_2 was never even considered, as it is not inside any
valid base.

Imprecision

Let us revisit the limitation of handling only statically resolvable expressions. Even
when we cannot properly resolve a superclass expression, there are situations
when we can at least detect that we cannot resolve it. A typical case of this is
when the expression itself is in an incompatible form, such as when a function
call or an unpacking expression is encountered.

To note such situations, the values in the class hierarchy contain not only the
set of possible superclasses but also a boolean flag that identifies whether there
were any issues during parsing. This flag is set as true if either the expression
is in a form that is not statically resolvable, or the final set of targets is empty.
That way, subsequent analysis does not have to rely on the possibly erroneous
assumption that all superclasses were resolved correctly and are included in the
class hierarchy.

Nested Packages

So far we have considered traversing through the chain of identifiers segment
by segment. That may not necessarily be semantically correct. Consider the
following snippet, where p is a package and m is a module within it.

1 import p.m
2 class B(p.m.A): ...

Our solution would first search for a descriptor corresponding to p, then
for m within that descriptor, and finally for A within that. However, p does not
correspond to a module, and no dependency is imported as p into our scope.
Luckily, infrastructure analysis handles this for us.

When we fetch the identifiers represented by an import statement such as
the one above, we not only get a reference to p.m, but also a faux reference to
p. If p is a regular package, the value under p in this mapping is the descriptor
for the p.__init__ module whose dependencies are artificially extended with
all modules present in the package. If p is just a namespace package, a special
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#namespace_init descriptor is created for it, also containing the modules in
that namespace.

8.1.2 Searching for Functions in Superclasses
Once we have the class hierarchy constructed, we can query it to find functions
defined within the ancestry of a given class.

In Python, this search uses the C3 linearization order, as shown in Section 4.1.2.
Sometimes that search stops after finding the first match (e.g. when finding
identifiers), sometimes it goes through the whole list (e.g. when handling super()
calls).

We could try replicating that process, but the possibility of conditional defini-
tions makes that challenging. If we stop the search at some class C that contains
the desired method, there is no guarantee that that class was actually created
during any particular execution, or that the method was actually created within
it. There is also the possibility that C is in the hierarchy only as the result of some
over-approximation, meaning stopping there would never be correct. We are left
with no better option than to always walk through the whole ancestry of the
class.

This walk presents another potential pitfall. Hierarchies in Python have to be
acyclic as a result of the limitations imposed by the linearization method, which
means the ancestry of a class always forms a DAG. No matter how one might
try to define or modify the list of superclasses, if it cannot be linearized, the
operation results in an exception being thrown by the interpreter. Just because
cycles cannot appear at runtime, however, does not mean they will not show up
in our constructed hierarchy. Consider the example in Listing 8.4.

If condition always evaluates the same for both files, then this is valid Python
that will execute without error. Either B inherits from A in the if branches, or A
inherits from B in the else branches (see Figure 8.1).

We cannot knowwhich is which, nor canwe know anything about the equality
of the two conditions, so we have to consider all possible choices. When analyzing
C, we have to link to both definitions of A as parents. The second A definition is
linked to both definitions of B for the same reason, as is the first definition of B
to both definitions of A. Those last two statements cause a cycle in our parsed
hierarchy between the second definition of A and the first definition of B, where
each refers to the other as its ancestor.
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Figure 8.1 Possible Hierarchies in Listing 8.4

Listing 8.4 Cycles in the Hierarchy

1 ## a.py ##
2 if condition:
3 class A: ...
4 else:
5 from b import B
6 class A(B): ...
7
8 ## b.py ##
9 if condition:

10 from a import A
11 class B(A): ...
12 else:
13 class B: ...
14
15 ## c.py ##
16 import a
17 class C(a.A): ...

While we have to be mindful of such situations, they do not pose a significant
challenge to the algorithm at large. We only have to make sure we are searching
the ancestors in a way that can detect cycles. We chose to implement it using a
simple DFS search, which handles them natively.

As we are searching, we keep track of whether any of the found superclass
sets have the “contains unresolvable expression” flag set. If we find one that does,
we immediately abort the whole search and return an empty result. We do this
because in such cases we know that whatever ancestry we would return would
not be fully correct. Rather than do that and risk a potential loss of targets, we
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let the caller know that the search failed and it can resort to a different approach
that does not rely on the hierarchy.

8.2 Building a Call Graph
Throughout this thesis, we have shown how difficult it is to create anything
resembling a static call graph for a Python application. Now, we show how we
use the information provided by type analysis to build one that, while not perfect,
is a definite improvement on the existing mechanism.

This process occurs, perhaps unsurprisingly, in the execution visitor for type
analysis. Earlier in Chapter 6 we alluded to the idea that when handling invocation
expressions, the visitor has to find the possible targets of the invocation. This
search happens in several steps.

First, the expression is viewed as though it is statically resolvable, and all
targets that are reachable as such are found. Any functions found this way are
added to the list of possibilities directly. For any classes found this way, we add
their constructor, if they have one.

Next, if the function is called on some object, we use a second search, based
on collected type flows. This search starts by getting the flows of the object on
which the function is called (a.b for a.b.foo()) and getting the types those
flows represent. For each of those types, we look inside it, and inside any classes
in its ancestry, and try to find methods with a matching name. Any found are
added to the list of possibilities.

Finally, the list of possibilities is filtered to only those functions whose signa-
ture can match the arguments provided in the invocation. This final collection is
then stored as the possible targets for that expression.

The visitor does all of this using one of its dependencies, a class named
TypeAwareInvocationResolver. This class is responsible for performing the
aforementioned searches and for storing the possible targets for invocations. It is
one of the outputs of type analysis and serves as the improved call graph used
in symbolic analysis. During symbolic analysis, a search of possible targets for
an invocation expression translates to a lookup in the table of saved targets that
were found during type analysis.

8.2.1 Iterative Construction
This method looks deceptively simple, but there are some questions that have
to be carefully considered. One such question concerns the correctness of the
method. The second search relies on the type flows found during analysis so far,
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but those flows may not necessarily be complete. Can we be sure that this partial
result will not cause us to miss any possible targets?

It turns out we can, thanks to our usage of the worklist algorithm. When
encountering a function call for the first time, if we do not know all possible
types of the object it is called on, we can use only the ones we know right now,
possibly skipping the function if no types are known. If more possible types are
discovered later, they will be processed in a subsequent iteration of the worklist.

8.2.2 Over-approximation Safeguards
We also have to ensure that we detect situations when the search is meaningless
or imprecise and respond accordingly. We included several checks in the search
process for this purpose.

If there is an UndeterminedTypeFlow in the flow set of the object on which
a function is called, we abort the type-based search before even starting it. If
the ancestry of one of the types contains an unresolvable superclass expression,
the whole search fails. If either of these happens, the expression is marked as
“unknown” in the call graph and we fall back to the old imprecise method of
searching for targets.

Note that we cannot do the same if no targets were found. We might imagine
that an empty result is caused by an error or unsupported feature, but that need
not be the case. Because we are creating the call graph iteratively, it could very
well be the case that the correct targets will be found in some future iteration,
and prematurely marking the expression unknown would ruin our chance to do
so. If, however, no targets for an invocation were found during the whole type
analysis, we can safely treat them as unknown.

The search for targets made during symbolic analysis takes these safeguards
into account. If an expression is marked as unknown or has no associated targets,
the fallback search is used. Otherwise, we return the targets stored in the map of
our call graph.
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Chapter 9

Integration

This chapter describes other changes made as part of this work that do not neces-
sarily relate to its main goals but were necessary or desirable for our purposes.

9.1 Removing the Old Call Graph
Recall from Chapter 2 that infrastructure analysis occurs in two parts. The first
creates the descriptor map, which tracks import dependencies and hierarchical
relationships between executables. The descriptor map is also responsible for the
old way of finding invocation targets.

The second step creates the call graph, which stores caller–callee relationships
between executables. These relationships are then used when administering the
worklist. At least, that was the initial idea and what all available documentation
described at the time of writing.

As we found out during our work, this explanation was not accurate to
the actual implementation and hadn’t been for over two years. While the call
graph was being constructed (by finding the possible targets of all invocations
found), the resulting mappings were not used anywhere in the scanner. Instead,
symbolic analysis creates its own call graph, which is built iteratively—whenever
the execution visitor processes an invocation, it registers the caller and callee
invocation contexts. The call graph created by infrastructure analysis was only
used for delegating calls that were handled by the descriptor map.

We can only speculate why this change was made, as there does not appear
to be any documentation related to it and the person who made it no longer
works at the company. Our best theory is that the main reason was a difference in
granularity. The extendable call graph created by symbolic analysis can operate
directly on invocation contexts, which makes it easy to determine which contexts
should be added to the worklist after one context is processed. By contrast, the
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infrastructure call graph worked with executables. Relying on it to update the
worklist would therefore result in both more work and possible imprecision, as
adding the caller/callee of an executable would mean adding all contexts in which
that executable appears.

As part of our work, we removed the infrastructure call graph—as well as
its construction, associated interface, and related classes—from the scanner and
updated its usages to depend directly on the descriptor map. An appropriate
change was of course made to the documentation where required.

9.2 Reworking Group-Handled Functions
In Section 6.1.4, we talked about the processing modes assigned to each function
to determine how the method invoke manager deals with them. Aside from the
four modes mentioned there, the scanner supports a fifth mode, group-handled.

9.2.1 The Idea of Group Handling
There are functions that tend to behave mostly the same in any class. This
is typically true of Python’s magic functions—functions that represent some
operator. A call to __eq__() will pretty much always just return a boolean value,
and calls to __next__() tend to return individual elements of the underlying
iterator. Many of these functions don’t even produce data that is important for
data lineage, so they can be skipped entirely. As these methods tend to be both
omnipresent and similar in function, manually configuring them for each class in
each plugin becomes extremely tedious. However, unannotated functions become
identity-handled by default, which can introduce a lot of imprecision into the flow
results.

This is where the concept of group handling comes in. We define one particular
function as group-handled and configure it with the desired propagations. This
function then serves as a prototype of that “group” of functions. If an invocation
target is ever found that has the same signature as this prototype and would be
identity handled, it is instead handled the same way as the prototype.

Any functions that work differently from the group prototype can of course
be overridden. By explicitly configuring a function, we effectively remove it from
any group it would fall into and let it be handled completely separately.

It is worth noting that this concept is, at its essence, a convenience. The plugin
system (and the scanner as a whole) could in theory very well work without any
group-handled functions. However, the sheer number of entries that would have
to be manually added to each plugin—many of them repeated—make it a practical
necessity. There is also one other slight benefit it gives us; if multiple functions
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in the same group are found, we can use the propagations of only one of them,
since we know the others are handled identically, saving some execution time.

9.2.2 The Reality of Group Handling
The way these functions were declared in the scanner was, suffice it to say, a
little hacky. We said that group-handled functions are determined based on their
signature, but while that was the overall effect, it is not quite representative of
how they were implemented.

Firstly, FunctionProcessingModeResolver, the component responsible for
assigning processing modes to functions, had a hard-coded list pre-determined
list of specific functions. The functions in that list represented the prototypes and
were explicitly assigned as group handled. All others, including the aforemen-
tioned not configured ones, get their regular processing mode (identity-handled in
those cases). Then, when resolving targets of an invocation, after all the possible
targets were found, we would check whether at least one of them was assigned
as group handled. If so, we would remove every identity-handled function from
the result set (see Figure 9.1).

This process does not really reflect the described theoretical ideal of group
handling. For example, we can see that it can only work if we guarantee that the
prototype is in the set of possible results for each invocation that also includes
another member of the group. The reason the implementation resulted in some-
thing that ended up mostly similar to the theory is due to a confluence of two
factors.

The first is that every declared prototype was inside the builtins module.
This is not a requirement that was imposed inherently by the system, but it was
the only way to make things work. That is because the builtins module is
reachable from everywhere, so it is always possible to reach its functions with
any all. If a function from any other module were to be selected as the prototype,
there would be a chance that the module it is contained in was not imported into
the scope of the caller, in which case the function would not make its way into
the list of possible invocation targets and the whole process would break.

The second factor is related to the first and has to do with the imprecision of
how invocation targets used to be found. This imprecision practically ensured
that whenever a not configured function with the same signature as the prototype
was called, the prototype was also included in the possible results (because, once
again, built-in functions are reachable from everywhere) and the prototype would
cause all the not configured functions to be removed.
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Figure 9.2 How Old Configuration Breaks with Type Analysis

9.2.3 Fixing Group Handling
We can see how the introduction of type analysis would cause a problem here.
Once we make the search for invocation targets more precise, we can no longer
operate under the assumption that any call to e.g. __eq__() will consider
#__builtins__.int.__eq__() as a possible target (see Figure 9.2). As such,
we had to completely change the way group-handled functions are created and
utilized.

Our first observation was that we had to get rid of the reliance on prototypes,
as any such system runs into the possibility that the prototypemay not be included
as a possible target. Instead, we created a separate new plugin specifically for
group-handled functions. This plugin is configured and composed the same way
as any other plugin, just with slightly different semantics (see Figure 9.3).

When asked whether it can handle a function descriptor, this plugin ignores
the module and class in which the descriptor is found and looks only at its name
and parameter list. If those match any function in the plugin’s configuration, it can
be handled by the plugin. This is a meaningful difference from all other plugins,
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which only handle functions in the modules and classes they were configured for.
This plugin is injected as a special dependency into the plugin manager,

outside of the list of other plugins used. When the plugin manager handles a
function, it calls on this group-handling plugin only if no other plugin is able to
process the request, thus ensuring it does not override an explicit configuration
of some function.

Another change we made was to the assignment of processing modes.
Whereas before only the prototype was assigned as group handled and all the
other members of the group as identity handled, now we set every function in
the group as group handled. We determine whether a function is in a group
by the fact that it can be handled by the group handling plugin and has no
explicit configuration elsewhere. We can still make the same optimization as
before, except instead of keeping the group-handled prototype and throwing
away identity-handled functions, we pick one random member of the group and
throw away all the others.

9.3 Refactoring Function Processing Modes
Related to the last change, the way processing modes used to be assigned was
somewhat problematic and caused issues for type analysis.
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Type analysis creates its own set of plugins, which are similar but semantically
distinct from those used in symbolic analysis. We may want to process plugin-
handled functions differently in type analysis and symbolic analysis. For example,
a function for which it is too difficult (or nonsensical) to define a propagation
(and is therefore marked as skipped) can have a well-defined type which we can
use in the type analysis plugin. However, since the assignment of processing
modes happens during infrastructure analysis, it used to be unable to discriminate
between the two kinds of plugins and blindly followed the rules defined for
symbolic analysis plugins. This caused two problems:

1. A function that had no symbolic propagations configured but had some
type propagations was considered skipped in both analyses, completely
ignoring those type propagations.

2. A function that had no type propagations defined was either skipped or
plugin-handled with no propagations—effectively also skipped. As men-
tioned in Chapter 7, we cannot afford to have functions without configura-
tion produce no result. Instead, it must return an UndeterminedTypeFlow.

The first change we made was to extend each function descriptor to contain
two fields for processing modes instead of one. A corresponding change was
made to the resolver of processing modes, which now contains the necessary
logic to assign both modes to each descriptor.

This change meant we also had to update the way these modes are used.
Their main usage is in the method invoke manager, which branches on them to
determine the correct way to handle a function. We want this manager to be
analysis-agnostic, so we had to find a way to pass the correct processing mode to
it. Luckily, there is a good place to seamlessly apply the generalization.

Inside the manager, the descriptor—and, by extension, its processing mode—
was accessed through the invocation context created for the specific invocation
being handled. We can therefore refactor the invocation contexts to return the
processingmode directly, bypassing the need to go through the function descriptor
without any major changes to existing code. Invocation contexts are created in
execution visitors, which are unique for each kind of analysis and therefore know
which processing mode they should use.

Finally, some changes were made to the structure of the resolver of processing
modes. That resolver needs to depend on the plugin manager (to determine which
functions are plugin handled), but it could not do so directly due to issues of cyclic
dependencies, so this dependency was satisfied in a strangely roundabout way.

After the plugin manager was created, it serialized all of its plugins into
two maps—one for plugin-handled functions, one for skipped functions. The
processing mode resolver took those maps and used them during assignment—if a
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function was in one of those maps, it was assigned the corresponding processing
mode.1.

With the introduction of a second plugin manager and the shift of group-
handled functions into a self-contained plugin, this approach became untenable,
so we decided to simplify it. Now, each plugin manager implements the newly cre-
ated IProcessingModeFetcher interface. This interface contains one method,
tryGetProcessingMode(), which returns the determined processing mode of a
given descriptor if able. The implementation in the plugin manager works using
the following rules:

• If the function is handled by any regular plugin, return plugin-handled.

• Otherwise, if the function is skipped in any regular plugin, return skipped.

• Otherwise, if the function can be handled by the group handling plugin,
return group-handled.

• Otherwise, return null.

The processing mode resolver takes two instances of that interface as depen-
dencies, which are supplied by the two plugin managers. It then utilizes them to
resolve both processing modes for each descriptor. Lastly, if the processing mode
for type analysis is declared as skipped, it is rewritten to be identity-handled, to
reflect the difference in semantics.

1Remember that group-handled functions used to be explicitly hard-coded in the resolver.
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Chapter 10

Evaluation

In this chapter, we evaluate the effects of our work on the scanner in terms of
precision and performance. It must be said that the expected advantages gained
by using type analysis are highly context-dependent: applications with a lot
of identically named functions should experience a greater degree of difference
than applications where each name is unique. This makes it tricky to objectively
quantify any purported improvements.

10.1 Methodology
Due to the nature of this work, it was integrated into the scanner gradually and
concurrently with other changes. That makes it challenging to isolate the full
extent of our changes. For our comparative evaluation, we decided to use the
latest version of the scanner in both passes, with one having type analysis enabled
and the other disabled (meaning the descriptor map is used directly).

The testing was performed on a Windows 11 laptop with an Intel Core i7-
1185G7 processor and 16 GB of memory.

10.2 Precision
We encountered several improvements in the precision of resulting data lineage
graphs when testing our solution. We show two illustrative examples here.

10.2.1 Collection Iteration
Take the code in Listing 10.1. It defines a single function that takes a list of
strings and creates a file for each item in that list, into which it writes the string
“message”. This function is called with a list containing a single item, "foo.txt".
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Figure 10.1 Lineage of Listing 10.1 with Type Analysis Disabled

Figure 10.2 Lineage of Listing 10.1 with Type Analysis Enabled

Listing 10.1 Writing to List Items

1 def write_to_list_items(lst):
2 for item in lst:
3 with open(item, "w") as f:
4 f.write("message")
5
6 lst = ["foo.txt"]
7 write_to_list_items(lst)

We would expect the data lineage of this code to consist of a single line with
two ends, leading from the Python script (as that is from where the written
contents originate) to the foo.txt file. Unfortunately, without type analysis
enabled, we also find other flows in the output (see Figure 10.1).

The 0 output in particular is easily explained as the result of an over-
approximation. When unwrapping the items of the list in the for loop, the
propagation used for iterating over list is used to pass the list items into the
item variable. However, the propagation used for iterating over dict is also
used, passing the keys of the list into the variable as well (since "foo.txt" is at
index 0 in the list).
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After applying type analysis, the scanner is able to determine that the param-
eter is indeed a list and these extraneous flows disappear, as seen in Figure 10.2.
Given that iteration is one of the most basic operations used in any application,
we can imagine the cumulative effects of this improvement can add up over a
larger application.

10.2.2 Separation of Instances
There was a long-standing issue where flows of different classes with identically
named methods could end up getting mixed up together. A minimal reproducible
example demonstrating this behavior can be seen in Listing 10.2.

Listing 10.2 Separation of Class Instances

1 class A:
2 def __init__(self):
3 self.file = "a.txt"
4
5 def call(self):
6 pass
7
8 class B:
9 def __init__(self):

10 self.file = "file.txt"
11
12 def call(self):
13 with open(self.file, 'r') as f:
14 print(f.read())
15
16 a = A()
17 b = B()
18 a.call()
19 b.call()

In the example above, the instance of A does not create any data flows, as its
call() method is empty. The call made on an instance of B creates a flow from
the file.txt file to the standard output. Unfortunately, due to an outstanding
bug that was never properly diagnosed, the "a.txt" string somehow managed to
get into the flow set of b.file at some point during the analysis (and vice versa),
which resulted in the creation of a second flow from that file to the standard
output (see Figure 10.3).

While we cannot precisely point to the root cause of this issue, we can say
that improving the precision of locating invoked functions by enabling type
analysis caused it to disappear, isolating each file path to its respective class (see
Figure 10.4).
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Figure 10.3 Lineage of Listing 10.2 with Type Analysis Disabled

Figure 10.4 Lineage of Listing 10.2 with Type Analysis Enabled

10.3 Performance
We must stress that performance improvements were not the primary goal of
this thesis. It was always more focused on improving precision and allowing
simplifications in the rest of the scanner. To evaluate the performance of type
analysis on a representative sample that is not biased toward its strengths, we
chose to use a script provided to us by a prospective customer of the scanner.
Because of this, we cannot share its source, but Table 10.1 describes some of its
main characteristics. It uses the awsglue, boto3, pandas, and pyspark libraries.

Table 10.2 shows the time spent on each step of the scanner starting with
infrastructure analysis for both passes, rounded to the nearest second. As we
can see from these results, any computational cost incurred by the addition of
type analysis is outweighed by the reduction of time later spent on symbolic
analysis. This reduction was noticeable even though the source heavily relies
on the aforementioned libraries, which are not yet configured for type analysis.
We expect broadening this support in the future could increase the time spent
on type analysis (as fewer functions become identity-handled), but might further
improve the speed of symbolic analysis.

We cannot show the lineage generated from the source, due to both intellectual
property rights concerns and deficiencies in the scanner that mean the produced
lineage is not completely meaningful at this time, but we can reveal that the
lineage remained unchanged in both versions, which we would expect, given
once again the usage of libraries not configured for type analysis.
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Lines of Code 471
Module Count 1
Function Count 11
Invocation Count 354
Number of Imported Modules 9
Number of Imported Classes 15
Number of Imported Functions 4

Table 10.1 Characteristics of the Evaluated Code

Step Without Type Analysis With Type Analysis

Infrastructure 12 s 12 s
Alias 52 s 52 s
Type N/A 20 s
Symbolic 300 s 150 s

Table 10.2 Times Spent on Each Step of the Analysis
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Chapter 11

Conclusion

In this project, we have managed to successfully develop a method for track-
ing runtime types for the Python scanner in Manta Flow. This method is fully
integrated into the scanner and is slated to become a part of the Manta Flow
production deployment in the near future.

We have provided a way to configure the functions that we cannot analyze
directly through their source code in a way that allows for incremental improve-
ment. We have implemented this configuration for the standard library plugin.
With time, we hope to add this configuration for other libraries as well, which we
believe will further improve the results of type analysis.

We were then able to use the results of this analysis to construct a more precise
way of determining the possible targets of invocations. This also necessitated
creating a way to parse the class hierarchy of an application. This improvement
was integrated in a way that was seamlessly usable by the rest of the scanner. It
is as of now the only use of type analysis, but we tried to design the system in
such a way that any future uses can be easily accommodated.

This was not an independent work, but an extension of a complex preexisting
body of software. As such, numerous other modifications, additions, and updates
were necessary to implement our solution. We believe that as a whole, these
changes noticeably improved the precision of the scanner and possibly also helped
its performance, as we were able to empirically demonstrate. They also allowed
us to improve the quality of the codebase, removing some vestiges of features
that were either dependent on or made as a result of the imprecision in this area,
and yet more updates in this vein are—in our estimation at least—still possible.
The addition and integration of type analysis proved challenging enough that we
unfortunately weren’t able to make headway in adding support for callbacks and
function pointers. This is another area of possible future improvement.

The nature of software is ever-changing, and Manta Flow with its Python
scanner is being continually worked on and improved, so we have no doubt this
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is not the final iteration of type analysis and more updates will be made in the
future. Nevertheless, we feel we have created a solid foundation that will allow
the product to thrive and better serve the needs of its customers.
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Appendix A

Attachments

A.1 User Documentation
There are several prerequisites to being able to generate data flow analysis using
the Python scanner:

• Java 17 needs to be installed on your computer.

• Manta Flow needs to be installed on your computer. Manta Flow is pro-
prietary software only available to developers and licensed customers of
Manta.

A.1.1 Building and Running the Scanner
Since the Python scanner is a part of Manta Flow, and our work consists of
changes made within the scanner, no explicit build is necessary—the scanner is
accessible using the standard installation process.

If a user has Manta Flow installed, they can use the Python scanner by creating
a new Python connection. This connection defines where the analyzed application
is located, as well as some other properties used during its execution. The created
connection is then used for creating workflows that extract and analyze the
application, the results of which can be visualized using the Manta Flow Viewer.

A.2 Attachment Structure
The attachment published alongside this text consists of three directories.

The source-code directory contains the source code of files created within
this work. This represents only a small fraction of the Python scanner, which
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cannot be included in its entirety. This directory contains a hierarchical structure
that mirrors the placement of these files in the scanner.

The diffs directory contains changelogs encapsulating the full extent of
changes made in this work, including changes to components created by other
parties. Since these changes were integrated gradually alongside other develop-
ment, it is impossible to condense them into a single file without inadvertently
incorporating other changes in the process. To ease readability, the files in this di-
rectory were named so they appear in chronological order and the names broadly
describe the contents.

Finally, the tex-source directory contains the full LATEX source used to create
this text, including any images contained within.
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Appendix B

Library Type Sources

This appendix is related to the analysis we mention in Section 7.1. For each library
supported by the scanner, we list where to find type hints for its public API.

builtin
The standard library.

Type Hints Source

The typeshed package, available at https://github.com/python/typeshed.

Notes

Official stubs for the standard library. Maintained directly by the Python team,
very comprehensive. Some challenges in parsing it are described in Section 7.1.

boto3
A library for interfacing with AWS services using Python.

Type Hints Source

The botostubs package, available at https://github.com/boto/botostubs.
Alternatively, the mypy_boto3_builder package, available at https://github.
com/youtype/mypy_boto3_builder.
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Notes

The botostub project is the official source created by Amazon. It is described
as “a work in progress” and “not yet intended for production.” However, the
last change in the project was made in 2019, which leads us to believe it was
abandoned. The unofficial mypy_boto3_builder repository looks to be actively
maintained and includes scripts to generate type annotations for the library.

delta
A storage framework for building lakehouses.

Type Hints Source

The source code, available at https://github.com/delta-io/delta, is anno-
tated.

Notes

Some objects used only for type hints are imported conditionally only during
type checking. Hints of such objects are specified as string literals so that they
are resolvable expressions even at runtime. As a simple example of this:

1 if TYPE_CHECKING:
2 from py4j.java_gateway import JavaObject
3
4 class DeltaTable(object):
5 def __init__(self, spark: SparkSession , jdt: "JavaObject"):
6 ...

Also uses types from other libraries, such as JavaObject from py4j or
DataFrame from pyspark.sql.

pandas
A ubiquitous library for data analysis and data manipulation. Other libraries in
this space tend to support working with its objects.

Type Hints Source

The source code, available at https://github.com/pandas-dev/pandas, is
annotated. There is also a dedicated pandas-stubs package, available at https:
//github.com/pandas-dev/pandas-stubs.
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Notes

The source code annotations are probably the most accurate, but they are not
complete and are mainly for internal use. The pandas-stubs package provides
stubs only for the public API and is intended for public use. As such, they
aren’t necessarily consistent with the internal type hints. They also don’t cover
every possibility of use available, though they aim to accurately describe the
recommended practices, and they do not fully support version 2.0 of the library.

pyspark
Python API for Apache Spark.

Type Hints Source

The source code, available at https://github.com/apache/spark, is anno-
tated.

Notes

Only the public API tends to be annotated, the internal classes are without type
hints. Also makes use of string literals in types.

sqlalchemy
A database access library and an ORM manager.

Type Hints Source

The sqlalchemy2-stubs package, which is available at https://github.com/
sqlalchemy/sqlalchemy2-stubs.

Notes

Despite the name, this package is only compatible with the 1.4 releases of
the library. The 2.0 version—available at https://github.com/sqlalchemy/
sqlalchemy—is typed fully inline and explicitly incompatible with these stubs.

awsglue
Python API for the AWS Glue ETL service.
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Type Hints Source

No type hints appear to be available.

dbutils
Not a “real” package. It is a collection of utilities that are implicitly available in
Databricks notebooks under this namespace. We have to support some of them
when analyzing Python code that originated from Databricks.

Type Hints Source

No type hints are available.
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Appendix C

Type Hinting Features

In this appendix, we go over every accepted and finished PEP in the Typing topic1

that was added after the initial standardization of type hints in PEP 484, briefly
describing its contents and the expected additional difficulty in extending an
imagined parser for type hints to support it. We do not examine any purely
informational PEPs or currently open PEPs, the former because they by definition
do not add new features to the language, and the latter because they may be
changed or withdrawn at any time.

PEP 526 — Syntax for Variable Annotations
This PEP extends the syntax described for function headers in PEP 484 to also apply
to variables, allowing constructs such as x: int = foo() and thus declaring a
type hint on a local variable.

Our analysis of how to use type hints focused only on type hints of functions,
ignoring variable annotations. We can imagine a simple extension that could
account for them though. If a type hint is found in an assignment, the type flow
based on that hint would be propagated to the left-hand side instead of (or in
addition to) the flows on the right-hand side.

PEP 561 — Distributing and Packaging Type Infor-
mation
This PEP is concerned with ways type information is communicated. It codifies
the concept of stub files and stub libraries and introduces some standards that
allow developers (or tools) to discover the type hints for a given project.

1https://peps.python.org/topic/typing

99

https://peps.python.org/topic/typing


While this PEP is useful in making it easier to find sources of type informa-
tion, it has no impact on the syntax or semantics of the hints themselves, so no
additional support should be needed.

PEP 585 — Type Hinting Generics in Standard Col-
lections
This PEP allows parameterized generics in the standard library to be declared
using directly those types, instead of relying on a parallel hierarchy in the typing
package. For example, instead of having to specify typing.List[str] when
annotating a list of strings, we can now directly write list[str]. This expression
would not have been allowed before, as the list class object did not support the
subscript operator.

Assuming the type hint analyzer can already process generics, it would only
need to alias the collections so that they are handled the same way as their typing
equivalents.

PEP 544 — Protocols: Structural Subtyping
This PEP introduces support for structural subtyping into the language. A protocol
is defined by including the typing.Protocol class in the list of superclasses.
When analyzing whether an instance object matches a type hint that uses a
protocol, we do not look at the ancestry of that object’s type. Instead, we check
all methods defined on the prototype and verify that our type has a method with
a matching signature for each of them.

It is clear that protocols introduce a completely new paradigm to type checking
and as such would most likely require extensive support from the analyzer. We
have not tried to describe the full extent of this support in this work. Luckily,
protocols are not transitive (a subclass of a protocol is not itself a protocol unless
it also includes typing.Protocol directly as a superclass), so there should at
least be a somewhat straightforward way to ignore these type hints.

PEP 563 — Postponed Evaluation of Annotations
This is an implementation PEP that changes theway the annotations are stored and
resolved to address issues such as forward references and the cost of evaluating
the expressions. It should have no bearing on static analysis of type hints, other
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than allowing forward references, which is trivial and implicitly assumed in static
analysis.

PEP 586 — Literal Types
This PEP adds the ability to specify that the annotated variable can only take on
a specific value (or one of several specific values). For example, if a comparator
function returns an int but we know that it can only return either -1, 0, or 1, we
can make the annotation of this function more precise by specifying its return
type as Literal[-1, 0, 1].

The Literal class can only be parameterized by literal expressions. It
is legal to write Literal["foo", 2, False], but not Literal[1+1] or
Literal["foo".capitalize()]. As such, adding support for this class should
be relatively simple, as the types of literals are always readily apparent.

PEP 589 — TypedDict: Type Hints for Dictionaries
with a Fixed Set of Keys
This PEP creates a new type named TypedDict that allows a user to specify
dictionaries with a known fixed set of keys. Imagine there is a dictionary object
you know should always contain two keys: a "foo" key with an integer value
and a "bar" key with a string value. Using only standard type hints, the best
annotation we can provide is dict[str, str|int]. Such an annotation is
unable to determine whether the dictionary has the correct keys, or whether each
key has a value of a correct type.

The TypedDict type provides a way to specify those things explicitly. We
can declare a class that inherits from TypedDict and specifies the names and
value types of each key:

1 class MyDict(TypedDict):
2 foo: int
3 bar: str
4
5 x: MyDict = {"foo": 2, "bar": "baz"} # correct
6 x = MyDict(foo=2, bar="baz") # alternative declaration
7 x: MyDict = {"foo": "baz", "bar": 2} # incorrect
8 x: MyDict = {"foo": 2, "xxx": "baz"} # incorrect

These classes can serve as superclasses for other such definitions, and the
value types can be any valid annotation, including another TypedDict or even
recursively the class it is declared on.
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The simplest form of support for these hints would be to detect them and
replace them with dict[string, Any]. A more full-featured solution would
include properly parsing the class definitions and at minimum using a union
of all the types that appear in it. Actually associating the types with individual
keys would require even bigger changes, as type analysis is not equipped to
differentiate between different keys of the same type.

PEP 591 — Adding a Final Qualifier to Typing
This PEP introduces the @final decorator and an associated Final annotation to
the typing module. When a function is decorated with @final, it is a sign that
the function should not be overloaded in any subclasses or overridden within
its scope. Applied to a class it signifies that the class should not be subclassed.
The Final annotation is used on variables or attributes to denote that they
should not be reassigned. It takes a type argument noting the underlying type,
e.g. id: Final[int] = 1. It can also be used without an explicit type, e.g.
id: Final = 1.

We would not need to add any support for the @final decorator. It is used to
enforce the correctness of code, which our scanner is not concerned with. For
the Final annotation, we would merely have to extend the parser to unwrap it
to get the underlying type hint, or to ignore it completely if none is provided.

PEP 593 — Flexible Function and Variable Annota-
tions
This PEP introduces a mechanism that allows us to assign arbitrary annotations
that can be used at runtime while still providing type hints for static analysis.
It does so by creating the Annotated type. This type takes two parameters (i.e.
Annotated[T, x]). The first is the type hint applied to the annotated function
or variable, the second is an arbitrary expression. Static analyzers can restrict
themselves to only check the former and still get the full benefits of type hinting,
while at runtime we can create much richer metadata within the annotations.

In line with the semantics of this feature, the only support necessary here is
to be able to replace the annotation with its first parameter.
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PEP 604 — Allow Writing Union Types as X | Y
This is a syntax extension. Instead of having to specify a union of two types as
Union[X, Y], this PEP allows us to write this union using the form X | Y. Since
this change only affects the syntax without any new semantics, the only necessity
would be to support parsing both forms equivalently.

PEP 612 — Parameter Specification Variables
This PEP provides an extension of structural subtyping. Let us imagine we have
a decorator that takes in a function and returns a new function with the same
parameters but a different return type. The function parameter and return type
can be annotated using the Callable prototype, however, prior to this feature,
there was no way to specify that they both accept the same number and types
of parameters. This PEP introduces ParamSpec variables, which can be used for
this purpose.

As the prerequisite for supporting this feature is support for structural sub-
typing, we have not made a full evaluation of this feature in this work.

PEP 613 — Explicit Type Aliases
This PEP adds a TypeAlias annotation that explicitly marks an assignment as
declaring a type alias. When making an assignment such as X = int, it is clear
that X is a type alias and later annotations such as foo: X = 1 are valid. However,
when the assignment becomes X = "int", possibly because the aliased class is
not yet fully defined and this is a forward reference, a type checker may confuse
this with a simple value assignment and then later raise errors when the alias is
used in an annotation. Using the annotation, X: TypeAlias = "int" lets the
type checker explicitly know to treat this assignment as a type alias.

Assuming the type hints parser supports type aliases, and assuming it supports
string literal type hints but in a way that does not let us combine the two, the
TypeAlias hint could be used to bridge that gap. Otherwise, it does not serve
much purpose for our use case.

PEP 646 — Variadic Generics
When declaring a generic class, it might have a variable number of type parameters.
This PEP allows for a new syntax, Generic[*T], to denote that a specification
of the generic type may contain any number of parameters of type T. The types
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captured by this variadic type parameter can then be annotated as Tuple[*T]
within the class.

How this feature is supported would depend entirely on how generics would
be handled. It might necessitate adding new types of flows and propagation rules,
or it might be solved by simple replacements during parsing.

PEP 647 — User-Defined Type Guards
We might have an object that is annotated with a general type, but based on a
runtime check determine it is actually of a more specific type. The canonical ex-
ample of this is the isinstance() function. If we are given a hint of x: object,
we have to treat x as the most generic type of all. However, if we later encounter
a statement such as if isinstance(x, str):, we know that within the block
under that check we can treat x as though it were a string.

While type checkers tend to support the isinstance() function for these
situations, there may be more complex, user-defined guards that would be far
more difficult to evaluate. To allow us to explicitly annotate such guards, this
PEP adds a new TypeGuard annotation. When applied to the return value of a
function, this annotation lets us know that not only does the function return a
boolean value, but that if it returns True, the supplied argument is of a specific
type. For example, a function that takes in a list[object] parameter and
checks whether all values in the list are strings would be annotated as returning
TypeGuard[list[str]] If such a function were to be later used as a condition
of an if statement, the type checker would know to treat the passed argument as
list[str] within the block.

The benefits of supporting this feature beyond replacing the annotation with
bool are dubious. The scanner is built on the idea that it is not context-sensitive,
so we would have to build mechanisms that allow us to make an exception in
this case. We would also have to somehow circumvent the limitation of the
worklist algorithm, which does not allow us to remove flows from the flow set.
As such, the costs would seem to outweigh the benefits for anything more than
the aforementioned simple replacement.

PEP 649 — Deferred Evaluation of Annotations Us-
ing Descriptors
Similar to PEP 563, this is another implementation-focused PEP that changes how
annotations are stored and resolved at runtime. It does not concern us.
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PEP 655 — Marking Individual TypedDict Items as
Required or Potentially-Missing
This is an extension of the TypedDict feature added in PEP 589. It defines two
new annotations, Required and NotRequired, to specify that a given key is
either explicitly required in a partial definition or not required in an otherwise
complete definition.

Depending on how TypeDict is supported, these annotations may not require
any support, as they can only appear within the items of a TypedDict. Even if
an analysis of these items was implemented, we always have to consider all keys
as possibly present, and we don’t care about the correctness of the analyzed code,
so we could safely ignore these annotations.

PEP 673 — Self Type
This PEP introduces a simple way to annotate methods that return an instance
of their class. By specifying the return type as Self, we can determine the
method returns an object of the same type as that of the caller (most commonly
self, the caller itself, hence the name). There is a slight difference between this
annotation and simply writing the name of the enclosing class, which is caused
by subclassing.

When we have a class A with a method foo() that just sets some property on
the caller and then returns it, if we annotated it as returning A, a type checker
would consider that as literally returning instances of A. This could become
incorrect if we introduced a new class B that inherits from A. After calling foo()
on an instance of B, we would no longer be able to call any methods that don’t
appear in A without causing an error. Annotating foo() as returning Self solves
this issue.

This seems like a problem initially, however as we noted in our initial analysis
of type hint support, we would already have to consider each return type as an
upper bound rather than an explicit type, so we would be able to simply replace
each instance of Self with the type of the class it appears in.

PEP 675 — Arbitrary Literal String Type
This PEP adds a LiteralString type hint that specifies that a function parameter
must be a string literal without limiting the value of that literal. This feature has
some use cases, such as helping prevent SQL injection by disallowing concatenated
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strings as database queries, but in our analysis, we can treat such hints exactly
the same as str.

PEP 681 — Data Class Transforms
This PEP describes a new @dataclass_transform decorator that, when applied
to a decorator or a metaclass, informs the type checker that decorated classes are
imbued with “dataclass-like” functionality at runtime. This includes creating an
implicit __init__() implementation and value-based equality methods.

Supporting this decorator could be interesting for symbolic analysis, especially
for properly handling the implicit initializer, but does not seem particularly notable
for type analysis.

PEP 692 — Using TypedDict for More Precise
**kwargs Typing
When we annotate the **kwargs parameter of a function with type T, it is
interpreted as all values passed into that parameter as being of type T. The
actual type of the **kwargs parameter is then dict[str, T]. To allow more
granular control over values passed into this parameter, this PEP adds the ability
to specify a TypedDict definition as the type hint for **kwargs instead.

Assuming support for TypedDict, this feature should require no major up-
dates. In fact, it is the “standard” behavior that needs explicit support to convert
into the real type. Enabling this feature would just mean turning that conversion
off if the annotation represents a TypedDict.

PEP 695 — Type Parameter Syntax
This PEP adds new syntactic elements that simplify the specification of generic
functions and classes, especially the definition and application of type variables
and type aliases. There are several changes introduced in this PEP, but none of
them changes the semantics of type annotations, so respective additions would
only need to be made to the code parsing these annotations.

PEP 698 — Override Decorator for Static Typing
This PEP introduces a new @override decorator that explicitly marks a function
as overriding a function of the same name in a base class. This feature is primarily
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useful to prevent bugs caused by changing the API of the base function without
reflecting the change in its inheritors, but it has no impact on the runtime, data
lineage, or the signature of the decorated function, so we can safely ignore it.

PEP 702 — Marking Deprecations Using the Type
System
Similar to the previous PEP, this one introduces the @warnings.deprecated()
decorator that marks a function as deprecated. This decorator can be used by
static checkers to raise a warning when a decorated function is used, and it can
emit a warning during runtime, but otherwise, it has no bearing on the actual
execution and can be safely ignored.
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