
BACHELOR THESIS

Jan Piroutek

Fuzz testing of network subsystem in
PikeOS

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: doc. RNDr. Pavel Paŕızek, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software
Development

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague date January 8th, 2024 Jan Piroutek

i

I want to thank my supervisor, doc. RNDr. Pavel Parizek, Ph.D., for his help and
advice, whenever I needed anything. Another important thank goes to SYSGO
GmbH for providing a platform of PikeOS with all necessary tools and a support-
ing consultant who help was beneficial to finish this thesis.

I am also very grateful to my family, friends, and significant other, who sup-
ported me throughout my studies and helped me through all of this.

ii

Title: Fuzz testing of network subsystem in PikeOS

Author: Jan Piroutek

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Pavel Paŕızek, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Stability under every possible circumstance is a goal for a lot of applica-
tions. This problem applies to the network stack ANIS of the real-time operating
system PikeOS developed by SYSGO. PikeOS requires security and stability be-
cause it is used in areas, e.g., airborne systems, where unstable software could
cause severe damage. A proven way to ensure the stability and security of soft-
ware is testing. Fuzzing is an automated testing technique that generates ran-
domized inputs for the application to find bugs, vulnerabilities, or crashes within
the application. Another testing technique is long-run testing, which exposes an
application to some input for longer periods.
Because ANIS is a product usually shipped with PikeOS, it must follow the same
security standards. We have developed a testing tool for the ANIS network stack,
using the two mentioned techniques and emphasizing the option to configure such
a test. This testing tool exposes the ANIS to various scenarios that could stress
the stack and uses fuzzing to create a combination of these scenarios automati-
cally, which could crash the network stack. The developed test is implemented
with a small set of scenarios that expose ANIS to various network traffic. The
test can be extended to work with more scenarios. All scenarios have a predefined
set of parameters determined by the fuzzer. Changing the parameters of the sce-
narios diversifies generated network traffic. The scenarios and their parameters
are automatically generated every round by the fuzzer. The fuzzer has another
set of parameters that give users a way to influence how the data for the test is
generated.

Keywords: Long run test Fuzzing RTOS Network stack PikeOS

iii

Název práce: Fuzz testováńı śı̌tového subsystému v PikeOS

Author: Jan Piroutek

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı bakalářské práce: doc. RNDr. Pavel Paŕızek, Ph.D., Katedra distribuo-
vaných a spolehlivých systémů

Abstrakt: Dosáhnout stability za jakékoli situace je ćılem spousty aplikaćı.
Tento problém se týká také śı̌tového stacku ANIS, který je součást́ı operačńıho
systému reálného času PikeOS vyv́ıjeného společnost́ı SYSGO. PikeOS vyžaduje
bezpečnost a stabilitu svých komponent, protože je použ́ıván v pr̊umyslu jako je
např. letectv́ı, kde by nedostatek těchto vlastnost́ı mohl zp̊usobit veliké škody.
Vyzkoušená cesta pro ověřeńı stability a bezpečnosti programu je jeho testováńı.
Fuzz testováńı je technika automatického testováńı, která se snaž́ı v programu
naj́ıt chyby skrz generováńı náhodných vstup̊u. Jej́ım ćılem je naj́ıt zranitelnosti a
odhalit potenciálńı chyby, které mohou mı́t závažné d̊usledky na provoz aplikace.
Daľśı testovaćı technikou je long-run testing, přes který je aplikace vystavena
náporu po deľśı časový úsek.

Jelikož ANIS je běžně dodávám jako součást PikeOS, muśı také splňovat stejné
bezpečnostńı standardy jako PikeOS. My jsme s pomoćı long-run a fuzz testováńı
vytvořili testovaćı program pro śı̌tový stack ANIS. Při tvorbě jsme kladli d̊uraz na
možnost nastavováńı našeho testu. Tento test vystavuje ANIS r̊uzným scénář̊um,
které maj́ı za úkol zat́ıžit ANIS. Test použ́ıvá fuzzing jako nástroj pro gen-
erováńı kombinaćı těchto scénař̊u a snaž́ı se s jejich pomoćı donutit ANIS k
chybám. V rámci vývoje jsme opatřili test malým vzorkem scénář̊u, které vys-
tavuj́ı ANIS r̊uznému śı̌tovému provozu. Všechny scénáře maj́ı předem defino-
vanou množinu parametr̊u. Změnou hodnot těchto parametr̊u jsme schopni gen-
erovat r̊uznoroděǰśı scénáře. Scénáře s jejich parametry jsou generovány vždy před
začátkem testováńı. Jako možnost konfigurace má fuzzer svou vlastńı množinu
parametr̊u, kterou je uživatel schopen ovlivnit zp̊usob, jakým budou data pro test
generována.

Kĺıčová slova: Dlouhodobé testováńı Fuzz testováńı RTOS Śı̌tový stack PikeOS

iv

Contents

1 Introduction 3
1.1 Thesis structure . 4

2 Background 5
2.1 Real-time operating systems . 5
2.2 Network stack . 6
2.3 Certification . 7
2.4 Virtualization . 8
2.5 Fuzzing . 9

3 Fuzzing applications 11
3.1 General purpose fuzzer . 11
3.2 American Fuzzing Loop . 11
3.3 SnapFuzz . 12
3.4 Summary . 12

4 Requirements and goals 14
4.1 Scenarios . 14
4.2 ANIS configuration . 15
4.3 Success validation . 16
4.4 Summary . 16

5 General architecture of test 18
5.1 First attempts . 18
5.2 Schedule and scenarios . 19
5.3 Test design . 20
5.4 Components of the test . 21
5.5 Master components . 22
5.6 Slave partitions . 24
5.7 Implemented scenarios . 25
5.8 Configuration parameters for fuzzer 27
5.9 Fuzzer parameters . 31
5.10 Evolution of health check . 34

6 Technical implementation 36
6.1 Memory management in PikeOS 36
6.2 Parallelism . 37
6.3 ANIS configuration . 38
6.4 Logs . 38
6.5 Fuzzer . 41
6.6 Scenarios . 42
6.7 Extending the long run test . 47

1

7 Use of the test 49
7.1 Set up fuzzer in TFW . 49
7.2 Investigating findings of the fuzzer 49
7.3 Effectiveness . 50

8 Conclusion 52

Bibliography 53

List of Figures 54

List of Tables 55

A Attachments 56
A.1 Content of the file archive . 56

2

1. Introduction
SYSGO is a leading provider of real-time operating systems focusing on safety-
critical embedded applications. With customers operating in areas from health-
care, industrial automation, and transportation up to aerospace, defense, or space
programs. When using SYSGO software products, customers often require certi-
fication against industry-specific Safety and Security standards. SYSGO spends
many resources on verification to ensure their systems follow these standards.
The leading standard SYSGO uses is DO-178C, which describes development
processes and other needs required by certification authorities. These standards
are abstract, so SYSGO needs to process them so they are more useful in software
development. These standards can have levels that correspond, for example, with
several errors that occur in some time interval. PikeOS is certifiable to the highest
levels of some certification standards, for example, Security standards Common
criteria, and Evaluation Assurance Level.

SYSGO’s flagship product is the real-time operating system PikeOS. PikeOS
needs to be certified for safety and security because it’s primarily used in critical
systems. PikeOS offers strict separation of multiple partitions that can contain
other operating systems or applications. Not only are resources strictly separated,
but PikeOS also offers strict time partitioning that distributes a defined CPU time
to different logic units. These features enable building applications with strong
demands on security and safety.

With SYSGO software being delivered to avionics and defense industries, it’s
important for all applications to be as secure and reliable as much as possible.
Users need to be sure about the stability of the software before its deployment to
production. Therefore, SYSGO, with its software, ships documents describing the
test suites and their results. These test suites are the results of severe verification
efforts and testing the software.

Many applications need support for a connection to the internet. For that
purpose PikeOS has its own certifiable IP stack CIP, internally known as ANIS.
ANIS is a UDP/IP stack compatible with most of the standard RFC specifica-
tions for IP and UDP protocols. The ANIS allows developers to use its socket
interface for easier communication over the network without creating their own.
For communication on the lower network layer, ANIS uses the support of ethernet
drivers, so ANIS only implements the networking and transportation layer of the
OSI model.

Similar to PikeOS, ANIS also strictly follows standards. To ensure these
standards, verification engineers’ spent thousands of hours of work. SYSGO
ensures the validity of ANIS with multiple test suits that contain hundreds of
test cases and other verification tools. These tools check if the network stack is
compatible with RFC specifications and can handle all situations.

When it comes to software testing, ensuring the desired coverage of a program
state space can be a challenging task. When the number of all possible inputs
is small, we can generate them all and feed them through a series of tests in the
program. That is not the case with a network stack. It becomes difficult with
different networking protocols and the fact that it needs to function over longer
periods. The longer periods create more complexity with varying combinations of

3

everything that can happen in the network and what the network stack has to deal
with. The goal of this project was to address this challenge and develop a testing
framework for ANIS. We would like to explore these areas when there is a lot of
random traffic going into the network stack if it behaves correctly under stressful
situations, like long test case running time or excessive and diverse network traffic,
or if the software can’t handle those situations and crashes.

We have created a test prototype that generates network traffic as the input
for ANIS and monitors its behavior. One desired feature was integrating the
test with existing test suites for ANIS. Because this would ease the verification
process for SYSGO and its engineers. We will aim for a framework with a couple
of premade scenarios. Ideally, we want the framework to be extensible with more
scenarios to explore other areas of the network stack.

However, we discovered that there are more efficient ways to test our stack
than having hard-coded scenarios with all their parameters in a test . What if we
wanted to swap the execution order of two different scenarios or slightly adjust
their parameters? We randomized our predefined scenarios so we could extend the
coverage of the program state space. There exists a technique for the automated
generation of random inputs for tests. It’s called fuzzing. Recently, fuzzing has
gained more popularity because it is more and more used by software companies
to find bugs in their code and improve reliability of the software. Fuzzing aims
to generate inputs that lead to unwanted behavior, like crashes, memory leaks,
or security problems. Although this method might seem very simple, it proved
to have successes in the testing field1.

We wanted to explore fuzzing as a tool to help us generate network traffic and
explore obscure or extreme scenarios that probably weren’t thought of by testers.
But first, we needed to create a test using scenarios to test ANIS. In the end, we
extended this test with a fuzzer that can generate diverse network traffic using
our scenarios.

1.1 Thesis structure
First, in the next chapter 2, we will describe technologies used in this project
or closely tied to it. Chapter 3 focuses on other tools or research linked to the
fuzzing of a network stack. Chapter 4 formulates our project’s features, which we
implemented. In chapter 5, we will look at the project’s architecture. We will talk
about the design of the test, individual parts, their purpose, and their evolution
to the current state. In chapter 6, we will discuss implementation details and
what problems we had to solve during implementation. The last chapter 7 is
dedicated to discussing how we can extend the test and other future work that
could be done on this project.

1One of the examples could be the trophy room of the afl fuzzer [Heuse et al.,]

4

2. Background
In this chapter, we introduce concepts tied to the project. We will look more
closely into the world of real-time operating systems, specifically PikeOS. We
will discuss networking and what a network stack is, continuing to ANIS. The
following section will be dedicated to the test suite that SYSGO already has and
long-run tests. In the last section, we introduce fuzzing in detail, and primarily,
we will focus on theories and techniques that can improve the efficiency of fuzzers.

2.1 Real-time operating systems
Embedded systems are a combination of software and hardware designed to per-
form some specific function. One example could be a self-driving car system that
hits breaks on some input. When a signal is sent into this system, it must react
in a certain time, or the crash will probably occur. Breaks could be implemented
only as a single microchip without more significant issues. But if we put more
and more systems like an automatic shift, computer vision, and others, the car
needs more and more hardware to perform all computation. That’s time for the
real-time operating systems, RTOS. RTOS schedules the tasks of the car or other
complex system. RTOS must finish some tasks before the deadline, e.g., breaks
need to be activated fast, or a crash can happen. RTOS allows us to configure
the hardware, so there is enough computation power to finish all tasks in time.

In contrast to commonly used operating systems, like Unix, RTOSes need to
meet task deadlines. The scheduler then needs to focus on meeting deadlines for
individual tasks. The strict deadlines lead to some sort of scheduler determinism
when we can predict the order of tasks. Usually, the order is done through
priorities for tasks. The scheduler might need to replan the execution of tasks,
if there is a new task with higher priority coming. Higher-priority tasks usually
have earlier deadlines, so the scheduler needs to ensure that this deadline won’t
be missed.

PikeOS
PikeOS is an RTOS with hard deadlines. For more detailed information there is
a SYSGO product overview1. It is designed for any safety-relevant context where
timing is a critical factor. In that environment, we always consider the worst-case
execution time instead of asymptotic complexity. For example, instead of a hash
map with asymptotic complexity for search in constant time, it is better to use
structures that perform tasks fast every time. The hash map search sometimes
needs to check all elements. Therefore it is better to use something like red-black
trees, that always search in logarithmic time.

PikeOS provides a hardware abstraction layer, which makes it easier to port
applications to different hardware platforms. The great value of PikeOS lies in the
strict management of resources. It offers strict resource partitioning, preventing
failures from propagating between multiple partitions. Resources are allocated

1https://www.sysgo.com/fileadmin/user_upload/data/flyers_brochures/SYSGO_
PikeOS_Product_Overview.pdf

5

https://www.sysgo.com/fileadmin/user_upload/data/flyers_brochures/SYSGO_PikeOS_Product_Overview.pdf
https://www.sysgo.com/fileadmin/user_upload/data/flyers_brochures/SYSGO_PikeOS_Product_Overview.pdf

during the build time of the system image. PikeOS then assures that partitions
won’t use more resources than assigned during the build. PikeOS allows us to
use different interfaces inside those partitions called personalities. These can be
guest-host operating systems or real-time environments. Some examples would
be native PikeOS, ELinOS, which is the SYSGO Linux distribution or APEX API
from ARINC 653 standard, which is a standard for avionics embedded systems2.
Throughout this thesis, we only talk about PikeOS native personality and don’t
use the others.

PikeOS requires a memory management unit for virtual to physical address
translation. Memory space for partitions is separated for all applications by
default, but there is an option for shared memory. Some certified versions require
all memory to be pre-allocated, meaning dynamic allocation with malloc and
free is not supported. Other versions have some dynamic allocation, but the
dynamic allocation can only be used during initialization, not while the system
is running. The dynamic allocation is not implemented, because it is unstable,
leads to fragmentation, and is error-prone.

When developing for PikeOS, there are two types of projects: Integration and
Application. Application projects are the single application running in separate
partitions. Integration projects tie together all applications and configure the
PikeOS. The whole PikeOS image is generated during build time, and this gen-
erated structure doesn’t change during run time. System integrators3 can assign
resources and memory to partitions, which need to operate with them. They
won’t get more during run time. Integrators create communication channels in
integration projects between partitions, messaging queues, or priorities for parti-
tions and their processes.

2.2 Network stack
A network stack is a set of protocols trying to achieve successful communication
over the network. The most relevant protocols for us are UDP on the transporta-
tion layer and IP on the networking layer. Communication is split into multiple
layers that communicate vertically with each other. When a packet is sent, the
layer usually wraps its information with the data as a header or footer and passes
it to the lower layer. The lowest layer sends the packet to the physical device
through some physical connection. A similar process occurs on the receiving end
when layers read information from their headers and push the rest to the higher
layer.

ANIS
PikeOS uses a certifiable network stack called ANIS, more information about it is
on the SYSGO website4. ANIS is a UDP/IP stack. This means that the protocol

2https://www.sysgo.com/arinc-653
3When developing projects for PikeOS, the work is split into different roles. The same

person might occupy multiple roles. Developers are responsible for creating the components of
the final product. Verification engineers validate the code. System integrators, whose goal is
to put everything together into one final product.

4https://www.sysgo.com/popups/cip-certifiable-ip-stack

6

https://www.sysgo.com/arinc-653
https://www.sysgo.com/popups/cip-certifiable-ip-stack

chosen for the network layer is the IP, and on the transport layer, the UDP is
used. On the lower layers, ANIS implements ARP protocol. ANIS is responsible
for answering ARP requests or cache translations of IP addresses to MAC. All
protocols follow the RFC specifications. RFC is the standard for communication
over the internet, so the ANIS is fine communicating with other network stacks
following these standards.

Features that ANIS supports are limited compared to other network stacks.
SYSGO wants this stack to be certifiable so their customers can save resources
for certification. With more features, certifying ANIS to the required standards
would be more challenging, so SYSGO goes for smaller but still sufficient im-
plementations. Except for the protocols mentioned earlier, ANIS also supports
ICMP and IGMP. ANIS has implemented standard communication methods:
unicast, multicast, and broadcast.

ANIS has a very static architecture because it needs to be safety-certifiable.
Therefore, ANIS has a predefined amount of memory that it can use, which
necessarily leads to dropping packets when it’s under too much pressure. Usually,
it would be impossible to certify for stability unstable protocol like UDP. With
ANIS, it is possible, because ANIS has semi-formally defined behavior, when it
drops packets, and this behavior can be certified for stability.

2.3 Certification
SYSGO critical software needs to follow strict standards for safety and security.
The software can achieve different levels of assurance for the standards. The
purpose of this is to show that the software is working correctly, and without
these assurances, it cannot be used in production.

The working system should be reliable and secure. To verify their products,
mainly PikeOS, SYSGO adopted DO178-C certification5, which is a standard for
dealing with safety in safety-critical software in airborne systems. This standard
defines development and verification processes. SYSGO is centered around this
certification norm. The standard is adopted and developed into the company
standard, that is used in development and verification processes. There are mul-
tiple levels of Design level assurance, DAL, that are saying more about the safety
of the product. The second part of the guidelines is verification, ensuring that
the code works. Most time on verification is spent on requirement-based testing.
A test suite is a set of tests that verify the system under test. SYSGO has many
test suites for its products. For ANIS, test suites already exist, one containing
integration tests and one for testing the API. To use these certification test suites
SYSGO uses the test framework, referred to as TFW. This test framework is
meant to reduce the time for certification and testing of embedded software.

TFW test cases
Let’s provide more details about the test framework TFW. TFW creates an
environment for test cases and is responsible for building, running the test suite
or other supporting features.

5https://www.do178.org/

7

https://www.do178.org/

Master

POSIX operating system,

controlls the test

Slave application

PikeOS image with its

components, under the test

TFW serial line for communication

Isolated network

Figure 2.1: Structure of typical TFW test case

Every test case inside TFW follows the same structure. There are two sides,
Slave and Master. Master is a UNIX application controlling the test case. The
Slave is the application under the test.

TFW has some features that help certification engineers write test cases. They
can rely on TFW formatted logging and test case evaluation. For stable com-
munication between Master and Slave, TFW offers serial line communication,
physical or virtual, if we use virtualization tools. This serial line is a great tool
for synchronization between Master and Slave. We already mentioned the execu-
tion and building of the test cases. If developers need to use PikeOS, TFW gives
us some tools to configure the PikeOS build process and provides many ways to
configure the test cases.

2.4 Virtualization
Sometimes, developers or testers don’t have access to the correct hardware or any
hardware to run our system. Virtualization is a tool that creates an abstraction
layer in your computer. This layer allocates resources and can simulate the be-
havior of specific hardware, which testers would need to run the system and run
tests on the running system.

Virtual machines are virtual representations of real physical computers. They
emulate their CPU, memory, or other resources and components. Virtualization
allows us to run multiple computers inside one computer. The computer, the
virtual machines are running on, is called host, and the machines are called
guests. Guests are separated from each other, they don’t share resources, and
also separated from the host. Virtualization creates an environment, that is close
to multiple physical computers.

One of the most popular tools for Virtual Machines is QEMU6. It is an open-
source software that can emulate different types of CPUs, manage memory re-
sources, and support networking. It simulates the whole machine. Important for

6https://www.qemu.org/

8

https://www.qemu.org/

us is that TFW supports the QEMU platform.

2.5 Fuzzing
Our last piece of information is about fuzzing. Fuzzing is a testing technique intro-
duced at the University of Wisconsin in 1989. What was originally an assignment
for students became a common and very popular testing technique. It was first
used to test 88 common Unix utilities. Surprise or not, in around 30% of these
utilities, bugs were found according to the original report [Miller et al., 1990].
The most common types are invalid pointers to arrays, wrong return codes, and
even race conditions.

The general idea behind fuzzing is to feed tested system randomized data
through its input channels. Randomized input could trigger bugs that regular
testing wouldn’t discover because it usually covers only common use or edge
cases. The fuzzing may try any stream of data that can come to the system,
which ranges from common use cases up to anything possible, like completely
random strings of characters. The input relies on random fuzz generators that
automatically create more and more inputs to be fed to the systems.

The most basic automated fuzzing tests consist of connection to the tested
application, fuzz data generator and success check to see what happened. The
test flow would be to generate data, send it to the application and observe and
evaluate results.

Firstly fuzzing was used by individual hackers trying to find exploitable vul-
nerabilities, but now it’s being adopted by big tech companies to better test their
systems. Over the years, fuzzing proved to be a very useful tool, when looking
for possible crashes and improved reliability of the software systems. SYSGO has
started to use fuzzing somewhere between 5 and 10 years ago.

This section provides an overview of basic concepts of fuzzing and is greatly
inspired by the fuzzing book [Zeller et al., 2023], which can be source of more
details.

Types of fuzzing
The evolution of fuzzers slowly leads to more complex tools and theories about
them. Here, we describe the standard concepts of fuzzing.

We start with some normal fuzzer generating some completely random input.
This works fine when we don’t know anything about the input structure, but it
is not the most efficient solution when the input needs to follow some syntax. In
this case, most of the generated inputs might be invalid, so we are wasting much
time because, the application usually rejects invalid inputs. We would like to
generate invalid inputs, but in a way that the application considers valid. This
leads to mutation-based fuzzing7. The generator takes some valid input and uses
it as a seed for creating new inputs from the old ones. These fuzzers are aware
of the input structure and trying to replicate it. But this approach still might
generate invalid input.

7https://www.fuzzingbook.org/html/MutationFuzzer.html

9

https://www.fuzzingbook.org/html/MutationFuzzer.html

One step further goes grammar-based fuzzing and generative fuzzing. It uses
grammar to specify how exactly to generate input. This method restricts what
fuzzers can generate. For it to work correctly, it requires some language to de-
termine the grammar. With this language, the user can specify what should be
generated. This can be useful when the input structure is known, and all invalid
inputs are rejected. Then, we can use grammar to generate only valid inputs,
which gives us more information about the application.

We looked at fuzzing from the perspective of the input, but how would we
describe fuzzing from the point of view of the tested application. We might want
to reconsider our approach based on how well we know the application structure.
If we have no information, we call it black-box fuzzing. The approach lies in
the random generation of inputs. At this point, we don’t know anything about
the application and need to resort to random generation without any hints. The
black-box fuzzing seems very simple, but it has many downfalls. We probably test
only the surface of the application by using this method and not reach any bugs
hidden a bit deeper. This approach is often paired with some learning algorithms
that try to learn how the application works inside and, based on that, generate
better inputs, [Böhme et al., 2017].

On the other side, when we know how the program looks inside, we have
white-box fuzzing. This approach uses the information about the application to
cover the whole code base effectively. These fuzzers slowly collect constraints on
which branches of code they visited. Then, with the help of constraint solvers, it
generates input, so more branches are covered. In theory, this approach leads to
full code coverage. But there is a problem with constraints. Either they might
be unsolvable, or it takes too long to solve them. This wastes much time, so one
might want to trade off targeted inputs for generating more inputs that are less
targeted.

In the middle exists a gray box fuzzing. Gray box fuzzing is often tied to
mutation-based fuzzing when it mutates the original input and the inputs it
generated. If the fuzzer generates some input, it just scratches the surface, but
with this method, the fuzzer goes a bit deeper every time it mutates the line of
generated inputs. Unfortunately, this also has a big downfall in mutating already
crashing inputs, but there are techniques to help with these issues. Grey-box
fuzzers have the advantage that they still can use code analysis tools and, for
example, keep priorities for inputs based on how many new code branches they
discovered. This type of fuzzer is considered to be the most efficient.

10

3. Fuzzing applications
In the previous chapter, we mentioned different types of fuzzers. We have also
noticed that their usefulness depends on what we want to test. Now, we look at
some popular fuzzing frameworks that could help us with improving the ANIS
testing. We introduce some frameworks shortly, and in the end, we summarize
some ideas that helped us with the development of our fuzzer.

3.1 General purpose fuzzer
The General purpose fuzzer, or GPF, is a generative fuzzer built for UNIX sys-
tems. GPF focuses on the low cost of running a fuzzer and can generate more
inputs per time unit than other fuzzers, [Sutton et al., 2007]. GPF has multiple
modes that can help us in different fuzzing scenarios.

The most basic mode of GPF is PureFuzz, which is a generic black-box fuzzer
that prints out seed. The seed is beneficial when we want to replay a whole
sequence of fuzzed inputs. The main mode is a mutation-based fuzzer. As input,
it takes a internet traffic of some protocol and starts mutating it. Some analytical
tools also support the main mode, which puts it among gray-box fuzzers. If users
need better support for fuzzing protocols, GPF offers a pattern fuzz. With this,
GPF can detect what parts of the protocol are defined and what is plain text and
further improve its functionality.

GPF is very flexible and has a significant advantage in allowing users to adapt
their fuzzers according to their needs. On the other hand it is also very complex,
and there is a lot to learn before configuring this tool for its first test.

It might look like we should aim for a bit more fuzzing tools to test our stack
effectively. GPF proves to us that even simple random tools can also be effective.
By generating random input with minimal configuration, GPF was able to find
bugs in the Microsoft SQL server. So, having only a black box fuzzer can also
lead to discovering new bugs.

3.2 American Fuzzing Loop
American fuzzing loop, or AFL, [Zalewski,], is probably the most known fuzzing
framework that can be used to fuzz network traffic. It’s a gray-box mutation
fuzzer with some extensions that further improve the fuzzing experience. AFL
needs users to provide an input sample that is later used for mutations and
generation of new input. It also uses coverage-based feedback to improve the
sample for mutations. If some input shows promising results, e.g., some crash
or new response we didn’t get so far, it will be mixed within the original sample
and used later in the next run. The most significant disadvantage of AFL is the
ability to only fuzz input as files or standard console input. It focuses more on
C/C++ binary files than on network applications.

Over time, more and more fuzzers based on AFL were created. These fuzzers
are built for some more specific purposes than the original AFL. The closest to
our problem would be AFLNet, [Pham et al., 2020]. AFLNet follows the same

11

fuzzing principles as AFL but also checks state feedback to improve its fuzzing
capabilities. It acts as a client application that sends messages to the server
under testing. Based on the response codes, it identifies interesting regions of
state space to explore. For monitoring and debugging, it saves the sequence of
sent messages so the user can later resend the whole sequence and reproduce the
crash.

AFL is a well-known framework with much success. American fuzzing loop
was most of the time used for GNU applications, where it uncovered bugs in tools
like Nginx, tmux, clang, and programming languages like PHP, Pearl, or Bash. It
has also found success with major graphical applications like LibreOffice, Mozilla
Firefox, Wireshark, or VLC.

3.3 SnapFuzz
Following up to the AFLNet is SnapFuzz, [Andronidis and Cadar, 2022], which
tries to improve performance of the AFLNet and fix some of its problems. AFLNet
fuzzers have problems with barriers for the users, because it still needs them to
create clean-up scripts to reset state to the original one or specify delays for
changing the state of the tested application. The delays are very important
because if the state of the application is altered at an inconvenient times, it might
lead to testing the same application states and lower efficiency of the fuzzer.

For performance improvements, SnapFuzz eliminates delays between server
and client application fuzzer. The main delays are before initialization, before
repeating unsuccessful communication, and wait time after each send or receive.
Ignoring these situations might result in lost traffic and wasted time, but we can’t
send synchronization messages after each packet is sent from the client. Snapfuzz
overcomes this through the additional controlling socket, through which comes
information about the client’s following actions.

3.4 Summary
We very shortly summarize what we are taking from these frameworks, that was
useful for our development.

GPF is not a fuzzer that was directly created for fuzzing network traffic,
but it is simple and effective. We also aimed for simplicity of our fuzzer as we
didn’t need to implement a fuzzer with a complicated structure. Even the most
straightforward solution can efficiently find bugs inside the software. Another
concept we would like to take from this is the seed for the generating inputs. The
seed is suitable for generating the same input again, which can help fix mistakes
found in the software.

AFLNet is interesting to us because of the state feedback. We wanted to use
more prolonged periods of testing so we can see how it reacts with more extensive
traffic amount. We could try to fuzz single packets processed by the ANIS, but
we, in cooperation with SYSGO, decided to focus more on stressing the ANIS for
more extended periods and change its inner state by sending larger amounts of
network traffic.

12

SnapFuzz showed us multiple problems that we had to tackle. We had to make
sure that the state of the ANIS changed before we validated it again. We also had
to ensure that the different inputs wouldn’t interfere with one another, so we had
to consider cleaning up after testing. The last important part was synchronizing
with the tested application. Running two communicating computers without any
synchronization would lead to ineffective testing because, e.g., no packets would
reach the other machine because it was not up yet. On the other hand, too much
synchronization overhead leads to less efficient fuzzing, and we wouldn’t be able
to test as many inputs as we would like to.

Now that we have some ideas we would like to follow, we can proceed to design
our fuzzing test.

13

4. Requirements and goals
Now that we have a better understanding of the problem and related technologies,
we can move to specify our goals. We will discuss some technologies that we used
for the development, discuss some requirements from SYSGO for the test and
what part of the stack they could test and we will put everything together to
define requirements for the project.

Underlying technologies
At first, we needed to think about how to deliver our software. One option was to
ship it as a standalone product. Then, we would have complete control over the
build process and communication methods. But we also needed to keep in mind
that this test is a part of SYSGO’s testing procedure for developers. It might be
easier to use if it is integrated into one of the ANIS test suites. We also gained
some supporting features of the test suites, so implementing this test was more
effortless. That’s why we decided to integrate it into the test suite because it is
easier for SYSGO engineers, and we could also use already implemented features
in the test suite. Integrating the test into the TFW restricted our options because
we had to follow the test suite build process and learn more details about it.
Because we used TFW, we had to follow the test structure of Master and Slave.
Where the Master controls the test, and the Slave is the PikeOS platform running
Slave application that is being tested. For us to test ANIS, we had to adapt the
Slave application, which uses ANIS for network communication.

TFW is a platform-agnostic framework. For running test suites SYSGO has
configured remote hardware to run their tests. TFW can also be configured to
run the tests locally inside virtual machines, QEMU. Virtualization is helpful in
debugging more complex tests like the one we wrote. By using virtualization, we
also won’t block SYSGO’s hardware to test our project. The platform was not
initially configured to run on QEMU, so one of our first steps was configuring
everything correctly. With that, we were ready to start designing our software.

4.1 Scenarios
Probably the most crucial decision is what to test. We wanted to feed ANIS stack
with network traffic that has the potential to break it. SYSGO provided us with
some functionalities of the ANIS and types of network traffic that we could use to
test ANIS. We call these types of traffic scenarios. Now, we discuss the provided
ideas.

Before writing the test, we decided what scenarios we wanted to implement.
ANIS supports only a subset of UDP network protocols. On top of that, it
only implements the networking and transportation layer, so we didn’t need to
consider using protocols working on higher layers, e.g., HTTP or FTP. We now
define some edge case behaviors of applications that can stress ANIS and use
them as a base for our test. We named these network traffic behaviors scenarios,
which we call shortly scenarios.

14

We will now describe what scenarios were offered us by SYSGO as desired
for implementation and what scenarios we have chosen. We try to provide some
insight on what the scenarios might be able to test.

One of the scenarios could be multiple applications using ANIS at once. Run-
ning multiple applications at once forces ANIS to work in a parallel environment.
Parallel applications should be fairly easy to simulate with multiple listening or
sending applications.

We also considered the volume and different types of network traffic. We start
with the volume of traffic. Some applications might be waiting for an unending
stream of data; we will call this an unthrottled scenario. This scenario exposes
ANIS to a very strong network traffic, which needs to be handled.

Some traffic can also be fragmented, so we should consider that. Fragmenta-
tion is a complicated process that might break the stack, especially when frag-
ments are missing, incomplete, or contain invalid information. We can try to force
ANIS to fragment large packets or we can send invalid or incomplete packets to
ANIS.

We are still staying at the networking layer. For UDP sockets, there exist
multiple modes of handling the traffic; important for us are blocking and not
blocking mode. The difference is that the socket blocks the process with blocking
mode until a packet is ready to be received.

Sockets might have to be reused, in a scenario when operating systems have
multiple applications that are using the same socket.

Let’s move on from UDP traffic because ANIS supports other protocols like
IGMP and ICMP. Different protocols could be an interesting stress test for the
stack. These protocols run on a lower layer and are part of ANIS state space.

Following this, we mentioned support for broadcast scenarios, which might
uncover hidden problems. Different broadcasting services could be interesting,
especially with multiple ethernet cards connected to ANIS. We could even test
ANIS, which deals with multiple ethernet cards.

Lastly, ANIS has some control over lower layer and ARP traffic. ARP traffic is
another space of potential problems, especially the translation from IP to MAC
addresses. ARP is necessary traffic for stack that is supporting IP, so some
scenario looking into that would be welcomed.

After discussing with SYSGO, we have focused only on a subset of all sce-
narios. We focused mainly on UDP traffic scenarios because they are the typical
use case of ANIS. We have also implemented support for multi-socket testing.
Because we didn’t implement everything, primarily because of the time it would
take, we tried to make the test to be able to extend with other scenarios in the
future, e.g., IMCP or IGMP scenarios.

4.2 ANIS configuration
Another important feature to consider is the configuration of ANIS. ANIS offers
configurable parameters for the System integrator, so they can, for example, set
up network interfaces or handle the ARP traffic. These parameters can influence
network stack behavior and the results of testing. SYSGO wanted to explore
this area as well. We only support the fuzzing of some parameters of the ANIS
configurations. Some of the ANIS parameters shouldn’t be fuzzed, e.g., the IP

15

address of the running Slave, because they might influence the test in a way that
ANIS won’t be tested at all. For example, an incorrect IP address could lead to
not receiving any packets, and we wouldn’t test anything. Some parameters are
more attractive for change, like the size of socket buffers or resolution timeout
for ARP, which might influence the ability of ANIS to handle network traffic.
Configuring the ANIS also gave us another task of correctly setting up the ANIS.
We describe the list of fuzzed configuration parameters and how to configure them
in Section 5.8.

4.3 Success validation
The last thing we need to discuss is how to validate the test. Mainly how to
detect that the ANIS didn’t fail.

With network traffic, there are a lot of possible downfalls, and it doesn’t have
to be a fault of the ANIS; it might get lost on the way. We can not assume that
everything will go smoothly.

When the test is evaluated as failed, even though ANIS worked fine in the
provided scenario, someone will have to spend time analyzing the problem. For
example some configurations are making it harder for ANIS to intercept packets,
like not enough space in receiving buffers. If something like this happens, the
error in the test is raised, and someone will have to analyze it. Therefore, we
aimed for loose passing criteria.

Because the main concern right now is the stability of ANIS. We are looking
for segfaults, race conditions during long runs inside ANIS. It is sufficient for us
that ANIS, after the execution of scenarios, is working properly. That means that
ANIS didn’t crash and can send and receive some traffic, in our case, a simple
UDP packet. Some ANIS configuration might endanger the successful control
packet send and receive of the UDP, so we will have to find such a configuration
and prepare a mechanism to recognize them and ignore false positive findings.

4.4 Summary
Let’s summarize what we have decided on so far. The main goal of this project is
to create a testing tool that checks ANIS under different loads of network traffic
and checks if the ANIS can work properly after dealing with them. This tool has
to be integrated into one of the SYSGOs test suites for ANIS verification.

We will use a virtualization machine, specifically QEMU, to simulate the
target hardware under which the PikeOS will run. We will have to adapt the test
suite to work with virtual machines.

We want fuzzing to help us create different combinations of scenarios. From
now on, we will use the term schedule for a set of scenarios in the network during
some period, combined with time, when these scenarios start and end. A single
scenario is some network traffic happening at a given time. For example, a stream
of packets being sent simultaneously is a scenario. To better test the ANIS,
we implement multiple different scenarios and create a structure that supports
additional scenarios to be implemented. We also create a set of scenarios focusing

16

on some UDP traffic scenarios that can occur in the real world. The following list
describes functions of the stack we should tackle with the implemented scenarios.

1. Unthrottled stream of data

2. Multiple socket applications

3. Blocking mode for network sockets

4. Sending of unfinished UDP packets

The final part of the project is a mechanism that validates the success or
failure of ANIS after being exposed to the generated network traffic. The main
focus will be on crashes and segmentation faults. This tool must be complex
enough to catch such errors but simultaneously simple so it won’t report false
negative test results.

17

5. General architecture of test
This chapter follows the architecture of the test and further describes its com-
ponents and the interactions between them. At the end, we will look at some
scenarios that are implemented. But first, we will briefly describe the first un-
successful attempt, which greatly inspired the final architecture.

5.1 First attempts
At first, we tried to set up a basic Master Slave scenario as it is common for test
cases inside TFW.

We must realize that we are in a situation with multiple separate computers.
If we send some traffic from the Master while the Slave is still loading up the
configuration, all that traffic will just miss the Slave. This way, we won’t be
able to test anything, or maybe just a small part of the possible state space. We
wanted both machines to cooperate on the testing task.

The need for cooperation led us to some synchronized communication between
Slave and Master. We solved synchronization through TFW serial line because it
is a reliable way to pass information. Now, we will have to decide how to create
the network traffic.

The first idea was to generate the traffic that was supposed to be sent from
Master. The Master generates the traffic in single packets. After generating the
packet, the Master synchronizes with the Slave and sends the information about
this packet to the Slave. The Slave reads the information and executes some
behavior, and the same does the Master. They can communicate through TFW
serial line. They send and receive that packet and repeat the same process. This
way, we are guaranteed that the Master and the Slave do the same thing, thanks
to synchronization. However, the amount of synchronization is a big downside.
We created a constant synchronization traffic on the serial line that needed to
be processed. For every packet, we have four steps: generation, synchronization,
execution, and synchronization. So much synchronization is inefficient, but this
idea was our starting point.

We needed to get rid of the synchronization overhead. First, we realized that
the test has to end at some point. If we were just sending packets until infinity,
we wouldn’t have time to evaluate if it did something to ANIS. So, we had a
bounded timeline for when all the traffic needed to be sent and received. We
can precompute our data packet before the test starts when we have a bounded
timeline. Then, we need to send the generated data to the other side. In our
case, we were generating at the Master and sending data to the Slave. We have
eliminated some synchronization because we don’t need to synchronize for the
transfer of each packet. After the data is generated, synchronization can happen
so the Slave can receive everything correctly. The last synchronization points will
be when the test starts and after the test ends. We don’t need any synchronization
when the machines send all the packets simultaneously. Every packet has a time
when it is supposed to be sent after the start of the test. Both machines know this,
and if they synchronize before executing the first packet, they can then use this
point to compute the next time to execute the next one, and because the machines

18

are synchronized, they agree on that time. We have a set of packets and times
when they are supposed to be sent. But this implementation had its problems.
We had packets and when to send them, but we couldn’t support opening multiple
sockets or switching socket modes. On top of everything, some scenarios were
destined to generate enormous traffic, e.g., the Unthrottled scenario. For this, we
would need much memory on the Master side to store all the information about
generated packets, e.g., when to send each packet, and we would need to pass all
the data to the Slave. It would be better for us to define, for both sides, how
to generate the traffic. We could also put information about, for example, the
sockets and information on how to create the traffic.

5.2 Schedule and scenarios
We need to define information about when and what traffic should be generated
or something else executed on the machines. We have defined two structures to
store the information: scenario and schedule. Let’s now describe them.

Scenario

A scenario is a defined behavior of two network endpoints communicating with
each other. Some might generate UDP packets, others IGMP packets. Their
behavior is entirely up to the scenario developer and the network stack’s capabil-
ities. Every scenario should define behavior for both the Master and the Slave.
One scenario might want the Slave to send packets and listen. Another might
want the Slave to listen to incoming traffic. In some cases, e.g., ICMP traffic,
Slave behavior can be omitted because ICMP is being resolved only in ANIS and
doesn’t reach applications using it.

To improve the space coverage by our test, we can use a fuzzer to parametrize
our scenarios. For each scenario, we set parameters that will be fuzzed. The
parameters create even more options that will be used to test ANIS.

The scenario structure can’t exist on its own. It also needs some code that
takes the scenario structure and uses the data from it to generate or receive traffic.

Schedule

A schedule is a set of scenarios with additional information. For every scenario,
the schedule knows when the scenario starts and stops.
An application that holds this schedule should be able to start the scenarios on
time. This application, holding the schedule, had to be implemented for the
Master and the Slave in our case.

Use of the structures
Our test now can take a schedule data structure and iterate over it. Each iteration
takes the next scenario, looks at what scenario it is, and executes it.

If we want to have multiple scenarios at the same time, we can start multiple
threads with different scenarios. Threads create a modular approach because the

19

threads and their scenarios do not depend on one another. The only shared thing
between the scenarios is the ANIS.

When and what packets need to be sent can be defined within the procedure.
This leaves the schedule only with the type of scenario, the time when the scenario
starts, and possibly some additional data for a specific scenario. The behavior of
these scenarios is parametrized, and these parameters can be fuzzed, which gives
us a wider variety of scenarios. The only disadvantage is that we will have to
define behaviors for both the Master and the Slave because they might differ.

5.3 Test design
We can put all our ideas together and describe how it was designed. We’ve
already mentioned that we need a bounded time frame for our test, so we split
the logic into rounds. One round will consist of three main activities: Fuzzing
new schedule and configuration, running the schedule, and evaluating the state
of ANIS. We will run these rounds in a loop and give an option for the user to
set how long this loop should run in seconds.

In every round, the fuzzer must fill the schedule with scenarios and scenario
parameters and generate the configuration for the ANIS. This information needs
to be shared by the Slave and the Master, so the information has to be transferred
to both devices. The machines use the TFW serial line for communication because
it is a stable and reliable way to transfer data. Both devices execute the scenarios
when they agree on the current round’s information. They need some control loop
that checks if it is time to run the next scenario and a way for both the Master and
the Slave to execute it simultaneously. After the whole schedule is executed, the
state of ANIS needs to be evaluated. We talk more about evaluation in Section
5.10. Evaluation completes one round of testing, machines reset everything to
the original state, and the next round of testing can start. The pseudocode of
the main loop is visualized in Algorithm 1.

Algorithm 1 Master main loop
procedure Master main

max time← test parameters max time
round← 0
fuzzer load configuration()
while current time ≤ max time do

schedule, anis config ← fuzz this rounds data()
prepare for round(schedule) ▷ Set up sockets etc.
synchronize with Slave()
pass data to Slave(schedule, anis config)
synchronize with Slave()
run scenarios in schedule(schedule)
wait for Slave()
run health check()
evaluate round()
clear after round()

20

5.4 Components of the test
When designing individual test components, we tried to split them into partitions,
at least on the Slave side. This division is essential because we want parts of the
test to be independent. The component responsible for communication with
the Master shouldn’t interfere with the components responsible for sending the
traffic and validating the state of ANIS. The Slave side can take advantage of the
partitioning feature of PikeOS. Interference of different components is not such
a big issue for the Master because the Master is not the tested application. We
split it into logical components so the concept is easier to grasp.

Slave (PikeOs)

Slave Controller

Health

Test
Anis Client

ANIS

Ethernet Driver

Master Application

Network Client

Health Test

Master Controller

Fuzzer

TFW serial line

Network

Figure 5.1: Architecture of the test

In Figure 5.1, we show the general layout of the test.
The test has two parts. The first part we call Master application, or shortly

Master. The Master is an application running on a Linux-based operating system.
The purpose of the Master is to play the role of devices on the network. The
Master and the Slave are connected on an isolated network, so other devices
can’t influence the test. The Master sends and receives packets or provides other
data that could appear on the network. It also has two other particular roles:
fuzzing and health check. The logic of the Master is split into separate threads
that should not share data because we don’t want them to influence each other.
There is a controlling thread, or the main thread, another thread responsible for

21

executing scenarios, and a thread responsible for the health check. The fuzzer is
implemented within the main thread, even though it is separated in Figure 5.1.

The second part is the PikeOS system running on the QEMU virtualization
layer. We call it Slave. Because PikeOS allows us complete separation of re-
sources, we can split everything the Slave does into partitions. We have two
partitions using ANIS to communicate over the internet with Master. First is the
ANIS Client, which we will use to run different network scenarios. ANIS Client is
a partition that runs on this instance of PikeOS and generates or consumes some
internet traffic. Health Test checks if the ANIS is still running after execution of
ANIS Client. Like Master, Slave also has a controller, Slave Controller, which is a
Slave application from the TFW perspective that communicates with Master and
controls the test on the Slave side. The Slave Controller has more responsibilities
than the Master Controller. It is responsible for executing scenarios at the right
time. Then, it sends information to the Master and ANIS Client that they should
start executing the next scenario.

Now, we look at the components in more detail. We discuss their responsibil-
ities and how they look from the inside in Sections 5.5 to 5.7. These sections also
cover the behavior of scenarios and how they fulfill our requirements. In Sections
5.8 to 5.10 we discuss our fuzzer, how it works, how to configure it, and what can
be fuzzed, and we also take a look at the evaluation of the state of the ANIS.

5.5 Master components
This section describes the components of the Master module of the test, how they
work, and what needs to be implemented.

Fuzzer
The Fuzzer, as the name suggests, is responsible for generating random data for
the test. The fuzzer is a component that first loads its configuration, and then it
can produce data on the applications request. We need some control over what is
fuzzed. The control is done through configurable parameters that Fuzzer initially
loads. After that, Fuzzer generates two different data sets. First is the schedule
with all scenarios and their execution times. The second is a configuration for
ANIS in the current round of tests. Further, we would like to be able to generate
the same data for debugging purposes. Therefore, the Fuzzer accepts some seed
by which it generates the data. We want our Fuzzer to be highly configurable, so
we had to find a way to configure it. We consider this to be a part of the Fuzzer
and will look more into that in Section 5.8.

Network Client
Network Client is just a thread that executes scenarios. It waits for Slave to
send some command for execution of next scenario. The Network Client first
needs to distinguish between different types of scenarios and then, based on the
type of scenario, start acting by predefined behavior. The Network Client starts
for every scenario in its thread. We can consider running scenarios part of its
logical partition, even though they are running in their own separate threads.

22

The logic of the thread execution was initially implemented in the main thread.
However, there is another reason why we decided to move the Network Client into
a separate thread, except for modularity. The issue with this approach was with
the blocking mode of the sockets. If no more traffic was coming to the socket, the
thread was blocked, and there was no way to exit it. Later we avoided this issue
by monitoring sockets, which are internally implemented as file descriptors, with
select method, but just in case it appears again with some new scenario, we leave
this as a separate thread. This way, we can always kill this thread and proceed
to the next round of testing.

Health Test
During the run of the test, we also want to check if the ANIS is still able to
receive and send packets. For that purpose, the Health Test was designed. For
simplicity, we choose the UDP packet as our primary indicator that ANIS can still
communicate. This packet is sent to Slave in multiple tries. Multiple tries should
minimize chances for the test to fail due to previous traffic that overwhelmed the
network stack. The traffic could be stuck in buffers, and the new incoming packet
would be rejected. A waiting time makes the check more tolerant, resulting in
fewer false positives for ANIS failures. After sending each packet, the Health Test
must wait for the response. If the response was received, the test is considered
as passed. If no response is received even after multiple tries, we consider the
test failed unless other conditions are met. We will discuss those conditions in
Section 5.10.

To keep the modularity of the code, and because we also wanted health check
to have as little influence from the scenario threads as possible, we decided to run
it in a separate thread.

Master Controller
The Master Controller is responsible for the execution of the test on the Master
side. For individual tasks, it uses previously described partitions.

For each round, the Master Controller has to create a schedule and configu-
ration of the ANIS. This is done via the service of the Fuzzer component. Then,
the Master Controller transfers the schedule and ANIS configuration to the Slave
through the serial line so the Slave operates with the same schedule. Master then
synchronizes with Slave. After this, the Master Controller starts the Network
Client thread responsible for executing scenarios. The Network Client then waits
for a signal that comes through the serial line from the Slave Controller. On
receiving the signal, the Network Client executes the next scenario if possible.
After enough time has passed for the schedule to be executed whole, the Master
Controller once again synchronizes with its Slave counterpart. Successful syn-
chronization means the schedule execution was completed, and it is time to check
if the ANIS has survived via the Health Test thread. We went through everything
that needed to be done for one round. The last step for the Master Controller
is to continue to the next round until the total time set by the developer has
expired.

The Health Test concludes all components of the Master side. Now, we will

23

talk about the Slave components. Some are counterparts for the Master compo-
nents, so they look very similar.

5.6 Slave partitions
This section describes the components of the slave part of the test, how they
work, and what we had to implement. Every partition lives in its own PikeOS
partition, so they don’t share any data or resources. ANIS also lives in its parti-
tion, so if it fails or other non-controlling components fail, the components can be
restarted for the test to continue. If there is a need for sharing, we use the PikeOS
communication methods messaging queues to transfer data from one partition to
another.

ANIS Client
ANIS Client is a counterpart to the Network Client thread in Master. After
start-up, it needs to receive the schedule and then wait for instructions on when
to execute the next scenario. These instructions are coming as signals from Slave
controller that is described in Section 5.6. On signal received, it reads the next
scenario and by its type, it decides what to execute. The ANIS Client functions
as a standalone application inside PikeOS. In case of failure, the whole partition
can be shut down, and the test can continue with the next round of fuzzing.

Health Check
Health Check on Slave is a standalone component used to validate whether the
ANIS is still working. It uses the same partition with ANIS as ANIS Client.
First, the component sets up a socket for communication. Health Check listens
on that socket for some time, and upon receiving a packet, it sends it back to
the source. Like the Master side, the packet is also sent out multiple times to
increase the chance of receiving it on the other end. This component also stores
information if the socket could have been opened. This information is passed
through the Slave Controller to the Master, where it is used in the evaluation of
the test round and plays a role in evaluating some edge cases, which we discuss
in Section 5.10.

Slave Controller
The Slave Controller is technically the already mentioned SlaveApp and runs
inside its partition. It is the part with the biggest responsibility of keeping track
of time and sending signals to the Master Network Client and Slaves ANIS Client.
When the signal is sent, both clients on the Master and Slave side should execute
the next scenario in order. For sending these signals, the Slave Controller needed
two communication channels, one with the Master and the other with the ANIS
Client component.

At the beginning of each round, the Slave Controller receives the schedule and
configuration for ANIS from Master. Then, the Slave Controller needs to give the
configuration to ANIS and restart its partition so the changes are applied. The

24

configuration is delivered to ANIS through a file in shared memory. The Slave
Controller overwrites this file at the start of every round and restarts ANIS. On
start ANIS picks up this file and loads the configuration. More technical details
can be found in Section 6.3. After that, the ANIS is set and ready for this round
of the test, the Slave Controller proceeds to start the ANIS Client component
and transfer the schedule to it.

The component’s biggest challenge was to execute scenarios on both sides at
the same time. We decided to put the executor into the Slave Controller. If the
starting scenario logic were implemented on the Master or in the ANIS Client, it
would lead to a difference in time, that one informs the other about the execution
of the next scenario. If the controlling logic were in the Master, the execution
in the Network Client would be instant. However, because there is no direct
communication line to the ANIS Client, the scenario would be executed with
the delay of tmaster to client controller + tclinet controller to ANIS client. We can use the
same argument for the case where the execution logic is implemented inside the
ANIS Client. We have tried previous approaches and settled down on the Slave
Controller being the one that controls the execution and send controlling signals
to both the Slave and the Master because it has the smallest delays between the
execution of Master and Slave.

After the controller goes through the whole schedule, there is some period of
waiting, so the ANIS Client and Master’s Network Client can finish executing all
scenarios, and ANIS has enough time to process all traffic. In the end, the Slave
Controller synchronizes with the Master and starts the Health Test partition so
the round can be evaluated. After execution, it can wait for the Master to send
data for another round of testing.

5.7 Implemented scenarios
Next to the components, we also had to implement scenarios covering the desired
space. We now describe the implemented scenarios, what they cover, and some
implementation details.

Multi socket variant
Before we talk about the actual executable scenarios, we discuss the coverage of
multiple sockets in use. One of the desired things to test is running multiple
scenarios using different sockets. For this purpose, every scenario can run on
a deliberate number of ports. How many ports the scenario runs is decided by
the randomness of the fuzzer. This forces ANIS to listen on multiple sockets
that are all bound to different ports, keep track of fragmentation on those ports
and correctly distribute complete packets to correct devices reading from those
sockets. Such behavior doesn’t rely on underlying network traffic. So, we have
decided to join it with other scenarios that must generate some traffic. Therefore,
every running scenario is extended for a list of ports on which it should run. The
multiple ports extension covers the requirement for multiple simultaneous sockets.

25

Scenario 1: Scheduled
Now, we can proceed to the first executable scenario. In this scenario, we simulate
applications that send packets occasionally. Both Master and Slave have a sending
and receiving part of the application. How many of these they have depends on
the number of sockets to use. The number of sockets is fuzzed, as mentioned
previously. This scenario also has a predefined list of UDP packets to send. Each
packet has its length and time when it should be sent. The Scheduled scenario
was the first scenario that we have implemented. It doesn’t stress the stack with
the number of packets but still can send packets fragmented, or packets sent at
some particular time can also stress the stack, especially in combination with
packets from other scenarios.

Scenario 2: Unthrottled
Our goal with this scenario is to overfill ANIS with packets and test how it
is handled. The Unthrottled scenario has only one direction for the stream of
packets. This means that one side is listening, and the other is sending. The one-
sided traffic could seem like it restricts the state space for the test because the
scenario of sending and receiving this type of traffic is missing. But because we
are running scenarios concurrently, there is a chance to generate two scenarios,
one sending from Slave and one receiving on Slave and vice versa. The two
simultaneous scenarios cover the described state space for ANIS.

We have also extended this scenario to test the requirement for blocking UDP
sockets. We decided to merge this requirement into this scenario. A parameter if
the sockets should be blocking or not extends this scenario and is used as a flag
for the receiving and sending packets. This way, we won’t have to create another
executable scenario to cover this requirement.

Scenario 3: Unfinished packets
The last scenario we implemented considers a faulty network that sends unfinished
UDP packets. This scenario could happen on overwhelmed networks when packets
need to be fragmented for transmission. These fragments might get lost, and the
receiving machines have to deal with waiting to complete the packets. For this
scenario, we had to work on the lower layers of the network. If we want to send an
unfinished packet, the easiest way would be to not send the last fragment on the
underlying layer. We needed to fragment the UDP datagram to ethernet frames
and intentionally avoid transmitting one of the fragments.

We are not looking to test how well ANIS can send fragments of the packets.
This is technically covered by sending packets larger than the network’s maximal
transfer unit, MTU. We want to discover how ANIS is affected by holding the
packet fragments, so we only implemented one way for this traffic from Master
to Slave.

The Unfinished scenario concludes the list of executable scenarios we have
implemented. Every single one of the scenarios has a set of fuzzable parameters
that makes the scenarios different in the run-time. In the next section, we discuss
the fuzzer, how to configure it, and what parameters of the test are generated by
it.

26

5.8 Configuration parameters for fuzzer
We have designed and implemented the components of the test and some scenar-
ios. This section describes in detail the fuzzer, especially how to configure the
fuzzer so that the developers can influence values generated by the fuzzer and,
through it, what is tested. We also go through the parameters that are being
fuzzed for the current test.

The requirement for our fuzzer is a way to parametrize it. This is helpful as
a tool for developers to test some specific configuration or to restrict values that
can be generated.

Our configuration is defined within a provided file from TFW. This file gets
parsed at build time, and all the values are stored as C headers in a separate
header file that can be included in our test. This file is always inside the integra-
tion project with PikeOS, so we always have the values on hand. It is quite an
easy way to integrate the configuration into the test suite, but this was not our
first attempt. The file is just a set of key-value pairs. Each pair has a name and
some value that is parsed. The build process creates a header file with macros
where the key is the macro name, and their values are the defined macro values.

The first attempt was to have the configuration as a standalone file. This
file would be shipped with the test and after loaded as in our program. This
approach was scrapped because the test suite moves all relevant files into new
folders during the build process. We would have to account for different paths
and possible mistakes with copying files. For this, we would need to have a parser
for this file. Our test also has two parts running: The Slave and the Master. If
we ever needed to have parameters in both the Master and the Slave, we would
need to parse it twice. Also the file would need to be shipped within the PikeOS
binary, which we found to be a bit challenging and that’s why we decided to use
the other approach.

When we decided on a way to pass values into the program, we needed to define
what we are passing and how the configuration looks. We have configuration
parameters. These are the parameters developers set in the configuration file. The
Fuzzer takes these parameters and updates its configuration, which influences the
generating of the schedule and ANIS configuration. The schedule and the ANIS
configuration are technically just a set of predefined values that change each
round. These values we call fuzzable parameters.

The value of every fuzzable parameter, either scenario or ANIS configuration
parameter, can be influenced in a couple of ways. The first way is to restrict the
range of values that can be fuzzed. So, we set upper and lower boundaries for
every parameter. The second way is to specify probabilities of generating some
specific value. So, we had a bounded interval of integers and needed to adapt
probabilities of generating the value. We used probability functions. We just
needed to represent them efficiently.

The first attempt to represent the distributions was to use multiple key-value
pairs that would need to be set for each parameter. For example, we take the
parameter for fuzzing the number of buffers. The first attempt was to create
one C header specifying the upper bound and one specifying the lower bound,
and then we needed to represent the distribution. We came up with the idea
of splitting the function into multiple values. One value would tell us the type

27

of distribution: uniform, normal, or geometrical. The other part would then
specify parameters for the normal distribution function. The problem with this
solution is that all values for all the distributions need to be set because they are
all C headers. This system creates a lot of unused values in the configuration.
For example, if the type were uniform distribution, we would still need to define
parameters for the case when it would be a normal distribution. We also need
multiple parameters to adapt one distribution function, which was not desired.
On top of everything, we couldn’t manipulate the distributions completely. For
example, we could only use geometric distribution for the entire range of values,
but what if we wanted to have some values generated by geometric distribution
and the rest to follow a uniform distribution? This design didn’t support this
case at all. Another problem was that the number of parameters we needed to
set grew a lot, so we tried to get something more compact in terms of the number
of parameters and more flexible to configure.

We decided to set up some form of grammar, which we can use to generate
the description of the distribution functions that would suit SYSGO’s needs.
The description is a string that the fuzzer parses and updates its configuration
according to that. With the grammar, developers can define distributions for all
fuzzable parameters. Now, we describe how the description looks and formalize
the grammar.

Grammar and function description
Every fuzzable parameter has a string specifying the distribution for it. The
description splits the whole domain of the distribution function into smaller sub-
domains. With smaller parts, we can control how the values are generated. We
can divide the entire range into multiple parts. Each part can be generated from
a different distribution, e.g., values from interval [1, 10] are generated by normal
distribution, and the rest of the values are generated uniformly. We can use the
following example of ANIS configuration value for the number of sockets to show
the description.

fuzzer_num_of_sockets "{U(50\%, 4, 8); U(6\%, 1, 3); C(44\%, 50)}"

Every subdomain is then defined as a range of values or a single value. A semi-
colon separates subdomains. We use the name Ranges, and we call single value
Elements. From the example in Section 5.8 a subdomain is U(50\%, 4, 8). Ev-
ery Range or Element defines the upper and lower bound of the interval and the
distribution function for that interval. Our chosen subdomain is within interval
[4, 8]. The value has 50% probability to be generated from this interval, and
the U in the beginning symbolizes the uniform distribution. The configuration
string consists of a combination of Ranges and Elements, which are separated
by a semicolon. Even tho the implemented parser for the description isn’t too
strict, and a slight mistake won’t necessarily break it, we recommend following
key points that we describe in Section 5.8.

28

#→ {s}
s→ s; s | t (p%, b, e) | C (p%, b)
t→ U | G | N

p→ x ∈ [1, 100]
b | e→ x ∈ N

Figure 5.2: Grammar for fuzzer configuration

Grammar
Let’s talk about the structure of the description. We have defined a gram-
mar, which is generating such language. Following this grammar ensures a
valid configuration of the fuzzer. Let’s have a set of terminal symbols T =
N ∪ {U, G, N, C} ∪ {%|; |, |{|}| (|)}, 1 non-terminal symbols N = {s, t, p, e, b},
starting as an empty string #. Figure 5.2 contains the rules of the grammar.
To shorten the rule set, we use non − terminal → x ∈ [a, b] to symbolize, that
the non-terminal can be extended to a single value x, that is, from an interval of
whole numbers from a to b included.

Descriptions generated by this are sufficient to generate configuration for the
fuzzer. The fuzzer has one more restriction on top of this grammar that we
decided not to encapsulate in it. The sum of percentages of all subdomains has to
be exactly 100. This rule is validated after the fuzzer loaded its configuration, and
the developer is notified when the sums don’t match. For better understanding,
we go once more over what the grammar says.

The configuration value is a set of subdomains that create the distribution
function’s domain. Every subdomain consists of one from Ranges or Constants.
Let’s start with the Constant structure.

Every constant starts with the capital letter C, followed by an opening bracket.
After the bracket, there have to be two valid integer values separated by a comma.
The first number is expected to be a percentage value, and the second should be
the value we want the Fuzzer to generate.

Ranges have a similar structure to Constants. It starts with capital letter U,
G, or N, followed by an opening bracket. The starting letter is a symbol for some
known probability distribution. In our case

U Uniform distribution

G Geometric distribution

N Normal distribution

This time, there should be three numbers split by commas. The first number is
again the percentage value. The next two numbers specify the range from which
the number should be generated, including those values.

1The symbols in last set are split by a | for better readability

29

Let’s finish talking about grammar structure with an example of the proba-
bility distribution would look like if it were specified by our language like

fuzzer_num_of_sockets "{U(50\%, 4, 8); U(6\%, 1, 3); C(44\%, 50)}"

In the table 5.1 we can see the exact chances to generate the values by the
fuzzer.

value chance to generate
1 2%
2 2%
3 2%
4 10%
5 10%
6 10%
7 10%
8 10%
50 44%

Table 5.1: Probabilities of generating desired values

Parsers recommendations
We have implemented a parser for our grammar to store the configuration in our
program. In this section we would like to point out some tips that developers
should follow when writing the fuzzer configuration. First, we talk about what
we shouldn’t do when using our grammar because the implemented parser might
be unable to parse it correctly, either because it doesn’t follow the grammar, or
the parameter won’t be parsed correctly during the build time. The parser is
fairly simple, which is another reason for the restrictions. Let’s sum it up in a
few points.

• There has to be at least one Range or Constant value in the string

• Opening bracket has to be immediately after a capital letter

• Sum of all percentage values must be equal to 100%

• Whole string has to be enclosed in a pair of ′

• There can’t be ” in the string

• Multiple ranges or elements need to be split by a semicolon

Now, we know what to do, but there is no standard for the readability of the
string. For that purpose, we have created a set of rules that, if not followed, will
still be correctly parsed, but the string might be unreadable.

• Whole string should be enclosed in { brackets

30

• First value in both element and range should be followed by % symbol

• We should always use spaces after commas and semicolons

In the end, we would like to introduce the constant parameters. Sometimes,
it is desired to generate the same value every time. This language allows this
with a little hack when we want to set one parameter to a static value. In such
case, we can use syntax ’{C(100%, X)}’, where X is our desired value.

5.9 Fuzzer parameters
Here, we describe all parameters for the fuzzer and how the generated values
influence the test. The tables on the following pages show all the parameters
that can be set for the fuzzer. If necessary, the set of supported parameters
might be extended with new parameters, especially for new scenarios. The set is
described in the following tables. The parameters are usually structured in rows
as the configuration parameter’s name and what it influences, and optionally, the
table contains a third column with additional information. Table 5.2 describes
parameters passed to the ANIS partition and used for the ANIS configuration.
In Table 5.3 are values directly linked to the schedule structure, e.g., how many
scenarios will be run. Table 5.4 contains parameters that all scenario types share,
e.g., when this scenario should start. In Table 5.5 are parameters that are linked
to the specific scenario type, e.g., the number of unfinished packets to send when
the unfinished scenario is running.

31

Parameter Meaning ANIS config name

fuzzer num of sockets
Number of sockets of
ANIS that can be
open at once

numSockets

fuzzer buffers
Number of buffers,
that store incoming
traffic

numBuffers

fuzzer mtu
Maximal transfer
unit of the network mtu

fuzzer peer cache

Restricts cache
to track unique
IP headers from
different sources.
Influences ability to
identify duplicate
fragments

peerSize

fuzzer arp table size
Number of entries,
that can ARP table
hold

arpTableSize

fuzzer arp queue length

Maximal number of
waiting packets with
unresolved ARP ad-
dress

arpQueue

fuzzer arp resolution timeout
How long ANIS
waits for address to
be resolved to ARP

arpResolvTimeout

Table 5.2: Fuzzable parameters for ANIS configuration

Parameter Meaning
fuzzer schedule test length How long should 1 round of test last in ms

fuzzer scenarios count How many scenarios will be run

Table 5.3: Fuzzable parameters for schedule

Parameter Meaning
fuzzer scenario type Type of generated scenario

fuzzer scenario from When does the scenario start
fuzzer scenario to How long does the scenario run

fuzzer scenario master ports count
How many ports should Master side
use

fuzzer scenario slave ports count Row many ports should Slave side use

Table 5.4: Fuzzable parameters influencing all scenarios

32

Parameter Meaning Scenario type

fuzzer sc scheduled requests count

How many re-
quests for sched-
uled scenario will
be generated

scheduled

fuzzer sc scheduled requests size
Size of UDP
request. Max
65536 bytes

scheduled

fuzzer sc scheduled requests direction
Who sends this
request, Master
or Slave

scheduled

fuzzer sc scheduled requests time

When to send
the request,
within the time
frame of the
scenario

scheduled

fuzzer sc unthrottled direction
Which side gen-
erates stream of
traffic

unthrottled

fuzzer sc unthrottled blocking

Should blocking
mode be used in
unthrottled sce-
nario

unthrottled

fuzzer sc unthrottled step

How long should
one step of send-
ing data last in
ms

unthrottled

fuzzer sc unfinished packets

Maximal amount
of unfinished
packets that will
be sent

unfinished

fuzzer sc unfinished time

Maximal time
in ms of sending
packets during
unfinished sce-
nario

unfinished

Table 5.5: Fuzzer parameters for specific scenario types

33

5.10 Evolution of health check
Let’s talk a bit about how we ended up with the Health Test component in a
separate partition. We have already mentioned that we decided to go for the
most simple check for the ANIS so the test doesn’t report many false positives.

We originally designed the Health Test to be a part of the ANIS Client inside
PikeOS. On the Master, it was just a function that sends one singular UDP packet
to the Slave. However, we have encountered several issues. We have partially
mentioned some issues before, but let’s take everything from the beginning.

First, the UDP is not a reliable protocol and packets could get lost on the
track or the endpoint buffers could be full when receiving it. The track for the
packets is not complicated; it is just two devices connected through a switch,
but the full buffers showed to be the real problem. We partially solved this by
sending multiple packets to the Slave, which helped in lost packet situations.
Unfortunately, this was not sufficient. We implemented similar behavior on the
other side as well, because the Slave was also sending only one packet back to the
Master. We have created a process of multiple packets being sent and received
on both sides. Because our only concern was the stability of ANIS, we decided
that one packet that comes through is enough for success. One successful packet
shows that the stack is indeed functioning and didn’t crash during the execution
of the schedule. We were able to get more stable results, but the problem with
the full buffers was still there.

The issue was that the ANIS held incoming traffic for quite some time. Be-
cause the ANIS releases buffers on closing the socket, we partially solved it by
closing sockets after the scenarios finished using them. ANIS cleared its buffers
for those sockets, and it helped with the false positive findings. Unfortunately,
the test was still reporting some false findings, but at least at a much smaller
rate.

Our final decision was to move the health check to a separate component. The
reason for this was that we have discovered the scenarios that were using blocking
mode were not finishing the threads because the thread was blocked in the receive
or the send call, which is the desired behavior for blocking mode. Because the
scenario never ends in this case, the sockets never close, and the buffers can still
be full.

We needed some way to stop the whole process. We have decided to choose an
option of moving the entire code to the separate partition. This partition has its
resources completely separate from ANIS Client and can be controlled by it. But
we still needed to ensure that the buffers were clear and ready to accept traffic for
the health check. But because the code is now in a separate component, the Slave
controller can shut it down. The sockets are automatically closed on shutdown,
so the buffers are cleared.

With this step, we have created an isolated environment for our evaluation
process, so it can’t be influenced by any traffic that comes from the execution of
the schedule and reliably validates the state of the ANIS. The unexpected shut-
down had one unintended positive effect for us. By aggressively shutting down
all sockets without any chance for ANIS to clean up or prepare for the shut-
down, we extended the covered state space. The shutdown covers some resource
management logic, which is welcomed extension of tested state space.

34

Special configurations
Earlier, we mentioned some specific conditions for which the Health Test reported
false positives. The error was caused by some unfortunate, but never less valid,
configurations of the ANIS fuzzer.

When the fuzzer was generating values for the ANIS configuration, one of the
valid values, is a very low ARP resolution timeout. When the ANIS didn’t have
information about, which MAC address belongs to which IP address, it couldn’t
send out response packets for the health test. Not enough time to resolve IP led
to false positive results. SYSGO developers didn’t want to omit this state space,
so we had to create a mechanism to work around it. So far, we haven’t discovered
any other special configurations, that would lead to false positive reports, but in
case they are found, we recommend using a similar approach in case other edge
cases are discovered in the future.

We solved this problem by watching for these special conditions and lowering
the conditions for pass. In cooperation with SYSGO, we omitted the sending of
the packet, and the only condition that validates the state of ANIS is opening a
socket. If the socket opens successfully, ANIS still has to function. Otherwise,
it returns an error. We then created a communication line from the Health Test
component through the Slave controller to the Master Controller. Master gets
the information if the socket was opened correctly. Then, it checks for the special
configuration. In our specific case, when the ARP resolution timeout is less than
five milliseconds. If the special configuration is set, the Master then evaluates
the test only of the information that it got from the Health Check on the Slave
side. The UDP packet test is completely ignored.

35

6. Technical implementation
Here, we look at the details of the test implementation. We comment on some
challenges we faced during the development and explain some unconventional
choices in the design and implementation. We were developing for PikeOS native
personality, which has some differences from the common operating systems. We
go through different memory management, getting the test to run on multiple
threads and setting up the ANIS configuration inside PikeOS. Then, we will look
at logs and how to read them. At the end of the chapter, we talk once again
about the implemented scenarios and discuss the rest of the details about them.

6.1 Memory management in PikeOS
Usually, we want to use a heap for memory allocation. But this is not friendly
to RTOSes. PikeOS native personality doesn’t support heap allocation, and all
memory has to be preallocated. The heap is not the most friendly structure
for RTOSes. The allocated has a different latency every time. The heap gets
fragmented, so there is no guarantee of enough space for the structure. Developers
would also be sure that the heap is thread-safe. Without the heap, everything
needs to be preallocated so the developers can be sure there is enough space for
the data. And that’s why we need to preallocate all the memory for our schedule
in Slave during run time. No heap leaves us with a problem of how much memory
the system needs, which is challenging due to the unpredictability of the fuzzer’s
randomness.

We would like to introduce a solution tied to the parametrization of the fuzzer.
We took the fuzzer’s configuration and updated the allocated memory’s size.
When we wrote the configuration, we defined the domain for all parameters.
For example, we restrict the number of possible generated scenarios to 10, so
we know that the program needs to store at most ten scenarios in its memory.
Similarly, we can define how much memory we need for all the structures in code
by estimating the worst-case scenario. This value can be computed if we take
the biggest number that can be generated and multiply it by the size of the data
structure for said parameter. We have created a set of parameters with their
corresponding arrays in code that can be adjusted to fit the developer’s needs.
The whole list of parameters and their meaning is described in Section 5.8.

The schedule is not stored only in the Slave Controller but also in the ANIS
client. We needed to allocate the same resources because they live in separate
partitions that don’t share memory. The definition of arrays with memory for
the schedule are located in files /fuzzer/001/tc fuzzer 001.slave and
fuzzer/001/anisClient/anisClient.c. Their sizes are configured
in file /fuzzer/001/common.h.

This style of pre-allocation of the memory can be found at all parts of the
code base because we needed them for different reasons, e.g., storing the payload
of UDP packets.

36

6.2 Parallelism
Our goal was to simulate multiple applications running on the network. There-
fore, we had to use some level of concurrent execution of multiple threads, espe-
cially when our fuzzer created two scenarios that should run concurrently. With-
out multiple threads, the test could only run one scenario, and on top of that,
such scenario could only send or receive data, never do both. That restricts how
much state space we cover, which wouldn’t be suitable for the test.

Role of threads
Let’s first describe how the threads are used to run scenarios. When the time
comes to run a scenario, ANIS Client creates a thread for it. This thread is
responsible for correctly executing the scenario. But that’s not everything. Ear-
lier, we have mentioned scenarios running on multiple sockets. We also had to
consider scenarios that want to simultaneously receive and send data over the
network. The simultaneous execution created some requirements for our usage
of threading. Every scenario creates more threads to accommodate its needs, de-
pending on how many sockets it should listen on, and possibly also creates more
sending threads.

Real-time thread scheduling
We have already mentioned hard deadlines for scheduled tasks. Every thread has
its priority, which is used to schedule them on the CPU. On top of that, all threads
live within a single partition. Partitions also have priorities between them, which
cap the priorities of the threads that live inside them. The best option for us
proved to set priorities to the same values. And not just between threads but
also between partitions. We let the threads run with the same priorities, so no
thread has an edge over others. To achieve better results, we tried to adjust the
priorities of the threads. But it showed some problems. If the scenario threads
had smaller priorities than the controller, it led to the controller running all the
time, starving the scenario threads. The threads then ran at once at the end
of the test. This behavior was not desired. When the tides were turned and
the controller had lower priority, it blocked scenarios from running concurrently
because the controller was waiting for the last executed thread to finish. So that’s
why we kept the priorities of the threads and the partitions equal.

Joining threads
When dealing with threads, we had one last problem to deal with. PikeOS native
personality doesn’t have the thread join implemented. The test needs that, for
example, for waiting on the scenarios thread before cleaning up the ANIS client.
Before implementing our joining mechanism, we tried to synchronize threads with
sleep. The sleeping showed some promise, but it also proved to be unreliable.

Our implementation consists of an array of integers in the original thread.
Every thread started from the origin can access one number in the array. Initially,
all the numbers in the array are set to zero. When the thread is about to exit
or done with its work, it sets the value in that array to one. The thread that

37

waits for the others to synchronize constantly oversees this array. The moment
when all values are set to 1, the original thread can continue. This way, it is
ensured that all working threads are done before the test continues to the next
computation.

This implementation worked reasonably well, but one problem emerged with
the blocking mode of sockets. The thread that wants to receive from such sockets
stops on receive from socket call and waits there infinitely. These threads will
never finish. In this case, we have implemented method wait for threads to,
that not only checks if the threads are done but has also set an expiration time-
out, after which it allows original thread to continue as all the threads are done
executing. Other solution would be to kill the threads forcefully. The forceful
killing sounds better than letting the threads be because it doesn’t leave any
never-stopping threads and our solution does, and that these threads can influ-
ence the next rounds of the test. That’s true, but we want to restart the ANIS
Client partition for each round. Restart reloads the whole running environment,
including threads, so they can’t influence other test rounds.

6.3 ANIS configuration
One of our tasks was to fuzz the configuration of the ANIS. The ANIS configu-
ration was more of an interesting suggestion from SYSGO. We have decided to
implement that because there are a lot of possible combinations of ANIS config-
uration that a developer can set. We needed to fuzz this as well. It is a big state
space the developers would be missing when testing.

First, we needed to identify which ANIS configuration parameters would make
sense to fuzz. The set is in Table 5.2. We needed to find a way to give this con-
figuration to the ANIS. The application is shipped as an image with the initial
ANIS configuration built in. The ANIS then takes the built-in configuration and
sets itself up. The built-in configuration is the default configuration that ANIS
uses. But before ANIS uses this configuration, it looks for a file in the shared
memory. We haven’t mentioned shared memory yet, but as the name suggests,
it is a part of memory that is shared between all partitions. We can use this
memory to transfer data between them, which is necessary here because ANIS
lives in its partition, to which the Slave Controller needs to pass the configura-
tion. If the file is found, ANIS takes the configuration from it rather than the
default configuration. This file gives us a way to pass our fuzzed configuration to
ANIS. After the file is created and filled with data, ANIS is then restarted by the
Slave Controller. ANIS takes the new configuration file and starts working with
parameters from said file.

6.4 Logs
The test wouldn’t be beneficial if the developers could not understand what hap-
pened. We needed to create some readable and easily understandable log struc-
ture. This task is not trivial, mainly because the logs are used for diagnosing the
round. Probably one of the most significant improvements was to reproduce the
test rounds. This improvement was achieved by logging the seed used to fuzz the

38

data every round.
We had two options for how to track the progress of each test. We could have

written all the messages down into a memory buffer and then transferred this
buffer to some storage outside of the test as a file. But we also had an easier
option to write logs to the console. TFW automatically picks them up and stores
them into a file.

Now, we will describe the structure of logs produced by the test.

Before test
Before the first round is executed, the test loads configuration for the fuzzer.
We are talking about all the fuzzer parameters and their distribution functions.
This configuration is written down in the log as a list of parameters and their
distributions. We can see an example in Figure 6.1

|tc_ fuzzer _001|================ DISTRIBUTION FUNCTION for fuzzer _
arp_table_size ================

|tc_ fuzzer _001| Distribution parts 5
|tc_ fuzzer _001|-------------------------------------- PART

|tc_ fuzzer _001| percentage 5
|tc_ fuzzer _001| type constant
|tc_ fuzzer _001| value 10
|tc_ fuzzer _001|-------------------------------------- PART

|tc_ fuzzer _001| percentage 5
|tc_ fuzzer _001| type constant
|tc_ fuzzer _001| value 11
|tc_ fuzzer _001|-------------------------------------- PART

|tc_ fuzzer _001| percentage 10
|tc_ fuzzer _001| type constant
|tc_ fuzzer _001| value 20
|tc_ fuzzer _001|-------------------------------------- PART

|tc_ fuzzer _001| percentage 10
|tc_ fuzzer _001| type constant
|tc_ fuzzer _001| value 40
|tc_ fuzzer _001|-------------------------------------- PART

|tc_ fuzzer _001| percentage 70
|tc_ fuzzer _001| type uniform
|tc_ fuzzer _001| lower bound 21
|tc_ fuzzer _001| upper bound 80

Figure 6.1: Example of log of fuzzer parameter size of ARP table

First, the parameter’s name is written, followed by the defined parts of the
distribution. Next, every part is written down with values like the percentage
chance, the bounds for that part, and the type. This log serves as a chance for
the developer to check if the fuzzer is configured correctly. From the log example
in Figure 6.1, we can see that there is a 10% chance to generate value 10 or 11,

39

20% for 20 or 40 and 70% chance for the value to be uniformly generated from
the range 21 to 80.

Every round has the fuzzed values of parameters and configuration written
out. First, the configuration for the ANIS, followed by the schedule. Example
ANIS configuration in Figure 6.2 is just a set of parameters and values. More
information about parameters we have already described in Section 5.9. The
configuration is very useful for second evaluating the test round. It can be used
to discover false positives that the developers wouldn’t want to waste their time
with.

|tc_ fuzzer _001|================================== ANIS CONFIG
==================================

|tc_ fuzzer _001| ANIS config after fuzzing
|tc_ fuzzer _001| ANIS number of sockets 141
|tc_ fuzzer _001| ANIS number of buffers 1209
|tc_ fuzzer _001| ANIS MTU 1500
|tc_ fuzzer _001| ANIS peerchache 25
|tc_ fuzzer _001| ANIS ARP table size 32
|tc_ fuzzer _001| ANIS resolution timeout 325
|tc_ fuzzer _001| ANIS queue length 10

Figure 6.2: Example of log of generated parameter for ANIS

Similarly, the schedule is logged in Figure 6.3. It starts with the total length
of the test and the number of scenarios, followed by the list of scenarios and their
parameters that can influence the test.

|tc_ fuzzer _001| Total length of the test 9681 ms
|tc_ fuzzer _001| SCHEDULE size 4
|tc_ fuzzer _001| Scenarios in the schedule
|tc_ fuzzer _001|==================================== SCENARIO

====================================
|tc_ fuzzer _001| ID 0
|tc_ fuzzer _001| type Scheduled scenario
|tc_ fuzzer _001| number of master ports 2
|tc_ fuzzer _001| number of slave ports 2
|tc_ fuzzer _001| FROM 1083 ms
|tc_ fuzzer _001| TO 5505 ms
|tc_ fuzzer _001| Number of requests 6

Figure 6.3: Example of log of the schedule with scenario

Test Execution
All scenarios are logging similar information. First, the test informs about the
start of the scenario. For each thread the scenario runs, it logs the start of
that thread. After the scenario finishes, it logs the end and summary of what
happened. The summary differs for each type of scenario. The logging of the
summary occurs on both sides, which means for the Master as well as for the
Slave. Messages logged for each scenario can be recognized by its prefix, which
uses the id of the scenario to distinguish them. See the Figure 6.4

40

|tc_ fuzzer _001| ANIS CLIENT |SC ID 2| Receiving thread is stopping

Figure 6.4: Example of log during schedule execution

The first part tells us the identification for the whole test case, followed by on
which side it is happening, the id of the scenario currently running, and finally,
the actual log message.

Checking the results
After the execution, the test needs to log what happened with the ANIS during
the health check. All the messages related to the Health Test have the prefix
HEALTH TEST in place of the scenario ID during the execution logging. We
show an example in Figure 6.5 Both Master and Slave log what packet they send
or receive. On top of that, the Slave part prints out all errors that happen when
opening sockets or providing other information. The special conditions, like the
address resolution, is too low, are recognized and dealt with in the log. In such
cases, the information about the result, PASS or FAIL, is followed by all the
special conditions that could have influenced result of the health check.

|tc_ fuzzer _001|============================== HEALTH TEST
STARTING ==============================

|tc_ fuzzer _001| MASTER | HEALTH TEST| Sending packet to slave try 1
|tc_ fuzzer _001| MASTER | HEALTH TEST| Packet sent
|tc_ fuzzer _001| MASTER | HEALTH TEST| Waiting for response
|tc_ fuzzer _001| MASTER | HEALTH TEST| Timeout
|tc_ fuzzer _001| MASTER | HEALTH TEST| Sending packet to slave try 2
|tc_ fuzzer _001| MASTER | HEALTH TEST| Packet sent
|tc_ fuzzer _001| MASTER | HEALTH TEST| Waiting for response
|tc_ fuzzer _001| SLAVE CONTROLLER | starting partition

anisHealthTestPart ...
| health test| HEALTH TEST| Starting
| health test| HEALTH TEST| Waiting for packet from master
| health test| HEALTH TEST| Received T
| health test| HEALTH TEST| Sending packet
|tc_ fuzzer _001| MASTER | HEALTH TEST| Response received
|tc_ fuzzer _001| MASTER | HEALTH TEST|Ends
| back to master try 1
| health test| HEALTH TEST|Ends
|tc_ fuzzer _001|1| SURVIVED _ SCHEDULE |S_PASS

Figure 6.5: Example of log during schedule execution

6.5 Fuzzer
The fuzzer has three usable entry points: load the configuration, set the current
seed and fuzz the data. Before the fuzzer can be properly used, the configuration
needs to be loaded. If the developer wants to have better control over the fuzzed
data, the seed should be set. To correctly load the configuration, we needed to
implement a parser for the configuration language.

41

Parser for fuzzer configuration
We also needed to implement a parser for configuration language described in
Section 5.8. We aimed for a simple and robust parser, so if the developer makes
a mistake, the code won’t crash without providing the error for the developer.
This parse might lead to some cases, when the configuration might not be parsed
correctly, but it’s up to the developer to check the logs and correct it to his liking.

Parser first splits the string into subparts by the semicolon ’;’. Then, every
part is checked for the leading letter, followed by the opening bracket. After
that, the inner content is parsed. First split by normal colon ’,’ and parsed. All
non-numeric symbols inside brackets are being ignored.

After everything is parsed, the fuzzer checks its configuration. If something is
not in order, it informs the developer through logs and exits, leaving the developer
to fix the mistake and re-run the test.

6.6 Scenarios
Now we look a little more under the hood of all test scenarios, how they are
implemented and what we expect them to do.

Each scenario has an origin thread that is responsible for the execution of
the scenario. Usually, the origin thread starts other threads that receive or send
data to simulate traffic in the network. The scenario is considered done when the
origin thread exits. For now, all scenarios need their behavior defined for both
the Master and the Slave. The origin thread at the end waits for all the threads
it has started and doesn’t exit before that.

Scenario 1: Scheduled
The first scenario, called Scheduled, consists mainly of the list of UDP requests
that the app is supposed to send. Each UDP request is specified to go either from
the Master or the Slave. These requests are sent at a specific time. That might
fail due to exhausted ANIS buffers or some other circumstances. The behavior is
implemented in file fuzzer/001/sc scheduled recv master.h for Master and in the
file fuzzer/001/sc scheduled recv pike.h for the Slave side.

Because the scenario has the same behavior on both sides, we can describe it
just once. The origin thread first starts multiple receiving threads. Each thread
listens on some port, waiting for input. These threads are there to monitor if ANIS
is processing any packets. The number of listening threads differs depending on
the fuzzed value for the number of sockets used for the scenario. The number of
sockets can vary for the Master and the Slave. Receiving threads are running for
some predefined period. The length of the scenario sets this period, but we have
decided to extend it by a small padding of one second so the receiving thread has
a chance to process more UDP packets that came a little late.

After the receiving threads are started, the origin thread starts another thread
that is supposed to send data out. This thread goes through the list of UDP
requests. The requests that belong to the other side are skipped, and the thread
sends the rest out on time. The sending thread ends once it is done sending all
the requests it was supposed to send.

42

A simple payload generator generates the packet payload. Upon receipt, the
payload of all packets is checked to see if the data was received correctly. The
packet’s content is generated as a sequence of bytes, where each byte is dependent
on its predecessor. We use multiplication and modulo operator combined with
prime numbers to generate the same sequence again. This algorithm is used to
check if the whole packet arrived correctly and no data were lost.

unsigned char gen next byte (unsigned char ∗ seed) {
i n t x = (i n t) ∗ seed ;

/∗Randomly chosen constants , t h e i r g r e a t e s t common d i v i s o r i s 1∗/
x = (x ∗ 709) % 256 ;

/∗ s a f e i t as a seed f o r the next byte in sequence ∗/
∗ seed = x ;
re turn (char) x ;

}

Figure 6.6: Generating payload for the scheduled packets

Scenario 2: Unthrottled
The point of Unthrottled scenarios is to try to trigger the behavior of the ANIS
under high pressure with many packets received or sent out. The unthrottled
stream of UDP packets goes only one way, either from the Master or the Slave.
Behavior on both sides is the same, so we call them the receiving and sending
sides from now on. The origin thread starts some number of receiving or sending
threads, depending on the direction parameter for the scenario. The behavior of
receiving, or the sending, type is the same for the Master and the Slave. Once
again, the number of running threads is determined by the number of sockets
this scenario is supposed to use. The implementation can be again found in the
files fuzzer/001/sc unthrottled master.h and fuzzer/001/sc unthrottled pike.h for
the Master and the Slave side.

Unthrottled scenario is a little unique because it also fuzzes a parameter that
determines the blocking mode of the socket. Blocking mode means that the
thread stops its execution until the socket can perform its action. If the thread
is trying to send something out, the thread is blocked until the socket is free to
send out that packet. The receiving thread is blocked until a complete datagram
can be read from the socket. Blocking gave us a little challenge with shutting
down the receiving threads, which was already mentioned in Section 6.2.

Receiving threads just start and wait for some data. If non-blocking mode
is set, it spins infinitely and waits for some packets. When the time comes, the
thread shuts down. The problem comes with blocking mode. If there is no more
incoming traffic and the thread stops on the call of the receive function, this
thread will never exit. Because on the Master side, the socket is just a file, we
can use file descriptors and Posix method select allows the code to check if the
packet can be read from that file, in our case, socket. This method can be timed
out, so our threads on the Master have a deadline for their exit. Unfortunately,

43

we can’t use the same mechanism on the Slave side, because we don’t have it, so
we had to settle for the mechanism mentioned in Section 6.2.

Sending threads are used to send a stream of packets. The data are sent in
smaller periods, alternating with periods when nothing happens. So, for example,
the sending thread sends packets one by one for a hundred milliseconds, then waits
for another 100 milliseconds and doesn’t send anything. This loop is repeated
until the scenario is supposed to end. These empty periods are supposed to give
ANIS some time to handle incoming traffic. The fuzzed parameter determines
the length of the periods. Sending threads end when they go through enough
periods of sending or when the time for the scenario expires.

Scenario 3: Unfinished packets
Before we dive into what we have implemented, we describe more details about
ANIS. To correctly assemble UDP datagrams from their fragments, IP packets,
ANIS needs some inner memory to store their fragments. With this scenario, we
aim to expose it to incomplete datagrams. These datagrams can’t be assembled,
so their fragments fill up the ANIS memory, and we cover more state space around
it.

The scenario Unfinished packets, or shortly Unfinished, is meant to test the
stability of the stack when the fragmented datagrams are not received completely.
Our test simulates this behavior by fragmenting a UDP packet and not sending
one of the IP fragments. We want this test to check ANIS for receiving this kind of
data, we don’t need to test the Master for receiving unfinished datagrams. That’s
why we only implemented sending behavior for the Master side and receiving
behavior for the Slave side. Master serves as a sender and Slave as a receiver for
those fragments.

Slave only waits for fragments to come to the ANIS so they can be read. But
if the test runs correctly, the receiving thread should never read any packet. This
thread is only used for keeping the socket open, so ANIS won’t throw away all the
incoming traffic for the test. For the Unfinished scenario to be effective, we must
ensure enough fragments fill up the ANIS memory. The sending, the Master, side
functions similarly to the Unthrottled scenarios when it sends a long stream of
packets. This stream is influenced by parameters for this scenario, described in
Table 5.5.

The Master side is more complicated than the Slave side because we have
to create our headers for network packets and fragments. Parameters from the
fuzzer define how many unfinished packets we should send and how often. The
sending thread sends data either until the maximal time is over or enough packets
have been sent. Let’s look at the subtasks the Master needs to fulfill to send a
fragmented datagram.

Raw sockets

Before we head into the subtasks, we need to realize that we are working on a
lower layer than with UDP packets. Linux is usually trying to help and fill packet
header data for us. We must use the raw sockets if we need to go around this.
Raw socket allows us to specify different options that restrict what the Linux does
with the packet headers. Specifically, we are looking at option IP HDRINCL,

44

which requires us to fill the headers on the IP layer and above. The operating
system will still fill the lower layer header.

Datagram creation

First, the sending thread needs to create a UDP packet. SYSGO has provided
us with a library that does this for us. We just had to first port this library to
the UNIX environment because it was initially written for the PikeOS and then
used it to create and fragment the datagrams. On the UDP layer, a port of the
destination and origin needs to be specified. The thread has information about
ports and IP addresses, and that is enough information to create a UDP packet
by the provided library. We must ensure the UDP packet is larger than MTU
for fragmentation. This requirement can be achieved by setting the size of the
packet to the maximal UDP packet size, which is 65536 bytes. This packet has to
be fragmented every single time. In Figure 6.7, we can see the call to the library
that creates the needed datagram.

create _udp(udp , &len , dst.sin_addr , src.sin_addr , OPT_UDP_
DESTINATION _PORT ,

ntohs(dst.sin_port), OPT_UDP_ SOURCE _PORT , ntohs(
src.sin_port),

OPT_UDP_ PAYLOAD _LENGTH , payload _len , OPT_UDP_
SETLENGTH , -1,

OPT_UDP_ CHECKSUM _MODIFIER , 0x0000 , OPT_UDP_PADDING
, 0,

OPT_IPV 4_ VERSION , 4, OPT_IPV 4_TOS , 0, OPT_IPV 4_DF ,
0x10000 ,

OPT_IPV 4_ FLAG_RESERVED , 0, OPT_IPV 4_ PROTOCOL , 17,
OPT_IPV 4_ HEADERLEN , 5, OPT_END);

Figure 6.7: Call to the library function to create a UDP datagram

Fragmentation

The sending thread must fragment the generated packet so its fragments can be
sent on the lower layer. This time, the code adds the IP addresses of the source
and destination to the headers of the fragments. Once again, we can use the
provided library to fragment such packets. The fragment method uses callback
function in Figure 6.8 to provide us with single fragments.

Now, the function has the fragments, but they can’t just be sent out. That
way, the thread would send the whole UDP packet, which is not desired because it
wouldn’t fill any of the ANIS memory. The callback function stores the fragments
in a buffer. Because the callback function doesn’t accept any outside parameters,
we needed to use a global buffer and copy the data to a local buffer for the running
thread. We copy it to the local buffer so the thread can proceed with sending the
fragments, and some other thread can generate the next fragmented packet to
the same buffer. This way, we can have more threads running concurrently, and
they do not wait for each other so long. After this, we can do whatever we want
with the fragments. It is enough to randomly select one fragment that won’t be
sent for our case. The ANIS should be able to deal with the incorrect order of

45

typede f s t r u c t fragment {
unsigned char ∗ bu f f ;
u int l en ;
i n t used ;

} f ragment t ;

#d e f i n e MAX FRAGS (MAXIMUM UDP DATAGRAM SIZE / 1500) + 1
fragment t packet [MAX FRAGS] ;
u int s t o r e f r a g i d = 0 ;

void c o l l e c t f r a g m e n t (unsigned char ∗ buf f , u int l en) {
f ragment t ∗ f r a g = &packet [s t o r e f r a g i d] ;
f rag −>bu f f = mal loc (l en ∗ s i z e o f (∗ bu f f)) ;

memcpy(f rag −>buf f , bu f f + (14 ∗ s i z e o f (∗ bu f f)) , (l en − 14) ∗
s i z e o f (∗ bu f f)) ;

f rag −>l en = len − 14 ;
f rag −>used = 0 ;

s t o r e f r a g i d ++;
}

Figure 6.8: Callback function collecting fragments

fragments, so it doesn’t matter in which order the thread sends them out nor
which fragment is left out. This behavior can trigger situations like overflowing
buffers with incomplete packets that are not finished, wrong, and incomplete
order of fragments that the ANIS might try to assemble wrongly.

46

6.7 Extending the long run test
We talked about more scenarios, with which we could improve our test, e.g., gen-
erating IGMP or ICMP traffic. That’s why we put some focus on the extensibility
of the test. The process is not easy, but it can be broken down into multiple steps,
leading to successful test extensions. We assume that the developer has already
decided what the scenario does and is sure about what parameters the scenario
needs.

1. Define data structures and fuzzer parameters
We take our desired parameters for the fuzzer and put them into the con-
fig/anis.conf file. For each parameter, we describe its distribution function
using defined grammar from Section 5.8.
Then, the developer has to define the data structure used for the scenario.
All structures holding scenario data are in file fuzzer/001/scenario.h. This
structure represents all fuzzed parameters for the scenario. The scenarios
are associated with scenario ID, which the developer must extend for a new
scenario.
This file also contains some functions that help translate scenario data to
human-readable format, which we recommend extending.

2. Extend parameter loading
The fuzzer needs to be able to load the configuration properly. The devel-
oper needs to change fuzzer/001/fuzzer configuration helper.h. Specifically,
the enum holds all fuzzer parameters and the array with the parameters
parsed out of anis.conf. The fuzzer is now able to load the configuration.

3. Extend fuzzer to generate new scenario
We will stay in the file fuzzer.h from the last point. The loading of the new
parameters is already set. Now, it is time to use them in fuzzing. To use
them, extend the method fuzz scenario specific. The method contains a
switch for the scenario IDs that must be extended. Then, the developer has
to write a function that uses the random generation to fill the new scenario
with its parameters. For generation, it is sufficient to call the provided
function random from dist, which is defined in the file fuzzer random.

4. Pass parameters between components
The fuzzer generates the schedule only on the Master side. The data has
to be passed to the Slave Controller and from there to the Anis Client.
To pass data to the Slave Controller, the developer extends the
fuzzer/001/serialize m c.h and fuzzer/001/deserialize m c.h. The used
mechanism is the TFW serial line. Let’s start with passing data to the
Slave Controller. The Master needs to send all parameters one by one on
the line; on the other end, the Slave needs to receive it. First, the file
fuzzer/001/serialize m c.h contains function send schedule with a switch
that chooses serialization by the scenario ID. The developer extends this
switch and writes a function that sends all the parameters in the new sce-
nario structure. On the other side, in the file fuzzer/001/deserialize m c.h,

47

there is function recv schedule with similar switch for which we will have
to implement the receiving function.
The process of passing the data from the Slave Controller to the ANIS Client
is the same. The developer extends the files fuzzer/001/serialize c c.h and
fuzzer/001/deserialize c c.h. The only difference is that the Slave uses queu-
ing ports API to communicate between the partitions.

5. Scenario behavior
The next step is to code the behavior of the scenarios. The extension should
be done in a new, separate file. Each scenario has its thread. The developer
should create an entry method for the scenario. The ANIS and Network
Clients call this method. The developer can then implement everything
behind this method. While making the files for Master and Slave, the
names for the file should follow the style of already implemented scenarios,
sc {name} pikeḣ and sc {name} masterḣ.

6. Extend controlling threads
The last step is to extend the controllers so they start running the scenarios
through their entry functions.
First, we extend the Network Controller of the Master. Before each round,
a precomputation counts the number of each scenario type. The developer
needs to extend the precompute round() function in the file
fuzzer/001/tc fuzzer 001.master.c to count the new scenario. Then, in the
file network traffic controller.c, there is a method
network traffic controller. The developer must extend the switch to rec-
ognize a new scenario ID and run its entry method. The switch uses arrays
to hold data of each scenario type in the structure scen thd data t. That
is all to extend the controller on the Master side.
The developer needs to reproduce the same steps for the Slave side. This
time, everything is in the file fuzzer/001/clientApp/clientApp.c. It also
has a similar preprocessing as the Master. This time, it is in the function
preprocess schedule. The rest is in the function executescenarios. The
developer needs to create an array holding the scenario data and extend
the switch to execute the new scenarios entry function in a separate thread.

At this point, everything is correctly set for a new scenario. The test is
extended with a new scenario and ready to cover even more state space of the
ANIS.

The reader has probably already noticed that we have implemented everything
in the header files, and we expect the developers to continue in this way. We found
the build process of the test cases quite challenging to alter, and we have decided
not to spend more time on it. Implementing everything in the header files is still
functional way without many downfalls.

48

7. Use of the test
In this chapter, we look into how this test should be set up and how it can be
used for report analysis of ANIS. We also discuss some properties of our test that
could be improved.

7.1 Set up fuzzer in TFW
Before using the test, the developers will have to configure our fuzzer. In the
attachment, we provide an example configuration that can be used as a reasonable
starting point, but the developers can update it to their preferences. They will
have to follow the syntax rules of our configuration. An important step is to set
all the parameters of the fuzzer. If even one parameter is missing, the test will
end with a compile-time error, and the parameter will have to be set for further
use of the test.

Setting network interface
We have decided to set up a new network interface for this test. We chose this
option because we wanted to isolate our test from any other traffic that could be
going on our computer. This way, nothing interferes with our test and gives us
an environment in which we can recreate the schedule for debugging purposes.

We provide a script tap0 set.bash, that creates a new virtual network interface
called tap0. If an interface with this name exists, changing the interface’s name
in the script is preferred. We want to avoid combining our traffic with traffic that
can already exist in that interface. In the end, the script sets the environment
variable TFW QEMU OPTIONS to the value ” − nettap, ifname = tap0”,
which uses the created tap0 interface. If the developers wish the test to use a
different interface, only these variables need to be changed to the name of the
desired interface.

7.2 Investigating findings of the fuzzer
When the test fails, developers want to examine where exactly the error appeared
and why it happened. Our test allows us to set the specific seed for our fuzzer.
This seed helps the developers rerun the same configuration quite easily just by
specifying the correct seed.

To rerun the test round, the developer needs first to find a corresponding seed,
that is written out in the log before every round of the test.

Then, before the main loop in file tc fuzzer 001.master.c needs to update
variable seed to the desired value. Then, he can take that seed and set the seed
variable in the Master Controller entry function to that value. After rerunning,
the test value in seed will be used and if the fuzzer has the same settings, it will
generate identical output.

It can be done after the schedule is generated if there is a need for manually
modifying the schedule. In the same file with the Master Controller uncomment

49

line TODO with modify schedule method. Implementation of this method is
located in the same file. The developer must know what he wants to happen with
the schedule and directly update the generated schedule.

The last debugging option is to uncomment the definition of macro VERBOSE
in the file common.h. This macro enables more detailed output logs.

7.3 Effectiveness
We have a working prototype of the fuzzer that we know how to configure and use
for debugging. At last, we talk about some downsides that could be improved in
the future. Let’s talk about the effectiveness of our test. We aim to test as many
schedules as possible. Fuzzers usually try to achieve effectiveness by maximizing
the throughput of inputs. The design of our test round has two major choke
points that limit how many schedules it can run within some time. These choke
points are the execution of the schedule and the Health Test.

Time spent testing

We first consider the length of the schedule. The time for which the schedule can
generate scenarios, is managed by fuzzer parameter fuzzer schedule test length.
With this parameter, the developers can restrict the generated value to their
liking. The value developers select depends on whether they want to see how
AnisFP works under longer periods or wish to discover a short amount of network
traffic that can break the stack. There is probably no correct answer on how to
set this parameter and how much time should be spent on running the test. So
the options are long-run mode when the ANIS runs for an extended amount of
time, but the structure of the test rounds won’t change that much, or very short
rounds of testing, which generates a lot of different scenarios that try to break
ANIS in a short period. Both these options test different state space, so the
choice is really about what space the developers want to test.

The other choke point is the health check, with which we had issues. At this
point, it is set to send multiple packets in the total period of 15 seconds. We
consider only the worst-case scenario for our check. It can last shorter if the
Health check returns the packet on the first try, but it doesn’t always happen.
If we consider schedules that run shorter, there is a significant overhead with
Health Test, and spending twice as much time on checking the stack, then the
testing is inefficient. With short schedules under 10 seconds, we always have a
15-second lasting health check. We can fit multiple scenarios into the 10-second
schedule to cover some space. If we run the test with the 10-second schedules,
we should be able to go through 3600/(10 + 15) = 144 rounds per hour. If we
consider some overhead, e.g., for the fuzzing or passing data, we were left with
around 120 tested scenarios per hour. The Health Test could be more effective,
but for SYSGO purposes, it showed to be sufficient.

We tried to make the health check run faster but at the point of writing
this with no success. With shortening the time waiting and sending controlling
packets to Slave, more false positives for bugs in AnisFP were found. So far, we
have not fixed this problem, which is open for future improvement.

50

Repeating schedules

In the end, we wanted to measure the efficiency from a different angle. We
wanted to discover how often schedules are repeatedly generated from the same
or a different seed.

To generate schedules, we use a mechanism based on a seed. This seed deter-
mines the outcome of the generator. The generated content will be the same if
the seeds are the same. When choosing our seed, we opted for the most straight-
forward choice, which is the machine’s current time. Because the time is linear,
we don’t need to worry about the seed repeating.

We needed to consider one more thing: when the seed generates the same
schedule. How much the generated schedule and ANIS configuration depend on
the configuration for the fuzzer? If we set all the parameters to constant values,
the schedules will be the same for each round. The same principle applies when
we set the parameters as open as possible. The chances of generating the exact
schedules drop. We wondered how often that happens for some minimalist con-
figuration like we provide in the file anis.conf. Therefore, we provide a simple
Python script duplicates.py that counts the exact schedules in one test run. The
script uses the log to get the schedules and compare them. We have checked
over 1500 different schedules generated by the provided configuration. That is
around twelve hours of testing, and we still have not encountered duplicate sched-
ules. Even with such a simple random generator, it is unlikely to generate the
exact schedules, so we don’t consider repeating schedules to impact the fuzzer’s
efficiency.

51

8. Conclusion
With this project, we have successfully extended a big test suite for the ANIS
network stack, a safety-certifiable network stack for SYSGO’s real-time operating
system, PikeOS. Our test is fully integrated within SYSGO’s test suite for ANIS.
With the support of QEMU, the test can be run on any Linux workstation.

We have analyzed options of fuzzing techniques to generate and test different
network stacks. We have used our findings to imitate real world traffic scenarios
that could potentially trigger failures in ANIS network stack. Next to the tech-
niques of randomly generating data for the test, we provided a way to configure
how these parameters will be generated. To demonstrate the functionality of the
test, we have implemented a couple of scenarios exploring some aspects of UDP
traffic that might be received or sent by the network stack. We also described
a detailed way to extend the current test for new scenarios, so even more areas
of the network traffic can be explored. Next to fuzzing internet traffic, we also
provide support for fuzzing the configuration for ANIS. Our goal was to test the
stability of the stack, which we checked with a simple test to see if it survived.
This check needs to recognize corner cases for ANIS configuration and adjust to
them. The list of the corner cases might have to be extended in the future if
discoveries about edge case configurations for the ANIS are made. We are talk-
ing about configurations like small ARP resolutions timeout we have mentioned
before.

In the last chapter, we have seen some efficiency difficulties that are slowing
the execution of the test. The developers need more time to process and validate
the generated schedules. It would be welcomed if the health check runs faster
but keeps its resilience towards false positive findings.

So far, the test has not discovered any bugs inside ANIS. There are multiple
reasons why the fuzzer has yet to find bugs. The test currently executes a limited
number of scenarios, and ANIS has already been verified by thousands of work
hours. Therefore, ANIS should be bug-free.

52

Bibliography
[Andronidis and Cadar, 2022] Andronidis, A. and Cadar, C. (2022). Snapfuzz:

High-throughput fuzzing of network applications. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2022, page 340–351, New York, NY, USA. Association for Computing
Machinery.

[Böhme et al., 2017] Böhme, M., Pham, V.-T., Nguyen, M.-D., and Roychoud-
hury, A. (2017). Directed greybox fuzzing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’17,
page 2329–2344, New York, NY, USA. Association for Computing Machinery.

[Heuse et al.,] Heuse, M., Eißfeldt, H., Fioraldi, A., and Maier, D. Afl++
overview. Retrieved 2023-11-12.

[Miller et al., 1990] Miller, B. P., Fredriksen, L., and So, B. (1990). An empirical
study of the reliability of unix utilities. Commun. ACM, 33(12):32–44.

[Pham et al., 2020] Pham, V.-T., Böhme, M., and Roychoudhury, A. (2020).
Aflnet: A greybox fuzzer for network protocols. In 2020 IEEE 13th Inter-
national Conference on Software Testing, Validation and Verification (ICST),
pages 460–465.

[Sutton et al., 2007] Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley Professional.

[Zalewski,] Zalewski, M. American fuzzy loop. Retrieved 2023-11-12.

[Zeller et al., 2023] Zeller, A., Gopinath, R., Böhme, M., Fraser, G., and Holler,
C. (2023). Fuzzing: Breaking things with random inputs. In The Fuzzing
Book. CISPA Helmholtz Center for Information Security. Retrieved 2023-01-07
14:00:06+01:00.

53

List of Figures

2.1 Structure of typical TFW test case 8

5.1 Architecture of the test . 21
5.2 Grammar for fuzzer configuration 29

6.1 Example of log of fuzzer parameter size of ARP table 39
6.2 Example of log of generated parameter for ANIS 40
6.3 Example of log of the schedule with scenario 40
6.4 Example of log during schedule execution 41
6.5 Example of log during schedule execution 41
6.6 Generating payload for the scheduled packets 43
6.7 Call to the library function to create a UDP datagram 45
6.8 Callback function collecting fragments 46

54

List of Tables

5.1 Probabilities of generating desired values 30
5.2 Fuzzable parameters for ANIS configuration 32
5.3 Fuzzable parameters for schedule 32
5.4 Fuzzable parameters influencing all scenarios 32
5.5 Fuzzer parameters for specific scenario types 33

55

A. Attachments

A.1 Content of the file archive
The attachment contains source files for the fuzzer and configuration files. We
are not able to run the fuzzer without the PikeOS and TFW supporting libraries
which are not included in the attachments. The test is implemented only as a set
of header files, because of the complicated nature of the TFW.

• The duplicates folder contains script duplicates.py for counting duplicate
schedules as mentioned in Section 7.3

• The config files folder contains parts of configuration files, that were writen
or altered by us.

– The file anis.conf contains configuration of the fuzzer
– The file int.conf that sets partitions inside PikeOS
– The file snip.xml alterst the partition configuration during build
– The file tfwtags.xml updates TFW configuration

• The fuzzer/001 folder contains the source code for the fuzzer

– The file anis utils.h implements setting up ANIS configuration
– The file common.h defines common structures and header for the Mas-

ter and the Slave.
– The file data generator.h implements UDP payload generator.
– The file deserialize c c.h implements receiving communication between

Slave partitions.
– The file deserialize m c.h implements receiving communication be-

tween the Master and the Slave.
– The file fuzzer.h implements the fuzzer.
– The file fuzzer configuration helper.h implements helper structs for the

fuzzer.
– The file fuzzer parser.h implements parsing of the grammar
– The file fuzzer random.h implements generating values from the prob-

ability distributions.
– The file health check master.h implements the Health test on the Mas-

ter side.
– The file info data.h contains logging or debugging messages.
– The file logger.h implements the logger for the data.
– The file network client master.h implements execution of the scenarios

on the Master side.
– The file networking pike.h implements networking utils for the Slave.

56

– The file sc scheduled recv master.h implements the scheduled scenario
for the Master

– The file sc scheduled recv pike.h implements the scheduled scenario for
the Slave

– The file sc unfinished master.h implements the unfinished scenario for
the Master.

– The file sc unfinished pike.h implements the unfinished scenario for the
Slave.

– The file sc unthrottled master.h implements the unthrottled scenario
for the Master.

– The file sc unthrottled pike.h implements the unthrottled scenario for
the Slave.

– The file scenario.h defines structures for the scenarios.
– The file serialize c c.h implements sending communication between

Slave partitions.
– The file serialize m c.h implements receiving communication between

the Master and the Slave.
– The file sockets master.h implements helper function for manipulating

with sockets on the Master.
– The file tc fuzzer 001.master.c is an entry point for the Master appli-

cation.
– The file tc fuzzer 001.slave.c is an entry point for the Slave application

and implements Slave Controller.
– The file threads master.h implements the utility for the threads in the

Master.
– The file threads pike.h implements the utility for the threads in the

Slave.
– The file time utils.h implements manipulation with time.
– The file timing qport protocol.h implements protocol for Slave con-

troller to signal that it is time to execute next scenaro to ANIS Client.
– The file timing tfw protocol.h implements protocol for Slave controller

to signal that it is time to execute next scenaro to Master.
– The folder clientApp contains the file clientApp.c implements ANIS

Client.
– The folder healtTest contains the file healthTest.c implements Health

check on the Slave side.

57

	Introduction
	Thesis structure

	Background
	Real-time operating systems
	Network stack
	Certification
	Virtualization
	Fuzzing

	Fuzzing applications
	General purpose fuzzer
	American Fuzzing Loop
	SnapFuzz
	Summary

	Requirements and goals
	Scenarios
	ANIS configuration
	Success validation
	Summary

	General architecture of test
	First attempts
	Schedule and scenarios
	Test design
	Components of the test
	Master components
	Slave partitions
	Implemented scenarios
	Configuration parameters for fuzzer
	Fuzzer parameters
	Evolution of health check

	Technical implementation
	Memory management in PikeOS
	Parallelism
	ANIS configuration
	Logs
	Fuzzer
	Scenarios
	Extending the long run test

	Use of the test
	Set up fuzzer in TFW
	Investigating findings of the fuzzer
	Effectiveness

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Content of the file archive

