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Motional electromagnetic induction in
the subsurface ocean in Europa

Department of Geophysics

Supervisor of the bachelor thesis: doc. RNDr. Jakub Veĺımský, Ph.D.
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Introduction
Europa is one of the Jovian satellites, more specifically one of the Galilean moons.
What makes Europa interesting and worth our attention? Alongside with Callisto
and Ganymede, Europa has liquid water in the form of global ≈ 100 km thick
subsurface ocean, which is expected to be turbulent (Soderlund et al. [2014]).
Furthermore, this ocean is probably chemically rich and relatively warm, because
of the black smokers at the mantle–ocean boundary. From these assumptions,
Europa can be very promising candidate to host life (Blanc et al. [2020]).

The presence of dissociated salts in the subsurface ocean implies its relatively
high electrical conductivity. Therefore, the moon has significant inductive re-
sponse to the time variations of the ambient Jovian magnetic field as it moves
along its orbit. Indeed, the magnetic field measurements by the Galileo interplan-
etary probe were used to detect the presence of the subsurface ocean in Europa
(Khurana et al. [1998]).

The flow of conductive water in the presence of ambient magnetic field induces
electrical currents in the ocean which in turn generate the ocean–induced mag-
netic field (OIMF). From observations on Earth, it is known that OIMF provides
valuable information on flow and electrical conductivity (Grayver et al. [2017],
Veĺımský et al. [2021]). In this moment we have very little information regarding
magnetic field of Europa, but new data will be brought by two space missions:
the NASA’s Europa Clipper and the ESA’s JUICE in early 2030s.

So far, the generation of OIMF in Europa has been addressed only by (Vance
et al. [2021]). However, in their study, the solution of the electromagnetic induc-
tion (EMI) equation is avoided, and the estimates of OIMF are based only on
a scaling analysis. Under this simplification, they predict the OIMF strength of
approximately 20 nT - a value potentially observable by modern magnetometers
on board of interplanetary probes. An obvious next step, which is the topic of this
thesis, is to apply the EMI equation to obtain physically consistent predictions of
the Europa’s OIMF. A numerical solver of the time-domain EMI equation with
internal motional forcing is thus developed, tested, and subsequently applied to
a series of scenarios, using various electrical conductivity profiles (Vance et al.
[2021]), and elementary geometrical structures of the ocean flow.

In the first chapter, I formulate the problem of motional electromagnetic in-
duction in the subsurface ocean and introduce the numerical methods, which are
used. Formulation and numerical solution is based on the work of my supervi-
sor (Veĺımský and Martinec [2005]), but reimplemented in python programming
language.

In the second chapter, I take closer look on the system of linear equations
stemming from the numerical methods and the numerical solver.

The third chapter is focused on testing of the code against two semi-analytical
solutions.

In the fourth chapter I introduce the conductivity profiles of Europa’s interior,
and simplified models of the ocean flow. The predicted OIMFs are presented and
discussed in the final chapter.
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1. Electromagnetic induction
equation with motional forcing

1.1 Classical and integral formulation
We use the spherical coordinates r = (r, ϑ, φ), where r, ϑ and φ stand for radius,
colatitude and longitude. Europa is represented by a spherical domain G with
outer boundary ∂G at r = RE, where RE is the diameter of Europa, and the
outer normal is er.

1.1.1 Classical formulation
To formulate the EMI equation, the quasi–static approximation of the Maxwell
equations is used, namely

∇ × B = µ0j . . . . . . Ampère’s law, (1.1)

∇ × E = −∂B
∂t

. . . . . . Faraday’s law, (1.2)

j = σ (E + u × B) . . . . . . Ohm’s law, (1.3)

where B(r; t),E(r; t), j(r; t), σ(r; t) and u(r; t) denote the magnetic flux density,
electric field, free current density, electrical conductivity and the velocity, which
is non–zero only in the ocean layer. Generally, the electrical conductivity σ(r; t)
can vary both in space and time, but in this work, only 1–D, radially dependent
conductivity models σ(r) without time variation are used.

By combining equations (1.1–1.3), the general EMI equation is obtained

µ0
∂B
∂t

+ ∇ ×
(︃ 1
σ

∇ × B
)︃

= µ0∇ × (u × B) . (1.4)

The equation (1.4) implicitly satisfies Gauss’s law

∇ · B = 0. (1.5)

Using B → B + BJ , where B is the motionally induced magnetic field and BJ is
the ambient Jovian magnetic field, yields the EMI equation

µ0
∂B
∂t

+ ∇ ×
(︃ 1
σ

∇ × B
)︃

= µ0∇ × L − µ0
∂BJ

∂t
, (1.6)

where L(r; t) = u(r; t) × BJ(r; t) is the imposed electric field caused by the
Lorentz force action of the Jovian field on the moving charge carriers in the
saltwater ocean. For fields B and BJ holds |B| ≪ |BJ | and the Jovian magnetic
field can be expressed by a magnetic potential, BJ = −∇UJ .

The boundary and initial conditions for (1.6) are

B(ext)(r; t) = 0|∂G, B(r; 0) = B0(r). (1.7)

B(ext)(r; t) is the external part of magnetic field, generated by electric currents
outside the conductor. This is a short formulation, where the magnetic field in
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the insulating surroundings of the moon can be represented by scalar magnetic
potential U(r; t), so that B = −∇U |∂G, ∆U = 0 for r ≥ RE and U ≈ O( 1

r2 ) as
r → ∞. The modelling of the EMI excited by time variations of the external field
is outside of the scope of this thesis. However, the externally induced magnetic
field and the OIMF are additive.

1.1.2 Integral (weak) formulation
Multiplying (1.6) by an arbitrary test function δB and integrating over G yields

µ0

∫︂
G

∂B
∂t

· δBdV +
∫︂

G
∇ ×

(︃ 1
σ

∇ × B
)︃

· δBdV =

µ0

∫︂
G

(∇ × L) · δBdV − µ0

∫︂
G

∂BJ

∂t
· δBdV. (1.8)

The Green theorem for rotation operators and sufficiently smooth functions h(r),
f(r), and g(r) reads as∫︂

G
∇ × (h∇ × f) · gdV =∫︂

G
h (∇ × f) · (∇ × g) dV −

∫︂
∂G
h (∇ × f) · (e⃗r × g) dS. (1.9)

Application of the Green theorem to equation (1.8) yields the integral formulation
of the EMI equation,

µ0

∫︂
G

∂B
∂t

· δBdV +
∫︂

G

1
σ

(∇ × B) · (∇ × δB) dV =

= µ0

∫︂
G

(∇ × δB) · LdV − µ0

∫︂
G

∂BJ

∂t
· δBdV. (1.10)

Let µ0 > 0 be the magnetic permeability, σ(r) ∈ L+
∞(R̄,R) ∩ C0(R̄) the

electrical conductivity, where R̄ =< 0, RE >, BJ(r; t) ∈ C1(Ī; L2(G,R3)) the
Jovian magnetic field and L(r; t) ∈ C0(Ī; L2(G,R3)) the imposed electric field,
where Ī =< t0, t1 >. Let B0(r) ∈ V0T be the initial condition, at t0 = 0. We
want to find solution B(r; t) ∈ C1(Ī;V0T ) which solves (1.10), ∀δB(r) ∈ V0 and
∀t ∈ I. Functional spaces are defined in Table 1.1. The boundary condition takes
the form ∫︂

∂G

[︄
S(−1)

jm + 1
j

S(1)
jm

]︄
· BdS = 0, (1.11)

∀j = 1, 2, . . . ,∞, m = −j, . . . , 0, . . . ,+j and ∀t ∈ I. This is the external bound-
ary condition and will be discussed in subsection 1.2.1. The spherical harmonic
vectors S(−1)

jm and S(1)
jm are defined in appendix A.2.

1.2 Problem discretization
For the numerical solution we use a combination of finite element parameteri-
zation in the radial coordinate, and spherical harmonic functions (SHF) in the
lateral coordinates. The respective definitions and properties are included in
Appendices A.3 and A.2.

5



Table 1.1: Definitions of functional spaces. The toroidal–poloidal decomposition
of a divergence-free vector field, which is used in the definitions of functional
spaces, is recalled in appendix A.1.

C0
(︂
R̄;R

)︂
real scalar functions continuous on the interval R̄.

L+
∞(R̄,R) real scalar positive functions bounded on the interval R̄.

L2(G,R3) real vector functions, square–integrable in G. Scalar product
(f ,g)L2 =

∫︂
G

f · gdV is generating norm ∥f∥L2 =
√︂

(f , f)L2
.

Hcurl real vector functions f ∈ L2(G,R3) such that ∇× f ∈ L2(G,R3).
Scalar product (f ,g)Hcurl =

∫︂
G

(f · g + (∇ × f) · (∇ × g)) dV is

generating norm ∥f∥Hcurl =
√︂

(f , f)
Hcurl

.
Hcurl,0 real vector functions f ∈ Hcurl such that er × f = 0 on ∂G.
Hcurl,0T real vector functions f ∈ Hcurl such that er × fT = 0 on ∂G,

where fT is the toroidal part of f .
H0

div real vector functions f ∈ L2(G,R3) such that ∇ · f = 0 in G.
V0 real vector functions f ∈ Hcurl,0 ∩H0

div.
V0T real vector functions f ∈ Hcurl,0T ∩H0

div.
Cn(Ī;S) space of all mappings from the closed time interval Ī =< t0, t1 >

to a functional space S, continuous up to the n–th derivative
with respect to time.

1.2.1 Spherical harmonic expansions
The spherical harmonic functions provide very powerful tool for solving partial
differential equations in spherical coordinates. The magnetic field B(r; t) can be
expressed in the vector spherical harmonic basis

B(r; t) =
∞∑︂

j=1

j∑︂
m=−j

1∑︂
λ=−1

B
(λ)
jm(r; t)S(λ)

jm(Ω). (1.12)

Note that the term (j,m) = (0, 0) in the spherical harmonic expansion is omitted,
as it would correspond to a magnetic field generated by a monopole, in contra-
diction to the Gauss law (1.5). The vectors δB, BJ and L are expressed in the
same way.

As introduced in subsection 1.1.1, the boundary condition

B(ext)(r; t) = 0|∂G (1.13)

is defined by the continuity of the magnetic field across the boundary ∂G

B = −∇U |∂G, (1.14)

where the scalar magnetic potential U(r; t) is an analytical solution for the
Laplace equation ∆U = 0 for r ≥ RE, in the absence of external sources of
magnetic field. This analytical solution can be written as a series of scalar spher-
ical harmonic functions Yjm(Ω),

U(r; t) = RE

∑︂
jm

[︄
G

(e)
jm(t)

(︃
r

RE

)︃j

+G
(i)
jm(t)

(︃
RE

r

)︃j+1]︄
Yjm(Ω). (1.15)

6



The coefficients G(i)
jm(t) and G

(e)
jm(t) represent the internal and external field, re-

spectively. By using property (A.14) we obtain

∇U =
∑︂
jm

[︄
jG

(e)
jm(t)

(︃
r

RE

)︃j−1
− (j + 1)G(i)

jm(t)
(︃
RE

r

)︃j+1]︄
S(−1)

jm +

+
∑︂
jm

[︄
G

(e)
jm(t)

(︃
r

RE

)︃j−1
+G

(i)
jm(t)

(︃
RE

r

)︃j+1]︄
S(1)

jm,

and due to (1.12) and (1.14) the coefficients of B at r = RE then satisfy

B
(0)
jm(RE; t) = 0,

B
(−1)
jm (RE; t) = −

[︂
jG

(e)
jm(t) − (j + 1)G(i)

jm(t)
]︂
,

B
(1)
jm(RE; t) = −

[︂
G

(e)
jm(t) +G

(i)
jm(t)

]︂
.

By eliminating G(i)
jm(t), we obtain

B
(0)
jm(a; t) = 0, (1.16)

B
(−1)
jm (a; t) + (j + 1)B(1)

jm(a; t) = −(2j + 1)G(e)
jm(t), (1.17)

where G
(e)
jm(t) = 0 in the absence of external fields. Using the orthogonality

of spherical harmonic functions, the boundary condition (1.17) is equivalently
expressed by an infinite set of integral conditions

∫︂
∂G

[︄
S(−1)

jm + 1
j

S(1)
jm

]︄
· BdS = 0, (1.18)

∀j = 1, . . . ,∞ and m = −j, . . . , 0, . . . , j. However, condition (1.17) is preferred,
as it can be directly applied to the construction of the discretization of the func-
tional space V0T .

Divergence–free condition ∇·B = 0 must be fulfilled, but due to the properties
of the spherical harmonic vectors, as we can see in equations (A.15–A.17), only the
toroidal components satisfy this condition implicitly. However, by the means of
the Lagrange multipliers we can suppress the divergence of the poloidal–scaloidal
components. In order to do that, the penalty term∫︂

G
[δΛ(∇ · B) + Λ(∇ · δB)] dV (1.19)

is added to the left–hand side of integral formulation. Λ(r; t) is expanded into
scalar spherical harmonic functions

Λ(r; t) =
∞∑︂

j=1

j∑︂
m=−j

Λjm(r; t)Yjm(Ω), (1.20)

and similarly for δΛ(r; t).
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1.2.2 Finite element method
Following the expansion of B(r; t) into the vector spherical harmonic basis, we
introduce the radial discretization using piecewise linear elements, as defined in
equation (A.21),

B
(λ)
jm(r; t) =

kmax+1∑︂
k=1

B
(λ,k)
jm (t)ψk(r). (1.21)

Similar expansion is used also for the test functions δB.
The boundary conditions (1.16–1.17) have the discrete form

B
(0,kmax+1)
jm = 0, (1.22)

B
(−1,kmax+1)
jm + (j + 1)B(1,kmax+1)

jm = 0. (1.23)

The coefficients L(λ)
jm(r; t),Λjm(r; t) and the electrical conductivity σ(r) are

represented by piecewise constant functions ξk, defined in equation (A.22),

L
(λ)
jm(r; t) =

kmax∑︂
k=1

L
(λ,k)
jm (t)ξk(r), (1.24)

Λjm(r; t) =
kmax∑︂
k=1

Λ(k)
jm(t)ξk(r), (1.25)

σ(r) =
kmax∑︂
k=1

σkξk(r). (1.26)

1.2.3 Assembly of the linear problem
Using relations from subsection 1.2.1 and 1.2.2, discretization of the integral
formulation gives us the left–hand side terms,

µ0

∫︂
G

∂B
∂t

· δBdV = µ0
∑︂
jm

∑︂
kk′
Ikk′

[︃
δB

(−1,k)
jm Ḃ

(−1,k′)
jm +

+j(j + 1)δB(0,k)
jm Ḃ

(0,k′)
jm + j(j + 1)δB(1,k)

jm Ḃ
(1,k′)
jm

]︃
, (1.27)

∫︂
G

1
σ

(∇ × B) · (∇ × δB) dV =
∑︂
jm

∑︂
kk′
j(j + 1)

[︂
δB

(−1,k)
jm B

(−1,k′)
jm K

(1)
kk′−

−δB(1,k)
jm B

(−1,k′)
jm K

(3)
kk′ − δB

(−1,k)
jm B

(1,k′)
jm K

(4)
kk′ + δB

(1,k)
jm B

(1,k′)
jm K

(2)
kk′+

+δB(1,k)
jm B

(1,k′)
jm K

(2)
kk′ + δB

(0,k)
jm B

(0,k′)
jm

[︂
j(j + 1)K(1)

kk′ +K
(2)
kk′

]︂]︂
, (1.28)

and the right–hand side,

µ0

∫︂
G

(∇ × δB) · LdV = µ0
∑︂
jm

∑︂
kk′
j(j + 1)

[︂
−δB(−1,k)

jm L
(0,k′)
jm Θ(2)

kk′+

+δB(1,k)
jm L

(0,k′)
jm Θ(4)

kk′ − δB
(0,k)
jm

(︂
L

(−1,k′)
jm Θ(2)

kk′ + L
(1,k′)
jm Θ(4)

kk′

)︂]︂
, (1.29)
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µ0

∫︂
G

∂BJ

∂t
· δBdV = µ0

∑︂
jm

∑︂
kk′
Ikk′

[︃
δB

(−1,k)
jm Ḃ

(−1,k′)
J,jm +

+j(j + 1)δB(0,k)
jm Ḃ

(0,k′)
J,jm + j(j + 1)δB(1,k)

jm Ḃ
(1,k′)
J,jm

]︃
. (1.30)

The penalty term (1.19) takes the form
∫︂

G
[δΛ(∇ · B) + Λ(∇ · δB)] dV =

∑︂
jm

∑︂
kk′

[︂
δΛ(k)

jmB
(−1,k′)
jm Θ(5)

kk′−

−j(j + 1)δΛ(k)
jmB

(1,k′)
jm Θ(1)

kk′ + Λ(k′)
jm δB

(−1,k)
jm Θ(6)

kk′ − j(j + 1)Λ(k′)
jm δB

(1,k)
jm Θ(2)

kk′

]︂
.

(1.31)

A list of integrals I,K,Θ with their values is found in Appendix A.4.
The Galerkin discretization gives us a system of ordinary equations

M1 · ∂x(t)
∂t

+M2 · x(t) = b(t). (1.32)

Thanks to 1-D (radial) conductivity, equation (1.32) is solved separately for each
combination of spherical harmonic degree j and order m, and for the toroidal
and poloidal part. The penalty term (1.19) is present only in the poloidal part.
Matrices M1 and M2, the solution vector x(t) and the right hand side vector
b(t) in the toroidal part have different structures than their counterparts in the
poloidal part, as discussed in next chapter.

The equation (1.32) is solved implicitly, with time derivative approximation

∂x(t)
∂t

≈
i+1x − ix

∆t . (1.33)

Hence, the time integration scheme is written as(︃ 1
∆tM1 +M2

)︃
i+1x = 1

∆tM1
ix + i+1b, (1.34)

where ix and ib relate to their value at the time level ti = t0 + i∆t.

9



2. Numerical solver
My goal is to solve repeatedly for each time step a system of linear equations

Ax = y, (2.1)

where A is an N ×N matrix and vectors x, y have dimension N , for each degree
j and order m.

2.1 Toroidal part (λ = 0)
Vector x has structure

x =
(︂

i+1B
(0,1)
jm , . . . , i+1B

(0,kmax+1)
jm

)︂
(2.2)

Ator is a tridiagonal symmetric matrix, N = kmax +1. The individual components
are

akk′ = 1
∆tµ0j(j + 1)Ikk′ + j(j + 1)

[︂
j(j + 1)K(1)

kk′ +K
(2)
kk′

]︂
. (2.3)

It depends only on the spherical harmonic degree j, the radial conductivity model,
the radial discretization, and the time step ∆t.

The right hand–side vector has structure

y = (y1, . . . , ykmax+1) , (2.4)

where the individual components are described as

yk = µ0j(j + 1)
k+1∑︂

k′=k−1

[︃ 1
∆tIkk′

(︂
iB

(0,k′)
jm − i+1B

(0,k′)
J,jm + iB

(0,k′)
J,jm

)︂
−

−i+1L
(−1,k′)
jm Θ(2)

kk′ − i+1L
(1,k′)
jm Θ(4)

kk′

]︂
. (2.5)

The boundary condition

B
(0,kmax+1)
jm = 0 (2.6)

needs to be accounted for. This is done by making the last row of matrix Ator

only zeros except the last element, which I set to one, and setting ykmax+1 = 0.

2.2 Poloidal part (λ = −1, 1)
Vector x has structure

x(t) =
(︄{︃[︂

i+1B
(λ,k)
jm

]︂
λ=−1,1

, i+1Λ(k)
jm

}︃kmax+1

k=1

)︄
. (2.7)

Apol is a block–tridiagonal symmetric matrix, N = 3(kmax + 1). The individual
3 × 3 blocks are

Akk′ =

⎛⎜⎜⎝
µ0Ikk′ + j(j + 1)K(1)

kk′ −j(j + 1)K(4)
kk′ Θ(6)

kk′

−j(j + 1)K(3)
kk′ j(j + 1)

[︂
µ0Ikk′ +K

(2)
kk′

]︂
−j(j + 1)Θ(2)

kk′

Θ(5)
kk′ −j(j + 1)Θ(1)

kk′ 0

⎞⎟⎟⎠ .
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It also depends on the spherical harmonic degree j, the discretized conductivity
profile, and the time step ∆t.

The right hand–side vector has structure

y =
(︃{︂
γ

(−1)
k , γ

(1)
k , 0

}︂kmax+1

k=1

)︃
, (2.8)

where the first component is described as

γ
(−1)
k = µ0

k+1∑︂
k′=k−1

[︃ 1
∆tIkk′

(︂
iB

(−1,k′)
jm − i+1B

(−1,k′)
J,jm + iB

(−1,k′)
J,jm

)︂
−

−j(j + 1)L(0,k′)
jm Θ(2)

kk′

]︂
, (2.9)

and the second one as

γ
(1)
k = µ0j(j + 1)

k+1∑︂
k′=k−1

[︃ 1
∆tIkk′

(︂
iB

(1,k′)
jm − i+1B

(1,k′)
J,jm + iB

(1,k′)
J,jm

)︂
+

+L(0,k′)
jm Θ(4)

kk′

]︂
. (2.10)

As in the toroidal part, the boundary condition is enforced by including the
constraint

B
(−1,kmax+1)
jm + (j + 1)B(1,kmax+1)

jm = 0 (2.11)
in the linear system. The Lagrange multiplier Λ equals to 0 in the uppermost
layer.

Setting for k = kmax + 1, k′ = kmax

Akk′ =

⎛⎜⎝µ0Ikk′ + j(j + 1)K(1)
kk′ −j(j + 1)K(4)

kk′ Θ(6)
kk′

0 0 0
0 0 0

⎞⎟⎠ ,
for k = kmax + 1, k′ = kmax + 1

Akk′ =

⎛⎜⎝µ0Ikk′ + j(j + 1)K(1)
kk′ −j(j + 1)K(4)

kk′ 0
1 j + 1 0
0 0 1

⎞⎟⎠
, and γ

(1)
kmax+1 = 0, we achieve desired result.

2.3 Code
The numerical solver is written in Python 3.8.10. The respective systems of
linear equations for the toroidal and poloidal part are solved by python–imported
LAPACK subroutines, see Table 2.1.

The matrices Ator and Apol are only dependent on time step ∆t. Hence, a LU
factorization, which for tridiagonal and banded matrices has computational cost
of O(N2), is calculated only once during the initialization. At each time step
only the back–substitution is performed at the cost of O(N).
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Table 2.1: LAPACK subroutines

dgttrf() computes an LU factorization of a real tridiagonal matrix A.
This subroutine is used in toroidal part. Inputs must be diago-
nal, subdiagonal and superdiagonal of the matrix A.

dgttrs() solves a system of equations with a tridiagonal matrix A using
the LU factorization computed by dgttrf().

dgbtrf() computes an LU factorization of a real banded matrix A. This
subroutine is used in poloidal part. Inputs must be matrix A in
banded storage, dimensions in band storage (2KL+KU+1, N),
number of subdiagonals KL and number of superdiagonals KU .

dgbtrs() solves a system of equations with a banded matrix A using the
LU factorization computed by dgbtrf().
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3. Test against semi–analytical
solution
The purpose of the test is to verify the correctness of the problem formulation
and its implementation. We assume a 2–layer sphere with the size of the Earth,
but with unrealistically deep ocean in the upper layer;

• b = 5000 km; radius of inner sphere,

• σB = 1 S/m; conductivity of inner sphere,

• a = 6371 km; radius of surface,

• σA = 3.5 S/m; conductivity of the spherical ocean layer.

The EMI equation

µ0
∂B
∂t

+ ∇ ×
(︃ 1
σ

∇ × B
)︃

= µ0∇ × L (3.1)

is reformulated in the frequency domain, assuming the ocean forcing has harmonic
time dependence with angular frequency ω,

ω = 2π
T

= 2π
180 days , (3.2)

−ıωµ0B̃ + ∇ ×
(︃ 1
σ

∇ × B̃
)︃

= µ0∇ × L̃, (3.3)

where the imposed electric field

L̃ = ũ × B̃0 (3.4)

is zonal in the ocean layer. Two separate cases are considered, one for the toroidal
part and one for the poloidal part,

L̃ =
∑︂
jm

Sjm

(︃
r

a

)︃j+1
Yj+1

jm , (3.5)

L̃ =
∑︂
jm

Sjm

(︃
r

a

)︃j

Yj
jm. (3.6)

The complex spherical harmonic vectors Yj−1
jm , Yj

jm, and Yj+1
jm , that are used

in the semi–analytical solution, represent an alternative system of orthogonal
function to the one defined in A.2. Their definition can be found in (Varshalovich
[1989], pages 210–211).

Equation (3.3) has general solution, which is based on the expansion using
spherical Bessel functions and a particular solution in the ocean layer, which can
be derived analytically for the forcing defined by (3.5) or (3.6). The coefficients
of the general solution in both layers are determined numerically by solving a
simple linear system defined by the boundary conditions on the inner and outer
interfaces of the two-layer model. Full explanation is presented in Appendix A.5.
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3.1 Test implementation in the time domain
Each test was conducted only for j = 1,m = 0. The following settings were used:

• initial condition B0 = 0

• imposed electric field L(t) = 2Re{L̃eiωt}

• radial discretization of radius 6371 km to 1 km intervals

• ∆t = 3600 s; tmax = 10T days → number of time steps tmax/∆t = 43200

In order to suppress the transient effect of the initial condition, the solver is run
for 10 periods. Results from the last period are transformed into the Fourier
domain using the numerical integration

B̃(ω) = 1
T

∫︂ 10T

9T
B(t)e−iωtdt, (3.7)

and compared to the analytical solution.

3.1.1 Toroidal part
The result of the toroidal field benchmark is shown in Figure 3.1, where a ra-
dial dependence of the real and imaginary components of Bφ is plotted at fixed
colatitude ϑ = 140 degrees. The match between both solutions is perfect, thus
demonstrating the correctness of the FEM implementation for the toroidal field.

Figure 3.1: Radial depedence of the real and imaginary components Bφ at fixed
colatitude ϑ = 140 degrees.
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3.1.2 Poloidal part
The results of the poloidal field benchmark are shown in Figures 3.2 and 3.3,
where a radial dependence of the real and imaginary components of Br and Bϑ is
plotted at fixed colatitude ϑ = 140 degrees. Both solutions for Br and Bϑ match
perfectly, thus demonstrating the correctness of the FEM implementation for the
poloidal field.

Figure 3.2: Radial depedence of the real and imaginary components Br at fixed
colatitude ϑ = 140 degrees.

Figure 3.3: Radial depedence of the real and imaginary components Bϑ at fixed
colatitude ϑ = 140 degrees.
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4. Modelling setup

4.1 Inner structure of Europa and conductivity
profiles

We use a simplified model of Europa consisting of three spherical layers ordered
from inside to the surface: silicate mantle, ocean layer and ice shell. An artistic
depiction is shown in Figure 4.1, however note that our simplified model does not
include the highly conductive metallic core. Its presence would lead to a steeper
attenuation of the OIMF as r → 0.

Figure 4.1: Artistic description of the internal structure of Europa. Mod-
ified from an original image by NASA (public domain). Source page:
http://photojournal.jpl.nasa.gov/catalog/PIA01669.

The mantle of the Europa is made of the silicates, so we take the conductivity
σmantle = 10−4 S/m.

As discussed in (Vance et al. [2021]), the flux of oxygen generated on the
surface of the ocean can create acidic conditions and lead to the presence of
MgSO4 in the subsurface ocean. Based on their previous work (Vance et al.
[2018]), they assume MgSO4 salinity of 10 wt%. Alternatively, an Earth-like
ocean composition is assumed with NaCl salinity of 3.5165 wt%, which we further
call just seawater. In addition, they also tested models, where salinity is reduced
by factor of 10. All relevant parameters of the four ocean types are described in
Table 4.1. The thicknesses of the surface ice and subsurface ocean are also varied.

Ice is generally very bad conductor and its conductivity depends on pres-
ence of cracks filled with saline fluid, hence we explore a rather wide range of
conductivities σice ≈ 10−9 − 10−4 S/m.
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Model Do (km) Di (km) σ̄ (S/m) σtop (S/m)
Aa MgSO4 1 wt% 117 5 0.4533 0.4107
Ab MgSO4 1 wt% 91 30 0.4132 0.3847
Ba MgSO4 10 wt% 124 5 3.7646 3.3197
Bb MgSO4 10 wt% 96 30 3.3661 3.0763
Ca Seawater 0.35165 wt% 117 5 0.3855 0.3415
Cb Seawater 0.35165 wt% 91 30 0.3651 0.3339
Da Seawater 3.5165 wt% 119 5 3.0760 2.7347
Db Seawater 3.5165 wt% 91 30 2.8862 2.6476

Table 4.1: Do, Di denote the thicknesses of ocean and ice layer, σ̄ is the mean
value of conductivity in the ocean, and σtop is the value of conductivity at the
ice–ocean interface. Radial depedency of conducitivity profiles is plotted in Figure
(4.2). These parameters are taken from (Vance et al. [2021], pages 9–10).

Figure 4.2: Depth dependent conductivity profiles in Europa ocean. The contin-
uous and the dashed lines correspond respectively to Di = 5 km (*a models) and
to Di = 30 km (*b models).

4.2 Jovian ambient magnetic field
In all models a homogeneous Jovian magnetic field is assumed, expressed in spher-
ical coordinates as

BJ(ϑ) = −BJ(cos(ϑ),− sin(ϑ), 0), (4.1)

which passes Europa in the direction of axis from north to south pole. Constant
BJ represents magnitude of Jovian magnetic field near Europa and its value is
calculated as

BJ = BR

(︃
RJ

Ro

)︃3
≈ 5.046 · 102 nT.

BR = 4.17 · 105 nT is magnitude of field at Jupiter’s equator, RJ = 7.1492 · 107

m is radius of the Jupiter and Ro = 6.709 · 108 m is the mean orbital radius of
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Europa.
By neglecting the movements of Europa in the Jovian magnetic field, the EMI

equation (1.6) for Europa is simplified to

µ0
∂B
∂t

+ ∇ ×
(︃ 1
σ

∇ × B
)︃

= µ0∇ × L. (4.2)

4.3 Simplified velocity models
Three simple analytical velocity models are created. We describe these models
with their corresponding imposed electrical fields L in subsections (4.3.1–4.3.3).

All models have velocities, which satisfy the non–divergence property

∇ · u = 0.

For simplicity, we assume stationary velocity fields in the presented models,
hence we aim to integrate the EMI equation (1.6), until it reaches a stationary
solution. From the estimation of Europa’s ocean flow (Vance et al. [2021], page
19), conditions on velocities are placed

|ur| ≤ 0.07 m/s, |uϑ| ≤ 0.3 m/s, |uφ| ≤ 3 m/s. (4.3)

4.3.1 Model 1
We assume axisymmetric zonal flow

u =

⎛⎜⎝ 0
0

Cu sin(ϑ)

⎞⎟⎠ , (4.4)

where Cu = 3 m/s in order to satisfy (4.3). A cross-section of the flow is displayed
in Figure 4.3. Then

L = u × BJ = −BJCu

⎛⎜⎝ sin2(ϑ)
cos(ϑ) sin(ϑ)

0

⎞⎟⎠ . (4.5)

By using definition of spherical harmonic vectors, a following expansion can
be made,

L = L
(−1)
00 S(−1)

00 + L
(−1)
20 S(−1)

20 + L
(1)
20 S(1)

20 . (4.6)
Only the coefficients L(−1)

20 and L
(1)
20

L
(−1)
20 = 2

3

√︄
4π
5 BJCu, (4.7)

L
(1)
20 = −1

3

√︄
4π
5 BJCu, (4.8)

are used in the computation. The coefficient L(−1)
00 is omitted due to the definition

of spherical harmonic expansion in subsection 1.2.1.
As the imposed electric field L is purely poloidal, its rotation is toroidal,

and therefore the motionally induced magnetic field is fully described by a single
toroidal term,

B = B
(0)
20 S(0)

20 . (4.9)
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Figure 4.3: Model 1: Zonal velocity uφ. In this case, there are only prograde
flows.

4.3.2 Model 2
We assume velocity

u = Cu

⎛⎜⎝ u1(r) cos(ϑ)
− (u1(r) + u2(r)) sin(ϑ)

0

⎞⎟⎠ , (4.10)

where

u1(r) = sin
(︃
π
r − r1

r2 − r1

)︃
, (4.11)

u2(r) = πr

2(r2 − r1)
cos

(︃
π
r − r1

r2 − r1

)︃
, (4.12)

and again, enforcing (4.3) only for ur, so Cu = 0.07 m/s. Note that this flow
satisfies the impermeable boundary conditions on both ocean interfaces. As seen
in the cross-section in Figure 4.4, the flow pattern consists of a single convection
cell with an upwelling located at the north pole, and a downwelling at the south
pole. Then, the imposed electric field L is expressed as

L = u × BJ = −BJCu

⎛⎜⎝ 0
0

u2(r) cos(ϑ) sin(ϑ)

⎞⎟⎠ = L
(0)
20 S(0)

20 , (4.13)

L
(0)
20 = 1

3

√︄
4π
5 BJCuu2(r). (4.14)

As the imposed electric field L is purely toroidal, its rotation is poloidal, and
therefore the motionally induced magnetic field is fully described by two poloidal
terms,

B = B
(−1)
20 S(−1)

20 +B
(1)
20 S(1)

20 . (4.15)
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Figure 4.4: Model 2: Radial velocity ur and meridional velocity uϑ. For ur,
positive (negative) values denote upwelling (downwelling) flows, and for uϑ, posi-
tive (negative) values denote flows coming from the north pole (toward the north
pole).

4.3.3 Model 3
We assume velocity

u = Cu

⎛⎜⎝ −u1(r)(6 cos2(ϑ) − 2)
(2u1(r) + u2(r)) sin(2ϑ)

0

⎞⎟⎠ , (4.16)

where

u1(r) = sin
(︃
π
r − r1

r2 − r1

)︃
, (4.17)

u2(r) = πr

(r2 − r1)
cos

(︃
π
r − r1

r2 − r1

)︃
, (4.18)

and again, we use (4.3) to constrain the flow amplitude of ur, so Cu = 7/400
m/s. As shown in Figure 4.5, there is an upwelling located at the equator, with
two convection cells carrying the water respectively to the northern and southern
poles, where it descends to the ocean bottom. The imposed electric field L is
expressed as

L = u × BJ = −2BJCu

⎛⎜⎝ 0
0

((u1(r) − u2(r)) cos2(ϑ) − u1(r)) sin(ϑ)

⎞⎟⎠ =

= L
(0)
10 S(0)

10 + L
(0)
30 S(0)

30 ,

(4.19)

L
(0)
10 = −2

5

√︄
4π
3 BJCu(4u1(r) + u2(r)), (4.20)

L
(0)
30 = 4

15

√︄
4π
7 BJCu(u1(r) − u2(r)). (4.21)
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Figure 4.5: Model 3: Radial velocity ur and meridional velocity uϑ.

As the imposed electric field L is purely toroidal, its rotation is poloidal, and
therefore the motionally induced magnetic field is fully described by four poloidal
terms,

B = B
(−1)
10 S(−1)

10 +B
(1)
10 S(1)

10 +B
(−1)
30 S(−1)

30 +B
(1)
30 S(1)

30 . (4.22)
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5. Results

5.1 Model 1
In Model 1, there is no big differences between the OIMFs calculated for different
ice conductivities, so I only show results for σice = 10−9 S/m. Figure 5.1 shows
the radial profiles of the zonal magnetic field along fixed colatitude of 45 degrees.
For all conductivity models the magnetic field is contained in the ocean layer. It
quickly diffuses both downwards to the sillicate mantle and upwards to the ice
shell. As demonstrated in the cross-section plots in Figures 5.2a and 5.2b, the
field has opposite signs in the northern and southern hemisphere. On the ice-
atmosphere boundary, it is exactly zero as required by the boundary condition.

Figure 5.1: Model 1: Component Bφ, at colatitude ϑ = 45 degrees. In first row
are oceans with lower salinities in second row are oceans with higher salinities.

(a) Model 1: Cross-section of the zonal
magnetic field Bφ, conductivity Ba.

(b) Model 1: Cross-section of the zonal
magnetic field Bφ, conductivity Bb.
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5.2 Model 2

5.2.1 Low-salinity models
In case of Model 2 and low-salinity profiles A* and C*, we show in Figure 5.3 the
radial profiles of Br and Bϑ for ice layer conductivities σice = 10−9 − 10−8 S/m.
The solution depends both on the ice conductivity and thickness. For higher ice
conductivities, the differences between the solutions are reduced. In Figure 5.4
we show the quadrupolar spatial structure of the OIMF. In general, the OIMFs
generated for low salinity profiles have small amplitudes on the surface and would
be difficult to observe.

Figure 5.3: Model 2: Components Br and Bϑ, at colatitude ϑ = 45 degrees.
Lower salinities, continous line for 5 km ice thickness and dashed line for 30 km
ice thickness. Colour markings correspond to the ice layer conductivity.

5.2.2 High-salinity models
Figure 5.5 shows the OIMF profiles for the high-salinity models B* and D*.
Here the OIMFs are systematically stronger than in the low-salinity cases. The
quadrupolar structure is preserved as demonstrated in Figure 5.6, where we show
the run with the highest amplitudes.

5.3 Model 3
The effects of the ocean salinities and ice conductivities and thicknesses in case
of Model 3 are similar to the case of Model 2. We summarize the radial profiles
for the low-salinity cases in Figure 5.7, and for the high-salinity cases in Figure
5.8. In Figure 5.9 we show the results with the largest amplitude of the radial
OIMF component, which was obtained for the ice thickness of 5 km, and the ice
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Figure 5.4: Model 2: Cross-sections of the OIMF, conductivity model Aa, σice =
10−8 S/m.

Figure 5.5: Model 2: Components Br and Bϑ, at colatitude ϑ = 45 degrees.
Higher salinities, continous line for 5 km ice thickness and dashed line for 30 km
ice thickness. Colour markings correspond to the ice layer conductivity.

conductivity of 10−9 S/m. However, note that the OIMF now displays a spatial
structure, which is a combination of dipole and octupole, as demonstrated by the
cross-sections in Figure 5.9.
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Figure 5.6: Model 2: Cross-sections of the OIMF, conductivity model Ba, σice =
10−7 S/m.

Figure 5.7: Model 3: Components Br and Bϑ, at colatitude ϑ = 45 degrees.
Lower salinities, continous line for 5 km ice thickness and dashed line for 30 km
ice thickness. Colour markings correspond to the ice layer conductivity.
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Figure 5.8: Model 3: Components Br and Bϑ, at colatitude ϑ = 45 degrees.
Higher salinities, continous line for 5 km ice thickness and dashed line for 30 km
ice thickness. Colour markings correspond to the ice layer conductivity.

Figure 5.9: Model 3: Cross-sections of the OIMF, conductivity model Ba, σice =
10−9 S/m.
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Conclusion
The calculations presented in this thesis demonstrate, that the conductivity of
the ice layer has noticeable effect on the induced fields. Strongest signals are
achieved in cases with higher salinity of ocean, less conductive ice and thinner ice
shell.

By its definition, the toroidal part of B disappears on the conductor-insulator
interface, hence the toroidal OIMF is directly observable neither on Europa’s
surface (by a future lander), nor by near flybys (JUICE and Europa Clipper). A
submarine mission to the Europa’s ocean, contemplated by space agencies, but
probably beyond the reach of present technology, would be needed for its direct
observations.

However, the poloidal part of the field can be measured by space missions Eu-
ropa Clipper and JUICE. From our estimates, the signal on the ice–atmosphere
boundary is in the range ≈ 10−1 nT to ≈ 102 nT, thus confirming the back-of-
the-envelope estimates of (Vance et al. [2021]). Strength of the signal is highly
dependent on ocean and ice conductivities, thickness of ice shell and ocean veloc-
ities. We can also assume, that Jovian magnetic field will have effect.

In this thesis, a strongly simplified model of the ambient Jovian magnetic field
BJ is used. It only represents the amplitude scaled to distance of Europa. For
future tests, models of the Jovian magnetic field from (Connerney et al. [2022])
should be employed. Also, we neglect its time variations and changes of orien-
tation in the Europa’s internal reference frame stemming from the movements of
Europa along its orbit.

Finally, the velocity models employed in this work represent only crude simpli-
fications of possible flow patterns in the Europa’s ocean (Soderlund et al. [2014]).
There are also plans to exploit the ocean flow models based on the work of (Kvorka
and Čadek [2022]) for Europa.
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A. Appendix

A.1 Poloidal–toroidal decomposition
Using a poloidal–toroidal decomposition (Backus [1986]), which is a restricted
form of the Helmholtz decomposition, a non–divergent 3–D vector field f can be
decomposed into a toroidal field fT and a poloidal field fP ,

f = fT + fP . (A.1)

The toroidal field is obtained from a scalar field Ψ(r),

fT = ∇ × (rΨ(r)), (A.2)

and the poloidal field is obtained from another scalar field Φ(r),

fP = ∇ × (∇ × (rΦ(r))). (A.3)

A.2 Spherical harmonic functions
In this appendix, the real, fully normalized spherical harmonic scalar and vector
functions are defined, analogous to their complex counterparts in (Varshalovich
[1989]).

The scalar spherical harmonic function is defined as

Yjm(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)m

√
2
√︃

2j+1
4π

(j−m)!)
(j+m)!)P

m
j (cosϑ) cos(mφ) , m > 0√︂

2j+1
4π

P 0
j (cosϑ) , m = 0

(−1)m
√

2
√︃

2j+1
4π

(j−|m|)!)
(j+|m|)!)P

|m|
j (cosϑ) sin(|m|φ) , m < 0

(A.4)

where j is the degree, m is the order, |m| ≤ j, Ω = (ϑ, φ) and Pm
j (cosϑ) are the

associated Legendre polynomials

Pm
j (cosϑ) = (− sinϑ)m dm

(d cosϑ)m
Pj(cosϑ). (A.5)

The Yjm(Ω) functions are orthonormal on a unit sphere∫︂
Ω
Yjm(Ω)Yj′m′(Ω)dΩ = δjj′δmm′ . (A.6)

With the radial unit vector er and the angular gradient operator ∇Ω, the following
vectors are constructed,

S(−1)
jm (Ω) = Yjm(Ω)er, (A.7)

S(0)
jm(Ω) = er × ∇ΩYjm(Ω), (A.8)

S(1)
jm(Ω) = ∇ΩYjm(Ω). (A.9)
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These, respectively, describe the vertical poloidal–scaloidal, the toroidal and the
horizontal poloidal–scaloidal components of a vector field and satisfy relations

er × S(0)
jm = −S(1)

jm, (A.10)
er × S(1)

jm = S(0)
jm, (A.11)

er × S(−1)
jm = 0. (A.12)

These vectors are orthogonal on a unit sphere,∫︂
Ω

S(λ)
jm(Ω) · S(λ′)

j′m′(Ω)dΩ = δjj′δmm′δλλ′Njλ, (A.13)

where Njλ = δ−1λ + j(j + 1)(1 − δ−1λ).
The spherical harmonic functions interact with vector operators. For an ar-

bitrary, sufficiently smooth function f(r) holds:
Gradient operator:

∇ [f(r)Yjm(Ω)] = df(r)
dr

S(−1)
jm + f(r)

r
S(1)

jm. (A.14)

Divergence operator:

∇ ·
[︂
f(r)S(−1)

jm (Ω)
]︂

=
(︄
d

dr
+ 2
r

)︄
f(r)Yjm, (A.15)

∇ ·
[︂
f(r)S(0)

jm(Ω)
]︂

= 0, (A.16)

∇ ·
[︂
f(r)S(1)

jm(Ω)
]︂

= −j(j + 1)f(r)
r
Yjm. (A.17)

Rotation operator:

∇ ×
[︂
f(r)S(−1)

jm (Ω)
]︂

= −f(r)
r

S(0)
jm, (A.18)

∇ ×
[︂
f(r)S(0)

jm(Ω)
]︂

= −j(j + 1)f(r)
r

S(−1)
jm −

(︄
d

dr
+ 2
r

)︄
f(r)S(1)

jm, (A.19)

∇ ×
[︂
f(r)S(1)

jm(Ω)
]︂

=
(︄
d

dr
+ 2
r

)︄
f(r)S(0)

jm. (A.20)

A.3 1-D finite elements
Parameterization of radial component is done by 1-D finite elements. First, an
arbitrary discretization of radial coordinate is made, 0 = r1 < r2 < . . . < rkmax <
rkmax+1 = RE. Second, the piecewise linear finite element is defined as

ψk(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r−rk−1
rk−rk−1

r ∈ (rk−1, rk),
rk+1−r

rk+1−rk
r ∈ (rk, rk+1),

0 r ̸∈ (rk−1, rk+1).
(A.21)

For piecewise constant functions, we define

ξk(r) =
⎧⎨⎩1 r ∈ (rk, rk+1),

0 r ̸∈ (rk, rk+1).
(A.22)
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A.4 Integrals of finite-element products

Ikk′ =
∫︂ a

0
r2ΨkΨk′dr,

K
(1)
kk′ =

∫︂ a

0

1
σk

ΨkΨk′dr, K
(2)
kk′ =

∫︂ a

0

1
σk

χ
(1)
k χ

(1)
k′ dr,

K
(3)
kk′ =

∫︂ a

0

1
σk

χ
(1)
k Ψk′dr, K

(4)
kk′ =

∫︂ a

0

1
σk

Ψkχ
(1)
k′ dr

Θ(1)
kk′ =

∫︂ a

0
rξkΨk′dr, Θ(2)

kk′ =
∫︂ a

0
rξk′Ψkdr,

Θ(3)
kk′ =

∫︂ a

0
rξkχ

(1)
k′ dr, Θ(4)

kk′ =
∫︂ a

0
rξk′χ

(1)
k dr,

Θ(5)
kk′ =

∫︂ a

0
rξkχ

(2)
k′ dr, Θ(6)

kk′ =
∫︂ a

0
rξk′χ

(2)
k dr,

where χ(1)
k (r) is defined as

χ
(1)
k (r) = r

(︄
d

dr
+ 1
r

)︄
ψk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2r−rk−1
rk−rk−1

r ∈ (rk−1, rk),
rk+1−2r

rk+1−rk
r ∈ (rk, rk+1),

0 r ̸∈ (rk−1, rk+1),
(A.23)

and χ
(2)
k (r) as

χ
(2)
k (r) = r

(︄
d

dr
+ 2
r

)︄
ψk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3r−2rk−1
rk−rk−1

r ∈ (rk−1, rk),
2rk+1−3r
rk+1−rk

r ∈ (rk, rk+1),
0 r ̸∈ (rk−1, rk+1).

(A.24)

If |k − k′| > 1, or min(k, k′) = 0, or max(k, k′) = kmax + 2, defined integrals
are zero. From definitions (A.21), (A.22), (A.23) and (A.24), hk = rk+1 − rk ,for
k′ = k holds

Ikk =
∫︂ rk

rk−1
r2ΨkΨkdr +

∫︂ rk+1

rk

r2ΨkΨkdr,∫︂ rk

rk−1
r2ΨkΨkdr = hk−1

30 (6r2
k + 3rkrk−1 + r2

k−1)∫︂ rk+1

rk

r2ΨkΨkdr = hk

30(r2
k+1 + 3rk+1rk + 6r2

k)

K
(1)
k =

∫︂ rk

rk−1

1
σk−1

ΨkΨkdr +
∫︂ rk+1

rk

1
σk

ΨkΨkdr,∫︂ rk

rk−1

1
σk−1

ΨkΨkdr = hk−1

3σk−1∫︂ rk+1

rk

1
σk

ΨkΨkdr = hk

3σk
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K
(2)
k =

∫︂ rk

rk−1

1
σk−1

χ
(1)
k χ

(1)
k dr +

∫︂ rk+1

rk

1
σk

χ
(1)
k χ

(1)
k dr,∫︂ rk

rk−1

1
σk−1

χ
(1)
k χ

(1)
k dr = 1

3hk−1σk−1
(4r2

k − 2rkrk−1 + r2
k−1)∫︂ rk+1

rk

1
σk

χ
(1)
k χ

(1)
k dr = 1

3hkσk

(r2
k+1 − 2rk+1rk + 4r2

k)

K
(3)
k = K

(4)
k =

∫︂ rk

rk−1

1
σk−1

Ψkχ
(1)
k dr +

∫︂ rk+1

rk

1
σk

Ψkχ
(1)
k dr,∫︂ rk

rk−1

1
σk−1

Ψkχ
(1)
k dr = 4rk − rk−1

6σk−1∫︂ rk+1

rk

1
σk

Ψkχ
(1)
k dr = rk+1 − 4rk

6σk

Θ(1)
k = Θ(2)

k =
∫︂ rk+1

rk

rξkΨkdr = hk

6 (rk+1 + 2rk)

Θ(3)
k = Θ(4)

k =
∫︂ rk+1

rk

rξkχ
(1)
k dr = −1

6(r2
k+1 + rk+1rk + 4r2

k)

Θ(5)
k = Θ(6)

k =
∫︂ rk+1

rk

rξkχ
(2)
k dr = −r2

k

for k =min(k, k′) holds

Ik =
∫︂ rk+1

rk

r2ΨkΨk+1dr = hk

60(3r2
k+1 + 4rk+1rk + 3r2

k)

K
(1)
k =

∫︂ rk+1

rk

1
σk

ΨkΨk+1dr = hk

6σk

K
(2)
k =

∫︂ rk+1

rk

1
σk

χ
(1)
k χ

(1)
k+1dr = − 1

3hkσk

(r2
k+1 + rk+1rk + r2

k)

for k′ = k + 1 holds

K
(3)
kk+1 =

∫︂ rk+1

rk

1
σk

Ψk+1χ
(1)
k dr = −rk+1 + 2rk

6σk

K
(4)
kk+1 =

∫︂ rk+1

rk

1
σk

Ψkχ
(1)
k+1dr = 2rk+1 + rk

6σk

Θ(1)
kk+1 =

∫︂ rk+1

rk

rξkΨk+1dr = hk

6 (2rk+1 + rk)

Θ(2)
kk+1 =

∫︂ rk+1

rk

rξk+1Ψkdr = 0

Θ(3)
kk+1 =

∫︂ rk+1

rk

rξkχ
(1)
k+1dr = 1

6(4r2
k+1 + rk+1rk + r2

k)

Θ(4)
kk+1 =

∫︂ rk+1

rk

rξk+1χ
(1)
k dr = 0

Θ(5)
kk+1 =
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(2)
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for k′ = k − 1 holds

K
(3)
kk−1 =

∫︂ rk+1

rk

1
σk

Ψk−1χ
(1)
k dr = 2rk + rk−1

6σk−1

K
(4)
kk−1 =

∫︂ rk+1

rk

1
σk

Ψkχ
(1)
k−1dr = −rk + 2rk−1

6σk−1

Θ(1)
kk−1 =
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rξkΨk−1dr = 0

Θ(2)
kk−1 =

∫︂ rk+1

rk

rξk−1Ψkdr = hk−1

6 (2rk + rk−1)

Θ(3)
kk−1 =

∫︂ rk+1

rk

rξkχ
(1)
k−1dr = 0

Θ(4)
kk−1 =

∫︂ rk+1

rk

rξk−1χ
(1)
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6(4r2
k + rkrk−1 + r2

k−1)

Θ(5)
kk−1 =

∫︂ rk+1

rk

rξkχ
(2)
k−1dr = 0

Θ(6)
kk−1 =

∫︂ rk+1
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rξk−1χ
(2)
k dr = r2

k

A.5 Semi–analytical solutions
The semi–analytical benchmark solutions for the toroidal and poloidal case were
respectively derived by Zdeněk Martinec and Jakub Veĺımský, and not published
elsewhere. Here I summarize them with their permission.

We assume a two-layer conductivity model, so the EMI equation in the fre-
quency domain (3.3) can be written as(︂

∇2 + k2
)︂

B̃ = −µ0σ∇ × L̃, (A.25)

where k = √
−ıωµ0σ, in each of the layers, and with angular frequency ω = 2π/T .

The eigenfunctions of the vector Helmholtz operator from equation (A.25) in
the spherical domain are expressed using the vector spherical harmonics in lateral
direction and complex spherical Bessel functions of complex argument of the first
and second kind, jj and yj, defined through their respective relations to the Bessel
functions Jj, Yj as

jj(x) =
√︃
π

2xJj+ 1
2
(x), first kind (A.26)

yj(x) =
√︃
π

2xYj+ 1
2
(x). second kind (A.27)

A.5.1 Toroidal benchmark
We define the imposed electric field in the uppper layer and its rotation:

L̃ =
∑︂
jm

Sjm

(︃
r

a

)︃j+1
Yj+1

jm , (A.28)

∇ × L̃ = ı
a

∑︂
jm

Sjm

√︄
j

2j + 1(2j + 3)
(︃
r

a

)︃j

Yj
jm. (A.29)
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In the lower layer, there is no imposed electric field, so the EMI equation takes
the form: (︂

∇2 + k2
B

)︂
B̃B = 0, (A.30)

where kB = √
−ıωµ0σB. In the ocean layer, the curl of the imposed electric field

is present on the right–hand side(︂
∇2 + k2

A

)︂
B̃A = −µ0σA∇ × L̃

= k2
A

ωa

∑︂
jm

Sjm

√︄
j

2j + 1(2j + 3)
(︃
r

a

)︃j

Yj
jm

, (A.31)

where kA = √
−ıωµ0σA.

Using spherical Bessel functions (A.26–A.27), analytical solutions for (A.30)
and for (A.31) are

B̃A =
∑︂
jm

[︂
αjmjj(kAr) + βjmyj(kAr)+

+Sjm

ωa

√︄
j

2j + 1(2j + 3)
(︃
r

a

)︃j
]︄

Yj
jm,

(A.32)

B̃B =
∑︂
jm

γjmjj(kBr)Yj
jm. (A.33)

In the upper layer, the solution consists of the general solution with complex
coefficients αjm and βjm, and the particular solution corresponding to the special
choice of the forcing. In the lower layer, the spherical Bessel function of the second
kind is absent, as it represents a non–physical solution, diverging for r → 0.

We also need to derive the horizontal electric field in both layers, which is
then used in the boundary condition across the layer interface,

er × ẼA = 1
µ0σA

er × ∇ × B̃A − er × L̃ =

=
∑︂
jm

[︄
− 1
µ0σA

(︄
d

dr
+ 1
r

)︄
jj(kAr)αjm−

− 1
µ0σA

(︄
d

dr
+ 1
r

)︄
yj(kAr)βjm+

+ ıSjm

k2
Aa

2 (2j + 3)(j + 1)
√︄

j

2j + 1

(︃
r

a

)︃j−1
Yj

jm−

−ıSjm

√︄
j

2j + 1

(︃
r

a

)︃j+1
]︄

Yj
jm,

(A.34)

er × ẼB = 1
µ0σB

er × ∇ × B̃B =

= −
∑︂
jm

[︄
1

µ0σB

(︄
d

dr
+ 1
r

)︄
jj(kBr)γjm

]︄
Yj

jm.
(A.35)

The coefficients αjm, βjm, γjm are determined from three boundary conditions:
1. B̃A|r=a = 0 – boundary condition for the toroidal magnetic field on the

surface

αjmjj(kAa) + βjmyj(kAa) + Sjm

ωa

√︄
j

2j + 1(2j + 3) = 0 (A.36)
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2. B̃A|r=b = B̃B|r=b – continuity of the magnetic field B̃ across the interface
of layer A and B

αjmjj(kAa)+βjmyj(kAa)+Sjm

ωa

√︄
j

2j + 1(2j+3)
(︄
b

a

)︄j

= γjmjj(kBb) (A.37)

3. er × ẼA|r=b = er × ẼB|r=b – continuity of the horizontal electric field across
the interface of layer A and B

(︄
1

µ0σA

er × ∇ × B̃A − er × L̃
)︄ ⃓⃓⃓⃓
⃓⃓
r=b

=
(︄

1
µ0σB

er × ∇ × B̃B

)︄ ⃓⃓⃓⃓
⃓⃓
r=b

,

(A.38)

1
µ0σA

(︄
d
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⃓⃓⃓⃓
⃓⃓
r=b

αjm+

+ 1
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(︄
d
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+ 1
r

)︄
yj(kAr)

⃓⃓⃓⃓
⃓⃓
r=b

βjm−

− ıSjm

k2
Aa

2 (2j + 3)(j + 1)
√︄

j

2j + 1

(︄
b

a

)︄j−1

+

+ıSjm

√︄
j

2j + 1

(︄
b

a

)︄j+1

= 1
µ0σB

(︄
d

dr
+ 1
r

)︄
jj(kBr)

⃓⃓⃓⃓
⃓⃓
r=b

γjm.

(A.39)

By numerically evaluating the spherical Bessel functions and their derivatives, a
system of three complex linear equations is assembled and solved by the Gauss
elimination for the unknown coefficients αjm, βjm, γjm.

A.5.2 Poloidal benchmark
The imposed electric field and its rotation take the special forms,

L̃ =
∑︂
jm

Sjm

(︃
r

a

)︃j

Yj
jm, (A.40)

∇ × L̃ = ı
a

∑︂
jm

Sjm

√︂
(j + 1)(2j + 1)

(︃
r

a

)︃j−1
Yj−1

jm . (A.41)

Again, we write the homogeneous vector Helmholtz equation for the magnetic
field in the lower layer, (︂

∇2 + k2
B

)︂
B̃B = 0, (A.42)

where kB = √
−ıωµ0σB, and its inhomogeneous variant in the ocean layer,(︂

∇2 + k2
A

)︂
B̃A = −µ0σA∇ × L̃

= k2
A

ωa

∑︂
jm

Sjm

√︂
(j + 1)(2j + 1)

(︃
r

a

)︃j−1
Yj−1

jm ,
(A.43)
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where kA = √
−ıωµ0σA.

Each general solution now combines the spherical Bessel functions of order
j − 1 and j + 1, and their respective spherical harmonic vectors. Again, a partic-
ular solution is added in the ocean layer, and non–physical diverging solution is
excluded in the lower layer,

B̃A =
∑︂
jm

[︄
αj−1

jm jj−1(kAr) + βj−1
jm yj−1(kAr) + Sjm

ωa

√︂
(j + 1)(2j + 1)

(︃
r

a

)︃j−1
]︄

Yj−1
jm

+
∑︂
jm

[︂
αj+1

jm jj+1(kAr) + βj+1
jm yj+1(kAr)

]︂
Yj+1

jm ,

(A.44)
B̃B =

∑︂
jm

[︂
γj−1

jm jj−1(kBr)Yj−1
jm + γj+1

jm jj+1(kBr)Yj+1
jm

]︂
. (A.45)

The divergence–free constraint on B̃ allows to reduce the number of unknowns
to 3 by substituting

αj+1
jm = −

√︄
j

j + 1α
j−1
jm (A.46)

βj+1
jm = −

√︄
j

j + 1β
j−1
jm (A.47)

γj+1
jm = −

√︄
j

j + 1γ
j−1
jm (A.48)

With that condition, equations can be rewritten

B̃A =
∑︂
jm
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(A.49)

B̃B =
∑︂
jm
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j
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. (A.50)

Auxiliary expressions of ∇ × B̃

∇ × B̃A = −ıkA

∑︂
jm
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2j + 1
j + 1
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jm, (A.51)

∇ × B̃B = −ıkB

∑︂
jm

√︄
2j + 1
j + 1 γ

j−1
jm jj(kBr)Yj

jm, (A.52)
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are used in the description of electrical field,

er × ẼA = 1
µ0σA

er × ∇ × B̃A − er × L̃ =

= kA

µ0σA

∑︂
jm
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√︄

j
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(A.53)

er × ẼB = 1
µ0σB

er × ∇ × B̃B =

= kA

µ0σB

∑︂
jm

γj−1
jm jj(kBr)

[︄
Yj−1

jm +
√︄

j

j + 1Yj+1
jm

]︄
.

(A.54)

The coefficients αj−1
jm , βj−1

jm , γj−1
jm are determined from three boundary conditions:

1. B̃(ext)|r=a = 0 – boundary condition for magnetic field B̃

αj−1
jm jj−1(kAa) + βj−1

jm yj−1(kAa) + Sjm

ωa

√︂
(j + 1)(2j + 1) = 0 (A.55)

2. B̃A|r=b = B̃B|r=b – continuity for magnetic field B̃ across the interface of
layer A and B

αj−1
jm jj−1(kAa) + βj−1

jm yj−1(kAa)+

+Sjm

ωa

√︂
(j + 1)(2j + 1)

(︄
b

a

)︄j−1

= γj−1
jm jj−1(kBb) (A.56)

αj−1
jm jj+1(kAa) + βj−1

jm yj+1(kAa) = γj−1
jm jj+1(kBb) (A.57)

Note that the boundary condition er × ẼA|r=b = er × ẼB|r=b is satisfied implic-
itly, and proof is left to a meticulous reader. (Hint: Take sum of two previous
equations, and apply summation formulas for spherical Bessel functions.)

Again, a 3 × 3 complex linear system for unknown coefficeints αj−1
jm , βj−1

jm , and
γj−1

jm is assembled and solved, using numerical values of spherical Bessel functions.
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