
BACHELOR THESIS

Jan Pavelka

Object layout in a 2D room based on
text description

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: Mgr. Rudolf Rosa, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I thank my supervisor Rudolf Rosa for his advice, insights, help and undying
patience. I thank my friends Petr Kupka and Jan Brokeš for providing example
input data for the task. Last but not least, let me thank my family and friends
for great support throughout the work on this thesis and my studies.

ii

Title: Object layout in a 2D room based on text description

Author: Jan Pavelka

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. Rudolf Rosa, Ph.D., Institute of Formal and Applied Linguistics

Abstract: This thesis presents a solution for generating structured description of
a 2D map of a room from a bird’s eye view based on textual description in Czech.
It focuses on identifying physical objects and their mutual relative positions in
the description. It describes linguistic phenomena of the information extraction
and their usage in the implementation. It shows how syntactic parsing can be
used for this task. Then, it uses a genetic algorithm to find a feasible layout
of the extracted objects with respect to spatial constraints constructed from the
extracted information.

Keywords: natural language processing, scene layout

Název práce: Rozmı́stěńı objekt̊u ve 2D mı́stnosti dle textového popisu

Autor: Jan Pavelka

Ústav: Ústav formálńı a aplikované lingvistiky

Vedoućı bakalářské práce: Mgr. Rudolf Rosa, Ph.D., Ústav formálńı a aplikované
lingvistiky

Abstrakt: Tato práce řeš́ı úlohu generováńı strukturovaného popisu 2D plánu
mı́stnosti z ptač́ı perspektivy na základě textového popisu v češtině. Zaměřuje
se na identifikaci fyzických objekt̊u a jejich vzájemných relativńıch poloh ve vs-
tupńım popisu. Dále popisuje lingvistické jevy souvisej́ıćı s touto úlohou a jejich
využit́ı v implementaci. Ukazuje, jak lze při řešeńı úlohy využ́ıt syntaktické
parsováńı. Pomoćı genetického algoritmu hledá použitelné rozmı́stěńı extraho-
vaných objekt̊u s ohledem na prostorové omezuj́ıćı podmı́nky zkonstruované z
extrahovaných informaćı.

Keywords: zpracováńı přirozeného jazyka, rozmı́stěńı objekt̊u

iii

Contents

Introduction 3

1 Problem 6
1.1 Background and Motivation . 6

1.1.1 Text and Map Description 6
1.1.2 Existing Applications . 7

1.2 Problem Specification . 8
1.2.1 Input . 8
1.2.2 Output . 8

2 Solution 10
2.1 Data collection . 10
2.2 Approach . 10

3 Linguistic Analysis 12
3.1 Lemmatization . 12
3.2 Nouns . 12
3.3 Numerals and quantifiers . 13
3.4 Prepositions . 14

3.4.1 Etymological classification 14
3.4.2 Syntax . 15
3.4.3 Semantics . 15
3.4.4 Semantics of Directed Prepositions 17
3.4.5 Prepositional structures in UD 21

3.5 Coordination . 21

4 Layout Problem 24
4.1 Specification . 24
4.2 Previous Works . 25

4.2.1 Techniques and ideas . 25
4.2.2 Algorithms . 26

4.3 My Approach: Genetic Algorithm 26

5 Algorithmic Overview 28
5.1 Information extraction . 28

5.1.1 Syntactic Parsing . 28
5.1.2 Semantic Information Extraction 28
5.1.3 From Semantics to the Placing Problem 32
5.1.4 Evaluating Placing using Geometric Constraints 32

5.2 Placing . 33
5.2.1 My Solution . 33

6 Implementation 35
6.1 External online services . 35

6.1.1 Korektor . 35
6.1.2 UDPipe . 35

1

6.1.3 MorphoDiTa . 35
6.2 Libraries . 36
6.3 Application Design . 36

6.3.1 Modules . 36
6.3.2 Code Organization . 38
6.3.3 Input . 38
6.3.4 Language Processing . 38
6.3.5 Information Extraction . 38
6.3.6 Composition . 39
6.3.7 Output . 39

7 User Manual 40
7.1 Requirements and installation . 40
7.2 Usage . 40
7.3 Configuration files . 40

8 Results and Discussion 41

9 Future Works 45
9.1 Lexical Support . 45
9.2 Improving Extraction . 45

9.2.1 Adverbs . 45
9.2.2 Non-numerical quantifiers 45
9.2.3 Coreference . 46

9.3 Improving Placement Algorithm 46
9.4 Optimizing the implementation 46
9.5 Other Potential Extensions . 47

Conclusion 48

Bibliography 49

List of Figures 50

List of Tables 51

List of Abbreviations 52

A Attachments 54
A.1 The Code of the Solution . 54
A.2 Czech Spatial Prepositions . 54

2

Introduction
This thesis aims to generate a 2D map of a room based on textual description.
It extracts structured information about the shape of the room, the physical
objects inside the room and their mutual positions from the text input written in
natural Czech language (figure 1). Based on this information it assigns positional
coordinates and a rotation angle to the objects. The output is a structured json
file that describes the layout of the room from a bird’s eye view and can be easily
used as an input for a graphical module1 to draw the map automatically. The
original idea is to use this map generator for preparing RPG maps but it can be
used for any object placement into a 2D scene based on text description.

Existing applications usually focus on creating RPG maps by hand or gener-
ating them randomly, some of them allow to set parameters (see section 1.1.2).
There is a text-to-image ML model that aims to generate maps from textual de-
scription but the results are not satisfying and do not always respect the input
completely. Many other works focus on 2D or 3D object layout which is a difficult
problem on its own (see section 4.2.2).

The main focus of this thesis is on the linguistic analysis of the problem (sec-
tion 3) and on the NLP part of the solution (section 5). With the aid of syntactic
parser such as UDPipe I try to identify the correspondence of the syntactic re-
lations between the words in the sentence and the spatial relation between real
physical objects as well as their types and shapes. The dependency syntactic tree
constructed by the syntactic parser can be inspected automatically and useful in-
formation (such as nouns refering to real objects or spatial prepositions and their
arguments) can be extracted from it. This semantic information can be used to
create computer representations of the real objects and placing rules which have
to be satisfied.

Based on the extracted placing rules, actual representational geometric shapes
in the area of the room are constructed from the identified items. The placement
of the shapes is determined by a genetic algorithm which tries to find the best
solution according to the evaluation of geometric constraints extracted from the
placing rules (section 5.2).

The solution is a console application implemented in Python (chapter 6). It
uses several Python libraries that can be installed by pip and few online services
such as UDPipe for syntactic parsing and other natural language processing. The
application design is modular. On the high level, the code can be described as
a pipeline of five modules: Importing, Language Processing, information Extraction,
Composing and Exporting. The mainstaysof the solution are information Extraction

1The graphical module is not part of the thesis. Though, a simple plotting module that is
able to plot the result into Cartesian coordinate system is included.

Vejdete do čtvercové mı́stnosti. Kolem stolu stojı́ dvě židle.

Figure 1: Example input. [You enter a square room. There is a table and two
chairs around it.]

3

{
"types": [

{
"name": "chair",
"terms": ["židle", "křeslo", "sesle"],
"geometry": [[0.0, 0.0], [0.4, 0.0], [0.4, 0.4], [0.0, 0.4], [0.0, 0.0]]

},
{

"name": "table",
"terms": ["stůl"],
"geometry": [[0.0, 0.0], [1.6, 0.0], [1.6, 0.8], [0.0, 0.8], [0.0, 0.0]]

}
],
"instances": [

{
"id": 0,
"type": "table",
"position": [1, 2],
"rotation": 0

},
{

"id": 1,
"type": "chair",
"position": [0.6411693601696831, 2.62893973934946],
"rotation": -0.18199051253175633

},
{

"id": 2,
"type": "chair",
"position": [0.6285673132718861, 1.653892778868146],
"rotation": 0

},
{

"id": -1,
"type": "default",
"position": [0, 0],
"rotation": 0

}
]

}

Figure 2: Example output in the json format.

4

Figure 3: Plot of the output

which extracts the semantic information from a syntactically parsed text and
Composing which implements the placing algorithm.

The usage of the application is straightforward (chapter 7). It simply processes
the standard input (see figure 1) in form of raw text and generates output in the
json format (see figure 3). Also, the results can be plotted by the application
(see figure)

5

1. Problem

1.1 Background and Motivation
In tabletop role-playing games (RPGs) such as Dungeons & Dragons (D&D) each
player except one assumes the role of a fictional character. The last player, usually
called gamemaster (GM), describes the setting and the environment of a scene in
which the characters are located. Based on these descriptions the players express
their characters’ emotions, reasonings and actions. If the actions are complicated
(such as combat encounters), a good map of the environment is very handy.

Thus, many pre-made D&D adventure modules include illustrated maps of
various locations which are essential to the story. Still, there might occur situ-
ations where the party decides to go to an unexpected place which has no map
pre-made. Also, many players prefer playing their own campaign rather than
running the oficially published modules.

Since the gamemaster often cannot anticipate players’ decisions, some envi-
ronments in which the characters occur are not included in his preparation. In
such scenarios, the GM can draw an improvised map on a piece of paper by hand
or find a similar one online and use it. But this approach takes some time and
slows the game. To prevent this, GM’s environmental descriprions could be used
to generate the map automatically. After all, the players also imagine the scene
based solely on the GM’s description.

A tool that generates a map from textual description would be useful for the
GM’s preparation, too. It could be also combined whith a speech recognition
software to produce the result in real time while the GM is speaking to the
players.

1.1.1 Text and Map Description
D&D campaign modules include many useful tools for running adventure includ-
ing maps of important locations (e. g. figure 1.1) and their descriptions (e. g. ex-
ample 1).

The text is meant to be read aloud to the players while playing the game. It
usually describes both the physical layout of the environment and the atmosphere
of it. It can also contain further information needed for the game such as the
presence of non-player characters or a magic aura, for instance. But these pieces
of information are irrelevant for generating the map of the room.

Text example 1 (Example from an official module (DnD [2014])). Three
large stone sarcophagi stand within this dusty crypt, and propped up against
each sarcophagus is a human skeleton clad in bits of rusty mail. False
columns along the walls are carved in the image of spreading oak trees.
The double doors in the southeast corner are sheathed in tarnished copper
plate.

The map depicts usually a room (or multiple rooms) from a bird’s eye view.
It is supposed to show the positions of the walls, windows and doors as well as

6

Figure 1.1: Actual map illustation from an oficially published D&D module (DnD
[2014]). The red rectangle denotes the room discribed in example 1

the furniture such as beds, tables, chairs, barrels, wardrobes etc. Besides it, it
should also contain items that are essential to the game.

The rooms are usually constructed with respect to an 1-inch square maze.
The maze is drawn over the map itself which makes easier to place miniatures
of the characters on the map while playing the game. The items are preferably
aligned to the maze if possible. 1 inch on the map usually represents 5 feet of
real distance.

1.1.2 Existing Applications
There are tools that can help the gamemaster prepare the maps. However, the
vast majority of them does not accept input in form of textual description.

donjon d20 Random Dungeon Generator 1 is one of random generaotrs
that generate a dungeon (multiple rooms interconnected) based on spec-
ified parameters.

Kasson House Map Generator 2 generates a house map which is visually
very close to the oficially published maps. Nonetheless, it generates it ran-
domly and not many parameters can be specified.

Dungeon Alchemyst 3 is recently one of the most popular software tools for
generating dungeon maps. Though it is very powerful and let the user
customize the random generated map until they are satisfied, it does not
accept textual description as an input.

1https://donjon.bin.sh/d20/dungeon/
2https://www.kassoon.com/dnd/house-map-generator/
3https://www.dungeonalchemist.com/

7

https://donjon.bin.sh/d20/dungeon/
https://www.kassoon.com/dnd/house-map-generator/
https://www.dungeonalchemist.com/
https://donjon.bin.sh/d20/dungeon/
https://www.kassoon.com/dnd/house-map-generator/
https://www.dungeonalchemist.com/

AI Map Generator 4 produces large-scale maps of larger areas rather than a
single building or room. And many results are not depicted from a bird’s
eye view. You can be lucky and get a satisfying result, though.
Even though it is the closest solution to what I attempt, it focuses on a
global view rather than details such as mentioned objects that should be
placed in the environment.

1.2 Problem Specification
Since the RPG map should be easy to use and practical in the first place, I focus
on things that are important for the game. Things in the environment that the
characters can interact with (e. g. chairs, tables and other objects in the room).
My goal is not to draw a map with high aesthetic quality which corresponds to
the feeling of the textual description but rather to detect as many physical objects
as possible and their mutual relative positions and put them on the map. Thus,
the output is in form of structured information instead of an image.

1.2.1 Input
The input for the task is a textual description of a single room in form of a raw
text string. The text is in Czech language and has a natural structure. No specific
syntactic or morphological constructions are required. To expect a proper result,
the text must speak about a room and mention how it looks and what physical
objects are inside and where they are placed.

Text example 2. V mı́stnosti stoj́ı dvě čalouněné židle kolem bohatě
prostřeného stolu.
[In the room there are two upholstered chairs around a richly laid table.]

Language

I chose to work with the Czech inputs because although there are applications that
solve similar tasks (see section 1.1.2), they usually work with English. Moreover,
Czech is my mother tongue and my sense for Czech is better than my sense for
English. On the other hand, I tried to make the solution as language-independent
as possible.

1.2.2 Output
The goal of the solution is to produce structured information about the room
described in the input. It should be easily processable by a graphical module so
it could be used for drawing the map automatically. This means that the output
should contain

• shape of the room described by sequence of coordinates of the shape’s ver-
tices;

4https://perchance.org/ai-map-generator/

8

https://perchance.org/ai-map-generator/
https://perchance.org/ai-map-generator/

• list of items that are present in the room including

– their shape – also described by the coordinates,
– their position,
– their rotation.

The output file is formatted as json.

{
"types": [

{
"name": "table",
"terms": ["stůl"],
"geometry": [[0.0, 0.0], [1.6, 0.0], [1.6, 0.8], [0.0, 0.8], [0.0, 0.0]]

},
{

"name": "chair",
"terms": ["židle", "křeslo", "sesle"],
"geometry": [[0.0, 0.0], [0.4, 0.0], [0.4, 0.4], [0.0, 0.4], [0.0, 0.0]]

}
],
"instances": [

{
"id": 0,
"type": "chair",
"position": [2.5937934771450855, 0.7140583463594873],
"rotation": 180

},
{

"id": 1,
"type": "chair",
"position": [2.6518019915106588, 0.13278771448164994],
"rotation": 180

},
{

"id": 2,
"type": "table",
"position": [1, 0],
"rotation": 0

},
{

"id": -1,
"type": "default",
"position": [0, 0],
"rotation": 0

}
]

}

9

2. Solution

2.1 Data collection
Although there exist many officially published adventure modules that contain
many human-illustrated maps and textual description of places, they are not
publically available for using. Also, the vast majority of them are in English
and they have no Czech translations. Even if I were able to obtain rights to use
them, it would take a huge amount of time to collect them and prepare them
for computer processing, since they are usually only available in printed physical
books.

There are online services that are able to generate textual description for
RPGs.

dScryb 1 is a large database of textual descriptions of places, items, charcters
etc. They should be all human-written. You can also pay them to create a
new description for you.

ChatGPT 2 or other large language models can be also used for generating text.

These sources provide only texts and no graphical output but they can be used
for inspecting linguistic phenomena which must be dealt with. But again, these
produce English outputs.

I am not aware of any specialized application capable of generating room
descriptions in Czech. machine translation (MT) or general language models
could be used but I rather chose to write small amount of high-quality data
manually. I also asked my friends who are experienced gamemasters to write
some textual room descriptions that could be used while playing RPGs. These
descriptions are considered gold data since they are written manually by humans.
The texts are in Czech and contain gramatical errors and typos.

I did not put any restrictions on how the descriptions should look like because
I wanted them to be as natural and unbiased as possible.

2.2 Approach
The data I have collected are not sufficient for training a machine learning model.
I have only few dozens of room textual descriptions and no target data. So, I
chose a different approach to the solution. The approach is primarily rule-based
but includes the usage of UDPipe3, an online available ML model (Straka and
Straková [2016]).

The solution focuses on finding items which are said to be present in the room
and placing them according to the information in the input description. Much of
this information is expressed using lexical, morphological and syntactic features
of a language (Ursini [2010]). UDPipe is able to extract these features from the
text. From these features, structured description of the scene can be constructed.

1https://dscryb.com/
2https://chat.openai.com/auth/login
3https://lindat.mff.cuni.cz/services/udpipe/

10

https://dscryb.com/
https://chat.openai.com/auth/login
https://lindat.mff.cuni.cz/services/udpipe/
https://dscryb.com/
https://chat.openai.com/auth/login
https://lindat.mff.cuni.cz/services/udpipe/

In the first place, let me inspect part of speech (PoS) tags. I am especially
interested in nouns, prepositions and numerals. Most often, nouns refer to real
objects. If nouns are detected in the input text, the corresponding objects can
be placed into the scene. Prepositions describe relations between the nouns, in-
cluding the spatial relations (Mlu [1986]). Based on them, spatial rules can be
constructed which express the mutual relative positions between the objects. Fi-
nally, the numerals modify the nouns and express the number of the corresponding
objects reffered by the nouns.

Other linguistic features, especially the position of the word tokens in a syn-
tactic tree of the input sentence, enable to find the relations between the words,
and therefore the relations between the real objects.

If I am able to extract objects and placing rules from the input text, I can use
a placing algorithm to get a layout which respects the rules and thus the input
textual description. In most cases, there is no single correct solution since one
description can correspond to many possible layouts of the room. Some solutions
will be probably better or more natural than others. The goal is to choose the
best one from the candidates the algorithm produces. This can be achieved by
an evolutionary algorithm (Sanchez et al. [2003]) which mutates the candidates
over multiple generations and in each generation, it only lets the fittest ones
survive. At the end, there should be a solution which is significantly better than
the original ones that were generated at random during the initilaization of the
evolutionary algorithm.

11

3. Linguistic Analysis
The input text can be analyzed on various levels. Since the goal is to extract real-
world information, it would be ideal to obtain a semantic analysis of the input
text. However, this is a very complex problem in general. There are many tools for
extracting specific semantic information (such as sentiment analysis, information
retrieval etc.). To a certain extent, these tools usually rely on syntactic parsing
of the text and this is also the case of this project.

Syntactic parsing is usually easier because it is closer to the surface level of
the text. I use UDPipe1 online service for syntactic parsing. This tool accepts
a raw text string and outputs a dependency syntactic tree in Universal Depen-
dencies (UD) format. Each node of the tree corresponds to a single token (word,
number, punctuation mark etc.) in a sentence. This tree can be then processed
automatically and based on its structure semantic connections between words in
the sentence can be detected (e. g. spatial relations between the objects denoted
by the words).

Let me now focus on the linguistic aspects of the task. This linguistic knowl-
edge will then be used to solve the problem of extracting information from the
text.

3.1 Lemmatization
Definition 1 (Lemma). Lemma is the canonical form of a word. It is the chosen
representant of all inflectional forms of the word.

Definition 2 (Lemmatization). Lemmatization is the process of labeling tokens2

in a given text with their lemmata.

Lemmatization is critical in NLP because it reduces the number of text strings
that refer to the same entity. UDPipe performs it automatically and the nodes
of the output syntactic trees are annotated with their lemmata.

The canonical form is usually the one that occurs as a dictionary entry. In
Czech and many other inflected languages, it is the nominative case singular
number for nouns (e. g. stolu, stoly, stole all have lemma st̊ul [table] because
they differ only in an inflectional suffix) and adjectives (e. g. dlouhý, dlouhá,
dlouhému have lemma dlouhý [long]) and the non-vocalized form of prepositions
(v and ve are forms of v [in]).

3.2 Nouns
Nouns (n.s) are names for both physical and non-physical entities. Since my
input data contain almost exclusively the nouns that denote physical objects,
I presume to genralize this and consider all nouns in the input to refer to the
physical objects to be placed in the scene.

1https://lindat.mff.cuni.cz/services/udpipe/
2In NLP, usually all tokens are lemmatized, including punctuation marks.

12

https://lindat.mff.cuni.cz/services/udpipe/
https://lindat.mff.cuni.cz/services/udpipe/

Grammatical Actual
number number Example

Singular 1 st̊ul [table]
Dual 2 se třema nohama [with threedl legsdl]
Plural ≥ 2 vedle posteĺı [next to the beds]

Table 3.1: Gramatical numbers and examples

(a) tři židle
[three chairs]

(b) 3 židle
[3 chairs]

(c) pět židĺı
[five chairs]

(d) mnoho židĺı
[many chairs]

Figure 3.1: UD representation of numeral. The structure is the same in all cases.

Nouns forms express gramatical number (singular, dual3 and plural). This
can be used to determine number of objects that are denoted by a single noun
(see table 3.1).

Noun lemmata can be assigned to the types of the objects (e. g. chairs)
they denote. One type of objects can be denoted by multiple synonyms (e. g.
židle, sesle, křeslo, tr̊un are all synonyms that denote (various kinds of) a chair).
Thanks to the lemmatization, I can only list the synonyms in their canonical
form.

3.3 Numerals and quantifiers
Numerals (num.s) express numbers of entities. They modify nouns, especially
their count or amount. In the UD (see 3.1), their node is always governed by the
node of the noun that they modify, even though in Czech, their syntax is some-
what complicated4 They can be used to determine the number of the governing
noun’s objects if the noun is in plural.

There are also other, vague, quantifiers besides the concrete numerals (e. g.
několik [several], mnoho [many]). In Czech, they are also traditionally considered
numerals but in the UD they are labeled as determiners.

3Very rare in contemporary Czech. Almost exclusively used only for parts of body that are
in pairs (legs, arms, eyes, ears etc.). In metaphorical meanings (such as leg of a table) plural
forms are used.

4They act as adjectives in the case of 1, 2, 3, 4 and share the case of the governing noun.
But in the case of 5, 6, 7 etc. they act as nouns and determine the case of the governing noun.

13

3.4 Prepositions
The main focus of this theses is on prepositions because most spatial information
is expressed by them5.

Prepositions (prep.s) are adpositions (adp.s) that stand before their comple-
ment. In the Czech language, they are an uninflectable, synsemantic part of
speech (Mlu [1986]). Syntactically, they are inseparable from their complement,
and they determine their complement’s case. Rather than having full sense on
their own, they express spatial, temporal, genetic, and other relations between
other words in a sentence (Biskup [2017]).

3.4.1 Etymological classification
Etymologically, prepositions are divided into proper (primary) and improper (sec-
ondary).

Proper prepositions

Proper prepositions are original monomorphemic short words, typically nonsyl-
labic (k [towards], s [with], v [in], z [from]) or monosyllabic (o [about], u [at], na
[on], od [from], do [into], etc.). They are not derived. They are a closed category
thus all nineteen of them (Biskup [2017]) can be listed:

Text example 3 (Proper prepositions). Bez [without], do [(in)to], k
[to(wards)], na [on], nad [above], o [about], ob [every other], od [from],
po [after, along the surface of], pod [under], pro [for], před [before], přes
[over], při [at, by], s [with], u [at], v [in], z [from], za [behind] (Mlu [1986])

Excluding bez [without] and pro [for], each of them also has at least one spatial
sense (Slo [1960-1971]). Since they are a closed category and the most common
prepositions in the language, they should be covered by the solution.

Improper prepositions

Improper prepositions are fixed forms of words originally assigned to other parts
of speech. They often express more specific or emphasized sense than the primary
prepositions.

v [in] (prep.) + prostřed [middle] (n.) → vprostřed [in the middle] (adv.)
→ vprostřed mı́stnosti [in the middle of the room] (prep. + n.)

Usually, a human can identify them easily since they share their form with
the original word. But they are an open category and there are many of them
with many various senses. I tried to cover at least the most common ones from
the localization list in Čermák [1996]:

5This section covers prepositional phenomena that are relevant for the task (see attachment
A.2 for mor linguistic details about prepositions)

14

Figure 3.2: vlevo od [on the left of] is composed of two nodes, vlevo [on the left]
is considered to be an adverb and od [of] a preposition

.

Text example 4 (Covered prepositions). bĺızko, bĺı̌ze, dle, do, doprostřed,
dovnitř, k, kol, kolem, kraj, mezi, mimo, na, nad, naproti, např́ıč, nas-
pod/u, navrch/u, nedaleko, od, okolo, opodál, po, pobĺı̌z, pod, podél, podle,
prostředkem, proti, před, přes, při, skrz, stranou, středem, u, uprostřed,
uvnitř, v, vedle, v(e)prostřed, vespod/u, vevnitř, via, vně, vprostřed, vstř́ıc,
z, za, zespod/a, zevnitř, zeza, zkraje, zpod, zpoza, zprostřed; do bĺızkosti,
na konci, na začátku, směrem do/k/na/proti, ve vzdálenosti, v okruhu, ze
vzdálenosti

Of course, more prepositions can be added to the list. Some of the impoper
prepositions are multi-word (freezed constructions originally). In UD, each to-
ken has a separate node and the non-prepositional part of the construction is
annotated as the former PoS of the word (see figure 3.2).

3.4.2 Syntax
In Czech, the preposition always stands before its complement.6 The complement
is a noun, pronoun, or their equivalent. It must be present unless the preposi-
tion is a part of an idiom (být pro [be in favor (of a proposition)], nahoře bez
[topless]). Furthermore, the complement cannot be shifted across the sentence
but can be modified by an attribute (pod dřevěnou židĺı [under wooden chair])
(Biskup [2017]). In extreme cases, this results in multiple prepositions in a row
(žádný z na smrt unavených lid́ı [none of dead tired people] (Machálek [2014])).

3.4.3 Semantics
Primary prepositions are usually modeled as two-argument predicates that ex-
press the relation between the dominating and the dominated argument (Mlu
[1986]).

6Except for a few exceptional postpositions (postp.s) (e. g. protest̊um (n.) navzdory (postp.)
[despite protests]).

15

Definition 3. The dominated argument is the preposition’s complement and is
called internal (or ground).

hrnek na stole [a mug on the table] – stole [tableL] is the ground

Definition 4. The dominating argument is a noun, a verb, or the whole propo-
sition and is called external (or figure).

hrnek na stole [a mug on the table] – hrnek is the figure; na stole is the
attribute of hrnek
Na zahradě se budou slavit narozeniny. [Birthday will be celebrated in the
garden.] – the whole sentence is the figure, Na zahradě is an adverbial

General semantic features

Definition 5. General relational meanings of the prepositions can be defined
using these three binary features.

1. Staticity – dynamicity. Determines whether the figure is in motion
(either literally or figuratively). In Czech, this feature is often expressed by
the ground’s case rather than the preposition itself.

• Sed́ım na podlaze. [I am sitting on the floor.] (na (L) [on] –
static)

• Sednu na podlahu. [I am going to sit down on the floor.] (na
(A) [on] – dynamic)

2. Directedness – undirectedness. Directed prepositions need the ground
to be oriented. Undirected prepositions lack the information of direction.

• před domem [in front of the house] (directed)

• u domu [at the house] (undirected)

3. Contact – lack of contact. Contact prepositions suggest that the figure
is in touch with the ground at some point.

• táhnout na Bělehrad [to march on Belgrade] (contactless)

• ležet na stole [to lie on the table] (contact)

Staticity–dynamicity is irrelevant for the task since the scene is considered to
be always static. Even dynamic prepositional constructions can be used when
describing a static scene, though (židle byla postavena ke zdi [a chair was placed
to the wall]). For the purpose of the task, such constructions can be merged
with their static counterparts (židle je postavena u zdi [a chair is placed at the

16

Figure 3.3: Conceptual meaning of the primary (spatial) prepositions. The
continuous-line rectangle represents the ground, and the prepositions show the
relative position of the figure with respect to the ground. (Mlu [1986])

wall]). After all, in many cases, only the case of the complement differs while the
preposition itself remains unchanged.

The latter two features are critical for represnting the meanings of the prepo-
sitions. The contact can be easily encoded as physical distance. Undirected
prepositions are relatively simple, too, since they do not require the knowledge
of the ground’s and figure’s sptial orientation.

Directed prepositions are more complicated in terms of extracting spatial in-
formation (see section 3.4.4).

3.4.4 Semantics of Directed Prepositions
Modeling semantic meanings of directed prepositions (such as před, za, vlevo od,
vpravo od [in front of, behind, on the left of, on the right of]) is somewhat
complicated.

Since the task is two-dimensional, the prepositions that speak about the ver-
tical position can be reduced to undirected horizontal prepositions.

nad, pod, přes [above, under, over] → v [in]

During the implementation of the project, it emerged that the human un-
derstanding of horizontally directed prepositions is ambiguous. It depenends on
the position of the observer (1st or 2nd person) as wel as the orientation of the

17

(a) Front and back sides (b) Left and right side

Figure 3.4: Observer’s point of view

(a) If the ground has a natural face (e. g.
a wardrobe), the observer says “the chair is on

the right side of the wardrobe”

(b) If the ground has no face (e. g. a table),
the observer says: “the chair is in front of the
table” The observers assumes that the ground

is facing them.

Figure 3.5: Directed vs. undirected (faceless) objects. The red suare is an ob-
server, the purple square is a figure (e. g. a chair) and the orange rectangle is
a ground. Points denote their faces.

objects.
If the ground is the observer themself, it is straightforward (see figure 3.4).

The areas of the figure’s possible location is a half-plane which can be easily
defined based solely on the orientation of the observer.

If the observer uses a directed preposition while describing positions of other
figures, things get more complicated (see figure 3.5). The orientation of the ob-
jects must be considered as well as the observer’s relative position to the objects.

If the ground object has a natural front side (let me call it face) such as the
door of a wardrobe, the observer usually tend to construct the front and back
half-planes with respect to the ground object orientation, but the left and right
half-planes are switched (see figure 3.5(a)).

If the ground object has no natural face side and no orientation anchoring in
the space (e. g. a tree in a forest), the observer usually describes the layout as if

18

the ground object’s face was facing them (see figure 3.5(b)).
The situation in my task is even more complicated since the room is usually

described through the eyes of a (hypothetical) observer who is present in the
room and, on the other hand, the output should be constructed from a bird’s
eye perspective. In most cases, you get into a room through a door, so the input
descriptions usually assumes the position of the observer at the entrance. Then,
the natural orientation of a map is such that the entrance is at the bottom.

I came up with three possible approaches of processing the directed preposi-
tions (see 3.6).

1. The half-planes around the objects are constructed with respect to the map
as a whole (figure 3.6(a)). That means that all objects are facing to the
bottom of the map.
This is the easiest approach to implement. The directed spatial relations
are simply based on comparing the horizontal and vertical coordinates on
the map. Even though this can be sufficient for describing positions of the
objects on a map, it turned out that the results are not very natural because
when people read the description, they imagine the actual three-dimensional
space of the room as if they were inside rather than a two-dimensional map
of the room.

2. The middle of the bottom margin of the map is chosen to be the position
of the observer and the half-planes around the objects are constructed with
respect to it (figure 3.6(b)).
This partially fixes the problem of unnatural results. On the other hand,
rooms are closed spaces and usually have a significantly bound structure.
This approach would work much better in an open space where such rigid
borders as walls are not present.
The problem of the room is that the side of the object that faces the wall
is considered as a back regardles of the position of the observer.

3. Each object has a defined face and the half-planes around it are constructed
base on its own orientation (figure 3.6(c)). Even the naturally faceless
objects are assigned a face. Defaultly, the face faces to the bottom of the
map. This means that if there is no reason for change the facing, this
approach reduces to the first one.
The default face direction could be also the observer from the approach
2, but since the map is meant to be used with a grid, I chose to perserve
the Cartesian orthogonal structure of the object layout as much as possible.
This should be the optimal compromise between naturality and practicality.

I performed few real-life experiments to choose the best approach. I pointed
at real objects and asked people where the object is placed with respect to them,
to me or other objects in the space. The experiments support the choice of the
third approach.

But many descriptions are still ambiguous and it seems there is no way to
distinguish them. Usually one sense is more probable than the others. The
experiments showed that the approach 3 covers the most expected meanings.

19

(a) Each object is facing down. (b) Each object is facing the observer.

(c) Each objects has its original face.

Figure 3.6: Approaches of processing directed prepositions. Only the front half-
plane is displayed. The blue point denotes the assumed face of the object based
on the approaches. The orange point denotes the real face of the object.

20

3.4.5 Prepositional structures in UD
In UD (see figure 3.7), the preposition are governed by their complement and
the dependency relation between them is annotated as case. The PoS tag is
ADP (adposition). The Feats of the preposition’s node include a key-value pair
AdpType=Prep. The preposition’s complement is the root of the whole prepo-
sitional phrase and is governed by a node which corresponds to the external
argument of the preposition (see section 3.4.3). The described phenomena such
as multi-word prepositions (see section 3.4) can complicate the structure of the
UD tree but are quite uncommon.

For my task, I need to consider multiple cases of the tree structure (see figure
3.7). If the parent of the preposition node is a noun (figure 3.7(a)), it is considered
to be the figure. In other cases (3.7(b), 3.7(c), 3.7(d)), the external argument
is formally the rest of the proposition as a hole. But I need to know which
physical object is relevant for the spatial relation expressed by the preposition.
Luckily, it seems that the structure is similar in all of the cases. The parent is
(part of) a predicate of the sentence. To find the noun relevant for the physical
object about which the text speaks, we need to iterate through the children of
the predicate nodes (the predicate can be composed of more nodes (figure 3.7(f)),
I take all of them into account). Among these children I choose all the nouns
except the one that is part of the prepositional phrase as the candidates (so in
figure 3.7(e) the candidates are oko [eye] and židli [chair], in the other cases it
is a single node židli [chair]). From the candidates, the most probable one is
chosen.

It is not clear which candidate is the most probable one if there are multiple
candidates. My choosing strategy is based on what I have seen in the data
and my experience. If the sentence has an object (židli [chair] in figure 3.7(e)),
I choose it rather than the subject (oko [eye]) since the subject is usually an actor
(the one who looks at the scene and describes it). If there is no object among the
candidates, the subject is chosen. As a backup solution, if no objects nor subjects
are found, the first candidate is considered to be the most probable. This should
be a rare case and I was not able to come up with an example of this.

3.5 Coordination
Both prepositional arguments (ground and figure) can be coordinated. In UD
(figure 3.8), coordination is denoted by conj dependency relation, thus it is easy
to extract it from the tree. When processing, the coordinated figures are dis-
tributed to the grounds, so in the end there is an instance of Preposition class
for each pair of a figure and a ground. Prepositions that have multiple semmantic
arguments (mezi [between, among]) are not currently supported.

21

(a) židle za stolem [chair behind table] (b) židle je za stolem [chair is behind
table]

(c) židle stoj́ı za stolem [chair stands
behind table]

(d) židle je postavena za stolem [chair
is placed behind table]

(e) židli vaše oči spatř́ı za stolem [your
eyes can see a chair behind the table]

(f) oko spatř́ı za stolem židli [an eye
can see a chair behind the table]

Figure 3.7: UD prepositional structure

22

Figure 3.8: Coordination in UD

23

4. Layout Problem
This part of the solution aims to place given physical objects in a specified space
based on given constraints. Since the result should be a two-dimensional (2D)
map of a room, I focues on a 2D version of the problem. Even though it is simpler
that the three-dimensional (3D) version of this problem, it is still a difficult and
time consuming task (Xu et al. [2002]).

4.1 Specification
Constraind-based object placement problem is a task of finding such object place-
ment that the constraints are satisfied. The positions are restricted by given area.

Input The input of the problem consists of:

• a list O of objects to be placed
Each object is defined by its shape. It is a polygon, a line segment string
or a point.

• an area A of the scene
The area is a 2D polygon. Each object should be placed inside the area
completely.

• a set C of abstract constraints to be satisfied
A constraint C is a mapping C : O2 → {0, 1} which assigns an evaluation
to the pair of objects

Output The output is a list P of so-called placings. Each placing is assigned
to a single object and each object has a single placing. A placing P of object O
consists of

• position
Coordinates where the object O is placed.

• rotation
Angle of the rotation of the object O.

The task is to find placings P of the objects such that:

1. all constraints C are satisfied (hard constraints, basically deicision problem),

2. as many constraints are satisfied as possible (hard constraints, optimization
problem),

3. or constraints are satisfied as much as possible (soft constraints, optimiza-
tion problem).
In this case the constraints are fuzzy and the range of the evaluation is
[0, 1]).

24

Since the constraints are not guaranteed to be entirely correct (they are ex-
tracted automatically from a text) and the objects are not guaranteed to fit into
the area, the problem does not necesseraly have a solution for hard constraints.
For this reason, I chose the third version of the problem.

4.2 Previous Works
Most of the papers I was abel to find solve 3D version of the problem. I work
with 2D environment but the ideas usually work for me.

The classical version of the problem is known to be NP-complete which means
that the computation time is expected to be long. The computation time can be
reduced by restricting the task to isothetic1 systems (Sanchez et al. [2003]).

4.2.1 Techniques and ideas
Let me now briefly mention some relevant placing techniques and which ideas
they ispire (see Xu et al. [2002] for more details, they focus on a slightly different
task but the ideas can be reused):

Reducing the number of degrees of freedom (DOF) Objects can be
snapped to grids or auxiliary helper geometry. Their placement can also
be restricted to a smaller area.
My objects should be snapped to the grid if possible, although this require-
ment is not very strict. So, their initial position is snapped to the grid but
during the placement process, they can be moved and rotated.
The idea of restricting placement area can be used for inside constraints.
This can be combined with the devide-and-conquer technique. Once smaller
objects are placed inside a larger one which is their placement area, they
are done. Then, only the larger object must be then placed into its area
and so on.

Pseudo-physical techniques Objects are placed to physically stable positions.
Objects are moved according to the defined pseudo-physical laws until they
find their stable position.
This technique is used indirectly. I only add default physical constraints
that must be satisfied always. These constraint represent the general phys-
ical properties of the objects (they must not overlap) and the spatial re-
striction of their placing (they must be inside the placement area).

Semantic techniques Objects are placed according to given semantic con-
straints.
These are in fact what is described throughout this chapter.

1Paralel and/or perpendicular to the coordinate system.

25

4.2.2 Algorithms
Various approaches have been tried to solve the constraint-based placement prob-
lem. Let me list some common techniques, with notes on their adequacy in my
setting (Sanchez et al. [2003]).

constraint satisfaction programing (CSP) works well for under-
constrained problems which is a typical scenario in 3D as well as in
my case. However, the results of such algorithm is often unrealistic and
artificial hard constraints must be added to improve them. The traditional
CSP solves the first variant of the problem – the constraints are hard and
the solution must satisfy all of them.

Numerical optimization (linear or non-linear programing) works well but only
if strict restrictions are set to the constraint systems.

Metaheuristics (local search techniques, evolutionist strategies)

Genetic algorithm (GA) works with soft constraints naturally and it does
not need the constraints to be differntiable. On the other hand, the right
choice of hyperparameters and genetic operators is highly dependent on the
problem and is not easy.

Machine learning (ML) techniques might be powerful but there are not
enough available data for training.

4.3 My Approach: Genetic Algorithm
For my project, I chose the genetic algorithm solution for the following reasons:

• It works well with the soft constraints which I prefer. The fitness function
can be based on the evaluation of the constraints.

• Since it is an optimizing algorithm and each individual encodes a possible
solution, it can be stopped at any time and the provided solution will always
be valid (although it may not be optimal).

• It works well even with over-constrained problems. Since the solution is
always valid, the computation can be stopped at any point and the result
will be sufficient.

• It can be used interactively. During the evloution, new objects can be added
without invalidating the solution.

• It is easy to implement and modify. Genetic operators can be changed and
improved independently and they can take advantage of knowledge of the
problem.

• My knowledge of GA is greater then the knowledge of other techniques that
I considered.

26

The GA is an optimizing algorithm. It is based on the idea of Darwinian
evolution. It is initialized with a population of individuals which encode possible
solutions. From these individuals, the fittest ones are selected into a mating pool.
Then, genetic operators (crossover and mutation) are applied on the individuals
in the mating pool. In the end, the offsprings are combined with the population
to form a new generation. This process repeats until an ending criterion is met.

27

5. Algorithmic Overview
The solution of the task can be divided into two main parts. The first part is the
information extraction and is based on theory in chapter 3. The other part is the
placement problem which was described in chapter 4.

5.1 Information extraction
The information extraction is performed in several steps (see figure 5.1). The
steps transduce the data from one form to another. It turned out that these
forms of data naturally correspond to the levels of language description (at least
the first three of them).

5.1.1 Syntactic Parsing
First of all, we need to syntactically parse the input text (figures 5.1(a) → 5.1(b)).
The text can be composed of multiple sentences. The sentences are tokenized,
lemmatized and then parsed to a syntactic dependency tree. This is done by
UDPipe. The result is not guaranteed to be always correct but it usually works
fine.

To improve the results of the parsing, the text is automatically corrected using
Korektor at first. This helps to get rid of typos, ortographical, and grammatical
errors that could be present in the input.

5.1.2 Semantic Information Extraction
Using the linguistic knowledge in section 3, the syntactic tree is processed (figures
5.1(b) → 5.1(c)). This part is strictly rule-based and the rules are derived from
the observed language phenomena (see 3). This means that the solution can be
improved by adding more rules or rewriting the current ones.1

The current version of the program inspects the tree and look for mentions
of physical objects, information about their spatial layout and global information
about the room.

The goal is to get a list of item types and counts that can be found in the
described room, a list of prepositional relations between the items that can be
easily processed by computer and at least slight insight into the room’s shape
and size.

From the linguistic point of view, this part of the solution basically corre-
sponds to the step from the syntactic to the semantic layer of language descrip-
tion, although the semantic description is very narrow and informal. From the
syntactic trees we get a list of semantic entities and their relations, even though
we are interested only in very specific features.

1This was experienced during the work many times. The original version was only able to
find physical objects mentioned in the text and place them randomly.

28

"židle u stolu"

[chair at table]
(a) Surface level. Raw string.

(b) Syntax level. Dependency tree representation.

ITIR 1

type = chair
index = (0, 0)

ITIR 2

type = table
index = (0, 2)

Preposition

lemma = "za"
figure = ITIR 1
ground = ITIR 2

(c) Semantic level. Item type index references represent the reference between
the sentence tokens and real world entities. Prepositions represent semantic

relations between them.

II 1

type = chair
id = 0

II 2

type = table
id = 1

Rule

relation = at
item = II 1
reference = II 2

(d) Real object representation. Item instances represent real physical
objects. Rules represent their mutual relative placements mentioned in the

text.

Shape 1

vertices = . . .

Shape 2

vertices = . . .

Constraint

function = near
shape = Shape 1
other = Shape 2

(e) Geometric level. Shapes are extracted from the items and they are defined
by concrete vertices (they are placed in the environment). The constraints are

soft and they evaluate the quality of the placement of the shapes.

Figure 5.1: Extraction structure. The figure shows how the information is ex-
tracted from the input. The corresponding boxes are placed respectively.

29

Item Extraction

As described in section 3.2, each noun in the tree is considered to be a candidate
for items. Firstly, I need to distinguish them, which means I have to determine
their so-called type.

The solution requires a list of supported item types. Each type defines the
shape of all items of that type. The type also lists all possible synonymous terms
that can be used to refer to an item of that type. For example, type chair defines
the shape2 of square 0.4×0.4 and lists Czech synonyms that denote (various kinds
of) chairs: židle, sesle, křeslo, tr̊un. The terms should be unique among the types
– no term is allowed to be assigned to more than one type.

The candidates are iterated through and they are asigned the types based on
their lemmata. If a lemma of a candidate is found among terms of a type, this
type is assigned to a candidate and the candidate is inserted into the output list.
If the lemma is not found in any type, a special type unsupported is assigned to
it. From the point of view of the rest of the program, unsupported is considered
to be a regular type with a predefined shape. The idea is that an unrecognized
noun denotes also an item with a very high probability. These unsupported items
can be set to be ignored, too.

The output of this step is a list of so-called item type index references.
They combine the type object with the index of the corresponding node in the
tree so that both the node and the type could be easily accesible.

Correferences Multiple words in the text may refer both to the same item or
different items of the same time. This is called correference and it is a difficult
task of NLP. This thesis does not attempt to solve this problem perfectly.

The most common case is pronoun which refer to entities already mentioned.
This solution ignores pronouns completely. In the case of nouns, only first mention
is taken into accounta and the latter nouns with the same lemma are considered
to refer to the same item (or group of items if the nouns are in plural number).

Determining Number of Items For all the item type index references, the
number of their instances must be determined. Again, the program inspects the
tree. The noun nodes contains a morphological tag specifying its grammatical
number. If it is singular, the number of the instances which are going to be
created is set to 1. In the case of plural the closest preceding numeral node is
seeked. If there is one, the number is extracted from the numeral. Otherwise,
the number is chosen uniformly at random from {2, 3, 4, 5, 6}. The idea is that if
the number is not mentioned in the description, it is not that important and the
usual counts of things tend to be small.

Room Information Extraction

Room type is a special kind of item type in terms of extracting information. If
there is a node with a lemma present in the room type’s terms, regular item type
index reference is constructed. In such case, there is a node in the tree that refers
to the room. Otherwise, the index to the tree is set to an invalid value.

2Shape will be used later in section 5.2 for placing.

30

Figure 5.2: Results of parsing multi-word prepositions by UDPipe [a chair on the
left of the table].

The concrete type of the room is determined by the attributes of the noun
reffering to the room. These attributes can be found among the children of the
noun’s node. They are compared with the terms of supported room types and
if there is a match, the appropriate room type is chosen. Otherwise, room type
default is chosen.

Preposition Extraction

The goal is to construct semantic representation of a preposition. Such repre-
sentation is defined as a binary relation between the figure and the ground (see
section 3.4.3) where the figure and the ground are item type index references (i.
e. typed tokens – they represent the in-between step between the sentence tokens
on the syntactic level and the real-world object representation on the other side).
The type of the relation is represented by the preposition’s lemma.

Firstly, the prepositional nodes are filtered from the tree. This is achieved by
inspecting PoS tag of the node and checking if the lemma of the preposition is
present among the supported prepositions.

Since multi-word prepositions are very common in room descriptions and
I want them covered, before the searching the ground and figure nodes, all parts
of multi-word prepositions must be put together. However, UD treats each token
separately and the tree structures vary (see figure 5.2). But I can take advan-
tage of the collection of the supported prepositions. The collection also includes
multi-word prepositions which can be easily distinguished because they contain
a space. Then, the neighbors of the node can be checked if they correspond to
one of the multi-word prepositions.

For each prepositial node (or couple of nodes in case of multi-word preposi-
tions) the program tries to find the nodes that correspond to the figure and the
ground. The search is based on the findings in section 3.4.5. It can find multiple
nodes for both the figure and the ground if they are coordinated. In this case,
both lists of the found nodes are distributed and in the output, a copy of the

31

prepositional relation is present for each figure-ground pair.

5.1.3 From Semantics to the Placing Problem
In this phase, I have a room representing item type index reference, a collection
of item type index references, counts of their instances and a set of prepositional
relations with their arguments. I want to get actual item instances and spatial
rules (figures 5.1(c) → 5.1(d)).

Creating Item Instances

Creating actual instances of item types is straightforward. For each item type
index reference, the given number of item instances of the corresponding type is
created. The same holds for the instance of the room.

Each of the resulting item instances now represents a single real-world ob-
ject (or room itself). These instances now will be placed according the rules
constructed from the prepositions.

Constructing Spatial Rules

All supported prepositional relation types are defined by a single rule which rep-
resents the spatial restriction they express. The rules are binary relations between
the item instances. They should be respected while placing the instances in order
to construct an output corresponding to the input text.

The type of the rule is determined by the type of the preposition. If the
preposition’s ground or figure represent more then one instance, the rule is con-
stracted for each figure-ground pair. The first argument of the rule is the item
that corresponds to the figure and the second is the item that corresponds to the
ground of the preposition.

There is a list of simple rules. There are also complex rules that combines
restrictions of multiple simple rules. The idea is that some complex spatial rela-
tion between objects can be decomposed to multiple simpler ones that must all
be satisfied at the same time.

5.1.4 Evaluating Placing using Geometric Constraints
The placing algorithm needs to be able to evaluate the potential positions and
rotations of the item instances based on the rules (figures 5.1(d) → 5.1(e)). This
is achieved by constructing actual geometric shapes from the instances, placing
them according to the given positions and rotations and measuring how well they
satisfy geometric constraints which are extracted from the rules.

Getting Shapes of the Instances

A shape is defined by its vertices. It can be 1D (point), 2D (line segment string) or
3D (polygon). The shapes of the item instances is defined by the type of the item.
It is usually a polygon. The item type shape have the first vertex in the origin
(coordinates (0, 0)). The actual shape of the instance is then constructed from
the type’s shape but is translated and rotated according to the given parameters.

32

During the constraint extraction, there might be created auxiliary shapes
that do not represent any actual instance. They are critical for evaluating some
constraints.

Constraints

The constraints are constructed from the simple rules. They are relations between
two geometric shapes (points, line segment strings or polygons) and the area
where the shapes are being placed. They must be evaluatable. Thus they must
be as simple as possible and rely on the geometry of the shapes and the area.

In our approach, they are based on fuzzy logic which means that the result of
their evaluation is not a binary value but a real number from [0, 1]. This value
represents how well the constraint is satisfied. The higher the value is, the more
satisfied the constrained is. This dependence should the same for all types of
constraint if possible. I do not want to favor any constraint at the expense of
the others. If the evaluation result is 1, it means that the result is completely
satisfied and the evaluation cannot be improved.

It turns out, that all the supported rules can be in the end reduced to combi-
nation of four geometric constraints, although some auxiliary shapes that do not
represent any real item instance are sometimes needed. The idea is based on the
binary general semantic features of the prepositions (see 3.4.3).

Decomposing undirected rules (rules that were created from undirected prepo-
sitions) is relatively straightforward. They mostly correspond to a single con-
straint. Directed rules are more complicated. They need auxiliary shapes to
express the proper location.

Since the construction of the constraints is more complicated, each simple rule
needs a constructing function which produces constraints from the rule.

5.2 Placing
The input of the placing algorithm is a list of item instances, a set of rules that
are expected to be satisfied and a room instance which specifies the area where
the instances should be placed. Besides the rules extracted from the text, there
are also natural physical constraints such as the items should not overlap (if it is
not explicitely stated) and that all items should be placed inside the room.

The goal is to place each instance so that the rules are satisfied as much as
possible. So, the output is list of positions and rotations for each item instance.

5.2.1 My Solution
My solution is based on the idea of a simple genetic algorithm. In the simple
genetic algorithm, a population of individuals that encode the solution evolves.
In each generation, some individuals are mutated and some mate and produce
crossovered offsprings of themselves. Then the fittest individuals are selected for
the next generation.

In my case, the individuals are placings of the item instances and the fitness
function is based on the constraint evaluation.

33

Individuals Each individuals encodes a solution candidate. It contains placing
of each item instance. Placings are composed of position and rotation. The
position is a vector of two real numbers – coordinates of the item. The rotation is
an angle (in degrees) between the face of the instance and a vertical ray directed
down.

Population Initilization All individuals are initialized randomly. Since the
layout should be as orthogonal as possible, the rotation initial value is chosen from
{0, 90, 180, 270} uniformly at random. The position coordinates are generated in
such way that the whole item fits into the area of the room.

Genetic Operators The current solution includes only the mutation operator.
If an individual is selected for the mutation, some of its placings are modified by
adding a random value from normal distribution to the position or the rotation.

Selection I use (µ + λ) strategy which selects µ individuals from the combined
population of µ parents and λ offsprings (mutants). Tournament selections is
performed which iteratively selects two individuals and the fitter of the two is
added to the new generation.

Fitness Function The fitness function is defined as the sum of all evaluations
of the geometric constraints.

This means that in each generation of the algorithm new shapes and con-
straints must be generated because the shapes might have been shifed and there-
fore the auxiliary shapes are totally different. This slows the algorithm down
significantly.

Result After specified number of generations, the fittest individual is returned
as the best placing.

34

6. Implementation
The solution is implemented in Python. It uses online services using REST API
and several non-standard libraries.

6.1 External online services
For the purpose of language processing, several web services are used. All of them
are accessed using REST API and the response is in form of a json file.

6.1.1 Korektor
Korektor1 is a statistical spellchecker and (occasional) grammar checker. It is
released under 2-Clause BSD license2 license.

It is used to hopefully improve the results of the syntactic parsing because
users’ inputs might contain typos and various errors. It outputs a corrected
version of uploaded text.

6.1.2 UDPipe
UDPipe3 is the essential service for this solution. It is a trainable pipeline for
tokenization, tagging and dependency parsing. It can be downloaded and trained
(Straka and Straková [2016]). I use the UDPipe web service that is publically
available under the Mozilla Public License 2.04. There are many linguistic models
to choose from. They are distributed under the CC BY-NC-SA5. I use the default
model which is guaranteed to be the latest Czech model (Straka and Straková
[2016]).

UDPipe parses the input text and returns a dependency tree. The output is
in CONLL-U6 format and respects the UD formalisms (section 3.4.5).

6.1.3 MorphoDiTa
MorphoDiTa7 is a tool for morphological analysis of natural language texts. It is
licensed under Mozilla Public License 2.08 an the models are distributed under
CC BY-NC-SA9.

In the solution, MorphoDiTa can be used as an alternative lemmatizer instead
of the UDPipe.

1http://lindat.mff.cuni.cz/services/korektor/info.php
2http://opensource.org/licenses/BSD-2-Clause
3https://lindat.mff.cuni.cz/services/udpipe/info.php
4http://www.mozilla.org/MPL/2.0/
5https://creativecommons.org/licenses/by-nc-sa/4.0/
6https://universaldependencies.org/format.html
7http://lindat.mff.cuni.cz/services/morphodita/info.php
8http://www.mozilla.org/MPL/2.0/
9https://creativecommons.org/licenses/by-nc-sa/4.0/

35

http://lindat.mff.cuni.cz/services/korektor/info.php
http://opensource.org/licenses/BSD-2-Clause
https://lindat.mff.cuni.cz/services/udpipe/info.php
http://www.mozilla.org/MPL/2.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://universaldependencies.org/format.html
http://lindat.mff.cuni.cz/services/morphodita/info.php
http://www.mozilla.org/MPL/2.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://lindat.mff.cuni.cz/services/korektor/info.php
http://opensource.org/licenses/BSD-2-Clause
https://lindat.mff.cuni.cz/services/udpipe/info.php
http://www.mozilla.org/MPL/2.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://universaldependencies.org/format.html
http://lindat.mff.cuni.cz/services/morphodita/info.php
http://www.mozilla.org/MPL/2.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

6.2 Libraries
The solution uses few Python libraries which can be installed by pip.
numpy10 (v. 1.22.3) is a well-known library for numerical calculations.

requests11 (v. 2.26.0) allows to send HTTP requests easily.

conllu12 (v. 4.4.2) parses the CONLL-U files which contain the syntactically
parsed text.

udapi13 (v. 0.3.0) is a framework for processin UD data.

shapely14 (v. 2.0.2) is a geometric library that allows to create and manipulate
geometric objects.

matplotlib15 is able to make plots.

6.3 Application Design
The high level structure is a pipline of five blocks (see figure 6.1). The Input block
loads the input and parses it to a string (str). This string is then processed by
the Language Processing block which outputs an NLPObject. It contains the syn-
tactically parsed text and is used by the Information Extraction block to find infor-
mation about the room, items, and their position. Based on this information, in-
formation Extraction block creates ItemInstances, Rules and an ItemInstance of
the room. These collections are used as an input for the Composition block which
composes them together to form a scene with all ItemInstances placed according
to the Rules. The output of this block are ItemInstances, their Placings, and
the instance of the room. These objects are then exported by the Output block.

Only Language Processing and Information Extraction are language-dependent.
The other do not process the natural language at all so they could be reused for
another languages.

6.3.1 Modules
The design is modular on two levels. The high-level structure is a pipeline of five
conceptual modules, let me call them blocks. Each of the blocks is composed of
several low-level modules.

These low-level modules are defined only by their interfaces so that they can
be easily replaced by another module with the same interface. This is useful
for comparing results generated using different approaches and for improving the
implementation of a certain module in the future.

Since Python is a duck-typed language, I simulate the interface semantics us-
ing
NotImplementedError() exception. Each low-level module has its own
directory containing interface.py file and various implementations. The
interface.py file contains a regular class whose name starts with I prefix
which indicates that the class is used as an interface. None method in the class
is implemented, they just raise the NotImplementedError() exception. Each
implementation of a module is in a separate file.

36

https://numpy.org/
https://requests.readthedocs.io/en/latest/
https://github.com/EmilStenstrom/conllu/
https://github.com/udapi/udapi-python
https://shapely.readthedocs.io/en/stable/
https://matplotlib.org/

Figure 6.1: High-level blocks in a pipeline

37

information Extraction Structure

Figure 6.2: Structure of the Information Extraction block

6.3.2 Code Organization
The code is implemented in src directory. It is organized to directories by low-
level modules (see 6.3.1).

In the data directory, json configuration files are stored.
The test directory contains testing files that were used throughout the work

as well as scripts performing certain experiments with libraries etc.
In the old directory, no-longer used code is stored.
The main.py is the entry-point which is used for executing the scripts.

6.3.3 Input
This block contains a single module text source. This module simply loads the
input and parses it to a string (str).

6.3.4 Language Processing
This block is composed of two modules: corrector which tries to correct the
typos and other grammatical and orthographical errors and nl preprocessor
which performs syntactic parsing on the input string. The result of this pars-
ing is an instance of NLPObject which is a central class that stores linguistic
information about the input text in form of both the conllu and the udapi tree
representation. It is also the output of this block.

The modules of this block are implemented using the web services UDPipe
and Korektor (see section 6.1). Formerly, even MorphoDiTa was used for another
module lemmatizer but since the lemmata can be easily extracted from the
NLPObject, it is no longer needed.

6.3.5 Information Extraction
This block implements the extraction of physical object representation and their
positional relations (see section 3). Since it is the focus of this thesis, it has the
most complex structure (see). The input of this block is the NLPObject. It is
used by many modules of this block since it is the central object containing the
linguistic information.

The extraction can be devided to three branches. The simplest of the tree
extracts information about the room and is composed of room finder which de-
termines the RoomType based on the NLPObject and room creator which creates
an ItemInstance of the room.

The second branch extracts items. Firstly, item finder determines the types
of the items present in the NLPObject. Then, the item counter determines the
counts of instances of each object. Finally, the item creator creates the given
number of ItemInstances of each ItemType.

The third branch is the most complicated. It uses outputs of the modules
in the previous branches as well as the central NLPObject to extract the Rule

38

from the text. Firstly, the preposition extractor extracts Prepositions which
represent the semantic prepositional relations between items (see 5.1.2). From
these Prepositions, Rules are then extracted using rule extractor. Besides
these extracted rules, default rules module constructs additional rules (see
pseudophysic techniques in section 4.2.1).

The output of this block is composed of:

1. list of ItemInstances

2. set of Rules,

3. an ItemInstance of a room

6.3.6 Composition
The Composition block attempts to find Placings for each ItemInstance which
respect the Rules. It is done by the placer which is implemented using genetic
algorithm (see 5.2).

The other modules of this block are constraint extractor which extracts
Constraints, evaluator which evaluates the individuals of the genetic algorithm
(lists of Placings) and genetic operator which includes SelectionOperator
and MutationOperator which are used during the evolution by the placer.

The output of this block consists of:

1. list of ItemInstances

2. list of Placings which respect the order of the ItemInstances,

3. an ItemInstance of a room

6.3.7 Output
This last block contains only one module outputter which outputs the so-
lution for the user. JsonOutputter dumps the solution to a json file.
PlottingOutputter uses matplotlib to plot the solution. It opens a window
with a plot.

39

7. User Manual

7.1 Requirements and installation
You need to have Python 3.9.41 installed on your system. The required packages
can be easily installed using pip.

python3 -m pip install -r requirements.txt

7.2 Usage
The usage is pretty simple. It just accepts the data from the standard input and
prints the result on the standard output in the json format.

python3 main.py

The input must be a raw Czech text in UTF-8. If it is entered by hand in the
terminal, it must be terminated with Ctrl+D on Linux or Ctrl+Z on Windows.
Of course, the script can also be pipelined.

python3 main.py <input_file

7.3 Configuration files
There are json configuration files that can be modified. Simply edit those files
to add support for new types of items, types of rooms, composed rules or prepo-
sitions. The structure of the files must be preserved but it is relatively simple
and selfexplanatory.

For example, in config/item types.json the item types are defined. Each
type must have the following structure.

{
"name" : "bed",
"terms" : ["postel", "lůžko", "lože"],
"geometry" : [[0, 0], [1.6, 0], [1.6, 0.8], [0, 0.8], [0, 0]]

},

The "name" defines the name of the item type. It must be unique. The "terms"
are Czech synonyms which can be used for the item type. They must be unique.
The geometry is a list of vertices of the polygon which defines the shape of the
item type. It should be a convex polygon.

1Other versions of Python 3 may work as well.

40

8. Results and Discussion
Let me now presents some results and comment them.

Counts of the items are recognized solidly (see figure 8.1(a)). It does not
matter whether the items are reffered by an object or a subject. The only problem
with the counts is the coreference (see figure 8.3(b)). If one item is reffered by
multiple words, they are not connected and thus, a new instance for each mention
is added.

It seems that in terms of extracting prepositions, the solution works solidly.
The prepositions are recognized and the rules based on them are respected (see
figures 8.1(b)), even the directed rules are respected (see figures 8.2(a), 8.3(a),
8.3(b)).

The quality of the layout depends partially on luck. It was quite common
that some objects flied away from the room (see figures 8.2(b), 8.3(a)) but this
problem should be fixed in the very last version of the program. The mutation is
now restricted such that the position must remains within the area of the room.
Still, the rotation is not restricted, so the items could partially penetrate the
walls.

Unsupported nouns are recognized correctly and they are treated as a 1 × 1
square (see figures 8.3(a), 8.3(b)1).

Both distance-based and intersection-based constraints seems to work (see
figures 8.1(b), 8.2(b)) but the distance-based are significantly better. The reason
probably is that the intersection-based constraints are evaluated as zero almost
all the time. For instance, the within constraint is non-zero only if its shapes
intersects. But they are not lead to any direction so the probability that they
meet is not very high.

If a phenomenon that is not covered (adverbs, pronouns, etc.) by the solution
occurs in the text, the output might respect it only by a coincidence. There are
many ways how the information extraction can be improved (see chapter 9).

The performance of the script is acceptable on small inputs. The most time-
consuming part of the solution is the genetic algorithm. The time increases with
the number of identified items dramatically. For inputs with a larger number of
items, the genetic algorithm can easily take several minutes to complete. One
of the reason is that for every pair of items some default rules are constructed.
So not only the count of items increases but also the count of rules and thus the
time of the evaluation which is done in every iteration of the genetic algorithm.

1I accidently deleted bed from the types for this test.

41

(a) Vid́ıte dvě skř́ıně, jednu lavici a jeden st̊ul. [You can see two wardrobes, one bench and
one table.]

(b) Vejdete do čtvercové mı́stnosti. Kolem stolu stoj́ı dvě židle. [You enter a square room.
There is a table and two chairs around it.]

Figure 8.1: Results

42

(a) Za stolem jsou dvě židle. [There are two chairs behind the table.]

(b) Na stole lež́ı dva taĺıře a tři hrnky. [There are two plates and three mugs on the table.]

Figure 8.2: Results

43

(a) V mı́stnosti je pět kaktus̊u za stolem. [There are five cacti behind the table.]

(b) V mı́stnosti je st̊ul a židle. Vlevo od stolu je postel. [There is a table and a chair/chairs.
On the left of the table there is a bed.]

Figure 8.3: Results

44

9. Future Works
Since the task is very complex and have many aspects, the solution could be
improved endlessly. The application is designed in a modular way with interfaces
which means that it can be easily extended in various ways. The main goals of
the task was achieved to a great extent (see 8) but there are many opportunities
for future works.

9.1 Lexical Support
The easiest way to improve the results without changing the code is to expand
the sets of supported item types, room types and prepositions or adding more
synonyms for the supported ones. It can be done by editing the json configuration
files. Prepositions are a relatively closed category, so their coverage is already
solid.

Nouns, on the other hand, are a large and open category so it is impossible
to cover them completely, because new nouns arise every day. But expanding the
set of the supported ones would still improve the results.

9.2 Improving Extraction
Many observed linguistic phenomena could be taken into account in order to
improve the results of the information extraction.

9.2.1 Adverbs
Prepositions are not the only part of speech that is able to express spatial relation.
There are also adverbs (adv.s). Many secondary prepositions can be also adverbs
(uprostřed [in the middle (of)]). The solution process adverbs only if they are part
of multi-word prepositions (see section 5.1.2) otherwise they are ignored. From
the semantic point of view, they act like prepositions, only the ground is the
surrounding environment. So they could be processed as prepositional relation
between a figure and the room.

Uprostřed je st̊ul. [There is a table in the middle.] is semantically
identical to Uprostřed mı́stnosti je st̊ul. [There is a table in the middle
of the room.]

9.2.2 Non-numerical quantifiers
Besides the numerals, there are also determiners in the Universal Dependencies
which act as quantifiers (see section 3.3). They could be extracted in the same
way as the numerals and modify the choice of the number. Currently, they are
ignored and the number is based on the fact that the modified noun is in plural.

45

mnoho židĺı [many chairs], pár židĺı [few chairs], židle (pl) [chairs] are all
processed in the same way

9.2.3 Coreference
One of the biggest complication for the extraction is the coreference. During the
preposition extraction, pronouns are currently ignored which could be a big flaw
since pronouns can in fact occur as arguments of the prepositions. Only nouns
are considered. If at least one of the arguments of the preposition is a pronoun,
it is not found by the extraction algorithm. So, the extracted preposition either
has an incorrectly assigned argument, or is incomplete and discarded.

V mı́stnosti je st̊ul a před ńım židle. [In the room, there is a table and
a chair behind it.]

Furthermore, the solution is not able to distinguish whether two nouns with
the same lemma refer to the same physical object, or not. In general, finding
correferences is a difficult task but if the solution were able to deal with them, it
would increase the quality of the extraction dramatically.

9.3 Improving Placement Algorithm
The placement algorithm could be improved in two ways – either by improving the
genetic operators or changing the hyperparameters, and by adding more artificial
rules to be satisfied.

The change of the operators and hyperparameters should lead to higher fitness
in the same generation which means that the constraints are more satisfied. Also
other strategies like the rule of 1/5 or adaptive σ could be included.

Adding more artificial constraints should make the result look more natural.
For example, a plate is expected to be on the table by default, so adding a rule
inside(plate, table) should help to produce a more natural output.

9.4 Optimizing the implementation
The most time-consuming part of the implementation is the placement algorithm.
It could be optimized by using numpy arrays instead of Python lists and vector-
izing the operators.

The Language Processing block connects to the internet and waits for the
response. So, if the connection is slow or the input data too big, it could take
some time to obtain the results. The models used by the online service could be
downloaded and used locally. This would also reduce the risk of failure of the
task.

46

9.5 Other Potential Extensions
Much more information can be extracted from the text. From the nouns’ modifiers
the program could deduce properties of the reffered physical object such as color,
material, size etc. These properties could then be used to modify the instances
of the physical object.

In many cases, the input descriptions specify dimensions of the objects, but
the current solution does not allow the shape of the instances to change. It would
be nice if the solution were able to adjust the shapes of the instances based on
what is mentioned in the input.

47

Conclusion
In this thesis, I implemented a console application that attempts to generate
a structured description of layout of a room described in the natural-language
input. The main goal was to extract information about real physical objects and
their mutual spatial relations. Based on this retrieved information, geometric
constraints are constructed and the objects are placed into the scene of the room
so that the constraints are satisfied as much as possible.

I primarily focused on describing linguistic phenomena which are relevant for
the task (chapter 3) as well as the application of these ideas in the rule-based im-
plementation of the information extraction (chapter 5). The linguistics analysis
brought some surprising results such as the modeling directed prepositions (sec-
tion 3.4.4) or the fact that prepositions can be reduced, level by level, to a simple
language of four geometric constraints (sections 5.1.2, 5.1.3, 5.1.4). Another in-
teresting finding is that the language description levels in linguistics correspond
well to the levels of processing the natural language input.

To solve the placement problem, I used a genetic algorithm. The fitness
function is based on evaluation of the extracted constraints (section 5.2.1). The
constraints are soft and based on an idea of fuzzy logic, so the range of their
evaluation is potentially [0, 1]. The algorithm tries to maximize the sum of these
values. The main advantage of the genetic algorithm is that even if the constraints
are not fully satisfied, it still produces a feasible solution (section 4.3).

The results of the solution are acceptable, though much work could be done
to improve them (section 4).

48

Bibliography
Slovńık spisovného jazyka českého. Academia, 1960-1971. URL https://ssjc.

ujc.cas.cz/.

Mluvnice češtiny 2 – Tvaroslov́ı. Academia, 1986.

Dungeons & Dragons: Lost Mine of Phandelver. Wizards of the Coast LLC, 2014.

Petr Biskup. PŘedloŽka, 2017. URL https://www.czechency.org/slovnik/
PÅŸEDLOÅ·KA.

Tomáš Machálek. Kontext – aplikace pro práci s jazykovými korpusy, 2014. URL
http://kontext.korpus.cz.

Stéphane Sanchez, O. Roux, Véronique Gaildrat, and Hervé Luga. Constraint-
based 3d-object layout using a genetic algorithm. Intelligenza Artificiale - IA,
01 2003. URL https://www.researchgate.net/publication/245776169_
Constraint-based_3d-object_layout_using_a_genetic_algorithm.

Milan Straka and Jana Straková. UDPipe, 2016. URL http://hdl.handle.
net/11234/1-1702. LINDAT/CLARIAH-CZ digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

F.-A. Ursini. How space gets into language: a novel approach. ASCS09: proceed-
ings of the 9th Conference of the Australasian Society for Cognitive Science,
pages 348–355, 2010. URL https://www.researchgate.net/publication/
269146797_How_space_gets_into_language_a_novel_approach.

Ken Xu, James Stewart, and Eugene Fiume. Constraint-based auto-
matic placement for scene composition. Proceedings - Graphics Interface,
06 2002. URL https://www.researchgate.net/publication/2873054_
Constraint-based_Automatic_Placement_for_Scene_Composition.

Frantǐsek Čermák. Systém, funkce, forma a sémantika českých předložek. Slovo a
slovesnost, 57:30–46, 1996. URL http://sas.ujc.cas.cz/archiv.php?art=
3658.

49

https://ssjc.ujc.cas.cz/
https://ssjc.ujc.cas.cz/
https://www.czechency.org/slovnik/PŘEDLOŽKA
https://www.czechency.org/slovnik/PŘEDLOŽKA
http://kontext.korpus.cz
https://www.researchgate.net/publication/245776169_Constraint-based_3d-object_layout_using_a_genetic_algorithm
https://www.researchgate.net/publication/245776169_Constraint-based_3d-object_layout_using_a_genetic_algorithm
http://hdl.handle.net/11234/1-1702
http://hdl.handle.net/11234/1-1702
https://www.researchgate.net/publication/269146797_How_space_gets_into_language_a_novel_approach
https://www.researchgate.net/publication/269146797_How_space_gets_into_language_a_novel_approach
https://www.researchgate.net/publication/2873054_Constraint-based_Automatic_Placement_for_Scene_Composition
https://www.researchgate.net/publication/2873054_Constraint-based_Automatic_Placement_for_Scene_Composition
http://sas.ujc.cas.cz/archiv.php?art=3658
http://sas.ujc.cas.cz/archiv.php?art=3658

List of Figures
1 short . 3
2 Example output . 4
3 Plot of the output . 5

1.1 Example of an illustrated map . 7

3.1 UD representation of numeral . 13
3.2 Multi-word prepositions in UD . 15
3.3 Conceptual meaning of the primary spatial prepositions. 17
3.4 Observer’s point of view . 18
3.5 Directed vs. undirected (faceless) objects 18
3.6 Approaches of processing directed prepositions. 20
3.7 UD prepositional structure . 22
3.8 Coordination in UD . 23

5.1 Extraction structure . 29
5.2 Results of parsing multi-word prepositions by UDPipe 31

6.1 High-level blocks in a pipeline . 37
6.2 short . 38

8.1 Results . 42
8.2 Results . 43
8.3 Results . 44

50

List of Tables

3.1 Gramatical numbers and examples 13

51

List of Abbreviations
D&D Dungeons & Dragons

GM gamemaster

RPG role-playing game

N nominative case

G genitive case

D dative case

A accusative case

V vocative casse

L locative case

I instrumental case

sg singular number

pl plural number

dl dual number

PoS part of speech

n. noun

v. verb

adj. adjective

adv. adverb

prep. preposition

postp. postposition

adp. adposition

num. numeral

pron. pronoun

ML machine learning

NLP natural language processing

MT machine translation

LLM large language models

52

CSP constraint satisfaction programing

GA genetic algorithm

UD Universal Dependencies

2D two-dimensional

3D three-dimensional

DOF degrees of freedom

v. version

ITIR item type index reference

II item instance

53

A. Attachments
A zip archive is attached to this thesis. It contains the Python code of the
solution and an essay on Czech spatial prepositions.

A.1 The Code of the Solution
Besides the currently used scripts, it also contains some files with old implemen-
tation to show that multiple approaches were tried during the work. Some were
abondened completely and others were reimplemented from scratch.

Also, testing files and scripts with experiments can be found there as well.

A.2 Czech Spatial Prepositions
If the reader is interested in linguistic details on describing Czech prepositions,
they can read this attached essay. It briefly sums up approaches to Czech prepo-
sition description and focuses on the spatial prepositions.

It describes ethymology, syntax and semantics of the prepositions and covers
interesting phenomena such as vocalization or preposition formation.

54

	Introduction
	Problem
	Background and Motivation
	Text and Map Description
	Existing Applications

	Problem Specification
	Input
	Output

	Solution
	Data collection
	Approach

	Linguistic Analysis
	Lemmatization
	Nouns
	Numerals and quantifiers
	Prepositions
	Etymological classification
	Syntax
	Semantics
	Semantics of Directed Prepositions
	Prepositional structures in UD

	Coordination

	Layout Problem
	Specification
	Previous Works
	Techniques and ideas
	Algorithms

	My Approach: Genetic Algorithm

	Algorithmic Overview
	Information extraction
	Syntactic Parsing
	Semantic Information Extraction
	From Semantics to the Placing Problem
	Evaluating Placing using Geometric Constraints

	Placing
	My Solution

	Implementation
	External online services
	Korektor
	UDPipe
	MorphoDiTa

	Libraries
	Application Design
	Modules
	Code Organization
	Input
	Language Processing
	Information Extraction
	Composition
	Output

	User Manual
	Requirements and installation
	Usage
	Configuration files

	Results and Discussion
	Future Works
	Lexical Support
	Improving Extraction
	Adverbs
	Non-numerical quantifiers
	Coreference

	Improving Placement Algorithm
	Optimizing the implementation
	Other Potential Extensions

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	The Code of the Solution
	Czech Spatial Prepositions

