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Bojar, Ph.D. both for his expertise and for his kind support. I am grateful that he
believed in me and gave me the opportunity to set out on this journey. He was always
there to point me in the right direction, to encourage me, and to push my limits. This
accomplishment would not have been possible without his mentorship.

I would also like to thank my friends and colleagues at the Institute of Formal and
Applied Linguistics who have been a source of inspiration, advice, and also fun during
the last five years.

My special thanks goes to my great friends and fellow researchers PhDr. Pavlı́na
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Abstract: The current state of the art in machine translation (MT) heavily relies on parallel

data, i.e. texts that have been previously translated by humans. This type of resource is expen-

sive and only available for several language pairs in limited domains. A new line of research

has emerged to design models capable of learning to translate from monolingual texts which

are significantly easier to obtain, e.g. by web-crawling. While it is impressive that such models

achieve translation capabilities, the translation quality of the output they produce is still low

for practical applications. This dissertation thesis strives to improve their performance. We

explore the existing approaches of using monolingual resources to train translation models and

propose a new technique to generate pseudo-parallel training data artificially without expensive

human input. We automatically select similar sentences from monolingual corpora in different

languages and we show that using them in the initial stages of MT training leads to a significant

enhancement in translation quality. We also point out the limitations of existing MT models

based on monolingual texts which often struggle with the translation of named entities and

generally produce low-quality translations, especially in truly low-resource conditions where

monolingual training data is limited and often suffers from a domain mismatch.
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Autor: Ivana Kvapilı́ková
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Abstrakt: Současné systémy strojového překladu (SP) jsou závislé na existenci paralelnı́ch

dat, tedy textů, které byly dřı́ve přeloženy lidmi. Tento typ dat je drahý a je dostupný pouze

pro několik jazykových párů v omezených doménách. Vznikl tedy nový výzkumný směr

zaměřený na navrhovánı́ modelů schopných naučit se překládat z jednojazyčných textů,

které jsou výrazně dostupnějšı́ než texty paralelnı́, např. z internetu. I když je působivé,

že takové modely překládat skutečně dokážı́, kvalita jimi vyprodukovaných výstupů je pro

praktické aplikace stále nedostatečná. Tato disertačnı́ práce se snažı́ vylepšit jejich výkonnost.

Zkoumáme stávajı́cı́ přı́stupy použı́vánı́ jednojazyčných zdrojů k trénovánı́ překladových

modelů a navrhujeme novou techniku generovánı́ pseudo-paralelnı́ch trénovacı́ch dat uměle,

bez drahého lidského vstupu. Automaticky hledáme podobné věty v jednojazyčný korpusech

v různých jazycı́ch a ukazujeme, že jejich použitı́ v počátečnı́ch fázı́ch trénovánı́ SP vede

k výraznému zvýšenı́ kvality překladu. Poukazujeme také na omezenı́ stávajı́cı́ch modelů

SP založených na jednojazyčných textech, které si často nedokážı́ poradit s překladem

pojmenovaných entit a obecně produkujı́ nekvalitnı́ překlady, zejména v podmı́nkách s

opravdu omezenými zdroji, kde je k dispozici pouze malé množstvı́ jednojazyčných textů,

které navı́c patřı́ do odlišných domén.

Klı́čová slova: strojový překlad, neřı́zené učenı́, hluboké neuronové sı́tě, nı́zkozdrojové
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1. Introduction
Modern machine translation (MT) systems are trained on large parallel corpora, i.e. collec-

tions of sentence-aligned text documents translated by humans, ideally professional transla-

tors. While there are public sources of parallel data for several dominant languages (e.g. EU

legislation, public domain books, movie subtitles), the only parallel corpus available for many

other language pairs is the Bible. There are more than 7,000 [Eberhard et al., 2023] languages

spoken in the world and only a small fraction of them is covered by large data sets, others are

considered low-resource for most natural language processing (NLP) tasks, including MT.

The scarcity of parallel data motivated researchers to devise a new training strategy where

the MT model can learn from monolingual texts which are significantly easier to obtain (e.g.

by web crawling) than parallel texts. Monolingual corpora were then used in combination with

existing parallel resources to increase translation quality and it was an open question whether

an MT system can be trained purely from monolingual data.

The problem of learning to translate without ever seeing a translation was first tackled as

a deciphering problem [Ravi and Knight, 2011] where foreign text was viewed merely as an

unknown cipher of the English text. The idea seemed intriguing but quite unrealistic, until

the pioneering work of Artetxe et al. [2018d] and Lample et al. [2018a]. It was shown that

minimal supervision suffices to teach a neural model to align monolingual word representations

(embeddings) and find translation equivalents. Unsupervised training of MT systems became

a hot topic both for the curiosity of a seemingly unsolvable task as well as for its relevance for

low-resource language pairs.

The initial attempts at unsupervised machine translation (UMT) applied the newest ad-

vancements in deep neural models. However, it was quickly realized that statistical phrase-

based machine translation (PBMT) offered a valuable toolkit for unsupervised scenarios, and

the performance of phrase-based systems even surpassed that of the initial unsupervised neu-

ral models [Lample et al., 2018a, Artetxe et al., 2018b]. It was only when the benefits of

cross-lingual pre-training were discovered [Conneau and Lample, 2019] that the performance

of unsupervised PBMT models started to lag behind. Until today, using a hybrid approach

[Artetxe et al., 2019a] where translations from a PBMT system are used to pre-train a deep

neural system is still a relevant strategy which, in some settings, can supersede purely neural

systems.

Although the translation quality achieved by a completely unsupervised system did not

reach the level of supervised MT, the initial attempts showed that training of machine trans-

lation exclusively on monolingual texts is feasible. New advances significantly increased the

performance, leaving the question of the maximum attainable translation quality for an MT

system trained exclusively on monolingual corpora unanswered. In this thesis, we strive to

move towards that limit by proposing new components of the unsupervised training schedule.

Several authors [Marchisio et al., 2020, Søgaard et al., 2018] have pointed out limitations

of UMT, especially in the context of translation of truly low-resource languages where we do

not have gigabytes of monolingual texts to use for training and where the training data likely
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covers only limited domains. To be able to draw robust conclusions, we evaluate our approach

on authentic low-resource language pairs with a presence of monolingual data but limited or

non-existent parallel texts. Aside from low-resource languages, unsupervised methods can also

be useful for domain-specific translation between languages which are generally considered

high-resource but lack parallel data in particular domains. However, we do not explore this

direction in our thesis.

This thesis investigates unsupervised learning strategies to find the most efficient way to

exploit monolingual data for cross-lingual signal. There are two main directions this work

will explore: (1) methods for obtaining parallel data when authentic parallel resources are

unavailable, and (2) UMT models, their architecture, and training strategies. The two directions

are closely intertwined since UMT models are always trained using a form of synthetic parallel

data. Moreover, the underlying problem behind the UMT task as well as the unsupervised

parallel corpus mining (PCM) task is the building of a cross-lingual space which we can either

use to initialize an MT system or to search for similar sentences. In our analysis, we will focus

on various techniques to induce the cross-lingual space and enhance the alignment of parallel

word and sentence representations. We will explore the effect of multilingual training on the

quality of the representations and on the performance of UMT systems.

We first introduce our background and motivation in Chapter 2. We present the theoretical

foundations behind our work in Chapter 3, followed by the literature review of unsupervised

methods in MT in Chapter 4. We give details on how we obtain the training data for our

experiments in Chapter 5. We outline the unsupervised training methodology in Chapter 6.

We describe our translation experiments and comment on the results in Chapter 7. We discuss

the translation quality and point out the limitations of unsupervised techniques in Chapter 8.

We conclude by summarizing our main findings and uncovering potential directions for future

research.
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2. Background

2.1 Language Data Resources

Language data resources refer to the various sources of information that are used to study,

process, and analyze language. In the context of machine translation, the most relevant data

resources are written text corpora, pre-translated texts (parallel corpora), word lexicons and

pre-trained models. In other areas of linguistic research, useful resources include treebanks

(for syntactic and morphological analysis), speech corpora (for automatic speech recognition)

or other annotated corpora (for sentiment analysis, sentence similarity search, named entity

recognition etc.).

2.1.1 Monolingual Corpora

A monolingual corpus is a collection of texts in a single language. For the purposes of this

thesis, a monolingual corpus is understood as a collection of texts in a single language in plain

text with no additional annotations. Out of all NLP resource types, monolingual corpora are

the easiest to obtain. Even in many low-resource languages, it is possible to gather significant

amounts of text by automatic web crawling. The CommonCrawl1 project carries out periodic

web crawls and publishes the crawled data in an open repository with public access. The

repository contains petabytes of data collected since 2008. The quality of web-crawled corpora

is dubious even after filtering [Kreutzer et al., 2022] but for low-resource languages, it is often

the only data source available. Artetxe et al. [2022] demonstrate that in cases where there is

not a sufficient amount of high-quality curated data, the benefits of having a larger and a more

diverse corpus are worth the potential data quality issues.

The majority of monolingual corpora used in MT papers is derived by automatic filtering

of the CommonCrawl corpus. For example, the open source OSCAR2 project compiled a large

multilingual corpus by language classification and filtering of the CommonCrawl with the goal

of providing large quantities of raw text to be used mostly for pre-training of large deep learning

models in 151 languages.

Monolingual corpora can come from different domains. The popularity of online news-

papers warrants a high representation of the news domain in the crawled corpora. Newspaper

articles are collected in the NewsCrawl3 corpus which is released every year for the WMT

series of shared tasks. Similarly, the legal domain is strong due to the online legal codes,

European regulations and international treaties which are publicly available.4

1https://commoncrawl.org/
2https://oscar-project.org/
3https://data.statmt.org/news-crawl/
4https://www.clarin.eu/resource-families/legal-corpora
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2.1.2 Parallel Corpora

A parallel corpus is a primary resource for standard MT training. It is a collection of texts in

different languages that are aligned at the sentence level. In a parallel corpus, each sentence

or phrase in one language corresponds to its translation equivalent in another language. Par-

allel corpora are typically created by professional translators or by collecting documents that

have been translated for various purposes, such as multilingual websites, official documents,

or bilingual books. While most parallel corpora are bilingual, some have multiway alignments

between all covered languages (e.g. the eBible5 corpus).

Most publicly available parallel corpora are gathered on the OPUS6 website for anybody to

download. The largest corpora come from the mixed domain, but there are significant resources

of specialized texts as well. Legal texts often naturally originate in multiple languages in

parallel, e.g. the extensive EuroParl7 corpus of proceedings of the European Parliament covers

all EU languages. Similarly, the EMEA8 corpus comprises documents from the European

Medicines Agency in all EU languages.

As far as low-resource languages are concerned, Tatoeba9 is a collaborative online project

that aims to create a multilingual corpus of sentences and translations for underrepresented

languages. It allows users to contribute sentences in various languages along with their trans-

lations into other languages. The corpus is continuously expanded and improved through the

collaborative efforts of volunteers from around the world. The number of translated sentences

in each language varies from only a couple to several thousand. Besides Tatoeba, the only

parallel datasets for truly low-resource languages are often the Bible [Akerman et al., 2023]

or the Ubuntu localization files which are small and narrowly specialized [Tiedemann, 2012].

Costa-jussà et al. [2022] compiled a multiway parallel corpus FLORES-200 of 3k sentences

curated by professional translators in 200 low-resource languages.

The lack of parallel data faced by many language pairs is the reason why researchers ex-

plore the options of utilizing monolingual data for MT training.

2.1.3 Comparable Corpora

A comparable corpus is a collection of texts in different languages that are comparable in terms

of genre, content and purpose. Unlike parallel corpora, they are not sentence-aligned but they

can be aligned at the paragraph or document level. A popular example of a comparable corpus

is Wikipedia,10 where articles on the same topic in different languages are linked but they

vary in their content as well as their length. The Wikipedia size of each language is a good

proxy of the online presence of a language and the strength of the community supporting its

preservation.

5https://github.com/BibleNLP/ebible
6[https://opus.nlpl.eu/
7https://www.statmt.org/europarl/
8https://inventory.clarin.gr/corpus/747
9https://tatoeba.org/

10https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2735
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In our work, we use comparable corpora to search for translation equivalents to build a

pseudo-parallel corpus.

2.1.4 Pseudo-Parallel Corpora

A pseudo-parallel corpus is a collection of text data that is not perfectly aligned or parallel,

but still provides useful information for machine translation and other language processing

tasks. Unlike a true parallel corpus, where the paired sentences fully correspond to each other,

a pseudo-parallel corpus consists of similar but not necessarily identical texts in two or more

languages. In the context of this work, a pseudo-parallel corpus is created by automatic search

for parallel sentences in two monolingual and preferably comparable corpora.

2.1.5 Synthetic Parallel Corpora

Synthetic parallel corpora arise by a process called back-translation [Sennrich et al., 2016]

when a trained MT system is used to translate a monolingual corpus and the original sentences

are coupled with their synthetic translations. The source side of the resulting parallel corpus

is usually the synthetic one while the target side has the original authentic sentences. Using

translations from a phrase-based system to train a neural system in the opposite translation

direction is an effective approach to unsupervised MT which we explore in Section 7.2.

2.1.6 Pre-Trained Models

Pre-trained models refer to machine learning models that have been trained on large amounts

of text data and made available for general use, e.g. in the HuggingFace Model Hub.11 The

training process involves exposing the model to vast amounts of text data and optimizing its

parameters to learn patterns, relationships, and representations of language. This allows the

model to capture various linguistic properties, contextual information, and semantic relation-

ships between words and sentences.

Pre-trained models have become one of the most powerful resources for NLP applications

as they allow researchers to reach state-of-the-art results with limited computation capacity.

However, their performance for underrepresented languages is usually subpar and many lan-

guages are not supported at all. In spite of that, utilizing the knowledge learned from high-

resource languages is an effective strategy when training a model for a low-resource language

[Zoph et al., 2016, Nguyen and Chiang, 2017, Kocmi and Bojar, 2018]. In this work, we use

large-scale multilingual models from the BERT family [Devlin et al., 2018] as sentence en-

coders and we fine-tune them for better performance on the languages of our interest. More

details on pre-trained language models will be given in Chapter 3 and later in Chapter 5.

11https://huggingface.co/
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Class #Langs #Speakers % of Total Langs Example Languages
Dominant 7 2.5B 0.28% English, German
High-resource 18 2.2B 1.07% Czech

Low-resource I. 28 1.8B 4.42%
Kazakh, Ukrainian, Geor-
gian

Low-resource II. 241 36M 5.85%
Upper Sorbian, Inukti-
tut, Assamese, Khasi,
Manipuri, Mizo

No-resource 2,191 1.2B 88.38% –

Table 2.1: Taxonomy of languages originally by Joshi et al. [2020] with a number
of languages per group, a number of speakers per group, and a percentage of total
languages. We use it for classification of the languages we focus on in this work.

2.2 Cross-lingual Information in Monolingual Data

Collections of texts in multiple languages inherently contain a translation signal, even if the

texts are not explicitly matched. It is possible that equivalent sentences are concealed within

the corpora, and these can be automatically identified before the translation training starts. In

such cases, we refer to the process as the creation of a pseudo-parallel corpus in advance.

In other cases, especially when the monolingual corpora are of limited size and the likeli-

hood of discovering matching sentences is low, we can explore semantic correspondences at the

level of individual words or short phrases, considering their context. The core concept here is

that across languages, similar words tend to occur in similar contexts. While this principle may

not be universally applicable across distinct cultural, climatic, or socioeconomic backgrounds,

when the corpora share a common domain, it becomes possible to leverage this similarity to

extract a word or phrase dictionary, often referred to as a lexicon.

Such a lexicon serves as a valuable resource for generating a synthetic parallel corpus. This

can be achieved through word-by-word translation or by employing a phrase-based machine

translation system. Although these initial translations are far from perfect, they represent a

potential source of cross-lingual signal when true parallel data is not readily available.

It came as a surprise that multilingual language-representation models trained without any

cross-lingual objective are able to uncover text correspondences in monolingual data [Pires

et al., 2019]. This likely happens due to the limited capacity of the models which forces them

to economize and find the right alignments between their internal representations. This form

of cross-lingual information emerges at the level of context representation and, therefore, is

only accessible to machine learning models. It can be leveraged by copying the weights of the

pre-trained language model into the neural MT model [Conneau and Lample, 2019] as will be

described in Chapter 6.

2.3 Languages of the World

There are estimated to be 7,168 living languages spoken in the world today [Eberhard et al.,

2023]. These languages are diverse and vary widely in terms of their structure, grammar,
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Figure 2.1: World languages plotted in terms of the available textual data – raw mono-
lingual (horizontal axis) and parallel English-aligned (vertical axis). Both axes are in
log scale. The rectangle delimits the area of low-resource languages that this thesis
focuses on.

vocabulary and usage. Along with the well-developed and universally supported languages

with a strong speaker base, there are languages without a proper writing system and with only

a handful of speakers left with their unique knowledge. NLP technologies strive to provide

support for speakers of low-resource languages as well as work towards the preservation of the

language itself. Many of the world’s languages are endangered, with some estimates suggesting

that up to half of all languages could disappear by the end of the 21st century.12

Joshi et al. [2020] distinguish six kinds of languages according to their digital status. They

propose a taxonomy which is based on the amount of labeled and unlabeled data available on-

line for each language. According to their findings, 88.38% of the 2,455 considered languages

fall into the last category which is completely ignored by digital language technologies. The

first category, on the other hand, includes only seven languages (English, Spanish, German,

Japanese, French, Chinese, and Arabic) with a dominant online presence and a superiority over

other languages in terms of the amount of both labeled and unlabeled data, enabling them to

benefit from all NLP breakthroughs. Most of the remaining European languages fall in the sec-

ond category characterized by dedicated NLP communities and strong economical and political

links to the dominant languages. In this thesis, we mostly target the low-resource languages

from the remaining two groups, spoken by almost 2 billion people in total. A sufficient amount

of unlabeled (monolingual) data and a lack of labeled (parallel) sentences constitute the ideal

scenario for UMT training. The languages we work with and their corresponding categories

are listed in Table 2.1.

12https://www.ethnologue.com/insights/how-many-languages-endangered/
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2.4 Low-Resource Languages

In order to determine the scope of this work, we need to assess which languages are consid-

ered low-resource for the task of machine translation and how many such languages there are.

We gauge the quantity of parallel data accessible for each language by calculating the num-

ber of English-aligned parallel sentences found on the OPUS website, in conjunction with the

supplementary corpora provided for the WMT translation shared tasks.13 The quantity of par-

allel sentences aligned with English serves as a rough estimate for the upper limit of parallel

sentences aligned with other languages. This is because language pairs not involving English

typically have a smaller amount of parallel data. As a proxy for the total amount of monolin-

gual data available, we consider the Oscar corpus sizes. It must be noted that both OPUS and

Oscar include uncleaned text data with a lot of noise and possible duplicates. We display the

languages in terms of their quantities of labeled and unlabeled data in Figure 2.1. The results

are plotted in log scale to better illustrate the distribution of languages.

Out of the 151 languages covered by the Oscar corpus, 79 have less than 1M uncleaned

parallel sentence pairs, making them suitable candidates for unsupervised training. For the

purposes of this work, we call these languages low-resource. The threshold of 1M parallel sen-

tences is motivated by Kocmi [2020] who shows that training MT models with fewer sentences

leads to fast over-fitting and hindered translation performance. The rectangle in Figure 2.1

delimits the space where unsupervised pre-training techniques are most needed for the lack of

parallel data (<1M sentence pairs) and where they are applicable for the abundance of mono-

lingual data (>1M words for unsupervised training). The languages to the left of the rectangle

can be called very low-resource and they cannot easily benefit from the techniques we propose

due to their limited amounts of monolingual data. Many other languages are not even plotted

in the chart as they do not have any data available in the OSCAR corpus.

2.5 The Extent of This Study

In this thesis, we focus on several language pairs, most of which are characterized as low-

resource. This section provides an overview of these language pairs, their relevance to the

experiments conducted, and essential linguistic details [Eberhard et al., 2023].

• We train domain-specific MT models for translation from English to Ukrainian, Kazakh,

and Georgian. Kazakh, belonging to the Turkic language family, and Georgian, belong-

ing to the isolated Kartvelian language family, enable us to validate our approaches

across a wide spectrum of linguistic variation.

• We conduct experiments involving translation between English and four low-resource

Indic languages (Assamese, Khasi, Manipuri, Mizo). The amount of monolingual data

available for these languages is significantly lower than for the languages in the first

group, which allows us to test the limits of our approaches in truly low-resource sce-

narios. These languages are among the 22 official languages of the Indian Republic and

13https://statmt.org/
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Figure 2.2: Languages used in this thesis in terms of the size of the available monolin-
gual texts. Colors reflect language families and the links between languages represent
the amount of parallel data available.

exhibit considerable linguistic diversity. Specifically, Manipuri (also called Meitei) and

Mizo belong to the Sino-Tibetan language family, Khasi is a member of the Austro-

Asiatic language family, and Assamese is part of the Indo-Aryan branch of the Indo-

European language family. Assamese and Manipuri share a common Bengali-Assamese

script.

• Inuktitut is an Eskimo-Aleut language and we use it to test our approach to parallel

corpus mining on a low-resource language with a unique script.

• Our other experiments encompass more closely related Indo-European languages. While

the German-Czech language pair has access to substantial volumes of pre-translated

texts, we employed it in our preliminary experiments with unsupervised approaches.

On the other hand, German and Upper Sorbian is a language pair which represents an

authentic low-resource scenario where translation holds important socio-economic sig-

nificance, given that Upper Sorbian is spoken in a region of Saxony in Germany.

Figure 2.2 illustrates the language pairs relevant for this thesis, their corpus sizes and their

linguistic similarity. Figure 2.3 shows the languages in terms of their speaker base rather than

their text data amounts. Comparing the two figures allows us to judge how big a language

really is (as represented by the number of native speakers) in contrast with how strong its

online presence is. The dominance of English or German is less pronounced when measured

by the size of their speaker base. On the other hand, Czech is an example of a language which

possesses a comparatively abundant volume of data in relation to its number of speakers which

suggests a strong NLP community supporting it. Similarly, Inuktitut has only 38k speakers but

a relatively big parallel corpus of 1M languages due to the support of the National Research
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Figure 2.3: Languages used in this thesis in terms of the number of native speakers.
Colors reflect language families and the links between languages represent the amount
of parallel data available.

Council of Canada which published the proceedings of the Legislative Assembly of Nunavut

in the Hansard corpus.14

When training a machine translation system, we explore the possibilities of utilizing mono-

lingual data in other languages. However, using parallel data in other languages for translation

knowledge transfer is out of scope and the readers are referred to Kocmi [2020] for more details

on transfer learning for low-resource languages.

14https://nrc-digital-repository.canada.ca/eng/view/object/?id=
c7e34fa7-7629-43c2-bd6d-19b32bf64f60

14

https://nrc-digital-repository.canada.ca/eng/view/object/?id=c7e34fa7-7629-43c2-bd6d-19b32bf64f60
https://nrc-digital-repository.canada.ca/eng/view/object/?id=c7e34fa7-7629-43c2-bd6d-19b32bf64f60


3. NLP Fundamentals
In this chapter, we describe the main foundation blocks that we build upon later when describ-

ing the methodology of our work. We start by introducing the concept of word embeddings and

move on to the state-of-the-art language representation models with the Transformer architec-

ture. We finally introduce the fundamentals of phrase-based machine translation (PBMT) and

neural machine translation (NMT).

3.1 Word Embeddings

In order to process words using machine learning models, it is necessary to assign them a nu-

merical representation. The simplest way for the model to differentiate one word from another

would be by the so-called one-hot encoding where a vector of length |V | is assigned to each

word i of the vocabulary |+V with vector elements zj = 0 if j ̸= i and zj = 1 if j = i.

However, such a vector treats words as mere indices in a vocabulary and does not carry any

linguistic information.

Word embeddings, on the other hand, are continuous real-valued vector representations of

words trained so that words that are semantically close are also close in the embedding vector

space. The concept stems from the distributional hypothesis [Harris, 1954] which suggests

that words that appear in similar contexts tend to have similar meanings. The first notion of

distributed word feature vectors was introduced by Bengio et al. [2003] who proposed them

as an ailment for the curse of dimensionality inherent to the task of language modeling. An

efficient way to obtain these vector was later discovered by Mikolov et al. [2013c].

Word embeddings can also be viewed as a mapping from the high-dimensional space

{0, 1}|V | to a lower-dimensional one RE where |V | is the size of the vocabulary and E is

the embedding dimension and E << |V |. They can be learned by various neural models

which will be introduced in the following paragraphs.

3.1.1 Static Word Embeddings

Static word embeddings are fixed-length real-valued vector representations of words that carry

semantic information. A major breakthrough was achieved by Mikolov et al. [2013a] and their

Word2Vec that learns word embeddings by two types of models – continuous bag-of-words

(CBOW) and Skip-gram. The former learns to predict the current word based on its context

(surrounding words) while the latter learns to predict the context given the current word. The

architecture is illustrated in Figure 3.1. Models trained for other NLP tasks, including MT, also

create their own static embeddings which will be discussed in Section 3.2.2 and Section 3.3.1.

Skip-gram Model

Skip-gram model is a feed-forward neural network that takes input as a one-hot vector with

dimensions 1× |V |. It has a single hidden layer that projects the input into the E-dimensional
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Figure 3.1: Word2Vec model architectures. The CBOW architecture predicts the cur-
rent word based on the context, the Skip-gram predicts surrounding words given the
current word.

Source: Mikolov et al. [2013c]

space and an output layer with a softmax activation function over the vocabulary of size |V |,
which again outputs a one-hot vector. The dimensions of the hidden and output weights are

|V |×E and E × |V |, respectively.

The training task for the Skip-gram model is to predict the surrounding words of the current

word. The model is presented with a pair of words at a time, composed of the current word in

the output and one of its context words in the output. The context is defined as the set of words

within a window of length c from the current word. Closer context words are sampled more

frequently to approximate the looser relationships between more distant words.

Our focus does not lie in solving the task itself. Instead, we seek valuable internal repre-

sentations that the model must construct in order to address the task effectively. They are stored

in the hidden layer of the model and the word embeddings of all words from the vocabulary are

obtained by simply extracting the hidden weight matrix (|V |×E).

While embeddings of entire words are useful for semantic processing and tasks such as

word similarity search, other tasks, such as machine translation, operate with smaller units

(subwords). Kocmi and Bojar [2016] reach a better performance on the Skip-gram test set by

a SubGram model which considers the word structure when training the embeddings. Sim-

ilarly, FastText [Bojanowski et al., 2017] extends the Skip-gram model by enriching it with

subword information to reflect the morphological properties of the words. The FastText model

represents words by the sum of the vector representations of their character n-grams.

Continuous bag-of-words (CBOW) model

The training task behind the CBOW model is opposite to the Skip-gram. The input to the model

is several context words (e.g. 2 or 3 before and after the current word, depending on the size

of the window) which are projected to the hidden layer and averaged. The average embedding
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vector is then projected back to the output layer which should predict the current word. The

dimensions of the hidden and the output layer are identical to the Skip-gram model.

According to Mikolov et al. [2013c], CBOW is faster to train than Skip-gram and it is better

suited for large corpora, but Skip-gram can better represent less frequent words, especially

when the training data is small.

3.1.2 Contextual Word Embeddings

In contrast to static word embeddings, contextual word embeddings are a function of the entire

sentence (or any text stream) containing the given word. They arise from the internal represen-

tations of language models. As opposed to static embeddings which are type-level, contextual

embeddings assign a unique vector to every token being processed based on its context. In

order to get rid of the dynamic context dependency of contextual embeddings and obtain an

equivalent of static embeddings, one can simply take their average per word type over a text

corpus (or its subset). Schuster et al. [2019] show that contextual embeddings cluster around

their average anchor and polysemous words are characterized by multi-modal clusters.

Two important examples of pre-trained contextual word embeddings are ELMo (Embed-

dings from Language Models) and BERT (Bidirectional Encoder Representations). ELMo [Pe-

ters et al., 2018] embeddings are computed on top of a bidirectional recurrent language model

with character convolutions. The contextual representation of each token is the concatenation

of the left-to-right and right-to-left representations. BERT [Devlin et al., 2018] embeddings are

retrieved from the encoder outputs of a Transformer language model. More details about the

Transformer architecture will be given in Section 3.2.

3.1.3 Cross-lingual Word Embeddings

The notion behind cross-lingual embeddings resembles the theoretical concept of interlingua –

a space where meaning is represented regardless of the language it is expressed in.

Static word embeddings were shown to have many favorable properties regarding seman-

tically meaningful geometric arrangements of word representations which could be exploited

for turning monolingual embedding vectors into a cross-lingual space. The rationale behind

this is that the use of language reflects concepts grounded in the real world. Since real-world

concepts do not change upon expression in different languages, the embedding spaces in dif-

ferent languages are expected to be approximately isomorphic [Storer, 1952]. Several authors

[Mikolov et al., 2013b, Conneau et al., 2018a, Artetxe et al., 2018c] leverage this property to

obtain cross-lingual embeddings by linear mapping as illustrated in Figure 3.2. The idea of

language isomorphism is at the core of many UMT approaches.

Formally, if embedding spaces in different languages are perfectly isomorphic, there ex-

ists a linear mapping between them [Mikolov et al., 2013b]. In presence of a bilingual seed

lexicon L, the problem of finding the mapping matrix W ∈ Rdim×dim between monolingual
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Figure 3.2: Mapping monolingual embeddings to cross-lingual space
Source: [Conneau et al., 2018a]

embeddings of length dim is then defined as

W ∗ = argmin
W ∈Rdim×dim

||WXseed − Yseed||F (3.1)

where Xseed and Yseed are the |L|×dim matrices of corresponding source embeddings

x1, ..., x|L| and target embeddings y1, ..., y|L|, and |L| is the size of the bilingual seed lexicon.

Xing et al. [2015] show that it can be assumed that the mapping is orthogonal which turns the

problem of finding the embedding mapping matrix W into the orthogonal Procrustes problem

[Hurley and Cattell, 1962] with a closed-form solution [Schönemann, 1966] given by singular

value decomposition (SVD)

W ∗ = argmin
W ∈Rdim×dims.t.W T W =1

||WXseed − Yseed||F = UV T (3.2)

where UΣV T = SVD(YseedXT
seed).

The mapping matrix W is finally used for post-hoc alignment of all embeddings

x1, ..., x|Vsrc| from the source language vocabulary Vsrc into the target language embedding

space. If the embedding spaces are at least approximately isomorphic, the resulting embedding

space in Rdim populated by target embeddings yj , j = 1, . . . , |Vtgt| and aligned source em-

beddings Wxi, i = 1, . . . , |Vsrc| is cross-lingual and can be used for finding word translation

pairs based on their vector similarity score, e.g. cosine similarity.

However, several authors [Søgaard et al., 2018, Ormazabal et al., 2019, Patra et al., 2019,

Vulić et al., 2020] criticize this theoretically valid approach for not having sufficient ground

in real-life situations. They argue that the underlying assumption of the isomorphism of em-

bedding spaces is frequently not met, particularly in scenarios where languages and domains

exhibit significant dissimilarities, as is frequently the case in low-resource contexts. Accord-

ing to Søgaard et al. [2018], isomorphism is also influenced by the type and parameters of the

word embedding algorithm, and they stress the importance of the same configuration on both

sides. They are skeptical about their use for unsupervised translationHowever, when domain-

balanced corpora are available, the linear mapping approaches work reasonably well [Mikolov

et al., 2013b] even in unsupervised conditions [Conneau et al., 2018a, Artetxe et al., 2018c].

Unsupervised mapping techniques which do not count with a manually created bilingual seed

lexicon L for supervision will be described in Chapter 6.
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3.2 Transformer Language Models

The Transformer model [Vaswani et al., 2017] was proposed as a new solution to sequence-to-

sequence modeling tasks which were previously tackled by recurrent neural networks (RNNs)

with gated recurrent units (GRU) [Chung et al., 2014] and long short-term memory (LSTM)

[Hochreiter and Schmidhuber, 1997] cells. Recurrent models process text auto-regressively,

one token at a time, and the time dependency is modeled by the previous hidden states of the

model which serve as an additional input to the recurrent layers. RNNs reached impressive per-

formance both in language modeling and machine translation [Mikolov et al., 2010, Sutskever

et al., 2014]. However, RNNs struggle with modeling of long dependencies and remember-

ing earlier contexts. The problem was partially alleviated by using the attention mechanism

[Bahdanau et al., 2015] where the model only attends to the part of the input that is relevant

for generating the output. The Transformer model goes even further and removes the recurrent

part of the model entirely, claiming that the Attention is All You Need [Vaswani et al., 2017].

The new architecture processes one sentence as a whole rather than token-by-token, which im-

proves the ability of the model to remember the context and allows parallel computation which

significantly reduces the training time.

In the following section, we will introduce the theoretical foundations behind the func-

tioning of the Transformer models, as they will be used in our experiments throughout this

thesis. We give a brief overview of the architecture, for more detailed information please refer

to Vaswani et al. [2017].

3.2.1 Architecture

The Transformer was introduced as an encoder-decoder model intended for machine transla-

tion. For language modeling tasks it can also be used as a solo encoder or a solo decoder.

The encoder-decoder architecture is composed of a stack of encoders and a stack of de-

coders as illustrated in Figure 3.3. The role of the encoder is to process the source sentence

and return a deep bidirectional representation vector for each token of the sentence. The role

of the decoder is to process the encoded source sentence and generate a new one. In addition to

the encoder representations of the source text, the decoder sees the target words it had already

generated.

Encoder

The encoder encodes the input sentence of length len by passing it through a stack of encoder

blocks. The depth of the model is governed by the number N of encoder blocks, each of which

is composed of a multi-head self-attention layer with M heads and a feed-forward layer, with

layer normalization after every layer and residual connections in between. Dropout [Srivastava

et al., 2014] is applied before each layer normalization.

The dimensionality dim of the model is one of the model hyperparameters and it is the

plength of the per-token vectors which flow between the blocks of the model. One encoder

block is also sometimes referred to as one encoder layer which has two sublayers. Formally,
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Figure 3.3: Illustration of the full Transformer encoder-decoder architecture.
Source: Vaswani et al. [2017]

the output of one encoder layer Enc(X) given the previous-layer sentence representation X ∈
Rlen×dim is calculated as

Enc(X) = LayerNorm(X ′ + FFN(X)) (3.3)

X ′ = LayerNorm(X + MultiHeadAtt(X)) (3.4)

FFN(X) = Θ(XW1 + B1)W2 + B2 (3.5)

where W1 ∈ Rdim×4dim, W2 ∈ R4dim×dim and their respective biases B1, B2 are the

parameters of the feed-forward network whose hidden dimension is usually four times the

model dimensionality dim. Θ(x) is a ReLU or GELU [Hendrycks and Gimpel, 2017] acti-

vation function. When calculating self-attention for the first encoder block, the previous-layer

representation X refers to the input embeddings.

Decoder

The decoder typically has the same number of blocks (layers) N as the encoder. It has an

almost identical structure to the encoder, but the decoder blocks include an additional multi-

20



headed cross-attention layer in the middle that attends to the encoder representations of the

source sequence.

The input to the decoder is the encoder output and the target sequence of tokens. The

first layer is always an embedding layer enriched with positional encoding and optionally an

additional sequence type embedding or a language embedding. The final decoder output is

passed on to a linear layer with a softmax activation function over the output dictionary. The

weight matrix of the linear layer can be thought of as an output embedding matrix and it was

shown to be beneficial to tie it to the input embedding matrix and update the two together [Press

and Wolf, 2017].

3.2.2 Input Embeddings

The input text stream is fed into the model as a sequence of tokens (x1, . . . , xlen) represented

by their vocabulary indices. The first step the model performs is encoding the input tokens

using a learned token embedding matrix W T E ∈ V × dim where V is the vocabulary size.

Furthermore, as the Transformer model does not rely on any recurrence, the ordering of

the sequence tokens must be modeled explicitly by positional encoding. It can be done either

by learning a position embedding matrix W P E ∈ Rmax len×dim where maxlen is the maxi-

mum sequence length or by using parameterless sinusoidal encoding to calculate the values of

W P OS EMB according to

W P E(pos; 2i) = sin(pos/100002i/d) (3.6)

W P E(pos; 2i + 1) = cos(pos/100002i/d) (3.7)

where pos is the position being encoded.

In multilingual tasks, it may be beneficial to provide the model with information about

the language of the input sequence by embedding its language id using a language embedding

matrix W LE ∈ Rnlangs×dim where nlangs is the number of languages known to the model.

The final input embeddings X ∈ Rlen×dim are calculated as a sum of token embeddings,

position embeddings, and language embeddings (if applicable).

X = Emb((x1 . . . xlen), W T E) + Emb((1, . . . , len), W P E)+

+ Emb((lang, . . . , lang), W LE) (3.8)

For a sequence of non-negative indices seq, Emb(seq, W ) ∈ Rlen×dim refers to the output

of an embedding layer defined by a lookup matrix W .

Finally, dropout is applied to the normalized input embeddings.

21



Figure 3.4: Visualization of the inner workings of the self-attention layers.
Source: [Vaswani et al., 2017]

3.2.3 Self-Attention

The key concept behind the Transformer architecture is the self-attention which is illustrated in

Figure 3.4. The purpose of self-attention is to determine whether to use the information about

token j while encoding or decoding token i. To that end, it needs to score each word of the

input sentence against the current word to determine how much focus to place on other parts of

the input sentence.

The attention layer is composed of three sets of matrices with dimensions dim × dk that

need to be trained: query matrix W Q, key matrix W K , and value matrix W V . The embedding

dimension of the model dim and the attention dimension dk are hyperparameters. Multiplying

a token representation vector X with these three matrices yields three new sets of vectors:

queries (Q), keys (K), and values (V ). The attention score is computed as the dot products of

the query with all keys, divided by the square root of the length of the key vector dk. Finally,

softmax is calculated to obtain the probability weights on the value vector where a zero weight

on a particular position means no information flow between the two tokens.

Formally, the calculation illustrated in Figure 3.4 is the following

Z = Att(Q, K, V ) = softmax(QKT /
√︁

dk)V

where Q = XW Q; K = XW K ; V = XW V (3.9)

where X ∈ Rlen×dim is the previous-layer representation of the sequence and Z ∈ Rlen×dk

is the attention representation of the sequence.

Transformer attention is modeled to have multiple heads, i.e. multiple sets of queries Qi,

keys Ki, values Vi, and their respective trainable matrices, each of which yields a new sequence

representation Zi in a separate subspace. The outputs are concatenated and projected again

as illustrated in Figure 3.4. That way the model can capture multiple types of relationships

between words, e.g. on the semantic or the syntactic level. For a number of heads M and a

trainable matrix W O ∈ RMdk×dim, the multi-head attention output is calculated as follows
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MultiHeadAtt(X) = Concat(Z0, . . . , ZM )W O

where Zi = Att(XW Q
i , XW K

i , XW V
i ) (3.10)

Transformer decoder uses multi-head masked self-attention. When decoding the word n

of a target sentence of length lentgt, the words (n + 1, . . . lentgt) are masked to prevent the

self-attention layer to consider information about tokens that have not yet been generated.

The information flow between the encoder and the decoder of a full Transformer model is

facilitated by multi-head cross-attention layers. They work identically to the self-attention lay-

ers, only there are two inputs into each cross-attention layer – final encoder representations of

the source (Xenc) and previous-layer decoder representations of the target (Y enc). Intuitively,

for each target word that is being generated, the cross-attention can attend to any source token

that it finds relevant. Moreover, it can attend to different tokens in each head. The Equation 3.9

still applies but the calculation of the queries, keys, and values for i ∈ (1, M) is the following

Qi = Y encW Q
i ; Ki = XencW K

i ; Vi = Xenc
i W V (3.11)

3.2.4 Unsupervised Pre-Training

The Transformer architecture and the efficiency of its training allow pre-training on large

amounts of unlabeled text data to learn the statistical patterns, relationships, and structures

present in the language. Soon after the introduction of the Transformer architecture, big

NLP players started publishing large-scale NLP models pre-trained on large amounts of non-

annotated data (e.g. BERT [Devlin et al., 2018] by Google; GPT [Brown et al., 2020] by

OpenAI; RoBERTa [Liu et al., 2019] or BART [Lewis et al., 2020] by Facebook AI). For many

tasks across the NLP field, fine-tuning pre-trained models leads to state-of-the-art results with

a fraction of resources [Devlin et al., 2018].

Pre-trained models are often publicly available to save the computation power needed for

the pre-training stage and allow even smaller research groups to harvest the benefits of large-

scale unsupervised pre-training. We present the most common pre-training strategies where

training data can be trivially generated from raw monolingual texts. Unsupervised pre-training

can be applied to only the encoder (e.g. BERT), only the decoder (e.g. GPT), or the entire

encoder-decoder model (e.g. BART) and the training objectives differ accordingly as illustrated

in Figure 3.6.

Causal Language Modeling (CLM) training objective can be used for both encoder-only

models and decoder-only models. The task consists of modeling the probability of a word

given the previous words in a sentence P (wt|w1, . . . , wt−1, θ) with model parameters θ. This

is the traditional objective for language generation. During training, we optimize the maximum

likelihood of the next word given the context. The model is able to attend to the left context of

the masked word and never sees the right context with future words which have not yet been
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Figure 3.5: Cross-lingual language model design for training with the masked language
modeling (MLM) objective.

Source: Conneau and Lample [2019]

generated. The training is usually performed on fixed-length text streams. The GPT family of

pre-trained Transformer decoders uses the CLM pre-training objective.

Masked Language Modeling (MLM) training objective is meant for encoder-based

Transformer models where the model is trained to predict individual words rather than

generate the full sequence. It encourages learning of a bidirectional context of words. It is

inspired by the Cloze test on the readability of corrupted text [Taylor, 1953] commonly used

in student assessment of learning a foreign language. Random tokens of a word sequence are

masked and the task for the model is to fill in the missing tokens given the context. During

MLM training used for BERT pre-training, 15% of tokens are randomly sampled to be either

replaced by the [MASK] token (80% of time), replaced by a random token (10% of time), or

not changed at all (10% of time). An extra head with a softmax linear layer is built on top of

the encoder to select the most probable word from the vocabulary for each masked position.

The training is usually performed on fixed-length text streams.

In contrast to a causal (left-to-right) language modeling objective, MLM relies on the bidi-

rectional nature of a Transformer encoder. The bidirectionality is achieved by the self-attention

layers where the encoder sees both the left-hand-side and the right-hand-side context of the

masked word. The BERT family of pre-trained Transformer encoders uses the MLM pre-

training objective.

Denoising Autoencoding (DAE) is a training strategy meant for pre-training the entire

encoder-decoder model. It was proposed by Vincent et al. [2008] and later customized for NLP

by Lample et al. [2018a] and Lewis et al. [2020] who pre-trained and published the popular

BART model. Denoising autoencoding entails corrupting the input with a specific noise and

training the model to recover the original. The purpose of the input noise is to encourage the

model to internally create a high-level representation of the text by simulating a situation where

meaning needs to be preserved while the input cannot be trivially copied.

The following strategies can be used in the noise function

1. token masking, where random tokens are masked with the [MASK] token;
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Figure 3.6: Schematic comparison between BERT, GPT and BART models.
Source: Lewis et al. [2020]

2. token deletion, where random tokens are deleted;

3. text infilling, where random sequences of different lengths (sampled from the Poisson

distribution with λ = 3) are sampled and replaced by [MASK] token (for 0-length

sequences, [MASK] token is inserted );

4. token shuffling, where a random permutation within a specified window length is applied

to the input sentence

5. sentence permutation, where a random permutation is applied to sentences within one

training sample

6. document rotation, where the initial token is selected randomly from the training sample

and put at the start, moving the preceding tokens at the end of the model

Lample et al. [2018a] use token deletion and token shuffling; Lewis et al. [2020] use all

strategies except for token shuffling and report a crucial role of token masking and token dele-

tion, and poor performance of sentence permutation and document rotation.

3.2.5 Multilingual Pre-Training

The unsupervised training described in the previous paragraphs can also be performed multilin-

gually. The multilingual BERT (mBERT) and XLM [Conneau and Lample, 2019] were trained

as the multilingual versions of BERT on the entire Wikipedia dump. XLM-R [Conneau et al.,

2019] was trained as the multilingual version of RoBERTa on the large CommonCrawl corpus.

Multilingual pre-trained models are immensely popular for their multilingual text representa-

tions as well as their capabilities to transfer downstream task knowledge to new languages.
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The language id information can be passed to the model by an initial extra language id token

(e.g. mBART) or via the language embedding layer (e.g. XLM) but some models treat all text

the same, regardless of the language. We will give more details on multilingual pre-training in

Chapter 6.

3.2.6 Internal Representations

Internal representations from large language representation models are a valuable source of

information on the inner functioning of the Transformer models. Furthermore, they can be

extracted and used as contextual embeddings for various purposes.

A sentence is processed by a Transformer encoder as a sequence of tokens and the encoder

representations of each token can be understood as its contextual embeddings. The contextual

character of the embedding is reached by the self-attention layer which enriches each token

vector with the information about the surrounding words. Such enrichment occurs in every

encoder block. The enriched embeddings are normalized and processed through a feed-forward

network before they are passed to the next block.

Contextual embeddings can be retrieved from any layer of any pre-trained Transformer

model. Jawahar et al. [2019] show that different encoder layers represent different linguistic

phenomena. They conclude that surface and syntactic features lie on the bottom and middle

layers, while semantic features of words lie on the top layers.

3.3 Machine Translation

In the early days of natural language processing, machine translation was approached using a

great number of hand-crafted rules designed to cover the extremely complex nature of trans-

lation known to human translators. Later in 1990s, it was replaced by data-driven approaches

which use machine learning techniques to teach the model directly from a large corpus of

pre-translated texts.

Before 2014, the standard approach to MT was statistical PBMT, where n-grams in the

source and target languages were modeled and aligned based on their number of common oc-

currences. The advent of neural networks lead to a dramatic change in the MT field and a

complete change of paradigm from statistical phrase-based systems to neural encoder-decoder

models [Bahdanau et al., 2015, Sutskever et al., 2014]. In 2017, the state-of-the-art in MT

was reached by the Transformer architecture which replaced recurrent neural models. In Sec-

tion 3.2.4, we introduced the unsupervised training strategies for Transformer models. Here

we will describe how they can be trained for supervised machine translation.

3.3.1 Neural Machine Translation

NMT models are sequence-to-sequence models which utilize neural networks to learn the map-

ping between the source and the target language. They model the task of MT in an end-to-end
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fashion relying only on sentence-aligned parallel texts with no hand-crafted features or spe-

cialized modules. Different neural model architectures are possible but in this thesis, we work

exclusively with the Transformer models as presented in Section 3.2.1.

From the research point of view, NMT includes three main questions: how to design the

network architecture, how to train it, and how to use it for inference. In this thesis, we rely on

the state-of-the-art design and inference techniques for supervised MT and we contribute novel

approaches on how to train the model parameters from monolingual data only. Supervised

NMT training is introduced in this section to provide the foundations of our work, while the

specifics of unsupervised MT training will be described later in Chapter 6.

Tokenization and Vocabulary

NMT is an open vocabulary problem that needs to be solved with a fixed-size vocabulary

defined prior to the training. The right balance between the flexibility offered by a large vocab-

ulary and the constraint posed by the model capacity can be struck using one of the existing

subword approaches. In contrast to using complete word tokens, employing subword units

reduces the size of the vocabulary and eliminates the occurrence of unknown words in the

translated output.

Subword-based tokenization first segments the input texts into a group of characters that do

not necessarily correspond to full words. A fixed vocabulary of subword units and individual

characters ensures that rare words can be represented by the model rather than being tagged

unknown, although they might be treated merely as a list of characters. Although the subword

units are created algorithmically without any hand-crafted rules, sometimes they reflect the

morphological structure of a word.

The BPE algorithm [Sennrich et al., 2016] is a data compression algorithm originally de-

scribed by Gage [1994]. When applied to text data, it iteratively replaces the most common pair

of consecutive characters with a new symbol that does not occur in that data. This procedure

is repeated for a given number of iterations or until a pre-defined vocabulary size is reached.

Eventually, the most frequent words are represented as a single token while rare words are split

into several more common subword units. The algorithm can be applied to the concatenation

of the source and the target corpora to obtain a shared vocabulary of subwords.

Embeddings

It was explained in Section 3.1 that machine learning models work with numbers rather than

words. The same applies to NMT models which need to first assign a numerical vector (static

embedding) to each token of the vocabulary to be able to process the tokenized text. NMT

models create their own fixed embeddings in the initial layer, known as the embedding layer.

This layer assigns a learnable dense vector to each word in the vocabulary and these vectors

are updated throughout the training process. In Transformer systems, the input and output

embeddings are usually shared which requires a shared vocabulary for the source and target

languages.
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Architecture

The state-of-the-art MT architecture is the encoder-decoder Transformer which was described

in Section 3.2.1. The most commonly used architectures are base (6 layers in both the encoder

and decoder, 8 self-attention heads with dimension dk = 64, embedding size 512, and hidden

size 2048) and big (6 layers in both the encoder and decoder, 16 self-attention heads with

dimension dk = 64, embedding size 1024, and hidden size 4096).

Training

Supervised machine translation is trained on pairs of parallel sentences with a cross-entropy

training objective, where the model is penalized every time it predicts a different word than the

reference translation. The loss over the parallel corpus D is defined as follows

L(θenc, θdec) = −
∑︂

(x,y)∼D

|y|∑︂
i=0

log(p̂(yi)) (3.12)

where (θenc, θdec) are the trained model parameters, (x, y) is a sentence pair sampled from

the parallel data set D, and p̂(yi) is the predicted probability of token yi. The model is trained

to minimize the negative log-likelihood over the training corpus

θ∗
enc, θ∗

dec = argmin
θenc,θdec

L(θenc, θdec) (3.13)

using stochastic gradient descent (SGD) with adaptive learning rate (Adam) [Kingma and

Ba, 2015].

Back-translation

Back-translation is a data augmentation method for MT that allows using monolingual texts

to synthesize a parallel corpus and expand the translation training data [Sennrich et al., 2016].

It uses the trained MT model to translate monolingual texts, thereby creating an additional

parallel corpus to be used for further training of the model. The customary practice is to

utilize the synthetic side of the corpus as the source input to the model. It was shown that

several iterations of back-translation can significantly improve the results. The unsupervised

MT greatly relies on the concepts of back-translation. More details on the specifics of the

unsupervised training will be given in Chapter 6.

Decoding

When using a trained model for decoding, we generate tokens autoregressively based on the

output probability distribution given the input sentence x. The optimal way would be to find

a translation with the highest probability. However, the search space for finding the candidate

translation is large and expands with new hypotheses after generating each new candidate to-

ken. Therefore, local search algorithms are used to reduce the search space. The greedy search

algorithm always selects the next token with the highest probability and does not revise its
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choices. The beam search, on the other hand, keeps track of the most promising candidates

and prunes less likely ones as the decoding progresses. It remembers b previous hypotheses

and expands them with b most likely states until the expanded sentence ends or the maximum

length is reached. The final translation is the one with the highest probability. In this work, we

use beam search with beam size b = 4.

3.3.2 Phrase-Based Machine Translation

In contrast to the end-to-end nature of NMT, statistical phrase-based systems rely on several

modules to take care of the translation modelling task. Each module is estimated based on

phrase occurrences and alignments from the parallel corpus. Although PBMT systems were

replaced by NMT models for standard MT applications, they can still prove useful in low-

resource conditions and for translation from monolingual data only. It has been shown [Artetxe

et al., 2019a] that it is possible to infer a phrase table in a completely unsupervised way and

build a PBMT system around it. Therefore, we briefly introduce the phrase-based systems here

as well.

A PBMT model [Koehn et al., 2003] is a log-linear probability model that captures the

probability of the target sentence being the translation of the source sentence. To estimate this

model, input texts are aligned at the token level using a specific tool, e.g. GIZA++ [Och and

Ney, 2003], divided into phrases (n-grams), and assembled into a phrase table along with their

frequencies estimated from the parallel training corpus. The log-linear model incorporates the

following components:

• phrase translation probability (estimated based on the number of times a phrase pair was

observed in the aligned parallel corpus);

• language model (estimated based on the frequencies of individual n-grams observed in

the source and target corpora and their backoff probabilities [Katz, 1987]);

• distortion model (penalizing candidate translations with excessive word reordering);

• word/phrase count penalty (balancing overall sentence length and the number of phrases

it is composed of).

Each of the features above is complemented by a default weight before entering the model.

The weights are tuned using the Minimum Error Rate Training (MERT) [Och, 2003] to maxi-

mize the BLEU score of translation quality on a small set of parallel sentences (development

set).

Formally, the probability of a sentence tgt being the translation of a sentence src is the

following

p(tgt|src) = exp
∑︁

i λifi(tgt, src)∑︁
tgt′ exp

∑︁
i λifi(tgt′, src) (3.14)

fis are the features listed above, λis are the feature weights, and tgt′ iterates over all

possible translation candidates.
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Figure 3.7: Training of an PBMT model: estimation of bidirectional word-alignment,
phrase extraction, estimation of phrase-based features

Source: Cettolo et al. [2005]

When training the model, the training data is first tokenized, truecased and aligned. Indi-

vidual features of the model are then statistically estimated from the training data set. Finally,

the feature weights are tuned to maximize the translation quality on a development data set. In

the decoding phase, beam search is employed to produce the most likely sentence by combining

translation candidates for individual phrases, considering their log-probability scores.

The Moses [Koehn et al., 2007] toolkit with external language modelling tools is used for

PBMT model training and decoding.

3.3.3 Machine Translation Evaluation

Machine translation is evaluated using a combination of automated metrics and human eval-

uations. In this thesis we use the following automatic metrics for evaluation, namely BLEU,

COMET and chrF++. Manual evaluation is used for qualitative analysis of the translations.

BLEU Score

Automated evaluation of machine translation output quality can be accomplished using the

BLEU metric [Papineni et al., 2002] which assesses the candidate translation by comparing it

to the reference translation and assigning a score based on the number of overlapping word

n-grams of order 1 up to N . While BLEU has its limitations mostly due to the fact that there

is never a single correct translation, it has shown a sufficient correlation with human judgment

and it is widely utilized for MT evaluation.
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BLEU is calculated as

BLEU = BP · e
∑︁N

n=1 λi log pi (3.15)

where N = 4 is the order of the longest considered n-gram, λi = 1/N , pi is the modified

n-gram precision and BP is the brevity penalty defined as

BP =

⎧⎪⎨⎪⎩1 if c > r

e1−r/c if c ≤ r
(3.16)

where r and c are the number of tokens in the reference and candidate translation, respectively.

chrF++

The character n-gram F-score (chrF++) by Popović [2017] is another automated metric used for

evaluating the quality of translation. It measures the similarity between a machine-generated

translation and one or more reference translations based on the combination of a character-level

n-gram overlap and a word-level n-gram overlap.

The chrF metric [Popović, 2015] was originally designed to address some of the limita-

tions of other automated metrics like BLEU which exclusively focus on word-level n-gram

overlap. Since chrF operates at the character level, it can more adequately assess languages

with complex morphology, languages with agglutinative or inflected forms, and languages with

significant word order variations. Popović [2017] introduced an improved chrF++ metric by

integrating a word-level overlap score.

For both character-level n-grams and word-level n-grams, the calculation of F-score in

Equation 3.17 is based on the percentage of n-grams from the reference covered by the hypoth-

esis (n-gram recall ngrR) and the percentage of n-grams from the hypothesis covered by the

reference (n-gram precision ngrP). Character n-grams may exceed word boundaries as spaces

are ignored.

ngrF = (1 + β2) ngrP · ngrR

β2ngrP + ngrR
(3.17)

The values of ngrR and ngrP are averaged over all n-grams from n = 1 to N where the

default setting is N = 2 for words and N = 6 for characters. The parameter β gives higher

importance to recall over precision and is commonly set to β = 2. The word-level F-score and

the character-level F-score are averaged to produce the final chrF++ score.

COMET

COMET (Cross-lingual Optimized Metric for Evaluation of Translation) by Rei et al. [2020]

is a framework for training MT evaluation models that can function as metrics. It comprises

neural models designed to predict human evaluation of MT quality and thus overcome the

problem of automated metrics (e.g. BLEU or chrF++) that do not adequately correlate with

human judgment. COMET provides scores ranging from 0 to 1 with a value of 1 signifying a
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perfect translation. We use the model trained on the Direct Assessment (DA) [Graham et al.,

2015] scores as collected in WMT22 (wmt22-comet-da).

Bootstrapping

Bootstrapping is a statistical resampling technique that can be used to evaluate machine trans-

lation systems with statistical confidence [Koehn, 2004]. The bootstrapping process entails the

following steps.

1. Randomly selecting N translations from both the MT output and the reference transla-

tions, with replacement (resampling) where N is the size of the original test set.

2. Calculation of the evaluation metric (e.g., BLEU) for the resampled set of translations.

3. Repeating the resampling and metric calculation process multiple times (we repeat 1,000

times) to generate a distribution of metric scores.

We can calculate confidence intervals from the distribution of metric scores obtained through

bootstrapping, These intervals provide an estimate of the range within which the true metric

score is likely to lie which helps in assessing the reliability of the evaluation.

Bootstrapping helps account for variability in evaluation metrics due to the randomness

in the selection of sentences and translations. It provides a more robust understanding of the

machine translation system’s performance and can be particularly useful when the evaluation

dataset is limited or when traditional statistical assumptions might not be met.

In this thesis, we use bootstrapping for the BLEU and the chrF++ calculation. We set the

number of bootstrap resamples to 1,000.
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4. Related Work
To organize the related work in the area of UMT, we devise a taxonomy that maps the ap-

proaches. We categorize the methods into model-centric and data-centric, following the con-

ventional approach in domain adaptation models. Model-centric approaches focus on the par-

ticularities of the system design and architecture, initialization of the model parameters, train-

ing objectives, and decoding strategies. Data-centric approaches focus on the data that are used

for training the system, e.g. multilingual data, mined pseudo-parallel data, or back-translated

synthetic data. Figure 4.1 illustrates our taxonomy of unsupervised approaches.

4.1 Model-Centric Approaches to UMT

Unsupervised machine translation was first approached by Artetxe et al. [2018d] and Lample

et al. [2018c]. They proposed unsupervised training techniques for both PBMT and NMT

to extract all necessary translation information from monolingual data. What followed was

an overflow of new ideas and improvements upon the initial work which will be listed in the

following sections.

4.1.1 Model Architecture

Phrase-based Models

A bilingual lexicon can be induced from a bilingual embedding space created without parallel

data (Section 6.1). The simplest form of unsupervised translation is a word-by-word translation

using such a bilingual lexicon. Kim et al. [2018] propose improving unsupervised word-by-

word translation by integrating surrounding context with a language model.

Lample et al. [2018c], Artetxe et al. [2018b] propose unsupervised methods for creating a

full PBMT system. In the absence of parallel training data, the initial phrase table is induced

from a cross-lingual n-gram embedding space obtained by unsupervised post-hoc alignment of

Figure 4.1: Taxonomy of UMT models.
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monolingual embedding spaces [Conneau et al., 2018a, Artetxe et al., 2018c]. The translation

probabilities are approximated from the cosine distances of candidate n-grams in the cross-

lingual embedding spaces. The authors create MT systems in both directions to allow further

improvements by back-translating the monolingual training corpora. Artetxe et al. [2018b] also

use back-translated data to tune the hyperparameters of the PBMT model while Lample et al.

[2018b] use their default values. Artetxe et al. [2019a] improve the training by adding subword

information to training the cross-lingual embeddings. Furthermore, they propose an improved

strategy for tuning the hyperparameters.

Artetxe et al. [2019b] use an existing PBMT system to extract a bilingual lexicon from

back-translated data and conclude that the word translation accuracy is higher than simply

searching for word pairs in the original cross-lingual embedding space.

Neural Models

The unsupervised NMT models have an encoder-decoder architecture. In order to produce

language-neutral representations, they are designed to share parameters for both language di-

rections. Artetxe et al. [2018d] employ a single encoder and language-dependent decoders

while Lample et al. [2018a] share both the encoder and the decoder, with the only language-

dependent component of the network being the embedding matrices. Conneau and Lample

[2019] use a joint vocabulary for the source and the target language and share even the embed-

dings, following the multilingual MT design of Johnson et al. [2017]

Other authors go beyond the vanilla encoder-decoder structure. Li et al. [2020b] use a pre-

trained cross-lingual model (XLM) as an additional encoder. They let their NMT model interact

with the XLM encoder representations using the attention mechanism in all layers of both the

encoder and the decoder. Üstün et al. [2021] propose to use denoising adapters – adapter layers

with a denoising objective which are placed on top of a pre-trained multilingual denoising

autoencoder and trained separately on monolingual data. The cross-attention of the model is

also trained separately on an auxiliary parallel corpus. The approach is modular and allows to

incrementally incorporate new languages. It requires auxiliary parallel data but it is unique in

that it completely relieves the model from the computation burden of back-translation.

4.1.2 Model Initialization

Both unsupervised NMT and PBMT models require to initialize model parameters to some

meaningful values as opposed to random initialization, in order to start the training.

Pre-Trained Cross-Lingual Embeddings

Lample et al. [2018a], Artetxe et al. [2018d] initialize their neural system with pre-trained

embeddings trained on monolingual corpora and aligned in an unsupervised way. Lample et al.

[2018b] pre-train the embeddings on a concatenation of the monolingual corpora without an

explicit bilingual alignment and report the benefits of this pre-training strategy, especially for

languages that share a significant number of BPE units.
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Unsupervised PBMT models can be initialized with a phrase table induced from pre-trained

cross-lingual embeddings [Artetxe et al., 2018b, Lample et al., 2018b] or with a phrase table

extracted from a pseudo-parallel corpus [Ren et al., 2020].

Cross-lingual word embeddings can be obtained by post-hoc alignment of monolingual

word embeddings using a linear mapping relying on the assumption of isomorphic embedding

spaces, as discussed in Chapter 3. Aside from a range of supervised methods to learn the

mapping matrix, some approaches are completely unsupervised and will be discussed in more

detail in Chapter 6. Zhang et al. [2017] and Conneau et al. [2018b] align monolingual embed-

ding spaces through adversarial training. Artetxe et al. [2017] propose an alternative method

to learn the linear mapping using the assumption that digits are preserved across languages.

Artetxe et al. [2018c] exploit the structural similarity of embedding spaces and iteratively im-

prove the mapping through self-learning.

Chen and Cardie [2018], Heyman et al. [2019], Wada et al. [2019], Jawanpuria et al. [2020]

extend the bilingual embedding approaches to the multilingual setup, leveraging the interde-

pendencies between language pairs. Chen and Cardie [2018] employ a series of language

discriminators to learn the mapping of N languages into a single space in the framework of

adversarial training and further enhance the alignment using an iterative refinement approach

of Artetxe et al. [2018c]. Jawanpuria et al. [2020] first induce bilingual lexicons from unsu-

pervised word embedding spaces and use them as supervision for learning a mapping into the

multilingual word embedding space. Heyman et al. [2019] propose a strategy that makes the

training more stable even for distant languages as they train a multilingual model and add new

languages incrementally one by one. They argue that existing multilingual approaches use one

hub language without exploiting interdependencies between all languages which leads to sub-

optimal results especially when working with a language that is distant from the hub language.

Søgaard et al. [2018], Ormazabal et al. [2019], Patra et al. [2019], Vulić et al. [2020] ques-

tion the use of the mapping approaches in situations when languages and/or domains are dis-

similar and their embedding spaces are not isomorphic. Vulić et al. [2019] question the neces-

sity of completely unsupervised approaches.

Wada et al. [2019] loosen the assumption of approximately isomorphic embedding spaces

and obtain multilingual word embeddings from a multilingual bidirectional LSTM language

model trained separately for each language but with parameter sharing. Mohiuddin et al.

[2020] propose a semi-supervised method for non-linear mapping of two independently trained

autoencoders in the latent space which also allows them to depart from the assumption of lan-

guage isomorphism. Nishikawa et al. [2021] argue that learning monolingual embeddings from

back-translated corpora generated by a UMT system creates embedding spaces which are ap-

proximately isomorphic and report improvement in the task of bilingual lexicon induction as

well as other downstream tasks. Cao et al. [2023] integrate features from the source embed-

dings into the target embeddings to increase the geometric similarity of the two embedding

spaces.

35



Pre-Trained Encoders

Conneau and Lample [2019] take the pre-training of model parameters one step further and

pre-train a full encoder with the MLM or CLM objective and copy the weights into the encoder

as well as the decoder of the NMT model. They conclude that the MLM strategy brings greater

improvement in translation quality. Ren et al. [2019a] propose an MLM pre-training method

with an explicit cross-lingual signal. They construct code-switching sentences by randomly

choosing source n-grams in the input text stream and replacing them with their translation

counterparts from an unsupervised phrase table. They train an encoder to predict the translated

segments. Chronopoulou et al. [2021] use cross-lingual subword embeddings to enhance the

bilingual MLM pre-training with lexical-level information and report a significant improve-

ment over the baseline trained without the enhancement. Using an entirely different approach,

Li et al. [2021] rely on Chomsky’s universal grammars to find syntactic similarities between

two languages and obtain a weak source of additional signal to the unsupervised training. They

pre-train the encoder on the MLM task enhanced with constituent syntax information.

Pre-Trained Encoder-Decoder Models

Song et al. [2019] argue that pre-training only the encoder is not optimal for sequence-to-

sequence models and propose a full encoder-decoder framework pre-trained to reconstruct a

sentence from its corrupted version where a sentence fragment is masked. The MASS model

is presented with the masked sequence and it is taught to generate the full original sentence.

Similarly, Liu et al. [2020] pre-train the entire model on the task of denoising autoencoding

where the model is taught to reconstruct the original text stream from its noised input, where

the noising function includes masking of sentence fragments and sentence permutation. Li

et al. [2020a] pre-train the model on the task of explicit sentence compression (ESC) where

extra tokens are sampled from the corpus to create additive noise that makes the sentence

longer. The tokens of the extended input sentences are shuffled and the model is trained to

recover the original, compressed version of the noised sentence. Li et al. [2020b] conclude that

the ESC pre-training is on par with MLM pre-training and superior to CLM pre-training.

Baziotis et al. [2021] find that unlike supervised MT systems, UMT systems are very sen-

sitive to noising strategies used during pre-training. Masking strategies lead to a significantly

higher performance than shuffling strategies.

Multilingual Pre-Training

Liu et al. [2020] pre-train a large multilingual model on texts in 25 (mBART) or 50 (mBART-

50) languages which can be fine-tuned for a specific language pair with state-of-the-art results.

Transfer Learning from Parallel Data

Successful transfer of MT abilities from high-resource language pairs to low-resource language

was demonstrated by Kocmi [2020], Zoph et al. [2016], Kim et al. [2019], suggesting that

translation has some universal nature that goes beyond generating text in a particular language.
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Li et al. [2020b] and Garcia et al. [2020] adapt the approach to the unsupervised setting and

use transfer learning to pre-train an NMT system on an auxiliary language pair and fine-tune it

in an unsupervised way using back-translation.

4.1.3 Training Strategies

Most unsupervised training strategies rely on a combination of different training objectives and

most require some form of back-translation for training. One exception is found in the work of

Üstün et al. [2021], who, however, rely on auxiliary parallel data. In the following paragraphs,

we list the training strategies used by different authors.

Iterative Training

The iterative training strategy is employed in approaches where the training data is generated

by the model being trained, either by online back-translation, or online sentence selection. The

quality of the training thus increases as the training progresses.

Lample et al. [2018a] and Artetxe et al. [2018d] propose online back-translation, where a

mini-batch of sentences is translated by the emergent NMT model and it is immediately used

for training the model in the opposite translation direction, all in one training step.

Other authors select training samples by online parallel sentence mining. Ruiter et al.

[2019] use the encoder of the NMT model for incrementally finding cross-lingually similar sen-

tences in the monolingual training corpora and train the NMT model on the retrieved sentences

as soon as one training batch is complete. Tran et al. [2020] iteratively train the multilingual

mBART model on translation and sentence selection to enhance representation alignment in

the course of MT training.

Adversarial Training

Lample et al. [2018a] use the adversarial loss during unsupervised NMT training to induce

shared encoder representations but they drop it in Lample et al. [2018b] and train only using it-

erative back-translation and denoising autoencoding. Yang et al. [2018] also enforce the shared

encoder latent space by adversarial training.

Rather than relying on back-translated synthetic sentences, Wu et al. [2019] extract trans-

lation candidates from the target monolingual corpus and employ a simple editing mechanism

to bring the extracted target sentence representation closer to the source sentence. They do not

use the extracted translation candidates as ground truth for MT training directly but rather view

them as anchor points that the translated sentence should be close to. They train the translation

model together with an evaluation network that assesses the similarity of the extracted sentence

pairs to the source sentence using an adversarial approach. The goal of the translation model is

to generate a translation with a higher similarity score than the extracted-and-edited candidates

and the model plays a minimax game with the evaluator network to reach that goal.

Conneau et al. [2018a] use adversarial training for mapping monolingual embeddings into

the cross-lingual space. Hartmann et al. [2019] survey existing unsupervised cross-lingual
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word embedding techniques and suggest that despite their inherent instability, generative ad-

versarial networks possess the greatest potential for generating valuable seed dictionaries.

Reference Agreement Translation

Garcia et al. [2020] propose a novel cross-translation loss term that enforces cross-language

pair consistency utilizing not only monolingual data but also an auxiliary parallel corpus for a

related language pair. They show that adding one more language to the training framework can

lead to improvements in BLEU scores over state-of-the-art unsupervised models. Wang et al.

[2021] propose indirect supervised training using auxiliary parallel data as well as synthetic

data forward-translated and back-translated via a third language. Li et al. [2020c] propose

a reference language-based framework where they leverage a parallel corpus that the source

language has with a third language. They train two models (source to target and reference

to target) to translate the parallel source and reference sentences into the target language and

combine them to generate an agreed-upon translation which is used as the ground truth for

the next iterations of translation training. The same translation pairs can also be used to train

opposite models in a back-translation framework. The authors report a significant improvement

over the systems which do not use the reference language pair as well as over a system pre-

trained on the reference language pair and fine-tuned on back-translation.

Reinforcement Learning

Wang et al. [2021] train a UNMT model under the reinforcement learning framework with a

reward function that praises the model for producing translations for a high number of n-gram

matches and semantic adequacy.

Meta-Learning

Park et al. [2021] explore domain adaptation within UMT by using meta-learning. The objec-

tive of meta-learning in MT is to find the optimal parameter initialization that would allow the

model to quickly adapt to a new domain even with only a small amount of in-domain mono-

lingual data. They enhance the vanilla meta-learning model by using a cross-domain loss to

encourage the model to be able to generalize well to another domain. They report a significant

margin of the meta-learning algorithms over domain adaptation via transfer learning.

4.1.4 Decoding Strategies

The specifics of low-resource MT can also be tackled at test time. If auxiliary parallel texts are

available and there exists a pivot language that has parallel data both with the source and the

target, source-to-target translation can be performed in two steps using two standard supervised

MT models: source-to-pivot and pivot-to-target. It is important to note that using pivot transla-

tion introduces an additional step in the translation pipeline, which may lead to compounding

errors and potentially reduce translation accuracy. The choice of a suitable pivot language is
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also crucial as it can greatly impact the overall translation quality. Leng et al. [2019] hypothe-

size that translating between distant languages is easier to learn via a pivot than directly. They

train multiple unsupervised NMT systems and conclude that a majority of the distant language

pairs indeed require a pivot or even multiple pivots to achieve a higher translation quality. They

further propose a strategy for finding the optimal pivoting route from the source to the target

language.

Pourdamghani et al. [2019] introduce another two-step translation approach where the mid-

step is a synthetic language called Translationese – rough word-by-word translation of source

texts obtained using unsupervised source-to-target dictionaries. An MT system is trained on

auxiliary parallel data to translate from Translationese into a fluent target language and it can

be applied to any source language at test time, provided that an unsupervised dictionary is

available.

4.2 Data-Centric Approaches to UMT

Unsupervised training of an MT system is always at least partially data-centric – the training

data is synthesized from the monolingual texts which are available or they are mined from the

monolingual corpora. Alternatively, multilingual or auxiliary parallel data in other languages

are used. In this section, we list the works which introduce a novel method for obtaining the

training data.

4.2.1 Pseudo-Parallel Data

Ren et al. [2020] build a pseudo-parallel corpus by retrieving semantically comparable sen-

tences from monolingual corpora and rewriting the target side to get rid of unaligned words

and minimize the semantic gap. The state-of-the-art approaches to parallel corpus mining are

based on a similarity retrieval of sentence embedding vectors using a margin-based scoring of

translation candidates [Artetxe and Schwenk, 2019b].

Most models rely on heavy supervision by parallel corpora for the embedding. Kvapilı́ková

et al. [2020], Keung et al. [2020] show that it is possible to mine sentence pairs without having

any parallel texts to start with by using unsupervised multilingual sentence embeddings from a

pre-trained Transformer language model. Hangya and Fraser [2019] use word similarity scores

for parallel sentence mining, while controlling the length of aligned continuous parallel seg-

ments detected in sentence pair candidates to adjust for the fact that sentences with similar

words may carry different meanings. Ruiter et al. [2019] mine parallel sentences on-the-fly

during translation training using the internal encoder states of the unsupervised model as sen-

tence embeddings. Hangya and Fraser [2019], Ruiter et al. [2021], Kvapilı́ková and Bojar

[2022] integrate mined sentences into UMT training and report improvements over unsuper-

vised baselines.

Earlier work in the area of monolingual sentence representation [Arora et al., 2017, Wiet-

ing et al., 2016] shows that averaging static word embeddings is a simple but strong baseline

for creating sentence-vectors. Kiros et al. [2015] adapt the Skip-gram [Mikolov et al., 2013a]
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word embedding model for sentences (SkipThought) and train an LSTM model to reconstruct

surrounding sentences of an encoded passage. Cer et al. [2018] train a universal Transformer

encoder on a variety of downstream tasks including SkipThought and text classification. Con-

neau et al. [2017] obtain sentence embeddings from the supervised task of natural language

inference (NLI) and argue its superiority over unsupervised methods. Pagliardini et al. [2018]

propose a Sent2Vec model composing embedding vectors of individual words and n-grams

contained in the sentence.

Schwenk and Douze [2017], Schwenk [2018], España Bonet et al. [2017] derive sentence

embeddings from internal representations of a neural machine translation system with a shared

encoder. The top performance in parallel data mining is currently achieved by LASER [Artetxe

and Schwenk, 2019a], a multilingual BiLSTM model sharing a single encoder for 93 languages

trained on parallel corpora to produce language-agnostic sentence representations. LASER has

been successfully used to mine billions of sentence pairs from the web [Schwenk et al., 2019].

Reimers and Gurevych [2020] show how to change monolingual sentence embeddings into

multilingual using knowledge distillation. Heffernan et al. [2022] use the proposed approach

to extend LASER to unseen languages.

The universal sentence encoder (USE) [Cer et al., 2018, Yang et al., 2020] family covers

sentence embedding models with a multi-task dual-encoder training framework including the

tasks of question-answer prediction or natural language inference. Guo et al. [2018] directly

optimize the cosine similarity between the source and target sentences using a bidirectional

dual-encoder. Yang et al. [2019] enhance the model with an additive margin softmax loss to

separate translations from nearby non-translations.

An entirely different (and possibly unsupervised) approach is to construct sentence repre-

sentations by aggregating cross-lingual word embeddings either by simple averaging [Arora

et al., 2017] or using an IDF-weighted average [Litschko et al., 2019]. However, since the

mapping is applied to static (non-contextualized) embeddings, this strategy gives up on the

contextual information which could be exploited in the sentence representation construction.

4.2.2 Synthetic Data

Synthetic Data from PBMT

Training an NMT model entirely on data from a PBMT system is not a good idea because the

quality of the PBMT translations greatly influences the final translation quality. However, the

initial cross-lingual signal into the unsupervised NMT model may come from an unsupervised

phrased-based model. Unlike the previous initialization approaches based on weights initial-

ization, the signal is passed to the model in the form of the initial synthetic parallel corpus

intended for the first stage of the training. Kvapilı́ková et al. [2019], Stojanovski et al. [2019]

use a phrase-based model to translate monolingual sentences and train a neural model on the

synthetic samples. Artetxe et al. [2019a] first train their neural models exclusively on the syn-

thetic parallel corpora generated by a phrase-based system and as the training progresses, they

adaptively mix in the translations produced by the emergent neural models. Ren et al. [2020]

40



Figure 4.2: Illustration of the dual MT. The bidirectional model (left) is trained jointly
in both translation directions using an online back-translation training objective. The
two unidirectional models (right) are trained separately for each language pair using
the standard supervised MT objective on the back-translated parallel corpus.

improve the initial phrase-based systems by training them on enhanced pseudo-parallel data

and argue that less noisy initial translations presented to the NMT model lead to an increase in

final translation quality.

Synthetic Data from NMT

Unsupervised systems exploit the dual nature of machine translation where a model trained

in one language direction can create training data for a model trained in the reverse direction.

Lample et al. [2018a], Conneau and Lample [2019] train a single model for both language

directions following the multilingual MT design of Johnson et al. [2017] which allows them to

employ back-translation in an online manner where synthetic training data is generated by the

very same model that is being trained, one mini-batch at a time. On the other hand, Artetxe

et al. [2019a] train two distinct models, one for each translation direction, and they use them

to back-translate a large set of 1M sentences. They perform one pass over the synthetic corpus

before the next round of back-translation. The two approaches are illustrated in Figure 4.2.

Ren et al. [2019b] use a phrase-based model to filter the noise present in back-translated

data from the NMT model by joint incremental training of both the phrase-based and the

NMT models in an expectation-maximization framework. Khatri and Bhattacharyya [2020]

filter back-translated sentences to give more weight to samples of higher quality, measured by

sentence-wise round-trip BLEU score. They report an improvement in translation quality with

filtering the synthetic data in the range of 0.5-0.7 BLEU points compared to the baseline trained

without filtering. Lu and Zhang [2021] use curriculum learning to reflect different quality of

back-translated data. Similarly, Chauhan et al. [2022] weigh back-translated sentences using a
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round-trip semantic similarity score.

Sun et al. [2021] use synthetic sentences both on the source side and on the target side and

confirm that even noisy self-training can improve the MT quality. He et al. [2022] note that

the nature of synthetic data creates a style gap between training and inference. The model is

trained to translate synthetic sentences biased towards the target domain while it is tested on

translating authentic sentences. They try to bridge the gap by mimicking the inference scenario

already during training.

4.2.3 Multilingual Data

Garcia et al. [2020] explore the multilingual view on UMT and provide a probabilistic frame-

work that encompasses both supervised and unsupervised training under the framework of

expectation-maximization. Sen et al. [2019], Sun et al. [2020] train a multilingual unsuper-

vised NMT model using multilingual denoising and back-translation. Sen et al. [2019] use

language-specific decoders, while Sun et al. [2020] report better results when using a shared

decoder as well as the encoder. Sun et al. [2020] further improve their results with knowledge

distillation.

Garcia et al. [2021] claim that multilinguality is critical for the practical usability of UMT

in low-resource conditions. They train a multilingual system with a shared encoder and de-

coder. They use auxiliary parallel data in three training stages. They pre-train the entire model

by masked denoising of monolingual sentences (MASS) [Song et al., 2019], and train for trans-

lation with auxiliary parallel data as well as back-translated data. They fine-tune the model

using a back-translation term as well as a cross-translation [Garcia et al., 2020] term. They

corroborate the robustness of their system in truly low-resource settings.

Wang et al. [2021] confirm the benefits of cross-lingual supervision from a high-resource

language pair.
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5. Parallel Corpus Mining
Unsupervised machine translation comprises techniques to learn language structure from

monolingual data and translate without seeing authentic translation pairs. However, the trans-

lation quality is often inadequate for practical purposes and we hypothesize that unsupervised

models are not able to exploit all the cross-lingual information hidden in monolingual texts.

Therefore, we help them by harvesting some cross-lingual signal ourselves.

Real data collection from human translators leads to creation of data sets of the highest

quality, but it is also the slowest and the most expensive option. Arguably, if we want to

improve the translation quality of a particular low-resource language or domain, collecting new

data from native speakers or domain experts is the best thing that we can do. However, when

collecting new natural pieces of text is not an option, we can resort to finding parallel sentences

in existing comparable corpora. In this chapter, we explore the possibilities of parallel sentence

search and we present a strategy to mine parallel sentences from monolingual corpora. We

consider the mined sentence pairs to be pseudo-parallel as they should ideally be identical in

meaning but in practice only share a certain degree of similarity.

Our approach to parallel corpus mining is the following:

1. embed sentences in a multilingual space;

2. score all possible candidate sentence pairs;

3. set a threshold score for two sentences to be considered parallel;

4. select sentence pairs which score above the threshold.
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5.1 Related Work

The state-of-the-art approaches to parallel corpus mining are based on similarity retrieval of

sentence embedding vectors using a margin based scoring of translation candidates [Artetxe

and Schwenk, 2019b]. Most models rely on heavy supervision by parallel corpora for the

embeddings.

Schwenk and Douze [2017], Schwenk [2018], España Bonet et al. [2017] derive sentence

embeddings from internal representations of a neural machine translation system with a shared

encoder. The top performance in parallel corpus mining is currently achieved by LASER

[Artetxe and Schwenk, 2019a], a multilingual BiLSTM model sharing a single encoder for 93

languages trained on parallel corpora to produce language agnostic sentence representations.

LASER has been successfully used to mine billions of sentence pairs from the web [Schwenk

et al., 2019].

The universal sentence encoder (USE) [Cer et al., 2018, Chidambaram et al., 2019, Yang

et al., 2020] family covers sentence embedding models with a multi-task dual-encoder training

framework including the tasks of question-answer prediction or natural language inference.

Guo et al. [2018] directly optimize the cosine similarity between the source and target sentences

using a bidirectional dual-encoder. Yang et al. [2020] enhance the model with an additive

margin softmax loss to separate translations from nearby non-translations.

Since we focus on extracting translation knowledge exclusively from monolingual data,

we base our approach in unsupervised multilingual language models such as M-BERT [Devlin

et al., 2018], XLM [Conneau and Lample, 2019], or XLM-R [Conneau et al., 2019]. They were

pre-trained with an MLM objective to learn a joint structure of the presented languages without

relying on parallel data resources. While several authors [Pires et al., 2019, Wu and Dredze,

2019, Karthikeyan et al., 2019] bring evidence of cross-lingual transfer within such models,

their internal representations are not entirely language agnostic [Libovický et al., 2019]. To ex-

tend multi-lingual language modelling to low-resource languages, ImaniGooghari et al. [2023]

fine-tune XLM-R for 500 languages with limited resources (Glot500).

An entirely different (and possibly unsupervised) approach is to construct sentence rep-

resentations by aggregating cross-lingual word embedings either by simple averaging [Arora

et al., 2017] or using an IDF weighted average [Litschko et al., 2019]. However, since the

mapping is applied to static (non-contextualized) embeddings, this strategy gives up on the

contextual information which could be exploited in the sentence representation construction.

We use averaged cross-lingual word embeddings obtained in an unsupervised way [Artetxe

et al., 2018c] as a baseline for our method.

5.2 Methodology

We propose a method to further align representations from such models into the cross-lingual

space and use them to derive sentence embeddings. Our approach is completely unsupervised

and is applicable also for distant language pairs. The proposed method outperforms previous
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Figure 5.1: Transformer model trained with a translation language modelling (TLM)
objective.

Source: Conneau and Lample [2019]

unsupervised approaches on the BUCC 20181 shared task, and is even competitive with several

supervised baselines. The research work described in this chapter was published [Kvapilı́ková

et al., 2020] and the rest of this chapter includes portions of text and tables verbatim from our

research paper.

In the following paragraphs, we describe the multilingual MLM models (Section 5.2.1), the

fine-tuning objective for enhanced alignment of their internal representations (Section 5.2.2),

and the extraction of sentence embeddings (Section 5.2.4). The experiments in this section

were published in Kvapilı́ková et al. [2020].

5.2.1 Pre-trained Multilingual Masked Language Models

In Section 3.2.4, we introduced the masked language modelling (MLM) training objective used

for training Transformer encoder-based language models. Now we show their usability for our

purposes.

When training a multilingual MLM, text streams are fed into the model together with a

language identification in the form of a language embedding vector which is added to every

token embedding. In each training step, the model is presented with one batch of masked text

streams for every language. The text streams have usually a fixed size of N tokens and contain

several sentences. In our experiments, N = 256. The vocabulary of subword units is shared

among all languages.

5.2.2 Fine-tuning MLMs with a Translation Objective

When parallel data is available, it can be leveraged in the training of the multilingual language

model using a translation language model objective (TLM) [Conneau and Lample, 2019] which

is a supervised version of the MLM trained on parallel data. Pairs of sentences are concate-

nated, random tokens are masked from both sentences and the model is trained to fill in the

blanks by attending to any of the words of the two sentences. The training design is illustrated

in Figure 5.1. The Transformer self-attention layers thus have the capacity to enrich word
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representations with information about their monolingual context as well as their translation

counterparts. This explicit cross-lingual training objective further enhances the alignment of

the embeddings in the cross-lingual space.

We use this objective to fine-tune the pre-trained model on a small synthetic parallel data

set obtained via unsupervised MT for one language pair, aiming to improve the overall cross-

lingual alignment of the internal representations of the model. In our experiments, we also

compare the performance to fine-tuning on a small authentic parallel corpus.

Our UMT model follows the approach of Conneau and Lample [2019]. It is a Transformer

model with the encoder-decoder architecture. Both the encoder and the decoder are shared

across languages and they are initialized with a pre-trained bilingual MLM to bootstrap the

training. Both the encoder and the decoder have 6 layers, 8 attention heads, and a hidden

unit size of 768. The system is trained using the unsupervised neural MT training pipeline

of denoising and back-translation [Lample et al., 2018a] which will be described in detail in

Chapter 6.

5.2.3 Fine-tuning MLMs for Unsupported Languages

We work with large-scale pre-trained models which cover a fixed number of languages that

appeared in the training data. If we wish to use the model for a language that was not seen

during pre-training, we have to fine-tune the model ex-post. If the script of our target language

is included in the vocabulary of the pre-trained model, we can proceed directly with fine-tuning

for the MLM task. However, it is important to note that the subword segmentation may not be

ideal and could potentially result in character-level splitting for less common scripts. If the

characters are unknown to the model or the performance is unsatisfactory, the vocabulary can

be extended [Wang et al., 2019].

5.2.4 Sentence Embeddings

It was explained in Chapter 3 that Transformer language models produce contextual representa-

tions capturing the semantic and syntactic properties of word (subword) tokens in their variable

context. Contextualized embeddings can be derived from any of the internal layer outputs of

the model. We experiment with representations from different layers and evaluate them on the

task of parallel sentence matching to select the one that best suits our objective.

Parallel sentence search requires the use of sentence embeddings rather than subword token

embeddings. Aggregating token embeddings to fixed-length sentence representations necessar-

ily leads to an information loss. We compose sentence embeddings from subword represen-

tations by simple element-wise averaging. Even though mean-pooling is a naive approach to

subword aggregation, it is often used for its simplicity [Reimers and Gurevych, 2019, Ruiter

et al., 2019, Ma et al., 2019] and in our scenario it yields better results than max-pooling.
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Figure 5.2: Encoding a masked sentence by a Transformer model. Contextualized
word embeddings are aggregated by mean-pooling.

5.2.5 Searching in Multilingual Embedding Space

In our approach to parallel sentence mining, the first step is to embed all sentences in a shared

multilingual space where they can be scored and matched to find pairs which are equivalent or

at least similar in meaning.

In order to score all possible candidate sentence pairs, we use the margin-based approach

of Artetxe and Schwenk [2019b] which was proved to eliminate the hubness problem of em-

bedding spaces and yield superior results [Artetxe and Schwenk, 2019a]. The score relies on

cosine similarity to measure the distance between sentences but it is defined in relative terms

to the average cosine similarity between the two sentences and their nearest neighbors.

xsim(x, y) = margin(cos(x, y),
∑︂

z∈NNk(x)

cos(x, z)
2k

+
∑︂

z∈NNk(y)

cos(y, z)
2k

) (5.1)

where margin(a, b) = a
b , NNk(x) is the set of k nearest neighbors of x. The method for

scoring involves cosine similarity which is comparatively evaluated against the average cosine

similarity of a given sentence with its nearest neighbors to eliminate the “hubs”. When the

score surpasses a designated threshold T , two sentences are deemed to be parallel:

xsim(x, y) > T (5.2)

The optimal threshold for filtering the translation pairs is learned by tuning on the train set

F1 scores.

5.3 Experiments

We empirically evaluate the quality of our cross-lingual sentence embeddings and compare it

with state-of-the-art supervised methods and unsupervised baselines. We evaluate the proposed

method on the task of parallel corpus mining and parallel sentence matching. We fine-tune two

different models using English-German (EN-DE) and Czech-German (CS-DE) synthetic parallel

data. For comparison, we fine-tune two alternative models using authentic parallel data in the
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following two low-resource language pairs: English-Nepali (EN-NE) and English-Kazakh (EN-

KK).

5.3.1 Model

In this work, we use the publicly available pre-trained model XLM-1002 [Conneau and

Lample, 2019] with 16 transformer layers, 16 attention heads, and the hidden unit size

of 1280. The model was trained on monolingual corpora in 100 languages mainly from

Wikipedia with the BPE vocabulary of 200k subwords. We also experimented with the

bert-base-multilingual-cased model with similar or slightly worse results. While XLM-R

[Conneau et al., 2019] was reported to deliver better results on several tasks, we do not observe

a significant difference for parallel sentence mining and we use the more lightweight XLM-100

which has a higher dimension of internal representations than the large configuration of

XLM-R but a lower overall number of parameters. For the sake of brevity, we will refer to the

XLM-100 model as XLM throughout the remainder of this chapter.

5.3.2 Data

The XLM model was pre-trained on the Wikipedia corpus of 100 languages [Conneau and

Lample, 2019]. The monolingual data for fine-tuning was sampled from NewsCrawl 2018

(10k CS sentences, 10k DE sentences, 10k EN sentences).

Monolingual training data for the English-German UMT models was obtained from

NewsCrawl 2007-2008 (5M sentences per language). The text was cleaned and tokenized

using standard Moses [Koehn et al., 2007] tools and segmented into BPE units based on 60k

BPE splits.

5.3.3 Training

To generate synthetic data for fine-tuning the sentence encoder, we train two UMT models

(EN-DE, CS-DE) using the same method and parameters as in Conneau and Lample [2019] on

8 GPUs for 24 hours. We use these models to translate 10k sentences in each language. The

translations are coupled with the originals into two parallel corpora of 20k synthetic sentence

pairs.

The small synthetic parallel corpora obtained in the first step are used to fine-tune the

pre-trained XLM model using the TLM objective. We measure the quality of induced cross-

lingual embeddings from different layers on the task of parallel sentence matching described in

Section 5.4.2 to choose the layer and to determine the optimal training time. We conclude that

the best cross-lingual performance is achieved at the 12th (5th-to-last) layer and we observe the

best results after fine-tuning for one epoch with a batch size of 8 sentences and all other pre-

training parameters intact. The development accuracy decreases with fine-tuning on a larger

data set. The evaluation across layers is summarized in Figure 5.3.

2https://github.com/facebookresearch/XLM
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5.3.4 Benchmarks

We assess our method against two unsupervised baselines to separately measure the fine-tuning

effect on the XLM model and to compare our results to another possible unsupervised approach

based on post-hoc alignment of word embeddings.

Vanilla XLM: Contextualized token representations are extracted from the 12th layer of the

original XLM3 model and mean-pooled into sentence embeddings.

Word Mapping: We use Word2Vec embeddings with 300 dimensions pre-trained on

NewsCrawl and map them into the cross-lingual space using the unsupervised version of

VecMap [Artetxe et al., 2018c]. As above, word embeddings are aggregated by mean-pooling

to represent sentences.4

5.4 Results

We explore the multilinguality of a large pre-trained language model XLM5 by assessing its

representations on a task of corpus deshuffling. Since the model is trained in a completely

unsupervised way, any evidence of cross-lingual transfer is surprising. We dissect the model to

assess how much cross-lingual information is hidden in its internal representations on different

layers and select which layer outputs the most multilingual representations. We use the findings

from this experiment when setting hyperparameters in further experiments.

5.4.1 Evaluation I: Parallel Corpus Mining

We measure the performance of our method on the BUCC shared task of parallel corpus min-

ing where candidate systems are expected to search two comparable non-aligned corpora and

identify pairs of parallel sentences. We evaluate on two data sets – the original BUCC 2018

corpus created by inserting parallel sentences into monolingual texts extracted from Wikipedia

[Zweigenbaum et al., 2017] and a new BUCC-like data set (News train and test) which we

created by shuffling 10k parallel sentence from News Commentary into 400k monolingual sen-

tences from News Crawl. The BUCC and News data sets are comparable in size and contain

parallel sentences from the same source, but differ in overall domain.

Tables 5.1 and 5.2 show the results of our proposed model on the BUCC and News test

sets. When comparing our method to related work, it must be noted that the underlying XLM

model was pre-trained on Wikipedia and therefore has seen the monolingual BUCC sentences

during training. This could result in an advantage over other systems, as the model could

exploit the fact that it has seen the non-parallel part of the comparable corpus during training.

However, since both the proposed method and the vanilla XLM baseline suffer from this, their

results remain comparable. We also report results on the News test set which is free from such

potential bias (Table 5.2).

3Using M-BERT model yielded similar results to XLM.
4Weighting word embeddings by their sentence frequency (IDF) did not lead to a significant im-

provement over a simple average.
5https://github.com/facebookresearch/XLM.
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EN-DE EN-FR EN-RU EN-ZH Supervision
Leong et al. [2018] - - - 56.00 bitext (0.5M sent.)
Bouamor and Sajjad [2018] - 76.00 - - bitext (2M sent.)
Schwenk [2018] 76.90 75.80 73.80 71.60 multi (2M sent.)
Azpeitia et al. [2018] 85.52 81.47 81.30 77.45 bitext (2-9M sent.)
Artetxe&Schwenk [2019] 96.19 93.91 93.30 92.27 multi (223M sent.)
Word Mapping 32.04 32.94 17.68 20.65 none
Vanilla XLM* 62.10 64.77 61.65 44.79 none
Our method* (EN↔DE) 80.06 78.77 77.16 67.04 none (20k sent.**)

Table 5.1: F1 score on the parallel sentence mining task (BUCC test set). The su-
pervised (upper part) and unsupervised (lower part) winners are highlighted in bold.
* The model was pre-trained on Wikipedia. ** Synthetic translations produced by
unsupervised MT.

Source: Kvapilı́ková et al. [2020]

EN-DE EN-FR EN-RU EN-ZH EN-KK CS-ZH DE-RU

Artetxe&Schwenk [2019] 90.30 87.38 94.34 83.92 12.07 73.41 88.39
Word Mapping 28.45 30.79 17.81 16.04 2.28 10.86 19.55
Vanilla XLM 72.58 71.92 72.90 59.26 24.00 43.00 58.29
OUR METHOD (EN↔DE) 79.32 77.05 80.98 65.49 35.41 48.79 65.91

Table 5.2: F1 score on the parallel sentence mining task (News test set). The super-
vised and unsupervised winners are highlighted in bold. Artetxe and Schwenk [2019a]
values were obtained using the public implementation of the LASER toolkit.

Source: Kvapilı́ková et al. [2020]

The results reveal that TLM fine-tuning on the synthetic parallel sentences brings a sub-

stantial improvement over the initial pre-trained model trained only using the MLM objective

(vanilla XLM). In terms of the F1 score, the gain across four BUCC language pairs major

and ranges between 14.0-22.3 points. Even though the fine-tuning focused on a single lan-

guage pair (English-German), the improvement is notable for all evaluated language pairs. The

largest margin of 21.6 points is observed for the English-Chinese mining task. We observe that

using a small parallel data set of authentic translation pairs instead of synthetic ones does not

have a significant effect.

The weak results of the word mapping baseline can be partially attributed to the superiority

of contextualized embeddings for representation of sentences over static ones. Furthermore,

word mapping relies on the questionable assumption of isomorphic embedding spaces which

weakens its performance especially for distant languages. In our proposed model, it is possible

that joint training of contextualized representations induces an embedding space with more

convenient geometric properties which makes it more robust to language diversity.

Although the performance of our model generally lags far behind the supervised LASER

benchmark, it is valuable because of its fully unsupervised nature and it works even for distant

languages such as Chinese-Czech or English-Kazakh.
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DE-EN CS-EN CS-DE CS-FR CS-RU FR-ES FR-RU ES-RU

Artetxe&Schwenk [2019] 98.78 99.08 99.23 99.37 98.77 99.42 98.60 98.77
Word Mapping 60.60 55.03 75.35 43.33 79.87 71.07 41.25 53.87
Vanilla XLM 87.15 79.83 82.87 80.55 85.15 91.07 85.28 85.73
Our method (EN↔DE) 93.97 90.47 90.48 90.07 92.23 94.68 91.80 91.92
Our method (CS↔DE) 94.43 90.15 90.50 89.48 92.33 94.65 91.72 91.25

Table 5.3: Accuracy on the deshuffling task (newstest2012) averaged over both match-
ing directions. Artetxe and Schwenk [2019a] values were obtained using the public
implementation of the LASER toolkit.

Source: Kvapilı́ková et al. [2020]

5.4.2 Evaluation II: Corpus Deshuffling

To assess the effect of the proposed fine-tuning on other language pairs not covered by BUCC,

we evaluate our embeddings on the task of corpus deshuffling. The task entails searching a

pool of shuffled parallel sentences to recover correct translation pairs. Cosine similarity is used

for the nearest neighbor search.

We first evaluate the pairwise matching accuracy on the newstest multi-way parallel data

set of 3k sentences in 6 languages.6 We use newstest2012 for development and newstest2013

for testing. The results in Table 5.3 show that the fine-tuned model is able to match correct

translations in 90-95% of cases, depending on the language pair, which is ∼7% more than

vanilla XLM. It is notable that the model which was only fine-tuned on English-German syn-

thetic parallel data has a positive effect on completely unrelated language pairs as well (e.g.

Russian-Spanish, Czech-French).

Since the greatest appeal of parallel corpus mining is to enhance the resources for low-

resource languages, we also measure the deshuffling accuracy on the Tatoeba [Artetxe and

Schwenk, 2019a] data set of 0.5–1k sentences in over 100 languages aligned with English.

Aside from the two completely unsupervised models, we fine-tune two more models on small

authentic parallel data in English-Nepali (5k sentence pairs from the Flores development sets)

and English-Kazakh (10k sentence pairs from News Commentary). Table 5.4 confirms that

the improvement over vanilla XLM is present for every language we evaluated, regardless of

the language pair used for fine-tuning. We initially hypothesized that the performance of the

English-German model on English-aligned language pairs would exceed the German-Czech

model, but their results are equal on average. Fine-tuning on small authentic corpora in low-

resource languages exceeds both by a slight margin.

The results are clearly sensitive to the amount of monolingual sentences in the Wikipedia

corpus used for XLM pre-training and the matching accuracy of very low-resource languages

is significantly lower than we observed for high-resource languages. However, the benefits of

fine-tuning are substantial (around 20 percentage points) and for some languages, the results

even reach the supervised baseline (e.g. Kazakh, Georgian, Nepali).

It seems that explicitly aligning one language pair during fine-tuning propagates through

the shared parameters and improves the overall representation alignment, making the contextu-

6Czech, English, French, German, Russian, Spanish
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AF AR AZ BE BG CA CS DE EL EO

Sup. baseline 89.5 92.0 66.0 66.2 95.0 95.9 96.5 99.0 95.0 97.2
Vanilla XLM 38.1 19.9 25.1 33.7 36.2 51.0 31.5 65.0 27.0 45.8

EN↔DE (synth) 57.3 41.1 46.3 58.4 56.0 66.9 53.5 83.1 51.3 68.0
CS↔DE (synth) 54.2 41.2 44.2 61.8 60.7 68.9 59.9 87.3 53.1 67.4
EN↔KK (auth) 58.4 45.6 51.4 60.2 59.2 72.6 53.9 87.0 54.6 72.1
EN↔NE (auth) 59.9 46.6 54.2 63.1 62.9 71.0 57.6 85.0 51.0 71.2

ET FI FY HI HR IA IS ID JA KA

Sup. baseline 96.7 96.3 51.7 94.7 97.2 95.2 95.6 94.5 91.8 35.9
Vanilla XLM 19.8 31.4 37.0 26.2 47.2 57.3 25.0 46.4 29.5 22.1

EN↔DE (synth) 39.0 47.5 48.6 53.4 68.2 71.4 43.1 64.9 54.4 41.4
CS↔DE (synth) 41.4 49.5 44.8 51.7 71.8 70.5 43.7 64.1 53.3 39.8
EN↔KK (auth) 43.4 51.3 51.7 60.3 71.3 79.5 45.0 66.4 59.6 44.0
EN↔NE (auth) 44.6 52.7 48.6 59.3 72.1 75.7 47.1 67.8 59.6 47.8

KK KU LT MK ML MN MR MS NE NN

Sup. baseline 18.6 17.2 96.2 94.7 96.9 8.2 91.5 96.4 20.6 88.3
Vanilla XLM 17.4 10.6 22.0 25.8 17.4 12.6 15.3 52.0 21.3 49.9

EN↔DE (synth) 33.6 16.8 43.9 48.8 51.6 29.0 37.3 67.0 32.8 66.8
CS↔DE (synth) 34.7 16.2 46.2 51.1 44.3 24.5 34.2 65.4 31.4 67.5
EN↔KK (auth) 46.1 20.0 46.2 54.7 54.0 32.7 41.9 69.8 37.3 69.2
EN↔NE (auth) 38.4 20.9 47.7 53.8 56.0 34.9 43.5 72.1 42.8 69.2

OC SL SR SV TA TE TL UK UR YI

Sup. baseline 61.2 95.9 95.3 96.6 69.4 79.7 50.5 94.5 81.9 5.7
Vanilla XLM 20.0 34.7 35.9 47.2 11.9 14.1 14.6 38.0 19.3 9.9

EN↔DE (synth) 34.3 54.9 58.6 69.7 40.9 44.7 24.0 66.1 43.7 22.1
CS↔DE (synth) 35.9 59.2 64.8 71.8 31.9 37.8 20.4 70.4 43.8 22.8
EN↔KK (auth) 40.3 58.0 64.3 73.3 42.8 44.0 24.4 71.6 48.2 25.8
EN↔NE (auth) 36.9 58.8 65.0 72.0 41.7 53.2 26.8 71.0 49.9 26.7

Table 5.4: Accuracy on the deshuffling task (Tatoeba) averaged over both matching
directions (to and from English). The supervised baseline was obtained using the pub-
lic implementation of the LASER model [Artetxe and Schwenk, 2019a]. Our proposed
models were fine-tuned on synthetic parallel data (EN↔DE, CS↔DE) and authentic par-
allel data (EN↔KK, EN↔NE).

Source: Kvapilı́ková et al. [2020]
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Figure 5.3: Average deshuffling accuracy on newstest2012 before and after fine-tuning
from the input embedding layer (0th) to the deepest layer (16th).

Source: Kvapilı́ková et al. [2020]

alized embeddings more language agnostic. The propagation effect could also positively influ-

ence the ability of cross-lingual transfer within the model in downstream tasks. A verification

of this is left to future work.

5.4.3 Analysis: Representations Across Layers

We derive sentence embeddings from each of the layers of the model and show deshuffling

results on the development set averaged over all language pairs in Figure 5.3, both before and

after fine-tuning. The accuracy differs substantially across the model depth, the best cross-

lingual performance is consistently achieved around the 12th (5th-to-last) layer of the model.

The TLM fine-tuning affects especially the deepest layers.

5.4.4 Parallel Corpus Mining for Unsupported Languages

The XLM model only supports the 100 languages covered during pre-training. In order to use

its representations for other languages, the model first has to be fine-tuned.

English-Inuktitut

In the following experiments, we create sentence representations for text in Inuktitut, a lan-

guage that was not included in the pre-training of the XLM, and use them for English-Inuktitut

parallel corpus mining.

We create an English-Inuktitut (EN-IKU) encoder by fine-tuning our proposed model

(EN↔DE) with the MLM objective on 1M monolingual sentences from the Hansard7 corpus

(IKU) and NewsCrawl (EN). Since the two languages are linguistically distant and Inuktitut

has a non-Latin script, this is a particularly difficult scenario.

We experiment with fine-tuning the entire model versus weight-freezing and fine-tuning

only the lexical embeddings. Furthermore, we experiment with random initialization of lexical

7https://www.inuktitutcomputing.ca/NunavutHansard/info.php?lang=en
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Figure 5.4: Training curves from fine-tuning the proposed model (en↔de) with the
MLM objective on English and Inuktitut texts with and without parameter freezing
(left). Precision, recall and F1 scores of the model fine-tuned without weight freezing
on the task of parallel corpus mining for English and Inuktitut (right).

embeddings prior to the fine-tuning. Otherwise, the training details are identical to the TLM

fine-tuning described in Section 5.3.3. The training curves are shown in Figure 5.4. Although

updating the entire model experiences a sudden drop in performance at the beginning of the

training, it recovers and eventually converges to the highest MLM accuracy out of the three

approaches. Therefore, in our future experiments, we do not freeze weights and always update

the entire model during fine-tuning.

Decreasing MLM loss does not yet guarantee that the model is creating bilingual represen-

tations usable for parallel sentence search. We measure the mining performance of the model

by trying to recover 5k parallel sentences8 mixed into 100k monolingual sentences. The preci-

sion, recall, and F1 scores are evaluated as the fine-tuning progresses and plotted in Figure 5.4.

We observe an initial performance boost as the model adapts to the new language, followed by

fluctuating outcomes, with precision ranging from 25% to 35%. The fact that the model was

able to correctly recover up to 18% of the hidden sentences means that it was able to at least

partially align its representations of Inuktitut to English.

Indic Languages

For our later MT experiments with Assamese (AS), Khasi (KHA), Manipuri (MNI) and Mizo

(MZ) which were also not a part of the original model, we create a new version of the XLM

encoder by fine-tuning on monolingual data using the MLM objective without weight freezing.

Although AS and MNI use a non-Latin script, the vocabulary of the original model contains all

characters from the Bengali-Assamese alphabet so we do not have to extend it. We start from

the XLM-100 model and fine-tune on the MLM task in the four Indic languages and English.

We use the batch size of 40 sentences per GPU and train on 2 GPUs. We use Adam optimization

with a leaning rate λ=0.00005.

8Parallel sentences are taken from the Hansard dev set.
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EN-AS EN-KHA EN-MNI EN-MZ
Glot500 (8th layer) 15.05 - - 4.02
XLM-R base (8th layer) 2.23 - - -
XLM-R large (12th layer) 3.45 - - -
XLM-100 (12th layer) - - - -
↦→ fine-tuned (Indic) 24.26 10.07 6.63 20.01
↦→fine-tuned (EN↔DE synth) 47.16 25.88 12.76 36.02

Table 5.5: F1 scores on the task of parallel corpus mining where the systems try to
recover a set of 2k sentences shuffled into monolingual corpora of 200k sentences
from the train set. A dash (-) signifies that one of the languages was not covered by
the sentence encoder. Glot500 and XLM-R base have 12 layers; XLM-100 and XLM-R
large have 16 layers.

In Table 5.5, we report the performance of the fine-tuned model on the task of parallel

corpus mining where the model is evaluated on finding parallel sentences in two corpora of

202k sentences built by mixing the development set of 2k parallel sentences into a random set

of 200k monolnigual sentences from the training corpus9. Since the F1 scores are notably lower

than we saw in Section 5.4.1, we attempt to align the representations further. We employ the

technique from Section 5.2 where we fine-tune the entire model on a small synthetic English-

German corpus. We use the identical corpus now and observe that after the light fine-tuning, the

internal representations of the model are more suitable for parallel corpus mining. The positive

effect starts diminishing after the model had been exposed to 60k synthetic translations. The

results are reported in the last row of Table 5.5.

We compare our fine-tuned sentence encoder to two more recent unsupervised multilingual

language models: XLM-R (supports AS) and Glot500 (supports AS and MZ). The models were

pre-trained using the identical MLM pre-training objective as the XLM-100 model but they

were exposed to significantly more data. We follow [Jalili Sabet et al., 2020] and take repre-

sentations from the 8th layer of the base-sized models. For the large-sized models, we follow

our earlier experiments and use the 12th layer. The performance of the benchmarks is very

low, even for the Glot500 model which specializes in low-resource languages. We note that the

benchmarks have a lower dimensionality in their internal representations (768 for XLM-R base

and Glot500, 1024 for XLM-R large, 1280 for XLM-100).

5.5 Takeaways

We proposed a completely unsupervised method for training of multilingual sentence embed-

dings which can be used for building a parallel corpus with no previous translation knowledge.

We showed that by fine-tuning a pre-trained multilingual encoder with the TLM objective

of gap-filling in bilingual sentence pairs, we can significantly enhance the cross-lingual align-

ment of its representations using as little as 20k synthetic translation pairs. Since the synthetic

translations were obtained from an unsupervised MT system, the entire procedure requires no

authentic parallel sentences for training.

9The source of the data is described in Section 7.5
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Our sentence embeddings yield significantly better results on the tasks of parallel corpus

mining and parallel sentence matching than our unsupervised baselines. Interestingly, target-

ing only one language pair during the fine-tuning phase suffices to propagate the alignment

improvement to unrelated languages. It is therefore not necessary to build a working MT sys-

tem for every language pair we wish to mine.

The average F1 margin across four language pairs on the BUCC task is ∼17 points over

the original XLM model and ∼7 on the News dataset where only one of the evaluated language

pairs was seen during fine-tuning. The gain in accuracy in parallel sentence matching across 8

language pairs is 7.2% absolute, lagging only 7.1% absolute behind supervised methods.

It is possible to adapt the proposed approach to new languages outside of the original

model coverage by MLM fine-tuning. The performance can be further improved by light fine-

tuning of the adapted model using synthetic parallel sentences. The source of this improvement

deserves further investigation.

In Chapter 7, we will be using the proposed model to mine parallel sentences and create

pseudo-parallel corpora for the training of unsupervised MT systems.
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6. Unsupervised Machine Translation
Methodology
This chapter outlines the methodology of training UMT systems that we employ in our experi-

ments. We start by describing techniques for extracting cross-lingual signal from monolingual

data at the word level, which can serve for initialization of both phrase-based and neural mod-

els. Specifically, we detail unsupervised methods to create a cross-lingual embedding space

and build a bilingual lexicon. We then explain the functioning of unsupervised phrase-based

systems (UPBMT), and finally, we delve into the neural models (UNMT).

Unsupervised models extract translation signal from monolingual texts in several differ-

ent ways. The core concept remains the same – the semantic structures of text in different

languages share similarities in how words interrelate and unsupervised models leverage this

commonality. They utilize their constrained internal structures to generate bilingual or even

multilingual representations. .

6.1 Unsupervised Cross-Lingual Embeddings

We first discussed the topic of cross-lingual embeddings in Chapter 3 together with the limita-

tions posed by the restrictive assumption of isomorphism of embedding spaces. We formally

defined the problem of finding a linear mapping matrix W between the source and the target

embedding space in Equation 3.1. We showed that the problem has a closed-form solution

(Equation 3.2) provided that a seed bilingual lexicon is available.

6.1.1 Seed Lexicon

A number of approaches has been proposed to create the seed lexicon without the need of

parallel texts.

1. If the source and the target languages both use Arabic numerals, they can serve as the

initial seed lexicon [Artetxe et al., 2017].

2. If the source and the target languages share identical words (e.g. named entities), they

can serve as the initial seed lexicon [Artetxe et al., 2017].

3. The initial seed lexicon can be derived in a fully unsupervised way by exploiting struc-

tural similarities between embedding spaces [Artetxe et al., 2018c]. For a source em-

bedding matrix X and a target embedding matrix Y where individual rows correspond

to word embeddings xi and yi, the similarity matrices MX = XXT and MY = Y Y T

should match. In practice, if embedding spaces are at least approximately isomorphic,

the initial seed lexicon can be derived by a nearest neighbor search over the rows of the

similarity matrices.
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4. The initial seed lexicon can be derived from a mapping learned by adversarial training

[Conneau et al., 2018a]. An initial proxy for the mapping matrix W between source em-

beddings xi and target embeddings yi is obtained in an adversarial training framework

proposed by Ganin et al. [2017]. A discriminator is trained to discriminate between ele-

ments randomly sampled from {Wx1, ..., Wxn} and {y1, ..., ym} while W is trained to

prevent the discriminator from making accurate predictions.

The approaches (1)–(3) are implemented in the VecMap1 library and the approach (4) is

implemented in the MUSE2 library. In this thesis, we experiment with different approaches

and rely on default hyperparameters from the implementations.

6.1.2 Self-Refinement

Initial solutions outlined above can always be improved by a self-learning refinement [Artetxe

et al., 2017] where the maping matrix W is iteratively updated using the word pairs from the

currently best lexicon as anchor points for the Procrustes problem which has a closed-form

solution (Equation 3.2). A new updated lexicon is built in each round by the nearest neighbor

retrieval relying on the CSLS similarity metric [Conneau et al., 2018a]

CSLS(x, y) = cos(x, y)−
∑︂

z∈NNk(x)

cos(x, z)
2k

−
∑︂

z∈NNk(y)

cos(y, z)
2k

(6.1)

where NNk(x) is the set of k nearest neighbors of x that are used to reduce the cosine

similarity for embeddings that manifest the hubness problem, characterized by an excessive

number of close neighbors.

In summary, the unsupervised learning algorithm for post-hoc alignment of monolingual

embeddings into a cross-lingual space is the following:

1. Build the initial bilingual lexicon L using one of the approaches in Section 6.1.1.

2. Given the lexicon L, calculate W as the closed-form solution of the Procrustes problem

(Equation 3.2).

3. Obtain an improved lexicon L by a nearest neighbor search among target embeddings

yi and aligned source embeddings Wxi.

4. Repeat (2) and (3) for a fixed set of iterations or until a convergence criterion is met.

6.1.3 Applications in Unsupervised MT

Pre-trained cross-lingual embedding spaces have been successfully used as the initial source

of cross-lingual signal into unsupervised MT systems. We use them in our experiments with

both phrase-based and neural models. The methods described in this section can be extended

1https://github.com/artetxem/vecmap
2https://github.com/facebookresearch/MUSE
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to phrases and used to populate a phrase table of an unsupervised phrase-based system (Sec-

tion 6.2). Alternatively, when the method is applied on the subword level, the aligned cross-

lingual subword embeddings can serve for initialization of the embedding layer of an unsuper-

vised neural model (Section 6.3).

6.2 Unsupervised Phrase-Based Machine Translation

PBMT models were introduced in Section 3.3.2 as log-linear models which operate with

phrases (n-grams) and have several components: phrase table, language model, reordering

model, and fixed word/phrase penalties. While monolingual texts suffice for the calculation of

the language model probabilities and the fixed penalties, the phrase table and the reordering

model require parallel data. The reordering model can be omitted in the initial version of the

system, but the phrase table is the essential component of the system that facilitates translation.

Populating the phrase table with translation candidate phrases and their probabilities in an

unsupervised way is the crucial part of UPBMT.

The underlying assumption behind UPBMT is the existence of shared cross-lingual embed-

ding space where words and phrases are represented in a language-neutral way. If we create

such an embedding space, phrase translation candidates can be found by a nearest neighbor

search and their translation probabilities can be derived from the cosine distance of their vector

representations.

UPBMT systems are created in several steps [Artetxe et al., 2018b]:

• input text tokenization and truecasing;

• training of phrase embeddings (Section 6.2.1);

• mapping of phrase embeddings into the cross-lingual space (Section 6.2.1);

• populating the initial phrase table (Section 6.2.2);

• estimation of an n-gram language model (Section 6.2.3);

• weight tuning of the log-linear model (Section 6.2.4);

• back-translation refinement (Section 6.2.5).

The training algorithm is displayed in Figure 6.1.

6.2.1 Cross-Lingual Phrase Embeddings

Phrase embeddings are learned by a generalization of the Skip-gram model that learns embed-

dings for longer n-grams in addition to the individual word embeddings as implemented in the

phrase2vec3 library. We train phrase embeddings for the source and the target language

individually. In order to transform the two monolingual embedding spaces in one cross-lingual

embedding space, we use the alignment technique described in Section 6.1 which relies on

shared Arabic numerals for the initial solution and five iterations of self-refinement.
3https://github.com/artetxem/phrase2vec
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6.2.2 Initial Phrase Table Induction

The next step is to populate the phrase table with translation candidate pairs. For each source

phrase, we search the embedding space to extract N nearest neighboring phrases in the target

language and vice versa. The translation probability of each candidate pair is calculated as

follows

p(tgt|src) = ecos(src,tgt)/τ∑︁
tgt′ ecos(src,tgt′)/τ

(6.2)

where src is the original source phrase, tgt is the selected translation and tgt′ iterates over

the N possible translations. τ is a constant temperature parameter controlling the confidence

of the predictions. In our experiments, we follow Lample et al. [2018b] and set N = 100 and

τ = 30.

6.2.3 Language Model

The role of a language model in PBMT is to assign higher probability values to more likely

word sequences (n-grams). Since frequency counts are derived from monolingual corpora, the

estimation of n-gram probabilities is not influenced by the absence of parallel data. Back-off

and smoothing techniques [Manning and Schütze, 1999] are applied to adjust the probability

estimates for unseen n-grams or n-grams with very low counts. In particular, we use modified

Kneser-Ney smoothing [Heafield et al., 2013] implemented in the KenLM toolkit.

6.2.4 Unsupervised Tuning

In supervised PBMT, the MERT algorithm is used to tune the weights of individual components

of the log-linear model on a small parallel data set. Since it is not available in the unsupervised

setting, we first use the src→tgt PBMT model with its default weights to translate a small

portion of the monolingual corpus and use the synthetic parallel data set for MERT tuning of

the opposite tgt→src model. The procedure is iteratively repeated in both translation directions

until convergence, as indicated in steps 7–11 of the training algorithm (Figure 6.1).

6.2.5 Back-Translation

Finally, we run several rounds of back-translation whereby we translate the monolingual corpus

by the src→tgt model and use the synthetic corpus for PBMT training of the opposite tgt→src

model in a standard supervised way. Full supervised training consists of estimating the phrase

table and the reordering model from the synthetic training corpus and MERT tuning on the

synthetic development set for finding the optimal weights. We repeat the process in the opposite

translation direction and refine the solution in several iterations of back-translation, as indicated

in steps 12–16 of the training algorithm (Figure 6.1). If the monolingual training corpora are

large, the back-translation procedure can be run on a smaller subset for higher efficiency. The

original paper [Artetxe et al., 2018b] suggests using 2M sentences.
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Input: Monolingual training corpora: trainsrc and traintgt

Monolingual development corpora: devsrc and devtgt

Output: Trained models: modelsrc→tgt and modeltgt→src

Synthetic parallel training corpora:
(trainsrc synth, traintgt) and (traintgt synth, trainsrc)

Synthetic parallel development corpora:
(devsrc synth, devtgt) and (devtgt synth, devsrc)

1. ptsrc→tgt ← INDUCE PHRASE TABLE(trainsrc, traintgt)
2. pttgt→src ← INDUCE PHRASE TABLE(traintgt, trainsrc)
3. lmsrc ← TRAIN LM(trainsrc)
4. lmtgt ← TRAIN LM(traintgt)
5. modelsrc→tgt ← BUILD MODEL(lmtgt, ptsrc→tgt)
6. modeltgt→src ← BUILD MODEL(lmsrc, pttgt→src)
7. Repeat until convergence:
8. devsrc synth ← TRANSLATE(modeltgt→src, devtgt)
9. modelsrc→tgt ← TUNE WEIGHTS(modelsrc→tgt, devsrc synth, devtgt)
10. devtgt synth ← TRANSLATE(modelsrc→tgt, devsrc)
11. modeltgt→src ← TUNE WEIGHTS(modeltgt→src, devtgt synth, devsrc)
12. Repeat until convergence:
13. trainsrc synth ← TRANSLATE(modeltgt→src, traintgt)
14. modelsrc→tgt ← MOSES TRAIN(trainsrc synth, traintgt)
15. traintgt synth ← TRANSLATE(modelsrc→tgt, trainsrc),
16. modeltgt→src ← MOSES TRAIN(traintgt synth, trainsrc)

Figure 6.1: Unsupervised PBMT training algorithm. INDUCE PHRASE TABLE creates
an initial phrase table from monolingual embeddings as described in Section 6.2.2.
TRAIN LM trains an n-gram language model. BUILD MODEL uses default weights and
pre-computed penalties to build a translation model from the initial phrase table and
the target language model. TUNE WEIGHTS applies the MERT algorithm over the syn-
thetic development set to find optimal weights of the log-linear model. MOSES TRAIN

applies the full supervised PBMT training algorithm (as described in Section 3.3.2) on
a synthetic parallel corpus.
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6.3 Unsupervised Neural Machine Translation

In this section, we describe the methodology of unsupervised neural MT (UNMT) adopted in

our experiments. As we move from the phrase-based translation to neural models, we observe

that the principles of UMT underlying the two types of models are similar.

• The initial solution is obtained by pre-trained cross-lingual representations (mapped

static embeddings or deeper representations learned during multilingual pre-training).

• Translation is learned together with a monolingual language modelling objective (n-

gram LM in UPBMT, denoising autoencoding in UNMT).

• The initial solution is refined using back-translation.

6.3.1 Vocabulary

When training UNMT models, we work with monolingual corpora Dsrc and Dtgt. Optionally,

we might use additional monolingual corpora Daux1, . . . , DauxN in auxiliary languages.

In all our experiments, the tokenized input is processed by a single BPE model learned on

the concatenation of the monolingual corpora, resulting in a joint vocabulary that enables all

languages to use shared embeddings. Using a single BPE model for both the source and the

target language is a common practice in NMT in general but in UNMT it is an essential step to

allow the model to align its internal representations of the source and the target languages. In

experiments which entail multilingual pre-training using auxiliary languages, the BPE model

is learned on the concatenation of all available corpora.

In case of disbalanced monolingual corpora in terms of their size, simply concatenating

all sentences can create a bias against low-resource languages [Conneau and Lample, 2019].

Therefore, we down-sample the larger corpus before learning the BPE model.

6.3.2 Architecture

The design of an NMT system needs to meet several requirements to be functional for un-

supervised translation. Firstly, a significant number of parameters needs to be shared among

the languages in order to allow the model to generate a shared latent space where meaning

is represented regardless of the language it is expressed in [Lample et al., 2018c]. Secondly,

the initialization of the model weights is vital to produce an initial solution and kick-start the

training process [Conneau and Lample, 2019].

Our UNMT systems consist of a Transformer encoder and decoder, both of which are

shared between the two languages. The shared encoder is essential for creating the shared

space of cross-lingual latent representations, the shared decoder serves for regularization. The

encoder and the decoder have the same 6-layer Transformer architecture with 8 attention heads

and the hidden size of 1024, language embeddings, GELU [Hendrycks and Gimpel, 2017]

activations, and a dropout rate of 0.1.
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Figure 6.2: Design of an UNMT model with pre-trained embeddings. In the pre-
training phase (top), a Skip-gram embedding model is trained on the concatenation of
the monolingual corpora. Alternatively, the embeddings can be created by post-hoc
alignment of monolingual embeddings (Section 6.1). The embedding layer weights
and the tied output layer weight of the NMT model are initialized with the pre-trained
embeddings. In the fine-tuning phase (bottom), the model is trained for translation
using synthetic (back-translated) sentence pairs.

6.3.3 Pre-Training

There are several options to initialize the UNMT model:

• The encoder-decoder model is initialized randomly, only the token embedding weights

are copied from a pre-trained word embedding model.

• The encoder-decoder model is initialized with weights from a masked language model

pre-trained on the monolingual corpora and copied into both the encoder and the decoder

as in Conneau and Lample [2019].

• The encoder-decoder model is initialized with weights of a bilingual or multilingual

denoising autoencoder [Liu et al., 2020] pre-trained on the monolingual data in source

and target languages, possibly in additional auxiliary languages.

The different pre-training strategies are illustrated in Figures 6.2 to 6.4.

Pre-trained Embeddings

Lample et al. [2018a] showed that pre-training cross-lingual embeddings to initialize the em-

bedding layers of an UNMT system provides enough translation signal to start the training.
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Figure 6.3: Design of an UNMT model with pre-trained encoder. In the pre-training
phase (top), a masked language model is trained on the concatenation of the monolin-
gual corpora. The encoder of the MT system is initialized with the pre-trained weights.
Alternatively, the pre-trained encoder weights can be also copied to the decoder. In the
fine-tuning phase (bottom), the model is trained for translation using synthetic (back-
translated) sentence pairs.

While other pre-training strategies focused on the entire encoder or the full MT system later

proved more efficient, our initial experiments used pre-trained embeddings.

If the source and the target language share the same alphabet, the simplest approach is

to train embeddings jointly on the concatenation of the source and target monolingual cor-

pora segmented into subword units Lample et al. [2018c]. If the alphabets are different or the

simple approach does not provide enough cross-lingual signal for successful initialization, the

cross-lingual embeddings are obtained by post-hoc alignment of monolingual embeddings as

described in Section 6.1.

Pre-trained Encoder

The goal of unsupervised pre-training is to use unlabeled data to learn a general structure of

text. Specifically, as shown in Chapter 3, MLM pre-training learns deep bidirectional represen-

tations which carry information on each word token and its context and can be used to initialize

the encoder (and/or decoder) weights of a Transformer NMT system.

During multilingual MLM training, the model is presented with one text stream per lan-

guage in every training step. Random tokens of a word sequence are masked and the model is

trained to fill in the missing tokens given the context. In particular, 15% of tokens are randomly

sampled to be either replaced by the [MASK] token (pMASK = 0.8), replaced by a random

token (pRAND = 0.1) or not changed at all (pKEEP = 0.1).
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Figure 6.4: Design of an UNMT model pre-trained as denoising autoencoder. In the
pre-training phase (top), the entire encoder-decoder model is pre-trained on the denois-
ing task in multiple languages. In the fine-tuning phase (bottom), the model is trained
for translation using synthetic (back-translated) sentence pairs.

We pre-train Transformer [Vaswani et al., 2017] encoders on monolingual corpora in mul-

tiple languages to learn a joint multilingual structure. The encoder can be pre-trained either

only on texts in the source and the target language or on texts in other related languages as

well.

In our experiments, we copy the pre-trained encoder weights not only to the encoder but

also to the decoder.

Pre-trained Encoder-Decoder System

Denoising autoencoding (DAE) was initially used during the UNMT fine-tuning stage to sta-

bilize the training [Artetxe et al., 2018d, Lample et al., 2018a]. However, we propose to use it

already in the pre-training stage either as a replacement for MLM pre-training or as a subse-

quent step.

It is a monolingual training objective designed to teach the unsupervised model to recover

proper sentences from corrupted input. The loss for each language l is the following

LAE(θenc, θdec) = Ex∼Dl,x̂∼dec(enc(C(x))(∆(x̂, x)) (6.3)

where x is a sentence sampled from the monolingual data set Dl and x̂ is the reconstructed

sentence decoded from the noised version of x. The noise process C(x) introduces random

noise to a sentence x by dropping words with a probability pdrop, masking words with a prob-

ability pmask = 0.1 and shuffling words within a tunable window size.
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Conneau and Lample [2019] initialize their system with pre-trained MLM weights and

later use DAE in the fine-tuning stage together with online back-translation. We propose a

different method where we initialize the system with MLM weights, further train with the

DAE objective and only then start fine-tuning for translation without DAE. The results of our

approach are given in Section 7.3.

6.3.4 Fine-Tuning for Translation

Our UNMT systems are trained on synthetic data using online back-translation (sometimes

also called on-the-fly back-translation) and on pseudo-parallel data with a standard translation

objective.

Online Back-Translation

Online Back-Translation (OBT) is a bilingual objective for training an unsupervised model on

synthetic translation samples generated by the model itself in previous iterations. This proce-

dure is crucial for UNMT where we do not have access to any authentic parallel data resources.

Back-translation is happening on-the-fly during training where the model first generates a batch

of synthetic parallel data and immediately trains itself on it.

In the back-translation step, the model is first set to the inference mode and used to translate

a batch of sentences. The synthetic translations serve as source sentences for a training step

where the target side is the original sentence.

LBT (θenc, θdec, l) = Ex∼Dl,x̂∼dec(enc(T (x))(∆(x̂, x)) (6.4)

where T (x) is the translation model itself which generates a synthetic translation of sen-

tence x.

Translation Supervised by Pseudo-Parallel Data (PseudoPar)

To fine-tune the model on pseudo-parallel data, the standard supervised MT objective is used.

In every step of the training, a mini-batch of pseudo-parallel sentences is passed into the model

which is trained to minimize the loss function

LP P ST (θenc, θdec) = E(x,y)∼PseudoPar,ŷ∼dec(enc(x))∆(ŷ, y) (6.5)

where (θenc, θdec) is the trained model, (x, y) is a sentence pair sampled from the pseudo-

parallel data set PseudoPar, and ∆ is the cross-entropy loss.

Different methods to obtain pseudo-parallel data will be discussed in Chapter 5.

Translation Supervised by Phrase-based Translations (SynthPar)

In the first stage of UNMT fine-tuning, it can be beneficial to train on translations back-

translated by a UPBMT system. Artetxe et al. [2018a] propose a robust system of training
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UNMT models on a combination of synthetic translations by UPBMT and UNMT models,

where the ratio of UPBMT translations decreases as the training progresses. In this thesis, we

post-process the UPBMT translations to be more suitable for MT training. The loss function

is identical to Equation 6.5, only the training data changes. Our experiments with SynthPar

training will be described in Section 7.2.

6.3.5 Baselines

The baseline for our unsupervised MT experiments is the system of Conneau and Lample

[2019] who pre-train both the encoder and the decoder on the bilingual MLM task and fine-

tune using DAE and OBT.
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7. Experiments & Results
We carried out several sets of experiments with different unsupervised MT approaches and dif-

ferent language pairs. In each section, we focus on a specific unsupervised technique: UPBMT

(Section 7.1), combining UPBMT and UNMT (Section 7.2), unsupervised pre-training and

initialization strategies (Section 7.3), and training on pseudo-parallel data (Section 7.4). Fi-

nally, we point out the limitations of unsupervised techniques (Section 7.5), and we train semi-

supervised models in conditions where unsupervised MT fails (Section 7.6).

We have the following hypotheses regarding the outcomes of our experiments.

• We hypothesize that UNMT can benefit from different cross-lingual information brought

into the training by synthetic corpora produced by phrase-based models (Section 7.2).

• In contrast to Artetxe et al. [2020] who claim that online back-translation tends to con-

verge to the same translation quality regardless of the initialization strategy, we hypoth-

esize that pre-training plays a key role in UNMT and the quality of the initial solution

has a strong link to the final translation quality (Section 7.3).

• We hypothesize that existing UNMT models are not able to fully leverage the cross-

lingual signal present in monolingual data and we propose a method to explicitly match

similar sentences beforehand to present the model with the matched pseudo-parallel

sentence pairs in addition to the unaligned monolingual texts (Section 7.4).

7.1 Phrase-Based Unsupervised MT

Our first experiments with unsupervised MT cover German (DE) to Czech (CS) translation.

Although DE-CS is a high-resource language pair with access to several million parallel sen-

tences, we artificially impose restrictions prohibiting the use of any parallel data to limit our-

selves exclusively to monolingual data. This scenario was proposed in a WMT19 shared task

on unsupervised MT from DE to CS and Sections 7.1 and 7.2 include passages from our system

description paper [Kvapilı́ková et al., 2019].

In our initial experiments, we create UPBMT systems for translation in both directions.

Following the strategy of Artetxe et al. [2018b] described in Section 6.2, we first train mono-

lingual phrase embeddings, map them to the cross-lingual space, and use them to initialize the

phrase table. We tune the hyperparameters of the model and run several iterations of back-

translation, following the algorithm described in Figure 6.1. We then use the trained CS→DE

model to translate the Czech monolingual corpus and create a synthetic parallel corpus which

can be used later for training an NMT model.

7.1.1 Data

We trained our models on the NewsCrawl1 corpus of newspaper articles collected over the

period of 2007 to 2018. We tokenized and truecased the text using standard Moses scripts.

1http://data.statmt.org/news-crawl/
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Sentences with less than 3 or more than 80 tokens were removed. The resulting monolingual

corpora used for training of the unsupervised PBMT system consisted of 70M Czech sentences

and 267M German sentences.

We performed further filtering of the Czech corpus before the NMT training stage. Since

there are a lot of Slovak sentences in the Czech NewsCrawl corpus, we used the language

tagger langid [Lui and Baldwin, 2012] to tag all sentences and remove the ones which were

not tagged as Czech. After cleaning the corpus, the resulting Czech training set comprises 62M

sentences.

Since small parallel data was allowed to tune the unsupervised system, we used new-

stest2013 for development of the UPBMT system. Finally, we used newstest2012 for model

selection.

7.1.2 Model & Training

Phrase Embeddings

We first train phrase embeddings (up to trigrams) independently in the two languages. We

use an extension of the word2vec Skip-gram model with negative sampling [Mikolov et al.,

2013c] to train phrase embeddings. We use a window size of 5, embedding size of 300, 10

negative samples, 5 iterations and no subsampling. We restricted the vocabulary of each of the

languages to the most frequent 200,000 unigrams, 400,000 bigrams and 400,000 trigrams.

Having trained the monolingual phrase embeddings, we use VecMap [Artetxe et al., 2018c]

to learn a linear transformation to map the embeddings to a shared cross-lingual space. We use

a list of Arabic numerals as the initial lexicon required to learn the mapping, as described in

Section 6.1.

Unsupervised Phrase Table

The mapped embeddings are used to generate an unsupervised phrase table which is popu-

lated with source and target n-grams. For the sake of a reasonable phrase table size, only the

100 nearest neighbors are kept as translation candidates for each source phrase. The phrase

translation probabilities are calculated as described in Section 6.2.2.

Initial UPBMT Model

We followed the Monoses2 pipeline of Artetxe et al. [2018b] for our unsupervised phrase-based

MT training. The phrase-based models are estimated using Moses [Koehn et al., 2007], with

KenLM [Heafield, 2011] for 5-gram language modelling and fast align [Dyer et al., 2013]

for alignments. The feature weights of the log-linear model are tuned using minimum error rate

training (MERT) using both an authentic parallel dev set and a synthetic back-translated dev

set. The log-linear model of the initial system includes only the language model, translation

probabilities and lexical weightings. Reordering model is introduced in further iterations.

2https://github.com/artetxem/monoses
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Figure 7.1: Step-by-step illustration of the iterative back-translation procedure.

Authentic Dev Set Synthetic Dev Set
DE→cs CS→de DE→cs CS→de

Initial model 9.44 11.46 9.06 11.06
Iteration 1 11.11 12.06* 4.61 12.92
Iteration 2 7.26 6.78 11.70 14.22*
Iteration 3 1.06 2.32 12.06 14.07
Iteration 4 - - 5.65 13.67
Iteration 5 - - 11.69 14.18
Iteration 6 - - 11.56 13.96

Table 7.1: Results of the PBMT models on newstest2012. The systems in the left two
columns were tuned on the parallel newstest2013 (3K sentence pairs) and iteratively
refined on 2M synthetic sentence pairs. The ones in the right two columns were tuned
on a synthetic set (10K back-translated sentence pairs which remain fixed throughout
the experiment) and iteratively refined on 4M synthetic sentence pairs. * indicates the
best-performing CS→DE models selected for creating the synthetic parallel corpora.

Back-translation

The back-translation process is illustrated in Figure 7.1. Both DE→CS and CS→DE systems

are needed at this step. The DE→CS system is used to translate a portion of the DE monolingual

corpus to CS and create a synthetic parallel data set, which is then used to train the CS→DE

system and the procedure cyclically continues. Note that we do not make use of the initial

model for CS→DE. Once the synthetic parallel data set is created, the problem turns into a

supervised one and we can use standard PBMT features, including the standard phrase table

extraction procedure and the reordering model estimated on the aligned data sets.

Since back-translation is computationally demanding, we experiment with using a syn-

thetic corpus of 2 and 4 million sentences for back-translation rather than translating the entire

monolingual corpus.
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7.1.3 Results & Discussion

We evaluate various UPBMT models to select the best candidate and observe an increasing

translation quality with the first rounds of back-translation (Table 7.1).We note that even the

initial model induced from the mapped embedding space produces meaningful translations with

a BLEU score of 9.4 (DE→CS) and 11.5 (CS→DE). The quality increases with back-translation

up to 12.1 and 14.2 BLEU, respectively.

We experiment with tuning the models both on an authentic parallel development set (3K

sentence pairs) and a synthetic back-translated development set (10K sentence pairs). In the

first scenario, possibly as a result of a smaller development set, the model started diverging

after the first round of back-translation. In the second scenario, despite the synthetic nature of

the development data, the models converge to a higher BLEU score. The best result is achieved

after two and three rounds of back-translation for the CS→DE and DE→CS model, respectively

(see the results in Table 7.1). As we were suspicious about the superior results of the systems

tuned on synthetic rather than authentic data, we manually evaluated a random sample of 100

translations by the best-performing CS→DE system from each of the scenarios. After reviewing

the translations and despite the BLEU results, we conclude that the best model refined with an

authentic dev set produces superior translations especially in terms of word order.

Synthetic Corpora

We translated a random subset of 30M sentences of the target monolingual corpus from Czech

to German using the two best performing CS→DE PBMT models (15M sentences each). The

resulting synthetic corpus exhibits various errors, which we attempted to address as described

in the following paragraphs. The final cleaned corpus size is 26M parallel sentences.

We detected three error patterns that are not easily detectable by BLEU but have a signifi-

cant impact on human evaluation:

• German translations contaminated with words in other languages, especially Slovak;

• wrong word order (e.g. in contrast to the Czech word order, verbs in subordinate clauses

and verbs following a modal verb should be placed at the end of a sentence in German);

• non-translated Czech words in German sentences (e.g. a German synthetic phrase auf

pı́sčitém Küste where the Czech word pı́sčitém (sandy) remains non-translated);

• randomly mistranslated named entities (NEs) (e.g. king Ludvik translated as king Harold

or Brno translated as Kraluv Dvur).

Heuristics to Improve Synthetic Corpora

In order to reduce the detrimental effects of the above errors on subsequent NMT training,

we devised several post-processing strategies. Here we summarize the final versions of the

corpora:
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• SynthPar-Initial: The best-performing PBMT model was used for creating the synthetic

training corpus for the initial training of the NMT model. We used a language tagger

langid.py [Lui and Baldwin, 2012] to tag all synthetic sentences and remove the

ones which were not tagged as German.

• SynthPar-noCzech: We cleaned the German side of the synthetic corpus by removing the

Czech words which the PBMT model failed to translate and only copied. We identified

words with Czech diacritics and replaced them on the German side with the <unk>

token.

• SynthPar-noCzech-reordered: The corpus was further treated to eliminate the problem

of wrong word order on the German side of the synthetic parallel corpus. We shuffled

words in the synthetic German sentences within a 5-word window and mixed the re-

ordered sentences into the original ones. We essentially doubled the size of the training

corpus by first reordering odd-indexed sentences while keeping even-indexed sentences

intact and then vice versa.

The motivation for the augmentation was to prevent the NMT system from copying

German source words directly into the target and support the NMT system in learning

to handle word reordering. Ideally, the model should learn that German word order

need not be strictly followed when translating to Czech. This feature is easy to observe

in authentic parallel texts but the synthetic corpora are too monotone. We are aware

of the fact that a 5-word window is not sufficient to illustrate the reordering necessary

for German verbs but we did not want to introduce components which would be too

language-specific to our technique.

• SynthPar-noCzech-reordered-NEs: The corpus was further treated to alleviate the prob-

lem of mistranslated NEs present in the data. NEs were identified in the monolingual

Czech corpus by a NE recognition tagger NameTag3 [Straková et al., 2014] trained on

the Czech Named Entity Corpus 2.04 and aligned with the synthetic German size by

fast align [Dyer et al., 2013]. If the German counterpart was close enough (Levenshtein

distance of at most 3) to the Czech original, we trusted the translation. If not, they were

either removed from the corpus (geographic names) or copied from the source Czech

size (numbers, personal names, institutions, media names, artifact names and time ex-

pressions as recognized by NameTag). More details about the procedure are given in

Kvapilı́ková et al. [2019].

7.1.4 Takeaways

We created UPBMT models for translation between German and Czech. The models reach a

BLEU score of over 10 points in both translation directions which can be considered a good

result given that they were trained without any translation resources. However, the translations

3http://ufal.mff.cuni.cz/nametag
4http://ufal.mff.cuni.cz/cnec/cnec2.0
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suffer from several repeating errors patterns: named entities are often mistranslated, the word

order is wrong, and the translations include non-translated words from the source.

There is a potential for reaching a higher translation quality by training an NMT model on

synthetic translations generated by the phrase-based model, especially if the translations are

post-processed to prevent the known error patterns from contaminating the NMT training. The

experiments with NMT models trained on post-processed UPBMT-generated corpora will be

described in the following Section 7.2. For comparison of our UPBMT systems to a supervised

benchmark, please also refer to the next section.

7.2 Hybrid Unsupervised MT

In this section, our goal is to improve the solution of the unsupervised DE→CS translation task

from our previous experiments. The systems covered here are termed “hybrid” due to their

neural model architecture which incorporates PBMT-generated synthetic data during training.

We compare the results to a supervised benchmark to evaluate the gap between unsupervised

and supervised models. Furthermore, we compare to a pivoting benchmark where we translate

from German to Czech via English.

7.2.1 Data

Our models are trained on 26M sentence pairs where the source German size was generated

by an unsupervised PBMT system described in Section 7.1.3 and the target Czech data of

the same size is authentic from NewsCrawl. We train the model on several variations of the

synthetic corpus described in Section 7.1.3 as we attempt to fix the errors present in the PBMT

translations. We used newstest3013 for validation and newstest2019 for testing.

For training the supervised benchmark model, we used the following Czech-German paral-

lel corpora available at the OPUS5 website: OpenSubtitles (18M), MultiParaCrawl, Europarl,

EUBookshop, DGT (5M), EMEA and JRC. The combined dataset has 26M sentence pairs.

For the training of the pivoting Czech-English-German model, we extracted 26M sentence

pairs from the CzEng 1.6 corpus of Czech-English parallel data and 26M sentence pairs from

the Europarl (2M), EUBookshop (10M) and OpenSubtitle (14M) corpora.

7.2.2 Model & Training

Model Architecture

We use the Transformer architecture described in Chapter 6 to train the DE→CS hybrid models.

Training on Synthetic Data

We experiment with different methods of MT training on synthetic parallel sentences. With re-

gard to the terminology introduced in Chapter 6, we use online back-translation (OBT) where

5http://opus.nlpl.eu/
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Figure 7.2: Schematic illustration of the training pipeline of our models. The size of
the blocks is not proportional to training time.

synthetic sentence pairs are generated on-the-fly by the UNMT system, and compare to train-

ing on a full synthetic parallel corpus (SynthPar) generated by a UPBMT system prior to the

training.

Our systems trained exclusively on the SynthPar corpus are unidirectional (DE→CS)

whereas systems trained with OBT must be bidirectional (DE↔CS). While the unidirectional

models are trained from scratch, the bidirectional models are pre-trained on the MLM task as

described in Section 6.3.

Due to smaller and noisier training data, we set the dropout between Transformer layers

to 0.3, which is higher than the typical dropout rate used in supervised systems. We train all

models on 8 GPUs with a batch size of 2,400 tokens per GPU. We train our unidirectional

models in the Marian toolkit [Junczys-Dowmunt et al., 2018] and the bidirectional models

in the XLM toolkit [Conneau and Lample, 2019] with the same hyperparameters. The training

pipeline of different systems is illustrated in Figure 7.2. The rest of the hyperparameters are

given in the Appendix A.2.

• The Unidir-SynthPar system was trained on the initial synthetic data set SynthPar-Initial

until convergence (249k steps) and then fine-tuned on the SynthPar-noCzech corpus for

12k steps, and for another 12k steps on SynthPar-noCzech-reordered.

• The Unidir-SynthPar-NEs system is a result of additional 12k fine-tuning steps on the

SynthPar-noCzech-reordered-NEs corpus. Although the effect of this fine-tuning on

the final translation might not be significant in terms of BLEU points, the problem of

mistranslated named entities is perceived strongly by human evaluators and warrants an

improvement.

• The Bidir-OBT is a UNMT model trained without any UPBMT component. It is a

bidirectional model pre-trained on MLM and fine-tuned using online back-translation

(OBT) and denoising autoencoding (DAE).

• The Bidir-SynthPar-OBT is a bidirectional model pre-trained on MLM and fine-tuned
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DE→CS

BLEU chrF++ COMET
UPBMT 11.6 38.0 0.59
UNMT (Bidir-OBT) 14.6 39.2 0.72
Unidir-SynthPar* 15.0 40.8 0.74
Unidir-SynthPar-NEs* 14.3 40.5 0.74
Bidir-SynthPar-OBT 16.7 42.6 0.79
Benchmark-Supervised 18.8 44.7 0.83
Benchmark-Pivot 15.1 40.1 0.75

Table 7.2: Our unsupervised hybrid systems and their performance on newstest2019.
For more details on the UPBMT models please refer to Section 7.1. * indicates models
submitted for the WMT19 shared task. The WMT19 winning system [Marie et al.,
2019] scored 3.4 BLEU points more than our best system but it was fine-tuned on 16.6k
parallel sentences provided by the organizers for validation so it cannot be directly
compared to our fully unsupervised systems.

for translation using a combination of the SynthPar-noCzech (70%) and SynthPar-

noCzech-reordered-NEs (30%) corpora together with online back-translation. After

10k training steps, the synthetic corpus is dropped and the model is trained with

online back-translation until convergence. We assume that keeping the less-fluent

UPBMT-generated training corpus for too long might have a detrimental effect on the

final quality.

Benchmarks

For comparison, we created an NMT system with the same architecture as our unsupervised

models but trained it in a supervised way on the DE-CS parallel corpus of 8.8M sentence pairs

(Benchmark-Supervised).

We also compare our results to the pivoting approach (Benchmark-Pivot) which is com-

posed of two supervised models, DE→EN and EN→CS, trained on available parallel corpora.

We eventually translate from German to Czech using the combination of the two models.

7.2.3 Results & Discussion

The scores of the systems on out test set are reported in Table 7.2. They demonstrate that we can

significantly elevate translation quality by training an UNMT system on the UPBMT-generated

synthetic data. COMET and chrF++ metrics are in line with the BLEU score.

Training on Synthetic Data

We were interested in evaluating the effect of employing synthetic data from various origins.

The Bidir-OBT model was trained exclusively on UNMT-generated data, Unidir-SynthPar was

trained exclusively on UPBMT-generated data, and Bidir-SynthPar-OBT was trained on both.

Due to the differences in their uni/bidirectional design and pre-training, the Bidir-OBT

and Unidir-SynthPar models cannot be assessed only based on the nature of the data used for
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training. While Bidir-OBT is trained for translation in both directions indicated by language

embeddings, the Unidir-SynthPar model specializes in DE→CS translation which puts it at

an advantage. On the other hand, the Bidir-OBT model was pre-trained on the MLM task

where it had the opportunity to internally align cross-lingual representations and use them for

unsupervised translation.

Bidir-OBT is outperformed by Unidir-SynthPar but the difference is not statistically sig-

nificant. However, we clearly observe the benefit of combining the two approaches to synthetic

data generation. Upon comparison of the bidirectional Bidir-OBT and Bidir-SynthPar-OBT

models which differ only in one training stage (see Figure 7.2), we conclude that incorporating

UPBMT-generated data into the first stages of UNMT training brings a significant improvement

of∼2 BLEU points over the Bidir-OBT system trained using online back-translation only. The

UPBMT-generated synthetic corpus is a valuable source of cross-lingual signal to the UNMT

model.

Online Back-Translation

It must be noted that while the UPBMT-generated translations were produced by a finished

model, the UNMT-generated synthetic sentence pairs are produced on-the-fly by OBT and are

of progressively increasing quality, starting at translations full of repeating punctuation marks

and copied (non-translated) words. We had a closer look at the quality of the back-translated

sentences and made the following observations.

• Already after 1k training steps the structure of OBT translations starts corresponding to

the source sentence.

• It lasts several more iterations to get rid of most mistranslations and copied German

source words. For example, at 1k training steps, the German sentence “Krähen stehen

unter Naturschutz.” (“Crows are protected by nature conservation laws.”) is translated

as “Krämerovy houby stojı́ mimo Naturschutz”, where “Naturschutz” is copied and

“Krämerovy houby” (“Krämer’s mushrooms”) is a complete mistranslation motivated

by a subword overlap of the first word.

• Although the translation is subword-based, it happens only rarely that a part of a word

would remain non-translated, e.g. “Erfolgverprechende” (“promising” translated as a

non-existent word “Erfolgtivnı́”. Even in long German compound words which mostly

get copied as a whole (e.g. “Witterungsbedingungen”). This is likely the result of MLM

pre-training and possibly also the fairly big BPE vocabulary of 60k units.

Named Entity Translation

We showed in Section 7.1 that UPBMT systems suffer from frequent mistranslations of named

entities. After our experiments with UNMT and hybrid systems, we confirm that name trans-

lation is also a challenge for UNMT and hybrid systems.
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Sentences with NEs Sentences with no NEs
Unidir-SynthPar 28% 26%
Unidir-SynthPar-NEs 52% 28%
No winner 20% 46%

Sentences with NEs Sentences with no NEs
Bidir-OBT 22% 18%
Bidir-SynthPar-OBT 38% 40%
No winner 40% 42%

Table 7.3: Results of manual evaluation of three systems on a stratified subset of
the validation data set created by randomly selecting 100 sentences with NEs and 100
sentences without NEs.

In Section 7.1.3, we attempted to mitigate the problem by post-processing the UPBMT-

generated corpus. This corpus was used in the training of the Unidir-SynthPar-NEs and Bidir-

SynthPar-OBT models. Table 7.3 summarizes the improvement we gained by introducing such

named entity treatment. We manually evaluated the following systems on a stratified sub-

set of the validation data set created by randomly selecting 100 sentences with NEs and 100

sentences without NEs: Unidir-SynthPar against Unidir-SynthPar-NEs and Bidir-OBT against

Bidir-SynthPar-OBT. The results show that despite the decrease in BLEU score we see in Ta-

ble 7.2, fine-tuning of the Unidir-SynthPar model on a synthetic corpus with amended NEs

proved beneficial in 52% of tested sentences which included NEs and it did not harm in 20%

of sentences. When comparing the two systems on sentences with no NEs, their performance

is very similar.

The translations by Bidir-SynthPar-OBT are superior to the translations by Bidir-OBT both

in terms of named entities and general quality which is in line with the results from Table 7.2

and confirms that training on the SynthPar corpus with NE treatment reduces the problem of

mistranslated names.

Translations by bidirectional models with MLM pre-training suffer less from the problem

of mistranslated NEs than the unidirectional models which rely on the PBMT synthetic corpora

for all cross-lingual signal. Nevertheless, incorrectly translated names continue to be one of the

most serious errors generated by unsupervised translation systems. See Table 7.4 for a sample

translation.

7.2.4 Takeaways

The UPBMT-generated synthetic corpus serves as a valuable source of cross-lingual signal

for UNMT models. Such hybrid models consistently achieve higher quality compared to pure

neural models. The synthetic corpus brings the most value at the beginning of the training

when the UNMT model is not yet able to generate meaningful translations on its own. Once

the UNMT model attains a satisfactory level of quality, it is advisable to phase out the initial

synthetic corpus, as it can potentially impede further training. If the UNMT system is initialized

well, the training starts successfully, and at 1k training steps we observe that the UNMT starts

generating meaningful translations.
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Source Phrase
Original Der Lyriker Werner Söllner ist IM Walter.
Reference Básnı́k Werner Söllner je tajný agent Walter.
PBMT Český prozaik Miroslav Mišák je agentem StB Josef .
Unidir-SynthPar Prozaik Filip Bubenı́ček je agentem StB Josefem.
Unidir-SynthPar-NEs Prozaik Filip Söllner je agentem StB Ladislavem Bártou.
Bidir-OBT Lyrik Jiřı́ Söllner je IM Walterman.
Bidir-SynthPar-OBT Prozaik Werner Söllner je IM Walterman.

Table 7.4: Sample translations showing that fine-tuning on synthetic corpus with
cleaned NEs (Unidir-SynthPar-NEs and Bidir-SynthPar-OBT) alleviates a part of the
NE problem. However, note the imperfect translation of Lyriker as novelist rather than
poet. The bidirectional systems seem to be more prone to copying which can help
for some NEs but also hurt, e.g. copying the word IM rather than recognizing it as a
shortcut for “inoffizieller Mitarbeiter” and translating it as secret agent.

In our view, one of the most significant types of translation errors in unsupervised sys-

tems involves a high frequency of randomly mistranslated named entities. This problem is not

adequately addressed by the BLEU score but it has a considerable impact on the perceived

translation quality. We have concentrated our efforts on mitigating this issue during the fine-

tuning of the UNMT system by rectifying NEs in the synthetic training corpus. Some names

where deleted, others were replaced by their copy. While our approach may not be flawless, we

believe that an omitted named entity or a non-translated named entity is less detrimental than a

randomly substituted one. Unfortunately, this approach to amending NEs can only be applied

to languages with a name tagger available, which is not the case for many truly low-resource

languages.

In the next experiments, we will be working only with bidirectional UNMT systems and

focus on their ability to create cross-lingual internal representations in the pre-training stage of

the training pipeline.

7.3 Effect of Pre-Training Strategies

A number of pre-training and initialization strategies have been proposed since the inception of

UNMT. The first models were initialized with cross-lingual embeddings [Lample et al., 2018a,

Artetxe et al., 2018d]. A significant increase of translation quality came after discovering the

benefits of cross-lingual MLM pre-training [Conneau and Lample, 2019]. The latest UNMT

systems rely on multilingual pre-training of the entire encoder-decoder model on some varia-

tion of a denoising task [Liu et al., 2020]. We measure the effect of different pre-training strate-

gies on the final translation quality and propose a combined approach which yields the most

favorable results across different language pairs. Furthermore, we hypothesize that pre-training

on multiple languages could help the model create a language-neutral internal representation

space and lead to a more effective initialization of weights for unsupervised translation.

A more thorough exploration of the multilingual aspects of UMT is not the goal of this
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DE-HSB CS-DE EN-KA EN-KK EN-UK
train (mono) 29.4M/0.9M 26M/29.4M 17.1M/6.6M 17.1M/7.7M 17.1M/17.3M
train (para) - 5M 1M - -
dev 2k 3k 1k 1k 1k
general test 1.6k - 1k 1k 1k
legal test - - 1k 1k 1k

Table 7.5: Number of sentences used for unsupervised training and evaluation. The
para data was only used for training the transfer learning benchmarks.

thesis but it was studied in Sun et al. [2020] or Üstün et al. [2021].

We evaluate the effect of pre-training strategies on the following language pairs in the

legal domain: German-Upper Sorbian (DE-HSB), English-Georgian (EN-KA), English-Kazakh

(EN-KK) and English-Ukrainian (EN-UK).

7.3.1 Data

The DE and HSB monolingual training data as well as the parallel validation and test sets were

provided in the WMT22 unsupervised shared task [Weller-Di Marco and Fraser, 2022]. The

auxiliary CS monolingual corpus is a random selection of 26M sentences from NewsCrawl.

The monolingual training data for EN, KA, KK and UK come from the Oscar6 corpus and

the MT4All shared task [de Gibert Bonet et al., 2022] which provided domain-specific data

from the legal domain. The training data summary is given in Table 7.5. The English-centric

validation and test sets were taken from the Flores Evaluation Benchmark [Costa-jussà et al.,

2022]. In addition, the legal test sets from the MT4All shared task were used for evaluation.

For our side experiments with supervised pre-training on parallel texts in Czech-German

(CS-DE) and English-Georgian (EN-KA). For EN-KA, we used the CCAligned corpus available

at OPUS. For CS-DE, we trained on a random sample of 5M parallel sentences from the OPUS

website: OpenSubtitles, MultiParaCrawl, Europarl, EUBookshop, DGT, EMEA and JRC.

The data was tokenized and split into BPE units using the fastText [Joulin et al., 2016]

library. We shared one BPE vocabulary of 55k entries for EN-KA-KK-UK and another vocabu-

lary of 18k entries for CS-DE-HSB.

7.3.2 Model & Training

Model Architecture

We use the Transformer architecture described in Chapter 6 to train all our models.

Pre-training Strategies

We experiment with the following pre-training tasks introduced in Chapter 6 to determine the

optimal strategy for further experiments:

1. Skip-gram for static embeddings with post-hoc mapping;

6https://oscar-project.org/
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2. cross-lingual masked language modelling (MLM);

3. denoising autoencoding (DAE);

4. MLM followed by DAE.

The details of MLM and DAE pre-training were given in Chapter 6. All models are fine-

tuned using OBT or OBT+DAE, depending whether DAE was a part of the pre-training stage.

Both MLMs and DAEs are either trained in a bilingual fashion on a combination of sam-

ples in the source and the target languages, or in a multilingual fashion on samples in several

auxiliary languages. The languge of the sentence or the text stream is indicated to the model

by language embeddings. We pre-train both bilingual and multilingual versions of the MLMs

and DAEs to be able to draw conclusions about the effects of multilingual pre-training.

MLM pre-training was proposed by Conneau and Lample [2019], while DAE was later

used by Liu et al. [2020] for pre-training of the MBART model which brought state-of-the-art

results in UMT. We compare the two approaches and propose a modification where we first pre-

train an MLM encoder, use it to initialize both the encoder and the decoder of a full Transformer

model and continue pre-training as a denoising autoencoder. While MLM pre-training helps

the encoder and decoder separately to create cross-lingual representations, DAE prepares the

full model for conditional text generation. We believe that combining the two strategies will

allow the model to benefit from both.

Furthermore, combining MLM and DAE allows us to drop the denoising task from the

fine-tuning stage. The denoising training objective was proposed by Artetxe et al. [2018d]

and Lample et al. [2018a] to stabilize the training of UNMT. We found that dropping it does

not cause any harm, provided that DAE was a part of the pre-training stage. Therefore, this

method also eases some computational burden as we pre-train the model only once, enabling

subsequent experiments with various fine-tuning strategies. This is especially useful in the case

of multilingual pre-training. We will focus on fine-tuning the models for translation in the next

round of experiments which will be described in Section 7.4.

Training Details

Monolingual embeddings are trained on the subword-segmented training corpus using the

Skip-gram approach described in Section 3.1.1. We keep the default hyperparameters of the

word2vec7 implementation and train the embedding model for 5 epochs using 10 negative sam-

ples and a 5-word window. We align the embeddings into a bilingual embedding space using

the MUSE8 library where we train an adversarial model with 5 iteration of refinement.

The MLMs are trained on mini-batches with 64 text streams (fixed-length segments of texts

which go beyond sentence boundaries) per batch, 256 tokens per stream. 15% of the tokens are

masked. The details of the masking of input sentences were given in Section 6.3.3. All models

are trained on 8 GPUs.

7https://github.com/tmikolov/word2vec
8https://github.com/facebookresearch/MUSE
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Figure 7.3: Schematic illustration of the training pipeline of our models. The size of
the blocks is not proportional to training time.

The DAEs are trained on data noised by shuffling tokens within a 3-token window, drop-

ping words with a probability pdrop = 0.1 and masking words with a probability pmask = 0.1.

We train sentence-by-sentence on 8 GPUs with 3,400 tokens per batch.

Fine-tuning for MT using online back-translation is run on 8 GPUs with mini-batches

of 3,400 tokens per GPU using Adam optimization with a linear warm-up (beta1=0.9,

beta2=0.98, lr=0.0001). Greedy decoding is used during back-translation. For eval-

uation, we use beam search with beam size set to 6.

7.3.3 Results & Discussion

Unsupervised Pre-training Strategies

In contrast with the conclusions of Artetxe et al. [2020], we argue that the translation quality

of UMT systems is highly sensitive to the choice of the pre-training and initialization strategy.

The initial solution ignites further training by back-translation and if the pre-training stage fails

to deliver this solution, the model never starts learning. It can be observed in the case of EN-KK

translation where only the MLM pre-training allows the model to initiate the back-translation

process while other pre-training strategies trap the model in a suboptimal solution with no

translation capabilities, similar to random initialization.

We select the best performing versions (bilingual or multilingual) of the proposed pre-

training strategies (MLM, DAE, and MLM followed by DAE) and evaluate their benefit over

random initialization of the model with no pre-training at all and over the weak initialization

of the embedding layer only. The results are summarized in Table 7.6.

As expected, a meaningful initialization is one of the key features of the UMT design

and without it the models are impossible to train. At minimum, the embeddings need to start

with some cross-lingual signal, although this signal might not be strong enough to yield high

translation quality, particularly for linguistically distant languages. In line with the conclusions

of Conneau and Lample [2019], we observe a major increase in DE-HSB translation quality (∼
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DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN
No pre-training 2.9 2.7 0.8 1.0 1.2 1.6 0.5 0.8
Pretr. embeddings 8.8 8.9 - - - - - -
MLM 21.6 22.2 4.4 5.2 3.6 4.9 7.4 10.7
DAE 21.2 24.1 1.8 2.2 1.9 2.7 3.7 5.4
MLM + DAE 27.3 30.6 5.9 6.3 1.2 1.3 10.1 13.5
Trivial transfer 28.9 33.6 - - 1.1 1.2 - -

Table 7.6: The impact of different pre-training strategies on translation quality mea-
sured on the validation sets by BLEU score.

13 BLEU) upon the introduction of MLM pre-training.

While we cannot establish a clear winner between MLM and DAE pre-training strategies,

we reached a significant improvement with a combination of the two. Further pre-training

of the initialized model with a DAE objective can boost performance by additional ∼6 BLEU

points in the case of DE-HSB translation, and∼8 BLEU points in the case of UK-EN translation.

However, we observe that the combined strategy fails to deliver the initial solution for the

EN↔KK model. In the subsequent experiments, we will see how the situation can be alleviated

in the fine-tuning stage (Section 7.4).

Trivial Transfer Approach

We decided to benchmark our unsupervised pre-training strategies against a trivial transfer

learning approach based on [Kocmi and Bojar, 2018]. We pre-trained two “parent” supervised

models on parallel data: DE-CS translation model on 5M parallel sentences and EN-KA transla-

tion model on 1M parallel sentences. We used these to initialize the “children” (DE-HSB model

and EN-KK model, respectively) trained in an unsupervised way using OBT. The only require-

ment for using this method is a shared vocabulary between the “parent” and “child” models

which is met in our setup.

The outcomes are documented in the last row of Table 7.6, and they lead to contrasting

conclusions for the two language pairs. While for DE-HSB translation, the DE-CS pre-training

leads to an improvement of up to 3 BLEU points over the best unsupervised pre-training strat-

egy, EN-KK unsupervised translation learning fails to ignite from the EN-KA initialization and

results in downward-sloping training curves.

We conclude that learning by back-translation can be bootstrapped from a “parent” transla-

tion model but only if the two language pairs are closely related (such as CS and HSB). This is in

contrast with the conclusions that hold for supervised MT where a successful transfer of trans-

lation knowledge occurs even for unrelated languages [Kocmi and Bojar, 2018]. In practical

use cases of low-resource MT from monolingual data, if a related language pair with a shared

source or target language and abundant parallel data is available, it seems reasonable to use it

for pre-training rather than relying on one of the fully unsupervised pre-training strategies.
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Multilingual vs. Bilingual Pre-training

Finally, we aim to determine whether it is beneficial to include auxiliary languages in the

pre-training stage. For DE-HSB translation, we compare the models pre-trained on bilingual

(DE-HSB) data only to models pre-trained on multilingual (CS-DE-HSB) data and hypothesize

that adding another Slavic language into the pipeline may increase the final translation quality.

For the remaining language pairs, we pre-train both bilingually and on the combination of all

EN, KA, KK, and UK training corpora. Note that these languages are linguistically very diverse

and use different scripts: Latin (EN), Cyrillic (KK, UK), and Mkhedruli (KA).

Table 7.7 shows BLEU scores on the validation sets. Asides from the languages included

in the pre-training, differences in translation quality may also stem from the number of steps in

each training stage which varies across experiments and might influence the results. Therefore,

we report the duration of the training in Table 7.7 together with the results.

It proved to be difficult to draw a universal conclusion in favor of either the bilingual or

the multilingual pre-training setup. In contrast to our initial hypotheses, bilingual MLM pre-

training is superior to multilingual MLM for DE-HSB translation, and leads to a difference in

BLEU score of up to 3.8 BLEU points. It must be noted that the results are likely also influ-

enced by the fact that the bilingual MLM model has seen 6 times more DE and HSB sentences

than the multilingual model. Conversely, the situation is the opposite for the English-centric

language pairs where the multilingual model performs better, despite the linguistic dissimilar-

ity, and despite the fact that the bilingual models were trained for slightly longer. We take the

weights from the best performing pre-trained MLM (the bilingual model for DE-HSB and the

multilingual model for the remaining language pairs) and train on a multilingual or bilingual

denoising task. Table 7.7 shows that bilingual DAE pre-training of MLM-initialized model

is more effective than its multilingual counterpart. Particularly, multilingual denoising of the

EN-KA model harms the MLM initialization and leads to a similar result as if no pre-training

happened at all. For other language pairs, bilingual pre-training is also superior. The difference

is especially pronounced in the case of the DE-HSB translation where it amounts to 6–7 BLEU

points.

Given the state-of-the-art MT results of the MBART model [Liu et al., 2020] pre-trained via

multilingual denoising, our initial hypothesis was that this pre-training strategy would lead to

competitive results in our setup as well. However, we were not able to fully exploit the benefits

of multilingual DAE pre-training in our conditions. There are several possible reasons for

that. First of all, the MBART model has substantially more parameters (12-layer Transformer

with 16 heads and internal dimension 1024 vs. 6-layer Transformer with 8 heads and internal

dimension 512) and it was trained on entire documents in 25, resp. 50 languages. Furthermore,

MBART relies on a slightly different noise function to corrupt the training data. Pre-training

a smaller model on three or four languages did not have the desired effect on final translation

quality.
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MLM DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN

multilingual 17.8 20.6 4.4 5.2 3.6 4.9 7.4 10.7
CS,DE,HSB (51k) EN,KA,KK,UK (33k)

bilingual 21.6 22.2 3.5 4.7 2.6 4.1 3.7 7.6
DE,HSB (304k) EN,KA (50k) EN,KK (40k) EN, uk (71k)

DAE DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN

multilingual 21.2 24.1 1.8 2.2 1.9 2.7 3.7 5.4
CS,DE,HSB (200k) EN,KA,KK,UK (71k)

bilingual 19.2 21.4 - - 1.8 2.5 - -
DE,HSB (195k) - EN,KK (189k) -

MLM + DAE DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN

multilingual 21.3 23.4 0.7 0.8 1.2 1.3 9.3 12.8
CS,DE,HSB (51k+100k) EN,KA,KK,UK (33k+82k)

bilingual 27.3 30.6 5.9 6.3 1.2 1.3 10.1 13.5
DE,HSB (304k+102k) EN,KA (33k+67k) EN,KK (33k+67k) EN,UK (33k+76k)

Table 7.7: The impact of bilingual and multilingual pre-training strategies on transla-
tion quality measured by BLEU score on the validation sets. The highest BLEU scores
per language pair and category are indicated in bold. If more than one figure is bold,
the difference is not statistically significant. We also report training duration in terms
of the number of training steps and indicate if it is considerably higher in either the
bilingual or the monolingual setup.

7.3.4 Takeaways

We experimented with different pre-training tasks and conclude that the translation results are

highly sensitive to the choice of the pre-training strategy. For most of our models, the most

effective approach is to first initiate the weights based on MLM, follow it with DAE pre-

training, and only then start fine-tuning for translation. The combination of these two objectives

in the pre-trainning stage is novel, as most authors use either one or the other. Although DAE

is customarily used later in the fine-tuning stage of the UNMT pipeline to stabilize the training,

we observe a positive impact of isolating it into the pre-training stage. However, especially

when auxiliary languages are used, this strategy carries the risk of distorting the initial solution

and hindering further learning. In such cases, reverting to the approach of MLM pre-training

and OBT+DAE fine-tuning is the optimal choice.

We also explored the benefits of transfer learning for unsupervised MT and we conclude

that if a related language pair with parallel data is available, it is advisable to consider ini-

tializing the model with a supervised MT model trained for that related pair. However, the

translation transfer does not work for unrelated languages.

It must be noted that translation quality for the most linguistically dissimilar language

pairs (EN-KK and EN-KA) is low (below 7 BLEU points). We will be working on improving

the translation quality for remote languages in the next experiments.
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7.4 Boosting Unsupervised MT with Pseudo-Parallel
Data

In this section, we measure the effect of incorporating pseudo-parallel sentences into unsuper-

vised MT. We hypothesize that they can serve as a new source of cross-lingual information

that the model can benefit from. Although pseudo-parallel sentences are not perfect translation

equivalents, we believe that they can improve the translation quality nonetheless, especially

when used in the beginning of the training.

We employ the same methodology as in our previous experiments described in Section 7.3,

and we incorporate an additional training step where the pseudo-parallel corpus is used to train

the NMT system with a standard supervised MT objective. We experiment with different train-

ing schedules to determine when to incorporate the pseudo-parallel data and when to remove it

from the training.

The experiments from this section were published in Kvapilı́ková and Bojar [2023] and

some portions of text and tables are taken verbatim from there. We evaluate on the same

language pairs as in the previous Section 7.3 (DE-HSB, EN-KA, EN-KK, EN-UK).

7.4.1 Data

We use the same data as described in Section 7.3.1 for the experiments in this section.

7.4.2 Model & Training

Model Architecture

We use the Transformer architecture described in Chapter 6 to train all our models.

Pseudo-Parallel Corpus Creation

We first create a pseudo-parallel corpus as described in Chapter 5. We use the XLM-100 model

fine-tuned on English-German synthetic sentence pairs as our sentence encoder for parallel cor-

pus mining. To measure its ability to create representations with a high level of multilingualism

for the languages of our interest, we evaluate its performance on an auxiliary task of parallel

corpus mining (PCM). For each language pair, we randomly select 200k sentences from the

monolingual training data, mix in the parallel validation set, and measure the precision and

recall of the model when trying to reconstruct it.

Since XLM-100 was trained on 100 languages and HSB is not one of them, we fine-tune the

model on DE and HSB sentences before using it to mine parallel sentences for this language pair.

We stop fine-tuning when the quality of the mined corpus starts deteriorating. We determine

the optimal length of fine-tuning on the PSM task and observe that both precision and recall

start slowly decreasing after the model had seen 500k sentences.

To retrieve sentence embeddings from the trained model, we mean-pool the encoder out-

puts from the fifth-to-last layer across sentence tokens (the layer and aggregation choice ex-
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DE-HSB EN-KA EN-KK EN-UK

Precision 87.08 44.8 49.3 67.4
Recall 76.15 44.4 42.4 74.2
F1 81.25 44.6 45.6 70.6
Threshold 1.034 1.023 1.022 1.026

Table 7.8: The evaluation metrics on the PSM task and the respective mining thresh-
olds.

DE-HSB CS-DE EN-KA EN-KK EN-UK
train (mono) 29.4M/0.9M 26M/29.4M 17.1M/6.6M 17.1M/7.7M 17.1M/17.3M
train (pseudo-para) 770K - 230K 169K 496K

Table 7.9: Sizes of monolingual corpora and the number of pseudo-parallel sentences
mined from them.

plained in Section 5.2). We search the embedding space as described in Equation 5.1 and

Equation 5.2. We select a threshold T that maximizes the F1 score on the PSM task. Table 7.8

lists the precision and recall of all sentence encoders used for mining together with the optimal

mining threshold. The amount of mined parallel sentences used for the MT training is given in

Table 7.9.

UNMT Pre-training

We follow the results of the experiments in Section 7.3 when selecting the pre-training strategy

for our experiments. We pre-train one multilingual language model for EN-KA-KK-UK and

one bilingual language model for DE-HSB using the MLM objective. The weights from the

pre-trained language models are copied into both the encoder and the decoder of the respective

bilingual NMT models. The initialized NMT model for each language pair is then further

pre-trained with the denoising autoencoding loss on the two languages until convergence. The

details of the denoising task are identical to Lample et al. [2018a].

UNMT Fine-Tuning

We experiment with different fine-tuning strategies for unsupervised machine translation as

illustrated in Figure 7.4. For each language pair, all translation models are initialized with the

same weights obtained in the pre-training stage described in the previous paragraph.

OBT (baseline) models are fine-tuned solely with the iterative back-translation loss.

PseudoPar models are fine-tuned with the standard supervised MT loss on our pseudo-

parallel corpora.

OBT+PseudoPar models are fine-tuned simultaneously with the iterative back-translation

loss on the monolingual sentences and with the standard MT loss on the pseudo-parallel sen-

tence pairs.

OBT+PseudoPar ↦→OBT models are a continuation from different checkpoints of the

OBT+PseudoPar models where the supervised MT objective is dropped and the training

continues with iterative back-translation only. We experiment with different checkpoints to
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Figure 7.4: Schematic illustration of the training pipeline of our models. The size of
the blocks is not proportional to training time.

find the optimal point to switch the training.

Training Details

Training configuration is identical to Section 7.3.

Benchmarks

The baseline for our approach is an improved model of Conneau and Lample [2019] with an

extra pre-training step on the DAE task for better performance. We initialize the baseline model

with the weights of a cross-lingual MLM model, further pre-train as a denoising autoencoder

and fine-tune with iterative back-translation.

We benchmark our results against MT systems of de Gibert Bonet et al. [2022] trained as

a baseline for the MT4All shared task according to the methodology of Artetxe et al. [2019a],

and against Shapiro et al. [2022] who won the WMT22 DE-HSB unsupervised task with a mul-

tilingual system that was pre-trained according to the mBART [Liu et al., 2020] methodology

and fine-tuned on synthetic texts generated by a phrase-based system.

To challenge the relevance of unsupervised MT in the world of large language models, we

also translate our test sets by the GPT-3.5 Turbo model9 using the ChatGPT API and compare

to our results.

7.4.3 Results & Discussion

We observed a significant improvement in translation quality over the baseline for all transla-

tion pairs. Table 7.10 shows that the baseline OBT system falls short of our proposed method

by between 4.7 BLEU points (EN−→KK) and 10.7 BLEU points (UK−→EN) on the general test

set. The differences on the legal test set are even more pronounced: we observe an increase of

up to 14.5 BLEU over the baseline (EN−→UK). Our DE−→HSB system outperforms the WMT22

winner by 17 BLEU points. When translating from English to Kazakh, our approach reaches

a BLEU score of 16.3 while the baseline which solely relies on iterative back-translation does

9https://platform.openai.com/docs/models/gpt-3-5
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DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN
WMT22 best 17.9 18.0 - - - - - -
ChatGPT 6.6 - 3.9 - 5.2 - 25.8 -
OBT (baseline) 29.6 36.3 3.6 5.2 0.8 1.0 8.4 12.9
PseudoPar 11.3 12.0 1.9 4.8 1.0 3.1 4.6 8.6
OBT+PseudoPar 32.9 36.3 6.8 12.7 5.9 11.3 12.2 20.8

↦→OBT 35.0 39.6 7.7 14.0 7.2 12.1 15.7 23.7

DE-HSB HSB-DE EN-KA KA-EN EN-KK KK-EN EN-UK UK-EN
de Gibert Bonet (2022) - - 12.0 - 6.4 - 20.8 -
OBT (baseline) - - 9.0 12.7 0.3 0.3 14.9 12.6
PseudoPar - - 2.1 6.8 8.0 11.6 14.6 13.1
OBT+PseudoPar - - 11.5 22.0 16.3 18.6 29.3 21.7

↦→OBT - - 15.0 23.5 9.3 12.7 27.5 21.8

Table 7.10: MT performance of our systems measured by BLEU scores on the general
test set (top) and the legal test set (bottom). Compared to the WMT22 winner [Shapiro
et al., 2022], ChatGPT, and the system trained by de Gibert Bonet et al. [2022].

not receive enough cross-lingual signal to start learning at all. The hybrid system by de Gib-

ert Bonet et al. [2022] which uses additional translation information from an unsupervised

phrase-based system falls behind with a BLEU score of 6.4.

The results of translation by ChatGPT from English or German into truly low-resource

languages (HSB, ka, KK) are significantly worse than our results. After manually evaluating

several translations with a zero BLEU score, we suspected that the automatic metric puts Chat-

GPT’s fluent but less literal translations at a disadvantage. We calculated the COMET score

which is better able to capture the meaning similarity between texts but this hypothesis was not

confirmed. The COMET score ranks chatGPT outputs similarly as the BLEU score (Table A.1).

Nonetheless, the EN−→UK translation by ChatGPT is better than all unsupervised MT sys-

tems according to all used metrics. It must be noted that the systems cannot be directly com-

pared to ChatGPT since its training corpus is larger and might include parallel texts.

The detailed evaluation with additional metrics (COMET and chrF++) is available in Ap-

pendix A.1. The results are generally in line with the BLEU score and the combination of

training on pseudo-parallel and back-translated data performs the best under all three evalua-

tion metrics.

Training Schedules

Figure 7.5 shows training curves with validation BLEU scores of all our DE←→HSB systems.

We see that the OBT+PseudoPar system trained simultaneously on back-translated and

pseudo-parallel data without any special schedule outperforms the baseline for DE−→HSB but

not in the opposite direction. For HSB−→DE, the baseline performance is surpassed as soon as

we remove the pseudo-parallel corpus from the training.

We trained several DE-HSB models starting from OBT+PseudoPar after each completed

epoch of 770k pseudo-parallel sentences. Upon examination of the training curves in Fig-

ure 7.5, we see an immediate increase in validation BLEU score of ∼0.9–4.9 BLEU points
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Figure 7.5: The development of validation BLEU scores during the training of
HSB→DE (left) and DE→HSB (right) models. Any parallel resources were prohibited.

which occurred within the first 500 training steps after removing the pseudo-parallel cor-

pus from the training. This observation confirms our hypothesis that pseudo-parallel sen-

tence pairs aid the training in the beginning but the quality of the corpus itself poses an

upper bound on the performance of the system. However, removing the corpus too early

(after one or two epochs) leads to a lower final BLEU score. Therefore, we recommend

to keep training the OBT+PseudoPar model until convergence and only then switch to iter-

ative back-translation alone OBT+PseudoPar ↦→OBT. We note that the differences between

OBT+PseudoPar and OBT+PseudoPar ↦→OBT are less pronounced when measured by the

COMET score (Table A.1).

The flat PseudoPar training curves indicate that the quality of the pseudo-parallel corpus

alone is inadequate for training a functional MT system without back-translation.

Domain-specific MT

Interestingly, removing the pseudo-parallel corpus from the training harms the translation qual-

ity measured on the legal test sets where the best performance for EN−→KK, KK−→EN and

EN−→UK is achieved by OBT+PseudoPar. We suspect that this is the result of the repeating

terminology in the domain-specific test sets which is better handled by the OBT+PseudoPar

for some language pairs. This is consistent with the fact that the PseudoPar system trained

exclusively on pseudo-parallel data performs quite well on the EN-KK and EN-UK legal test

set (8.0 on EN−→KK, 11.6 on KK−→EN and 14.6 on EN−→UK) while having poor results on the

general test set (1.0 on EN−→KK, 3.1 on KK−→EN and 4.6 on EN−→UK). Based on our findings,

we believe that utilizing pseudo-parallel sentences extracted from domain-specific monolingual

corpora has the potential to enhance the training of domain-specific MT in general. However,

further experiments are out of the scope of this thesis.
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# DE HSB Score
1 Thomas de Maizière Thomas de Maizière 1.286
2 Knut ist tot. Bayer ist tot. 1.245
3 Es ist ein harter Kampf, die Konkur-

renz ist groß.
To bě napjata hra, a konkurenca bě
wulka.

1.185

4 Der Roman hat 1200 Seiten. Kniha ma 300 stronow. 1.178
5 Er passt zu diesem Team wie der

Deckel auf den Topf.
Wón so k mustwu hodźi kaž wěko
na hornc.

1.161

6 Die größte misst über fünf Meter,
die kleinste wenige Millimeter.

Najkrótša měri 10 cm, najdlěša 1
meter.

1.101

7 Wer Wohlstand will, braucht Wis-
senschaft.

Štóž chce něšto změnić, trjeba sylnu
wolu.

1.063

8 Morgen ist doch auch noch ein Tag! Ale to njeje hišće wšo! 1.053
7 Auch für Apple ist das iPhone

wichtig.
Tež aleje su jara wažne. 1.037

Table 7.11: A sample from the DE-HSB mined parallel corpus. Non-matching words in
italics.

Data quality

The sentence pairs in the pseudo-parallel corpus are far from equivalent in meaning. As il-

lustrated in Table 7.11, many of the sentences are paired because they share a named entity, a

numeral (not necessarily identical), a punctuation mark, or one distinctive word. Others have

a similar sentence structure, they contain a similar segment or they contain words that are

somehow related, e.g. Apple/alleys (“aleje”), although the word Apple is not the fruit in this

context. On the other hand, synthetic sentences in the first training iterations are also extremely

noisy, and even later they contain artifacts such as non-translated words or mistranslated named

entities.

Table 7.12 shows what the back-translated and pseudo-parallel data can look like. We ob-

served how the back-translated version of one sentence changes as the training progresses and

witnessed several types of error, e.g. the German word “laufend” is not translated at all in the

initial iterations; the word “April” remains mistranslated as “March” (“měrc”) throughout the

entire training. On the other hand, the pseudo-parallel sentence matched based on its distance

from the source sentence has a similar meaning but is factually inaccurate.

We see that the meaning of many of the pseudo-parallel sentence pairs significantly differs

but it is difficult to measure the quality of the entire corpus. We measure it indirectly by the

increase in BLEU score associated with introducing the corpus into the UNMT training or

by measuring the quality of the sentence encoder used for creating the corpus. To be able

to evaluate the precision/recall of the sentence encoder, we have to control the number of

parallel sentences hidden in the input corpora. However, in real-life scenarios, the level of

comparability of two monolingual corpora is difficult to estimate. If the monolingual corpora

provided for unsupervised translation come from a different domain and contain dissimilar

sentences, the model has no good candidates to find. This poses a challenge especially when

setting the correct mining threshold for the monolingual corpora at hand.

It is not clear what are the attributes of the pseudo-parallel corpus that the UNMT train-
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SRC Ich musste mich laufend weiterbilden, und so legte ich im April
1952 die erste und ein Jahr darauf die zweite Lehramtsprüfung
ab.

REF Dyrbjach so běžnje dale kwalifikować, a tak złožich w aprylu
1952 prěnje a lěto po tym druhe wučerske pruwowanje.

PseudoPar Hańža Winarjec-Orsesowa wotpołoži prěnje wučerske pru-
wowanje w lěće 1949 a druhe w lěće 1952.

OBT @ 500 Dyrbjach so laufend dale kubłać, a tak legte w měrcu 1952 prěnje
a lěto na to druhe Lejnjanske pruwowanje ab.

OBT @ 3000 Dyrbjach so běžnje dale kubłać, a tak w měrcu 1952 prěnju a lěto
na to druhu lektoratu serbšćiny wotpołožichmy.

OBT @ 10000 Dyrbjach so běžnje dale kubłać, a tak wotpołožich w měrcu 1952
prěnju a lěto na to druhu lektoratu.

Table 7.12: A sample sentence translated by the OBT model after 500, 3,000 and
10,000 training steps compared to the closest neighbor of such sentence from the bilin-
gual sentence space (PseudoPar). The mistranslated words are indicated in italics.

ing benefits from the most. We believe that the benefits of training on such noisy data are

twofold: 1) the perfect matches are a valuable source of correct supervision, and 2) the abun-

dant less-than-perfect matches still introduce a new translation signal which can help the model

leave a suboptimal situation which we often observe during back-translation when the model

learns to mistranslate a word and never forgets it. An example of error pattern induced by

back-translation can be seen in Table 7.12 where the model in different stages of the training

consistently mistranslates the word “weiterbilden” as “kubłać” (“to pour”) when the meaning

is “to further educate oneself”. On the other hand, the word “laufend” was first mistranslated

but later fixed and at 3k training steps it was correctly translated as “běžnje”.

7.4.4 Takeaways

We have demonstrated the benefits of MT training on pseudo-parallel data in situations when

true parallel data is not available. While the pseudo-parallel corpus alone does not reach suf-

ficient quality for standard supervised MT training, it works well in combination with online

back-translation. We found it optimal to train the model until convergence on both pseudo-

parallel and synthetic sentence pairs, then remove the pseudo-parallel corpus and continue

training with iterative back-translation only.

We confirm our hypothesis that UNMT models are not able to fully exploit the cross-

lingual knowledge present in monolingual data. If we match similar sentences prior to the

training using an external tool and present the model with the matched pairs, translation quality

improves.

Incorporating similar sentence pairs into the standard UNMT training increases translation

quality across all evaluated language pairs with an improvement of up to 14.5 BLEU over

the baseline trained without pseudo-parallel data and 8.5 BLEU over a hybrid unsupervised

system (EN−→UK). Furthermore, we observed that in some situations (EN←→KK), the online

back-translation became trapped in a suboptimal state where no learning occurs. Introducing
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pseudo-parallel data can rescue the model from this state and restart the learning process.

After evaluating our approach on a test set in the legal domain, we believe that training on

pseudo-parallel sentences could be particularly useful for domain-specific unsupervised MT.

If we have two in-domain monolingual corpora at hand, parallel corpus mining is an efficient

strategy to retrieve translation information.

The pseudo-parallel corpus helps the training despite being noisy. We hypothesize that

while exact translations help the model find correct correspondences, also the noise can intro-

duce new information and prevent the model from memorizing some of the artifacts of back-

translated sentences. We leave it up to future research to evaluate whether a cleaner but smaller

corpus would bring even larger gains.

In the following section, we stress-test this approach in the conditions of truly low-resource

languages where monolingual corpora have a limited size and cover different domains.

7.5 Limitations of Unsupervised MT

In the previous sections, we established that if parallel texts are not available, MT models can

learn using unsupervised techniques from monolingual data only. We tested on four language

pairs exhibiting rich linguistic variety, out of which DE-HSB, EN-KA and EN-KK are considered

low-resource according to the definition given in Chapter 2.

While the results are promising, the absolute BLEU scores for the more remote language

pairs are still fairly low. It has been argued [Marchisio et al., 2020], that unsupervised tech-

niques fail when

• languages are linguistically dissimilar;

• or there is a domain mismatch between the training corpora;

• or there is not enough monolingual sentences (less than 1M) for training.

In the previous section, we showed that using pseudo-parallel data for training in combi-

nation with the right pre-training strategy, we can train functional UMT systems even in the

scenarios above. In particular, Georgian and Kazakh are linguistically far from English, and

the Upper Sorbian training corpus is only 0.9M sentences.

Here we perform several experiments in even more adverse conditions and train MT models

for translation between English and four low-resource Indic languages: Assamese (AS), Khasi

(KHA), Mizo (MZ), and Manipuri (MNI). All of these languages are linguistically dissimilar

from English, the amount of monolingual data is limited (only 183k sentences in Khasi), and

the corpora exhibit a domain mismatch. We employ our approach of training on pseudo-parallel

corpora to determine whether it can help in situations where other unsupervised techniques fail.

The experiments from this section were carried out as part of the Indic MT shared task10 of

WMT23 and the system description will be published in the workshop proceedings.

10http://www2.statmt.org/wmt23/indic-mt-task.html
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AS KHA MNI MZ EN
train (mono) 2.6M 183k 2.1M 1.9M 33M
train (para) 50k 24k 50k 20k -
train (pseudo-para) 32k 5k 95k 66k -
dev 2k 1k 1k 1.5k -
test 2k 1k 1k 2k -

Table 7.13: The number of sentences in the training, dev and test sets used in the Indic
MT shared task.

7.5.1 Data

We use the data provided for the WMT23 shared task of Indic MT. The Indic training data cover

a combination of the news domain and the religious domain. In addition to the provided data,

participants were allowed to use any monolingual texts and any pre-trained models trained on

monolingual texts. We used 33M English sentences from NewsCrawl2022 and relied on the

pre-trained model from Chapter 5 for parallel corpus mining. The summary of the data is in

Table 7.13.

We trained a BPE model on the concatenation of all Indic corpora and a downsampled

Englih corpus. The BPE vocabulary size is 52k. During pre-processing, we first tokenized the

texts using the Moses tokenizer which created a problem with the Bengali-Assamese script as

it decomposed several compound Unicode characters which had an impact on the segmentation

of texts using this script (AS, MNI). The decomposed accents form a separate BPE unit which

lead to a high segmentation of the Assamese and Manipuri texts. During post-processing we

managed to compose the segmented text by running a reverse substitution on top of the stan-

dard detokenization. The unnecessary step of Moses tokenization likely cost us some final

translation performance due to the suboptimal BPE segmentation.

We obtain our pseudo-parallel data using two version of the Indic sentence encoder we

described in Section 5.4.4. The XLM-100 (Indic) model was fine-tuned on monolingual data

in EN, AS, KHA, MNI, MZ. The XLM-100 (Indic+EN-DE synth) model was further fine-tuned

using EN-DE synthetic parallel data. In Table 7.14, we report the performance of the two

encoders on the task of parallel corpus mining where the model is evaluated on finding parallel

sentences in two corpora of 202k sentences built by mixing the development set of 2k parallel

sentences into a random set of 200k monolingual sentences from the training corpus.

7.5.2 Model & Training

We pre-train all our models using the most successful pre-training strategy from Section 7.3

which is MLM followed by DAE. During translation training, we use the combination of OBT

and MT on a mined parallel corpus (PseudoPar) as described in Section 7.4.

Training Details

The training configuration is identical to Section 7.3.
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XLM-100 (Indic) XLM-100 (Indic+EN-DE synth)
EN-AS EN-KHA EN-MNI EN-MZ EN-AS EN-KHA EN-MNI EN-MZ

Precision 35.03 9.67 7.92 22.54 58.08 28.64 13.49 38.56
Recall 18.55 10.50 5.70 18.00 39.70 23.60 12.10 33.80
F1 Score 24.26 10.07 6.63 20.01 47.16 25.88 12.76 36.02
Threshold 1.023 1.025 1.022 1.022 1.022 1.027 1.022 1.022

Table 7.14: Precision, recall and F1 score of the XLM-100 (Indic) and
XLM-100 (Indic + EN-DE synth) models on the parallel corpus mining task. The
thresholds were optimized for the highest F1 score and used for mining training sen-
tences for our MT models.

System Sentence Encoder EN-AS AS-EN EN-MNI MNI-EN
OBT (baseline) - 0.2 0.3 0.1 0.1
OBT+PseudoPar XLM-100 (Indic) 1.0 1.4 0.2 0.3
OBT+PseudoPar XLM-100 (Indic+EN-DE synth) 1.4 1.5 2.8 0.7

System Sentence Encoder EN-MZ MZ-EN EN-KHA KHA-EN
OBT (baseline) - 2.0 0.8 7.7 2.3
OBT+PseudoPar XLM-100 (Indic) 4.1 2.3 7.4 2.0
OBT+PseudoPar XLM-100 (Indic+EN-DE synth) 4.8 2.5 12.6 4.6

Table 7.15: BLEU score of Indic unsupervised MT systems on the WMT23 test set.
COMET and chrF++ results are reported in the Appendix.

7.5.3 Results & Discussion

The unsupervised results are reported in Table 7.15. We observe that the BLEU scores for

EN-AS and EN-MNI are less than 1 BLEU using the baseline unsupervised approach, meaning

that the models learn almost zero translation knowledge. The performance can be significantly

improved by adding noisy pseudo-parallel sentences, but BLEU still remains below 3 points.

Upon closer analysis of the best translation candidates, we see that such low scores correspond

to an average of 2 word matches per reference-candidate sentence pair. We review the transla-

tions and observe that the models generate fluent sentences within the same topic as the source

sentence but their meaning is completely off. This finding points in the direction that unsuper-

vised techniques could be useful for domain adaptation or style transfer even in high resource

languages.

There are several possible explanations for such subpar results. Both AS and MNI share

a non-Latin script. We experienced problems with the Moses tokenization where words con-

taining compound Unicode characters were often incorrectly split or even segmented at the

character level. The amount of monolingual data (∼2M) is lower than we had in our previous

experiments. Both languages are linguistically distant from English (which, however, also ap-

plies to KA and KK where the unsupervised methods work). And finally, Indic texts contain

segments from religious texts whereas English training data is from the news domain.

The results for EN-KHA and EN-MZ are slightly more promising. The effect of training

on pseudo-parallel sentences is significant for both language pairs and amounts to ∼5 BLEU

points. However, we see that the models quickly converge to these values, marking a distinct

training trajectory compared to what we witnessed in our experiments from Section 7.4. More-
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over, we see very low results in the translation direction from the Indic languages into English

which contrasts with our prior experiments where translating into English was less problematic

than the reverse direction.

The impact of using the PseudoPar corpus for UMT training across evaluated language

pairs does not fully correspond to the per-language performance of the sentence encoder re-

ported in Table 7.14. On one hand, the mining precision is significantly higher for the improved

encoder XLM-100 (Indic+EN-DE synth) and we observe a corresponding increase in translation

quality when using pseudo-parallel sentences retrieved by this model. On the other hand, the

strongest impact on translation quality is observed for EN-KHA where the encoder precision is

only 29%. Moreover, the encoder precision for EN-AS is 58% but despite this high value, the

unsupervised MT training fails to start. For comparison, the precision for EN-KA and EN-KK

was 45% and 49% (Table 7.8), respectively, and the models were able to extract significant

translation knowledge from the retrieved pseudo-parallel data. To have a clearer view of what

the data looks like, we carried out a manual evaluation of EN-KK and EN-KA pseudo-parallel

corpora (see Figure 8.1 in Discussion) and found that the structure of the two corpora is rela-

tively similar. However, given the smaller AS monolingual corpus, the AS-EN pseudo-parallel

corpus has only 33k sentence pairs. Moreover, the AS-EN data suffers a domain mismatch since

the AS corpus contains a significant amount of religious texts. These challenges, together with

the linguistic dissimilarity and the problematic Assamese script, might be the reasons why the

model fails to start learning.

Surprisingly, despite the low amount of KHA training data (183k sentences), the KHA-

EN MT system was able to reach a reasonable level of translation quality without seeing any

authentic KHA-EN translations. We will see in the next section that the BLEU score is close to

the semi-supervised result.

7.5.4 Takeaways

We confirm that in the situation of training data domain mismatch, linguistic dissimilarity,

different scripts (AS, MNI) and limited amounts of monolingual data, unsupervised MT models

struggle. Without PseudoPar data in the training mix, the majority of unsupervised models we

experimented with did not even start learning. Upon the introduction of PseudoPar texts, the

BLEU score increases but remains low.

7.6 Pseudo-Parallel Data in Semi-Supervised MT

In the following section, we will depart from the constraints posed by the unsupervised MT

scenario and study low-resource translation between English and the four Indic languages in-

troduced in the previous section with limited amounts of parallel data available. We will be in-

crementally adding parallel sentences into the unsupervised training and create semi-supervised

systems to determine:

• how translation quality increases as we add more parallel sentences into the training;
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Figure 7.6: Schematic illustration of the training pipeline of our models. The size of
the blocks is not proportional to training time.

• whether incorporating pseudo-parallel data into the training helps in semi-supervised

scenarios;

• how many authentic parallel sentence pairs are required for the model to not see any

further benefit in the noisy pseudo-parallel data.

In Section 7.4, we established that pseudo-parallel data play an important role in unsuper-

vised training. In Section 7.5, we pointed at the limitations of unsupervised MT techniques in

authentically low-resource scenarios. In the experiments presented in this section, we exam-

ine whether pseudo-parallel data can be useful in situations where small amounts of authentic

parallel data are available.

7.6.1 Data

In addition to the data from Section 7.5 listed in Section 7.5, small amounts of parallel training

data (AuthPar) provided for the WMT23 shared task was used (50k sentence pairs for EN-AS,

24k sentence pairs for en-KHA, 22k sentence pairs for EN-MNI and 50k sentence pairs for

EN-MZ). Pseudo-parallel corpora (PseudoPar) used in our semi-supervised experiments are

identical to those from Section 7.5. The number of retrieved pseudo-parallel sentence pairs is

indicated in Table 7.13.

7.6.2 Model & Training

For our WMT23 submission to the shared task on Indic MT, we trained MT models in a semi-

supervised manner using available parallel data as well as unsupervised techniques. We ex-

periment with the same language pairs as in Section 7.5: English-Assamese (EN-AS), English-

Manipuri (EN-MNI), English-Mizo (EN-MZ) and English-Khasi (EN-KHA).

This shared task was proposed as a realistic scenario where for each Indic language, the

participants have access to several thousand parallel sentences paired with English, up to 2.6M

additional unaligned sentences in each Indic language, and an unlimited amount of English

texts. In addition, using any model pre-trained on monolingual texts was allowed.
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EN-AS EN-KHA EN-MNI EN-MZ
AuthPar+OBT (semi-sup) 14.1 16.6 29.5 31.2
PseudoPar+AuthPar+OBT (semi-sup) 13.3 15.9 29.8 30.8
OBT (unsup) 0.2 7.7 0.1 2.0
OBT+PseudoPar↦→OBT (unsup) 1.4 12.6 2.8 4.8

Table 7.16: BLEU score of EN-AS, EN-KHA, EN-MNI and EN-MZ semi-supervised MT
systems on the WMT23 test set.

Pre-Training on Monolingual Texts

All our systems are pre-trained on the MLM and DAE tasks as described in Section 7.3. A

schematic illustration of the training pipeline is in Figure 7.6.

Semi-Supervised MT Training

In the semi-supervised setup, we fine-tune a bidirectional model for each language pair with

the standard supervised MT objective (first on the pseudo-parallel corpus PseudoPar and then

on the authentic parallel corpus AuthPar) as well as the OBT objective (on the monolingual

corpus). We compare the results of the semi-supervised models to completely unsupervised

models trained only with OBT and PseudoPar data to measure the effect of limited amounts of

parallel texts. We experiment with gradually adding parallel data into the training and evaluate

the performance of a model trained on 1k, 2k, 5k, 10k and 25k parallel sentences. Furthermore,

we train models with and without the PseudoPar pre-training stage and we evaluate the impact

of using pseudo-parallel data on the final translation quality as the amount of authentic parallel

texts increases.

7.6.3 Results & Discussion

Shared Task Results

Regarding the semi-supervised shared task results, our EN→MNI system ranked second out

of 14 participants. Our EN→MZ system ranked fourth out of 11 participants. The remaining

systems finished on the 5th-7th places. The winning system for all language directions was

a system called TRANSSION-MT which outperformed other systems with almost double the

BLEU score of the second best candidate. Since the participants were allowed to use unlimited

amounts of monolingual data in any languages, there might be great discrepancies between the

amounts of monolingual data and auxiliary languages used by other participants. Furthermore,

the participants were allowed to use any available models pre-trained on monolingual data

which makes it difficult to guarantee that used models do not suffer from test set contamination.

System descriptions of other participants were not available at the time of submitting this thesis.

Pseudo-Parallel Sentences in Semi-supervised Training

Outside of the scope of the shared task, we were interested in the following phenomena which

we measured in our experiments:
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Figure 7.7: Relationship between the translation quality and the number of authen-
tic parallel sentences used for training. Dashed lines represent systems trained on
pseudo-parallel (PseudoPar) sentence pairs in addition to authentic (AuthPar) and
back-translated (OBT) sentence pairs.

• the gap between unsupervised and semi-supervised translation systems;

• the impact of training with pseudo-parallel sentence pairs on the final translation quality;

• the development of translation quality in relation to the number of authentic parallel

sentences used during training.

We trained unsupervised MT systems as described in Section 7.5. Table 7.16 shows that

the unsupervised systems reach less than 5 BLEU which is not a sufficient quality for practical

use. The large gap between the unsupervised and supervised systems is most likely the con-

sequence of linguistic dissimilarity and the domain mismatch between English and Indic data.

Our conclusions support the claims of other researchers [Marchisio et al., 2020, Vulić et al.,

2019] that unsupervised MT models often fail in truly low-resource scenarios where it is not

possible to get enough clean and domain-balanced monolingual training data.

Furthermore, Table 7.16 shows that data augmentation with pseudo-parallel sentences has

zero or even a negative impact on the performance of our semi-supervised systems. For the

unsupervised systems, on the other hand, it increases BLEU score by up to 3.6 BLEU points.

Our previous experiments showed that the pseudo-parallel data in EN-AS and EN-MZ have

sufficient quality to aid translation training. Therefore, we trained several other systems, grad-

ually adding authentic parallel sentences to measure the threshold where the positive impact of

pseudo-parallel sentences disappears. Figure 7.7 illustrates the relationship between translation

quality and the size of the authentic parallel corpus and reveals that when we have between 10k

and 25k parallel-sentences, the unsupervised data augmentation technique of adding pseudo-

parallel sentence pairs is not beneficial anymore.
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7.6.4 Takeaways

We trained semi-supervised and unsupervised systems for translation between English and

Indic languages and we conclude that the translation quality rises rapidly by adding small

amounts of parallel data into the training. We use back-translated and pseudo-parallel sen-

tences to prevent the model from over-fitting to the small authentic parallel corpus and reached

favorable results. We showed that for translation from English into Assamese and Mizo, data

augmentation with noisy pseudo-parallel data is beneficial when we have less than 10k authen-

tic sentence pairs.

In situations where unsupervised techniques fail, adding a thousand authentic translations

into the training can significantly improve the results. With 50k parallel sentences and online

back-translation, the models reach a solid translation quality.
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8. Discussion
We performed a number of experiments across several tasks and various language pairs. In this

chapter, we summarize the observations we have made, and we list several challenges we have

faced.

Observation 1: Sentence representations extracted from multilingual Trans-
former language models can be used for parallel corpus mining.

Although several authors [Feng et al., 2022, Reimers and Gurevych, 2020] claim that repre-

sentations from Transformer language models cannot be used for sentence retrieval without

fine-tuning with a sentence-level objective, we show that under certain conditions, averaging

per-token representations suffices to produce meaningful sentence embeddings. We perform

light fine-tuning of the pre-trained XLM-100 model on a translation masked language mod-

elling (TLM) task. Using this technique, we observe an improvement of up to 22 points in the

F1 on score on a parallel corpus mining task. We use retrieved (pseudo-parallel) sentences for

training an unsupervised MT system and report a significant boost in translation quality upon

the introduction of the pseudo-parallel data into the training.

Utilizing sentence embeddings from newer models like LaBSE [Feng et al., 2022], dis-

tilled Sentence-BERT [Reimers and Gurevych, 2020], or distilled LASER [Heffernan et al.,

2022], which leverage parallel data to enhance the alignment of cross-lingual representations

for equivalent sentences, would yield improved results. However, adopting these models would

require departing from the constraint of a fully unsupervised scenario. In this thesis, we explore

the highest translation quality attainable by training on monolingual data only and we strive to

move towards that theoretical limit. Therefore, using small amounts of parallel data is outside

of the scope of this thesis (except our small experiment in Section 7.6). In practical applications

involving low-resource languages, it would be advisable to use any parallel data available. It

has been shown that several thousand parallel sentences suffice to distill the knowledge of a

heavily supervised model (e.g. LASER or MuSE [Yang et al., 2020]) into a new model which

specializes in a low-resource language [Costa-jussà et al., 2022].

Observation 2: The benefits of light fine-tuning of the XLM model extend to un-
related language pairs.

In Chapter 5, we showed that fine-tuning the XLM-100 model with a TLM objective im-

proves its sentence retrieval capability regardless of the languages used during fine-tuning.

For instance, fine-tuning on Czech-German synthetic sentence pairs with masked tokens im-

proves the results on all evaluated language pairs (e.g. English-Afrikaans, English-Kazakh,

English-Georgian). Similarly, fine-tuning the XLM-100 (Indic) model on either Czech-German

or English-German sentence pairs further identically improves the results for the Indic language

pairs.
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Figure 8.1: Manual evaluation of 100 sentence from English-Kazakh and English-
Assamese pseudo-parallel corpora. The evaluation was carried out in English based on
the translations from Google Translate.

The reasons for such a cross-lingual, or even cross-task, improvement are not quite clear

and definitely deserve future exploration.

Observation 3: Unsupervised MT models benefit from training on noisy pseudo-
parallel sentences.

We have shown throughout this thesis that pseudo-parallel sentences aid unsupervised MT

training despite being noisy. In order to better assess how noisy the data is, we carried out

a manual evaluation on a sample of 100 sentences from the English-Kazakh and English-

Assamese parallel corpora. The evaluators were asked to assign a category to each pseudo-

parallel sentence pair to assess its similarity.

The results in Figure 8.1 show that only a small fraction of sentence pairs are (almost)

perfect translation equivalents. This is also the consequence of the fact that the monolingual

corpora of limited size rarely include sentences which are fully equivalent, especially the longer

ones. Many sentences are labeled as “very similar with a critical translation error” where the

two sentences are virtually identical, but they include a different name or number, which is

critical as far as translation quality is concerned. A majority of sentence pairs was matched

because they include several equivalent words. A small portion of sentences was matched

solely based on their sentence structure (e.g. the same punctuation or sentence length) with no

semantic similarity.

Seeing the quality of the data and the low number of equivalent sentence pairs, it might

seem unexpected, but all our findings indicate that training on such noisy parallel data is still

preferable to using no parallel data at all. However, in severely adverse conditions of linguistic

dissimilarity, technical problems with correct script processing, and domain mismatch in the

training data (English-Assamese, English-Manipuri), we were not able to make unsupervised

MT work even with the help of pseudo-parallel data.

Surprisingly, the structure of the two monolingual corpora in Figure 8.1 is very simi-

lar in terms of the quality we evaluated. We saw in Section 7.4 and Section 7.5 that while

the English-Kazakh corpus significantly helps the training, English-Assamese UNMT systems

quickly converge to a low score. An important factor here is the size of monolingual corpora.

Out of 2.6M Assamese sentences and 32M English sentences, we were only able to mine 33k
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pseudo/parallel sentences. In the case of English-Kazakh translation, we found 169k trans-

lation pairs out of 8M Kazakh sentences and 17M English sentences. There’s a possibility

that employing large-scale mining in an English corpus ten times the current size could yield

improved results for English-Assamese translation as well.

Observation 4: Unsupervised MT systems struggle with named entities.

Translating names, especially proper nouns, is always a challenge as they might not have di-

rect equivalents in the target language. They can be culturally specific or unique, making it

challenging for the system to find suitable translations without context.

In unsupervised MT, the problem is much more severe. Even the MT systems that reach

high BLEU scores very often mistranslate names and numbers, and this deficiency significantly

hampers their practical use. This problem was discussed in more detail in Section 7.2. The

reason is that the vector representations of names and numbers often lie close to each other in

the embedding space, as illustrated in Figure 8.2 Since the initial translation signal for both

UNMT and UPBMT systems comes from such shared latent space, the problem is introduced

already in the beginning, and subsequent training by back-translation, unfortunately, has no

way to block such mistranslations and thus effectively ensures that the problem persists. The

introduction of pseudo-parallel data into the training can partially alleviate the problem but also

introduces new mistranslations of named entities which were present in the pseudo-parallel

corpus. We saw in Section 7.4 that sentences in the pseudo-parallel corpus were often matched

because they included a name or a number, but not necessarily an equivalent one, or because

they matched in most of the message except for a name or a number.

Challenge 1: Data quality

Data cleaning is a challenge in truly low-resource conditions, as we cannot rely on common

solutions and tools that we take for granted for high resource languages. We faced this when

processing the Mizo monolingual corpus which was infested with a great number of sentences

in other languages. In normal conditions, we would have used a language tagger to clean

the data but none of the common pre-trained language taggers (fasttext-lid, langdetect, langid,

cld2) supports the Mizo language. We realized the extent of the problem only when searching

for equivalent sentences in the Mizo and English corpora and finding a great number of En-

glish sentences which were hidden in the Mizo corpus. Re-training the model with a cleaned

corpus would most likely increase the translation quality, especially when using mined-parallel

sentences for training. Many of the mined sentence pairs were identical English sentences,

others were different sentences which were matched based on the identical English words they

included. Both of these likely harmed the training, teaching the model to copy English words

from the source to the target.
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Figure 8.2: PCA visualisation of Czech and German cross-lingual word embedding
spaces aligned as described in Chapter 6. We illustrate the nearest neighbors of the
words “12” and “pondělı́” (“Monday”) and see that different numbers and temporal
words (e.g. today, yesterday, autumn, August, Saturday etc.) cluster together.

Source: Kvapilı́ková [2020]

Challenge 2: Working with less common scripts

Low-resource languages, especially those that have received limited attention in terms of lin-

guistic resources and technological development, often use different character sets or scripts

compared to high-resource languages. Many of the languages we experimented with (As-

samese, Manipuri, Georgian, Inuktitut) use a non-Latin and non-Cyrillic alphabets. Handling

different character sets can be a challenge. We faced it during text pre-processing of languages

using the Bengali-Assamese script (Assamese and Manipuri) where tokenization and subword

segmentation lead to a decomposition of several Unicode characters. It resulted in the isola-

tion of accents into separate characters and too granular segmentation. We only noticed this

after the end of the training and applied a reverse operation to reconstruct the texts. Since un-

supervised training relies on the geometrical properties of embedding spaces, the suboptimal

segmentation could have significantly harmed the performance.

Moreover, new alphabets can be challenging for pre-trained models. Fortunately, the

XLM-100 model we worked with had individual characters of these alphabets in its vocabu-

lary but the texts were split at the character-level. This may hinder the cross-lingual transfer

within the model that we rely on during fine-tuning. Moreover, many sentences exceeded the

maximum number of tokens allowed per model input due to the excessive granularity of seg-

mentation.
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Challenge 3: Domain mismatch in training corpora

Unsupervised MT is based on the underlying idea that the concepts described by a language

are grounded in the real world, regardless of the language we use. While this assumption might

be true in general, it is not applicable in situations when the texts we have available for each

language exhibit a domain mismatch. We cannot assume that texts from movie subtitles or

sports news describe the same word as the Bible. We faced precisely this issue when creating

our unsupervised systems in Indic languages. In low-resource scenarios, the problem is exacer-

bated by the fact that we cannot use off-the-shelf tools for domain classification and we do not

have training data to create such tools on our own. Moreover, for languages in different scripts

with little English influence, we cannot even roughly check what kind of data we are dealing

with and we cannot use any commercial MT system to gain an understanding prior to our own

training (e.g. Khasi and Mizo are not supported by neither Google Translate nor ChatGPT;

Manipuri is supported by Google Translate with very poor results). On the other hand, this

shows the importance of MT research for these languages which are completely excluded from

existing NLP technologies.

Challenge 4: Lack of language experts and annotators

Obtaining access to language experts and annotators for low-resource languages can be chal-

lenging. These languages often have smaller speaker populations, limited digital presence, and

fewer resources dedicated to linguistic research or technological development. As a result,

finding individuals proficient in these languages for tasks like annotation, translation, or lin-

guistic analysis can be more difficult compared to high-resource languages. This scarcity of

experts and annotators can significantly impact the progress of language-related projects for

these languages. We intended to conduct a manual evaluation of the translation output and

pseudo-parallel corpora, but we did not reach enough speakers of Khasi, Mizo, and Manipuri

to proceed with the plan.
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Conclusion
Our research aim was to determine the most effective way of exploiting cross-lingual signal

from monolingual data. We conclude that the most effective approach does not lie in deter-

mining the single best strategy but rather using a combination of methods. Unsupervised MT

comprises a set of techniques that rely on monolingual texts and we contribute by extending

this set with a modified pre-training strategy and a novel fully unsupervised way of training

data creation. In Chapter 4, we introduced a taxonomy of unsupervised approaches and now

we can place our methods on the map. We focused on both model-centric and data-centric

approaches as we investigated the role of pre-training and model initialization (model-centric)

and we experimented with different automatic methods of obtaining parallel data and using

them for MT training (data-centric).

Unsupervised MT models relying only on model pre-training and back-translation often

fail in truly low-resource conditions. We showed that they are not able to fully exploit the

translation signal present in monolingual data and they benefit from explicit supervision ex-

tracted from the same data using an external model. We proposed a training strategy where we

included pseudo-parallel data mined from monolingual corpora in unsupervised MT training

and reached a significant improvement across all evaluated language pairs. Although pseudo-

parallel texts obtained in a completely unsupervised way are very noisy with a majority of

sentence pairs being similar rather than equivalent, they offer the model a source of external

translation knowledge that complements the training on synthetic back-translated examples.

An alternative way of introducing a different source of translation signal to unsupervised

neural MT models is by training on synthetic parallel sentences generated by phrase-based

models. We showed that training on a combination of synthetic sentences produced by different

types of MT systems is superior to training only on back-translated sentences generated by the

neural model during training.

In this thesis, we created two kinds of unsupervised models: (1) unsupervised MT systems

which create their own cross-lingual representations and use them for generating translations,

and (2) multilingual sentence encoders which are capable of selecting equivalent or similar

sentences from a pool of monolingual sentences. We showed that the two kinds of models can

benefit from each other: unsupervised MT systems trained on pseudo-parallel data improve

in translation quality, and multilingual encoders fine-tuned on synthetic parallel data improve

their translation matching accuracy.

For the practical applications of low-resource MT translation, we see the highest potential

in large-scale parallel corpus mining and subsequent MT training on mined parallel corpora.

If we relax the strict requirement of no parallel data, it is possible to employ multilingual

sentence encoders trained on large parallel corpora in high-resource languages. Using very

small amounts of parallel texts coupled with English then suffices for knowledge distillation to

new languages. If not already available, collecting such small data could be the most effective

way to increase MT quality for a particular low-resource language. Furthermore, unsupervised

pre-training (e.g. masked-language modelling, denoising autoencoding) or transfer learning
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from related language pairs are effective methods to increase translation quality of low-resource

MT.

In the beginning of this thesis, we asked what is the theoretical limit of translation based

on monolingual texts. While we cannot answer this question beyond the methods we had

experimented with, we believe the limit lies in the size and the domain overlap of monolingual

data available. In high-resource conditions with large amounts of monolingual data, domain-

balanced corpora, and ideally also linguistic similarity, the performance gap between models

trained in a supervised and unsupervised way is narrow. We witnessed this when training

our Czech-German MT systems. However, in such situations, unsupervised techniques are

effectively not necessary because parallel resources typically exist, too.

When experimenting with translation between German and Upper Sorbian, a truly low re-

source language pair, the gap between semi-supervised approaches relying on limited amounts

of parallel data and unsupervised approaches was wider. However, we were able to signifi-

cantly reduce it by using our modified pre-training strategy and pseudo-parallel data. Similar

results were reached when translating between English and Kazakh, Georgian and Ukrainian

using monolingual data only.

Several authors pointed out the limitations of unsupervised approaches rooted in the under-

lying assumptions of unsupervised MT. Namely, if the representation spaces of two languages

do not exhibit a sufficient level of isomorphism, unsupervised translation between them is not

possible. While our method of training on pseudo-parallel data helped in situations where the

baseline unsupervised approach failed, the limitation of our research remains the fact that in

adverse conditions which are often present in truly low-resource scenarios, the translation qual-

ity is inadequate. We experienced this when training models for translation between English

and four Indic languages: Assamese, Khasi, Manipuri and Mizo.

We see two possible directions of future research in continuation to this work. First of all,

exploring the representations hidden in pre-trained multilingual models and improving their

cross-lingual alignment is a very relevant topic especially in the era of large language mod-

els. We showed a simple fine-tuning strategy which makes the representations more language-

agnostic but the source of that improvement deserves more investigation. Secondly, we believe

that the techniques from unsupervised MT are applicable in high-resource scenarios where they

can serve for domain adaptation or style transfer. Exploring how to effectively use them for

that purpose constitutes a very interesting research avenue.
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current neural network based language model. In Proc. Interspeech 2010, pages 1045–1048,

2010. doi: 10.21437/Interspeech.2010-343.

Tasnim Mohiuddin, M Saiful Bari, and Shafiq Joty. LNMap: Departures from isomorphic

assumption in bilingual lexicon induction through non-linear mapping in latent space, 2020.

Toan Q. Nguyen and David Chiang. Transfer learning across low-resource, related lan-

guages for neural machine translation. In Proceedings of the Eighth International Joint

Conference on Natural Language Processing (Volume 2: Short Papers), pages 296–301,

Taipei, Taiwan, November 2017. Asian Federation of Natural Language Processing. URL

https://aclanthology.org/I17-2050.

Sosuke Nishikawa, Ryokan Ri, and Yoshimasa Tsuruoka. Data augmentation with unsu-

pervised machine translation improves the structural similarity of cross-lingual word em-

beddings. In Proceedings of the 59th Annual Meeting of the Association for Compu-

tational Linguistics and the 11th International Joint Conference on Natural Language

Processing: Student Research Workshop, pages 163–173, Online, August 2021. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/2021.acl-srw.17. URL https:

//aclanthology.org/2021.acl-srw.17.

Franz Josef Och. Minimum error rate training in statistical machine translation. In Proceedings

of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–

122

https://www.aclweb.org/anthology/W19-5330
https://www.aclweb.org/anthology/W19-5330
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://aclanthology.org/I17-2050
https://aclanthology.org/2021.acl-srw.17
https://aclanthology.org/2021.acl-srw.17


167, Sapporo, July 2003. Association for Computational Linguistics. doi: 10.3115/1075096.

1075117. URL https://www.aclweb.org/anthology/P03-1021.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical alignment

models. Computational Linguistics, 29(1), 2003.

Aitor Ormazabal, Mikel Artetxe, Gorka Labaka, Aitor Soroa, and Eneko Agirre. Analyzing the

limitations of cross-lingual word embedding mappings. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 4990–4995, Florence, Italy,

July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1492. URL

https://www.aclweb.org/anthology/P19-1492.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence em-

beddings using compositional n-gram features. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, pages 528–540, New Orleans, Louisiana, June 2018. As-

sociation for Computational Linguistics. doi: 10.18653/v1/N18-1049. URL https:

//www.aclweb.org/anthology/N18-1049.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-

tomatic evaluation of machine translation. In Proceedings of 40th Annual Meeting of the

Association for Computational Linguistics, pages 311–318, Philadelphia, July 2002. As-

sociation for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:

//www.aclweb.org/anthology/P02-1040.

Cheonbok Park, Yunwon Tae, TaeHee Kim, Soyoung Yang, Mohammad Azam Khan, Lucy

Park, and Jaegul Choo. Unsupervised neural machine translation for low-resource do-

mains via meta-learning. In Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 2888–2901, Online, August 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.225. URL

https://aclanthology.org/2021.acl-long.225.

Barun Patra, Joel Ruben Antony Moniz, Sarthak Garg, Matthew R. Gormley, and Graham Neu-

big. Bilingual lexicon induction with semi-supervision in non-isometric embedding spaces.

In Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-

tics, pages 184–193, Florence, Italy, July 2019. Association for Computational Linguis-

tics. doi: 10.18653/v1/P19-1018. URL https://www.aclweb.org/anthology/

P19-1018.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton

Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics., 2018.

123

https://www.aclweb.org/anthology/P03-1021
https://www.aclweb.org/anthology/P19-1492
https://www.aclweb.org/anthology/N18-1049
https://www.aclweb.org/anthology/N18-1049
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://aclanthology.org/2021.acl-long.225
https://www.aclweb.org/anthology/P19-1018
https://www.aclweb.org/anthology/P19-1018


Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual BERT? In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 4996–5001, Florence, July 2019. Association for Computational Linguistics. doi: 10.

18653/v1/P19-1493. URL https://www.aclweb.org/anthology/P19-1493.
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A. Appendix

A.1 Additional Evaluation (COMET and chrf++)

DE-HSB CS-DE EN-KA EN-KK EN-UK
WMT22 best 45.4 43.8 - - - - - -
ChatGPT 30.7 - 28.2 - 30.9 - 52.4 -
OBT (baseline) 50.9 55.5 27.4 28.8 2.4 2.9 31.3 37.4
PseudoPar 34.8 37.9 23.1 26.6 17.5 22.9 23.3 32.1
OBT+PseudoPar 53.3 56.5 35.5 39.4 31.4 36.4 35.9 45.7

↦→OBT 56.1 59.3 37.8 40.9 33.6 37.3 41.2 49.1

DE-HSB CS-DE EN-KA EN-KK EN-UK
de Gibert Bonet (2022) - - n/a - n/a - n/a -
OBT (baseline) - - 32.2 33.8 1.9 2.1 43.2 37.5
PseudoPar - - 22.6 27.0 27.3 32.1 39.2 35.3
OBT+PseudoPar - - 38.2 25.6 41.9 41.1 55.9 47.5

↦→OBT - - 43.3 47.0 39.1 38.4 54.7 48.0

Table A.1: MT performance of our systems measured by chrF++ scores on the general
test set (top) and the legal test set (bottom). Compared to the WMT22 winner [Shapiro
et al., 2022] and ChatGPT. The score could not be computed for the system trained by
de Gibert Bonet et al. [2022] as we do not have access to their translations.

DE-HSB CS-DE EN-KA EN-KK EN-UK
WMT22 best 0.58 0.52 - - - - - -
ChatGPT 0.55 - 0.56 - 0.63 - 0.89 -
OBT (baseline) 0.59 0.68 0.55 0.55 0.40 0.57 0.60 0.60
PseudoPar 0.56 0.56 0.62 0.60 0.62 0.59 0.63 0.62
OBT+PseudoPar 0.62 0.71 0.70 0.70 0.71 0.67 0.71 0.72

↦→OBT 0.63 0.72 0.71 0.72 0.71 0.68 0.73 0.74
DE-HSB CS-DE EN-KA EN-KK EN-UK

de Gibert Bonet (2022) - - n/a - n/a - n/a -
OBT (baseline) - - 0.58 0.57 0.45 0.65 0.76 0.65
PseudoPar - - 0.59 0.58 0.79 0.71 0.77 0.63
OBT+PseudoPar - - 0.69 0.69 0.86 0.74 0.85 0.72

↦→OBT - - 0.71 0.70 0.85 0.73 0.84 0.75

Table A.2: MT performance of our systems measured by COMET scores on the gen-
eral test set (top) and the legal test set (bottom). Compared to the WMT22 winner
[Shapiro et al., 2022] and ChatGPT. The score could not be computed for the system
trained by de Gibert Bonet et al. [2022] as we do not have access to their translations.
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EN-AS AS-EN EN-MNI MNI-EN
OBT (baseline) 13.2 16.7 0.5 0.4
OBT+PseudoPar 18.4 21.8 11.3 14.5
OBT+PseudoPar (improved) 19.1 21.9 16.4 16.3

Table A.3: chrF++ score of EN-AS and EN-MNI unsupervised MT systems on the WMT23
test set.

EN-KHA KHA-EN EN-MZ MZ-EN
OBT (baseline) 29.9 22.2 20.5 16.5
OBT+PseudoPar 28.1 20.6 26.8 20.5
OBT+PseudoPar (improved) 34.7 26.2 24.8 20.1

Table A.4: chrF++ score of EN-KHA and EN-MZ unsupervised MT systems on the
WMT23 test set.

EN-AS AS-EN EN-MNI MNI-EN
OBT (baseline) 0.55 0.47 0.26 0.30
OBT+PseudoPar 0.62 0.54 0.55 0.40
OBT+PseudoPar (improved) 0.63 0.54 0.58 0.42

Table A.5: COMET score of EN-AS and EN-MNI unsupervised MT systems on the
WMT23 test set.

EN-KHA KHA-EN EN-MZ MZ-EN
OBT (baseline) 0.69 0.44 0.57 0.41
OBT+PseudoPar 0.70 0.44 0.62 0.45
OBT+PseudoPar (improved) 0.72 0.50 0.60 0.46

Table A.6: COMET score of EN-KHA and EN-MZ unsupervised MT systems on the
WMT23 test set.

EN-AS EN-KHA EN-MNI EN-MZ
AuthPar+OBT (semi-sup) 37.7 38.9 55.7 52.9
PseudoPar+AuthPar+OBT (semi-sup) 36.6 37.9 56.1 52.7
OBT (unsup) 13.2 29.9 0.5 20.5
OBT+PseudoPar ↦→OBT (unsup) 19.1 34.7 16.4 24.8

Table A.7: chrF++ score of EN-AS, EN-KHA, EN-MNI and EN-MZ semi-supervised MT
systems on the WMT23 test set.

EN-AS EN-KHA EN-MNI EN-MZ
AuthPar+OBT (semi-sup) 0.75 0.75 0.81 0.77
PseudoPar+AuthPar+OBT (semi-sup) 0.74 0.75 0.81 0.76
OBT (unsup) 0.55 0.69 0.36 0.67
OBT+PseudoPar ↦→OBT (unsup) 0.63 0.72 0.58 0.60

Table A.8: COMET score of EN-AS, EN-KHA, EN-MNI and EN-MZ semi-supervised MT
systems on the WMT23 test set.
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A.2 Tools and Configuration

In our experiments, we use the following tools:

• LASER1 for parallel sentence search and creating pseudo-parallel corpora. We modified

the original implementation to support similarity search in larger data sets and to support

different encoders.

• Monoses2 to create the unsupervised phrase-based system.

• MUSE3 for unsupervised alignment of static embeddings using adversarial training.

• VecMap4 for unsupervised alignment of static embeddings using similarity matrices.

• XLM5 for MT training of most of our translation models (unless stated otherwise in the

text). Alternatively, in several experiments we used Marian6 or fairseq7.

For language model pre-training, we use mini-batches of 64 text streams (256 tokens per

stream) per GPU and Adam [Kingma and Ba, 2015] optimization with a learning rate

λ=0.0001. For denoising and MT fine-tuning, we use mini-batches of 3,400 tokens per

GPU and Adam optimization with a linear warm-up (beta1=0.9, beta2=0.98, λ=0.0001).

The models are trained on 8 GPUs, or using gradient accumulation to reach an effective

batch size corresponding to 8 GPUs.

For fine-tuning the XLM-100 model using the TLM objective, we use the batch size of

8 sentences and train on 1 GPU. For fine-tuning the XLM-100 model for unsupported

languages using the MLM objective, we use the batch size of 40 sentences per GPU and

train on 2 GPUs. We use Adam optimization with a leaning rate λ=0.00005.

The training hyperparameters were selected based on the related work as tuning them

was beyond our computation capacity.

For evaluation, we used the following tools:

• sacrebleu8 to calculate the BLEU and chrF++ metrics with the configuration

sacrebleu -tok ’13a’ -s ’exp’ -m bleu chrf --chrf-word-order 2

--confidence;

• COMET9 to calculate COMET scores using the default model wmt22-comet-da.

1https://github.com/facebookresearch/LASER
2https://github.com/artetxem/monoses/tree/master
3https://github.com/facebookresearch/MUSE
4https://github.com/artetxem/vecmap
5https://github.com/facebookresearch/XLM
6https://github.com/marian-nmt/marian
7https://github.com/facebookresearch/fairseq
8https://github.com/mjpost/sacrebleu
9https://github.com/Unbabel/COMET
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IVANA KVAPILÍKOVÁ, ONDŘEJ BOJAR (2023): Boosting Unsupervised Machine Translation

with Pseudo-Parallel Data. In: Proceedings of the Eighth Conference on Machine Translation,

in press, Association for Computational Linguistics: Stroudsburg, PA, USA
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IVANA KVAPILÍKOVÁ, TOM KOCMI, ONDŘEJ BOJAR (2020): CUNI Systems for the

Unsupervised and Very Low Resource Translation Task in WMT20. In: Fifth Conference

143



on Machine Translation - Proceedings of the Conference, pp. 1123-1128, Association for

Computational Linguistics, Stroudsburg, PA, USA, ISBN 978-1-948087-81-0
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