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Abstract:

Although the contemporary neural networks, inspired by biological neurons, were
able to reach human-like performance on many tasks in recent years, their optimiza-
tion (learning) process is still very far from the one observed in humans. This thesis
investigates various aspects of learning in the current state-of-the-art Transformer
neural networks, the dominant architecture in the current neural language process-
ing. Firstly, we measure the level of generalization in Transformers using several
probing experiments based on the idea of adversarial evaluation. Secondly, we ex-
plore their potential for incremental learning when combined with regularization
using the elastic weight consolidation approach. Lastly, we propose a modular ex-
tension of the existing Transformer architecture enabling subnetwork selection con-
ditioned on the intermediate hidden layer outputs and analyze the attributes of this
network modularization. We investigate our hypotheses mainly within the scope of
neural machine translation and multilingual translation showing the limitations of
the original Transformer and the elastic weights consolidation regularization while
presenting promising results of the novel modular Transformer architecture.
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Abstrakt:

Přestože současné neuronové sítě, inspirované biologickými neurony, byly v posled-
ních letech schopny dosáhnout lidské úrovně na mnoha úlohách, proces jejich op-
timalizace (učení) je stále velmi odlišný od procesů pozorovaných u lidí. Tato práce
zkoumá různé aspekty učení současných neuronových sítí Transformer, převláda-
jící architektury pro zpracování přirozeného jazyka. V první části zkoumáme úro-
veň generalizace v Transformerech pomocí analytických experimentů založených na
myšlence adversariální evaluace. V části druhé pak zkoumáme jejich potenciál pro
kontinuální učení s použitím regularizace založené na elastické konsolidaci vah. V
závěru práce navrhujeme modulární rozšíření stávající sítě Transformer umožňující
výběr podsítí podmíněný zpracovaným vstupem spolu s demonstrací vlastností této
síťové modularizace. Naše hypotézy testujeme především v kontextu neuronového
strojového překladu a vícejazyčného překladu, přičemž naměřené výsledky odhalují
limity původního Transformeru i metody regularizace pomocí elastické konsolidace
vah. Navíc prezentujeme slibné výsledky navržené modulární architektury Transfor-
meru.

Klíčová slova: neuronový strojový překlad, katastrofické zapomínání, modulární
neuronové sítě, navazující učení, generalizace
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1
Introduction

Throughout recent years, deep learning (DL) has been a dominant machine learn-
ing paradigm, achieving state-of-the-art (SoTA) results in many fields, including im-
age captioning (Xie et al., 2017; Szegedy et al., 2016; Krizhevsky et al., 2012), object
detection (Lin et al., 2020; He et al., 2016a; Redmon et al., 2016), natural language
generation (Brown et al., 2020a; Devlin et al., 2019; Peters et al., 2018) or machine
translation (Popel et al., 2020; Vaswani et al., 2017; Johnson et al., 2017). The origins
of deep learning research can be traced back to the late 1950s to the invention of
the perceptron algorithm (Goodfellow et al., 2016; Rosenblatt, 1958), which has been
inspired by the structure of a biological neuron in the human brain. A decade later,
the arrangement of these artificial neurons into layers gave birth to artificial neu-
ral networks in the form of multi-layered perceptron (Ivakhnenko and Lapa, 1973).
Based on the Universal Approximation theorem (Hornik et al., 1989; Cybenko, 1989),
even a shallow neural network (NN) with only a single hidden layer and a non-linear
activation function can, in theory, approximate a wide variety of functions; however,
in practice, such network can be infinitely large. The number of network parameters
can be reduced by increasing the depth of the network (Goodfellow et al., 2016).

Still, it was initially challenging to optimize complex neural networks. This was
due to the computational requirements and the lack of an effective algorithm for com-
puting network gradients necessary for gradient-based optimization. The introduc-
tion of the back-propagation algorithm (Rumelhart et al., 1986) in the 1980s was an
important stepping stone towards reaching the current SoTA deep neural networks,
although it was not until the early 2010s when the cheap and computation-efficient
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GPUs allowed its effective implementation. The following advances in the efficiency
of computer hardware and distributed computing and the underlying mathematical
theory then lead to the current deep learning models that often even surpass humans
on a variety of tasks, spanning from video games to machine translation.

Given its original motivation in the biological brain and the fascinating practical
results, it seems logical to consider current deep learning models as an important
ingredient for developing artificial general intelligence (AGI). On the other hand, the
current DL models lack in certain areas of what we consider intelligence, namely in
their ability to learn. For example, it can be argued that the SoTA language mod-
els such as BERT (Devlin et al., 2019) or GPT-3 (Brown et al., 2020a) reach human-
like performance mainly due to the sheer size of the model (hundreds of billions of
trainable parameters) and the huge amounts of training data (hundreds of billions of
tokens). On the other hand, their human counterparts can gain similar or better lan-
guage modeling capability by only seeing a fraction of the training data throughout
their lifetime,1 suggesting limitations of the current learning process in DL. Similarly,
even though the SoTA neural architectures can learn to play video games on a super-
human level, they require much larger experience (i.e. the number of game instances
played) to achieve that performance (Tsividis et al., 2017). Additionally, these deep
learning models are usually very narrow, being trained to solve a single task or a set
of tasks that are similar in their nature. Such tasks also have to be learned simultane-
ously to avoid the well-known problem of catastrophic forgetting (CF, French, 1999)
that emerges when the tasks are trained incrementally one after another.

These and other inefficiencies of the learning process, while not being the only
weakness of the contemporary DL models, seem like a serious obstacle in the way of
developing AGI systems. Ideally, AGI should have the ability to update its knowledge
in time as new information becomes available. In this thesis, we focus on identify-
ing the magnitude of these learning deficiencies in the context of the Transformer
sequence-to-sequence NN architecture (Vaswani et al., 2017). We chose this archi-
tecture due to it being the basis for many of the current SoTA natural language
processing (NLP) models. Our main focus is to study architecture in the context of
sequence-to-sequence generation, namely machine translation (MT). Although some
of the mentioned DL problems were already studied in the previous work to a cer-
tain degree, they were mostly explored in the context of simple toy networks on
standard benchmark tasks, mainly from computer vision, e.g. MNIST (Deng, 2012)
or CIFAR-10 (Krizhevsky et al., 2009).

1An estimated number of words the average human speaks throughout their lifetime is roughly
hundreds of millions of words (Brandreth, 1980).
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1.1 ResearchQuestions

This thesis focuses on studying the learning capabilities of the sequence-to-sequence
Transformer architecture in the context of both classical (single-task) and multi-task
model optimization. We study the multi-task learning (MTL) from both perspectives
of joint learning (the training data for all tasks are available at the same time) and
incremental learning (the network is being optimized for one task at a time, learning
in a fixed order to solve each task).

We are interested in the optimization aspects such as generalization, exploiting
the prior knowledge about the previously-learned (and related) tasks, and avoiding
CF. Additionally, we aim to better utilize the network capacity by decomposing the
layers of the network into submodules that can be switched on and off depending on
the processed input.

We experiment with the Transformer NN architecture (simply referred to as
Transformer) as our base research architecture because one, it is currently the SoTA
architecture for the majority of NLP problems, and two, it provides a good basis
for our module decomposition experiments by already offering a level of modularity
in its multi-head attention (MHA) mechanism. Furthermore, the previous findings
demonstrated the emergent specialization ability of some of the attention modules
(Voita et al., 2019) while other works suggest that non-vital attention modules can
be pruned from the final network without hurting the overall performance hinting
at an uneven utilization of the available network capacity (Michel et al., 2019).

We investigate these phenomena in the context of Transformer sequence-to-
sequence architecture and our proposed modular variant, identifying the scope of
the problems and exploring the methods designed to alleviate the negative effects
of these phenomena. More precisely, we aim to answer the following three main
research questions:

Research Question 1: What is the extent of the generalization ability of the current
Transformer models?

Although Transformers often surpass their predecessors (recurrent networks,
convolutional networks) on many NLP tasks, the reasons behind this success are still
being studied. For example, the extensive research on the multi-head self-attention
suggests that Transformer can effectively learn to model the structure underlying
the processed sentences. Furthermore, the experiments in neural machine transla-
tion (NMT) show that Transformers can handle well the translation of rare words or
named entities, although this success can be also attributed to the currently popu-
lar use of subword tokenization methods such as byte-pair encoding (BPE) or Sen-
tencePiece (Kudo and Richardson, 2018; Sennrich et al., 2016b). On the other hand,
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there is currently a debate in the NLP research community on whether Transformers
suffer from a poor ability to model long-distance dependencies (LDD), similar to the
other types of sequence-processing networks (Devlin et al., 2019; Al-Rfou et al., 2019;
Dai et al., 2019). We aim to investigate the reasons behind this behavior and try to
dispute this belief by showing a potential high tendency of Transformers to overfit
to the training data target-side sentence lengths. Additionally, we want to open a
discussion about the construction of the NLP dataset splits that could help to better
estimate the generalization power of future machine learning models. To provide the
answer to this research question, we break it down into the following sub-questions:

RQ1.1 Are long-range dependencies the only reason behind the performance drop when
translating long sequences?

The current poor performance of the Transformer-based models when gen-
erating very long sequences is attributed mostly to the inability to capture
long-distance dependencies. Even though, in theory, the self-attention mech-
anism enables the model to attend to any token within a sequence directly, the
quadratic computation cost of the attention can limit its effectiveness. Further-
more, we argue that the increase in the number of attended tokens leads to a
higher saturation of attention, i.e. irrelevant tokens introduce additional noise
to the attention layer output. We demonstrate in Chapter 4, that the problems
with modeling LDD in Transformers can be also attributed to their tendency to
overfit to the length distribution of the training sequences. We investigate our
hypothesis by not only showing poor generalization ability on the longer vali-
dation sequences but also on sequences shorter than those encountered during
training.

RQ1.2Are the current NLP approaches to dataset splitting sufficient to properlymeasure
the generalization of sequence-to-sequence models?

When estimating the generalization power of a model using validation data,
we want to ensure that there is little to no overlap with the training data while
being faithful to the true, real-world data distribution. In Chapter 4, we explore
whether the similarity between the training and validation sentences in terms
of vocabulary distribution can lead to a skewed estimation of the model’s per-
formance. We remove the most similar training examples using two similarity
metrics and measure the change in the performance of a model optimized us-
ing the training data with the removed training instances. We hypothesize that
a larger drop in translation quality after removing similar training instances
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should imply that the model exploits these similarities and does not gener-
alize well. We perform experiments with vocabulary-based similarity metrics
and show that the similarity in the training/validation vocabulary distributions
does not lead to a smaller generalization in Transformers.

RQ1.3 Is the ability to copy unseen words conditioned on the subword length of the
tokens seen during training?

The treatment of out-of-vocabulary (OOV) words has been a thoroughly stud-
ied problem in early neural sequence-to-sequence research. This problem was
usually perceived as a trade-off between the vocabulary size and the vocabu-
lary specificity – either including whole words (usually in a lemmatized form)
in the model vocabulary resulting in the model’s size increase or replacing
OOV words with a placeholder token and replacing the placeholder during
the output post-processing based on a set of transcription rules. An alterna-
tive approach, the character-level NMT, replaces the need for a large vocab-
ulary by modeling the whole sentence as a sequence of characters leading to
an increase in the sequence length. Currently, subword tokenization became
the most popular method for solving the OOV problem, enabling character-
level representation of rare words while preserving longer and more complex
vocabulary entries if they are frequent enough. The previous anecdotal evi-
dence has shown that subword tokenization deals with OOV items through
character-by-character transliteration, although to our knowledge there is no
prior work analyzing the limits of this transliteration in NMT. We show in
Chapter 4 that the accuracy of named-entity translation via copying during test
time is closely related to the subword length of tokens seen during training.
The presented results suggest that Transformers lack the ability to generalize
to this translation rule.

Having shown some of the generalization problems of the contemporary Trans-
formers, we shift our attention to another current machine learning problem, incre-
mental learning. The main issue related to incremental learning is the lack of ability
to retain previously learned knowledge, also known as CF. We focus on this phe-
nomenon in the following research question.

Research Question 2: Can selective parameter regularization lead to improvements
in Transformer performance in incremental learning?
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Transformers, similarly to other neural network architectures trained using
gradient-based optimization, suffer from CF when learning multiple tasks in a se-
quential order. One of the reasons is the difference between the loss spaces of two
or more tasks where a low-error solution for Task A does not necessarily imply low
error on the different Task B and vice versa. In joint MTL, CF is avoided by find-
ing the optimum of the combination of the tasks, i.e. a low-error area in both loss
spaces, usually by interleaving the training examples for both tasks. However, this
requires the datasets for both tasks to be available at the same time which can be a
problem for the long-term improvement of models in practice. A common approach
is to opt for incremental learning where we fine-tune a current model with each new
dataset. This leaves us with a separate model for each task (we keep a copy of the
original model before fine-tuning). Recent work on CF proposed several approaches
towards avoiding task interference, ranging from learning to generate replays from
the previous tasks to applying parameter-specific regularization during the learning
of the new task. We focusmainly on the selective parameter regularization approach,
namely elastic weight consolidation (EWC), and analyze its effect on the incremental
learning (IL) in Transformers. To answer the question, we divide it into the following
sub-questions:

RQ2.1 Can selective parameter regularization improve NMT performance when fine-
tuning models initialized by pretrained language models?

The problems with Transformer overfitting are even more apparent during
NMT fine-tuning for the low-resource language translation. The lack of avail-
able good-quality parallel data is often solved by using secondary language re-
sources such as monolingual corpora or parallel corpora in closely-related lan-
guages. The most common use of monolingual data is to create additional syn-
thetic parallel data by back-translating the target-side language corpus. Com-
pared to the data augmentation approach, the regularization methods include
an additional training objective, i.e. language modeling objective, to force the
model to retain knowledge about the previous language modeling task. Selec-
tive parameter regularization aims to achieve similar retention by identifying
network parameters that are important for the previously learned task and pe-
nalizing the optimization algorithm for making large updates to these weights.
We demonstrate in Chapter 5 that the selective parameter regularization of the
Transformer decoder can lead to similar performance as the fine-tuning with
language model (LM) regularization while requiring lower computation time.

RQ2.2 How effective is selective parameter regularization for the different classes of
incremental learning tasks?
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Based on the previously introduced IL classification task topology (Kemker
et al., 2018), we propose its extension to sequence-to-sequence learning. In
the context of the extended task topology, we propose simple string editing
benchmarks which we use to evaluate the selective parameter regularization
approach. In Chapter 5, we show which of the tasks can benefit from regu-
larization We also discuss the limitations of the regularization method with
respect to the previous work.

RQ2.3 Does selective parameter regularization improve model performance in incre-
mental multilingual translation?

Similarly to the previous question, we measure the benefits in a multilingual
NMT scenario. Our focus will be on multilingual transfer from the high-
resource language pair to low-resource ones. In contrast to the simple string
editing tasks, NMT models can exploit additional language similarities avail-
able in real-life scenarios. We compare the regularized model performance in
Chapter 5 with both classical fine-tuning and joint training on all available
tasks. We show that selective parameter regularization provides a trade-off
between high-resource task knowledge retention and the ability to learn to
translate low-resource languages at the cost of not excelling in either com-
pared to the jointly learned counterparts.

After demonstrating the limitations of the selective parameter regularization in
fine-tuning and its impact on the effective utilization of Transformer parameters in
IL, we shift our focus to a different approach towards more efficient network capacity
allocation. We analyze the possibilities of Transformer modularization in the final
question.

Research Question 3: Can Transformers benefit from the inclusion of conditional
computation?

Recent work in the area of neural network pruning has shown that after finish-
ing the training process, a majority of the network parameters can be pruned (set to
zero) without any major negative effect on the network performance, leading to very
sparse final neural networks (Hoefler et al., 2021). Furthermore, this inefficient use of
the availablemodel capacity during training canmake later scaling of the network ar-
chitecture and storage of the resulting model problematic due to increased memory
consumption. Even though the pruned network usually contains enough free pa-
rameters that can be utilized during the training on subsequent tasks, it can be chal-
lenging to effectively optimize these unused parameters without suffering from CF.
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One option is to apply manual masking based on our notion of different tasks, how-
ever, this approach can introduce undesired inductive bias by making assumptions
about the set of tasks. Thus, we aim at designing a modification to the contemporary
Transformer architecture which includes mechanisms for conditional computation.
We extend the Transformer with a controller sub-network that takes the input to its
assigned Transformer layer and picks a module mask, actively selecting which parts
of the layer should process the layer input. The controller behavior should be learned
without supervision, allowing the Transformers to capture the underlying structure
of the multi-task dataset while avoiding human-generated inductive biases. We are
interested in the strengths and limitations of the modular Transformer, our interests
are summarized by the following sub-questions:

RQ3.1 What conditional computing approaches are suitable for Transformer modular-
ization?

We propose the modular modification of the Transformer with several varia-
tions. We compare these modular Transformer variations in Chapter 6 using
mainly a simple string editing benchmark. Additionally, we evaluate the most
promising modular Transformer configurations on the multilingual NMT to
measure their applicability in more complex NLP tasks.

RQ3.2 Can the Transformer modularization lead to the effective reduction of the active
model parameters?

Controller-based module choice, when properly regularized during training,
can lead to the usage of a lower amount of network parameters when process-
ing a given input. In Chapter 6, we measure the correlation between the reduc-
tion of the actively used parameters and the resulting model performance. We
investigate the modular Transformer using both a simple string editing bench-
mark and themultilingual translation task. In addition, wemeasure the param-
eter reduction effect with respect to individual types of Transformer blocks,
Transformer layers, and different training approaches.

RQ3.3 Does Transformer modularization lead to task specialization of individual mod-
ules?
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In Chapter 6, we propose a metric based on conditional entropy to measure
which modules get selected in connection to specific tasks in multi-task data-
sets and test whether a task specialization emerges in a modular Transformer.
Besides task specialization, we also measure which modules become core for
the Transformer network (being always selected) and which get activated only
when certain conditions are met and how this behavior changes with respect
to different types of Transformer blocks.

RQ3.4 Which Transformer blocks are better suited for modularization?

We investigate further in Chapter 6 the module selection behavior of differ-
ent Transformer blocks. We use the previously defined metrics to see, which
blocks aremore likely to be pruned or containmodules that are always selected
and which blocks contain more specialized modules. Besides comparing the
behavior of different types of Transformer blocks, we also look at the modular
Transformer block behavior with respect to the block depth.

1.2 Main Contributions

This section summarizes the main contributions of this to the study of the learning
abilities of the Transformer models.

1.2.1 Algorithmic Contributions

1. We implement several approaches for creating adversarial evaluation data-
sets to study the generalization in Transformer NMT. This includes sequence-
length generalization, dataset similarity exploitation, and rare-word transla-
tion (Chapter 4).

2. We implement the EWC regularization aimed at countering catastrophic for-
getting in the neural sequence-to-sequence frameworks Neural Monkey and
Fairseq. We also propose and implement an additional Fisher information nor-
malization method and an alternative EWC regularization (Chapter 5).

3. We implement the modular Transformer architecture in Fairseq. Our imple-
mentation includes several modifications of the original architecture (Chap-
ter 6). Notably, we implement the general module controller for conditional
prediction of module masks using the Gumble-sigmoid prediction layer and a
straight-through gradient estimation. The controller supports both token-level
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and sequence-level mask prediction. Furthermore, we implement the masked
multi-head attention that supports module selection, and similarly, we propose
the modularization of the feed-forward network Transformer block. Lastly, we
implement a training regularization that adjusts the ratio of the modules se-
lected by the Transformer network while processing a given input (Chapter 6).

1.2.2 Empirical Contributions

We evaluate the Transformer generalization on the proposed adversarial datasets. In
the multi-task and incremental learning experiments, we measure the performance
of the proposed methods on both simple string editing datasets and the task of mul-
tilingual machine translation

1. We evaluate the ability of the original Transformer NMT to generalize to se-
quences that differ in length from the training data. Furthermore, we also
measure the effects of the similarity between the training and test datasets on
the skewness of the model performance estimation. Lastly, we show how the
subword length distribution in the training data affects the model’s ability to
translate (copy) unseen words in the test data (Chapter 4).

2. We measure the effect of EWC on the unsupervised NMT model pretraining.
Additionally, we analyze the limitations of the EWC regularization in the con-
text of sequence prediction. We restrict the analysis to two variations of in-
cremental task learning: a vocabulary expansion and true multi-task learning
(Chapter 5).

3. We evaluate the performance of the proposed modular Transformer and how
it is affected by the selection of the module budget training hyper-parameter.
We compare the proposed architecture with the original Transformer on mul-
tilingual machine translation using both automatic metrics and a small-scale
human evaluation. We also provide the analysis of the underlying module
selection mechanism, measuring the module specialization in different Trans-
former layers.

1.3 Thesis Overview

Starting with the following chapter, the thesis is divided into six chapters. What
follows is a short summarization of each of the chapters:
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• Chapter 2 describes the multi-task learning problem and the closely related
incremental learning problem. We provide a brief history of the research in
these two areas and the current SoTA, with a higher focus on NLP-related
research and NMT.

• In Chapter 3, we describe the key concepts tied to sequence modeling and
sequence-to-sequence learning. Consequently, we provide a more detailed de-
scription of the Transformer network architecture, how it is optimized, and its
inference-time applications. Lastly, we give a summary of the key concepts of
NMT and the related evaluation methods

• Chapter 4 describes the experiments measuring several aspects of Transformer
generalization using adversarial datasets. The experiments focus on the prob-
lems of length-related generalization, exploiting word distribution similarities
between the datasets and rare word translation.

• Chapter 5 investigates the effects of EWC regularization in incremental learn-
ing, mainly with respect to catastrophic forgetting. We analyze the effects of
EWC in unsupervised pretraining using monolingual data and in a more gen-
eral multi-task incremental learning.

• We conclude the thesis in Chapter 7 summarizing our main findings.

1.4 Origins

This thesis contains the results from the following peer-reviewed publications, pub-
lished by the thesis author. We use snippets from these publications throughout the
thesis expanded by additional supplementary experiments conducted after publish-
ing the original research publications.

• The main results on the length-based overfitting in Transformer in Chapter 4
are based on Variš and Bojar (2021), “Sequence Length is a Domain: Length-
based Overfitting in Transformer Models”, published in EMNLP2021. Measured
the ability of the Transformer to generalize to sequences of length varying
from the training dataset sequence lengths. Discovered that Transformer is
strongly biased towards generating sequences of lengths similar to those in
the training data while disregarding the length of the test-time input.
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• The experiments studying catastrophic forgetting in the unsupervised mono-
lingual NMT pretraining are based on Variš and Bojar (2019), “Unsupervised
Pretraining for Neural Machine Translation Using Elastic Weight Consolidation”,
published in ACL-SRW2019. Compares the effects of EWC regularization on
the process of fine-tuning using the LM trained on the available monolingual
data with the previously suggested LM regularization.

• The results of the modular Transformer experiments are scheduled for publi-
cation at the time of writing the thesis. At the moment, the author is in the
process of preparing the publication.

12



2
Multi-task Learning

The current dominant line of research in deep learning (and by extension, in general
machine learning) focuses on optimizing statistical models to solve a single specific
task or a set of tasks that are closely related to each other. This research approach
makes sense because the isolation of individual tasks and task-specific datasets allows
easier empirical analysis and understanding of the studied statistical models.

However, when aiming at building a more sophisticated, general-purpose arti-
ficial intelligence, it is necessary to design systems that can solve a larger variety
of different tasks. Designing such systems is the main focus of multi-task learning
(MTL, Caruana, 1997; Zhang and Yang, 2017) and its sub-field of incremental learning
(IL, Solomonoff, 1989; Chaudhry et al., 2018). Systems that are trained on multiple
tasks simultaneously are not only more compact (due to parameter sharing), but they
also help with the data sparsity problem and can even boost the performance on the
individual tasks by learning representations that capture more general and some-
times complementary knowledge from the given set of tasks (Caruana, 1997). In the
following sections, we provide a brief introduction to MTL and its more challenging
subdomain, IL. Due to the complexity of the topic, we restrict the work in this thesis
mostly to the context of supervised learning, although the discussed topics can be
also adapted to unsupervised or reinforcement learning.

We provide a summary of the research in MTL, namely the applications to tasks
related to NMT. Our summary is based on the previous surveys of the works within
the MTL community (Zhang and Yang, 2017; Chen et al., 2021b) which provide a
wider summary of the recent trends in the general MTL research and the context
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of NLP, respectively. Next, we shortly describe the problems related to IL and its
current state of the research. Similarly, we base the provided description on a more
extensive previous survey by Biesialska et al. (2020). Our focus will, however, be
mainly on the context of sequence-to-sequence processing and NMT.

2.1 Multi-task Learning

The main problem with single-use statistical models is their narrow area of appli-
cation. Furthermore, it is well-established that parameter initialization can have a
strong effect on the training dynamics (Goodfellow et al., 2016). This need for proper
parameter initialization became the basis for transfer learning (Thrun and Pratt, 1998;
Pan and Yang, 2010; Zhuang et al., 2021).1 The basic intuition behind it is that a model
previously trained on an initial Task A has learned to produce useful feature repre-
sentations that can become a good basis for the initialization of another model opti-
mized for a subsequent Task B. However, this initialization-only knowledge transfer
still expects storing a separate model for each new task, leading to storage require-
ments increasing with the increasing number of tasks, because without regulariza-
tion, the optimization algorithm for the subsequent tasks will always try to find the
best fit (i.e. overfit) for the task at hand.

MTL goes a step further: it aims at building models that extract knowledge about
multiple tasks at once, each task is influenced by inductive biases provided by the re-
maining tasks, i.e. the other tasks are providing a form of regularization (Collobert
andWeston, 2008; Guo et al., 2018; McCann et al., 2018). Additionally, previous work
on neural network pruning shows that at the end of the network optimization, a large
portion of the network’s parameters can be removed without significantly affecting
the network performance (LeCun et al., 1989; Hassibi and Stork, 1992), suggesting
that there is an unused network capacity in the optimized network.2 Although the
number of unused parameters can be effectively reduced using knowledge distilla-
tion methods (Bucila et al., 2006; Hinton et al., 2015) most often characterized by the
teacher-student learning framework (Tarvainen and Valpola, 2017; Kim et al., 2019),
more effective utilization of the original network capacity could remove the necessity
of these distillation approaches, reducing the training time and complexity.

1In the literature, transfer learning is sometimes considered synonymous with incremental or life-
long learning. We use this term to refer only to a model initialization using the previously optimized
model without the need for knowledge retention.

2In this context, we use the term capacity loosely due to the lack of a clear consensus within the
deep learning community about its definition. Recent works on network optimization suggest that
a simple indication of the number of trainable parameters is insufficient in describing the effective
network capacity in the traditional machine learning sense (Zhang et al., 2017, 2021b).
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Besides, MTL comes up as a natural approach to solving complex tasks for which
the training data requirements grow with the task complexity – more complex tasks
usually require larger feature spaces for their proper representation leading to the
well-established curse of dimensionality (Bellman et al., 1957), a phenomenon where
increasing the size of representation requires a significantly larger increase in the
training data for effective optimization. A logical solution to this problem is break-
ing a complex task into simpler sub-tasks, learning to find a solution to each sub-
task in isolation, and recombining the individual solutions to solve the original task.
However, solving the sub-tasks in isolation can easily disregard possible relations
between them, and by learning to solve these sub-tasks jointly using MTL methods,
these relations can be effectively exploited; a typical example being the object de-
tection task which is usually modeled as separate object localization (marking the
location of interesting objects within the image via bounding boxes) and image clas-
sification (identifying the object types within the image) task, both using a shared
representational output of an image processing network (Ren et al., 2015; Redmon
et al., 2016).

Thus, the main motivations behind MTL are: (1) exploiting the additional auxil-
iary task training data for individual task performance improvement while (2) pro-
ducing a more compact and robust solution for a given set of tasks (compared to
single-use models trained for each task separately).

In this thesis we use the term homogenous MTL when we refer to approaches
that share all of the network parameters, implying that these tasks also share the
same set of output labels and the main difference between the tasks is in the input-
output distributions of their respective representative datasets. In the literature, this
is sometimes referred to as multi-domain training (Bickel et al., 2007; Dredze and
Crammer, 2008; Daumé III, 2009). An example of homogenous MTL can be the cur-
rent state-of-the-art (SoTA) general-domain NMT models (Akhbardeh et al., 2021b)
or certain multilingual NMT approaches (Yamagishi et al., 2016; Johnson et al., 2017).

We refer to MTL as heterogeneous if only a part of the network is actively shared
between the tasks and some network layers are task-specific by design. In this case,
the most common focus in NLP is on learning shared representations, often in the
form of contextual embeddings (Peters et al., 2018; Devlin et al., 2019; Brown et al.,
2020b) that combine the knowledge about every task involved while the task-specific
layers are optimized to operate over these shared representations. Importantly, the
choice of task-specific network modules is strictly tied to the task at hand. The give
an example, we consider the multilingual NMT approach presented in Bapna and
Firat (2019) heterogeneous because the language-specific adapters (additional feed-
forwards layers) are chosen explicitly by the user based on the currently processed
language pair. In contrast, we consider the work presented by Zhang et al. (2021a) as
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homogenous MTL because the whole network is shared between all the languages,
and the choice of a suitable adapter is done by the trainable gating mechanismwithin
the network. Although possible, the latter approach does not guarantee the emer-
gence of strictly task-specific network modules. Still, based on their empirical evi-
dence, some modules are more likely selected when processing specific languages.

Both homogenous and heterogeneousMTL have their own applications, although
we argue that homogenous MTL is more desired because it helps to remove some in-
ductive bias, i.e. explicitly stating which part of the network computation needs to be
executed for a specific task, ignoring possible overlap between the tasks or whether
they complement each other. On the other hand, when working with heterogeneous
inputs, e.g. training a joint model for image captioning and machine translation
(MT), having a separate image encoder for the former and a text encoder for the lat-
ter, is required due to the different format of the inputs, each requiring a different
pipeline of transformations into a shared representation space (Kim et al., 2020; Jia
et al., 2021; Ni et al., 2021).

The biggest contribution to the increase in the popularity of MTL within the NLP
community can be most likely accredited to the introduction and increasing acces-
sibility of the large language models (Devlin et al., 2019; Brown et al., 2020b) and
their various flavors (Conneau and Lample, 2019b; Liu et al., 2019; Martin et al., 2020;
Xu et al., 2021). These models, often trained on hundreds of billions of training to-
kens using mainly a masked language model (MLM) objective (Devlin et al., 2019) as
their core optimization objective, provide high-quality, generalized, contextual em-
beddings that can be later used for fine-tuning models for various downstream tasks,
such as question answering (QA), natural language inference (NLI) or even NMT.
Most of the time, the original LM with its parameters fixed becomes part of a net-
work that is shared between the tasks, and task-specific output layers are added and
optimized on the respective task-specific data. The choice between fixing the shared
layers or further fine-tuning these layers during the down-stream task learning dif-
fers between applications; while fine-tuning usually leads to representations that are
better suited for the end tasks, it can lead to over-fitting in cases when only lim-
ited data are available for the downstream task (Peters et al., 2019; Grießhaber et al.,
2020). In the latter case, extraction of the LM features and using them as input for the
downstream task classifiers can be a more feasible option that prevents overfitting.

A slightly different approach toMTL can be seen in the area of multilingual NMT.
The standard encoder-decoder NMT paradigm (Bahdanau et al., 2014; Ha et al., 2016)
allows both parameter sharing and language-specific sub-networks or a combination
of these two approaches. In general, multilingual NMT can be classified into three
categories: many-to-one, one-to-many or many-to-many.
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Many-to-one NMT systems (Lee et al., 2017) focus mainly on learning general,
language-independent input representations that can be subsequently translated to
the target language by the decoder network. Such an approach can be beneficial
when translating from a low-resource source-side language by combining the under-
resourced datasets with data available for, ideally closely related, high-resource
source-side languages (Tars et al., 2021b). The high-resource languages then work
like a form of regularizer, not allowing the network to overfit to the low-resource
data. The introduction of subword embeddings (Sennrich et al., 2016b; Kudo and
Richardson, 2018) allows even the combination of more distant languages without
the need to significantly expand the model’s vocabulary, at least when the languages
share the writing script (Kocmi and Bojar, 2018). While not explicitly a many-to-one
NMT instance, the use of backtranslation (Sennrich et al., 2016a) can be considered
a form of multi-domain NMT, if we consider the synthetic sentences created by au-
tomatic translation from the target to source language as examples from a language
that is very similar to the original source-side language. In this case, the synthetic
task of learning to translate backtranslated source sentences to the target language
serves as an auxiliary regularization task.

There are two general approaches to the one-to-many NMT paradigm. The sim-
pler, but less storage-efficient approach focuses on training an additional decoder
module for each new target language (Dong et al., 2015; Luong et al., 2016) and using
the respective decoder when translating into a chosen target language. The result-
ing NMT system storage requirements grow linearly with the number of supported
target-side languages. The system also enables only limited exploitation of the target-
side language similarities. Still, it allows some level of regularization through the
shared encoder via input representations produced by the encoder. To allow greater
exploitation of the similarities between the target-side languages, only selected parts
of the decoder can be declared as language-specific, resulting in a more compact
model (Wang et al., 2018b; Bapna and Firat, 2019). Ultimately, a single-decoder solu-
tion is applicable, however, such an approach requires an explicit indication of which
target-side language needs to be produced by the decoder, often by inserting a special
target-side language indication token (Ha et al., 2016; Mhaskar et al., 2021).

The most complex, many-to-many NMT systems, combine the methods from the
previous two multilingual NMT paradigms. While there are several ways of com-
bining these paradigms (Johnson et al., 2017; Lu et al., 2018; Aharoni et al., 2019), the
most interesting (and challenging) aspect of the many-to-many NMT is the zero-shot
translation (Firat et al., 2016; Zhang et al., 2020). The idea of zero-shot translation is
inspired by the notion of the Vaquois Triangle (Vauquois, 1968), based on the hypoth-
esis that the multilingual word (subword) representations produced by the encoder
are close to an interlingua, although, there is currently no clear consensus in the deep
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learning community on the level of abstraction these representations provide. Us-
ing this shared interlingua, the many-to-many NMT decoder for a given target-side
language should be able to decode the encoded sentence even if the system did not
encounter the given source- and target-side language combination during the train-
ing. However, to achieve a good performance on the “zero-shot” language pair, at
least a limited amount of fine-tuning is required (Firat et al., 2016). Recently, the pre-
trained, multilingual language models, such as XLM (Conneau and Lample, 2019a)
or mBART (Liu et al., 2020), have been used as an initial source of such multilingual
representations (Chen et al., 2021a, 2022).

2.2 Incremental Learning

Unlike the standard MTL, incremental learning3 (IL, Solomonoff, 1989; Chaudhry
et al., 2018) refers to the learning of a set of distinct tasks in a sequential manner.
In addition to the problems common in the joint MTL, IL introduces new, unique
challenges, namely catastrophic forgetting (CF), sometimes also referred to as catas-
trophic interference (CI, (McCloskey and Cohen, 1989)), making joint MTL generally
easier to optimize in comparison. However, joint MTL requires data for all tasks to
be available during the joint optimization which might not always be an option in
practice, for example, due to the time-restricted licensing on certain datasets or the
availability of pretrained models without access to the original training dataset. Fur-
thermore, when maintaining statistical models in the long term, the original training
data distribution used for the model optimization can likely be less descriptive of
the real world which is continuously changing. This concept drift (Schlimmer and
Granger, 1986) can then make the original model less accurate and requires either an
update to the model or retraining it from the scratch. Different tasks in MTL may be
subject to these drifts to different extents, making the adaptation more fragile.

The major problem accompanying incremental updates to deep learning models
or their continuous adaptation to new tasks is CF. When a standard deep learning
(DL) model, i.e. a model not explicitly designed to counter CF, is trained sequentially,
the network tries to find the best fit for the currently presented dataset. While there
might be a solution that fits both the current task and the previous task, the lack of
previous task data in the current batches often results in the network forgetting the
previous task by only fitting the current task data. To counter CF, we aim to design
models with good knowledge retention. CF is also closely connected to the idea of
model plasticity (Aljundi et al., 2019; Sodhani et al., 2020), the ability of the model to

3In the literature also often referred to as lifelong learning (Silver and Mercer, 2002; Silver et al.,
2013; Parisi et al., 2019; Aljundi et al., 2017), continual learning (Ring, 1995) or sequential learning
(McCloskey and Cohen, 1989; Shin et al., 2017).
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effectively adjust its parameters when adapting to new information about the world.
Eventually, a fixed-size model will reach a point when no new knowledge can be
stored – we then say that the model reached its representational capacity (Biesialska
et al., 2020). Such a model then must be either expanded by adding new layers or
additional parallel modules (adapters; Bapna and Firat, 2019; Zhang et al., 2021a) or
some selective forgetting must be applied, leading to a trade-off between the amount
of past and present knowledge that the model stores, in the literature referred to as
a stability-plasticity dilemma (Abraham and Robins, 2005).

In addition to mitigating CF, another goal of IL research is, similarly to joint
MTL, to improve the performance on a specific task by using knowledge learned
from other (often related) tasks. In this case, due to the incremental nature of IL, we
distinguish between forward and backward knowledge transfer. Forward transfer
aims at reusing past knowledge for improving future task performance (or learning).
Backward transfer, on the other hand, happens when the model can improve its per-
formance on previously learned tasks using the knowledge gained when learning
newer tasks.

The contemporary IL research in NLP focuses mainly on the adaptation and
fine-tuning, leveraging models pretrained on large, general-domain corpora (Devlin
et al., 2019; Brown et al., 2020a), or models optimized on high-resource languages
to improve performance on the under-resourced languages (Grießhaber et al., 2020;
Thillainathan et al., 2021; Grießhaber et al., 2020; Kocmi and Bojar, 2018). While
the already powerful contextual representations provided by the large LM trained
on the unsupervised data can already help achieve high performance on various su-
pervised downstream tasks (Brown et al., 2020a), subsequent domain-adaptation and
task-adaptation of these LMs can lead to further performance gains (Gururangan
et al., 2020). The earlier LM-based attempts at tackling the problem of CF were ex-
plored mainly on the replay-based methods (de Masson d’Autume et al., 2019b; Sun
et al., 2020), generating pseudo-samples of the previously learned tasks during the
subsequent learning.

Similarly, the studies of IL in NMT initially focused on adaptation of the exist-
ing high-resource and general-domain models by fine-tuning these models using the
available in-domain low-resource corpora (Luong and Manning, 2015; Freitag and
Al-Onaizan, 2016; Chu et al., 2017). These methods mostly ignored the effects of
CF, sacrificing some amount of the original domain knowledge for more domain-
specialized models due to model overfitting (Khayrallah et al., 2018). As a result,
the fine-tuning approaches require the storage of a separate model checkpoint for
each task involved in the training pipeline, being storage-inefficient. More recent
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approaches suggest reusing a significant portion of the original network and storing
task-specific knowledge in swappable adapters, reducing the overall store require-
ments for a given set of tasks (Bapna and Firat, 2019; Zhang et al., 2021a; Pfeiffer
et al., 2020).

Themultilingual NMT can be considered a special case of domain adaptationwith
individual translation pairs and translation directions representing separate domains
(Tan et al., 2019; Johnson et al., 2017; Ha et al., 2016). Even though these models suffer
fromCFwhen being adapted to new languages, themultilingual NMTmodels trained
on a combination of high-resource languages can still be a powerful parameter ini-
tialization when training low-resource NMT systems (Thillainathan et al., 2021; Tars
et al., 2021a). Besides using regularization techniques aimed at reducing CF, a certain
level of forgetting can be also prevented by fixing the encoders/decoders optimized
for the previous languages during new language training (Escolano et al., 2021).

A problem closely related to the continuous multilingual NMT, namely to the
model extension to new languages, is vocabulary expansion. While the subword to-
kenization solves the out-of-vocabulary (OOV) problems when the given set of lan-
guages share a writing system, the subword vocabulary produced by the tokenization
algorithm is still affected by the training corpus token distribution. In the classicMTL
setting, the best subword tokenization results can be achieved by combining the cor-
pora available for all the languages involved in the training (Kocmi and Bojar, 2018).
However, this is not possible during IL and the model needs to either reuse sub-
optimal subword tokenization or the model’s vocabulary needs to be transformed
with each new language (Kocmi and Bojar, 2020).

In the next chapter, we will introduce the basic concepts of sequence and
sequence-to-sequence learning. We will also provide a summary of the Transformer
neural network architecture.
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3
Neural Sequence-to-sequence

Modeling

Neural sequence-to-sequence learning is a set of tasks closely related to neural se-
quence modeling (Mikolov et al., 2010; Sundermeyer et al., 2012; Cho et al., 2014b;
Bahdanau et al., 2014), more precisely, it can be considered conditional sequence
modeling.

Let Σ be a finite alphabet and Σ∗ the set of all possible strings over the alphabet.
A neural sequence model is a function fθ(w) that estimates the probability distribu-
tion p(w) = p(w1, .., wn),w ∈ Σ∗, n ∈ N over all possible sequences.1 In practice,
we often only estimate probabilities of sequences from a given language L ⊂ Σ∗

setting p(w) = 0 for w /∈ L.2

In practice, most often due to the sparsity of the available data, estimating
p(w1, .., wn) directly is infeasible. Instead, we apply the chain rule and try to es-
timate the conditional probability of individual symbols given their predecessors:

p(w) =
n∏︂

i=1
p(wi|wi−1, .., w1) (3.1)

The factorization in Equation 3.1 leads to a class of so-called autoregressive (AR)
models. Before the recent advancements in deep learning, the most popular ARmod-
els were based on the hidden Markov model (HMM, van den Bosch, 2017). However,
the HMMs are by definition built with a strong independence assumption, condi-
tioning the output only on the predecessor sequence of limited length. On the other

1We will use the term sequence and string interchangeably.
2Based on the implementation, it can be either hard-coded in the function fθ or inferred from the

data, resulting in values very close to 0.
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hand, even the simplest sequence modeling architectures can in theory make use of a
very long sequence of predecessors, although, in practice, it is very hard to optimize
such models for long sequences without additional modifications to the NN archi-
tecture (Kolen and Kremer, 2001). Additionally, while AR models are a very popular
approach to modeling language in NLP, contemporary research suggests other alter-
native factorizations that aim to capture different dependencies within the sequence
structure. Such approaches include (not exhaustively): right-to-left modeling that
is often used for rescoring the output of the left-to-right AR model (Grundkiewicz
and Heafield, 2018), non-autoregressive (NAR) modeling which assumes complete
independence between the output symbols (Libovický and Helcl, 2018; Gu and Kong,
2021) or tree-based modeling aimed at mimicking the generation process given by
a grammar accepting the language L (Gū et al., 2018). If not stated otherwise, this
thesis will be centered around left-to-right AR architectures.

Let us assume two languages, L1 ⊂ Σ∗, and L2 ⊂ Σ∗. The goal of neural
sequence-to-sequence modeling is to estimate a conditional probability of the output
sequence y ∈ L2 of lengthm, given the input sequence x ∈ L1 of length n.

p(y|x) =
m∏︂

i=1
p(yi|yi−1, .., y1, xm, .., x1) (3.2)

Similarly to sequence models, the Equation 3.2 describes one of the possible fac-
torization, a factorization that will be used throughout this thesis. However, the
contemporary neural sequence-to-sequencemodels make several adjustments to this
factorization leading to better empirical results. We will describe examples of these
architectural designs in the next section.

3.1 Architecture Overview

The goal of the neural sequence generation is to output a sequence of length m,
y = (y1, .., ym). In practice, this is achieved via a generator function that implements
the probability distribution from Equation 3.1 and a decoding algorithm that samples
the sequence from the modeled distribution. While there are multiple generation
schemes, this thesis focuses mainly on the auto-regressive generation that uses the
following (generalized) function:

yi, hi = fθ(yi−1, hi−1) (3.3)
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The desired behavior of the function fθ with trainable parameters θ is to suc-
cessfully keep track of the previous sequential context using an internal history hi−1

which is updated at each decoding step using the output from the previous step and
adjust the output distribution used for generating yi given said history. This can
be accomplished in various ways depending on the choice of the underlying neural
network architecture.

Historically the first approaches towards modeling the neural generation func-
tion fθ were based on recurrent neural networks (RNNs). Intuitively, these networks
seem like a logical choice given that they were designed to process dynamic time-
series recurrently. Similarly to Equation 3.3, they keep track of the sequence history
using the internal recurrent state. The implementation can be as simple as in the El-
man networks (Elman, 1990) where a new hidden state hi is produced by an element-
wise sum of linear transforms of the input vector yi−1 and the previous state vector
hi−1 followed by a sigmoid non-linearity. The output vector yi is then produced by
an output linear transform followed by another non-linearity (sigmoid or softmax)
that models the output distribution of the discrete variable yi.

The main issue with Elman’s vanilla RNN is related to the training methods used
to optimize it. When optimized using a gradient-based backpropagation (Rumelhart
and McClelland, 1987), a common approach to NN optimization, the Elman networks
often suffer from exploding and vanishing gradient problems that are related to learn-
ing to model long sequences (Hochreiter et al., 2001). Simply put, when using a vari-
ation of the backpropagation algorithm, backpropagation through time (BPTT), the
further the error signal has to propagate, the more it vanishes due to the repeated
multiplication of the gradient of the non-linearities, leading to a decreasing magni-
tude of the gradient. The exploding gradient is a result of a product of derivations
of different classes of functions with a similar effect. Only instead of decreasing the
gradient magnitude with the increasing distance from the final token, the magnitude
of the gradient increases greatly, resulting in training instability.

One of the proposed solutions to these two problems was the introduction of a
gating mechanism, creating more complex recurrent units such as long short-term
Memory (LSTM, Hochreiter and Schmidhuber, 1997) or gated recurrent unit (GRU,
Cho et al., 2014a). With the introduction of the gating mechanism, these recurrent
units could better control the information flow, deciding what information should
be stored within the fixed-length vector hi and what can be discarded. While they
helped with reducing the impact of the vanishing and exploding gradient, they did
not completely remove the problem.
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Although, the networks described so far can learn sequence-to-sequence map-
ping tasks, in practice, they treat the input and output sequence as a single concate-
nated sequence of tokens, usually separated by a special separator token, processing
the sequence similarly as a languages model would. The initial input sentence is first
processed by the network accumulating the information about the input sequence in
the hidden state hi, sometimes referred to as working in the encoding mode. Later,
after processing a special end-of-sequence (EOS) token, the network switches to the
decoding mode, producing the output sequence in the AR fashion. This distinction be-
tween the encoding and decoding modes leads to a logical topological separation of
the original network into the encoder and decoder sub-network. These sub-networks
can, depending on architecture design, either consist of separate sets of trainable
parameters or make use of parameter sharing.

Given the input sequence x = (x1, .., xm) the encoder-decoder network first
encodes the input sequence into a sequence of hidden states henc = (h1, .., hm)
using the encoder:

h(enc) = fenc(x) (3.4)

Namely, in the context of RNNs:

hi = RNNenc(xi, hi−1) (3.5)

The encoder output h is then processed by the decoder producing the output
sequence y = (y1, .., yn):

y = fdec(h(enc)) (3.6)

Similarly to the encoder, this is usually implemented in RNNs as a function that
updates the decoder hidden state:

hj = RNNdec(yj−1, hj−1) (3.7)

And a token emission function:

yj = fout(hj) (3.8)

To condition the decoder sequence generation on the input sequence x, we ini-
tialize the decoder state h0 using the hidden states h(enc) produced by the encoder.
Usually, the RNN decoder (Sutskever et al., 2014) does not use the whole sequence
h because the length of the input sequences (and their encodings) varies between
examples and the decoder requires a hidden state of a fixed size. Instead, the RNN
decoder uses either the last encoder hidden state hm, or performs amaximumor aver-
age pooling (Hubel andWiesel, 1959; Scherer et al., 2010) over the sequence h(enc) to
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create the initial decoding hidden state h0. Also, note that the encoding Equation 3.4
results in hidden states encoding only the left-side context. A more robust approach,
a bi-directional encoding (Peters et al., 2018), also considers the right-side context by
running additional encoding in the opposite direction, modifying Equation 3.5:

hi = RNNenc_backward(xi, hi+1) (3.9)

This operation is usually performed by a separate backward encoder. The initial
decoder state is then created by a concatenation of the forward and backward decoder
initial state, created from the forward and backward encoder states respectively.

The main problem with this basic encoding method is the information bottleneck
created by condensing a variable-length sequence into a fixed-length vector (the ini-
tial hidden decoder state). Besides, the encoding scheme described in Equations 3.5
and 3.9 still suffers from vanishing/exploding gradient problems when faced with
very long input sequences. While the latter can be partially alleviated by forward-
ing information via additional shortcut connections or skip connections (He et al.,
2016b; Bishop, 1995; Ripley, 1996), the former is not so straightforward. Bahdanau
et al. (2014) tackled the problem with fixed-length encoder output by introducing
an attention mechanism over the encoder output states h. This mechanism enables
the decoder to equip its hidden state with information from the variable-length en-
coder output h(enc), by introducing an attention context to the decoding step (Equa-
tion 3.7):

hj = fdec(hj−1, yj−1, cj−1) (3.10)

The attention context vector ci is a weighted sum over the encoder states h, usu-
ally computed with respect to the current decoding hidden state:

cj =
m∑︂

k=1
ekhk (3.11)

The attention weights ei, sometimes called energies (Bahdanau et al., 2014; Luong
et al., 2016), are a result of a softmax operation (McCullagh, 2019) over the trans-
formed encoder hidden states. The transformation methods may vary, including (not
exhaustively) a fixed linear transform (Bahdanau et al., 2014; Luong et al., 2016), to a
scale-dot product (Vaswani et al., 2017). Using the attention context, each decoding
state can be directly influenced by any of the encoded input tokens h(enc). Addi-
tionally, the direct connection between the decoder states and the encoder outputs
can help reduce the information bottleneck caused by the fixed-length decoder state
(Tishby and Zaslavsky, 2015).
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The introduction of attention context, besides improving the performance of
the RNN-based encoder-decoder architectures, was followed by the investigation of
other alternative sequence-to-sequence approaches. For example, Lee et al. (2017)
suggested a hybrid encoder architecture that combines a convolutional neural net-
work (CNN, Lecun and Bengio, 1995) to first transform the input sequence of char-
acters using a small contextual window and then applied RNN to refine their contex-
tual knowledge within the context of the whole sequence. Later, Gehring et al. (2017)
proposed replacing the RNN completely with a deep convolutional network. Using
stacked convolutions and the fact that contemporary graphical processors (GPU) are
well optimized for the computation of the convolution operation, they achieved sig-
nificant speed improvements while surpassing the translation quality of the previous
RNN-based sequence-to-sequence architectures.

While Lee et al. (2017) focused on creating a hybrid encoder by a combination
of two different types of networks other approaches studied modifications of spe-
cific network archetypes (e.g. RNN) with techniques introduced in their competitive
alternatives. For example, Fung andMak (2018) replace the standard attention mech-
anism in the LSTM sequence-to-sequence with multi-head attention (Vaswani et al.,
2017). Bogoychev et al. (2020) suggest first training a feed-forward Transformer net-
work (described in the following section) by an RNN-based decoder, trained using
teacher-student learning, for a more effective test-time inference.

3.2 Transformers

Ultimately, Vaswani et al. (2017) expanded on the idea of refining the contextual
information introduced in convolutional sequence-to-sequence networks, by replac-
ing the CNN layers in the encoder/decoder strictly by a feed-forward network (FFN).
Figure 3.1 illustrates the proposed architecture, Transformer. The architecture builds
upon several key concepts that we describe in the following subsections.

Embedding layer

First, the input tokens x = (x1, .., xm), represented by one-hot vectors indicating
their position in a given vocabulary V , are transformed into their respective con-
tinuous representations x′ = (x′

1, ..x
′
m) (aka word embeddings; Mikolov et al., 2013;

Harris, 1954) using the input embedding matrix Wemb ∈ R|V |×d (d being the size of
the hidden dimension):

x′
i = xiWemb (3.12)
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Figure 3.1: Illustration of the original Transformer NN architecture proposed by
Vaswani et al. (2017). Left: General structure of the Transformer encoder-decoder
architecture. Middle: General description of the Transformer multi-head attention
block. Right: Detail of the scaled dot-product attention used in the Transformer at-
tention blocks. The illustration was taken from the original publication.

The encoder and decoder network can either each have their designated embed-
ding matrix, allowing the use of different source and target vocabularies, or both can
share their embedding matrix parameters. While the former can help distinguish
tokens with similar forms and different meanings between the source and target lan-
guage, the latter results in a lower number of trainable parameters and can help to
exploit lexical similarities between the source and target languages.

Similarly to the CNN-based architecture, the main Transformer blocks do not
contain an explicit mechanism (such as the hidden state in RNN) for tracking the
position of the tokens within a given sequence. Thus, the token embeddings x′ are
additionally shifted using the positional encoding (Vaswani et al., 2017) which is com-
puted based on the absolute position of the tokens in the sequence. This positional
shift of the embedding is computed as a dimension-specific combination of sine and
cosine functions, mainly due to their periodic properties, proposed by Vaswani et al.
(2017):

PE(pos,2i) = sin(pos/10000
2i

dmodel ) (3.13)

PE(pos,2i+1) = cos(pos/10000
2i

dmodel ) (3.14)

This leads to an updated embedding Equation 3.12:

x′
i = xiWemb + PE(i,∗) (3.15)
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Compared to the positional embeddings (Gehring et al., 2017), the benefit of the
positional encoding is a fast computation (implementations of sine and cosine func-
tions are well optimized in most of the deep learning frameworks and the results can
be hashed due to the values being constant) and a reduction of the overall model size
due to the positional encoding not requiring any additional trainable parameters.

The downside of the vanilla position encoding/embedding is its inability to explic-
itly model relative distances between the tokens. This results in the computational
burden being shifted to the rest of the network.3 There have been several propos-
als for introducing the representation of the relative token distance to Transformers,
including a modification of the attention mechanism (Shaw et al., 2018) or a replace-
ment of the positional encoding by a designated RNN layer (Neishi and Yoshinaga,
2019). These modifications showed promising improvements, mainly with respect to
better modeling of long-range dependencies.

If not stated otherwise, we use the original Transformer architecture with the
absolute positional encoding.

Transformer blocks

Following the embedding layer, the input tokens are processed by a stack of Trans-
former layers. Each Transformer layer contains multiple Transformer sub-layers,
(refered to as blocks in this thesis; see Figure 3.1) – for the encoder, it is a self-
attention block, followed by a feed-forward block, and for the decoder, it is the
sequence of self-attention, encoder-decoder attention, and the feed-forward block.
These blocks are the core of the architecture, performing step-by-step transforma-
tions of the input sequence representations while trying to capture the underlying
structural elements of a sequence (source or target) that are important for learning
to model the target sequence distribution.

A typical Transformer of depth K learns to apply functions f (0), .., f (K−1), rep-
resented by the respective Transformer blocks, each block producing a sequence of
hidden representations h(j) = (h(j)

1 , .., h(j)
m ):

h(j+1) = f (j)(h(j)) (3.16)

3Although the solution is a simple algorithm (e.g. an absolute value of subtraction of two positional
encodings), this ability is not default in a randomly initialized network and has to be learned from data.
The original Transformer has a limited ability to correctly generalize when learning such algorithmic
behavior as we demonstrate later in this thesis.
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where h(0) = x′.4 Each block usually contains its own set of trainable param-
eters, learning a unique transformation of the input sequence. Some modifications
suggest sharing parameters between the encoder and decoder (Rothe et al., 2020)
to reduce the overall memory footprint of the model or even recursively applying
a single Transformer block recurrently (Dehghani et al., 2019) which (based on the
authors’ claim) can enable higher expressiveness of the Transformer.

Figure 3.1 (middle and left) illustrates the multi-head attention mechanism.
Vaswani et al. (2017) propose a general definition of the attention mechanism as a
“[…] mapping a query and a set of key-value pairs to an output, where the query, keys,
values, and output are all vector”. Previously, several types of attention mechanism
were proposed (Bahdanau et al., 2014; Luong et al., 2016). The original Transformer
uses a scaled dot-product product attention, also known as scaled bilinear attention
(Luong et al., 2015b; Michel et al., 2019). Given a query q and a sequence of key-
value pairs (k, v) = ((k1, v1), .., (km, vm)), the single scaled dot-product attention
is defined as:

Att(q,k,v) = Wo

M∑︂
i=1

αi(viWv) (3.17)

αi = softmax
(︄
qWqW

⊤
k k

⊤
√
d

)︄
(3.18)

The trainable parameters in matricesWq,Wk,Wv ∈ Rd×d allow the model trans-
form the query, key and value vector spaces in such a way that helps the attention
mechanism to capture any structure within the sequence that is useful for a given
task. Afterward, the result is further transformed using a trainable output matrix
Wo ∈ Rd×d. The normalization constant

√
d is used to preserve the unit variance of

the representations after the dot-product operation (Vaswani et al., 2017).

Multi-head attention (MHA) expands this idea by learning Nhead projections
W (j)

q ,W
(j)
k ,W (j)

v ,W (j)
o ∈ Rd×( d

Nhead
) into (often smaller) vector sub-spaces (Nhead

indicating the number of attention heads), resulting in a respective Attj(.) attention
head function. The MHA output is then defined as an ensemble of these individual
attention outputs:

MHA(q,k,v) =
Nhead∑︂
j=1

Attj(q,k,v) (3.19)

4Or, in the case of the decoder, h(0) = y′
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In practice, the transformations performed within the individual attention can be
performed by combining respective query, key, value, and output attention matrices
and executing a single matrix multiplication for each, leading to fast computation
and parallelization. Furthermore, a sequence of queries q = (q1, .., qM) can also be
processed in parallel.

In the context of Transformer, there are two applications of MHA: self-attention
and encoder-decoder attention. The self-attention takes uses the input from the pre-
vious layer h(i) in place of query, key, and value vectors, basically allowing the se-
quence h(i) to attend over itself. The self-attention is the first processing sub-block
within all of the encoder and decoder Transformer blocks. The encoder-decoder at-
tention uses the previous decoder layer output h(i)

dec as the query and attends over
the hidden states produced by the encoder final layer h(out)

enc which are used to de-
rive both keys and values. The encoder-decoder attention is exclusive to the decoder,
applied directly after the self-attention layer. The purpose of the encoder-decoder at-
tention is to refine the decoder’s hidden states using the knowledge about the source
sequence extracted by the encoder.

Sometimes, we consider the MHA layer as means of horizontal transfer of in-
formation since the information stored in the hidden representations is transferred
horizontally between the tokens in the sequence.

Feed-forward network (FFN) block applies a linear transform mapping the in-
dividual input vectors into a higher-dimensional vector space followed by a non-
linearity, such as ReLU (Nair and Hinton, 2010), and another linear transform back
to the vector space with the original dimension, using a pair of projection matrices
W1,W2 ∈ Rd×4d and biases b1 ∈ R4d, b2 ∈ Rd:5

FFN(hi) = ReLU(hiW1 + b1)W⊤
2 + b2 (3.20)

Compared to the horizontal information transfer in the self-attention blocks, the
theoretical purpose of the FFN blocks is to vertically propagate information between
the dimensions of the individual hidden representations hi.

Furthermore, each Transformer block applies a residual connection (He et al.,
2016b) after each sub-block, connecting the sub-block output with its initial input,
improving training convergence. Similarly, layer normalization (Ba et al., 2016) is
applied between the individual sub-blocks for better training stability.

5Theprojection to a four times larger vector space is a general rule of thumb but different projection
sizes can be chosen.
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Output projection

Lastly, the output of the final Transformer decoder block is transformed by a linear
projection mapping each hidden state hi to the output token yi. This projection is
similar to the output projections used in other architectures (RNN, CNN), however,
common practice is to replace the output projection matrix by the transpose of the
decoder embedding matrix, tying the parameters of the decoder input and output
projection (Press and Wolf, 2017).

This way, the output projection can be interpreted as generating the output token
probability distribution (over the target vocabulary) based on the similarity of the
hidden state hi to the respective target-side vocabulary entries. During the inference
we can either sample from this distribution or, more commonly, select a token that
maximizes the probability of the generated sequence.

3.2.1 Transformer Training

The supervised training of Transformers (and other NMT architectures) aims at find-
ing values of trainable model parameters (i.e. model weights) that minimize a train-
ing loss, most commonly the cross-entropy (CE) loss. Given the true conditional
probability distribution p̂(y|x) over the sequences y generated given the input se-
quence x and the estimated conditional probability distribution pθ(y|x) provided by
the model decoder, the CE loss is defined as:

LCE(θ) = −
∑︂
x,ŷ∼p̂

p̂(ŷ|x) log pθ(ŷ|x) (3.21)

Usually in practice, the true conditional probability distribution p̂ is not available
(or hard to track) because, in many NLP tasks, multiple output sequences can be often
considered satisfying solutions (Bojar et al., 2013). Instead, we often have to rely on
a single or only a few available true reference outputs. Thus, instead of minimizing
the cross-entropy between the model distribution and the true data distribution, we
aim to minimize the negative log-likelihood (NLL) of the true reference outputs with
respect to the model distribution.6,7 Let us assume that we train the model using
data points x, ŷ ∈ D, where D is our training dataset. By assigning sure event
probability to each datapoint and using the cross-entropy (Equation 3.21), we arrive

6We aim for the maximum likelihood of our data, however in machine learning, the standard
practice is to minimize the training loss.

7Throughout this thesis, we use the terms NLL and CE interchangeably due to their close relation-
ship.
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at the following NLL loss function:

LNLL(θ) = −
∑︂
x,ŷ∈D

log pθ(ŷ|x) (3.22)

Following the factorization in Equation 3.2, we can modify the NLL loss, and
instead of minimizing the NLL of the whole output sequence, weminimize the NLL of
the individual tokens in the sequence given the current output prefix and the source
sequence:

LNLL(θ) = −
∑︂
x,ŷ∈D

|ŷ|∑︂
i=1

log pθ(ŷi|ŷ<i,x) (3.23)

Equation 3.23 implies an important thing: during training, the output of the i-th
decoding step is conditioned on the previous i − 1 golden truth tokens (ŷ1, .., ŷi−1)
instead of the actual decoder output (y1, .., yi−1). This technique, known as teacher
forcing (Williams and Zipser, 1989), was first proposed for RNN training but found
its application also with other sequence modeling architectures.

Although teacher forcing speeds up the model training convergence, it can lead
to a phenomenon called exposure bias (Ranzato et al., 2016), i.e. during training, the
model is only exposed to the gold output tokens (from the assumed true data distribu-
tion) when receiving input for the next decoding step. However, during test time, it is
fully dependent on its learned token distributions. This can lead to a quick accumu-
lation of errors when using simple decoding approaches such as greedy decoding,
i.e. applying argmax operation on the output token distribution at each decoding
step. The practical solution to this problem is using a more sophisticated decoding
algorithm instead, the most common being beam search (Graves, 2012; Boulanger-
Lewandowski et al., 2013; Sutskever et al., 2014; Freitag and Al-Onaizan, 2017). An-
other way to reduce the effects of the exposure bias can be scheduled sampling (Ben-
gio et al., 2015), focusing on the teacher forcing at the beginning of the training
and later, when the model is closer to convergence, switching to sampling from the
learned distribution.

Another problem related to the NLL loss in Equation 3.23 is the fact that we
maximize the likelihood of individual tokens instead of the whole sequences even
though, at the end we evaluate the model against different criteria using different
metrics that often operate either on the sentence-level or document-level, e.g. BLEU
(Papineni et al., 2002) in NMT, ROUGE (Lin, 2004) in text summarization. To avoid
the discrepancies between the training and test-time evaluation criteria, Shen et al.
(2016) propose to use minimum risk training (MRT), a reinforcement learning (RL)
technique useful for applying (often non-differentiable) metrics as the training loss.
Another possible RL approachwas proposed in the adversarial NMT (Wu et al., 2018),
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replacing the reference-based training loss with an adversary neural network that is
optimized to distinguish between the machine translation outputs and the human-
produced reference translations, and letting the NMT generator and the adversary
discriminator network that have opposing optimization objectives to compete against
each other.

Compared to RNNs that contain an accumulator of the context information in
the form of the recurrent hidden state, Transformers can further benefit from teacher
forcing by efficient parallelization of the decoding. During training, decoding at all
positions can be performed in parallel (instead of autoregressive decoding) because
all decoder inputs are known in advance (gold reference tokens). There is no need
for an accumulator due to the decoder’s hidden states being the result of the stateless
feed-forward and attention operations. Furthermore, the autoregressive-like prop-
erty of the decoder (ie. only seeing the previous context during decoding) can be
simulated by applying a triangular mask on the decoder inputs during training. This
parallelization results in much faster training of the Transformer compared to the
contemporary alternatives.

Besides the NN architecture modifications (residual connections, layer normal-
ization) aimed at improving the stability of Transformer optimization, optimization
algorithms that consider momentum, e.g. Adam (Kingma and Ba, 2014) or Adafac-
tor (Shazeer and Stern, 2018) coupled with a specialized learning rate scheduling,
including linear learning rate warmup and later exponential decay further improve
Transformer convergence rate (Xiong et al., 2020; Vaswani et al., 2017). Additionally,
label smoothing (Szegedy et al., 2016) applied during training can further help with
the Transformer generalization ability.

3.2.2 Transformer Decoding

The optimized Transformer sequence-to-sequence model can be used either for se-
quence scoring, by computing the likelihood of the output sequence given the source
input, or for conditional sequence generation. The latter, the autoregressive sequence
generation, is a process of sampling output tokens given the source sequence and the
previously generated output sequence prefix.8 This process is repeated until a stop-
ping criterion is met: usually either a special EOS symbol is generated or a maximum
output length is reached. There are multiple algorithms for sequence sampling, the
most common being greedy decoding, random sampling, and beam search.

8As mentioned earlier, there are other alternatives to autoregressive decoding, however, these are
not covered by this work.
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Greedy decoding (also known as argmax decoding) simply outputs themost prob-
able token at each decoding step. Although quite fast and memory efficient, the re-
sulting output hypothesis can be often suboptimal: even though the probability (like-
lihood) of each token is the highest at each step, the decoding algorithm can some-
times miss other solutions that can have a higher likelihood of the whole sequence
(or subsequence), ie. the product of likelihoods of the greedily decoded tokens can
be non-maximal.

Random sampling is often used in combination with other decoding algorithms
mainly because of the conditionality of the output tokens on the available sequence
prefix. The sampling itself is prone to generating erroneous outputs and the condi-
tional nature of the decoder helps the errors to quickly accumulate. On the other
hand, applying random sampling only during a few decoding steps can lead to hy-
potheses that can be overlooked by the deterministic decoding algorithms. Still, ran-
dom sampling decoding is usually more commonly used during training, namely in
combination with the optimization using reinforcement learning approaches (Wu
et al., 2018; Shen et al., 2016).

Beam Search decoding was introduced as a more robust alternative to greedy de-
coding. It is designed to allow better exploration of the hypothesis space – instead
of holding a single hypothesis prefix at a time (greedy decoding), beam search keeps
track of K working hypotheses at each decoding step. When generating the next
token, all potential partial hypotheses are expanded with every possible output to-
ken, scored, and only the new K best partial hypotheses are kept for the following
decoding step. The scoring is usually based on the sum of the log-likelihood of the
candidate’s partial hypotheses tokens. By design, this scoring method often favors
shorter sequences over longer ones (Stahlberg and Byrne, 2019). Therefore the scor-
ing is modified by adding length normalization (Koehn and Knowles, 2017; Jean et al.,
2015) or length penalty (Wu et al., 2016):

While, compared to the depth-first search algorithm, beam search is often not
able to find the most likely hypothesis (according to the underlying model), it is still
able to find hypotheses that are satisfying with respect to either automatic evalua-
tion metrics and even human-based evaluation. This suggests that beam search can
mitigate some biases contained in the underlyingmodels (Stahlberg and Byrne, 2019).

The rest of this thesis will be covering our experiments with Transformer ar-
chitecture, focusing on the problems of generalization, incremental learning, and
Transformer modularization, answering the research question that we asked at the
beginning of this work.
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4
Generalization in NMT

Transformers

One of the great research interests inside the machine learning (ML) community
is the problem of building systems that learn and think similarly to humans, also
referred to the artificial general intelligence (AGI, Lake et al., 2017). While the his-
tory of AGI research has been full of both optimism and disappointment, in the past
decade, the interest in AGI research has grown large again, mainly thanks to im-
portant breakthroughs in the area of deep learning (DL), focused on studying large
neural-based systems with multiple layers of representation.

This reawakened interest has also brought back to attention an old question:
What does it mean to learn and think like a human? While the answer to this question
is difficult and our current knowledge of the human mind is still not sufficient to pro-
vide a satisfying answer, it is still possible to compare certain aspects of the current
state-of-the-art (SoTA) DL models to their counterparts in humans that serve often
as a design inspiration for these models. Even though there are other non-neural
approaches towards building an AGI, such as probabilistic ML (Ghahramani, 2015),
automatic statistical reasoning (Lloyd et al., 2014), or probabilistic programming lan-
guages (Gelman et al., 2015; Goodman et al., 2008), our focus is set mainly on studying
the aspects of learning in the context of DL, namely the Transformer architecture.

Lake et al. (2017) look at the task of building AGI as a combination of two key
ingredients: implementing cognitive abilities into a system (such as intuitive physics
and intuitive psychology as referred to by the author) and improving its ability to
learn. While the former is no less important than the latter, our main area of interest
is studying the aspects of learning with respect to Transformer architecture. Even
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though Lake et al. (2017) state that the current DL systems are still far from imple-
menting either of the key ingredients and compare the contemporary DL systems
to “models of statistical pattern recognition”, we still find it relevant to talk about the
ability to learn.

Recent advances in deep NLP (i.e. NLP with a focus on DL methods) resulted in
models that can reach human-level performance in various tasks, spanning from gen-
eral language modeling (Devlin et al., 2019; Brown et al., 2020a), to specific tasks such
as speech recognition (Amodei et al., 2016; Chan et al., 2016), image captioning (Lu
et al., 2017; Xu et al., 2015) or machine translation (Popel et al., 2020; Vaswani et al.,
2017). Additionally, the previous trends of using rich linguistic knowledge to create
detailed annotations of the training data describing the contemporary understand-
ing of the language and its structure (Sudarikov et al., 2017; Bojar and Tamchyna,
2015) has been steadily on the decline thanks to recent DL advances. Instead of
using human-based annotation DL models are able to identify and extract useful fea-
tures with only little human guidance while also being able to scale with increasing
amounts of training data (Brown et al., 2020a; Devlin et al., 2019).

While impressive on their own, these results fall a bit short when we focus on
the comparison between these DL models and humans with regard to their learning
process. A case can be made by comparing the human and SoTA DL ability to learn
to play video games. For example, Mnih et al. (2015) introduced a deep reinforcement
learning architecture based on Q-networks (Sewak, 2019) which was able to reach a
human-level performance on the majority of selected Atari 2600 games without any
specific knowledge about the individual games (the decisions were made based only
on the visual input, i.e. what can be seen on the screen). While the performance
of this architecture was a big step towards building independent agents it is impor-
tant to acknowledge that the model required on average around 38 days of in-game
experience (or 50 million training frames) and the models were highly specialized,
training a separate model for each game. Compared to that, humans can learn to
play these games in a matter of a few minutes (Tsividis et al., 2017) and are often not
limited to a single game. This performance gap shows the huge difference between
the complexity of contemporary neural networks and humans, possibly due to the
latter having the advantage of having rich representations about objects and physics
(Spelke, 1990; Baillargeon, 2004; Rips and Hespos, 2015), being able to acquire new
concepts (Carey, 1978; Landau et al., 1988; Markman, 1991; Xu and Tenenbaum, 2007)
and build intuitive theories (Murphy andMedin, 1985; Carey, 1985; Gopnik andMelt-
zoff, 1997), predict (Rips, 1975; Murphy and Ross, 1994) and imagine (Ward, 1994; Jern
and Kemp, 2013).
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Another case can be made using the recent Transformer-based LM, such as BERT
(Devlin et al., 2019), its derivations, RoBERTa (Liu et al., 2019), Longformer (Beltagy
et al., 2020) or Big Bird (Zaheer et al., 2020), or its upscaled version, GPT-3 (Brown
et al., 2020a). These models are without doubt powerful language learners, often
being used as an out-of-the-box parameter initialization that is subsequently fine-
tuned for downstream tasks such as language understanding (Wang et al., 2018a),
question answering (Rajpurkar et al., 2016; Joshi et al., 2017). However, the actual
understanding of the language is still a subject of discussion. Recent criticism has
compared these models to stochastic parrots (Bender et al., 2021), arguing that instead
of language understanding, these models exploit the benefits of their scalability and
the enormous size of the provided training corpora.

Figure 4.1: The classical U-shaped curve showing the trade-off between the model
size and its ability to generalize on unseen data. We reproduce the original figure
from Belkin et al. (2019).

Figure 4.2: The double-descent curve proposed by Belkin et al. (2019). The curve
still includes the previous U-shape curve, however, when the model becomes over-
parametrized, its generalization error begins to decrease again (referred to as inter-
polating regime. We reproduce the original figure from Belkin et al. (2019).

If we look at the traditional machine learning theory, the action of model upscal-
ing (e.g. by increasing the number of model parameters) is usually considered as a
trade-off between the model expressiveness (i.e. ability to fit the training data) and
generalization (having a low error rate on new data generated by the same dataset
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distribution). This is often illustrated as a problem of finding an equilibrium between
the model bias and variance (Hastie et al., 2001), illustrated by Figure 4.1). Based on
this classical notion, an unbounded increase of the model complexity should eventu-
ally lead to a model with high generalization error (high difference between the train
and test error rate), however, this does not seem to be the issue with the state-of-the-
art deep NLP models. This goes against the previous machine learning intuitions
based on the principle of Occam’s razor (Gull, 1988).

On the contrary, recentwork suggests that the classical U-shape (Figure 4.1) could
be a result of not exploring model families that are rich enough. Belkin et al. (2019)
show empirical evidence that as we further increase the model capacity, after a cer-
tain threshold, the generalization error starts to drop again (see Figure 4.2).1 Even
though all model classes past the interpolation threshold reach zero training error,
the models from richer families achieve much better generalization error. They elab-
orate that the appropriate inductive bias for many of the real-world problems is the
smoothness of the learned model function measured by a function space norm. Fur-
thermore, Belkin et al. (2019) state that “By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find in-
terpolating functions that have smaller norm and are thus “simpler”. Thus increasing
function class capacity improves performance of classifiers”. This in turn should work
as an Occam’s razor.

Surprisingly, the deep learning optimization algorithms are able to reach the so-
lutions with low generalization error even without an explicit regularization (Zhang
et al., 2021b) hinting at the low norm inductive bias being either an attribute of the
optimization algorithm or the specific NN architectures. This tendency to prefer low-
norm solutions could explain why is it possible to prune a majority of the model pa-
rameters after the model convergence (Michel et al., 2019; Li et al., 2020; Hoefler et al.,
2021). Besides, recent evidence also suggests that stochastic gradient descent (SGD,
Robbins and Monro, 1951) generalizes better in combination with over-parametrized
models (Zhang et al., 2021b; Zhu et al., 2019; Jastrzebski et al., 2017; Hoffer et al.,
2017).

Given the assumed interesting relation between themodel over-parameterization
and its ability to generalize, illustrated by the double-descent curve, it is important to
be able to correctly estimate this generalization ability. The standard practice given
a specific distribution generating data for our task is taking a small independent
and identically distributed (IID) sample from the data distribution not present in our

1By the capacity of a model we mean the number of trainable weights, although, as Zhang et al.
(2021b) point out, this might not be a correct complexity measure in the context of deep learning.
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training dataset and use it to measure generalization error.2 However, in the modern
NLP governed by big data, the IID sampling is usually not the case due to training
corpora being gathered from multiple sources, often independently from the anno-
tated evaluation corpora.

For example, the current SoTA LMs consist of tens to hundreds of billions of
trainable parameters (Goyal et al., 2021; Brown et al., 2020a) and are exposed to cor-
pora gathered from various corners of the Internet,3 observing hundreds of billions
of words during training. These LMs are later evaluated on test suites, such as GLUE
(Wang et al., 2018a) or SQuAD (Rajpurkar et al., 2016) that contain datasets created
independently of the crawled training data, breaking (or, at least, muddying) the
assumption of IID sampling from a true language distribution.4 This gives rise to
skepticism suggesting some level of undesired overlap between the train/test cor-
pora leading to overestimation of model generalization ability. Using such LMs in
combination with a limited understanding of the original unlabeled training data
(which is not always publicly available, at least for commercial models developed
and provided by big tech companies) can also result in wrong assumptions about the
model capabilities and internal biases.5

For another example we can look at the News Translation Task from Confer-
ence on Machine Translation (WMT).6 Each year, the source of training data for the
featured language pairs are being updated, often containing corpora created auto-
matically, or semi-automatically (e.g. by crawling bilingual websites and alignment
of the collected text). The test corpora are, on the other hand, created by a collection
of smaller samples of sentences from specific news sources and manually translated
by professional translators (Akhbardeh et al., 2021a). Again, this breaks the IID sam-
pling assumption of the classical machine learning evaluation of model generaliza-
tion. While this was not a big issue a few years back before the emergence of big
NMT models, we argue that in the era of overparametrized models, this could bias
the evaluation and comparison of the recent NMT approaches.

2In practice, we usually workwithmultiple samples (e.g. validation, test, etc.) and use them during
different stages of model development.

3A major fraction of the training data is made of the Common Crawl corpora created by the
automated crawl of the websites from various domains. Common crawl is available at https:

//commoncrawl.org/.
4For example, GLUE contains questions from Quora and SQuAD contains passages from

Wikipedia. In both cases, it can be assumed that the Common Crawl dataset also contains parts
of these texts.

5For example, Abid et al. (2021) demonstrated that GPT-3 contains strong societal biases towards
the Muslim minority.

6https://statmt.org/wmt21/translation-task.html
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Although, there is a more general problem of independent creation of train/test
datasets in some areas of modern NLP, there are areas that implement a more stan-
dard approach to evaluation. For example, areas such as image captioning or multi-
modal translation (e.g. MSCOCO; Lin et al., 2014) work with a single collection of
annotated data that is later split into fixed train/valid/test datasets. These standard-
ized splits (e.g. popular Karpathy splits for image captioning; Karpathy and Fei-Fei,
2015) better guarantee that the data for each split are generated from the same distri-
bution and allow easier experiment reproduction and method comparison. However,
a single fixed dataset split can still contain intrinsic biases that some methods can ex-
ploit better than others, easily leading to a Type I error (Gorman and Bedrick, 2019;
Søgaard et al., 2020).

Such an issue can be partially solved by creating additional train/valid/test splits
and tracking model performance under multiple different dataset splits (Gorman and
Bedrick, 2019). This approach is currently applied in some NLP areas, such as sen-
tence fusion (Geva et al., 2019) or visual pronoun coreference resolution (Yu et al.,
2019). However, Søgaard et al. (2020) challenge this approach, arguing that random
splits can still lead to overly optimistic performance estimates. Moreover, such es-
timates favor systems that overfit more – a behavior that is undesirable when com-
paring overparameterized models. Instead, they suggest focusing on creating more
diverse testsets with different biases or splitting the available data in an adversarial
way. We explore the idea of adversarial splits in this chapter to uncover some of the
misconceptions about the generalization ability of Transformers.

This chapter will explore the benefits of using adversarial splits to identify short-
comings of the current Transformer models. First, we demonstrate the lack of gener-
alization ability of the Transformers when modeling sequences of target-side lengths
not present (or under-represented) in the training data. Next, we investigate, whether
a textual similarity between the training and test data within a single domain can af-
fect model performance, leading to an overestimation of the model performance on
the said domain. Lastly, we present an experiment analyzing the effect of the byte-
pair encoding (BPE) subword tokenization on the ability of the NMT model to copy
named-entities that were previously unseen during the model training.

4.1 Sequence Length Overfitting

Previous experiments with Transformers in NLP (Popel et al., 2020; Brown et al.,
2020a; Devlin et al., 2019) suggest that they accommodate strong generalization abil-
ities. However, a closer-look analysis of these models suggests strong biases, some-
times leading to the use of foul and toxic language (Gehman et al., 2020) and per-

40



petuating negative stereotypes (Abid et al., 2021). Furthermore, Brown et al. (2020a)
claim that their Transformer-based GPT-3 language model is capable, among others,
of simple arithmetics, however, there is still an open discussion about whether this
is due to the model actually (partially) understanding the underlying algorithms or
it is just a result of sophisticated encoding a lookup table for the subset of arithmetic
operation examples encountered during training.

In light of this argument, we present a set of experiments that demonstrate
that the currently assumed generalization power of Transformers might be over-
estimated, being a result of the exploitation of the large volumes of training data
and the model’s ability to exploit the similarities between the available training and
validation datasets. We show that they have a strong tendency to overfit to the train-
ing data, namely the decoder subnetwork in the Transformer sequence-to-sequence
architecture.

This section presents results suggesting strong length-based overfitting in the
Transformer decoder. While in theory, the Transformers should be capable of model-
ing long-distance dependencies (LDD), because the self-attention mechanism allows
them to directly access any of the surrounding context of a given token in constant
time, they can still struggle when faced with such examples in practice (Choshen and
Abend, 2019). Still, we show that this might not necessarily be an inherent problem
of Transformers, rather than a result of the insufficient number of training exam-
ples. The results of the following experiments show, that Transformers can not only
struggle with modeling long sequences, but they also fail similarly on short ones if
they are not presented with training examples of a similar length.

The main experiment results described in this section were previously published
by Variš and Bojar (2021). Besides the summary of these results, we also present
more recent follow-up experimental results.

4.1.1 Experiments

We demonstrate the limits of the length-related generalization ability of Transform-
ers in two sets of experiments. The initial experiments investigate this behavior on
simple algorithmic tasks of string editing and the follow-up ones demonstrate a sim-
ilar behavior on a real-life machine translation (MT) task.

The ability of neural models to model very long sequences has been analyzed
mainly with regards to a recurrent neural network (RNN). In this context, it was
shown that besides the problems with exploding/vanishing gradients (Hochreiter,
1998; Bengio et al., 1994; Pascanu et al., 2013) the RNNs also suffer from a form an in-
formation bottleneck when trying to encode a dynamic-length sequence into a fixed-
size vector (Bahdanau et al., 2014). To counter these weaknesses, Bahdanau et al.
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(2014) introduced (with Luong et al., 2015a later expanding the idea) the attention
mechanism to shorten the information pathway from the model output to the initial
input, improving the effectiveness of the back-propagation algorithm used to update
the network weights during training (Rumelhart et al., 1986).

Even though RNNs suffered from these restrictions, the recurrent hidden state
displayed interesting properties, such as keeping track of the number of tokens al-
ready processed by the encoder or the number of tokens left to generate by the de-
coder (Shi et al., 2016). Unlike RNNs, Transformer, in its original formulation by
Vaswani et al. (2017), does not contain such an internal tracking mechanism and
is able to handle long sequences better than RNN nevertheless. The upside of not
having an internal time-variant hidden state is better parallelism of Transformer ar-
chitecture, mainly the Transformer encoder. On the other hand, due to its auto-
regressive nature, Katharopoulos et al. (2020) suggest replacing the dot-product fol-
lowed by softmax (Equation 3.18) in the vanilla Transformer attention with the ra-
dial basis function (RBF) kernel attention (Tsai et al., 2019). This modification allows
treating the Transformer decoder as a recurrent decoder with the hidden state being
updated at each decoding timestep.

Lastly, a further look at the Transformer encoder and its self-attention mecha-
nism that uses a non-sparse softmax suggests that it is lacking a mechanism that
enables complete forgetting of irrelevant information, contrary to the gating mech-
anisms in the long short-term Memory (LSTM) or gated recurrent unit (GRU) recur-
rent networks. To tackle this, Correia et al. (2019) suggest a modified, sparse softmax
operation as a replacement.

Mainly due to these dissimilarities between Transformers and its RNN predeces-
sor, we focused on finding limits of the ability of Transformer to model dynamic-
length sequences.

String Editing

In the initial experiments, we focus on training the Transformer to perform simple
string editing operations. The main motivation behind this simple initial task is the
much easier evaluation of the model performance. Compared to standard NLP tasks,
string editing does not struggle with evaluation ambiguity (only a single correct out-
put compared to multiple possible translations in MT). Furthermore, it allows for
a straightforward dataset sampling resulting in balanced, non-overlapping training
and validation data. This makes potential overfitting on the training data clearer,
making it harder to exploit similarities between the training and validation data.

We defined the following set of editing tasks:

• copy: copy the input sequence to the output,
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• unshift X, push X: add a single character (X) to the beginning or the end of
the sequence, respectively,

• shift, pop: remove a single character from the beginning or the end respec-
tively,

• reverse: reverse the character order in the input sequence.

Given the alphabet Σ = {a, b}, we generate the dataset by sampling a set of mu-
tually distinct strings x ∈ {xk|x ∈ Σ, k < n}, where n = 20 is the upper bound
on the string length. Next, we split the resulting data into bins based on the string
length: 0–10, 11–15, and 16–20. From each bin, we independently sample 1,000 ex-
amples for test-time evaluation. Additionally, we sample 28,000 and 1,000 mutually
distinct examples from the 11–15 bin for training and training-time evaluation, re-
spectively.

Given these training and evaluation examples, we create the datasets for each
string editing task by adding a token describing the operation to be applied, an oper-
ation argument token (a or b for unshift and push, − for the others), and a separator
token (|).7 The gold target sequences are created algorithmically based on the input
operation token. Examples of these data points are described in Figure 4.3.

We train a separate network for each task using the 11-15 bin dataset. For the
string editing task, we chose Fairseq’s transformer architecture (Ott et al., 2019) with
the hyper-parameters being described in Appendix A.1.

Input Output

push a | a b a b a b a b a
reverse − | a b b a a a a b b a

Figure 4.3: Input and output example for push and reverse tasks. Hyphen (−) in-
dicates an empty argument for the latter task. We reproduce the original figure
from Variš and Bojar (2021).

During the evaluation, we measure model accuracy, ACC = ncorrect

nall
, ncorrect in-

dicating the number of exact matches between the network output and the refer-
ence string. Table 4.1 shows the accuracy of the models trained on individual tasks,
showing their performance when applied to test datasets with a length similar to or
varying from the original input data. The results show that the models generalize
well when applied to new inputs from the same length distribution as the one in the

7Thearguments for unshift and push are sampled from a Bernoulli distributionwith a token having
p = 0.5.
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0–10 11–15 16–20

copy 62.6 100.0 0.0
push 59.1 100.0 0.0
pop 0.1 100.0 0.0
shift 52.5 100.0 0.0

unshift 41.2 100.0 0.0
reverse 0.0 84.4 0.0

all 15.822 97.5 0.978

Table 4.1: Accuracy (in %) of models trained on various string editing tasks using
only training data from the 11–15 length bin evaluated on datasets with different
sequence lengths. Each model was evaluated on its respective task domain. We
reproduce the original table from Variš and Bojar (2021).

training data, reaching perfect accuracy.8 However, when faced with input strings
with length outside of the training length distribution, the model performance drops
significantly regardless of whether the input is longer or shorter than the training
data.

A similar trend can be also seen when we train the model on the combination
of the editing operations (all in Table 4.1). Although the model even learns to dis-
tinguish the operations based on the input operation label (with a small amount of
error possibly due to the reverse operation), it fails similarly when faced with inputs
outside of the training-length domain.

The results show that while it is not difficult to fit Transformer to the string edit-
ing tasks, it is unable to learn the general algorithm for completing these tasks.

Machine Translation

Thenext set of experiments investigates whether length-based overfitting occurs also
during the training for the NLP tasks, specifically, machine translation. Compared
to string editing, MT requires discovering more complex string mapping patterns;
mappings between the input and output phrases are often heavily dependent on the
surrounding context. Additionally, the distribution of input-to-output length ratios
can be more varied. When combined with the need to learn complex relations be-
tween the tokens and their surroundings, could help the model to better generalize
with regard to the length of the output sequence.

8The less than 100% accuracy for the reverse task is a result of the model not converging within
the fixed limit of 100 training epochs and the difficulty of the sequence reversal task.
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We test our hypothesis on English-Czech translation, using CzEng 2.09 (Kocmi
et al., 2020) for training andWMT2020 (Barrault et al., 2020) newstest13-20 for eval-
uation.10

We tokenize the corpora using Moses tokenizer11 and apply subword tokeniza-
tion using BPE (Sennrich et al., 2016b) based on the training corpus with subword
segmentation of size 30k. Next, we split the datasets into bins of sentence pairs with
lengths 1–10, 11–20, .., 91–100 (labeled as 10, 20, …, 100 respectively), either based
on the length of either the source-side or target-side sequence. Table 4.2 shows the
sizes of the respective training corpora depending on the split criterion (source vs
target).

Bin (Source-side) 0–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80

# of sent. pairs (M) 30.9 15.3 6.5 3.5 1.9 1.1 0.6 0.4
# of tokens (M) 375.7 451.0 327.3 244.9 174.4 115.0 78.0 53.2

Bin (Target-side) 0–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80

# of sent. pairs (M) 30.9 18.0 7.5 3.9 2.3 1.2 0.7 0.4
# of tokens (M) 375.3 502.6 361.6 268.9 198.9 132.6 87.3 59.5

Table 4.2: Sizes of the respective training bins (created based on either source-side or
target-side sequence length) inmillions of sentence pairs andmillions of tokens (after
tokenization and applying BPE, combined source and target size). We reproduce the
original table from Variš and Bojar (2021).

Using each training bin, we train a separate model. Details about the model
hyper-parameters are described in Appendix A.2.

First, we measure the correlation between the difference in train-test length of
sentences and the resulting system performance measured by BLEU, specifically, the
SacreBLEU implementation (Post, 2018).12 Figure 4.4 (Top) shows that regardless
of the training bin, the model performs best when presented with data that have
target-side lengths similar to the length of the training data. This suggests that the
model overfits to the length of the training data, affecting its performance when
faced with either longer or shorter sentences. Although the BLEU scores are not
directly comparable between the individual test bins (i.e. between individual columns
in Figure 4.4, top), there is a suspicious correlation between the length difference
in the train-test data and the performance drop. Figure 4.4 (Bottom) sheds some

9https://ufal.mff.cuni.cz/czeng
10We use newstest13-16 for training-time evaluation (validation) and newstest17-20 for test-time

evaluation (testing). We use SacreBLEU (Post, 2018) to download the respective evaluation corpora.
11https://github.com/moses-smt/mosesdecoder.git
12https://github.com/mjpost/sacrebleu
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Figure 4.4: Top: Varying performance of Transformers on test data trained only on
the data from a specific target-side length bin (various lines) when evaluated on a
specific test bin (x-axis). When the train-test sentence length difference increases,
the performance drops. Note that BLEU scores are not directly comparable across
different test sets (i.e. horizontally). Within each test set, we see that the Full CzEng
and the training bin of the matching length are the two best results. Bottom: Av-
erage ratio between a hypothesis and reference. Dashed line indicates a ratio of 1.0.
Systems trained on short sentences produce short outputs, and systems trained on
long sentences produce up to 10x longer outputs (Train bin 80 evaluated on Test bin
10). We reproduce the original figures from Variš and Bojar (2021).

light on the reason behind this drop in translation quality. When we compare the
lengths of the generated hypotheses with the length of the reference translation we
can see a strong bias towards generating hypotheses of lengths similar to the training
data, further suggesting length-based overfitting on the Transformer decoder. Note
that this overfitting trend is not as clear when evaluating using the 70+ length bins,
possibly due to a low amount of training examples within the respective training
data (< 1M sentence pairs).

To confirm our hypothesis about decoder-side overfitting, we repeated the ex-
periments using dataset splits based on the source-side length. Related work which
focuses mostly on improving very long sentence translation (Shaw et al., 2018; Neishi
and Yoshinaga, 2019) performs splits according to this criterion, motivated by the
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real-life application – outside of closed-environment experiments, we do not usually
have the reference translations available. Still, Neishi and Yoshinaga (2019) point out
similar overfitting behavior of vanilla Transformers with regards to the translation
of either longer or shorter test sentences.

Truly, Figure 4.5 shows that the overfitting trend can be observed even when
we split our dataset according to the length of the source sentences. However, the
trend is less clear than during the target-side dataset split experiments. To get more
insight into the possible reasons behind the lesser clarity of the overfitting behavior,
we examined the target-side length distribution within the individual source-length-
based bins.

Figure 4.6 shows the target-side length distribution inside the individual source-
length-based bins in the training (left) and test (dataset). Based on the distribution
outliers, inside all training bins, there is a non-empty overlap between the target-side
lengths of the training data and test data. This overlap is most likely behind the lesser
clarity of the overfitting phenomenon when studied using source-side binning. The
target-side length distribution analysis also suggests that CzEng 2.0 contains several
dirty sentence pairs, where the target-side length is several times larger than the
source sentence. Whether the removal of such incorrect translation examples can
benefit the overall model performance or can lead to a decrease in the generalization
ability of the model is left to future work.

As demonstrated by the results in Figure 4.4 (bottom) there is a clear tendency of
the MT model to produce output hypotheses of lengths similar to the training data.
Due to the nature of the used automatic metric (BLEU), this is most likely the rea-
son behind the poor model performance when applied to much longer/shorter input
sentences. Thus, we decided to perform a small sample case study of the translation
outputs with regards to the train-test length difference.

Table 4.7 two selected examples of translation of sentences from the 30-bin using
systems trained on shorter examples (10-bin), similar length examples (30-bin), and
longer examples (60-bin). Although still producing some errors, the in-domain 30-bin
system produces a translation hypothesis that is closest to the correct translation. On
the other hand, even the other two systems (10-bin and 60-bin) produce semantically
close translations of the input sentences. The main source of error is stemming from
the systems trying to condense (10-bin) or stretch (60-bin) their translation hypothe-
sis to fit the length range from their respective training data. This results in the 60-bin
system generating repeating phrases (v Žižkově, mluvčí Olomouckého) or completely
irrelevant outputs (vojska). Surprisingly, in the case of the short system (10-bin), its
behavior slightly imitates a combination of translation and sentence summarization,
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Figure 4.5: Top: Varying performance of Transformers on test data trained only on
the data from a specific source-side length bin (various lines) when evaluated on a
specific test bin (x-axis). BLEU scores are not directly comparable across different test
sets (i.e. horizontally). Bottom: Average ratio between a hypothesis and reference.
Dashed line indicates a ratio of 1.0. We reproduce the original figures from Variš and
Bojar (2021).
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Figure 4.6: Distribution of lengths of target-side references within the training (left)
and validation (right) datasets after splitting them into source-side length bin. Both
figures have an identical x-axis scaling for better comparison. The long whiskers of
the training bin length distributions are a result of noise in CzEng 2.0 training corpus.
We reproduce the original figures from Variš and Bojar (2021).

resulting in sensible translation with less important source-side information being
dropped (ignoring that the company headquarters is located in Žižkov). However,
further investigation is required to confirm/disprove the consistency of the summa-
rization abilities of the system.
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Source (30-bin) The company does not collect its mail and it has closed its official headquar-
ters in Žižkov more than six years ago.

Hyp1 (10-bin) Společnost nesbírá poštu a zavřel oficiální sídlo.
Hyp1 (gloss) The company does not gather mail and closed official headquarters.

Hyp2 (30-bin) Společnost neshromažďuje poštu a již před více než šesti lety zavřela své ofi-
ciální sídlo v Žižkově.

Hyp2 (gloss) The company does not collect mail and more than six years ago closed its official
headquarters in Žižkov.

Hyp3 (60-bin) Společnost nevybírá poštu a uzavřela své oficiální sídlo v Žižkově více než
šest let ago. v Žižkově. Společnost neshromažďuje poštu a uzavírá oficiální
ústředí v Žižkově více než šest let agr. o.

Hyp3 (gloss) The company does not pick upmail and closed up its official its official headquar-
ters in Žižkov more than six years ago. in Žižkov. The company does not collect
mail and closes up official headquarters in Žižkov more than six years agr. o.

Reference (30-bin) Nepřebírá poštu a oficiální sídlo na Žižkově zrušila před více než šesti lety.
Ref (gloss) (The company) does not collect mail and official headquarters in Žižkov closed

up more than six years ago.

Source (30-bin) The perpetrators ended up in custody, said Marie Štrbáková, the
spokeswoman of Olomouc police.

Hyp1 (10-bin) Mluvila s ní Marie Štrkováková
Hyp1 (gloss) Talked to her, Marie Štrkováková

Hyp2 (30-bin) Pachatelé skončili ve vazbě, řekla Marie Štrbákováová, mluvčí Olomouckého
policie.

Hyp2 (gloss) The perpetrators ended up in custody, said Marie Štrbákováová, the
spokeswoman of Olomouc police.

Hyp3 (60-bin) Uchazeči skoncovali v úschově, ”uvedla Marie Štrbákováová, mluvčí Olo-
moucké policie, která se stala mluvčí Olomouckého vojska, a to v úschově.

Hyp3 (gloss) The candidates ended up in storage, ”introduced
Marie Štrbákováová, the spokeswoman of Olomouc
police, which became the spokeswoman of Olomouc army, and in storage.

Ref (30-bin) Pachatelé skončili ve vazbě, informovala olomoucká policejní mluvčí Marie
Štrbáková.

Ref (gloss) The perpetrators ended up in custody, informed Olomouc police spokeswoman
Marie Štrbáková.

Figure 4.7: Example translations from systems trained on specific target-length-
restricted datasets. Both examples demonstrate the over- and under-generation of
systems trained on datasets containing longer (60-bin) and shorter (10-bin) sentences
when applied to inputs with the length of reference translation different from the
training data (30-bin). We provide rough, word-for-word translations of the pro-
duced outputs (in italics) with color highlighting of the selected phrases and their
corresponding English translation for better comprehension. The underline high-
lights grammatical errors or mistranslations in the output. The original translation
examples were reproduced from (Variš and Bojar, 2021).
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Based on the overfitting results, we decided to investigate, what is the main rea-
son behind such model behavior. By design, the decoding algorithm inside Trans-
former generates output tokens recurrently one-after-another until the stopping cri-
terion is met. This stopping criterion is reading a special end-of-sequence (EOS;
marked as <EOS>) token as the input or reaching the maximum output length thresh-
old. Therefore, the length of the output sequence is strongly dependent on the gen-
eration of this special token.

Due to the negative log-likelihood (NLL) training criterion and the fact that only a
single reference translation is provided during training, the output probability of the
EOS token becomes close to zero at positions where the EOS was not seen during
training. On the other hand, the output of each token is not conditioned only on
the current decoding position but also on the previously generated output. If the
model can generalize well enough, it should, for example, be able to abstract a rule
that after punctuation, such as full-stop, exclamation mark, or question mark, there
should be a rather high output probability of the EOS token. Besides, there can be
other indicators of a probable or improbable EOS, for example, a verb in verb-final
languages or (un)finished valency of verbs, nouns, etc. (Panevová, 1994; Panevová,
1974), just to name a few.

We compared the EOS output probability dynamics between the baseline (Full
CzEng) model and the in-domain 50-bin model. We translated the MT testset while
also printing the output probability of the EOS token at each timestep. Figure 4.8
displays the comparison between the average output probability of the EOS token
at each decoding position. As expected, the average output probability in the CzEng
model (Figure 4.8, top) is fairly consistent regardless of the position. The in-domain
model in contrast pushes the EOS probability close to zero when outside of the EOS
training positions. Interestingly, the model is more inclined towards generating EOS
earlier when translating sentences with shorter references (Figure 4.8, middle) and
much later when translating sentences with longer references (Figure 4.8, bottom).

The results suggest that the EOS generation is strongly conditioned on the de-
coding position rather than the previous context. This is further supported by the
case study examples in Figure 4.7 (60-bin).

Lastly, we investigated whether the observed length-based overfitting behavior
can be mitigated via dataset augmentation. First, similarly to Kondo et al. (2021),
we compared a regular 60-bin model with models trained on synthetic 60-bin data
created by concatenation of shorter datasets, namely 10-, 20- and 30-bin. We shuffled
each dataset and created the synthetic 60-bin data by concatenating every 6, 3, and
2 examples respectively to create synthetic examples of target length between 51–60
tokens.
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Figure 4.8: Emission probabilities of the <EOS> token at various decoding positions.
Top: Average output probability of a model trained on the whole CzEng dataset,
averaged over the full testset. Middle: Average output probability of a model trained
on the 50-bin dataset, averaged over the shorter sentences from the testset. Bottom:
50-bin model, averaged over the longer sentences from the testset.

Figure 4.9 shows the performance of these systems evaluated similarly to the
original length-based overfitting experiments. Even though most of the time the
concatenated examples in the synthetic data are not related in any way, the concate-
nation itself (with the absence of the genuine 60-bin data) is enough for the models
to reach comparable performance. The only exception is the synthetic 10-bin model;
the drop in its performance is most likely due to not being able to capture dependen-
cies spanning over more than 10 tokens which play an important role in translating
sentences from the higher-bin testsets.
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Figure 4.9: Comparison of the performance of a model trained on genuine data from
the 60-bin dataset with models trained on synthetic 60-bin datasets created by con-
catenation of 10-, 20- and 30-bin sentences respectively. We reproduce the original
figure from Variš and Bojar (2021).

Second, we took a closer look at the model behavior when it is presented with
training data from a specific length span (11–50 tokens) containing a gap (i.e. not
including examples from the 21–40 span). We think that a model that generalizes
well, even though it cannot correctly model longer and shorter sentences, should be
at least able to properly cover this gap that is not present during training.

Figure 4.10 shows a comparison of the performance of the model trained on the
combination of the 20-bin and 50-bin datasets (20+50-bin) with models trained using
one or the other in isolation. The performance of the 20+50-bin model is outper-
forming the models trained only on the single-bin datasets, but, the combination of
two datasets results in a larger training sample with more diversity. Even the clear
improvement on the 30- and 40-bin testsets does not necessarily guarantee better
length-based generalization.

To get more insight into the 20+50-bin model behavior, we again inspected EOS
emission probabilities. Figure 4.11 shows that the original length-overfitting issue
does not get solved by the dataset combination, not even for the gap test examples.
The areaswith higher EOS emission probabilities are still concentrated near sequence
positions where the symbol was frequently present during training. This further
supports the hypothesis of strong conditioning of the EOS generation on the absolute
decoding position. Furthermore, if we only look at EOS emission probabilities when
translating sentences with references of length 31–50 (30- and 40-bin), it is clear that
the MT system prefers over-generating instead of stopping the decoding too soon.
We conclude that such behavior could be a result of an internally learned coverage
mechanism, however, we leave the further investigation to future work.
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Figure 4.10: Comparison of the performance of a system trained on a combination of
the 20- and 50-bin data (20+50) with systems that were trained only on a 20-bin or
50-bin dataset.
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Figure 4.11: <EOS> emission probabilities of the system trained on the combination
of the 20- and 50-bi dataset during decoding of the testset. Each position contains
emission probabilities averaged across the dataset. Top: Average over the whole
testset. Bottom: Average over the combination of 30- and 40-bin testset.

4.2 Exploiting the Word Distribution Similarities

We demonstrated a strong tendency of vanilla Transformers to overfit with respect
to the target-side reference length distribution in the training data. The follow-up
experiments will investigate whether Transformers exploit other dataset similarities
when optimized using the available training data.
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Human ability to translate is not only influenced by their previous experience
in translation; humans are also able to effectively separate the underlying structure
of the language and correctly apply such structural principles when facing language
(i.e. a body of text) with novelties, i.e. previously unseen words or phrases. Humans
can still understand themeaning of newwords or phrases using various context clues
(Al-Jamal, 2018; Hiebert and Kamil, 2005) A machine that can generalize well, should
be able to mimic such behavior to a certain extent.

The previous research on image captioning has shown a strong tendency of DL
models to exploit image representation similarities between the training/test data
leading to an overestimation of the generalization ability of these models (Mad-
hyastha et al., 2018). Similarly, we hypothesize that current Transformers, to some
extent, exploit similarities between the current MT validation data and the available
training datasets. To validate this hypothesis, we set up an experiment where we
try to adversarially remove training examples that are most similar to the available
validation data using similarity metrics related to vocabulary distributions. A sys-
tem that can generalize well should still be able to learn from the remaining training
examples without a significant decrease in translation performance.

4.2.1 Experiments

We use CzEng 2.0 (Kocmi et al., 2020) training data in the following experiments.
We remove all data outside of the news-related domain, keeping only training ex-
amples from the news and news-commentary subset of the data, resulting in slightly
more than 300k training sentence pairs. In practice, some form of overfitting can be
desired, for example, in domain adaptation. For this reason, we focus only on the
sole news-related domain to avoid model underfitting by filtering out distribution-
ally similar, in-domain examples (keeping only the less similar, out-of-domain data),
avoiding the so-called domain shift. We useWMT20 newstest13-20 for model evalu-
ation, using the following splits: newstest17-20 for the final evaluation, newstest15
and newstest16 for training-time validation (and early-stopping) and newstest13

and newstest14 for the purposes of removing examples from the training dataset
that have high vocabulary distribution similarity with the evaluation data. We use
the same tokenization and BPE preprocessing as in the MT experiments from Sec-
tion 4.1.1. The models trained are based on the models from Appendix A.3

To investigate the effects of reducing distributional similarities between the train-
ing and validation datasets, we propose dataset filtering based on the following
two methods: n-gram language model and term frequency-inverse document fre-
quency (TF-IDF) cosine similarity. Both methods were applied to the corpora after
the BPE-tokenization. Similarly, the subsequent analysis was performed on the BPE-
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tokenized corpora. The first method trains the n-gram LMwith smoothing (Chen and
Goodman, 1996) using the small holdout data and uses it to compute the likelihood
of the training sentences with regards to the LM. We use KenLM13 (Heafield, 2011)
implementation for its fast optimization of decoding using CPU. Then, we remove
the sentences in the order from the most likely to the least likely.

The second method creates TF-IDF representations of the sentences in the hold-
out data, computing the IDF portion of the formula by considering each holdout
sentence as a separate document. The fitted TF-IDF model is later used to create
representations of the training sentences and the similarity of each training sen-
tence with the holdout data is computed by taking the maximum similarity that a
given training sentence has with the individual holdout sentences. Again, we use
the resulting scores to remove the training sentences from the most similar to the
least similar. For control, we compare these methods with a simple random filtering
scheme, ordering the sentences randomly before the removal. Due to the nature of
the MT data (sentence pairs), we compare similarity filtering based on both source-
and target-side dataset similarities.
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Figure 4.12: Model performance degradation after removing the predetermined num-
ber of examples from the training data, evaluated using the newstest17-20 testset.
Left: Dataset filtering based on the source-side similarity scores. Right: Filtering
based on the target-side similarity.

Figure 4.12 shows the performance degradation with respect to the proposed da-
taset filtering schemes. Contrary to our hypothesis, systematic removal of training
examples based on either the LM or the TF-IDF similarity scores does not lead to a
larger drop in BLEU than after randomly removing a similar number of training ex-
amples. More surprisingly, both the source- and target-side TF-IDF filtering initially
even slightly improve the model performance (50k removed examples), suggesting

13https://kheafield.com/code/kenlm/

55

https://kheafield.com/code/kenlm/


that the TF-IDF filtering can have a noise reduction potential. However, we leave the
analysis of this aspect of the filtering to future work. The only instance where the
scoring-based sentence removal leads to a noticeable drop, although still performing
similarly to the random removal, is the target-side LM-based filtering.
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Figure 4.13: Training dataset target-side sentence length distribution after removing
a specific number of the training examples with respect to various filtering methods.
The upscaled length distribution of the testset is provided for comparison.

To understand the effects of the filtering methods we looked at two aspects of the
resulting training datasets: sentence length distribution and vocabulary distribution.
Figure 4.13 shows the target-side sentence length distributions of the training dataset
created by various filtering methods. While the random and TF-IDF-based removal
leads to datasets that have length distributions similar to the test data, the LM-based
removal method prefers to remove shorter sentences first, possibly due to shorter
sentences having a higher likelihood given our LM. Combined with the observations
in Section 4.1.1, this most likely leads to the model overfitting to longer sentences,
resulting in a drop in BLEU drop due to over-generation when translating the test
data.

The BLEU difference between the random and 6-gram LM filter is much smaller
when applying target-side filtering, implying higher importance of target side-
sentence similarity than that of the source-side. Such a result could explain the
effectiveness of the backtranslation (Sennrich et al., 2016a) data enhancement ap-
proach – the mistranslations on the source side which lead to a different source-side
sentence distribution compared to the genuine parallel data do not negatively affect
the performance of the resulting model as long as the target-side sentences are from
the genuine distribution. Still, the drop is not more significant than in models trained
on datasets with randomly removed training examples. Although the removal based
on the source-side filtering also leads to the removal of shorter training examples,
its effects are not as strong as with the target-side LM removal. This is mostly due
to the varying ratio between the source and target-side sentences in the data as we
demonstrated earlier in this chapter.
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Figure 4.14: Vocabulary sizes of the resulting training corpora. Top: Dataset filtering
based on the source-side similarity scores. Bottom: Filtering based on the target-
side similarity.

Next, we inspected how the filtering methods affect the vocabulary distributions
of the resulting training data. Figure 4.14 shows that the trends are similar regardless
of the filtered side (source-side, target-side filtering) or the language choice: both ran-
dom and TF-IDF methods lead to a higher vocabulary reduction than the LM-based
filter. This suggests that the sole vocabulary reduction is not the reason behind the
BLEU score difference between the TF-IDF and random training example removal.

To get additional insight into the differences between the filtering methods, we
also compared the KL differences between the unigram vocabulary distributions of
the filtered training data and the vocabulary distribution of the testset. For each da-
taset, we computed the probability of each vocabulary entry based on its frequency
compared to the overall number of tokens within the dataset resulting in the unigram
distribution for the given dataset. Figure 4.15 displays the KL divergence between the
unigram distributions of the various training datasets and the testset. Contrary to
the random and LM filtering, TF-IDF similarity removal leads to a significantly differ-
ent unigram distribution, most apparent in the distribution of the 100 most frequent
tokens in our test data. This contradicts our original hypothesis: while the TF-IDF
filtering leads to a less similar dataset (in the terms of unigram token distribution), it
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Figure 4.15: Kullback–Leibler (KL) divergence between the unigram distribution in
the filtered training corpora and the test dataset computedwith respect to the top-100
most frequent words (top), top-1000 most frequent words (middle) and top-10000
most frequent words (bottom) in the test dataset, with probabilities normalized with
respect to the given vocabulary subsample. Left: English source-side, right: Czech
target-side.

does not lead to a higher performance drop (and even a slight improvement initially,
based on the results in Figure 4.12). Thus, we conclude that Transformers do not
exploit the similarities between the training/test data unigram token distributions to
boost their performance.
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4.3 Rare Word Transcription

First iterations of NMT systems (Sutskever et al., 2014; Bahdanau et al., 2014) were of-
ten limited by their fixed-size vocabulary, resulting in poor performance when trans-
lating rare words. This problem was effectively tackled by introducing subword-
tokenization, such as byte-pair encoding14 (BPE, Sennrich et al., 2016b) or Senten-
cePiece.15 The introduction of subwords improved the translation (and translitera-
tion) of rare words, namely named entities, loanwords, and morphologically com-
plex words (Sennrich et al., 2016b). Usually, these words can be translated (even
by a human translator) without prior knowledge of the word by splitting the word
into smaller units (subwords) and applying simple rules. For example, in the case of
named entity translation, the word can be either transliterated (if the source and tar-
get language alphabet do not match) or most of the time just copied (while applying
the target language rules for flection).

The following section explores the copy behavior applied during named-entity
transcription and how well Transformers generalize with respect to this ability in
the context of NMT. We hypothesize that this behavior is not learned in a general
form but instead reflects the nature (e.g. subword length) of the copied words in the
training dataset leading to the Transformer overfitting to the training instances.

4.3.1 Experiments

Similarly to the previous section, we use the news-related subset of CzEng 2.0 for
training and the newstest validation corpora for evaluation. We also apply the same
preprocessing pipeline on each dataset.

We derive the BPE merge rules using the whole training dataset (both English
and Czech sides), setting a limit of 30k merges. Next, we create thresholded train-
ing datasets by removing training sentence pairs that contain tokens of a subword
length that exceeds a given threshold. Again, we create separate training dataset
versions using both source- and target-side filtering. This should guarantee that a
model trained on a given dataset does not encounter tokens with subword lengths
higher than the given threshold. We aim to measure how much this later affects the
model’s ability to transcribe named entities of various lengths during test time.

14https://github.com/rsennrich/subword-nmt
15https://github.com/google/sentencepiece

59

https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece


Orig. (En) According to an architect, its regional plan resembles Manhattan in New York.
Orig. (Cs) Územním plánem připomíná newyorský Manhattan, tvrdí architekt.

Repl. (En) According to an architect, its regional plan resembles Toepwgzhem in New York.
Repl. (Cs) Územním plánem připomíná newyorský Toepwgzhem, tvrdí architekt.

Figure 4.16: Example of the named-entity identification and replacement in the test-
set. The replaced token is in bold.

To measure the named entity transcription (copy) accuracy, we create the fol-
lowing variations of the final evaluation dataset: we identify named entities in the
dataset using NameTag16 (Straková et al., 2014) and collect all test set instances that
contain a single named entity that has an identical surface form in both source- and
target-side of the sentence pair. We consider these named entity translations to be
a result of the copy operation. Next, we replace each found named entity with a
randomly generated string with a capital first letter (emulating a foreign named en-
tity) on both source- and target-side. Figure 4.16 illustrates the testset named-entity
replacement.

We create multiple testset derivations, each containing only named entity re-
placement of a specific character length. We use these datasets to measure the
model’s accuracy to produce the target-side surface form of a named entity present
on the source-side.17

We compare the baseline system trained on the whole news-domain with sys-
tems with varying BPE thresholds. For a fair comparison and to avoid test-time out-
of-vocabulary (OOV), each model is initialized with the same vocabulary extracted
from the full, BPE tokenized, news-domain corpus. The model hyper-parameters are
described in Appendix A.3.

Figure 4.17 shows the accuracy of the randomly generated named entity copying
with respect to the varying character and subword length of the copied named enti-
ties. As the threshold indicating the maximum subword length of tokens in our train-
ing data decreases, the accuracy of the named-entity copying decrease too. This effect
is more noticeable as the subword length of the copied named-entities increases. A
significant deterioration starts at thresholds lower than 4 – this might be due to a
more significant reduction of the training data resulting from the filtering. Surpris-
ingly, a larger drop in accuracy of copying longer named-entities occurs after the
source-side filtering of the corpora. This is opposite to our previous observation that

16https://ufal.mff.cuni.cz/nametag/1
17Note that we do not directly measure whether the named entity is produced in a correct context.

Furthermore, we choose named entities that have an identical source- and target-side surface forms
in our test data to avoid measuring the system’s ability to correctly flect the foreign named entities,
i.e. when translating to Czech. We are aware that this approach does not completely remove the
grammatical necessity of the flection.
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Figure 4.17: Named Entity copy accuracy with respect to the character length (top)
and subword length (bottom) of a given named entity. Left: Model performance
when trained on datasets with a source- side subword length threshold. Right: Mod-
els trained on datasets with thresholded target-side.

the models tend to overfit mostly to the target-side data. The target-side overfitting
can still be noticed in the accuracy of copying shorter named-entities. The mod-
els with lower thresholds (but larger than 4) achieve better accuracy than the more
“general” models with higher filter thresholds.18

To confirm that the subword-length threshold affects mostly the copying ability
of the Transformers we also measured their performance on the dataset with the spe-
cific subword length named-entity replacements (Figure 4.18). Based on the results,
the removal of training examples that contain tokens with a length above the thresh-
old does not significantly impact the overall model performance. Only after a larger
reduction of the threshold (less than 4) do the effects start impacting the resulting
BLEU scores.

18Note that the low accuracy on the testset with named-entities with BPE length 2 is most likely
due to a small dataset sample. The samples were generated based on the character length of the
named-entities, tokenized using BPE, and clustered based on their BPE length for the evaluation in
Figure 4.17 (bottom).
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Figure 4.18: BLEU performance of models trained on datasets with varying subword-
length threshold with respect to the character length of the generated named entity
replacement in the test data.
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Figure 4.19: Training dataset sizes after applying various subword length threshold
filters.

Since the main caveat of the comparison of our system is the reduction of the
size of the training data through the removal of the training examples that do not
satisfy the threshold criterion. However, as demonstrated by Figure 4.19, the signif-
icant training data reduction begins to be apparent only when the subword length
threshold becomes lower than 4 subwords. This explains the large drop in both BLEU
and copy accuracy of the models trained on the resulting smaller datasets. Still, it is
unlikely that the size of the training data had a significant effect on the models. The
models trained on data with the higher subword length threshold had only several
hundred to thousands of examples removed.
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4.4 Conclusions

The experiments in this chapter explored various limitations of the original Trans-
former NMT architecture. The results helped us answerResearchQuestion 1:What
is the extent of the generalization ability of the current Transformer models?, proposed
in the thesis introduction. We decided to answer this question by breaking it down
into three sub-questions. What follows is a revisit to these sub-questions and our
answers based on the presented empirical results of our experiments.

RQ1.1 Are long-range dependencies the only reason behind the performance drop when
translating long sequences?

Experiments in Section 4.1 demonstrated that the original Transformer fails to
translate very long sequences but can also suffer a performance drop whenever it
is lacking data from specific target-side length ranges, shorter or longer. We iden-
tified that the main reason behind this behavior is the tendency of the Transformer
to generate sentence lengths similar to the ones seen during training. This is further
confirmed by the analysis of the EOS token emission probabilities which shows that
the Transformer is unlikely to terminate sentence generation at positions where EOS
symbols were not seen during training. Lastly, we show that overfitting can be mit-
igated by enhancing the training dataset using synthetic long sequences created by
the concatenation of shorter training examples.

RQ1.2Are the current NLP approaches to dataset splitting sufficient to properlymeasure
the generalization of sequence-to-sequence models?

Contrary to our original hypothesis, the removal of training examples based on
the vocabulary distribution similarity with the holdout data (both TF-IDF and n-
gram based) did not lead to a bigger decrease in the model performance compared
to the random removal baseline, suggesting that Transformers do not overfit to the
vocabulary distribution in the training dataset.

RQ1.3 Is the ability to copy unseen words related to the subword length of tokens seen
during training?

We demonstrated that reducing the maximum subword length of tokens present
in our training data without a significant reduction of the training dataset size can
reduce the ability of the Transformer to translate rare words by copying. Due to
the copy operation not always being the correct translation rule for rare words, we
restricted the experiment only to the named entities that had identical surface forms
on both the source and target sides in the test dataset. Even though the accuracy of
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the rare word copying reflects the subword length restriction on the training dataset,
a drop in BLEU scores becomes significant only when the restriction results in a
removal of a larger portion of the training dataset. This suggests that the Transformer
ability to copy rare words is related to the subword lengths of tokens present in the
training data.
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5
Incremental Learning and

Catastrophic Forgetting

The artificial general intelligence (AGI) that aims to reflect human-like behavior does
not only require to be highly versatile, i.e. by being able to tackle a variety of tasks
and generalize well when facing new instances of a previous problem, it also needs
to be able to further improve given new information while building upon its previous
knowledge (Lake et al., 2017; Biesialska et al., 2020). Although state-of-the-art (SoTA)
deep learning can tackle learning multiple tasks at once quite well (Zhang and Yang,
2017; Chen et al., 2021b), themodels often struggle when trying to learn to solve these
tasks sequentially. In literature, this is mainly attributed to the phenomena of catas-
trophic forgetting (CF) or catastrophic interference (CI, French, 1999; McCloskey and
Cohen, 1989). This occurs when a neural network trained to solve one task (Task A) is
later optimized for solving another task (Task B), as illustrated by Figure 5.1. Without
any form of constraint on the training algorithm, the network weights optimized for
Task A are usually overwritten (forgotten) when searching for the optimal solution
for Task B. This behavior can be observed even when the network has the capacity
to learn both tasks, e.g. through joint objective learning (de Masson d’Autume et al.,
2019a). Often, there can be several network parameter configurations that result in
a low error for each given task (Hecht-Nielsen, 1992; Sussmann, 1992).

Learning a task requires searching for a configuration of network weights which
results in low-error performance on that particular task, usually defined by a loss
function relevant to the task. In general, many weight configurations can result in
very similar model performance (Hecht-Nielsen, 1992; Sussmann, 1992). Learning
to solve multiple tasks, therefore, requires finding an intersection between the low-
error weight configurations for both Task A and Task B. In incremental learning,
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Figure 5.1: Reason behind catastrophic forgetting, proposed by Kirkpatrick et al.
(2017). When a model is initialized with weights that achieve low error for Task
A and fine-tuned for Task B, lack of explicit regularization can lead to a solution that
has low error only for Task B even though a shared low error solution for both tasks
exists.

this usually means shifting the original solution θA for task A to a low-error area
of Task B.1 If we assume no access to the original data for Task A, optimization for
Task Bwithout any training constraints can result in completely leaving/avoiding the
parameter subspace with low error values for Task A. Some form of regularization
during the network fine-tuning is therefore required.

While joint task learning (or multi-task learning, Luong et al., 2016; Hashimoto
et al., 2017) does not need to deal with CF, it requires that the data for both Task
A and Task B to be available at the same time; a requirement that can sometimes
be hard to satisfy in practice. Another option is storing network weights from the
previous task separately and learning weight configuration for the new task by fine-
tuning the previous model and having a separate expert model for each task. This,
however, can lead to a weaker generalization due to each model being overfitted to
its respective task. In addition, the storage requirements needed to keep a separate
weight configuration for each task can be limiting. Hence, we are interested in meth-
ods that aim to restrict the network in a way that it does not completely overwrite
its knowledge about the previously learned tasks.2

Multiple methods for avoiding or mitigating CF have been proposed throughout
the years based either on the explicit model regularization (Hinton and Plaut, 1987;
Kirkpatrick et al., 2017; Zenke et al., 2017), rehearsal (Robins, 1995; Draelos et al.,
2017) or ensembles (Polikar et al., 2001; Dai et al., 2007).

1Assuming that the original solution for Task A is not already optimal also for Task B.
2By referring to the knowledge we mostly mean information stored in the network weight con-

figuration.
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In this thesis, we focus on regularization-based methods, mainly elastic weight
consolidation (EWC, Kirkpatrick et al., 2017). While these methods were already
established in the previous research, there has been only minimal study of their ap-
plication and their limitations in tandemwith Transformer network architecture and
with sequence-to-sequence learning in general.

5.1 Elastic Weight Consolidation

Similarly to other connectionist models, Transformer models store the information
about learned tasks in their trainable parameters. Generally, the information is dis-
tributed, meaning that knowledge learned about a single data point is represented
by a subset of these parameters (McCloskey and Cohen, 1989). The distributed repre-
sentations that are mainly a result of the applied learning algorithms contain prop-
erties that are claimed to be suitable for modeling human cognition, such as content-
addressable memory and generalization (Hinton et al., 1990; McClelland et al., 1986;
Pinker and Prince, 1988; Fodor and Pylyshyn, 1988; Lachter and Bever, 1988). They
are, however, ale one of the major reasons behind the CF in incremental learning (IL,
McCloskey and Cohen, 1989).

The goal of the learning algorithms is to find a set of network parameters that
minimize a given loss (error) function with respect to the data available for respec-
tive tasks. However, some parameter configurations, while being optimal for one
task, can be far from optimal when applied to the other tasks as illustrated by Fig-
ure 5.1. Thus, guiding the learning algorithm to stay close to a parameter subspace
of solutions to the former tasks while learning new tasks poses a reasonable solution
to avoiding CF.

Compared to neural networks, biological brains can learn and store new informa-
tion in a sequential manner (Cichon and Gan, 2015). Kirkpatrick et al. (2017) suggest
that the identification and consolidation of network weights with high importance
with respect to previously learned tasks, and reducing the size of the updates to these
weights can be a viable approach to reducing CF. Similarly to biological neurons, the
ability to strengthen the retention of the important parameters, forcing the NN to
update those that are irrelevant to the previous tasks could be crucial to prevent CF.

Regularization aimed at restricting updates to network parameters that are im-
portant for previously learned tasks should, in theory, motivate the network to
make use of its remaining capacity. Besides regularization, such behavior can be
also achieved by introducing constraints directly to the network parameters (Pa-
sunuru and Bansal, 2019). Instead of updating the network parameters directly dur-
ing the optimization for the subsequent tasks (Task B), the authors suggest learning a
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parameter-shift ψB that together with the original task (Task A) parameters θA can
be used for computation of i-th model parameter for Task B, θi,B = θi,A +ψi,B . They
report that by forcing block-sparsity on the Task A parameters θA and parameter-
shift ψB and making both parameter matrices orthogonal, the resulting parameters
θB will be both solutions for Task B while retaining knowledge about Task A.

Instead of forcing explicit constraints on the parameter matrices, Kirkpatrick
et al. (2017) suggest deriving network parameter importance directly by framing in-
cremental learning as a Bayesian inference problem. Given training datasetsDA and
DB representing tasks A and B, respectively, the subsequent optimization for the lat-
ter task after the optimization for the former one can be described by the following
formula:3

log p(θ|D) = log p(DB|θ) + log p(θ|DA) − log p(DB) (5.1)

where D = DA ∪DB . The authors claim that if the likelihood term log p(DB|θ)
represents the negative of the loss function for optimization with respect to Task B,
the prior log p(θ|DA) should contain the information about the previously learned
task A and consequently, the information about the importance of the network pa-
rameters regarding Task A.

In practice the conditional probability log p(θ|DA) is intractable during the Task
B optimization, therefore, Kirkpatrick et al. (2017) suggest estimating the prior prob-
ability distribution as a Gaussian distribution with the mean being the parameters
θ∗
A at the end of Task A optimization and variance estimated using a diagonal of the

Fisher information matrix (FIM).4,5 The properties of FIM (equivalency to the second
derivative of the loss near the minimum and positive semi-definitiveness) allow the
formulation of the following regularized loss function:

L(θ) = LB(θ) + λ

2
∑︂

i:θi∈θ
Fi,A(θi − θ∗

i,A)2 (5.2)

The regularization term penalizes updates to the parameter θi more when its impor-
tance Fi is higher.

3Huszár (2017) points out that the original authors wrongly assume that log p(DB|DA) =
log p(DB) based on the mutual independence of the data samples fromDA andDB . Huszár (2017)
states that the “dependence is induced by the Bayesian treatment of the problem: the tasks are no
longer assumed independent, instead, they are exchangeable (conditionally independent given θ)”.

4Inspired by the previous work on Laplace approximation (MacKay, 1992).
5In practice, we approximate FIM using empirical Fisher (Schraudolph, 2002a). Note that while the

two matrices are not identical, if not stated otherwise, our use of the term FIM refers mainly to the
empirical Fisher approximation.
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Alternatively, instead of estimating the importance of individual network param-
eters with respect to previously learned tasks by examining the loss space curvature
near the parameters at the end of the training, Zenke et al. (2017) suggest tracking
the contribution of each parameter to the loss change throughout the whole training
process. When making infinitesimal updates to the network parameters, the change
in loss can be estimated by a sum over gradients of the individual network param-
eters (multiplied by the size of an update). Using path integral (PI, Feynman, 1948),
this contribution can be expanded to the whole sequence of updates between the
initial parameter values and their values at the end of the task. The suggested im-
portance measure for each parameter is the sum of the products of the parameter
gradient and its update tracked throughout the whole training. Although the results
of their experiments show similar performance to the EWC-based regularization, the
PI-based regularizer can be better suited for online learning scenarios thanks to the
tracking of the importance throughout the whole training.

Besides a direct regularization of the network parameters, disabling updates to
the original parameter values and learning task-specific layer activations can be a vi-
able approach (Li andHoiem, 2016; Rebuffi et al., 2016). Instead of storing a new set of
parameters for each subsequent task, having a single set of the original task network
parameters and only a set of optimized layer activations for the subsequent tasks can
effectively help reduce storage requirements for each subsequent task. Still, similarly
to fine-tuning, this approach requires a strong prior model for the subsequent task
optimization (Li and Hoiem, 2016).

5.2 Weight Consolidation for Unsupervised
Pretraining

Although originally designed to reduce CF in neural networks, our first set of ex-
periments investigated whether EWC can be to counter overfitting in unsupervised
pretraining scenarios. Unsupervised learning in the area of NMT most often refers
to only using available monolingual data, possibly for both source and target lan-
guage respectively without any explicit notion of word or sentence-level alignment
(Artetxe et al., 2018; Lample et al., 2017). Even though the monolingual corpora pro-
vide useful information about the structure of both the source and target language
on their own, there is no explicit information about mapping sentences from one
language to sentences in the other.6

6Although it is not the focus of our work, it is important to mention that there are also unsuper-
vised NMT approaches that can optimize a system for translation solely from themonolingual corpora
(Lample et al., 2017; Conneau and Lample, 2019a; Artetxe et al., 2018).
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The unsupervised pretraining thus focuses on the first training parts of the ma-
chine translation (MT) model, in our case encoder and decoder, to learn about the
structure of source and target-side language respectively. Next, these pretrained lan-
guage models are used in the subsequent training on the available parallel data, pro-
viding better initialization of the model parameters. We consider both the encoder
and decoder as isolated language models due to the training objective that is used in
the pretraining phase: both are optimized to learn the probability distribution over
the token vocabulary given a specific context (can be either prefix, suffix, or a com-
plete context in the case of masked language models). During the NMT optimization
itself, the decoder is then trained to condition said output probability distribution
not only on the output history itself but also on the source-side sentence.

The biggest motivation behind the use of additional monolingual data inMT opti-
mization is their much larger availability compared to their less-resourced bilingual
or multilingual counterparts. Thus, there were various approaches to incorporat-
ing the additional monolingual data into the training pipeline. The idea of using
additional corpora for building MT systems originated in the classical statistical ma-
chine translation (SMT), including the most famous model of phrase-based machine
translation (PBMT). SMT models were originally based on the noisy channel model
(Shannon, 1948) which applies the Bayes rule on the modeled posterior p(y|x) to
decompose the probability into a separate translation p(x|y) and language model
p(y). Later statistical models, based on maximum entropy estimation (MEE), while
allowing higher freedom in adding additional statistical components (e.g. reordering
models, Galley and Manning, 2008; Koehn et al., 2005), they still included dedicated
target-side language models trained on monolingual corpora.

In the context of NMT, the current most popular method of using monolingual
corpora is the creation of additional synthetic parallel data by automatically translat-
ing the source and target-side monolingual corpus (Sennrich et al., 2016a). The latter,
also known as back-translation, became a staple data-augmentation method in con-
temporary NMT research. Even though the source-side sentences created by this
method contain translation errors, these additional training data provide the NMT
decoder with examples that help further refine its conditional language modeling
abilities.

The unsupervised pretraining can provide the NMT model with a good initial-
ization, though, its benefits are more noticeable in the unsupervised NMT scenarios
(Baziotis et al., 2021; Lample et al., 2017). Possibly due to the tendency of neural
models to overfit to the training data, parameter initialization in itself via pretrain-
ing might not be making use of the full potential of the available monolingual data.
Ramachandran et al. (2017) show that in addition to parameter initialization, the orig-
inal LM objectives used during NMT pretraining can be also used as auxiliary train-
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ing objectives during the NMT training, taking a role of a regularizer. The results of
their experiments show that LM objective regularization can lead to translation per-
formance on par with the backtranslation techniques. On the other hand, it requires
that the original monolingual corpora are also available during the subsequent NMT
training.

Inspired by their regularization approach, we investigated whether the LM ob-
jective regularization can be replaced by a different regularizer, namely one based
on the EWC. Our reasoning is following: during the pretraining phase, the model
components (encoder, decoder) learn the structure of the languages in isolation, and
this prior knowledge about the languages is used as a basis for the subsequent NMT
training (by initialization or by including the auxiliary LM objectives). As described
by Kirkpatrick et al. (2017), EWC can be used to include these LM priors in the NMT
learning. In the original paper, they introduce the Bayes formula for a scenario, when
a whole model is being optimized for two tasks incrementally. In the following sec-
tion, we derive a formula for incorporating prior pretraining of individual parts of
the Transformer architecture.

5.2.1 EWC Regularization of Submodules

The original formula (Equation 5.1) motivating EWC considers continual training of
the whole network. The modular nature of the Transformer (and other sequence-
to-sequence architectures) allows a separate pretraining of the encoder and decoder
sub-networks. LetD = DMT∪DSRC∪DTGT represent all the available data, where
DMT represents the available parallel data andDSRC ,DTGT represent the source-
side and target-side monolingual corpora respectively. Equation 5.1 then takes the
following form (under the assumption of the mutual exclusivity ofDMT ,DSRC , and
DTGT ):

log p(θ|D) = log p(DMT |θ) + log p(θ|DSRC ∪DTGT ) − log p(DMT ) (5.3)

Similarly to the original paper log p(DMT |θ) is the main training objective and
log p(θ|DSRC ∪DTGT ) holds the information about the unsupervised LM pretrain-
ing. Let θSRC ⊂ θ and θTGT ⊂ θ represent the parameters of the encoder and
decoder respectively. In the context of unsupervised pretraining, θtgt does not con-
tain parameters related to the encoder-decoder attention mechanism. The encoder-
decoder attention layers are ignored during the unsupervised pretraining phase, set-
ting their outputs to 0 and using only the residual connections to allow proper in-
formation flow. In the subsequent MT fine-tuning phase, the encoder-decoder is
initialized randomly, similarly to the standard NMT training practices.
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By design, the parameter sets θSRC and θTGT are mutually exclusive. Also, the
source-side and target-side LM pretraining is only conditioned on the source-side
and target-side monolingual data respectively. Therefore, the language modeling
prior log p(θ|DSRC ∪DTGT ) can be replaced by the following factorization:

log p(θ|DSRC ∪DTGT ) = log p(θSRC |DSRC) + log p(θTGT |DTGT ) (5.4)

The factorization in Equation 5.4 allows isolated pretraining of subsets of network
parameters, possibly using various data source for each. The information learned by
the isolated parts of the network, if not forgotten, can be then used for composi-
tional learning in the subsequent fine-tuning phase, allowing few-shot or zero-shot
learning.

Similarly to the original EWC paper, the source-side and target-side LM probabil-
ity distributions cannot be efficiently computed during the NMT fine-tuning phase,
requiring a similar Laplace approximation. This results in the following NMT loss:

L(θ) = LMT (θ) + λSRC

2
∑︂

i:θi∈θSRC

Fi(θi − θ∗
i )2 + λT GT

2
∑︂

j:θj∈θT GT

Fj(θj − θ∗
j)2 (5.5)

The parameters θ∗ represent the parameter values at the end of the LM pretrain-
ing. Note, that even though we make a distinction between the hyper-parameters
λSRC and λT GT for individual weighting of the contribution of the pretrained source-
side and target-side LM, in the following experiments, we use a single hyper-
parameter λ = λSRC = λT GT .

5.2.2 Experiments: Unsupervised NMT Pretraining

For the low-resource NMT experiments, we used data available for the IWSLT 2018
Basque-to-English machine translation task.7 The corpora provided by the organiz-
ers consist of 5,600 sentence pairs from the TED Talks domain and roughly 940,000
sentence pairs from a general domain. For unsupervised pretraining, we used Basque
Wikipedia articles for source-side LM training and NewsCommentary 2015 for the
target-side LM.8 Both monolingual corpora contain around 3M sentences. We used
UDPipe Version 19 (Straka and Straková, 2017) for sentence splitting and Sentence-
Piece10 for subword tokenization. The SentencePiece models were trained on the
Basque and English monolingual corpora respectively and were later also used to
process the parallel data.

7https://sites.google.com/site/iwsltevaluation2018/TED-tasks
8The latter corpus available at http://www.statmt.org/wmt18/translation-task.html.
9http://ufal.mff.cuni.cz/udpipe

10https://github.com/google/sentencepiece
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We used the development data provided by IWSLT 2018 containing 1,140 sen-
tence pairs for evaluation during training. We used the same development data for
FIM approximation after the unsupervised LM pretraining. Even though the sen-
tence distribution varies between the development data and the training monolin-
gual corpora, our goal was not to completely preserve the original LM ability of the
encoder/decoder – we only required the EWC regularizer to help avoid overfitting
on the training data in the subsequent NMT fine-tuning. During the final evaluation,
we used the IWSLT 2018 testset provided by shared task organizers, containing 1,051
sentence pairs.

In the following experiments, we investigate, whether the EWC regulariza-
tion combined with the LM pretraining can be used to mitigate overfitting in the
low-resource NMT. We use a Transformer implementation provided by the Neural
Monkey framework for neural sequence-to-sequence learning (Helcl and Libovický,
2017).11 The details about the model hyper-parameters are in Appendix A.4. We sep-
arate the source-side and target-side vocabularies and set each one to contain 32k
subwords. During the LM pretraining, the output softmax layer of both the encoder
and decoder is tied to their respective embedding layers (Press and Wolf, 2017) to
reduce the number of trainable parameters. We do the same thing with the decoder
during the NMT fine-tuning.

During the LM pretraining phase, we apply identical training hyper-parameters
to both the encoder and decoder. We train both using a cross-entropy objective with
teacher-forcing, considering only the leftward sequence prefix when generating out-
put tokens. This has a potential drawback when applied to the encoder because it
uses both leftward and rightward context during the NMT fine-tuning phase. We dis-
cuss the alternative approaches later in this section. As mentioned before, we ignore
the encoder-decoder attention layer in the decoder during the pretraining phase and
randomly initialize the layer at the beginning of the NMT fine-tuning. Any random
parameter initialization is done by sampling values from a standard normal distribu-
tion. We reset all training-related parameters (learning rate, momentum, etc.) dur-
ing the subsequent NMT fine-tuning. We set the EWC regularizer hyper-parameter
λ = 0.02 during the NMT fine-tuning. For efficiency, we estimate the values of FIM
using a small holdout dataset; the previous work has shown that it is not necessary
to estimate the values using the whole training dataset (Thompson et al., 2019). We
pretrain the LM of depth 3 and use it to initialize the first three layers of the respec-
tive encoder/decoder NMT architecture - the rest of the model is randomly initialized
at the beginning of the fine-tuning.

11Our EWC implementation is available at: https://github.com/ufal/neuralmonkey/tree/ewc_
aclsrw2019.
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We compare our EWC regularization approach with the LM-objective regulariza-
tion (Ramachandran et al., 2017). The latter uses the original LM training objective
as an auxiliary objective during the fine-tuning phase. For a more fair compari-
son, the auxiliary LM objective is only computed using the individual source-side
and target-side sentences in the bilingual training data - we do not use the origi-
nal monolingual corpora during fine-tuning because, in practice, the data from the
previously learned tasks are not always available in the later stages of the training.
Furthermore, we train a separate MT system without pretraining in each transla-
tion direction using the combination of the available in-domain and out-of-domain
data and use these models to create additional synthetic data via backtranslation
(Sennrich et al., 2016a). Using the original bilingual data and the synthetic data, we
train another contrastive NMT model and compare its performance with the EWC-
regularized and LM-objective regularized models. We save the top 4 best performing
checkpoints for each setup based on their performance on the validation dataset. We
compare the performance of the approaches both in the single best-performing and
in the ensemble decoding scenario. We ensemble the models by averaging the output
log probabilities generated by each model during every decoding step.

Table 5.1 shows the performance comparison between the suggested approaches
and EWC-regularized fine-tuning. We also provide the results of a straightforward
baseline – a system trained only on the available bilingual data without any regular-
ization. The EWC-regularization slightly outperforms the LM-objective regularizer
when applied only on the NMT decoder. Still, both methods prove themselves as
inferior to a backtranslation approach which is also easier to deploy in practice.

Additionally, the effect of both regularization methods becomes detrimental
when applied to the NMT encoder. This performance drop is likely due to the differ-
ent nature of the LMpretraining objective (left-to-right decoding) and the fine-tuning
(using both left and right context). Figure 5.2 shows the level of performance degra-
dation of the EWC-regularized models with respect to the depth of the pretrained
LM. A larger restriction to the NMT encoder (deeper LM) leads to a bigger perfor-
mance drop possibly due to the incompatibility of the encoder LM pretraining objec-
tive and its function during NMT. Using a different pretraining objective, namely
the masked language model (MLM, Devlin et al., 2019) could be a more suitable
alternative. Lastly, the higher drop in EWC-regularized models, compared to LM-
regularization is then likely due to a more restricting nature of the EWC-regularizer,
however, this hypothesis requires further investigation.

Due to the EWC-regularizer only slightly outperforming the LM-regularizer in
the decoder-only regularization, we also compared the overall training speed of the
two approaches. Even though LM-regularization proved to be less detrimental (based
on the encoder-only comparison), in theory, an additional model graph execution is
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required when computing the LM loss. Just the decoder itself needs to be run in
two modes: conditioned on the source side (NMT objective) and conditioned only
on its output (LM objective). Figure 5.3 shows that although each model required
a roughly similar number of updates to converge during the fine-tuning, the EWC-
regularized model required about 2-3 times less wall-clock time to finish training.
This comparison was measured on models trained using a single NVIDIA GeForce
GTX 1080 Ti GPU.
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Figure 5.2: NMT model performance with different depth of pretrained encoder LM.
The encoder initialized by the LM was later fine-tuned using EWC regularization.
The performance of a model trained from scratch is included for comparison. We
reproduce the original figure from Variš and Bojar (2019).

SRC TGT ALL

Baseline 15.68 – – –
Backtrans. 19.65 – – –

LM best – 13.96 15.56 16.83
EWC best – 10.77 15.91 14.10

LM ens. – 15.16 16.60 17.14
EWC ens. – 10.73 16.63 14.66

Table 5.1: Comparison of the translation performance of fine-tuned models with the
proposed EWC regularization and previous LM regularization. We compare the ef-
fects of pretraining encoder-only (SRC), decoder-only (TGT ), and the whole Trans-
former network (ALL). Each pretrained LM contains 3 Transformer layers. We per-
form a comparison between the single best checkpoint and the model ensemble us-
ing the parameter average of the last 4 best checkpoints. Results with the proposed
method outperforming previous work are in bold. We reproduce the original table
from Variš and Bojar (2019).
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Figure 5.3: Relative model perplexity convergence time comparison of models with
pretrained decoder. The compared models used either no regularization (no reg.),
LM regularization, or EWC regularization. The models were trained using the same
number of training examples, each initialized with a pretrained LMwith three Trans-
former layers. We reproduce the original figure from Variš and Bojar (2019).

5.3 Weight Consolidation Against Catastrophic
Forgetting

The results from the EWC-regularization experiments presented in the previous sec-
tion suggest that, compared to the original EWC prototype experiments covered by
Kirkpatrick et al. (2017), the application of EWC to more sophisticated SoTA neural
architectures, such as Transformers, is non-trivial. The original supervised learning
experimentswere investigating the effects of EWC regularization on the optimization
of a rather simple, multi-layered perceptron (MLP) in the MNIST experiments and a
convolutional network in the reinforcement learning (RL) experiments (based on the
architecture proposed by Mnih et al., 2015). Some of the common techniques (e.g.
label smoothing, Szegedy et al., 2016) or architectural modifications (e.g. layer nor-
malization, Ba et al., 2016, residual connections, He et al., 2016b) and their influence
on the effectiveness of EWC were not investigated in the original publication. Fur-
thermore, their supervised learning experiments focus only on the single datapoint
classification (output only conditioned on the input) whereas sequence prediction
(output conditioned on input and the previously generated output) arguably poses a
bigger challenge.

Still, EWC is not the only viable regularization method aimed at reducing CF. In
the context of NMT, the alternatives were investigated mostly in the area of domain
adaptation. The related literature (Miceli Barone et al., 2017; Khayrallah et al., 2018)
compared various regularization schemes, e.g. using original domain output distri-
bution (Khayrallah et al., 2018), MAP-L2 regularization (Chelba and Acero, 2006) or
Bayesian dropout (Gal and Ghahramani, 2016). Later Thompson et al. (2019) demon-
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strated that EWC can be used to manage the trade-off between the original general
domain translation knowledge and the newly adapted domain-specific knowledge,
outperforming the previous approaches. Importantly, these methods were studied in
the context of recurrent neural networks, not Transformers.

The supervised learning experiments in the original work on EWC explored only
IL scenarios where the original input representations are randomly permuted, creat-
ing a dataset for a new task. A more recent survey of the methods aimed at alleviat-
ing CF (Kemker et al., 2018) demonstrated that the original positive empirical results
of EWC regularization wer related this specific input permutation. In the other IL
scenarios, EWC fails at knowledge retention, at least in comparison with the other
knowledge retention approaches. To better analyze the effects of the methods for
avoiding CF, they suggest following IL scenario taxonomy in the context of classifi-
cation:12

1. Data Permutation. The elements of every feature vector are randomly per-
muted, with the permutation held constant within a session, but varying across
sessions. The model is evaluated on its ability to recall data learned in prior
study sessions. Each session contains the same number of examples.

2. Incremental Class Learning. After learning the base set, each new session
learned contains only a single class.

3. Multi-Modal Learning. The model incrementally learns different datasets,
e.g., learn image classification and then audio classification.

Our main focus in this thesis is textual sequence-to-sequence, thus we will only
focus on the Incremental Class Learning problem. Data Permutation experiments
are not applicable due to the discrete nature of the input-output, the tokens are rep-
resented by the integer-valued indices to the vocabulary and the real-valued embed-
ding matrices are a trainable parameter. We avoid the multi-modal learning experi-
ments to reduce the scope of this thesis.

In the context of sequence learning, we decided to expand the Incremental Class
Learning set of tasks into the following sub-categories:

1. True Incremental Class Learning. Given a fixed vocabulary, only a subset
of vocabulary tokens is present in the training dataset for TaskA and a different
subset is provided by the Task B training data.

2. Multi-task Learning. A similar set of inputs is presented by both Task A and
Task B and different task-specific outputs are required for each task. The task
choice is indicated on input, e.g. by a special task-indicator token.

12We provide the original task definitions proposed by Kemker et al. (2018).
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For True Incremental Class Learning, we create the following dataset: given a
vocabulary of tokens V = {A,B,C,D}, we create two separate datasets containing
only sequences of A, B tokens (A-B) and C , D tokens (C-D), respectively. Both da-
tasets contain 30k unique input sequences of up to 20 tokens. The datasets are then
randomly split into a train, validation, and test dataset with 28k, 1k, and 1k input
sequences respectively. We set up two types of experiments, one with the copy op-
eration (copy the input sequence to the output) and one with the reverse operation
(generate the input sequence in the reverse order). Based on the given task, we algo-
rithmically generate the correct output sequence for each dataset split. Since there
is only a single task involved during the True Incremental Class Learning, we do not
add the task-indicating token at the beginning of the input. The goal of this IL task
is to first learn the algorithm on the A-B sequences and then fine-tune the model on
the C-D sequence, measuring the performance on both respective testsets.

One-to-many multilingual NMT can be considered an example of Multi-task
Learning. Having a single input sentence and a target-language indicator token,
we can consider translation into different languages being different tasks, expecting
task-specific output (translation in a given language) given an identical input sen-
tence.

The original survey results demonstrate that EWC performs quite poorly in the
Incremental Class Learning classification (Kemker et al., 2018). In the following sec-
tions, we provide a study of EWC regularization with respect to various the two
subtasks of Incremental Class Learning in sequence-to-sequence Transformers. We
study the problems on the string editing task and the task of multilingual NMT.

5.3.1 FIM Normalization and EWC Stabilization

A crucial component of the EWC regularization is computing the diagonal of the FIM.
In practice, due to not having access to the data generating distribution pA(y|x)
for Task A, the computation of FIM is intractable. Instead, we estimate FIM using
empirical Fisher (Schraudolph, 2002b) by computing a sample mean of the square of
the gradients using a dataset sampled from the said distribution:

F (θ) = Ex,y∼pA
[∇ log pθ(y|x)∇ log pθ(y|x)⊺] (5.6)

F (θ) ≈ 1
N

N∑︂
i

∇ log pθ(yi|xi)∇ log pθ(yi|xi)⊺ (5.7)
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The resulting FIM estimate can vary between tasks which can make hyper-
parameter tuning of the EWC regularization hyper-parameter λ an irritating chore.
Furthermore, the FIM values can also vary based on the chosen notion of sequence
loss: we can either optimize the model to increase the log-likelihood of the training
sequences as a whole (represented as a sum of log-likelihoods of the sequence tokens)
or we can take individual predicted tokens as separate training targets. The original
normalization of the summed squares of gradients in FI ( 1

N
) accounts for the varying

sizes of the available sample, however, it does not consider the differences between
the various tasks. In contrast, to further simplify the λ hyper-parameter search, we
suggest normalization of the estimated FIM. Note that even though the normaliza-
tion can change the properties of themeasured FI, the normalization should not affect
the EWC-regularization term. Given a normalization value Z , we get the following
equation:

λ

2
∑︂

i

Fi,A(θi − θ∗
i,A)2 = λZ

2
∑︂

i

Fi,A

Z
(θi − θ∗

i,A)2 (5.8)
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Figure 5.4: Top 100 values of the diagonal of the empirical FIM in the context of
different tasks (copy, reverse) using only the A-B sequences during training. Top:
Normalization using the sample size. Bottom: Normalization by the highest FIM
diagonal value.
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For our experiments, we propose normalization value Z to be the highest Fi,A

value of a given model trained for Task A, setting the FI values to the interval (0, 1).
Figure 5.4 illustrates the differences between the original 1

N
normalization and the

proposed max normalization showing the top-100 values of the diagonal of FIM.13

Using the sample size normalization can lead to a significantly different scaling of
FI depending on a given task (Figure 5.4, top). On the other hand, the max-value
normalization results in the FI values being in a similar interval while still preserving
the relative differences between the original values (Figure 5.4, bottom).

There is another issue regarding FI: extremely high values of FI can potentially
hurt knowledge retention. Going back to Equation 5.2, the update size of the network
parameter θi has the following form:

∆θi = −α∂L
∂θi

− αλFi,A(θi − θ∗
i,A) (5.9)

As pointed out by Kutalev and Lapina (2021), the size of the parameter update
with respect to the regularization term−αλFi,A(θi−θ∗

i,A) is scaledwith the size of the
hyper-parameter λ and FI Fi,A. Furthermore, −αλFi,A > 1 results in over-shooting
the optimal Task A parameter θ∗

i,A, and if −αλFi,A > 2, the distance of the parameter
θi from the optimal value for Task A even increases, basically forgetting the task.
Given the huge differences between the sample-normalized FI of the Transformer
parameters (Figure 5.4, top), a wrong choice of the hyper-parameter λ can result in
either ignoring the effect of parameters with too low FI value or even potentially
accelerating the forgetting process by forcing important parameters to move away
from their Task A optimum.

Instead of normalizing the values of the FIM diagonal, Kutalev and Lapina (2021)
suggest modifying the original EWC regularization term to normalize the values of
the gradient. Inspired by their proposal, we suggest the following Fisher-normalized,
EWC regularizer:

L(θ) = LB(θ) + λ

2
∑︂

i

Fi,A

Fi,A + 1(θi − θ∗
i,A)2 (5.10)

The EWC regularization term from Equation 5.10 has the following gradient:

−αλ Fi,A

Fi,A + 1(θi − θ∗
i,A) (5.11)

13On both copy and reverse tasks, the network was able to reach perfect accuracy on the initial
task. We used the validation datasets to estimate the FIM for the respective tasks.
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As a result, the sole contribution of the regularizer gradient to the parameter
update cannot exceed the distance between the current parameter value and the value
optimized for the previous task due to high values of Fi,A. Compared to Kutalev
and Lapina (2021), we only normalize the FI values to stabilize the training. Hyper-
parameters α and λ are not derived from the data and can be adjusted as required.
In the following sections, we conduct experiments with the FIM normalization and
EWC stabilization and compare them to the original approach.

5.3.2 Experiments: String Editing

Task Input Output

Copy (A-B) a b a b a b a b
Copy (C-D) c d d c c c d d c c
Reverse (A-B) a a b a b b a b a a

Figure 5.5: Input and example for copy and reverse using different vocabulary sub-
sets for True Class Incremental learning (A-B, C-D). The former subset is used for
pretraining, the latter for model fine-tuning.

First, we evaluate the normalization methods on the True Incremental Class
Learning string editing task. We take the datasets with shared vocabulary V =
{A,B,C,D} for copy and reverse task described earlier. For each task, we first
train a model on a subset of data containing only tokens A and B and then fine-tune
it on a subset with tokens C and D. We compare the original sample normalization
with the proposed max normalization, i.e. FIM values normalized to the (0, 1) in-
terval. We combine each normalization method with the original EWC regularizer
and the stabilized variant described in Equation 5.10. Figure 5.5 show examples from
the training dataset. Similarly to Section 4.1.1, during the evaluation, we measure
string-level accuracy ACC = ncorrect

nall
, where ncorrect is the number of exact matches

of the produced string and the reference output.
The details about the Transfomer hyper-parameters are in Appendix A.5. All

fine-tuning attempts we initialized by the same pretrained A-B model and only dif-
fer in the selected EWC method and hyper-parameter λ. We fine-tuned each model
for the same number of updates and picked the model checkpoint that had the best
performance on the combined A-B and C-D validation data. In our preliminary exper-
iments, we found that λ values close to 1000 work reasonably well on the copy task
as demonstrated in Figure 5.6 (top). We measured the effects of various values of the
hyper-parameter λ ∈ (500, 1500) in combination with the normalization and stabi-
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Figure 5.6: Accuracy comparison between the various combinations of FIM estima-
tion (sent, max) and the EWC regularization terms (orig, stable). The models fine-
tuned with different values of the hyper-parameter λ were evaluated using our in-
cremental class learning benchmark – the original task (A-B) was used for model
pretraining and the follow-up task (C-D) was used during fine-tuning. Top: String
copying (copy) task; all tasks reaching perfect accuracy. Bottom: String reversal
(reverse) task. Models were initially trained on examples with a, b tokens and later
fine-tuned on the examples with c, d tokens. The black dashed line indicates the
test accuracy of the model used for initialization of the reverse model fine-tunning,
measured on the initial A-B task validation data.

lization methods for the copy task. Later we run the same experiments on the reverse
dataset using values λ ∈ (500, 2500),14 to see whether the results are consistent and
whether the normalization enables hyper-parameter selection from a similar interval
of values.

Figure 5.6 (bottom) shows the EWC performance on the reverse task concerning
various regularizer hyper-parameter values. Compared to copy, incremental learn-
ing becomes a trade-off between the knowledge of the original task (A-B) and the
subsequent task (C-D). The results show that the original approach truly requires a
much wider exploration of the hyper-parameters values. The methods using max
normalization of FIM offer a better trade-off than the original approach (sent, orig)
on the explored hyper-parameter value interval, however, it still leads to sacrificing

14We expanded the investigated interval due to some of the methods performing poorly on values
from the original interval.
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performance on one task for the sake of the other. The combination of the proposed
normalization and stabilization, however, seems redundant. Interestingly, the stabi-
lization of the FI gradient in the EWC regularizer (sent, stable) leads to much better
results (λ ∈ (1200, 1800)), keeping both accuracies above 50%.

Based on these results, we conclude, that the regularizer stabilization can improve
the effects of EWC and it does not require FI normalization. In the next section, we
will measure the effects of the normalization and stabilization methods in the multi-
task setting.

5.3.3 Experiments: Multilingual NMT

To see the effects of the proposed EWC modifications on incremental multi-task
learning (MTL), we compare them in the context of the multilingual incremental
NMT. Similarly to our unsupervised pretraining experiments, we choose a scenario
of adapting models trained on high-resource NMT and fine-tuning them for low-
resource languages. A potential benefit of avoiding CF can be storage reduction –
in comparison to the standard fine-tuning approaches, due to a model not forgetting
the original high-resource translation, we would not require to store the original
pretrained model separately.

In the following experiments, we use the OPUS-10015 dataset for multilingual ma-
chine translation (Zhang et al., 2020), sampled from the OPUS collection (Tiedemann,
2012). The OPUS-100 dataset is English-centric, meaning that any of the training lan-
guage pairs contain English on either source or target side. The dataset contains 100
languages of varying corpus sizes, the largest ones are limited to 1M training ex-
amples. Each language pair dataset was randomly sampled from the original OPUS
collection without any curation besides the cross-lingual deduplication16 which is
sometimes reflected in the quality of the training samples. Based on the dataset sizes,
the sampled corpora are separated into high-resource (up to 1M training examples)
and low-resource (up to 100k or 10k training examples). Furthermore, the authors
put aside a sample of 2k validation and test examples for each language pair and
create a set of zero-shot evaluation corpora for direct translation between selected
languages excluding English.

Inspired by Zhang et al. (2020), we choose four typologically distinct languages
with varying training dataset sizes: German (De), traditional Chinese (Zh), Breton
(Br), and Telugu (Te). Table 5.2 summarizes the basic statistics about the training
corpora used in our experiments. In our experiments, we consider the De, Zh corpora
as high-resource and Br, Te as low-resource.

15https://opus.nlpl.eu/opus-100.php
16Meaning there are no duplicates of English-side sentences between the different language pairs.
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Num. of Sentences Num. of Tokens
{De, Zh, Br, Te} En

De-En 1,000,000 10,860,823 11,636,324
Zh-En 1,000,000 1,703,534 16,702,315
Br-En 153,447 684,248 591,374
Te-En 64,352 263,810 312,283

Total 2,217,799 13,512,415 29,242,296

Table 5.2: Summary of the training dataset sizes used in themultilingual experiments.

We compare our multilingual fine-tuning approach using EWC regularization
with the standard fine-tuning that avoids using any form of regularization. Further-
more, we compare our results to the bilingual baselines, trained using each language
pair separately, and a joint multilingual baseline trained on the full combination of
the available training corpora. We compare the performance of the listed models
on both many-to-one (to English) and one-to-many (from English) translations. We
avoid any language-specific tokenization of the corpora due to the differences be-
tween the individual language scripts. Instead, we apply byte-pair encoding (BPE)
on the concatenation of all available training corpora and create a single subword
segmentation scheme with 64k merges. In the following experiments, we always
combine the source- and target-side vocabularies. Inputs to the models translating
into multiple languages are prefixed with an additional target-language token indi-
cating to which language the input needs to be translated.

The details about the default model hyper-parameters are in Appendix A.6. We
train the bilingual models and low-resource models (En-Low, Low-En; containing
both Br and Te) for 200k updates. We train the high-resource models (En-High,
High-En; containing De and Zh) for 600k updates. Similarly, we train the multi-
lingual models (En-All and All-En; containing all four languages) for 600k updates.
All fine-tuning experiments are initialized with their respective high-resource model
and tuned on the low-resource datasets for additional 200k updates. With respect to
EWC, we compare the original FIM sample normalization (sent) with the proposed
max-value normalization (max) in combinationwith the original EWC regularization
term (orig) and the “stabilized” version described in Equation 5.10 (stable). Due to
the computational cost of the training (several days per model in Fairseq), we choose
only a single EWC hyper-parameter λ = 1800 for all regularized model variants
based on the performance in the string editing experiments. In the final evaluation,
the best-performing parameter checkpoint (measured on the combined validation
dataset) is used to compare the individual model variants.
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We evaluate the models using BLEU (Papineni et al., 2002). Due to BLEU having
well-known flaws (Callison-Burch et al., 2006; Lin and Och, 2004), we also use the re-
cently proposed COMETmetric (Rei et al., 2020), a Transformer-based scoring model
for NMT evaluation. Even though the correctness of the COMET metric is difficult
to analyze (it is an optimized deep learning model, with possible data-derived bi-
ases), it has been reported to have a much better correlation with human judgement
than previous n-gram precision metrics, such as BLEU. We use the standard COMET
version requiring reference translations (Cmt) and a referenceless evaluation model
(CmtQE).

ID System En-De En-Zh En-Br En-Te
BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE

1 base En-De 29.5 0.1600 0.1090 – – – – – – – – –
2 base En-Zh – – – 26.1 0.2342 0.1113 – – – – – –
3 base En-Br – – – – – – 17.3 -0.4024 0.0907 – – –
4 base En-Te – – – – – – – – – 20.3 0.0963 0.0973

5 base En-All 28.4 0.1189 0.1081 29.5 0.2806 0.1116 17.5 -0.3121 0.0913 22.0 0.2723 0.0983
6 base En-Low – – – – – – 15.9 -0.4209 0.0907 18.4 0.0348 0.0991
7 base En-High 28.3 -1.3560 0.1079 29.6 0.2840 0.1118 – – – – – –

8 7 ⇒ En→Low 1.4 -1.4218 0.0851 0.5 -1.5117 0.0817 21.8 -0.2186 0.0905 29.0 0.3447 0.0991
9 7 ⇒ En→Br 1.2 -1.5668 0.0819 0.3 -1.6798 0.0784 22.5 -0.2058 0.0907 – – –
10 7 ⇒ En→Te 0.7 -1.4740 0.0884 0.3 -1.5388 0.0850 – – – 30.9 0.3593 0.0987

11 7 ⇒ En→Low (sent, original) 19.9 -0.5722 0.0891 1.1 -0.7708 0.0838 6.6 -1.0831 0.0915 12.5 -0.0934 0.0958
12 7 ⇒ En→Low (sent, stable) 16.9 -0.9108 0.0789 1.0 -1.1127 0.0740 9.0 -0.6762 0.0881 14.0 -0.0341 0.0967
13 7 ⇒ En→Low (max, orig) 16.1 -0.8169 0.0849 0.3 -1.1253 0.0770 14.7 -0.3902 0.0906 19.8 0.1678 0.0980
14 7 ⇒ En→Low (max, stable) 10.7 -1.1039 0.0827 4.0 -0.9737 0.0844 17.9 -0.2839 0.0905 22.0 0.2605 0.0985

15 7 ⇒ En→Br (sent, orig) 19.6 -0.7011 0.0827 0.2 -1.3054 0.0658 7.7 -0.7525 0.0901 – – –
16 7 ⇒ En→Br (sent, stable) 18.7 -0.7686 0.0822 0.6 -1.0649 0.0707 8.1 -0.6978 0.0906 – – –
17 7 ⇒ En→Br (max, orig) 15.1 -0.8617 0.0869 1.7 -0.8167 0.0875 15.1 -0.3737 0.0909 – – –
18 7 ⇒ En→Br (max, stable) 13.8 -0.9255 0.0861 1.3 -0.9365 0.0846 15.3 -0.3724 0.0903 – – –

19 7 ⇒ En→Te (sent, orig) 19.2 -0.5353 0.0930 4.4 -1.0517 0.0831 – – – 15.9 0.0455 0.0972
20 7 ⇒ En→Te (sent, stable) 17.5 -0.6401 0.0897 4.1 -1.1839 0.0817 – – – 17.0 0.1160 0.0979
21 7 ⇒ En→Te (max, orig) 11.2 -1.0004 0.0815 2.1 -1.3131 0.0845 – – – 26.2 0.3692 0.0990
22 7 ⇒ En→Te (max, stable) 9.7 -1.0740 0.0804 2.0 -1.3422 0.0838 – – – 26.5 0.3356 0.0990

Table 5.3: Comparison of one-to-many translation models. We compare bilingual
(1-4) and jointly optimized (5-7) baselines with models fine-tuned without any reg-
ularization (8-10) and models fine-tuned using EWC with different normalization
approaches (11-22). We compare the sample-level (sent) and max-value (max) nor-
malization of FIM in combination with the original (orig) and the stabilized (sta-
ble) variant of the EWC regularizer. Each model fine-tuning was initialized by the
high-resourcemulti-lingual model (7). Fine-tunedmodels that outperform the jointly
trained multilingual baseline (En→All) on a given language are in bold.

Table 5.3 shows a comparison in the context of the one-to-many translation task.
This translation direction can be considered multi-task learning, with each target-
side language representing an individual task (identified by the special input token).
The regularized models did not perform as well on the low-resource languages as
the models using fine-tuning without any regularization. However, they suffered
much less from the catastrophic forgetting which completely removed the ability of
the unregularized fine-tuned models to translate into the high-resource languages.
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ID SysTem De-En Zh-En Br-En Te-En
BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE

1 base De→En 32.5 0.2374 0.1107 – – – – – – – – –
2 base Zh→En – – – 38.9 0.3234 0.1143 – – – – – –
3 base Br→En – – – – – – 15.9 -0.3841 0.0973 – – –
4 base Te→En – – – – – – – – – 24.8 0.0372 0.1029

5 base All→En 31.1 0.2266 0.1117 39.1 0.3370 0.1149 18.3 -0.2328 0.0995 30.2 0.2121 0.1059
6 base Low→En – – – – – – 16.0 -0.3816 0.0968 25.3 0.0152 0.1040
7 base High→En 32.0 0.2363 0.1113 39.0 0.3453 0.1148 2.3 -1.3128 0.0885 1.3 -0.9843 0.1139

8 7 ⇒ Low→En 1.1 -1.4106 0.0930 0.0 -1.7100 0.0873 21.0 -0.1809 0.0991 35.9 0.2671 0.1067
9 7 ⇒ Br→En 0.3 -1.4640 0.0932 0.0 -1.7131 0.0937 21.4 -0.1829 0.0988 – – –
10 7 ⇒ Te→En 1.0 -1.5057 0.0886 0.2 -1.7350 0.0871 – – – 36.7 0.3011 0.1061

11 7 EW C===⇒ Low→En (sent, orig) 30.4 0.1943 0.1109 38.3 0.3237 0.1145 9.6 -0.6320 0.0968 22.6 0.0511 0.1067

12 7 EW C===⇒ Low→En (sent, stable) 30.5 0.1847 0.1112 37.6 0.2962 0.1140 9.6 -0.6276 0.0964 22.6 0.0467 0.1060

13 7 EW C===⇒ Low→En (max, orig) 22.7 -0.1198 0.1072 26.8 -0.0381 0.1089 12.4 -0.4561 0.0976 24.8 0.1017 0.1048

14 7 EW C===⇒ Low→En (max, stable) 23.0 -0.1329 0.1066 26.7 -0.0458 0.1087 12.8 -0.4671 0.0976 25.7 0.1179 0.1053

15 7 EW C===⇒ Br→En (sent, orig) 29.9 0.1688 0.1110 37.7 0.3009 0.1145 9.9 -0.6033 0.0975 – – –

16 7 EW C===⇒ Br→En (sent, stable) 29.5 0.1510 0.1107 37.4 0.2689 0.1135 10.1 -0.5977 0.0979 – – –

17 7 EW C===⇒ Br→En (max, orig) 22.4 -0.1514 0.1063 26.6 -0.0557 0.1087 13.8 -0.3960 0.0984 – – –

18 7 EW C===⇒ Br→En (max, stable) 21.7 -0.1902 0.1053 26.1 -0.0979 0.1068 13.8 -0.4283 0.0982 – – –

19 7 EW C===⇒ Te→En (sent, orig) 31.3 0.2020 0.1104 38.2 0.3092 0.1140 – – – 24.0 0.0972 0.1051

20 7 EW C===⇒ Te→En (sent, stable) 31.2 0.2055 0.1105 38.2 0.3183 0.1143 – – – 24.0 0.0848 0.1051

21 7 EW C===⇒ Te→En (max, orig) 23.2 -0.1205 0.1058 26.4 -0.0322 0.1088 – – – 27.6 0.1593 0.1060

22 7 EW C===⇒ Te→En (max, stable) 23.2 -0.1222 0.1055 26.5 -0.0418 0.1087 – – – 27.1 0.1835 0.1058

Table 5.4: Comparison of many-to-one translation models. We compare bilingual
(1-4) and jointly optimized (5-7) baselines with models fine-tuned without any reg-
ularization (8-10) and models fine-tuned using EWC with different normalization
approaches (11-22). We compare the sample-level (sent) and max-value (max) nor-
malization of FIM in combination with the original (orig) and the stabilized (stable)
variant of the EWC regularizer. Each model fine-tuning was initialized by the high-
resource multi-lingual model (7). Fine-tuned models that outperformed the jointly
trained multilingual (All→En) baseline are in bold.

This knowledge retention was manifested only on German – translation into Chinese
was forgotten, possibly due to not seeing any tokens from the Chinese script during
fine-tuning. The models using max-value normalization of FIM ( 13 , 17 , 21 ) lead
to much better performance on the low-resource NMT than the sample-normalized
model; their performance is only slightly dropping in the high-resource translation.
However, we suspect that this could be a result of the lack of costly hyper-parameter
tuning. Interestingly, the max-value models were still able to perform on par with
the bilingual baseline while manifesting at least a small retention on translation to
German.

Table 5.4 compares the results of the many-to-one translation. This task is sim-
ilar to the true incremental class learning from the previous section In this case,
however, there is an overlap between the task vocabularies. Again, the results show
that the EWC-based methods cannot outperform the unregularized baselines on the
low-resource languages. However, they are much more effective at avoiding CF of
the original high-resource language translation, including translation from Chinese.
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This suggests that, combined with the one-to-many translation results, the exposure
to the output vocabulary of the original task plays an important role in remembering
the task. The trade-off between the high- and low-resource language performance
suggests, that the method using the original sample FIM normalization is more ef-
fective in this setting, although, this could again be a consequence of not performing
a thorough hyper-parameter search.

Overall the experiments presented in this chapter suggest that given some trade-
offs, the EWC regularization method can perform reasonably well on the sequential
task incremental learning. Our experiments support results from the previous work
on domain adaptation by Thompson et al. (2019) that showed a similar performance
trade-off between the original and the new translation task (domain).

5.4 Conclusions

In this chapter, we experimented with the regularization method based on EWC and
its effect on various IL tasks. Results of the experiments helped us answer Research
Question 2: Can the selective parameter regularization lead to improvements in Trans-
former performance in incremental learning? We subdivided the question into three
sub-questions and the provide following answers based on our empirical findings.

RQ2.1 Can selective parameter regularization improve the NMT performance when
fine-tuning models initialized by pretrained language models?

We demonstrated in Section 5.2 that the original idea behind EWC can be broken
down to motivate incremental learning in parts of the network separately. Based
on this factorization, we proposed using EWC for fine-tuning models initialized by
pretrained language models, using the regularization to avoid overfitting on low-
resource NMT tasks. The results suggest that this approach can be a decent alter-
native to the previous LM regularization objective, resulting in comparable model
performance while reducing the computation time of the fine-tuning process. How-
ever, our method did not surpass the more popular backtranslation approach.

RQ2.2 How effective is selective parameter regularization for the different classes of
incremental learning tasks?

We proposed a subcategorization of the Incremental Class Learning suggested
in previous work (Kemker et al., 2018) to better analyze incremental learning meth-
ods in the context of sequence-to-sequence learning. We demonstrated on the True
Incremental Class Learning that EWC-regularized Transformer can perfectly learn

87



both tasks only on a very trivial instance (copy). In harder instances (reverse), the
use of EWC and the choice of the regularization hyper-parameter leads to a trade-
off between the original and the new task. We later confirmed our findings on the
multilingual NMT presenting similar results.

RQ2.3 Does selective parameter regularization improve model performance in incre-
mental multilingual translation?

The results presented in Section 5.3.3 demonstrated that the EWC regularizer,
when used to adapt high-resource NMT models to low-resource languages, provides
a trade-off between the ability to translate in these two domains. This comes at a cost
of lower performance on the low-resource languages, compared to the unregularized
fine-tuning. On the other hand, the EWC-regularized fine-tuning was still able to
reach the performance of the bilingual models trained in the low-resource languages.
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6
Transformer Modularization

The ability to learn new concepts and find novel connections within the acquired
knowledge is another key aspect of human-like learning (Murphy, 1988; Osherson
and Smith, 1981). In cognitive linguistics, a popular hypothesis suggests that by
learning only a finite set of production rules, humans have the ability to produce an
infinite number of grammatically correct sentences (Chomsky, 1965). If we consider
each production rule a snippet of knowledge (which is an oversimplification), the
hypothesis implies that the humanmind can combine these snippets intomuch larger
building blocks, being able to create possibly an infinite number of novel sentences.

A different view can be offered by the studies of the human brain. Previous analy-
sis of neural activation in the human brain has demonstrated that only a few parts of
the brain are active at a given time when faced with different input stimuli (Ramezani
et al., 2014). This implies that the brain neurons can specialize for specific tasks/ac-
tivities and a certain level of knowledge composition happens by activating various
subsets of these neurons. Although the role of each individual neuron in this spe-
cialized storage of knowledge (in a broad sense) is uncertain, some distinctions of
parts human brain and assumptions about their roles can be made (Sporns and Bet-
zel, 2016).

Such behavior is foreign in the current standard Transformer networks – regard-
less of the network input all parts of the network are active at the same time, con-
tributing to the network output. Although the network architecture does contain
modular blocks, the multi-head attention (MHA), the contribution of individual at-
tention heads to the block output is fixed and not conditioned on the current input,
i.e. the output of the MHA block is always a combination of all attention heads. Still,
the lack of explicit modularity (conditioned by the current input) is not crucial for
learning multiple tasks and various aspects of data as demonstrated by the previous
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research on Transformers in the area of multi-task learning (MTL), e.g. multilingual
LM (Conneau and Lample, 2019b; Chi et al., 2022) or multilingual NMT (Liu et al.,
2020; Escolano et al., 2021). The ability to capture these different aspects of data can
most likely be attributed to the large feature spaces that these networks operate on
and the transformations across these feature spaces.

A certain level of modularity, i.e. non-overlapping distribution of knowledge
about different tasks, can be enforced for example by applying task-specific masks
(Csordás et al., 2021). While task-specific masking can help to avoid the interfer-
ence of knowledge about different tasks, it does not enable knowledge composition
(Csordás et al., 2021). We hypothesize that one of the reasons behind this inability of
the neural networks to combine previous tasks’ knowledge is due to a lack of an ex-
plicit control mechanism that would allow the network to correctly combine partial
knowledge about previously learned tasks.

Such computation control can be provided by conditional neural network com-
puting (Bengio, 2017; Bengio et al., 2013; Rosenbaum et al., 2018). One of the key
ideas, training a set of separate, specialized network modules and combining their
outputs, is adjacent tomixture-of-experts (MoE, Shazeer et al., 2017; Eigen et al., 2014;
Jacobs et al., 1991). The input-conditioned control mechanism (e.g. gating network)
provides a set of weights, that enables varying the mixture of the experts’ outputs
through their weighted sum, leading to a specialization of these experts. The short-
coming of MoE is that the whole network is still required during computation since
the control mechanism does not usually allow zero weights to keep the control func-
tion differentiable and, consequently, easy to train via backpropagation. Later ap-
proaches relax even this restriction by introducing noisy top-k gating (Bengio et al.,
2013), resulting in a controllable sparsity of the mixture (Shazeer et al., 2017).

As an alternative to the “soft” mixture approach, it is possible to select desired
submodules by explicitly masking them. The module mask prediction can be, for ex-
ample, done by learning an activation-dependent policy using reinforcement learn-
ing that decides which expert blocks to use for the computation (Bengio et al., 2016).
However, these methods are prone to module collapse, lacking diversity when choos-
ing experts during training often due to self-reinforcing of the favored modules by
training them more rapidly (Kirsch et al., 2018). To counter this, some form of regu-
larization needs to be enforced during the training.

Addressing these issues, Kirsch et al. (2018) suggest using a stochastic selection
of a subset of modules instead of mixtures. They treat the module subset choice as
a latent variable requiring summation over all possible subsets to generate output
distribution. To avoid computational explosion during training, they use a general-
ized Expectation-Maximisation (EM, Neal and Hinton, 1998). In the estimation step,
they sample a small number of module subsets based on the current module proba-
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bility distribution and then choose the best candidate subset by maximizing the out-
put probability of the current training label. In the maximization step, they use the
best candidate module subset to compute the loss on several data points and update
both module probability and output probability distribution by adjusting the network
weights.

Still, module masking requires a pre-designed network structure with maskable
modules, leaving us with inductive bias introduced by the architecture design. In-
stead, Rosenbaum et al. (2018) suggest having a separate set of network modules and
a routing network that chooses a subset of these and the order in which they process
given input, reducing this inductive bias created by network design.

Lastly, although dropout (Srivastava et al., 2014) can be considered a modulariza-
tion technique (in the sense of switching of sets of neurons), we do not consider it
control because a) it is used mainly during training, b) it is random, thus, not condi-
tioned by the network input.

6.1 Modular Transformer

We propose a modification to the current Transformer network that introduces
conditional stochastic computation. We introduce stochasticity into the existing
Transformer architecture through stochastic modular layers. Generally, a modular
layer consists of a set ofM modules (subnetworks) representing learnable functions
f = {f1, .., fM}, each operating over the layer input x. Given a set of binary masks
ξ = {ξ1, .., ξM}, the output of the modular layer is a masked sum of the module
outputs:1

y =
M∑︂

i=1
ξifi(x) (6.1)

Now let us consider a latent variable a ∈ 2{1,..,M} indicating a selection of layer
modules such that ξi = 1a(i), where 1a is the indicator function. A stochastic mod-
ular layer is an extension of the modular layer with the controller network which
estimates a probability distribution p(a|x) of the latent variable a, given the layer
input x. The network output thus becomes conditioned on both the input sequence
x and the module selection a. Let θ and φ be the parameters of the modular net-
work and the controller network respectively. The modular network estimates the
probability of the random variable y, given x in the following way:

p(y|x,θ,φ) =
∑︂
a

p(y, a|x,θ,φ) =
∑︂
a

p(y|x, a,θ)p(a|x,φ) (6.2)

1Related work also suggests concatenation (Kirsch et al., 2018).
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The resulting training objective is to maximize the log-likelihood of the training
data:

L(θ,φ) =
∑︂

x,y∈D
log p(y|x,θ,φ) (6.3)

However, as pointed out by Kirsch et al. (2018), with the increasing number of net-
work modules, the summation in Equation 6.2 becomes intractable.2 Instead of max-
imizing the log-likelihood directly, they maximize the evidence lower bound (ELBO;
also known as the variational lower bound; Kingma and Welling, 2014) on the like-
lihood using a separate variational distribution q(a) that can be independent of the
layer input:

LELBO = Eq(a)[log p(y|x,θ,φ)] + H[q] (6.4)

The resulting gradient of the expectation in Equation 6.4 still requires summa-
tion over all module subsets. For this reason, the authors suggest using a Viterbi
expectation-maximization (EM) algorithm (Neal and Hinton, 1998) to maximize the
lower bound through approximation. They argue that their proposed approach is
more efficient at avoiding module collapse (Rosenbaum et al., 2018; Shazeer et al.,
2017; Bengio et al., 2016), which was the main problem with previous reinforcement
learning (RL) approaches, such as REINFORCE (Williams, 1992). However, the effi-
ciency of the approach depends on the size of the E- and M-steps, where increasing
the sizes leads to slower training convergence. In our initial experiments, we found
the fine-tuning of the EM hyper-parameters to be themost cumbersome part of train-
ing.

On the other hand, the sampling approach and the EM optimization are the con-
sequence of the assumption that themodule controller is a discrete non-differentiable
function. In the next section, we describe our proposed controller inspired by dis-
crete sampling based on Gumbel-softmax (Maddison et al., 2017).

6.1.1 Module Controller

The proposed Transformer modular controller is based on the work on deep averag-
ing network (DAN, Iyyer et al., 2015; Cer et al., 2018). DAN architecture presents a
reasonable trade-off between the quality of the extracted sequence representations
and the network complexity. Figures 6.1 and 6.2 illustrate the general controller im-
plementation and themasking of individual modules in a modular Transformer block
respectively.

2A network with M selectable modules has 2M possible module combinations.
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Figure 6.1: Schema of the modular controller based on deep averaging network.
Controller input is processed by a series of feed-forward blocks and the output is
transformed by a sigmoid non-linearity into a set of Bernoulli distributions. This fig-
ure illustrates the controller predicting a single set of masks for the whole sentence
(CtrlSeq). The average pooling layer is omitted in CtrlTok and each input is processed
in isolation.

Controller
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+

Figure 6.2: Schema of a generic modular layer. Layer input is processed by the layer
modules and the controller. The controller generates a set of binary masks and dis-
ables a subset of modules (modulesM2 andM4 in the example).

Going back to Equation 6.1, the Transformer controller takes the block input
sequence h = (h1, .., hn), which is either the whole input sequence in the case of the
encoder or the current partial hypothesis in the case of the decoder, and produces a
set of masks ξ = {ξ1, .., ξM}, each mask being either 0 or 1. First, the input sequence
h is transformed into a bag of words (BoW) representation using average pooling
(Hubel and Wiesel, 1959; Scherer et al., 2010):

h̄
(0) = 1

N

N∑︂
i=1

hi (6.5)
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The pooled sequence is then used to predict a set of masks that will be applied
for the whole sequence. In the case of the decoder, in the k-th decoding step, the
sequence of (h1, .., hk) decoder states is used to predict the mask for that decoding
step. We will refer to this input processing as CtrlSeq. Similarly to Zhang et al.
(2021a), we can also replace the input pooled state h̄with the individual states hi and
use each state in isolation to predict its respective module mask, both in the encoder
and decoder. We will refer to the token-level mask prediction as CtrlTok.

Using notation similar to that of Section 3.2, the controller with depth K trans-
forms the sequence representation h̄(0) using a set of functions {f ′(0), .., f ′(K−1)},
each followed by dropout:

h̄
(j+1) = f ′(j)(h̄(j)) (6.6)

f ′(h̄) = ReLU(W ′h̄+ b′) (6.7)

where the parametersW ′ ∈ Rd×d, b′ ∈ Rd are the projection and bias parameters
respectively. The output of the final controller layer h̄(k) is then linearly transformed
intoM logits l1, .., lM of sizeM , each logit corresponding to the respective module
mask. For simplicity, we assumemutual independence between the individualmasks.
The controller can then generate a mask using the characteristic function ξi = 1li>0.

The characteristic function is non-differentiable and thus not suitable for back-
propagation. Similarly to the work on variational autoencoders, we would also like
to draw samples from the Bernoulli distribution conditioned on the logits l1, .., lM .
For this reason, we replace the characteristic function with Gumbel-sigmoid (Csor-
dás et al., 2021), a continuous relaxation of the Bernoulli distribution which can be
derived from the Gumbel-softmax relaxation of the categorical distribution. Given
two uniform distributions U1 and U2, on the interval (0, 1), temperature τ and the
output logit li, we can draw binary samples using the following function:

s(li) = σ

(︄
1
τ

(︄
li − log logU1

logU2

)︄)︄
, (6.8)

The temperature enables adjusting exploration vs exploitation: high-temperature
results in a less “peaked” sigmoid, resulting in output values closer to 0.5. As τ ap-
proaches 0, the samples get closer to the samples from the discrete Bernoulli dis-
tribution. The Gumbel-sigmoid with temperature annealing can be used for a soft
approximation of the gradients during model training, allowing updates to all mod-
ules in each training step. However, we can also use the hard mask values generated
by the characteristic function and make the controller output differentiable using the
straight-through estimator (STE, Bengio et al., 2013):

ξi = [1s(li)>0.5 − li] + li (6.9)
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where [x] indicates disabled gradient flow.
Lastly, we include an additional regularization term that allows controlling the

ratio of the active blocks. Originally, Zhang et al. (2021a) introduced a budget hyper-
parameter p ∈ [0, 1], to control the gating mechanism in their adapter extension
of the Transformer NMT, forcing a network to apply p language-specific and 1 − p

language-independent adapters to a given output. We use the same regularization
term to adjust the ratio of selected modules that the network is allowed to use. Hav-
ing a set ofM modules, for a given sequence pair x,y, letGi = {ξ1, .., ξm} indicate a
set of masks generated during the processing of the sequence pair.3 Using that nota-
tion, we can then expand the loss function using the following budget regularization:

L(θ,φ) = LNLL(θ,φ) +
⃓⃓⃓⃓
⃓
∑︁M

i=1
∑︁

ξ∈Gi
ξ∑︁M

j=1 |Gj|
− p

⃓⃓⃓⃓
⃓ (6.10)

Besides forcing the network to try allocating different combinations of modules
(due to a high sampling temperature), in case of module collapse, i.e. the selection
only of a fixed subset of modules, regardless of the input, the regularization can
still help to remove unnecessary model parameters, working as a type of pruning
mechanism.

6.1.2 Modular Blocks

Given the set of binary masks ξ = {ξ1, .., ξM} produced by the module controller,
the modules are selected according to Equation 6.1. More precisely, we propose the
followingmodification to the existing FFN andMHA blocks to support module mask-
ing.

Masked multi-head attention (MMHA) is based on the MHA masking introduced
by Michel et al. (2019). Although only using fixed attention masks, the authors pro-
pose the following modification to the original Equation 3.19:

MMHA(q,k,v) =
Nhead∑︂
j=1

ξjAttj(q,k,v) (6.11)

We use the query q to predict the module masks ξ.
This allows the conditioned masking of unnecessary attention heads, providing

a better ground for attention head specialization. The previous work investigating
attention head specialization (Voita et al., 2019; Michel et al., 2019; Mareček and Rosa,
2019) showed that some attention heads can take on certain positional, syntactic, or

3For decoder controllers, |Gi| = |y|, for encoder, |Gi| = |x| when using CtrlTok or |Gi| = 1 when
using CtrlSeq.
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vocabulary-related roles. On the other hand, it is not clear how these specialized
heads behave when the phenomena they focus on are not present in the processed
input. Even in these cases, the attention head contributes to the encoding and de-
coding process. In theory, hard masking could help the specialization process, better
allocating the network capacity. In the rest of this chapter, we will refer to attention
heads (and FFN modules) as modules for simplicity.

Analogously to MMHA, we propose the masked feed-forward network (MFFN).
Based on Equation 3.20, we modify the Transformer FFN in the following way (we
omit biases for simplicity):

MFFN(hi) =
Nmodule∑︂

j=1
ξjFFNj(hi) (6.12)

The original projectionmatricesW1,W2 ∈ Rd×4d get separated intoNmodule mod-
ules, where W (j)

1 ,W
(j)
2 ∈ Rd× 4d

Nmodule used by their respective FFNj block can then
be independently enabled/disabled by the controller.

The main inspiration behind the MFFN is the work on Transformer adapters
(Zhang et al., 2021a; Bapna and Firat, 2019; Pfeiffer et al., 2020). Contemporary re-
search adds a feed-forward adapter layer after all or only certain Transformer FFN
blocks. The previous results show that adding adapters can improve model fine-
tuning and transfer learning in the multilingual setting. Due to the nearly identical
nature of the standard Transformer FFN blocks and the adapter layers (both are two
linear transformationswith a non-linearity in-between), the combination of the func-
tionality of the Transformer FFN block with the modularity of adapters could help
reduce the overall number of Transformer parameters while borrowing the benefit
of both layer types.

6.2 Experiments: String Editing

Our initial experiments investigated the ability of the modular Transformer to adapt
in a simplified multi-task setting. The goal of this analysis, similar to previous chap-
ters, was to understand the model behavior on tasks with low ambiguity before mov-
ing to a more difficult NLP task of NMT.

We used the multi-task string editing dataset with the following four operations:
push, pop, shift, and unshift. Each dataset contains a randomly generated input
sequence of tokens a, bwith a maximum length of 25 tokens, a task prefix token that
instructs the model which editing operation should be applied to the input and the
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correct output sequence. We generate 30k unique examples for each operation and
set aside 1,000 validation and 1,000 test examples. To test themodular Transformer in
the multi-task settings, we concatenate all the remaining data from all tasks, shuffle
them and use this dataset combination for training.

We use the modular Transformer that we described earlier in this chapter. The
details about the basic model hyper-parameters are available in Appendix A.7. We
compared multiple variations of the modular Transformer. We applied the module
controller on either the MMHA blocks (attn), MFFN blocks (ffn), or a combination of
both (full). In all cases, we introduce the controller to both the encoder and decoder,
each Transformer block being assigned a separate controller network. Furthermore,
we investigated the differences between the controller that processes each token in
isolation to predict token-specific masks (CtrlTok) and the controller that predicts
sequence masks using the average pooling on the whole sequence before processing
it by the controller feed-forward layers (CtrlSeq). Lastly, we investigated the differ-
ences between the soft mask prediction, i.e. the controller generating mask values
from the (0, 1) interval by sampling the values from theGumbel-sigmoid output layer
(soft samples) and the discrete 0 or 1 mask samples created from the soft samples by
the characteristic function and propagating the gradients using STE during training
(hard samples).

We compared the model variations across several values of the budget hyper-
parameter to see how much the regularization affects the resulting model accuracy
and module coverage. Figure 6.3 (top) shows that the string-level accuracy (ACC ,
described in Section 5.3.2) is not affected by the budget, possibly due to the simplic-
ity of the string-editing multi-task setting. Only the soft sample methods combined
with the modular attention models (attn, full) suffer from the enforced budget regu-
larization.

To further analyze the module selection mechanism, we define the module selec-
tion probability (or module selection, in short):

pm = p(m = 1) = count(m = 1)
count(m) (6.13)

We measure the module count(m) (how many times was controller deciding to
select a module) and module selection count(m = 1) (how many time was the mod-
ule selected by the controller) using our test dataset. Comparing the average module
selection (averaged across all modularized block modules), the CtrlTok models are
much better at respecting the budget criterion than the CtrlSeq (Figure 6.3, bottom).
Still, in both cases, the results show that the budget regularizer can reduce the num-
ber of activated parameters when processing individual inputs.
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Figure 6.3: Basic model performance with respect to varying values of the budget
regularizer. Top: Model accuracy averaged over all tasks. Bottom: Average mask
selection (across the whole model). Left: Models using CtrlTok controller. Right:
Models using CtrkSeq controller.

To further explore the properties of the pruning effect, we compared the module
selection averaged across the individual Transformer block types. Figure 6.4 shows
that the CtrlTok modular Transformers tend to “prune” the network more or less
evenly with the decreasing module budget without a clear preference for any spe-
cific type of Transformer block (all blocks have a similar average module selection).
Still, the encoder-decoder attention seems to be slightly more preferred by the model
compared to the other attention blocks (Figure 6.4, top left and middle left). Since the
encoder-decoder attention is, in theory, responsible for transferring the information
between the encoder and decoder, this block preference is expected. However, this
does not hold for the CtrlSeq models. These models consistently prefer selecting
encoder-related modules, and pruning the rest of the network, if possible. We argue
that this might be a result of the task-label tokens influencing all controller predic-
tions in the encoder due to the average sequence representations used for the module
prediction. The encoder module preference suggests that the information about the
string operation is in this case encoded mostly by the encoder modules, possibly
reducing the workload for the encoder-decoder modules.
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Figure 6.4: Average module selection with respect to individual types of modular
blocks. The comparison of block type selection in the full modular Transfomer (top),
attn modular Transformer (middle), and ffn modular Transfomer (bottom). Left:
Mask prediction using individual tokens. Right: Masks predicted for the whole se-
quence using average pooling on the controller input. The block types (colored lines
in the graph) are excluded from the subgraphs if they are not modularized in a given
Transformer variant.

The results so far show a promising utility of the budget regularizer constraint,
forcing the model to allocate only a limited amount of its available modules. How-
ever, such a behavior could be achieved even if the modules collapsed and the same
set of modules was used throughout the test set. To see whether the module collapse
is avoided in our models, we measured the average entropy of the module prediction.
Using the module selection probability in Equation 6.13, we measure the module se-
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lection entropy:

H(m) = −pm log pm − (1 − pm) log(1 − pm) (6.14)

The entropy computation in Equation 6.14 is similar to the batch entropy com-
putation proposed by Kirsch et al. (2018), however, we also use our formulation for
later evaluation of individual module selection. Furthermore, our proposed entropy
measure disregards the mask prediction distribution provided by the model and in-
stead is based on the mask selection frequencies measured using the test data. Using
Equation 6.14, high entropy implies that module selection is conditioned on the input
while low entropy implies that a particular module mask is either 0 or 1 most of the
time, regardless of the input.
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Figure 6.5: Average module selection entropy of the modular Transformer variants.
High entropy hints at the module selection being strongly conditioned on the input.
Low entropy implies module collapse, setting most of the module masks to either 0
or 1 most of the time. Left: Transformer with the token-level controller (CtrlTok);
entropy averaged across all test tokens. Right: Transformer with the sequence-
level controller (CtrlSeq); entropy averaged across all test sequences. The dashed
line indicates the upper limit of the module entropy.

Figure 6.5 shows the average module selection entropy with respect to the budget
regularization constraint. Regardless of the modular Transformer variant, the token-
level controller network shows promising results with average entropy copying en-
tropy implied by the constraint value (0.0 and 1.0 budget leading to low entropy of
selection and 0.5 resulting in high entropy). The sequence-level controller does not
perform as well, suggesting that a higher level of module collapse is taking place.
Similarly to the accuracy results (Figure 6.3), the soft sampling method seems to be
less effective, in this case, is more prone to module collapse.
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To conclude the multi-task string editing experiments, we measured whether the
modules specialize with respect to individual string-editing tasks. Given a random
variable t representing one of the four tasks, we measure the conditional entropy of
the task given the module mask valuem:

H(t|m) = −
∑︂

t,m∈Dtest

p(t,m) log p(t,m)
p(m) (6.15)

Due to similar sizes of the testsets for the individual tasks, the value probability
p(t) is roughly 0.25 for each of the four tasks. Given Equation 6.15, low conditional
entropy implies that the information about a module selection can help us identify
which task (or a subset of tasks) is being processed. This, consequently, suggests that
the module is specialized for some of the tasks. High conditional entropy implies the
opposite: the module does not give as much information about specific tasks and is,
therefore, task invariant.
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Figure 6.6: Task-conditional entropy of to the lowest conditional entropy modules in
the respective modular Transformer variants. Low entropy implies task-conditioned
selection of a module, i.e. specialization of the module, high entropy implies the op-
posite. Left: Transformer with the token-level controller (CtrlTok). Right: Trans-
former with the sequence-level controller (CtrlSeq). The dashed line indicates the
upper limit of the task-conditional entropy.

Figure 6.6 shows the task-conditional entropy of the modules with the lowest
conditional entropy. Contrary to our hypothesis, the observed high entropy suggests
that no task specialization occurs in any of the Transformer modules. A possible ex-
planation behind the lack of task specialization would be that the task-related infor-
mation signal is too weak for the controller to focus on this signal. Thus, the module
specialization indicated by themeasuring of module selection entropy is likely bound
by different criteria.
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6.3 Experiments: Multilingual NMT

Lastly, we investigate the modular Transformer on the multilingual NMT task. Com-
pared to string editing, individual tasks (translation language pairs) are not as dis-
tinguished and the model can, in theory, benefit from the task overlap (e.g. when
learning to translate from various languages into English).

We use the same OPUS-100 dataset and preprocessing described in Section 5.3.3.
We use the same bilingual and jointly-trained, multilingual baselines for comparison
with our modular Transformer multilingual models. The details about the modular
Transformer hyper-parameters are described in Appendix A.8. Similarly to the string
editing experiments, we compare the fully modular Transformers (full) with the vari-
ations that have either only modular attention (attn) or modular FFN blocks (ffn).
Furthermore, we provide a comparison between the token-level and sequence-level
mask prediction. Due to the consistently poorer performance of the soft sampling
approach in the previous section, we only use the hard sampling method.
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Figure 6.7: Model performance of modular multilingual Transformers with respect to
different values of the budget hyper-parameter p. Left: Many-to-one models. Right:
One-to-many models.

We compare the selected models on many-to-one, one-to-many, and many-to-
many machine translation. Again, the models translating into multiple languages
receive a special language token prefix to the input sentence to indicate the target
language of the reference translation. We train each model for 600k updates and
use the checkpoint with the best performance on the validation data for the final
evaluation.
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We measure the performance of the models with budget p ∈
{0.0, 0.25, 0.5, 0.75}.4 Figure 6.7 shows the performance comparison of the
many-to-one and one-to-many modular Transformer variants with respect to
values of the budget hyper-parameter. The performance was computed using a
concatenation of all the respective language pair testsets. Even though the model
performance mostly drops with the decreasing value of p, the drop in BLEU does
not seem too significant.
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Figure 6.8: Average module selection in modular multilingual Transformers with re-
spect to different values of the budget hyper-parameter p. Left: Many-to-onemodels.
Right: One-to-many models.

Although the differences in BLEU are not too large, the controller still tries to sat-
isfy the budget constraint (Figure 6.8). Compared to the string editing experiments,
the low-budget settings result in a higher average module selection, hinting at the
higher capacity required by the NMT modular Transformer. Still, a fair amount of
pruning is performed, selecting on average less than half of the modules at the lower
budget values.

To perform a more detailed model comparison of the modular Transformer vari-
ants, we select the budgetwith the best validation BLEU. Following the initial probing
of the modular multilingual models, we compared the modularized models with their
standard bilingual and multilingual counterparts in terms of translation quality. Be-
sides BLEU, we also use COMET (Rei et al., 2020), a metric using a Transformermodel
optimized for automatic evaluation machine translation. COMET has a reportedly
better correlation with human judgements than the standard n-gram precision met-
rics. We use both the version with reference (Cmt) and the reference-less version of
the metric (Cmtqe).

4We are not interested in the model budget 1.0, i.e. modularization with the full set of modules at
all times.
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ID System De-En Zh-En Br-En Te-En
BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE

1 base De→En 32.5 0.2374 0.1107 – – – – – – – – –
2 base Zh→En – – – 38.9 0.3234 0.1143 – – – – – –
3 base Br→En – – – – – – 15.9 -0.3841 0.0973 – – –
4 base Te→En – – – – – – – – – 24.8 0.0372 0.1029

5 base All→En 31.1 0.2266 0.1117 39.1 0.3370 0.1149 18.3 -0.2328 0.0995 30.2 0.2121 0.1059

6 CtrlTok-full-0.75 All→En 31.6 0.2228 0.1109 37.9 0.3190 0.1134 18.8 -0.1922 0.0987 29.7 0.1947 0.1047
7 CtrlTok-ffn-0.25 All→En 31.6 0.2190 0.1109 38.6 0.3359 0.1143 19.6 -0.1635 0.0993 30.0 0.2219 0.1057
8 CtrlTok-attn-0.75 All→En 32.0 0.2366 0.1109 38.2 0.3119 0.1131 19.7 -0.1792 0.0986 30.1 0.2325 0.1048

9 CtrlSeq-full-0.75 All→En 30.0 0.1672 0.1091 36.0 0.2603 0.1115 17.0 -0.2718 0.0978 25.5 0.0191 0.1043
10 CtrlSeq-ffn-0.5 All→En 31.6 0.2316 0.1110 38.6 0.3224 0.1139 18.6 -0.2104 0.0986 30.3 0.2305 0.1055
11 CtrlSeq-attn-0.75 All→En 30.7 0.1844 0.1098 37.0 0.2791 0.1120 17.0 -0.3106 0.0973 27.2 0.1427 0.1048

12 base All→All 28.7 0.0922 0.1080 35.3 0.2314 0.1122 14.4 -0.4291 0.1004 20.8 -0.0879 0.1066

13 CtrlTok-full-0.75 All→All 29.5 0.0987 0.1074 34.6 0.2224 0.1110 15.7 -0.3853 0.0999 22.6 -0.0281 0.1055
14 CtrlTok-ffn-0.5 All→All 27.9 0.0536 0.1070 33.8 0.2064 0.1120 15.1 -0.4144 0.1004 20.4 -0.0788 0.1054
15 CtrlTok-attn-0.5 All→All 29.2 0.1002 0.1075 34.5 0.2256 0.1112 15.1 -0.3900 0.0997 24.4 -0.0058 0.1061

16 CtrlSeq-full-0.5 All→All 27.9 0.0343 0.1055 32.7 0.1542 0.1096 15.3 -0.4018 0.0986 19.6 -0.1370 0.1039
17 CtrlSeq-ffn-0.5 All→All 28.1 0.0810 0.1070 34.0 0.2113 0.1118 15.4 -0.4088 0.1002 21.2 -0.0764 0.1056
18 CtrlSeq-attn-0.5 All→All 28.1 0.0504 0.1060 33.2 0.1733 0.1097 14.4 -0.4654 0.0992 20.1 -0.1222 0.1061

Table 6.1: Model comparison on many-to-one translation. We compare both many-
to-one and many-to-many model variants. Scores of modular models that outper-
form their respective non-modular variants are highlighted in bold. Although we
do not focus on a direct comparison with the bilingual baselines, we include them
for reference.

ID System En-De En-Zh En-Br En-Te
BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE BLEU Cmt CmtQE

1 base En-De 29.5 0.1600 0.1090 – – – – – – – – –
2 base En-Zh – – – 26.1 0.2342 0.1113 – – – – – –
3 base En-Br – – – – – – 17.3 -0.4024 0.0907 – – –
4 base En-Te – – – – – – – – – 20.3 0.0963 0.0973

5 base En-All 28.4 0.1189 0.1081 29.5 0.2806 0.1116 17.5 -0.3121 0.0913 22.0 0.2723 0.0983

6 CtrlTok-full-0.75 En→All 28.4 0.1021 0.1074 31.3 0.2677 0.1105 17.5 -0.2808 0.0911 22.5 0.2726 0.0980
7 CtrlTok-ffn-0.5 En→All 28.6 0.1099 0.1084 29.7 0.2810 0.1113 18.3 -0.2687 0.0915 22.9 0.2773 0.0983
8 CtrlTok-attn-0.75 En→All 29.3 0.1321 0.1079 28.5 0.2699 0.1109 18.8 -0.2577 0.0913 21.1 0.2700 0.0983

9 CtrlSeq-full-0.75 En→All 27.9 0.0910 0.1068 28.7 0.2222 0.1099 17.8 -0.3011 0.0917 21.9 0.2577 0.0980
10 CtrlSeq-ffn-0.5 En→All 28.6 0.1271 0.1075 29.0 0.2664 0.1107 18.9 -0.2598 0.0918 22.8 0.2934 0.0992
11 CtrlSeq-attn-0.5 En→All 28.7 0.1061 0.1068 31.0 0.2571 0.1098 16.5 -0.3425 0.0909 20.5 0.2289 0.0986

12 base All→All 26.0 0.0382 0.1061 28.3 0.2165 0.1097 14.0 -0.4271 0.0913 17.2 0.472 0.0964

13 CtrlTok-full-0.75 All→All 26.2 0.0054 0.1049 28.4 0.2087 0.1089 14.8 -0.4063 0.0913 18.0 0.1471 0.0975
14 CtrlTok-ffn-0.75 All→All 26.2 0.0283 0.1055 25.6 0.2048 0.1093 14.6 -0.4338 0.0913 17.0 0.0171 0.0965
15 CtrlTok-attn-0.75 All→All 26.1 0.0181 0.1054 28.3 0.2158 0.1093 15.9 -0.3815 0.0905 18.2 0.1177 0.0967

16 CtrlSeq-full-0.75 All→All 25.9 -0.0195 0.1039 26.8 0.1684 0.1077 15.3 -0.3852 0.0918 17.8 0.0582 0.0961
17 CtrlSeq-ffn-0.5 All→All 26.0 0.0188 0.1054 28.2 0.2050 0.1094 14.3 -0.4199 0.0915 18.4 0.1420 0.0973
18 CtrlSeq-attn-0.75 All→All 25.9 -0.0216 0.1045 27.3 0.1740 0.1083 14.4 -0.4201 0.0904 17.7 0.0919 0.0967

Table 6.2: Model comparison on one-to-many translation. We compare both one-to-
many and many-to-many model variants. Scores of modular models that outperform
their respective non-modular variants are highlighted in bold. Although we do not
focus on a direct comparison with the bilingual baselines, we include them for refer-
ence.

Tables 6.1 and 6.2 show the comparison of the many-to-one and one-to-many
models. As expected the many-to-one and one-to-many models outperform more
complex many-to-many models. When translating to English (Table 6.1), the mul-
tilingual models can exploit the additional English data provided with the high-
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resource languages (German, Chinese) to improve the low-resource translation (Bre-
ton, Telugu).5 Compared to the standard Transformer, CtrlTok models improved the
translation from both German and Breton without losing performance on the other
two languages, suggesting better utilization of the combined parallel training data.
This trend can be seen even on many-to-many translations with additional improve-
ment in Telugu and in opposite translation direction (Table 6.2).

In one-to-many translation (Table 6.2), the improvements are not as large as in the
other directions. Still, our models were able to beat themultilingual baseline in either
Chinese (full and attn settings) or German and Telugu (attn). Overall, we conclude
that the modular Transformers benefited mostly from the increase of the target-side
data, making better use of the many-to-English datasets in a many-to-one direction,
possibly due to the selective nature of the controller, which better distributes the
knowledge in the training data. It is not clear from the results which model set-
ting would be consistently the best performing. However, it seems plausible that the
attention controller benefits more from the token-level mask prediction while the
feed-forward modular blocks get higher gains from the sequence-level mask predic-
tion.

The very low scores of the Comet metric, sometimes negative, are most likely a
result of the validation data in OPUS-100 sampled from the original Opus corpora.
The references in the sampled testsets are more likely to be a result of automatic
sentence alignment rather than genuine human translations. For this reason, we also
did a small-scale manual evaluation within the confines of our available resources.
Based on the results in Table 6.1, we compared the baseline model in row 5 and a
modular variant in row 8 with their German and Chinese bilingual counterparts
(row 1 and 2 , respectively). We could not the perform manual evaluation of the
low-resource languages due to the inavailability of speakers of Breton and Telugu,
although, that evaluation would have been more interesting.

For German, we used 3 distinct annotators to annotate a total of 163 unique sen-
tences.6 Each annotator was a second language learner of both German and an En-
glishwith higher proficiency in English. For Chinese, we used a single native Chinese
speaker (and English second language learner) to annotate a sample of 84 sentences.
For both language pairs, each annotator was presented with the input sentence and
three possible translations. The annotators were instructed to indicate which trans-

5Still, it is important to note that improvements of less than 1 point BLEU cannot be considered
significant without a more thorough statistical significance testing.

6There was a partial overlap between the sentences annotated by the individual annotators.
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lations were good (∗), very good (∗∗), or bad (×) according to their judgement. Due
to the nature of the OPUS-100 dataset (reference sentences are not necessarily man-
ual translations of the source), we did not present the annotators with the reference
translation to avoid introducing bias to their annotations.

∗∗ ∗ ×

base de-en 1 7 92 51
base all-en 5 8 76 61

modular all-en 8 9 79 60

Table 6.3: Results of manual comparison of the baseline bilingual and multi-lingual
NMT systems with the selected modular Transformer on German-to-English trans-
lation. The ∗∗, ∗ and × indicate how many times the produced translation was very
good, good, and bad, respectively, according to the annotators.

∗∗ ∗ ×

base zh-en 2 4 22 13
base all-en 5 7 23 14

modular all-en 8 5 24 12

Table 6.4: Results of manual comparison of the baseline bilingual and multi-lingual
NMT systems with the selected modular Transformer on Chinese-to-English trans-
lation. The ∗∗, ∗ and × indicate how many times the produced translation was very
good, good, and bad, respectively, according to the annotators.

Tables 6.3 and 6.4 present the results of both German and English evaluation
respectively. Both multilingual systems produce slightly more bad translations than
the bilingual counterpart when translating fromGermanwhile being at a similar level
in this regard when translating from Chinese. Similarly, they are also outperformed
in the terms of good translations by the bilingual system in German-English, being
marked as good or very good only 84 and 88 times against the 99 good or very good
translations of the bilingual system and outperforming the Chinese-English bilingual
system with 30 and 29 good translations against 26 respectively. This more or less
reflects the model comparison based on the automatic metrics supporting the results
presented earlier in Tables 6.1 and 6.2. The only surprising result is a slightly better
performance of the modular Transformer in Chinese-English when compared to the
bilingual system which is opposite to the automatic evaluation results.

Lastly, we inspected the module selection mechanism in the full modular Trans-
formers. For the following analysis, we used the model in row 6 from Tables 6.1
and 6.2 to investigate themaskingmechanismwith respect to any Transformer block.
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Figure 6.9: Individual module entropies of the full modular Transformer measured
using the combined multilingual testset. The values in each layer (encoder_attn, en-
coder_ffn, decoder_attn, enc_dec_attn, decoder_ffn) are sorted in the increasing order.
The higher the entropy of a particular module, the more the selection of that module
depends on a specific input. Left: One-to-many model. Right: Many-to-one model.
As in Figure 6.10, the order of the layers does not directly reflect the order of pro-
cessing.

Figure 6.9 shows the entropies of the individual modules with respect to each
Transformer layer. The majority of the high-entropy modules is located in the en-
coder and decoder self-attention, slightly less in the encoder-decoder attention. The
implied conditional selection of these modules suggests higher module specialization
in these layers. We conclude that this positively supports previous findings about at-
tention module (head) specialization in Transformers (Voita et al., 2019). More mod-
ules with high selection entropy are located in the many-to-one model. We think
that this is the result of the many-to-one source-side inputs being more diverse thus
conditioning the controller to be more selective. Furthermore, this also suggests
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that the language-related token signal in one-to-many models is not strong enough
(less high-entropy modules). Except for a few modules in the second encoder FFN
block, the FFN module specialization is generally lower, although, still happening
(entropy > 0.3).
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Figure 6.10: Individual module selection probabilities of the full modular Trans-
former measured using selection frequencies in the combined testset. The values
in each layer (encoder_attn, encoder_ffn, decoder_attn, enc_dec_attn, decoder_ffn) are
sorted in the increasing order. Left: One-to-many model. Right: Many-to-one
model. The order of the layers does not directly reflect the order of processing.

Low entropy can imply both a high or low selection of modules. To get more
information about the FFN module selection behavior, we inspected the average se-
lection rate for each module (Figure 6.10). Note that the order of modules in the
individual layers is different from Figure 6.9. Interestingly, most of the module prun-
ing is focused on the encoder attention and the first layer of the decoder attention.
This is opposite to the string editing multi-task experiment where the module selec-
tion rate in the encoder was slightly higher than in the decoder, even in the CtrlTok
settings.

108



Also, more generally speaking, pruning and specialization rate seems to be re-
lated (layers with more high selection entropy modules also contain different mod-
ules with low selection rate). It is interesting to see different module distribution
strategies in the encoder between the one-to-many (selecting a lesser amount of
modules in more layers) and the many-to-one (selecting modules mainly in layers
1 and 3) model. However, it is not clear to us at the moment whether this behavior
is dataset-related or a result of randomness in training, e.g. model initialization, or
module sampling.
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Figure 6.11: Task-conditional entropies of the full modular Transformer measured
using the combined multilingual testset. The values in each layer (encoder_attn, en-
coder_ffn, decoder_attn, enc_dec_attn, decoder_ffn) are sorted in the increasing order.
Left: one-to-many model. Right: many-to-one model. As in Figure 6.10, the order
of the layers does not directly reflect the order of processing.

Lastly, we would like to see whether the modular Transformer learns to assign
certain modules to a subset of tasks, making them specialized for these tasks (in this
case, language-specific). Figure 6.11 shows similar results that we measured on the
string editing multi-task problem. All modules have a very high task-conditional en-
tropywith only small deviations from the average, confirming that no task (language)
specialization occurs in the proposed modular Transformer. Regardless of direct

109



(target-language token in the one-to-many model) or indirect (different source-side
languages in the many-to-one model) task indication, the module controller focuses
on different aspects of the data. We leave the further investigation of the module
specialization for future work.

6.4 Conclusions

We introduce a modular extension to the Transformer network enabling module
masking based on the processed input. Using our implementation of a modular
Transformer and the experiments analyzing it, we answer Research Question 3:
Can Transformer benefit from the inclusion of conditional computation? We broke
down the question into four sub-questions. We compared the proposed modular
Transformer with the original Transformer implementation and using the results of
our experiments, we present the following answers to these sub-questions.

RQ3.1 What conditional computing approaches are suitable for Transformer modular-
ization?

We showed that mask prediction using sampling from the Gumbel-sigmoid, dis-
cretized with STE is a promising method for the modularization of the Transformer.
By using temperature annealing, we were able to prevent module collapse and the
introduction of budget regularization can effectively reduce the portion of modules
selected by the controller. The string-editing experiments showed that sampling from
the Gumbel-sigmoid distribution can be insufficient, however, we were able to im-
prove the controller output layer by applying STE on the sampled mask probabilities.

RQ3.2 Can the Transformer modularization lead to the effective reduction of the active
model parameters?

Our experiments have demonstrated that through training regularization, we can
influence the ratio of masked modules, effectively pruning the Transformer network.
The experiment results showed that this pruning leads only to a marginal drop in
model performance when using STE “hard samples” during training. Later the mul-
tilingual experiment analysis showed a very systematic approach to pruning of the
encoder block. This behavior could be exploited in the future for studying parameter
pruning.

RQ3.3 Does Transformer modularization lead to task specialization of individual mod-
ules?
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Measuring the task-conditional entropy of models trained on either multi-task
string editing or multilingual translation suggests that modular Transformer mod-
ules do not specialize with respect to individual tasks. We think that the main reason
behind the lack of task specialization is the inadequate input of information about in-
dividual tasks. Even though the prefix-based notion of tasks is effective for learning
multiple tasks with different outputs, the signal from the prefix token is not strong
enough to be registered by the controller.

RQ3.4 Which Transformer blocks are better suited for modularization?

Based on the multilingual Translation results, there is no clear advantage in
choosing between themodularMHA and FFN blocks. The fullymodular Transformer
performed only slightly worse than the MHA and FFN variations of the architecture.
The results of the multilingual evaluation show that even a combination of different
blocks and token/sequence level controllers yield interesting results in the future.
Even though the early encoder layers get mostly pruned by the controller, this prun-
ing mechanism can be useful in the future for reducing the size of the model or
measuring the remaining capacity of the optimized Transformer.
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7
Conclusions

This chapter concludes our thesis by summarizing the main research findings. In
addition, we discuss the ideas for the possible research directions for future work.

7.1 Main Findings

We focused on the analysis of the learning capabilities in Transformers. We investi-
gated multiple aspects of Transformer learning, separating the thesis into three main
topics: generalization, incremental learning, and network modularization. This sec-
tion revisits the three main research questions and provides a summary of the main
findings for each question.

1. Research Question 1: What is the extent of the generalization ability of the
current Transformer models?

Our experiments demonstrated severe overfitting in the Transformer with re-
spect to the the target-side sequence lengths in the training data. We showed
that one of the reasons behind this behavior is the inability of the Trans-
former to terminate sequence generation (by generating end-of-sequence to-
kens) at positions that did not contain sequence termination tokens during
training. We learned using adversarial evaluation that, contrary to our hypoth-
esis, Transformers do not exploit vocabulary distribution similarities between
the training and validation data. Lastly, our rare word translation experiment
showed poor generalization of the copy operation in Transformer, which is
one of the applicable rules for translating unseen named-entities without prior
knowledge about them.
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2. ResearchQuestion 2: Can selective parameter regularization lead to improve-
ments in Transformer performance in incremental learning?

We showed in the unsupervised pretraining experiments, that partial regu-
larization of the Transformer decoder using EWC can lead to slightly better
translation performance on low-resource translation, compared to the regu-
larization using language model objective. Additionally, EWC regularization
results in faster training due to simpler underlying computation. The follow-
ing incremental learning experiments (string editing and multilingual transla-
tion) suggested that while EWC is not able to completely remove catastrophic
forgetting, it provides a mechanism for managing the trade-off between the
knowledge about the original and the new task. Still, it is worth noting that the
regularized NMTmultilingual models were able to compete with their counter-
parts trained only using low-resource datasets. The results of our experiments
support the conclusion from the previous work showing a similar trade-off in
the area of domain adaptation in NMT (Thompson et al., 2019).

3. Research Question 3: Can Transformer benefit from the inclusion of condi-
tional computation?

We proposed a modularization of the original Transformer network introduc-
ing a partial masking mechanism to both attention and feed-forward Trans-
former blocks and extended the architecture by a controller subnetwork that
uses the Gumbel-sigmoid sampling with a straight-through estimator to pre-
dict module masks based on the block input. We showed empirically that our
method can provide a diverse selection of modules, being able to avoid module
collapse. The controller in modular Transformer works both as a better mech-
anism to distribute knowledge about multiple tasks, showing slight improve-
ments in multilingual translation, and as a pruning mechanism, reducing the
number of modules required to process data for a given task. The entropy-
based metric showed that modularization of the Transformer can result in
module specialization, although, the modules do not specialize with respect
to the different tasks.

7.2 Future Work

We suggest the following four lines of future research rooted in the answers provided
by this thesis:

• Improving the Transformer with respect to its current generalization shortcom-
ings.
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We demonstrated the length-based overfitting of the original Transformer and
its possible relation to the absolute position encoding. In the future, we suggest
investigating whether the recently proposed Transformer variants that include
additional position information (e.g. relative position encoding) help to allevi-
ate the overfitting problem. Regarding named-entity translation, we hope to
extend the current research results by conducting a wider study, focusing not
only on the copying aspect but also on the problem of transcription between
languages using different scripts. In languages such as Japanese, there are de-
terministic rules for transcribing foreign named-entities and loan words that a
system with a good generalization ability should be able to infer.

• Analyzing the (modular) Transformer with respect to the module specialization.

Even though there was no proof of task specialization in modular Transform-
ers, we demonstrated a level of specialization in the Transformer modules. In
the future, we suggest using the module selection as a form of unsupervised
clustering algorithm to analyze various attributes of the dataset clusters cre-
ated by the controller module selection. We believe that this cluster analysis
could also help us to better understand the original Transformer architecture.

• Applying the modular Transformer in incremental learning.

Although the elastic weight consolidation did not perform well on the in-
cremental multilingual NMT, it would be interesting to investigate other ap-
proaches and whether they can be effectively combined with the modular
Transformer. The resource allocation provided by the controller mechanism, in
combination with methods to avoid catastrophic forgetting could lead to better
utilization of the Transformer capacity in the incremental learning scenarios.

• Studying compositionality in modular Transformers.

In the multi-task learning scenarios, we focused mostly on learning multiple
tasks that were rather isolated, meaning that the knowledge between the tasks
is shared in terms of optimizing for a shared training objective. The standard
neural networks do not contain any mechanism for the explicit combination of
different types of knowledge, however, the ability of a modular Transformer to
select different subsets of its network could be a good stepping stone towards
combining this varying knowledge. In the near future, the development of
modular Transformers with respect to the zero-shot translation problem can
be an interesting way of exploring the compositionality in themodular models.
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A
Model Details

This section provides details regarding the model hyperparameters in the individual
experiments. The models are implemented in Fairseq (Ott et al., 2019)1, our contribu-
tions to the EWC and modular experiments are implemented in separate branches.2,3

We use a word-level negative log-likelihood training objective with teacher-forcing
(Bahdanau et al., 2014; Vaswani et al., 2017). If not stated otherwise, we use beam
search decoding with beam size 4 and length penalty 0.6 during model inference.
Also by default, the models share the encoder/decoder vocabulary (and embeddings)
and we tie the decoder embedding matrix with the output matrix.

A.1 Sequence Length Overfitting: String Editing

We used transformer architecture with the following non-default model hyper-
parameters:

• embeddings size: 128,
• feed-forward size: 512,
• attention heads 8,
• encoder/decoder depth: 1,
• batch size: 4,096 tokens/batch,
• learning rate: 5e-4,
• label smoothing: 0.2,
• gradient clip norm: 1.0,

1Original Fairseq: https://github.com/facebookresearch/fairseq
2EWC implementation: https://github.com/varisd/fairseq/tree/ewc
3Modular Transformer implementation: https://github.com/varisd/fairseq/tree/masked_

modular
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• warmup steps: 4,000,
• dropout: 0.3

Each model training was terminated after 100 epochs. We use the final training
checkpoint during the evaluation.

A.2 Sequence Length Overfitting: Machine
Translation

We used transformer architecture with the following non-default model hyper-
parameters:

• embeddings size: 512,
• feed-forward size: 2048,
• attention heads 8,
• encoder/decoder depth: 6,
• batch size: 4,096 tokens/batch,
• learning rate: 5e-4,
• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 4,000,
• dropout: 0.3

We used early stopping during training: if the model performance, measured
with BLEU on the complete validation dataset without the length-based splits, did
not improve for 10 epochs, the training was terminated. We used the final training
checkpoint during the evaluation.

A.3 Exploiting Word Distribution Similarity And
Rare Word Transcription

We used transformer architecture with the following non-default model hyper-
parameters:

• embeddings size: 512,
• feed-forward size: 2048,
• attention heads 8,
• encoder/decoder depth: 6,
• batch size: 4,096 tokens/batch,
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• learning rate: 5e-4,
• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 4,000,
• dropout: 0.3

Due to the dataset size differences, we terminate each model training after 300k
parameter updates. We used the final training checkpoint during the evaluation.

A.4 Incremental Learning: Unsupervised
Low-Resource NMT Pretraining

These early experiments were implemented in Neural Monkey (Helcl and Libovický,
2017).4 We used the transformer architecture with the following non-default hyper-
parameter values:

• embedding size: 512,
• feed-forward size: 2048,
• attention heads: 16,
• encoder/decoder depth: 6,
• batch size: 2,048 tokens/batch,
• learning rate: 3.1,5

• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 33,500,
• dropout: 0.1,
• EWC λ: 0.02,

The model training is terminated using early-stopping using bilingual evaluation
understudy (BLEU) scores computed using validation data. We apply beam search
decoding with beam size 8 and length normalization 1.0 during model inference.

A.5 Incremental Learning: String Editing

We used transformer architecture with our EWC regularizer implementation with
the following non-default model hyper-parameters:

4Neural Monkey implementation: https://github.com/ufal/neuralmonkey.
5Neural Monkey contains a different learning rate normalization resulting in different manginutes

of learning rates compatible with the optimization algoritms.
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• embedding size: 128,
• feed-forward size: 512,
• attention heads: 4,
• encoder/decoder depth: 1,
• batch size: 4,096 tokens/batch,
• learning rate: 0.1,
• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 4,000,
• dropout: 0.3,

We replaced Adam optimizer (Kingma and Ba, 2014) with SGD (Robbins and
Monro, 1951) in the string editing experiments for easier analysis of the network
dynamics. This required changing the initial learning rate to 0.1. We trained the first
task for 100 epochs and used the checkpoint with lowest validation Translation Er-
ror Rate (TER) to initialize training on the second task for additional 100 epochs. We
used the checkpoint with lowest validation TER on the concatenation of the valida-
tion datasets for the two tasks for the final the evaluation.

A.6 Incremental Learning: Multi-lingual NMT

We used transformer architecture with our EWC regularizer implementation with
the following non-default model hyper-parameters:

• embedding size: 512,
• feed-forward size: 2,048,
• attention heads: 8,
• encoder/decoder depth: 6,
• batch size: 4,096 tokens/batch,
• learning rate: 5e-4,
• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 4,000,
• dropout 0.3,
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In the follow-up multi-lingual experiments, we use Adam optimizer. The bilin-
gual and low-resource models were trained for 200k updates. High-resource models
and models trained on the full multi-lingual data were trained for 600k updates. The
low-resource fine-tuning experiments were initialized by the high-resource check-
point with the highest validation BLEU and fine-tuned for additional 200k updates.
For each models, the checkpoint with the highest validation BLEU on the combined
dataset from all languages was used for the final the evaluation.

A.7 Modular Transformer: String Editing

We used our implementation of transformer_modular architecture with the follow-
ing non-default model hyper-parameters:

• embedding size: 128,
• feed-forward size: 512,
• attention heads: 8,
• encoder/decoder depth: 1,
• batch size: 4,096 tokens/batch,
• learning rate: 5e-4,
• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 4,000,
• dropout: 0.3,
• controller initial sampling temperature: 100,
• controller final sampling temperature: 0.1,
• temperature anneal rate: 1e-9

Each model training was terminated after 100 epochs. We used exponential an-
nealing to adjust the controller temperature during training. We used the final train-
ing checkpoint during the evaluation.

A.8 Modular Transformer: Multi-lingual NMT

We used our implementation of transformer_modular architecture with the follow-
ing non-default model hyper-parameters:

• embedding size: 128,
• feed-forward size: 512,
• attention heads: 8,
• encoder/decoder depth: 1,
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• batch size: 4,096 tokens/batch,
• learning rate: 5e-4,
• label smoothing: 0.2,
• gradient clip norm: 1.0,
• warmup steps: 4,000,
• dropout: 0.3,
• controller initial sampling temperature: 100,
• controller final sampling temperature: 0.1,
• temperature anneal rate: 1e-9

The baseline model was standard transformer with identical training hyper-
parameters excluding the modular hyper-parameters. Each model training was ter-
minated after 600k updates. The training checkpoint with the highest validation
BLEU was used during test the evaluation.

122



Bibliography

Abid, A. – Farooqi, M. – Zou, J. Persistent Anti-Muslim Bias in Large Language Models.
In Fourcade, M. – Kuipers, B. – Lazar, S. – Mulligan, D. K. (Ed.) AIES ’21: AAAI/ACM
Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021, p. 298–306. ACM,
2021.

Abraham, W. C. – Robins, A. Memory retention – the synaptic stability versus plasticity
dilemma. Trends in Neurosciences. 2005, 28, 2, p. 73–78. ISSN 0166-2236.

Aharoni, R. – Johnson, M. – Firat, O. Massively Multilingual Neural Machine Transla-
tion. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), p. 3874–3884, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

Akhbardeh, F. et al. Findings of the 2021 Conference on Machine Translation (WMT21).
In Proceedings of the Sixth Conference on Machine Translation, p. 1–88, Online, November
2021a. Association for Computational Linguistics.

Akhbardeh, F. et al. Findings of the 2021 Conference on Machine Translation (WMT21).
In Proceedings of the Sixth Conference on Machine Translation, p. 1–88, Online, November
2021b. Association for Computational Linguistics.

Al-Jamal, D. A. H. The role of linguistic clues in medical students’ reading comprehension.
Psychology Research and Behavior Management. 2018, 11, p. 395 – 401.

Al-Rfou, R. – Choe, D. – Constant, N. – Guo, M. – Jones, L. Character-Level Language
Modeling with Deeper Self-Attention. In The Thirty-Third AAAI Conference on Artificial In-
telligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, p. 3159–3166.
AAAI Press, 2019.

Aljundi, R. – Chakravarty, P. – Tuytelaars, T. Expert Gate: Lifelong Learning with a
Network of Experts. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 00, p. 7120–7129, July 2017.

123



Aljundi, R. – Rohrbach, M. – Tuytelaars, T. Selfless Sequential Learning. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

Amodei, D. et al. Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin.
In Balcan, M. F. –Weinberger, K. Q. (Ed.) Proceedings ofThe 33rd International Conference
onMachine Learning, 48 / Proceedings of Machine Learning Research, p. 173–182, New York,
New York, USA, 20–22 Jun 2016. PMLR.

Artetxe, M. – Labaka, G. – Agirre, E. – Cho, K. Unsupervised neural machine translation.
In Proceedings of the Sixth International Conference on Learning Representations, April 2018.

Ba, L. J. – Kiros, J. R. – Hinton, G. E. Layer Normalization. CoRR. 2016, abs/1607.06450.

Bahdanau, D. – Cho, K. – Bengio, Y. Neural Machine Translation by Jointly Learning to
Align and Translate. CoRR. 2014, abs/1409.0473.

Baillargeon, R. Infants’ Physical World. Current Directions in Psychological Science. 2004,
13, 3, p. 89–94.

Bapna, A. – Firat, O. Simple, Scalable Adaptation for Neural Machine Translation. In Inui,
K. – Jiang, J. – Ng, V. – Wan, X. (Ed.) Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, p.
1538–1548. Association for Computational Linguistics, 2019.

Barrault, L. et al. (Ed.). Proceedings of the Fifth Conference on Machine Translation, Online,
November 2020. Association for Computational Linguistics.

Baziotis, C. – Titov, I. – Birch, A. – Haddow, B. Exploring Unsupervised Pretraining Ob-
jectives for Machine Translation. In Zong, C. – Xia, F. – Li, W. – Navigli, R. (Ed.) Findings
of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-
6, 2021, ACL/IJCNLP 2021 / Findings of ACL, p. 2956–2971. Association for Computational
Linguistics, 2021.

Belkin, M. – Hsu, D. – Ma, S. – Mandal, S. Reconciling modern machine-learning practice
and the classical bias&#x2013;variance trade-off. Proceedings of the National Academy of
Sciences. 2019, 116, 32, p. 15849–15854.

Bellman, R. – Corporation, R. – Collection, K. M. R. Dynamic Programming. Rand
Corporation research study. Princeton University Press, 1957. ISBN 9780691079516.

Beltagy, I. – Peters, M. E. – Cohan, A. Longformer: The Long-Document Transformer.
CoRR. 2020, abs/2004.05150.

124



Bender, E. M. – Gebru, T. – McMillan-Major, A. – Shmitchell, S. On the Dangers of
Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’21, p. 610–623, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097.

Bengio, E. On Reinforcement Learning for Deep Neural Architectures: Conditional Computation
with Stochastic Computation Policies. PhD thesis, McGill University, USA, 2017.

Bengio, E. – Bacon, P.-L. – Pineau, J. – Precup, D. Conditional Computation in Neural
Networks for faster models, 2016.

Bengio, S. – Vinyals, O. – Jaitly, N. – Shazeer, N. Scheduled Sampling for Sequence
Prediction with Recurrent Neural Networks. In Cortes, C. – Lawrence, N. D. – Lee, D. D.
– Sugiyama, M. – Garnett, R. (Ed.) Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, p. 1171–1179, 2015.

Bengio, Y. – Simard, P. – Frasconi, P. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks. 1994, 5, 2, p. 157–166.

Bengio, Y. – Léonard, N. – Courville, A. C. Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation. CoRR. 2013, abs/1308.3432.

Bickel, S. – Brückner, M. – Scheffer, T. Discriminative learning for differing training and
test distributions. In Ghahramani, Z. (Ed.) Machine Learning, Proceedings of the Twenty-
Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, 227
/ ACM International Conference Proceeding Series, p. 81–88. ACM, 2007.

Biesialska, M. – Biesialska, K. – Costa-jussà, M. R. Continual Lifelong Learning in Nat-
ural Language Processing: A Survey. In Proceedings of the 28th International Conference
on Computational Linguistics, p. 6523–6541, Barcelona, Spain (Online), December 2020.
International Committee on Computational Linguistics.

Bishop, C. Neural Networks for Pattern Recognition. Oxford University Press, January 1995.

Bogoychev, N. – Grundkiewicz, R. – Aji, A. F. – Behnke, M. – Heafield, K. – Kashyap, S.
– Farsarakis, E.-I. – Chudyk, M. Edinburgh’s Submissions to the 2020 Machine Trans-
lation Efficiency Task. In Proceedings of the Fourth Workshop on Neural Generation and
Translation, p. 218–224, Online, July 2020. Association for Computational Linguistics.

Bojar, O. – Tamchyna, A. CUNI in WMT15: Chimera Strikes Again. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, WMT@EMNLP 2015, 17-18 September
2015, Lisbon, Portugal, p. 79–83. The Association for Computer Linguistics, 2015.

125



Bojar, O. – Macháček, M. – Tamchyna, A. – Zeman, D. Scratching the Surface of Possible
Translations. In Habernal, I. – Matoušek, V. (Ed.) Text, Speech and Dialogue: 16th In-
ternational Conference, TSD 2013. Proceedings, 8082 / Lecture Notes in Computer Science, p.
465–474, Berlin / Heidelberg, 2013. Západočeská univerzita v Plzni, Springer Verlag. ISBN
978-3-642-40584-6.

Bojar, O. – Dušek, O. – Kocmi, T. – Libovický, J. – Novák, M. – Popel, M. – Sudarikov,
R. – Variš, D. CzEng 1.6: Enlarged Czech-English Parallel Corpus with Processing Tools
Dockered. In Sojka, P. – Horák, A. – Kopeček, I. – Pala, K. (Ed.) Text, Speech, and Di-
alogue: 19th International Conference, TSD 2016, no. 9924 in Lecture Notes in Computer
Science, p. 231–238, Cham / Heidelberg / New York / Dordrecht / London, 2016. Masaryk
University, Springer International Publishing. ISBN 978-3-319-45509-9.

Bojar, O. – Kocmi, T. – Mareček, D. – Sudarikov, R. – Variš, D. CUNI Submission in
WMT17: Chimera Goes Neural. In Bojar, O. (Ed.) Proceedings of the Second Conference on
Machine Translation, Volume 2: Shared Task Papers, 2, p. 248–256, Stroudsburg, PA, USA,
2017. Association for Computational Linguistics, Association for Computational Linguis-
tics. ISBN 978-1-945626-96-8.

Boulanger-Lewandowski, N. – Bengio, Y. – Vincent, P. Audio Chord Recognition with
Recurrent Neural Networks. In ISMIR, 2013.

Brandreth, G. The Joy of Lex: How to Have Fun with 860,341,500 Words. Morrow, 1980. ISBN
9780688037093.

Brown, T. et al. Language Models are Few-Shot Learners. In Larochelle, H. – Ranzato, M.
– Hadsell, R. – Balcan, M. F. – Lin, H. (Ed.) Advances in Neural Information Processing
Systems, 33, p. 1877–1901. Curran Associates, Inc., 2020a.

Brown, T. B. et al. Language Models are Few-Shot Learners. 2020b.

Bucila, C. – Caruana, R. – Niculescu-Mizil, A. Model compression. In Eliassi-Rad, T. –
Ungar, L. H. – Craven, M. – Gunopulos, D. (Ed.) Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA,
August 20-23, 2006, p. 535–541. ACM, 2006.

Callison-Burch, C. – Osborne, M. – Koehn, P. Re-evaluating the Role of Bleu in Machine
Translation Research. In 11th Conference of the European Chapter of the Association for
Computational Linguistics, p. 249–256, Trento, Italy, April 2006. Association for Computa-
tional Linguistics.

Carey, S. Conceptual Change in Childhood. MIT Press series in learning, development, and
conceptual change. MIT Press, 1985.

Carey, S. The child as word learner. Linguistic theory and psychological reality. 1978, p.
264–293.

126



Caruana, R. Multitask learning. Machine learning. 1997, 28, 1, p. 41–75.

Cer, D. – Yang, Y. – Kong, S. – Hua, N. – Limtiaco, N. – John, R. S. – Constant, N. –
Guajardo-Cespedes, M. – Yuan, S. – Tar, C. – Sung, Y. – Strope, B. – Kurzweil, R.
Universal Sentence Encoder. CoRR. 2018, abs/1803.11175.

Chan, W. – Jaitly, N. – Le, Q. V. – Vinyals, O. Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25,
2016, p. 4960–4964. IEEE, 2016.

Chaudhry, A. – Dokania, P. K. – Ajanthan, T. – Torr, P. H. S. RiemannianWalk for Incre-
mental Learning: Understanding Forgetting and Intransigence. In Ferrari, V. – Hebert,
M. – Sminchisescu, C. – Weiss, Y. (Ed.) Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XI, 11215 / Lecture
Notes in Computer Science, p. 556–572. Springer, 2018.

Chelba, C. – Acero, A. Adaptation of maximum entropy capitalizer: Little data can help a
lot. Comput. Speech Lang. 2006, 20, 4, p. 382–399.

Chen, G. – Ma, S. – Chen, Y. – Dong, L. – Zhang, D. – Pan, J. – Wang, W. – Wei, F. Zero-
Shot Cross-Lingual Transfer of Neural Machine Translation with Multilingual Pretrained
Encoders. In Moens, M. – Huang, X. – Specia, L. – Yih, S. W. (Ed.) Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual
Event / Punta Cana, Dominican Republic, 7-11 November, 2021, p. 15–26. Association for
Computational Linguistics, 2021a.

Chen, G. – Ma, S. – Chen, Y. – Zhang, D. – Pan, J. – Wang, W. – Wei, F. Towards Making
the Most of Cross-Lingual Transfer for Zero-Shot Neural Machine Translation. In Mure-
san, S. – Nakov, P. – Villavicencio, A. (Ed.) Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, p. 142–157. Association for Computational Linguistics, 2022.

Chen, S. – Zhang, Y. – Yang, Q. Multi-Task Learning in Natural Language Processing: An
Overview. CoRR. 2021b, abs/2109.09138.

Chen, S. F. – Goodman, J. An Empirical Study of Smoothing Techniques for Language Mod-
eling. In Joshi, A. K. – Palmer, M. (Ed.) 34th Annual Meeting of the Association for Compu-
tational Linguistics, 24-27 June 1996, University of California, Santa Cruz, California, USA,
Proceedings, p. 310–318. Morgan Kaufmann Publishers / ACL, 1996.

127



Chi, Z. – Huang, S. – Dong, L. – Ma, S. – Zheng, B. – Singhal, S. – Bajaj, P. – Song, X.
– Mao, X. – Huang, H. – Wei, F. XLM-E: Cross-lingual Language Model Pre-training via
ELECTRA. In Muresan, S. – Nakov, P. – Villavicencio, A. (Ed.) Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, p. 6170–6182. Association for Computational
Linguistics, 2022.

Cho, K. – Merriënboer, B. – Gulcehre, C. – Bahdanau, D. – Bougares, F. – Schwenk, H.
– Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), p. 1724–1734, Doha, Qatar, October 2014a. Association for
Computational Linguistics.

Cho, K. – Merriënboer, B. – Gulcehre, C. – Bahdanau, D. – Bougares, F. – Schwenk, H.
– Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), p. 1724–1734, Doha, Qatar, October 2014b. Association for
Computational Linguistics.

Chomsky, N. Aspects of the Theory of Syntax. Journal of Philosophy. 1965, 64, 2, p. 67–74.
doi: 10.2307/2023772.

Choshen, L. – Abend, O. Automatically Extracting Challenge Sets for Non-Local Phenom-
ena in Neural Machine Translation. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), p. 291–303, Hong Kong, China, November 2019. As-
sociation for Computational Linguistics.

Chu, C. – Dabre, R. – Kurohashi, S. An Empirical Comparison of Domain Adaptation
Methods for Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), p. 385–391, Vancouver,
Canada, July 2017. Association for Computational Linguistics.

Cichon, J. – Gan, W.-B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic
plasticity. Nature. 03 2015, 520.

Collobert, R. – Weston, J. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Cohen, W. W. – McCallum, A. – Roweis,
S. T. (Ed.)Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML
2008), Helsinki, Finland, June 5-9, 2008, 307 / ACM International Conference Proceeding Se-
ries, p. 160–167. ACM, 2008.

128



Conneau, A. – Lample, G. Cross-lingual Language Model Pretraining. In Wallach, H. M.
– Larochelle, H. – Beygelzimer, A. – d’Alché-Buc, F. – Fox, E. B. – Garnett, R. (Ed.)
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada,
p. 7057–7067, 2019a.

Conneau, A. – Lample, G. Cross-lingual Language Model Pretraining. In Wallach, H. M.
– Larochelle, H. – Beygelzimer, A. – d’Alché-Buc, F. – Fox, E. B. – Garnett, R. (Ed.)
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
p. 7057–7067, 2019b.

Correia, G. M. – Niculae, V. – Martins, A. F. T. Adaptively Sparse Transformers. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), p.
2174–2184, Hong Kong, China, November 2019. Association for Computational Linguis-
tics.

Csordás, R. – Steenkiste, S. – Schmidhuber, J. Are Neural Nets Modular? Inspecting
Functional Modularity Through Differentiable Weight Masks. In International Conference
on Learning Representations, 2021.

Csordás, R. – Steenkiste, S. – Schmidhuber, J. Are Neural Nets Modular? Inspecting Func-
tional ModularityThrough DifferentiableWeight Masks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals
Syst. 1989, 2, 4, p. 303–314.

Dai, W. – Yang, Q. – Xue, G. – Yu, Y. Boosting for transfer learning. In Ghahramani, Z. (Ed.)
Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007),
Corvallis, Oregon, USA, June 20-24, 2007, 227 / ACM International Conference Proceeding
Series, p. 193–200. ACM, 2007.

Dai, Z. – Yang, Z. – Yang, Y. – Carbonell, J. G. – Le, Q. V. – Salakhutdinov, R.
Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. In Korho-
nen, A. – Traum, D. R. – Màrqez, L. (Ed.) Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, p. 2978–2988. Association for Computational Linguistics, 2019.

Daumé III, H. Bayesian Multitask Learning with Latent Hierarchies. In Bilmes, J. A. – Ng,
A. Y. (Ed.) UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, Montreal, QC, Canada, June 18-21, 2009, p. 135–142. AUAI Press, 2009.

129



Masson d’Autume, C. – Ruder, S. – Kong, L. – Yogatama, D. Episodic Memory in Lifelong
Language Learning. In Wallach, H. M. – Larochelle, H. – Beygelzimer, A. – d’Alché-
Buc, F. – Fox, E. B. – Garnett, R. (Ed.) Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, p. 13122–13131, 2019a.

Masson d’Autume, C. – Ruder, S. – Kong, L. – Yogatama, D. Episodic Memory in Lifelong
Language Learning. In Wallach, H. M. – Larochelle, H. – Beygelzimer, A. – d’Alché-
Buc, F. – Fox, E. B. – Garnett, R. (Ed.) Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, p. 13122–13131, 2019b.

Dehghani, M. – Gouws, S. – Vinyals, O. – Uszkoreit, J. – Kaiser, L. Universal Transform-
ers. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Deng, L. Themnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine. 2012, 29, 6, p. 141–142.

Devlin, J. – Chang, M. – Lee, K. – Toutanova, K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Burstein, J. – Doran, C. – Solorio, T.
(Ed.) Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), p. 4171–4186. Association for
Computational Linguistics, 2019.

Dong, D. –Wu, H. – He, W. – Yu, D. –Wang, H. Multi-Task Learning for Multiple Language
Translation. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), p. 1723–1732, Beijing, China, July 2015. Association for Computa-
tional Linguistics.

Draelos, T. J. – Miner, N. E. – Lamb, C. C. – Cox, J. A. – Vineyard, C. M. – Carlson, K. D. –
Severa, W. M. – James, C. D. – Aimone, J. B. Neurogenesis deep learning: Extending deep
networks to accommodate new classes. In 2017 International Joint Conference on Neural
Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, p. 526–533. IEEE, 2017.

Dredze, M. – Crammer, K. Online Methods for Multi-Domain Learning and Adaptation. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, p.
689–697, Honolulu, Hawaii, October 2008. Association for Computational Linguistics.

Eigen, D. – Ranzato, M. – Sutskever, I. Learning Factored Representations in a Deep Mix-
ture of Experts. In Bengio, Y. – LeCun, Y. (Ed.) 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceed-
ings, 2014.

130



Elman, J. L. Finding Structure in Time. Cognitive Science. 1990, 14, 2, p. 179–211.

Escolano, C. – Costa-jussà, M. R. – Fonollosa, J. A. R. – Artetxe, M. Multilingual
Machine Translation: Closing the Gap between Shared and Language-specific Encoder-
Decoders. In Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, p. 944–948, Online, April 2021. Association
for Computational Linguistics.

Feynman, R. P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod.
Phys. Apr 1948, 20, p. 367–387.

Firat, O. – Sankaran, B. – Al-onaizan, Y. – Yarman Vural, F. T. – Cho, K. Zero-Resource
Translation with Multi-Lingual Neural Machine Translation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, p. 268–277, Austin, Texas,
November 2016. Association for Computational Linguistics.

Fodor, J. A. – Pylyshyn, Z.W. Connectionism and cognitive architecture: A critical analysis.
Cognition. 1988, 28, p. 3–71.

Freitag, M. – Al-Onaizan, Y. Fast Domain Adaptation for Neural Machine Translation.
CoRR. 2016, abs/1612.06897.

Freitag, M. – Al-Onaizan, Y. Beam Search Strategies for Neural Machine Translation. In
Proceedings of the First Workshop on Neural Machine Translation, p. 56–60, Vancouver, Au-
gust 2017. Association for Computational Linguistics.

French, R. M. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sci-
ences. 1999, 3, p. 128–135.

Fung, I. – Mak, B. Multi-Head Attention for End-to-End Neural Machine Translation. In
11th International Symposium on Chinese Spoken Language Processing, ISCSLP 2018, Taipei
City, Taiwan, November 26-29, 2018, p. 250–254. IEEE, 2018.

Gal, Y. – Ghahramani, Z. A Theoretically Grounded Application of Dropout in Recurrent
Neural Networks. In Lee, D. D. – Sugiyama, M. – Luxburg, U. – Guyon, I. – Garnett, R.
(Ed.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, p. 1019–1027,
2016.

Galley, M. – Manning, C. D. A Simple and Effective Hierarchical Phrase Reordering Model.
In 2008 Conference on Empirical Methods in Natural Language Processing, EMNLP 2008,
Proceedings of the Conference, 25-27 October 2008, Honolulu, Hawaii, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL, p. 848–856. ACL, 2008.

131



Gehman, S. – Gururangan, S. – Sap, M. – Choi, Y. – Smith, N. A. RealToxicityPrompts:
Evaluating Neural Toxic Degeneration in Language Models. In EMNLP (Findings), p.
3356–3369. Association for Computational Linguistics, 2020.

Gehring, J. – Auli, M. – Grangier, D. – Yarats, D. – Dauphin, Y. N. Convolutional Se-
quence to Sequence Learning. In Precup, D. – Teh, Y. W. (Ed.) Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, 70 / Proceedings of Machine Learning Research, p. 1243–1252. PMLR, 2017.

Gelman, A. – Lee, D. – Guo, J. Stan: A Probabilistic Programming Language for Bayesian
Inference and Optimization. Journal of Educational and Behavioral Statistics. 2015, 40, 5,
p. 530–543.

Geva, M. – Malmi, E. – Szpektor, I. – Berant, J. DiscoFuse: A Large-Scale Dataset for
Discourse-Based Sentence Fusion. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), p. 3443–3455, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature. May 2015,
521, 7553, p. 452–459.

Goodfellow, I. – Bengio, Y. – Courville, A. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

Goodman, N. D. – Mansinghka, V. K. – Roy, D. M. – Bonawitz, K. A. – Tenenbaum, J. B.
Church: a language for generative models. In McAllester, D. A. – Myllymäki, P. (Ed.)
UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, Helsinki,
Finland, July 9-12, 2008, p. 220–229. AUAI Press, 2008.

Gopnik, A. – Meltzoff, A. Words, Thoughts, and Theories. A Bradford book. MIT Press, 1997.
ISBN 9780262071758.

Gorman, K. – Bedrick, S. We Need to Talk about Standard Splits. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, p. 2786–2791, Florence,
Italy, July 2019. Association for Computational Linguistics.

Goyal, N. – Du, J. – Ott, M. – Anantharaman, G. – Conneau, A. Larger-Scale Transform-
ers for Multilingual Masked Language Modeling. In Proceedings of the 6th Workshop on
Representation Learning for NLP (RepL4NLP-2021), p. 29–33, Online, August 2021. Associa-
tion for Computational Linguistics.

Graves, A. Sequence Transduction with Recurrent Neural Networks. CoRR. 2012,
abs/1211.3711.

132

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Grießhaber, D. – Maucher, J. – Vu, N. T. Fine-tuning BERT for Low-Resource Natural
Language Understanding via Active Learning. In Proceedings of the 28th International Con-
ference on Computational Linguistics, p. 1158–1171, Barcelona, Spain (Online), December
2020. International Committee on Computational Linguistics.

Grundkiewicz, R. – Heafield, K. Neural Machine Translation Techniques for Named En-
tity Transliteration. In Proceedings of the Seventh Named Entities Workshop, p. 89–94, Mel-
bourne, Australia, July 2018. Association for Computational Linguistics.

Gū, J. – Shavarani, H. S. – Sarkar, A. Top-down Tree Structured Decoding with Syntac-
tic Connections for Neural Machine Translation and Parsing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, p. 401–413, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics.

Gu, J. – Kong, X. Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, p. 120–133,
Online, August 2021. Association for Computational Linguistics.

Gull, S. F. Bayesian Inductive Inference and Maximum Entropy, p. 53–74. Springer Nether-
lands, Dordrecht, 1988. ISBN 978-94-009-3049-0.

Guo, H. – Pasunuru, R. – Bansal, M. DynamicMulti-LevelMulti-Task Learning for Sentence
Simplification. In Bender, E. M. – Derczynski, L. – Isabelle, P. (Ed.) Proceedings of the
27th International Conference on Computational Linguistics, COLING 2018, Santa Fe, New
Mexico, USA, August 20-26, 2018, p. 462–476. Association for Computational Linguistics,
2018.

Gururangan, S. – Marasovic, A. – Swayamdipta, S. – Lo, K. – Beltagy, I. – Downey, D.
– Smith, N. A. Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks.
In Jurafsky, D. – Chai, J. – Schluter, N. – Tetreault, J. R. (Ed.) Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, p. 8342–8360. Association for Computational Linguistics, 2020.

Ha, T.-L. – Niehues, J. – Waibel, A. Toward Multilingual Neural Machine Translation with
Universal Encoder and Decoder. In Proceedings of the 13th International Conference on
Spoken Language Translation, Seattle, Washington D.C, December 8-9 2016. International
Workshop on Spoken Language Translation.

Harris, Z. S. Distributional Structure. WORD. 1954, 10, 2-3, p. 146–162.

Hashimoto, K. – Xiong, C. – Tsuruoka, Y. – Socher, R. A Joint Many-Task Model: Grow-
ing a Neural Network for Multiple NLP Tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, p. 1923–1933, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics.

133



Hassibi, B. – Stork, D. G. Second Order Derivatives for Network Pruning: Optimal Brain
Surgeon. In Hanson, S. J. – Cowan, J. D. – Giles, C. L. (Ed.)Advances in Neural Information
Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3,
1992], p. 164–171. Morgan Kaufmann, 1992.

Hastie, T. – Tibshirani, R. – Friedman, J. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., 2001.

He, K. – Zhang, X. – Ren, S. – Sun, J. Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, p. 770–778. IEEE Computer Society, 2016a.

He, K. – Zhang, X. – Ren, S. – Sun, J. Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, p. 770–778. IEEE Computer Society, 2016b.

Heafield, K. KenLM: Faster and Smaller LanguageModelQueries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, p. 187–197, Edinburgh, Scotland, July 2011.
Association for Computational Linguistics.

Hecht-Nielsen, R. Theory of the Backpropagation Neural Network, p. 65–93. Harcourt Brace
& Co., USA, 1992. ISBN 0127412522.

Helcl, J. – Libovický, J. Neural Monkey: An Open-source Tool for Sequence Learning. The
Prague Bulletin of Mathematical Linguistics. 2017, , 107, p. 5–17. ISSN 0032-6585.

Helcl, J. – Libovický, J. – Kocmi, T. – Musil, T. – Cífka, O. – Variš, D. – Bojar, O. Neural
Monkey: The Current State and Beyond. In Neubig, G. – Cherry, C. (Ed.) The 13th Con-
ference of The Association for Machine Translation in the Americas, Vol. 1: MT Researchers’
Track, p. 168–176, Stroudsburg, PA, USA, 2018a. The Association for Machine Translation
in the Americas, The Association for Machine Translation in the Americas.

Helcl, J. – Libovický, J. – Variš, D. CUNI System for the WMT18 Multimodal Translation
Task. In Bojar, O. (Ed.) Proceedings of the Third Conference on Machine Translation, Volume
2: Shared Tasks, 2, p. 622–629, Stroudsburg, PA, USA, 2018b. Association for Computa-
tional Linguistics, Association for Computational Linguistics. ISBN 978-1-948087-81-0.

Hiebert, E. – Kamil, M. Teaching and Learning Vocabulary: Bringing Research to Practice. L.
Erlbaum Associates, 2005. ISBN 9780805852851.

Hinton, G. E. – Plaut, D. C. Using Fast Weights to Deblur Old Memories. In Proceedings of
the 9th Annual Conference of the Cognitive Science Society, p. 177–186, Hillsdale, NJ, 1987.
Erlbaum.

134



Hinton, G. E. – McClelland, J. L. – Rumelhart, D. E. Distributed Representations. In
Boden, M. A. (Ed.) The Philosophy of Artificial Intelligence, Oxford readings in philosophy.
Oxford, UK: Oxford University Press, 1990. p. 248–280.

Hinton, G. E. – Vinyals, O. – Dean, J. Distilling the Knowledge in a Neural Network. CoRR.
2015, abs/1503.02531.

Hochreiter, S. – Bengio, Y. – Frasconi, P. – Schmidhuber, J. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In Kremer, S. C. – Kolen, J. F.
(Ed.) A Field Guide to Dynamical Recurrent Neural Networks. Piscataway, NJ, USA: IEEE
Press, 2001.

Hochreiter, S. The Vanishing Gradient Problem during Learning Recurrent Neural Nets
and Problem Solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. April 1998, 6, 2,
p. 107–116. ISSN 0218-4885.

Hochreiter, S. – Schmidhuber, J. Long Short-Term Memory. Neural Computation. 11 1997,
9, 8, p. 1735–1780. ISSN 0899-7667.

Hoefler, T. – Alistarh, D. – Ben-Nun, T. – Dryden, N. – Peste, A. Sparsity in Deep
Learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research. 09 2021, 22, 241, p. 1–124.

Hoffer, E. – Hubara, I. – Soudry, D. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In Guyon, I. – Luxburg, U. V. –
Bengio, S. –Wallach, H. – Fergus, R. – Vishwanathan, S. – Garnett, R. (Ed.)Advances
in Neural Information Processing Systems, 30. Curran Associates, Inc., 2017.

Hornik, K. – Stinchcombe, M. –White, H. Multilayer FeedforwardNetworksAre Universal
Approximators. Neural Netw. jul 1989, 2, 5, p. 359–366. ISSN 0893-6080.

Hubel, D. H. – Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology. 1959, 148.

Huszár, F. On Quadratic Penalties in Elastic Weight Consolidation. CoRR. 2017,
abs/1712.03847.

Ivakhnenko, A. – Lapa, V. Cybernetic Predicting Devices. Jprs report. CCM Information
Corporation, 1973.

Iyyer, M. – Manjunatha, V. – Boyd-Graber, J. – Daumé III, H. Deep Unordered Com-
position Rivals Syntactic Methods for Text Classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), p. 1681–1691, Beijing,
China, July 2015. Association for Computational Linguistics.

135



Jacobs, R. A. – Jordan, M. I. – Nowlan, S. J. – Hinton, G. E. Adaptive Mixtures of Local
Experts. Neural Comput. March 1991, 3, 1, p. 79–87. ISSN 0899-7667.

Jastrzebski, S. – Kenton, Z. – Arpit, D. – Ballas, N. – Fischer, A. – Bengio, Y. – Storkey,
A. J. Three Factors Influencing Minima in SGD. CoRR. 2017, abs/1711.04623.

Jean, S. – Firat, O. – Cho, K. – Memisevic, R. – Bengio, Y. Montreal Neural Machine Trans-
lation Systems for WMT’15. In Proceedings of the Tenth Workshop on Statistical Machine
Translation, p. 134–140, Lisbon, Portugal, September 2015. Association for Computational
Linguistics.

Jern, A. – Kemp, C. A probabilistic account of exemplar and category generation. Cognitive
Psychology. 2013, 66, 1, p. 85–125. ISSN 0010-0285.

Jia, C. – Yang, Y. – Xia, Y. – Chen, Y. – Parekh, Z. – Pham, H. – Le, Q. V. – Sung, Y.
– Li, Z. – Duerig, T. Scaling Up Visual and Vision-Language Representation Learning
With Noisy Text Supervision. In Meila, M. – Zhang, T. (Ed.) Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
139 / Proceedings of Machine Learning Research, p. 4904–4916. PMLR, 2021.

Johnson, M. – Schuster, M. – Le, Q. V. – Krikun, M. – Wu, Y. – Chen, Z. – Thorat, N.
– Viégas, F. B. – Wattenberg, M. – Corrado, G. – Hughes, M. – Dean, J. Google’s
Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. Trans.
Assoc. Comput. Linguistics. 2017, 5, p. 339–351.

Joshi, M. – Choi, E. – Weld, D. – Zettlemoyer, L. TriviaQA: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), p.
1601–1611, Vancouver, Canada, July 2017. Association for Computational Linguistics.

Karpathy, A. – Fei-Fei, L. Deep visual-semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, p. 3128–3137. IEEE Computer Society, 2015.

Katharopoulos, A. – Vyas, A. – Pappas, N. – Fleuret, F. Transformers are RNNs: Fast
Autoregressive Transformers with Linear Attention. In III, H. D. – Singh, A. (Ed.) Proceed-
ings of the 37th International Conference on Machine Learning, 119 / Proceedings of Machine
Learning Research, p. 5156–5165. PMLR, 13–18 Jul 2020.

Kemker, R. – McClure, M. – Abitino, A. – Hayes, T. L. – Kanan, C. Measuring Catas-
trophic Forgetting in Neural Networks. In McIlraith, S. A. – Weinberger, K. Q. (Ed.)
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sympo-
sium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, p. 3390–3398. AAAI Press, 2018.

136



Khayrallah, H. – Thompson, B. – Duh, K. – Koehn, P. Regularized Training Objective for
Continued Training for Domain Adaptation in Neural Machine Translation. In Proceedings
of the 2nd Workshop on Neural Machine Translation and Generation, p. 36–44, Melbourne,
Australia, July 2018. Association for Computational Linguistics.

Kim, D. – Saito, K. – Saenko, K. – Sclaroff, S. – Plummer, B. A. MULE: Multimodal Univer-
sal Language Embedding. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, p. 11254–11261. AAAI Press, 2020.

Kim, Y. J. – Junczys-Dowmunt, M. – Hassan, H. – Fikri Aji, A. – Heafield, K. – Grund-
kiewicz, R. – Bogoychev, N. From Research to Production and Back: Ludicrously Fast
Neural Machine Translation. In Proceedings of the 3rd Workshop on Neural Generation
and Translation, p. 280–288, Hong Kong, November 2019. Association for Computational
Linguistics.

Kingma, D. P. – Ba, J. Adam: A Method for Stochastic Optimization. CoRR. 2014,
abs/1412.6980.

Kingma, D. P. – Welling, M. Auto-Encoding Variational Bayes. In Bengio, Y. – LeCun,
Y. (Ed.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Kirkpatrick, J. – Pascanu, R. – Rabinowitz, N. C. – Veness, J. – Desjardins, G. – Rusu,
A. A. – Milan, K. – Quan, J. – Ramalho, T. – Grabska-Barwinska, A. – Hassabis, D. –
Clopath, C. – Kumaran, D. – Hadsell, R. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences of the United States of America.
2017, 114 13, p. 3521–3526.

Kirsch, L. – Kunze, J. – Barber, D. Modular Networks: Learning to Decompose Neural
Computation. In Bengio, S. – Wallach, H. – Larochelle, H. – Grauman, K. – Cesa-
Bianchi, N. – Garnett, R. (Ed.) Advances in Neural Information Processing Systems 31, p.
2408–2418. Curran Associates, Inc., 2018.

Kocmi, T. – Bojar, O. Trivial Transfer Learning for Low-Resource Neural Machine Transla-
tion. In Bojar, O. et al. (Ed.) Proceedings of the Third Conference on Machine Translation:
Research Papers, WMT 2018, Belgium, Brussels, October 31 - November 1, 2018, p. 244–252.
Association for Computational Linguistics, 2018.

137



Kocmi, T. – Bojar, O. Efficiently Reusing Old Models Across Languages via Transfer Learn-
ing. In Forcada, M. L. – Martins, A. – Moniz, H. – Turchi, M. – Bisazza, A. –
Moorkens, J. – Arenas, A. G. – Nurminen, M. – Marg, L. – Fumega, S. – Martins,
B. – Batista, F. – Coheur, L. – Escartín, C. P. – Trancoso, I. (Ed.) Proceedings of the
22nd Annual Conference of the European Association for Machine Translation, EAMT 2020,
Lisboa, Portugal, November 3-5, 2020, p. 19–28. European Association for Machine Trans-
lation, 2020.

Kocmi, T. – Variš, D. – Bojar, O. CUNI Basque-to-English Submission in IWSLT18. In
Turchi, M. – Niehues, J. – Federico, M. (Ed.) Proceedings of the International Workshop on
Spoken Language Translation, p. 142–146, Karlsruhe, Germany, 2018. University of Brugge,
Karlsruhe Institute of Technology.

Kocmi, T. – Popel, M. – Bojar, O. Announcing CzEng 2.0 Parallel Corpus with over 2 Giga-
words. arXiv preprint arXiv:2007.03006. 2020.

Koehn, P. – Knowles, R. Six Challenges for Neural Machine Translation. In Proceedings
of the First Workshop on Neural Machine Translation, p. 28–39, Vancouver, August 2017.
Association for Computational Linguistics.

Koehn, P. – Axelrod, A. – Birch, A. – Callison-Burch, C. – Osborne, M. – Talbot, D.
Edinburgh system description for the 2005 IWSLT speech translation evaluation. In 2005
International Workshop on Spoken Language Translation, IWSLT 2005, Pittsburgh, PA, USA,
October 24-25, 2005, p. 68–75. ISCA, 2005.

Kolen, J. F. – Kremer, S. C. Gradient Flow in Recurrent Nets: The Difficulty of Learning
LongTerm Dependencies, p. 237–243. 2001.

Kondo, S. – Hotate, K. – Hirasawa, T. – Kaneko, M. – Komachi, M. Sentence Concatena-
tion Approach to Data Augmentation for Neural Machine Translation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Student Research Workshop, p. 143–149, Online, June 2021. Association for Com-
putational Linguistics.

Krizhevsky, A. – Hinton, G. – others. Learning multiple layers of features from tiny
images. 2009.

Krizhevsky, A. – Sutskever, I. – Hinton, G. E. ImageNet Classification with Deep Con-
volutional Neural Networks. In Bartlett, P. L. – Pereira, F. C. N. – Burges, C. J. C. –
Bottou, L. – Weinberger, K. Q. (Ed.) Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of
a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, p. 1106–1114, 2012.

138



Kudo, T. – Richardson, J. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, p. 66–71,
Brussels, Belgium, November 2018. Association for Computational Linguistics.

Kutalev, A. – Lapina, A. Stabilizing Elastic Weight Consolidation method in practi-
cal ML tasks and using weight importances for neural network pruning. CoRR. 2021,
abs/2109.10021.

Lachter, J. – Bever, T. The relation between linguistic structure and associative theories of
language learning-A constructive critique of some connectionist learning models. Cogni-
tion. March 1988, 28, 1-2, p. 195–247. ISSN 0010-0277.

Lake, B. M. – Ullman, T. D. – Tenenbaum, J. B. – Gershman, S. J. Building machines
that learn and think like people. Behavioral and Brain Sciences. 2017, 40, p. e253. doi:
10.1017/S0140525X16001837.

Lample, G. – Denoyer, L. – Ranzato, M. Unsupervised Machine Translation Using Mono-
lingual Corpora Only. CoRR. 2017, abs/1711.00043.

Landau, B. – Smith, L. B. – Jones, S. S. The importance of shape in early lexical learning.
Cognitive Development. 1988, 3, 3, p. 299–321. ISSN 0885-2014.

Lecun, Y. – Bengio, Y. Convolutional networks for images, speech, and time-series. MIT Press,
1995.

LeCun, Y. – Denker, J. S. – Solla, S. A. Optimal Brain Damage. In Touretzky, D. S. (Ed.)
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], p. 598–605. Morgan Kaufmann, 1989.

Lee, J. – Cho, K. – Hofmann, T. Fully Character-Level Neural Machine Translation without
Explicit Segmentation. Transactions of the Association for Computational Linguistics. 2017,
5, p. 365–378.

Li, Z. – Hoiem, D. Learning Without Forgetting. In European Conference on Computer Vision,
p. 614–629. Springer, 2016.

Li, Z. – Wallace, E. – Shen, S. – Lin, K. – Keutzer, K. – Klein, D. – Gonzalez, J. Train
Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Trans-
formers. In III, H. D. – Singh, A. (Ed.) Proceedings of the 37th International Conference on
Machine Learning, 119 / Proceedings of Machine Learning Research, p. 5958–5968. PMLR,
13–18 Jul 2020.

Libovický, J. – Helcl, J. End-to-End Non-Autoregressive Neural Machine Translation with
Connectionist Temporal Classification. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, p. 3016–3021, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics.

139



Lin, C.-Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summariza-
tion Branches Out, p. 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

Lin, C.-Y. – Och, F. J. Automatic Evaluation of Machine Translation Quality Using Longest
Common Subsequence and Skip-Bigram Statistics. In Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics (ACL-04), p. 605–612, Barcelona, Spain,
July 2004.

Lin, T.-Y. – Maire, M. – Belongie, S. – Hays, J. – Perona, P. – Ramanan, D. – Dollár, P. –
Zitnick, C. L. Microsoft COCO: Common Objects in Context. In Fleet, D. – Pajdla, T. –
Schiele, B. – Tuytelaars, T. (Ed.) Computer Vision – ECCV 2014, p. 740–755, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-10602-1.

Lin, T. – Goyal, P. – Girshick, R. B. – He, K. – Dollár, P. Focal Loss for Dense Object
Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2, p. 318–327.

Liu, Y. – Ott, M. – Goyal, N. – Du, J. – Joshi, M. – Chen, D. – Levy, O. – Lewis, M. –
Zettlemoyer, L. – Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. CoRR. 2019, abs/1907.11692.

Liu, Y. – Gu, J. – Goyal, N. – Li, X. – Edunov, S. – Ghazvininejad, M. – Lewis, M. –
Zettlemoyer, L. Multilingual Denoising Pre-training for Neural Machine Translation.
Trans. Assoc. Comput. Linguistics. 2020, 8, p. 726–742.

Lloyd, J. – Duvenaud, D. – Grosse, R. – Tenenbaum, J. – Ghahramani, Z. Automatic Con-
struction and Natural-Language Description of Nonparametric Regression Models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Jun. 2014, 28, 1.

Lu, J. – Xiong, C. – Parikh, D. – Socher, R. Knowing When to Look: Adaptive Attention
via a Visual Sentinel for Image Captioning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, p. 3242–3250. IEEE
Computer Society, 2017.

Lu, Y. – Keung, P. – Ladhak, F. – Bhardwaj, V. – Zhang, S. – Sun, J. A neural interlingua
for multilingual machine translation. In Proceedings of the Third Conference on Machine
Translation: Research Papers, p. 84–92, Brussels, Belgium, October 2018. Association for
Computational Linguistics.

Luong, M. – Manning, C. D. Stanford neural machine translation systems for spoken lan-
guage domains. In Federico, M. – Stüker, S. – Niehues, J. (Ed.) Proceedings of the 12th
International Workshop on Spoken Language Translation: Evaluation Campaign@IWSLT
2015, Da Nang, Vietnam, December 3-4, 2015, 2015.

140



Luong, M. – Le, Q. V. – Sutskever, I. – Vinyals, O. – Kaiser, L. Multi-task Sequence
to Sequence Learning. In Bengio, Y. – LeCun, Y. (Ed.) 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

Luong, T. – Pham, H. – Manning, C. D. Effective Approaches to Attention-based Neural
Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, p. 1412–1421, Lisbon, Portugal, September 2015a. Association for
Computational Linguistics.

Luong, T. – Pham, H. – Manning, C. D. Effective Approaches to Attention-based Neural
Machine Translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, p. 1412–1421, Lisbon, Portugal, September 2015b. Association for
Computational Linguistics.

MacKay, D. J. C. A Practical Bayesian Framework for Backpropagation Networks. Neural
Computation. May 1992, 4, 3, p. 448–472. ISSN 0899-7667.

Maddison, C. J. –Mnih, A. – Teh, Y.W. TheConcrete Distribution: AContinuous Relaxation
of Discrete Random Variables. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

Madhyastha, P. S. – Wang, J. – Specia, L. End-to-end Image Captioning Exploits Dis-
tributional Similarity in Multimodal Space. In Proceedings of the British Machine Vision
Conference (BMVC), 2018.

Mareček, D. – Rosa, R. From Balustrades to Pierre Vinken: Looking for Syntax in Trans-
former Self-Attentions. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, p. 263–275, Florence, Italy, August 2019. Asso-
ciation for Computational Linguistics.

Markman, E. M. Categorization and Naming in Children: Problems of Induction. The MIT
Press, 02 1991. ISBN 9780262279147.

Martin, L. – Müller, B. – Suárez, P. J. O. – Dupont, Y. – Romary, L. – Clergerie, É. –
Seddah, D. – Sagot, B. CamemBERT: a Tasty French Language Model. In Jurafsky, D.
– Chai, J. – Schluter, N. – Tetreault, J. R. (Ed.) Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, p.
7203–7219. Association for Computational Linguistics, 2020.

McCann, B. – Keskar, N. S. – Xiong, C. – Socher, R. The Natural Language Decathlon:
Multitask Learning as Question Answering. CoRR. 2018, abs/1806.08730.

McClelland, J. L. – Rumelhart, D. E. – Hinton, G. E. The Appeal of Parallel Distributed
Processing, p. 3–44. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

141



McCloskey, M. – Cohen, N. J. Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem. The Psychology of Learning and Motivation. 1989, 24,
p. 104–169.

McCullagh, P. Generalized Linear Models. CRC Press, 2019. ISBN 9781351445849.

Mhaskar, S. – Jain, A. – Banerjee, A. – Bhattacharyya, P. Multilingual Machine Trans-
lation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT.
In Proceedings of the 8th Workshop on Asian Translation (WAT2021), p. 233–237, Online,
August 2021. Association for Computational Linguistics.

Miceli Barone, A. V. – Haddow, B. – Germann, U. – Sennrich, R. Regularization tech-
niques for fine-tuning in neural machine translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, p. 1489–1494, Copenhagen, Den-
mark, September 2017. Association for Computational Linguistics.

Michel, P. – Levy, O. – Neubig, G. Are Sixteen Heads Really Better than One? In Wallach,
H. – Larochelle, H. – Beygelzimer, A. – Alché-Buc, F. – Fox, E. – Garnett, R. (Ed.)
Advances in Neural Information Processing Systems, 32, p. 14014–14024. Curran Associates,
Inc., 2019.

Mikolov, T. – Chen, K. – Corrado, G. – Dean, J. Efficient Estimation of Word Repre-
sentations in Vector Space. In Bengio, Y. – LeCun, Y. (Ed.) 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings, 2013.

Mikolov, T. – Karafiát, M. – Burget, L. – Černocký, J. – Khudanpur, S. Recurrent
neural network based language model. In Proceedings of the 11th Annual Conference of the
International Speech Communication Association (INTERSPEECH 2010), 2010, p. 1045–1048.
International Speech Communication Association, 2010. ISBN 978-1-61782-123-3.

Mnih, V. et al. Human-level control through deep reinforcement learning. Nature. February
2015, 518, 7540, p. 529–533. ISSN 00280836.

Murphy, G. L. Comprehending Complex Concepts. Cogn. Sci. 1988, 12, 4, p. 529–562.

Murphy, G. –Medin, D. TheRole ofTheories in Conceptual Coherence. Psychological Review.
July 1985, 92, 3, p. 289–316. ISSN 0033-295X.

Murphy, G. – Ross, B. Predictions from uncertain categorizations. Cognitive Psychology.
October 1994, 27, 2, p. 148–193. ISSN 0010-0285.

Nair, V. – Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines.
ICML’10, p. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

142



Neal, R. M. – Hinton, G. E. A View of the Em Algorithm that Justifies Incremental, Sparse,
and other Variants. In Jordan, M. I. (Ed.) Learning in Graphical Models, 89 / NATO ASI
Series. Cambridge, MA, USA: Springer Netherlands, 1998. p. 355–368. ISBN 978-94-010-
6104-9.

Neishi, M. – Yoshinaga, N. On the Relation between Position Information and Sentence
Length in Neural Machine Translation. In Proceedings of the 23rd Conference on Compu-
tational Natural Language Learning (CoNLL), p. 328–338, Hong Kong, China, November
2019. Association for Computational Linguistics.

Ni, M. – Huang, H. – Su, L. – Cui, E. – Bharti, T. – Wang, L. – Zhang, D. – Duan, N. M3P:
Learning Universal Representations via Multitask Multilingual Multimodal Pre-Training.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, p. 3977–3986. Computer Vision Foundation / IEEE, 2021.

Osherson, D. N. – Smith, E. E. On the adequacy of prototype theory as a theory of concepts.
Cognition. 1981, 9, 1, p. 35–58. ISSN 0010-0277.

Ott, M. – Edunov, S. – Baevski, A. – Fan, A. – Gross, S. – Ng, N. – Grangier, D. – Auli, M.
fairseq: A Fast, Extensible Toolkit for Sequence Modeling. In Proceedings of NAACL-HLT
2019: Demonstrations, 2019.

Pan, S. J. – Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22,
10, p. 1345–1359.

Panevová, J. On Verbal Frames in Functional Generative Description, Part I. The Prague
Bulletin of Mathematical Linguistics. 1974, 22, p. 3–40.

Panevová, J. Valency Frames and the Meaning of the Sentence. In Luelsdorff, P. A.
(Ed.) The Prague School of Structural and Functional Linguistics, p. 223–243, Amsterdam-
Philadelphia, 1994. John Benjamins Publishing Company.

Papineni, K. – Roukos, S. – Ward, T. – Zhu, W.-J. Bleu: a Method for Automatic Evaluation
of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, p. 311–318, Philadelphia, Pennsylvania, USA, July 2002. Asso-
ciation for Computational Linguistics.

Parisi, G. I. – Kemker, R. – Part, J. L. – Kanan, C. –Wermter, S. Continual lifelong learning
with neural networks: A review. Neural Networks. 2019, 113, p. 54–71.

Pascanu, R. – Mikolov, T. – Bengio, Y. On the difficulty of training recurrent neural net-
works. In Dasgupta, S. – McAllester, D. (Ed.) Proceedings of the 30th International Con-
ference on Machine Learning, 28 / Proceedings of Machine Learning Research, p. 1310–1318,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

143



Pasunuru, R. – Bansal, M. Continual and Multi-Task Architecture Search. In Korhonen,
A. – Traum, D. R. – Màrqez, L. (Ed.) Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, p. 1911–1922. Association for Computational Linguistics, 2019. ISBN 978-1-
950737-48-2.

Peters, M. E. – Neumann, M. – Iyyer, M. – Gardner, M. – Clark, C. – Lee, K. – Zettle-
moyer, L. Deep Contextualized Word Representations. In Walker, M. A. – Ji, H. – Stent,
A. (Ed.) Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), p. 2227–2237. Association
for Computational Linguistics, 2018.

Peters, M. E. – Ruder, S. – Smith, N. A. To Tune or Not to Tune? Adapting Pretrained
Representations to Diverse Tasks. In Proceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), p. 7–14, Florence, Italy, August 2019. Association for
Computational Linguistics.

Pfeiffer, J. – Vulic, I. – Gurevych, I. – Ruder, S. MAD-X: An Adapter-Based Framework
for Multi-Task Cross-Lingual Transfer. In Webber, B. – Cohn, T. – He, Y. – Liu, Y. (Ed.)
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, p. 7654–7673. Association for Computational
Linguistics, 2020.

Pinker, S. – Prince, A. On Language and Connectionism: Analysis of a Parallel Distributed
Processing Model of Language Acquisition. COGNITION. 1988, 28, p. 73–193.

Polikar, R. – Upda, L. – Upda, S. S. – Honavar, V. G. Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C. 2001, 31,
4, p. 497–508.

Popel, M. – Tomkova, M. – Tomek, J. – Kaiser – Uszkoreit, J. – Bojar, O. – Žabokrtský, Z.
Transforming machine translation: a deep learning system reaches news translation qual-
ity comparable to human professionals. Nature Communications. 2020, 11, 4381, p. 1–15.
ISSN 2041-1723.

Post, M. A Call for Clarity in Reporting BLEU Scores. In Proceedings of the Third Confer-
ence on Machine Translation: Research Papers, p. 186–191, Belgium, Brussels, October 2018.
Association for Computational Linguistics.

Press, O. – Wolf, L. Using the Output Embedding to Improve Language Models. In Proceed-
ings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, p. 157–163, Valencia, Spain, April 2017. Association for
Computational Linguistics.

144



Rajpurkar, P. – Zhang, J. – Lopyrev, K. – Liang, P. SQuAD: 100,000+Questions forMachine
Comprehension of Text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, p. 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics.

Ramachandran, P. – Liu, P. J. – Le, Q. V. Unsupervised Pretraining for Sequence to Sequence
Learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, p. 383–391, 2017.

Ramezani, M. – Marble, K. – Trang, H. – Johnsrude, I. – Abolmaesumi, P. Joint Sparse
Representation of Brain Activity Patterns in Multi-Task fMRI Data. IEEE transactions on
medical imaging. 07 2014, 34.

Ranzato, M. – Chopra, S. – Auli, M. – Zaremba, W. Sequence Level Training with Re-
current Neural Networks. In Bengio, Y. – LeCun, Y. (Ed.) 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

Rebuffi, S.-A. – Kolesnikov, A. I. – Sperl, G. – Lampert, C. H. iCaRL: Incremental Clas-
sifier and Representation Learning. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, p. 5533–5542.

Redmon, J. – Divvala, S. K. – Girshick, R. B. – Farhadi, A. You Only Look Once: Uni-
fied, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, p. 779–788. IEEE Computer
Society, 2016.

Rei, R. – Stewart, C. – Farinha, A. C. – Lavie, A. COMET: A Neural Framework for
MT Evaluation. In Webber, B. – Cohn, T. – He, Y. – Liu, Y. (Ed.) Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, p. 2685–2702. Association for Computational Linguistics, 2020.

Ren, S. – He, K. – Girshick, R. – Sun, J. Faster R-CNN: Towards Real-time Object Detection
with Region Proposal Networks. In Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’15, p. 91–99, Cambridge, MA, USA,
2015. MIT Press.

Ring, M. B. Continual learning in reinforcement environments. PhD thesis, University of Texas
at Austin, TX, USA, 1995.

Ripley, B. D. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
doi: 10.1017/CBO9780511812651.

Rips, L. – Hespos, S. Divisions of the physical world: Concepts of objects and substances.
Psychological Bulletin. July 2015, 141, 4, p. 786–811. ISSN 0033-2909.

145



Rips, L. Inductive judgments about natural categories. Journal of Memory and Language.
December 1975, 14, 6, p. 665–681. ISSN 0749-596X.

Robbins, H. – Monro, S. A Stochastic Approximation Method. The Annals of Mathemat-
ical Statistics. 1951, 22, 3, p. 400 – 407. Available at: https://doi.org/10.1214/aoms/

1177729586.

Robins, A. V. Catastrophic Forgetting, Rehearsal and Pseudorehearsal. Connect. Sci. 1995, 7,
2, p. 123–146.

Rosenbaum, C. – Klinger, T. – Riemer, M. Routing Networks: Adaptive Selection of Non-
Linear Functions for Multi-Task Learning. In International Conference on Learning Repre-
sentations, 2018.

Rosenblatt, F. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review. 1958, 65, 6, p. 386–408. ISSN 0033-295X.

Rothe, S. – Narayan, S. – Severyn, A. Leveraging Pre-trained Checkpoints for Sequence
Generation Tasks. Transactions of the Association for Computational Linguistics. 2020, 8,
p. 264–280.

Rumelhart, D. E. –McClelland, J. L. Learning Internal Representations by Error Propagation,
p. 318–362. 1987.

Rumelhart, D. – Hinton, G. – Williams, R. Learning representations by back-propagating
errors. Nature. 1986, 323, 6088, p. 533–536.

Scherer, D. – Müller, A. – Behnke, S. Evaluation of Pooling Operations in Convolutional
Architectures for Object Recognition. In Diamantaras, K. – Duch, W. – Iliadis, L. S.
(Ed.)Artificial Neural Networks – ICANN 2010, p. 92–101, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Schlimmer, J. C. – Granger, R. H. Incremental Learning from Noisy Data. Mach. Learn.
1986, 1, 3, p. 317–354.

Schraudolph, N. N. Fast Curvature Matrix-Vector Products for Second-Order Gradient De-
scent. Neural Comput. 2002a, 14, 7, p. 1723–1738.

Schraudolph, N. N. Fast Curvature Matrix-Vector Products for Second-Order Gradient De-
scent. Neural Comput. 2002b, 14, 7, p. 1723–1738.

Sennrich, R. – Haddow, B. – Birch, A. Improving Neural Machine TranslationModels with
Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), p. 86–96, Berlin, Germany, August 2016a.
Association for Computational Linguistics.

146

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586


Sennrich, R. – Haddow, B. – Birch, A. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), p. 1715–1725, Berlin, Germany, August 2016b.
Association for Computational Linguistics.

Sewak, M. Deep Q Network (DQN), Double DQN, and Dueling DQN, p. 95–108. Springer
Singapore, Singapore, 2019. ISBN 978-981-13-8285-7.

Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 3,
p. 379–423.

Shaw, P. – Uszkoreit, J. – Vaswani, A. Self-Attention with Relative Position Representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), p.
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

Shazeer, N. – Stern, M. Adafactor: Adaptive Learning Rates with Sublinear Memory Cost.
In Dy, J. G. – Krause, A. (Ed.) Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 80 / Proceed-
ings of Machine Learning Research, p. 4603–4611. PMLR, 2018.

Shazeer, N. – Mirhoseini, A. – Maziarz, K. – Davis, A. – Le, Q. V. – Hinton, G. E. – Dean,
J. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Shen, S. – Cheng, Y. – He, Z. – He, W. – Wu, H. – Sun, M. – Liu, Y. Minimum Risk Training
for Neural Machine Translation. In Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. The Association for Computer Linguistics, 2016.

Shi, X. – Knight, K. – Yuret, D. Why Neural Translations are the Right Length. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, p.
2278–2282, Austin, Texas, November 2016. Association for Computational Linguistics.

Shin, H. – Lee, J. K. – Kim, J. – Kim, J. Continual Learning with Deep Generative Replay. In
Guyon, I. – Luxburg, U. – Bengio, S. – Wallach, H. M. – Fergus, R. – Vishwanathan,
S. V. N. – Garnett, R. (Ed.) Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, p. 2990–2999, 2017.

Silver, D. L. – Mercer, R. E. The Task Rehearsal Method of Life-Long Learning: Overcoming
Impoverished Data. In Cohen, R. – Spencer, B. (Ed.) Advances in Artificial Intelligence,
15th Conference of the Canadian Society for Computational Studies of Intelligence, AI 2002,
Calgary, Canada, May 27-29, 2002, Proceedings, 2338 / Lecture Notes in Computer Science, p.
90–101. Springer, 2002.

147



Silver, D. L. – Yang, Q. – Li, L. Lifelong Machine Learning Systems: Beyond Learning
Algorithms. In Lifelong Machine Learning, Papers from the 2013 AAAI Spring Symposium,
Palo Alto, California, USA, March 25-27, 2013, SS-13-05 / AAAI Technical Report. AAAI,
2013.

Sodhani, S. – Chandar, S. – Bengio, Y. Toward Training Recurrent Neural Networks for
Lifelong Learning. Neural Comput. 2020, 32, 1, p. 1–35.

Søgaard, A. – Ebert, S. – Bastings, J. – Filippova, K. We Need to Talk About Random
Splits. CoRR. 2020, abs/2005.00636.

Solomonoff, R. J. A system for machine learning based on algorithmic probability. In
Proceedings of the IEEE International Conference on Systems, Man andCybernetics, November
14-17, 1989, Cambridge, Massachusetts, USA, p. 298–299. IEEE, 1989.

Spelke, E. S. Principles of Object Perception. Cognitive Science. 1990, p. 29–56.

Sporns – Betzel. Modular Brain Networks. Jan 2016, 67. doi: 10.1146/
annurev-psych-122414-033634.

Srivastava, N. – Hinton, G. E. – Krizhevsky, A. – Sutskever, I. – Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.
2014, 15, 1, p. 1929–1958.

Stahlberg, F. – Byrne, B. On NMT Search Errors and Model Errors: Cat Got Your Tongue?
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), p. 3356–3362, Hong Kong, China, November 2019. Association for Computational
Linguistics.

Straka, M. – Straková, J. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, p. 88–99, Vancouver, Canada, August 2017. Association for
Computational Linguistics.

Straková, J. – Straka, M. – Hajič, J. Open-Source Tools for Morphology, Lemmatization,
POS Tagging and Named Entity Recognition. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations, p. 13–18, Baltimore,
Maryland, June 2014. Association for Computational Linguistics.

Sudarikov, R. – Mareček, D. – Kocmi, T. – Variš, D. – Bojar, O. CUNI submission in
WMT17: Chimera goes neural. In Bojar, O. – Buck, C. – Chatterjee, R. – Federmann,
C. – Graham, Y. – Haddow, B. – Huck, M. – Jimeno-Yepes, A. – Koehn, P. – Kreutzer, J.
(Ed.) Proceedings of the Second Conference on Machine Translation, WMT 2017, Copenhagen,
Denmark, September 7-8, 2017, p. 248–256. Association for Computational Linguistics, 2017.

148



Sun, F. – Ho, C. – Lee, H. LAMOL: LAnguage MOdeling for Lifelong Language Learning. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

Sundermeyer, M. – Schlüter, R. – Ney, H. LSTM neural networks for language modeling.
In Proc. Interspeech 2012, p. 194–197, 2012.

Sussmann, H. Uniqueness of the weights for minimal feedforward nets with a given input-
output map. Neural Networks. 1 1992, 5, 4, p. 589–593. ISSN 0893-6080.

Sutskever, I. – Vinyals, O. – Le, Q. V. Sequence to Sequence Learning with Neural Net-
works. In Ghahramani, Z. – Welling, M. – Cortes, C. – Lawrence, N. – Weinberger,
K. Q. (Ed.) Advances in Neural Information Processing Systems, 27, p. 3104–3112. Curran
Associates, Inc., 2014.

Szegedy, C. – Vanhoucke, V. – Ioffe, S. – Shlens, J. – Wojna, Z. Rethinking the Inception
Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), p. 2818–2826, 2016.

Tan, X. – Ren, Y. – He, D. – Qin, T. – Zhao, Z. – Liu, T. Multilingual Neural Machine
Translation with Knowledge Distillation. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Tars, M. – Tättar, A. – Fisel, M. Extremely low-resource machine translation for closely
related languages. In Dobnik, S. – Øvrelid, L. (Ed.) Proceedings of the 23rd Nordic Con-
ference on Computational Linguistics, NoDaLiDa 2021, Reykjavik, Iceland (Online), May 31
- June 2, 2021, p. 41–52. Linköping University Electronic Press, Sweden, 2021a.

Tars, M. – Tättar, A. – Fišel, M. Extremely low-resource machine translation for closely
related languages. In Proceedings of the 23rd Nordic Conference on Computational Linguis-
tics (NoDaLiDa), p. 41–52, Reykjavik, Iceland (Online), May 31–2 June 2021b. Linköping
University Electronic Press, Sweden.

Tarvainen, A. – Valpola, H. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In Guyon, I. – Luxburg, U. –
Bengio, S. – Wallach, H. M. – Fergus, R. – Vishwanathan, S. V. N. – Garnett, R. (Ed.)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, p. 1195–1204,
2017.

Thillainathan, S. – Ranathunga, S. – Jayasena, S. Fine-Tuning Self-Supervised Multilin-
gual Sequence-To-Sequence Models for Extremely Low-Resource NMT. In 2021 Moratuwa
Engineering Research Conference (MERCon), p. 432–437, 2021.

149



Thompson, B. – Gwinnup, J. – Khayrallah, H. – Duh, K. – Koehn, P. Overcoming Catas-
trophic Forgetting During Domain Adaptation of Neural Machine Translation. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), p.
2062–2068, Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics.

Thrun, S. – Pratt, L. Y. (Ed.). Learning to Learn. Springer, 1998. ISBN 978-1-4613-7527-2.

Tiedemann, J. Parallel Data, Tools and Interfaces in OPUS. In Calzolari, N. – Choukri, K. –
Declerck, T. – Dogan, M. U. –Maegaard, B. –Mariani, J. – Odijk, J. – Piperidis, S. (Ed.)
Proceedings of the Eighth International Conference on Language Resources and Evaluation,
LREC 2012, Istanbul, Turkey, May 23-25, 2012, p. 2214–2218. European Language Resources
Association (ELRA), 2012.

Tishby, N. – Zaslavsky, N. Deep learning and the information bottleneck principle. In 2015
IEEE Information Theory Workshop, ITW 2015, Jerusalem, Israel, April 26 - May 1, 2015, p.
1–5. IEEE, 2015.

Tsai, Y.-H. H. – Bai, S. – Yamada, M. – Morency, L.-P. – Salakhutdinov, R. Transformer
Dissection: An Unified Understanding for Transformer’s Attention via the Lens of Ker-
nel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), p. 4344–4353, Hong Kong, China, November 2019. Association for Computational
Linguistics.

Tsividis, P. – Pouncy, T. – Xu, J. L. – Tenenbaum, J. B. – Gershman, S. J. Human Learning
in Atari. In 2017 AAAI Spring Symposia, Stanford University, Palo Alto, California, USA,
March 27-29, 2017. AAAI Press, 2017.

Bosch, A. HiddenMarkovModels. In Sammut, C. –Webb, G. I. (Ed.) Encyclopedia of Machine
Learning and Data Mining. New York, NY, USA: Springer, 2017. p. 609–611.

Variš, D. – Bojar, O. Unsupervised Pretraining for Neural Machine Translation Using Elastic
Weight Consolidation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Workshop, p. 130–135, Florence, Italy, July
2019. Association for Computational Linguistics.

Variš, D. – Bojar, O. Sequence Length is a Domain: Length-based Overfitting in Transformer
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, p. 8246–8257, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics.

150



Vaswani, A. – Shazeer, N. – Parmar, N. – Uszkoreit, J. – Jones, L. – Gomez, A. N. – Kaiser,
L. – Polosukhin, I. Attention is All you Need. In Guyon, I. – Luxburg, U. V. – Bengio, S.
– Wallach, H. – Fergus, R. – Vishwanathan, S. – Garnett, R. (Ed.) Advances in Neural
Information Processing Systems 30. San Francisco, CA, USA: Curran Associates, Inc., 2017.
p. 6000–6010.

Vauqois, B. A survey of formal grammars and algorithms for recognition and transforma-
tion inmechanical translation. InMorrel, A. J. H. (Ed.) Information Processing, Proceedings
of IFIP Congress 1968, Edinburgh, UK, 5-10 August 1968, Volume 2 - Hardware, Applications,
p. 1114–1122, 1968.

Voita, E. – Talbot, D. – Moiseev, F. – Sennrich, R. – Titov, I. Analyzing Multi-Head Self-
Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, p. 5797–5808,
Florence, Italy, July 2019. Association for Computational Linguistics.

Wang, A. – Singh, A. – Michael, J. – Hill, F. – Levy, O. – Bowman, S. GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, p. 353–355, Brussels, Belgium, November 2018a. Association for Computational
Linguistics.

Wang, Y. – Zhang, J. – Zhai, F. – Xu, J. – Zong, C. Three Strategies to Improve One-to-Many
Multilingual Translation. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, p. 2955–2960, Brussels, Belgium, October-November 2018b.
Association for Computational Linguistics.

Ward, T. Structured Imagination: the Role of Category Structure in Exemplar Generation.
Cognitive Psychology. 1994, 27, 1, p. 1–40. ISSN 0010-0285.

Williams, R. J. Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning. Mach. Learn. 1992, 8, p. 229–256.

Williams, R. J. – Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent
Neural Networks. Neural Computation. 1989, 1, p. 270–280.

Wu, L. – Xia, Y. – Tian, F. – Zhao, L. – Qin, T. – Lai, J. – Liu, T. Adversarial Neural Machine
Translation. In Zhu, J. – Takeuchi, I. (Ed.) Proceedings of The 10th Asian Conference on
Machine Learning, ACML 2018, Beijing, China, November 14-16, 2018, 95 / Proceedings of
Machine Learning Research, p. 534–549. PMLR, 2018.

Wu, Y. et al. Google’s Neural Machine Translation System: Bridging the Gap betweenHuman
and Machine Translation. CoRR. 2016, abs/1609.08144.

151



Xie, S. – Girshick, R. B. – Dollár, P. – Tu, Z. – He, K. Aggregated Residual Transforma-
tions for Deep Neural Networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, p. 5987–5995. IEEE Computer
Society, 2017.

Xiong, R. – Yang, Y. – He, D. – Zheng, K. – Zheng, S. – Xing, C. – Zhang, H. – Lan,
Y. – Wang, L. – Liu, T. On Layer Normalization in the Transformer Architecture. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, 119 / Proceedings of Machine Learning Research, p. 10524–10533.
PMLR, 2020.

Xu, F. – Tenenbaum, J. B. Word Learning as Bayesian Inference. Psychological Review. 2007,
p. 245–272.

Xu, H. – Durme, B. V. –Murray, K.W. BERT,mBERT, or BiBERT?A Study on Contextualized
Embeddings for NeuralMachine Translation. InMoens, M. –Huang, X. – Specia, L. – Yih,
S. W. (Ed.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021, p. 6663–6675. Association for Computational Linguistics, 2021.

Xu, K. – Ba, J. – Kiros, R. – Cho, K. – Courville, A. – Salakhudinov, R. – Zemel, R. – Ben-
gio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In
Bach, F. – Blei, D. (Ed.) Proceedings of the 32nd International Conference on Machine Learn-
ing, 37 / Proceedings of Machine Learning Research, p. 2048–2057, Lille, France, 07–09 Jul
2015. PMLR.

Yamagishi, H. – Kanouchi, S. – Sato, T. – Komachi, M. Controlling the Voice of a Sentence
in Japanese-to-English Neural Machine Translation. In Nakazawa, T. – Mino, H. – Ding,
C. – Goto, I. – Neubig, G. – Kurohashi, S. – Riza, I. H. – Bhattacharyya, P. (Ed.)
Proceedings of the 3rd Workshop on Asian Translation, WAT@COLING 2016, Osaka, Japan,
December 2016, p. 203–210. The COLING 2016 Organizing Committee, 2016.

Yu, X. – Zhang, H. – Song, Y. – Song, Y. – Zhang, C. What You See is What You Get: Visual
Pronoun Coreference Resolution in Dialogues. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), p. 5123–5132, Hong Kong, China,
November 2019. Association for Computational Linguistics.

Zaheer, M. – Guruganesh, G. – Dubey, K. A. – Ainslie, J. – Alberti, C. – Ontanon, S.
– Pham, P. – Ravula, A. – Wang, Q. – Yang, L. – Ahmed, A. Big Bird: Transformers
for Longer Sequences. In Larochelle, H. – Ranzato, M. – Hadsell, R. – Balcan, M. F.
– Lin, H. (Ed.) Advances in Neural Information Processing Systems, 33, p. 17283–17297.
Curran Associates, Inc., 2020.

152



Zenke, F. – Poole, B. – Ganguli, S. Continual Learning Through Synaptic Intelligence. In
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, p. 3987–3995, 2017.

Zhang, B. – Williams, P. – Titov, I. – Sennrich, R. Improving Massively Multilingual
Neural Machine Translation and Zero-Shot Translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, p. 1628–1639, Online, July 2020.
Association for Computational Linguistics.

Zhang, B. – Bapna, A. – Sennrich, R. – Firat, O. Share or Not? Learning to Schedule
Language-Specific Capacity for Multilingual Translation. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021a.

Zhang, C. – Bengio, S. – Hardt, M. – Recht, B. – Vinyals, O. Understanding deep learning
requires rethinking generalization. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

Zhang, C. – Bengio, S. – Hardt, M. – Recht, B. – Vinyals, O. Understanding Deep Learning
(Still) Requires Rethinking Generalization. Commun. ACM. feb 2021b, 64, 3, p. 107–115.
ISSN 0001-0782.

Zhang, Y. – Yang, Q. A Survey on Multi-Task Learning. CoRR. 2017, abs/1707.08114.

Zhu, Z. – Wu, J. – Yu, B. – Wu, L. – Ma, J. The Anisotropic Noise in Stochastic Gradi-
ent Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects. In
Chaudhuri, K. – Salakhutdinov, R. (Ed.) Proceedings of the 36th International Conference
on Machine Learning, 97 / Proceedings of Machine Learning Research, p. 7654–7663. PMLR,
09–15 Jun 2019.

Zhuang, F. – Qi, Z. – Duan, K. – Xi, D. – Zhu, Y. – Zhu, H. – Xiong, H. – He, Q. A
Comprehensive Survey on Transfer Learning. Proceedings of the IEEE. 2021, 109, 1, p. 43–76.

153





List of Abbreviations

AGI artificial general intelligence. 2, 35, 65
AR autoregressive. 21, 22, 24

BLEU bilingual evaluation understudy. 32, 45–48, 55–57, 61, 62, 64, 85, 103, 105, 118,
119, 121, 122

BoW bag of words. 93
BPE byte-pair encoding. 3, 40, 45, 54, 59, 61, 84
BPTT backpropagation through time. 23

CE cross-entropy. 31
CF catastrophic forgetting. 2, 3, 5–7, 9, 11, 18–20, 65–67, 69, 76, 77, 83, 86, 114, 115
CI catastrophic interference. 18, 65
CIFAR-10 Canadian Institute For Advanced Research. 2
CNN convolutional neural network. 26, 27, 31
COMET Crosslingual Optimized Metric for Evaluation of Translation. 85, 103

DAN deep averaging network. 92
DL deep learning. 1, 2, 18, 35, 36, 54

ELBO evidence lower bound. 92
EM expectation-maximization. 92
EOS end-of-sequence. 24, 33, 50, 52, 63
EWC elastic weight consolidation. 6, 9–12, 67, 69, 71–88, 114, 115, 117, 119, 120

FFN feed-forward network. 10, 26, 30, 95, 96, 102, 108, 111
FI Fisher information. 9, 79–81, 83
FIM Fisher information matrix. 68, 73, 78–82, 84–87

GLUE General Language Understanding Evaluation. 39
GRU gated recurrent unit. 23, 42

HMM hidden Markov model. 21

IDF inverse document frequency. 55
IID independent and identically distributed. 38, 39
IL incremental learning. 6, 7, 11, 13, 14, 18–20, 67, 77, 78, 87, 115

155



IWSLT International Conference on Spoken Language Translation. 72, 73

KL Kullback–Leibler. 57, 58

LDD long-distance dependencies. 4, 41
LM language model. 6, 12, 16, 19, 37, 39, 55–57, 70–76, 87, 90
LSTM long short-term Memory. 23, 26, 42

MAP maximum a posteriori. 76
MEE maximum entropy estimation. 70
MFFN masked feed-forward network. 96, 97
MHA multi-head attention. 3, 10, 29, 30, 89, 95, 111
ML machine learning. 35
MLM masked language model. 16, 74
MLP multi-layered perceptron. 1, 76
MMHA masked multi-head attention. 95–97
MNIST Modified National Institute of Standards and Technology. 2, 76
MoE mixture-of-experts. 90
MRT minimum risk training. 32
MSCOCO Microsoft Common Objects in Context. 40
MT machine translation. 2, 16, 41, 42, 44, 47, 50, 52, 54, 55, 70, 71, 74
MTL multi-task learning. 3, 6, 11, 13–16, 18–20, 66, 83, 90

NAR non-autoregressive. 22
NLI natural language inference. 16
NLL negative log-likelihood. 31, 32, 50
NLP natural language processing. 2–4, 8, 11, 14–16, 19, 22, 31, 36, 38–40, 42, 44, 63,

96
NMT neural machine translation. 3, 5–20, 31–33, 39, 40, 59, 63, 69–76, 78, 83, 85–88,

90, 95, 96, 102, 103, 106, 114, 115
NN neural network. 1–3, 22, 23, 27, 33, 38, 67

OOV out-of-vocabulary. 5, 20, 60

PBMT phrase-based machine translation. 70
PI path integral. 69

QA question answering. 16

RBF radial basis function. 42
ReLU rectified linear unit. 30
RL reinforcement learning. 32, 76, 92

156



RNN recurrent neural network. 23, 24, 26–28, 31–33, 41, 42
ROUGE Recall-Oriented Understudy for Gisting Evaluation. 32

SGD stochastic gradient descent. 38, 120
SMT statistical machine translation. 70
SoTA state-of-the-art. 1–3, 11, 15, 35, 36, 39, 65, 76
SQuAD Stanford Question Answering Dataset. 39
STE straight-through estimator. 94, 97, 110

TED Technology, Entertainment and Design. 72
TER Translation Error Rate. 120
TF-IDF term frequency-inverse document frequency. 54–57, 63

WMT Conference on Machine Translation. 39

157





List of Tables

4.1 Accuracy (in %) of models trained on various string editing tasks using only
training data from the 11–15 length bin evaluated on datasets with different
sequence lengths. Each model was evaluated on its respective task domain.
We reproduce the original table from Variš and Bojar (2021). . . . . . . . . . 44

4.2 Sizes of the respective training bins (created based on either source-side or
target-side sequence length) in millions of sentence pairs and millions of to-
kens (after tokenization and applying BPE, combined source and target size).
We reproduce the original table from Variš and Bojar (2021). . . . . . . . . . 45

5.1 Comparison of the translation performance of fine-tuned models with the
proposed elastic weight consolidation (EWC) regularization and previous lan-
guage model (LM) regularization. We compare the effects of pretraining
encoder-only (SRC), decoder-only (TGT ), and the whole Transformer net-
work (ALL). Each pretrained LM contains 3 Transformer layers. We perform
a comparison between the single best checkpoint and the model ensemble
using the parameter average of the last 4 best checkpoints. Results with the
proposed method outperforming previous work are in bold. We reproduce
the original table from Variš and Bojar (2019). . . . . . . . . . . . . . . . . . 75

5.2 Summary of the training dataset sizes used in the multilingual experiments. 84
5.3 Comparison of one-to-many translation models. We compare bilingual (1-4)

and jointly optimized (5-7) baselines withmodels fine-tuned without any reg-
ularization (8-10) andmodels fine-tuned using EWCwith different normaliza-
tion approaches (11-22). We compare the sample-level (sent) and max-value
(max) normalization of Fisher information matrix (FIM) in combination with
the original (orig) and the stabilized (stable) variant of the EWC regularizer.
Each model fine-tuning was initialized by the high-resource multi-lingual
model (7). Fine-tuned models that outperform the jointly trained multilin-
gual baseline (En→All) on a given language are in bold. . . . . . . . . . . . 85

159



5.4 Comparison of many-to-one translation models. We compare bilingual (1-
4) and jointly optimized (5-7) baselines with models fine-tuned without any
regularization (8-10) and models fine-tuned using EWC with different nor-
malization approaches (11-22). We compare the sample-level (sent) and max-
value (max) normalization of FIM in combination with the original (orig) and
the stabilized (stable) variant of the EWC regularizer. Each model fine-tuning
was initialized by the high-resourcemulti-lingual model (7). Fine-tunedmod-
els that outperformed the jointly trained multilingual (All→En) baseline are
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Model comparison on many-to-one translation. We compare both many-to-
one and many-to-many model variants. Scores of modular models that out-
perform their respective non-modular variants are highlighted in bold. Al-
though we do not focus on a direct comparison with the bilingual baselines,
we include them for reference. . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Model comparison on one-to-many translation. We compare both one-to-
many and many-to-many model variants. Scores of modular models that
outperform their respective non-modular variants are highlighted in bold.
Although we do not focus on a direct comparison with the bilingual base-
lines, we include them for reference. . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Results of manual comparison of the baseline bilingual andmulti-lingual neu-
ral machine translation (NMT) systems with the selected modular Trans-
former on German-to-English translation. The ∗∗, ∗ and × indicate how
many times the produced translation was very good, good, and bad, respec-
tively, according to the annotators. . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Results of manual comparison of the baseline bilingual and multi-lingual
NMT systems with the selected modular Transformer on Chinese-to-English
translation. The ∗∗, ∗ and × indicate how many times the produced transla-
tion was very good, good, and bad, respectively, according to the annotators. 106

160



List of Figures

3.1 Illustration of the original Transformer neural network (NN) architecture
proposed by Vaswani et al. (2017). Left: General structure of the Trans-
former encoder-decoder architecture. Middle: General description of the
Transformer multi-head attention block. Right: Detail of the scaled dot-
product attention used in the Transformer attention blocks. The illustration
was taken from the original publication. . . . . . . . . . . . . . . . . . . . . 27

4.1 The classical U-shaped curve showing the trade-off between the model size
and its ability to generalize on unseen data. We reproduce the original figure
from Belkin et al. (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The double-descent curve proposed by Belkin et al. (2019). The curve still
includes the previous U-shape curve, however, when themodel becomes over-
parametrized, its generalization error begins to decrease again (referred to as
interpolating regime. We reproduce the original figure from Belkin et al. (2019). 37

4.3 Input and output example for push and reverse tasks. Hyphen (−) indi-
cates an empty argument for the latter task. We reproduce the original figure
from Variš and Bojar (2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Top: Varying performance of Transformers on test data trained only on the
data from a specific target-side length bin (various lines) when evaluated on
a specific test bin (x-axis). When the train-test sentence length difference
increases, the performance drops. Note that BLEU scores are not directly
comparable across different test sets (i.e. horizontally). Within each test set,
we see that the Full CzEng and the training bin of the matching length are
the two best results. Bottom: Average ratio between a hypothesis and refer-
ence. Dashed line indicates a ratio of 1.0. Systems trained on short sentences
produce short outputs, and systems trained on long sentences produce up to
10x longer outputs (Train bin 80 evaluated on Test bin 10). We reproduce the
original figures from Variš and Bojar (2021). . . . . . . . . . . . . . . . . . . 46

4.5 Top: Varying performance of Transformers on test data trained only on the
data from a specific source-side length bin (various lines) when evaluated on
a specific test bin (x-axis). BLEU scores are not directly comparable across
different test sets (i.e. horizontally). Bottom: Average ratio between a hy-
pothesis and reference. Dashed line indicates a ratio of 1.0. We reproduce the
original figures from Variš and Bojar (2021). . . . . . . . . . . . . . . . . . . 48

161



4.6 Distribution of lengths of target-side references within the training (left) and
validation (right) datasets after splitting them into source-side length bin.
Both figures have an identical x-axis scaling for better comparison. The long
whiskers of the training bin length distributions are a result of noise in CzEng
2.0 training corpus. We reproduce the original figures from Variš and Bojar
(2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Example translations from systems trained on specific target-length-
restricted datasets. Both examples demonstrate the over- and under-
generation of systems trained on datasets containing longer (60-bin) and
shorter (10-bin) sentences when applied to inputs with the length of reference
translation different from the training data (30-bin). We provide rough, word-
for-word translations of the produced outputs (in italics) with color highlight-
ing of the selected phrases and their corresponding English translation for
better comprehension. The underline highlights grammatical errors or mis-
translations in the output. The original translation exampleswere reproduced
from (Variš and Bojar, 2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Emission probabilities of the <EOS> token at various decoding positions. Top:
Average output probability of a model trained on the whole CzEng dataset,
averaged over the full testset. Middle: Average output probability of a model
trained on the 50-bin dataset, averaged over the shorter sentences from the
testset. Bottom: 50-bin model, averaged over the longer sentences from the
testset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Comparison of the performance of a model trained on genuine data from the
60-bin dataset with models trained on synthetic 60-bin datasets created by
concatenation of 10-, 20- and 30-bin sentences respectively. We reproduce
the original figure from Variš and Bojar (2021). . . . . . . . . . . . . . . . . . 52

4.10 Comparison of the performance of a system trained on a combination of the
20- and 50-bin data (20+50) with systems that were trained only on a 20-bin
or 50-bin dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 <EOS> emission probabilities of the system trained on the combination of the
20- and 50-bi dataset during decoding of the testset. Each position contains
emission probabilities averaged across the dataset. Top: Average over the
whole testset. Bottom: Average over the combination of 30- and 40-bin test-
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Model performance degradation after removing the predetermined number
of examples from the training data, evaluated using the newstest17-20 test-
set. Left: Dataset filtering based on the source-side similarity scores. Right:
Filtering based on the target-side similarity. . . . . . . . . . . . . . . . . . . 55

162



4.13 Training dataset target-side sentence length distribution after removing a
specific number of the training examples with respect to various filtering
methods. The upscaled length distribution of the testset is provided for com-
parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14 Vocabulary sizes of the resulting training corpora. Top: Dataset filtering
based on the source-side similarity scores. Bottom: Filtering based on the
target-side similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.15 Kullback–Leibler (KL) divergence between the unigram distribution in the
filtered training corpora and the test dataset computed with respect to the
top-100 most frequent words (top), top-1000 most frequent words (middle)
and top-10000 most frequent words (bottom) in the test dataset, with prob-
abilities normalized with respect to the given vocabulary subsample. Left:
English source-side, right: Czech target-side. . . . . . . . . . . . . . . . . . . 58

4.16 Example of the named-entity identification and replacement in the testset.
The replaced token is in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.17 Named Entity copy accuracy with respect to the character length (top) and
subword length (bottom) of a given named entity. Left: Model perfor-
mance when trained on datasets with a source- side subword length thresh-
old. Right: Models trained on datasets with thresholded target-side. . . . . 61

4.18 BLEU performance of models trained on datasets with varying subword-
length threshold with respect to the character length of the generated named
entity replacement in the test data. . . . . . . . . . . . . . . . . . . . . . . . 62

4.19 Training dataset sizes after applying various subword length threshold filters. 62

5.1 Reason behind catastrophic forgetting, proposed by Kirkpatrick et al. (2017).
When a model is initialized with weights that achieve low error for Task A
and fine-tuned for Task B, lack of explicit regularization can lead to a solution
that has low error only for Task B even though a shared low error solution
for both tasks exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 neural machine translation (NMT)model performancewith different depth of
pretrained encoder language model (LM). The encoder initialized by the LM
was later fine-tuned using elastic weight consolidation (EWC) regularization.
The performance of a model trained from scratch is included for comparison.
We reproduce the original figure from Variš and Bojar (2019). . . . . . . . . . 75

5.3 Relative model perplexity convergence time comparison of models with pre-
trained decoder. The comparedmodels used either no regularization (no reg.),
LM regularization, or EWC regularization. Themodels were trained using the
same number of training examples, each initializedwith a pretrained LMwith
three Transformer layers. We reproduce the original figure from Variš and
Bojar (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

163



5.4 Top 100 values of the diagonal of the empirical Fisher information matrix
(FIM) in the context of different tasks (copy, reverse) using only the A-B se-
quences during training. Top: Normalization using the sample size. Bottom:
Normalization by the highest FIM diagonal value. . . . . . . . . . . . . . . . 79

5.5 Input and example for copy and reverse using different vocabulary subsets
for True Class Incremental learning (A-B, C-D). The former subset is used for
pretraining, the latter for model fine-tuning. . . . . . . . . . . . . . . . . . . 81

5.6 Accuracy comparison between the various combinations of FIM estimation
(sent, max) and the EWC regularization terms (orig, stable). The models fine-
tuned with different values of the hyper-parameter λ were evaluated using
our incremental class learning benchmark – the original task (A-B) was used
for model pretraining and the follow-up task (C-D) was used during fine-
tuning. Top: String copying (copy) task; all tasks reaching perfect accuracy.
Bottom: String reversal (reverse) task. Models were initially trained on ex-
amples with a, b tokens and later fine-tuned on the examples with c, d tokens.
The black dashed line indicates the test accuracy of the model used for initial-
ization of the reverse model fine-tunning, measured on the initial A-B task
validation data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Schema of the modular controller based on deep averaging network. Con-
troller input is processed by a series of feed-forward blocks and the output is
transformed by a sigmoid non-linearity into a set of Bernoulli distributions.
This figure illustrates the controller predicting a single set of masks for the
whole sentence (CtrlSeq). The average pooling layer is omitted in CtrlTok
and each input is processed in isolation. . . . . . . . . . . . . . . . . . . . . . 93

6.2 Schema of a generic modular layer. Layer input is processed by the layer
modules and the controller. The controller generates a set of binary masks
and disables a subset of modules (modules M2 and M4 in the example). . . . 93

6.3 Basic model performance with respect to varying values of the budget reg-
ularizer. Top: Model accuracy averaged over all tasks. Bottom: Average
mask selection (across the whole model). Left: Models using CtrlTok con-
troller. Right: Models using CtrkSeq controller. . . . . . . . . . . . . . . . . 98

6.4 Average module selection with respect to individual types of modular blocks.
The comparison of block type selection in the full modular Transfomer (top),
attn modular Transformer (middle), and ffn modular Transfomer (bottom).
Left: Mask prediction using individual tokens. Right: Masks predicted for
the whole sequence using average pooling on the controller input. The block
types (colored lines in the graph) are excluded from the subgraphs if they are
not modularized in a given Transformer variant. . . . . . . . . . . . . . . . 99

164



6.5 Average module selection entropy of the modular Transformer variants.
High entropy hints at the module selection being strongly conditioned on
the input. Low entropy implies module collapse, setting most of the module
masks to either 0 or 1 most of the time. Left: Transformer with the token-
level controller (CtrlTok); entropy averaged across all test tokens. Right:
Transformer with the sequence-level controller (CtrlSeq); entropy averaged
across all test sequences. The dashed line indicates the upper limit of the
module entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Task-conditional entropy of to the lowest conditional entropy modules in
the respective modular Transformer variants. Low entropy implies task-
conditioned selection of a module, i.e. specialization of the module, high en-
tropy implies the opposite. Left: Transformer with the token-level controller
(CtrlTok). Right: Transformer with the sequence-level controller (CtrlSeq).
The dashed line indicates the upper limit of the task-conditional entropy. . . 101

6.7 Model performance of modular multilingual Transformers with respect to
different values of the budget hyper-parameter p. Left: Many-to-one models.
Right: One-to-many models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Averagemodule selection inmodular multilingual Transformers with respect
to different values of the budget hyper-parameter p. Left: Many-to-one mod-
els. Right: One-to-many models. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.9 Individual module entropies of the full modular Transformer measured us-
ing the combined multilingual testset. The values in each layer (encoder_attn,
encoder_ffn, decoder_attn, enc_dec_attn, decoder_ffn) are sorted in the increas-
ing order. The higher the entropy of a particular module, the more the selec-
tion of that module depends on a specific input. Left: One-to-many model.
Right: Many-to-one model. As in Figure 6.10, the order of the layers does
not directly reflect the order of processing. . . . . . . . . . . . . . . . . . . . 107

6.10 Individual module selection probabilities of the full modular Transformer
measured using selection frequencies in the combined testset. The values in
each layer (encoder_attn, encoder_ffn, decoder_attn, enc_dec_attn, decoder_ffn)
are sorted in the increasing order. Left: One-to-many model. Right: Many-
to-one model. The order of the layers does not directly reflect the order of
processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.11 Task-conditional entropies of the full modular Transformer measured using
the combined multilingual testset. The values in each layer (encoder_attn, en-
coder_ffn, decoder_attn, enc_dec_attn, decoder_ffn) are sorted in the increas-
ing order. Left: one-to-many model. Right: many-to-one model. As in
Figure 6.10, the order of the layers does not directly reflect the order of pro-
cessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

165





List of Publications

Variš, D. – Bojar, O. Sequence Length is a Domain: Length-based Overfitting in
Transformer Models. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, p. 8246–8257, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics

• This paper presents the experiments probing the length-overfitting in Trans-
former models. This paper is the basis of the length-overfitting experiments
in Chapter 3

• Citations (without self-citations): 9

Variš, D. – Bojar, O. Unsupervised Pretraining for Neural Machine Translation
Using Elastic Weight Consolidation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Student Research Workshop, p. 130–135,
Florence, Italy, July 2019. Association for Computational Linguistics

• This paper introduces the work on unsupervised pretraining of low-resource
NMT models using monolingual corpora and fine-tuning using EWC regular-
ization. This paper is, in part, presented in Chapter 5.

• Citations (without self-citations): 12

Kocmi, T. – Variš, D. – Bojar, O. CUNI Basque-to-English Submission in IWSLT18.
In Turchi, M. – Niehues, J. – Federico, M. (Ed.) Proceedings of the International
Workshop on Spoken Language Translation, p. 142–146, Karlsruhe, Germany, 2018.
University of Brugge, Karlsruhe Institute of Technology

• This paper describes the submission to the IWSLT18 Basque-to-English low-
resource translation task.

• Citations (without self-citations): 1

Helcl, J. – Libovický, J. – Variš, D. CUNI System for theWMT18Multimodal Trans-
lation Task. In Bojar, O. (Ed.) Proceedings of theThird Conference on Machine Transla-
tion, Volume 2: Shared Tasks, 2, p. 622–629, Stroudsburg, PA, USA, 2018b. Association
for Computational Linguistics, Association for Computational Linguistics. ISBN 978-
1-948087-81-0

167



• This paper describes the submission of the multi-modal Transofmer model to
WMT18 Multi-modal Translation Task

• Citations (without self-citations): 73

Helcl, J. – Libovický, J. – Kocmi, T. – Musil, T. – Cífka, O. – Variš, D. – Bojar,
O. Neural Monkey: The Current State and Beyond. In Neubig, G. – Cherry, C. (Ed.)
The 13th Conference of The Association for Machine Translation in the Americas, Vol.
1: MT Researchers’ Track, p. 168–176, Stroudsburg, PA, USA, 2018a. The Association
for Machine Translation in the Americas, The Association for Machine Translation
in the Americas

• This paper describes the updated version of the Neural Monkey neural se-
quence learning framework.

• Citations (without self-citations): 10

Bojar, O. – Kocmi, T. – Mareček, D. – Sudarikov, R. – Variš, D. CUNI Submis-
sion in WMT17: Chimera Goes Neural. In Bojar, O. (Ed.) Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2: Shared Task Papers, 2, p. 248–256,
Stroudsburg, PA, USA, 2017. Association for Computational Linguistics, Association
for Computational Linguistics. ISBN 978-1-945626-96-8

• This paper describes the submission of the hybrid NMT system Chimera to
WMT17 News Translation task. Neural models were implemented in the Neu-
ral Monkey.

• Citations (without self-citations): 3

Bojar, O. – Dušek, O. – Kocmi, T. – Libovický, J. – Novák, M. – Popel, M. – Su-
darikov, R. – Variš, D. CzEng 1.6: Enlarged Czech-English Parallel Corpus with
Processing Tools Dockered. In Sojka, P. – Horák, A. – Kopeček, I. – Pala, K. (Ed.)
Text, Speech, and Dialogue: 19th International Conference, TSD 2016, no. 9924 in Lec-
ture Notes in Computer Science, p. 231–238, Cham / Heidelberg / New York / Dor-
drecht / London, 2016. Masaryk University, Springer International Publishing. ISBN
978-3-319-45509-9

• This paper describes a release of English-Czech parallel corpus CzEng 1.6, the
previous version of CzEng 2.0 used in the thesis.

• Citations (without self-citations): 89

Only publications relevant to this thesis are included. The number of citations was

computed using Google Scholar. Total number of citations of publications related to

the topic of the thesis (without self-citations): 197

168


	English Abstract
	Czech Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Research Questions
	Main Contributions
	Algorithmic Contributions
	Empirical Contributions

	Thesis Overview
	Origins

	Multi-task Learning
	Multi-task Learning
	Incremental Learning

	Neural Sequence-to-sequence Modeling
	Architecture Overview
	Transformers
	Transformer Training
	Transformer Decoding


	Generalization in NMT Transformers
	Sequence Length Overfitting
	Experiments

	Exploiting the Word Distribution Similarities
	Experiments

	Rare Word Transcription
	Experiments

	Conclusions

	Incremental Learning and Catastrophic Forgetting
	Elastic Weight Consolidation
	Weight Consolidation for Unsupervised Pretraining
	EWC Regularization of Submodules
	Experiments: Unsupervised NMT Pretraining

	Weight Consolidation Against Catastrophic Forgetting
	FIM Normalization and EWC Stabilization
	Experiments: String Editing
	Experiments: Multilingual NMT

	Conclusions

	Transformer Modularization
	Modular Transformer
	Module Controller
	Modular Blocks

	Experiments: String Editing
	Experiments: Multilingual NMT
	Conclusions

	Conclusions
	Main Findings
	Future Work

	Model Details
	Sequence Length Overfitting: String Editing
	Sequence Length Overfitting: Machine Translation
	Exploiting Word Distribution Similarity And Rare Word Transcription
	Incremental Learning: Unsupervised Low-Resource NMT Pretraining
	Incremental Learning: String Editing
	Incremental Learning: Multi-lingual NMT
	Modular Transformer: String Editing
	Modular Transformer: Multi-lingual NMT

	Bibliography
	List of Abbreviations
	List of Tables
	List of Figures
	List of Publications

