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Study programme: Particle and Nuclear Physics

Study branch: Physics

Prague 2023



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague, July 11, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I would like to express my gratitude to my supervisor Michal Malinský for his
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Abstract: In this thesis, we study quantum aspects of the minimal renor-
malizable SO(10) Grand Unified Theory with the scalar sector consisting of
45 ⊕ 126 ⊕ 10C. It is an interesting candidate for a theory describing physics be-
yond the Standard model which has the potential to allow for proton lifetime pre-
diction with Plank-scale-physics-induced theoretical uncertainties confined within
the expected one-order-of-magnitude experimental proton lifetime improvement
window.
With the complete information about the numerical one-loop scalar mass spec-
trum and analytical one-loop beta functions of all the dimensionless scalar cou-
plings, we formulate consistency criteria that every viable region of the parameter
space must satisfy; namely, we require the existence of a stable Standard-model-
like vacuum, unification of gauge couplings and robustness of perturbative calcu-
lations.
Only narrow parameter space regions around symmetry breaking chains with
SU(4)C × SU(2)L × U(1)R or SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermedi-
ate stages are demonstrated to be potentially realistic. Detailed analysis of the
SO(10) Higgs model with 45⊕126 scalar sector indicates a preference for the for-
mer option, mainly due to increased perturbative instability and phenomenologi-
cally unsuitable values of energy scales predicted in the latter symmetry breaking
case. Moreover, we calculate partial proton decay rates for two channels p → π+ν
and p → K+ν with antineutrinos in the final states.
Afterwards the analysis is repeated in case of the full SO(10) Grand Unified The-
ory with the 45 ⊕ 126 ⊕ 10C scalar sector in the symmetry breaking regime
with SU(4)C × SU(2)L × U(1)R intermediate stage. The existence of a realistic
Yukawa sector is discussed. We identify the inability of the model to successfully
accommodate Standard-Model-like low-energy Higgs boson in the perturbatively
stable parts of the parameter space. Hence perturbativity criteria turn out to be
a powerful tool to constrain viable regimes of the minimal SO(10) Grand Unified
Theory.
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Preface
With the advent of the next generation large-volume neutrino experiments [1–4]
testing, among other things, stability of the baryonic matter, we expect at least
one order of magnitude improvement of the experimental lower bounds on rates
of the baryon number violating proton decays. Such experimental advancement
is however not followed by the corresponding progress on the theory side; even in
the Grand Unified Theories (GUTs), the most popular models predicting baryon
number violation, the theoretical uncertainties of proton lifetime predictions usu-
ally span over several orders of magnitude [5] and hence do not reach the necessary
level of theoretical precision to fully benefit from the experimental progress.

The most problematic theoretical proton lifetime uncertainties originate from
the proximity of the unification scale to the Planck scale [6]. The Planck-scale-
suppressed non-renormalizable operators can generate corrections to quantities
relevant for proton lifetime calculations (gauge matching scale, flavour structure),
which are typically not under control. Fortunately, this issue can be satisfactorily
addressed in the framework of the minimal renormalizable SO(10) GUT with
the 45 scalar representation triggering the SO(10) symmetry breaking and the
126 ⊕ 10C accommodating scalars that account for the Yukawa sector, where
the most severe Planck-scale induced theoretical uncertainties are not present or
they have very reduced influence [7]. This intriguing model in which theoretical
proton lifetime uncertainties can be in principle confined within the one-order-
of-magnitude experimental window was however discarded in the past due to the
presence of notorious tachyonic instabilities in the tree-level scalar mass spectrum
that cannot be avoided in potentially realistic breaking patterns [8–10]. Only in
2010 it was recognized [11] that the tree-level vacuum instability is an artefact
of the leading order calculations and the theory can be fully consistent at the
quantum level when at least one-loop scalar mass corrections are invoked.

The first attempts to study the 45 ⊕ 126 SO(10) Higgs model at one-loop
level in the two phenomenologically favoured symmetry breaking regimes with the
SU(4)C × SU(2)L × U(1)R or SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermediate
stages were accomplished in [12–14] and they demonstrated that once beyond-
the-leading-order scalar mass corrections are engaged, a big part of the parameter
space opens for non-tachyonic scalar spectrum. In the follow-up of these stud-
ies [15], the analytical expressions for the prominent one-loop corrections to all
potentially problematic scalar states were calculated.

This thesis provides the ultimate self-consistent study of the minimal renor-
malizable SO(10) Grand Unified Theory at the quantum level and it is based
on the results of papers [16, 17]. We numerically calculate the one-loop mass
corrections to the whole scalar sector, including potentially problematic states
suffering from the tree-level tachyonicity, and analytically derive a full set of one-
loop scalar beta functions of all scalar dimensionless couplings. This allows us to
not only address the existence of a stable Standard-model-like vacuum but also
assess the perturbative stability of the model by constraining the relative size of
one-loop and tree-level mass corrections and by controlling their stability under
the change of the renormalization scale. In addition, we study the implications of
the requirement of a low-energy Standard-model-like Higgs doublet in the scalar
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sector.
The thesis is organised in the following way: in Sec. 1 we review the motivation

for considering the minimal SO(10) GUT as an intriguing candidate for a theory
beyond the Standard Model and the preceding theoretical development that lead
to this conclusion. In Sec. 2 we recapitulate all the important features of the
model under consideration with more emphasis put on aspects concerning the
proton decay. In Sec. 3 we present the results of the model analysis. First, in
Sec. 3.1 we clearly define theoretical and phenomenological constraints that any
viable part of the parameter space must satisfy. Then in Sec. 3.2 we provide
numerical analysis of the parameter space of the 45 ⊕ 126 SO(10) Higgs model
in the two consistent breaking chains with SU(4)C × SU(2)L × U(1)R or SU(3)c ×
SU(2)L×SU(2)R×U(1)B−L intermediate symmetry stages, where the preference is
identified for the former regime. Proton lifetime predictions for dimension d = 6
channels with antineutrinos in the final states are determined. In Sec. 3.3 we
perform the numerical analysis of the full 45 ⊕ 126 ⊕ 10C SO(10) GUT with the
symmetry breaking pattern featuring the SU(4)C × SU(2)L × U(1)R intermediate
symmetry stage, including discussion of the fine-tuning in the scalar sector to
acquire Standard-Model-like Higgs boson. Finally, we conclude in Sec. 4. All the
technical details are deferred to set of Appendices.
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1. Road to the minimal SO(10)
GUT

1.1 Classical era and gauge invariance
The journey to the gauge symmetries as model-building tools began in the old
days of classical electromagnetism when it was noticed that applying a certain set
of local transformations on vector and scalar electromagnetic potentials did not
change the measurable quantities (see [18] and references in it). This invariance
under local transformations was later called the principle of gauge symmetry, and
although it was observed already at the turn of the 19th and 20th centuries, the
gauge invariance principle was not properly appreciated as a model-building tool
back then.

The change came after H. Weyl first used gauge invariance as a guiding prin-
ciple in his attempts to unify electromagnetism and gravity [19, 20]. Even though
his theory did not manage to successfully describe the physical world, he was able
to show that the gauge invariance implied the conservation of electric charge.
With the advent of quantum mechanics, V. Fock demonstrated that the quan-
tum system of a charged particle interacting with the electromagnetic field is also
symmetric with respect to the gauge transformations [21]. Weyl subsequently
revisited his previous attempts of using gauge invariance in model building [22],
now in the context of electromagnetically interacting quantum system of charged
particles, and he significantly contributed to the principle of gauge invariance
becoming the foundation stone of modern particle physics.

1.2 Arrival of the Standard Model
Foundations of the quantum electrodynamics (QED) as a theory of electromag-
netically interacting systems which employs the assumption of Abelian gauge
invariance were laid in the late 1920s by P. Dirac [23] and later fully developed
in the 1940s by incorporating the renormalization procedure [24–27]. Quantum
electrodynamics turned out to be very successful in predicting the quantum be-
haviour of charged particles and electromagnetic fields with anomalous electron
magnetic moment g − 2 measurement remaining the most accurate test of QED
validity to date [28]. Later, the principle of non-Abelian gauge invariance was
used to unite descriptions of strong, weak and electromagnetic interactions [29–
33]. It started the modern era of gauge theories which engaged Lagrangians
invariant with respect to non-Abelian gauge groups.

However, there was one riddle that needed to be solved. Weak-interactions-
mediating gauge bosons had non-zero masses, but the explicit gauge boson mass
term in the Lagrangian was forbidden by gauge invariance [34, 35]. Such a com-
plication was eventually bypassed by employing the so-called Higgs mechanism
[36–38] in which the field content of the gauge-symmetric theory involves an addi-
tional scalar Higgs field whose vacuum expectation value (VEV) does not exhibit
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the same gauge invariance.1 The aforementioned situation when the Lagrangian
obeys gauge symmetries which are not manifest in the physical spectrum is re-
ferred to as spontaneous symmetry breaking (SSB).

Finally, the concepts of renormalizability, gauge invariance and spontaneous
symmetry breaking were put together to formulate the Standard Model (SM) of
Particle Physics that describes strong, weak and electromagnetic interactions of
all known elementary particles. The dynamics of the SM is determined by the
underlying SU(3)c×SU(2)L×U(1)Y gauge symmetry where the hypercharge obeys
Y = Q−T

(3)
L with Q standing for an electromagnetic charge and T 3

L being the 3rd
component of weak isospin. The SM field content consists of three generations of
spin-1

2 fermionic matter fields

QL ≡
(︄
uL
dL

)︄
∼ (3, 2,+1

6), LL ≡
(︄
νL
eL

)︄
∼ (1, 2,−1

2),

uR ∼ (3, 1,−2
3), dR ∼ (3, 1,+1

3), eR ∼ (1, 1,+1),

where L/R marks left-handed/right-handed Weyl spinors, a set of spin-1 bosonic
gauge fields

Gµ ∼ (8, 1, 0), Aµ ∼ (1, 3, 0), Bµ ∼ (1, 2, 0),

corresponding to the SU(3)c, SU(2)L and U(1)Y gauge factors, respectively, and
one spin-0 scalar Higgs field

ΦH ∼ (1, 2,+1
2).

The Higgs field ΦH acquires the non-zero VEV ⟨ΦH⟩ ≡ vSM
.= 174 GeV, and

consequently triggers spontaneous symmetry breaking of the SM gauge symmetry
down to the SU(3)c × U(1)Q. For every aforementioned field, we indicated its
transformation properties with respect to the SU(3)c × SU(2)L × U(1)Y . Let us
emphasise that in such a setting the neutrinos are by construction massless.

1.3 Beyond the Standard Model
Although the Standard Model proved to be an incredibly successful theory de-
scribing elementary particle interactions over many orders of magnitude in energy,
the observation of neutrino flavour oscillations [41–43] provided definitive demand
for massive neutrinos, which necessitated going beyond the SM framework.

1.3.1 Neutrino mass generation
The easiest way how to introduce non-zero neutrino masses is by adding three
Weyl spinors playing the role of right-handed neutrinos νR (one per generation),
in general transforming as SU(3)c and SU(2)L singlets, and appropriate Yukawa

1Although the Higgs mechanism is the canonical tool for generating gauge boson masses,
alternative mechanisms can be found in the literature, such as dynamical spontaneous breaking
in which the Higgs field is replaced by a composite field [39, 40].
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interactions between the SM Higgs and neutrinos, analogously to the charged
fermions.

There are, however, issues with such a simplified approach that arise only
at the quantum level. Let us recall that the quantization of the hypercharge
of the SM fields is enforced by requiring the cancellation of the so-called chiral
anomalies [44, 45], which ensures that no physical amplitude depends on the
selection of gauge. In practice, the chiral anomaly cancellation boils down to the
set of algebraic equations [46]

TrL
(︂
{T a, T b}T c

)︂
− TrR

(︂
{T a, T b}T c

)︂
= 0 (1.1)

with T a being the gauge symmetry generators and traces are taken over repre-
sentations of all left-handed (L) or right-handed (R) Weyl spinors in the theory.
In the SM, Eqns. (1.1) lead to the hypercharge quantization [47–50]

YQL

YΦH

= +1
3 ,

YLL

YΦH

= −1, YuR

YΦH

= +4
3 ,

YdR

YΦH

= −2
3 ,

YeR

YΦH

= −2, (1.2)

which is modified by right-handed neutrino to

YQL

YΦH

= +1
3

(︄
1 − YνR

YΦH

)︄
,

YLL

YΦH

= −1
(︄

1 − YνR

YΦH

)︄
, (1.3)

YuR

YΦH

= +4
3

(︄
1 − YνR

4YΦH

)︄
,

YdR

YΦH

= −2
3

(︄
1 + YνR

2YΦH

)︄
, (1.4)

YeR

YΦH

= −2
(︄

1 + YνR

2YΦH

)︄
. (1.5)

Since the ratio YνR
/YΦH

is not restricted by anomaly cancellation, there is no a
priori reason for the hypercharge to be quantized and the Standard Model with
right-handed neutrinos loses part of its predictive power.

Hypercharge quantization can be reestablished by requiring the three copies
of the right-handed neutrinos to be Majorana and, thus, transforming as full SM
singlets, i.e.

νR ∼ (1, 1, 0).

In such a case, YνR
= 0 and the hypercharge relations of Eq. (1.2) get reinstated.

Neutrino masses are then extracted from the relevant part of the Lagrangian

LνR
= −YνLLνRΦH − 1

2M
M
ν ν

T
RCνR + h.c., (1.6)

where MM
ν is the Majorana mass matrix and the Dirac mass contribution is

defined as MD
ν = YνvSM . In the broken phase,

LνR
= −1

2n
T
LCMνnL + h.c+ · · · . (1.7)

with nTL = (νL, νcR) and 6 × 6 neutrino mass matrix

Mν =
(︄

0 MD
ν

MD
ν MM

ν

)︄
. (1.8)
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In the case of |MD
ν | ≪ |MM

ν |, diagonalization of Mν yields the light neutrino
mass matrix

mν ≈ −MD
ν

(︂
MM

ν

)︂−1
MDT

ν (1.9)

and the heavy neutrino mass matrix

Mν ≈ MM
ν (1.10)

with the corresponding mass eigenstates dominated by the νL and the νR compo-
nents, respectively. Note that the above-described mechanism of generating the
light neutrino masses by invoking inverse proportionality of mν to the Majorana
mass term MM

ν is commonly called ”type-I seesaw” [51–54]. Numerically, if no
suppression is imposed upon Yukawa couplings, i.e. Yν ∼ O(1), and mν ≲ 1 eV,
the Majorana mass term is expected to be in the energy range of

MM
ν ∼ 1012−13 GeV. (1.11)

1.3.2 Models with extended gauge symmetry
Neutrino mass generation via type-I seesaw introduces Majorana mass MM

ν in
the energy range (1.11) far beyond any typical mass scale of the SM fields, thus
hinting at the existence of a new dynamics governing quantum field interactions
at energies ≳ 1012 GeV. Such a physics at high energy scales can be naturally
realized by considering gauge symmetry extensions of the SM whose underly-
ing gauge groups spontaneously break down to the SU(3)c × SU(2)L × U(1)Y at
energies much larger than vSM .

Left-right symmetric model

The Standard Model with three right-handed Majorana neutrinos provides two
hints that can guide us in selecting promising gauge symmetry extensions of the
SM.

• The presence of the right-handed neutrinos restores ”left-right” symmetry
in the fermionic spectrum. Therefore one can introduce the ”right-handed”
weak isospin charge T (3)

R that takes on ±1
2 values only for uR, dR and νR, eR,

c.f. Table 1.1, analogously to the weak isospin charge which acquires the
T

(3)
L = ±1

2 solely for the components of the SU(2)L doublet, and therefore
acts non-trivially only on the left-handed Weyl spinors. Pairs of right-
handed spinors (uR dR)T , (νR eR)T would possess T (3)

R charges as if they
were doublets with respect to an SU(2)R underlying gauge symmetry, which
acts non-trivially solely on the right-handed fermionic fields.

• Baryon B and lepton L numbers2 are charges corresponding to accidental
global symmetries of the SM. The value of their difference B − L can be
assigned for all fields by introducing (B−L) charge [55–58] defined as (B−

2Non-zero baryon numbers are assigned only to quarks and antiquarks which carry B = + 1
3

and B = − 1
3 , respectively. Analogously, the non-vanishing lepton number is attributed only to

leptons and antileptons which have L = +1 and L = −1, respectively.
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L) = 2(Y −T
(3)
R ), which satisfies relation (B−L)f = (B −L)f for fermionic

fields, c.f. Table 1.1. Corresponding U(1)B−L symmetry can be promoted
to the local symmetry in the case of the SM with three Dirac neutrinos.
In the Majorana case, U(1)B−L is explicitly broken by the Majorana mass
term (1.6) in the Lagrangian.

We can thus consider enlarging the underlying gauge symmetry of the SM to
the

SU(3)c × SU(2)L × SU(2)R × U(1)B−L

to restore the ”left-right” symmetry [53, 59, 60]. Consequently, the electromag-
netic charge can be expressed in the ”left-right” symmetric form

Q = T
(3)
L + T

(3)
R + 1

2(B − L). (1.12)

The spontaneous symmetry breaking of the SU(3)c×SU(2)L×SU(2)R×U(1)B−L
down to the SU(3)c × SU(2)L × U(1)Y at the energy scale ∼ MM

ν naturally gives
rise to Majorana mass term in LνR

of Eq. (1.6), thus dynamically explaining its
origin.

Pati-Salam model

Continuing in the line of gauge group enlarging and possible additional ”unifica-
tion” of certain model aspects, analogously to the ”unification” of the treatment
of the left-handed and right-handed fermions discussed in the left-right symmetric
model, we can group quarks and leptons into common fermionic multiplets as it
was first done by J. Pati and A. Salam [61]. On the gauge group level, the unifi-
cation of quarks and leptons consists of extending the SU(3)c gauge symmetry to
SU(4)C ⊃ SU(3)c with fermions being accommodated in its vector representations
4 in the following way:

FL =
(︄
Qa
L

LL

)︄
, FR,u =

(︄
uaR
νR

)︄
, FR,d =

(︄
daR
eR

)︄
,

where a = 1, 2, 3 denotes the colour index. We have thus arrived at the Pati-
Salam

SU(4)C × SU(2)L × SU(2)R
extension of the Standard Model that incorporates the right-handed neutrinos
and ”unifies” the description of the right-handed and left-handed spinors, as well
as leptons and quarks.

1.4 Arrival of the Grand Unified Theories
In the previous section, the origin of the seesaw scale MM

ν was explained by intro-
ducing gauge symmetry extensions of the SM that lead to the ”unification” of cer-
tain model aspects. We can take one step further and consider the Grand Unified
Theories (GUTs) in which the Lagrangian is symmetric under a ”unifying” simple
gauge group G. Such group G drives model dynamics at high energies and it is
subsequently spontaneously broken down to the SM SU(3)c × SU(2)L × U(1)Y .
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Table 1.1: Charges of the Standard Model fermionic fields from one generation
with the right-handed neutrino. The hypercharge Y and (B − L) charge are
normalized in accordance with Appendix F.

fermion Y Q T
(3)
L T

(3)
R (B − L)

uL +1
6 +2

3 +1
2 0 +1

3

dL +1
6 −1

3 −1
2 0 +1

3

uR +2
3 +2

3 0 +1
2 +1

3

dR −1
3 −1

3 0 −1
2 +1

3

νL −1
2 0 +1

2 0 −1
eL −1

2 −1 −1
2 0 −1

νR 0 0 0 +1
2 −1

eR −1 −1 0 −1
2 −1

Unlike in the left-right symmetric and Pati-Salam models, the SSB energy
scale cannot be chosen arbitrarily, but it is rather fixed by the position of the
gauge coupling unification, thus enhancing the overall predictive power of the
GUTs. The point of gauge coupling unification can be assessed by examining
the one-loop running of the SM gauge couplings [62, 63]. The SM gauge cou-
plings corresponding to the non-Abelian factors3 SU(3)c, SU(2)L unify at scale
µ = MGUT ∼ 1017 GeV, dubbed the GUT scale, see Fig. 1.1 — close to the en-
ergy scale that is currently probed by the proton decay searches [1, 2, 64, 65].
Let us also note that spontaneous breaking of the unified group G to the Stan-
dard Model can happen via two or more stages, thus allowing for the option to
include an intermediate symmetry stage at MInter < MGUT in the energy ball-
park ∼ 1012−13 GeV preferred by the see-saw mechanism with heavy right-handed
neutrinos, c.f. Eq. (1.11).

αL
-1

αc
-1

10
6

10
8 10

10
10

12
10

14
10

16
μ [GeV]

20

30

40

50

Figure 1.1: The one-loop running of the SM gauge couplings corresponding to
the SU(3)c and SU(2)L non-Abelian group factors.

3The gauge factor α−1
Y corresponding to the Abelian U(1)Y group factor is deliberately

excluded from the one-loop gauge coupling unification analysis as the αY can be arbitrarily
rescaled in the SM as long as the product gY Y stays constant. The proper hypercharge nor-
malization is typically fixed in the GUTs by considering group-theoretical embedding of the
SU(3)c × SU(2)L × U(1)Y into the G [46].
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The Grand Unified Theories bring with them interesting aspects of the beyond
the SM physics. All the charges corresponding to its U(1) sub-groups are quan-
tized, thus the hypercharge quantization condition is automatically satisfied [66].
New interaction vertices typically allow for perturbative lepton number violation
(LNV)4 and baryon number violation (BNV). The most prominent such signal in
the GUTs is the hypothetical proton decay, which is BNV process that violates
the Standard Model prediction of baryonic matter stability. Moreover, one of the
inevitable consequences of the Grand Unified Theories is the existence of topo-
logically stable magnetic monopoles [67, 68] in whose presence the cross sections
of the BNV and LNV processes are enhanced [69–71]. (Non-)observation of mag-
netic monopole flux can therefore impose further phenomenological constraints
upon GUTs.

Let us now briefly comment on several different Grand Unified Theories. From
the group-theoretical point of view, the underlying unified gauge group G has to
allow for complex representations and have a rank bigger or equal to 4 with the
SU(3) × SU(2) × U(1) as its sub-group [46].

1.4.1 Rank= 4 GUTs
At rank 4, there is only one such option [46, 66] — the SU(5) with the Standard
Model gauge group as its substructure. In the minimal scenario [72, 73], SM
fermionic fields are accommodated in three copies of the 5-dimensional funda-
mental and 10-dimensional antisymmetric tensor representations of SU(5):

5F = dcR ⊕ LL, 10F = ucR ⊕ ecR ⊕QL.

In addition, the SU(5) is spontaneously broken to the Standard model gauge
group by the scalar 24-dimensional adjoint representation and the SU(3)c ×
SU(2)L × U(1)Y is subsequently broken down to SU(3)c × U(1)Q via the scalar
5-dimensional representation that contains the SM Higgs field. Both of them
decompose into the SM irreducible representations as

24 = (8, 1, 0) ⊕ (1, 3, 0) ⊕ (1, 1, 0) ⊕ (3, 2,−5
6) ⊕ (3, 2,+5

6),
5 = (1, 2,+1

2) ⊕ (3, 1,−1
3).

Neutrinos in the minimal SU(5) GUT are massless at renormalizable level5 un-
less additional fields are introduced to the spectrum, namely SU(5) spin-1

2 sin-
glets identified with right-handed Majorana neutrinos in case of type-I seesaw,
or non-trivial SU(5) spin-0 or spin-1

2 multiplets containing (1, 3,+1) (type-II see-
saw [74–76]) or (1, 3, 0) (type-III seesaw [77]) SM-transforming representations,
respectively. Moreover, the model’s weak mixing angle prediction turns out to be
inconsistent with the SPS W±/Z mass ratio measurements [78, 79], thus ruling
out the viability of the minimal SU(5) GUT. Hence, realistic SU(5) GUTs have
to involve extended scalar and/or fermion sector [80–89].

4Perturbative lepton number violation was already present in the SM extended by Majorana
neutrinos discussed in Sec. 1.3.1 as the second term in the Lagrangian 1.6 explicitly breaks
lepton number.

5The SU(5) gauge model in principle allows for neutrino-mass-generating non-renormalizable
dimension d = 5 operator of the type 1

Λ 5F 5F 5 5, with Λ being the SU(5) cutoff scale.
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1.4.2 Rank> 4 GUTs
The failure of the minimal SU(5) GUT motivates searches for a unified the-
ory with an underlying gauge group of rank > 4 whose minimal version ac-
commodates additional fields to generate neutrino masses and correctly predict
low-energy quantities, including the weak mixing angle. At rank 5, two sim-
ple gauge groups meet the group-theoretical criteria of the GUT hypothesis [46]:
SU(6) and SO(10). As the former one inevitably enforces the addition of new,
presumably heavy, fermionic matter [90–92], the latter option is more interest-
ing. The SO(10) Grand Unified Theory [93], studied almost simultaneously with
the Georgi-Glashow SU(5), allows for even greater ”unification” as a single 16-
dimensional spinorial representation of SO(10) can accommodate one generation
of the SM fermions. Moreover, this representation also contains one fermionic sin-
glet, which can play the role of the right-handed neutrino. The SO(10) symmetry
is typically spontaneously broken in two stages due to its rank, c.f. Fig. 1.2, with
intermediate stages being, for instance, the Georgi-Glashow SU(5) or the Pati-
Salam SU(4)C×SU(2)L×SU(2)R. Although the minimal realization of the SO(10)
faces notorious tachyonic instabilities in the tree-level scalar mass spectrum [8–
10] that can be remedied only by introducing loop corrections [11], it remains
intensively studied theory [7, 11–17]. Hence, from now on, we shall focus solely
on the minimal SO(10) GUT.

Finally, remark that the rank 5 groups are not the only ones that can be
used to construct a Grand Unified Theory. The honourable mention deserves the
rank-6 exceptional E(6) group [94–102] as one of the even larger beyond-the-SM
gauge groups with SO(10) being its potential intermediate symmetry stage.

1.5 The SO(10) gauge model as a realistic GUT
In the general SO(10) Grand Unified Theory, the gauge sector is accommodated
in the adjoint 45-dimensional representation. It decomposes into the following
SM irreducible representations [46]:

45G = (8, 1, 0)
↓
Gµ

⊕ (1, 3, 0)
↓
Aµ

⊕ (1, 1, 0) ⊕ (1, 1, 0)
↓
Bµ

⊕

⊕ (3, 2,+5
6) ⊕ (3, 2,−5

6)
↓

Xµ ⊕Xµ

⊕ (3, 2,−1
6) ⊕ (3, 2,+1

6)
↓

Yµ ⊕ Y µ

⊕ (3, 1,+2
3) ⊕ (1, 1,+1) + h.c.

(1.13)

The presence of the additional Xµ, Yµ gauge fields allows for the gauge boson-
mediated proton decay, which is the smoking gun signal of the vast majority of
GUTs, c.f. Sec. 2.5.

As we already mentioned in Sec. 1.4.2, one of the most remarkable aspects
of the minimal SO(10) GUT is the fact that the whole generation of the SM
fermionic matter fields can be accommodated into a 16-dimensional irreducible
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spinorial representation. Specifically,

16F = (3, 2,+1
6)

↓
QL

⊕(1, 2,−1
2)

↓
LL

⊕(3, 1,−2
3)

↓
uR

⊕(3, 1,+1
3)

↓
dR

⊕(1, 1, 0)
↓
νR

⊕(1, 1,+1)
↓
eR

. (1.14)

All fermionic hypercharges are properly quantized and, at the same time, all
chiral anomalies get automatically cancelled. Furthermore, the neutrino masses
can be generated via the type-I seesaw mechanism by employing the right-handed
neutrino νR.

The different scalar sector configurations typically distinguish realizations of
the SO(10) GUT with distinctive phenomenological implications. Fig. 1.2 shows
all possible symmetry breaking chains with SO(10) representations of dimen-
sion less than 300 which can be employed to spontaneously break simple group
SO(10) to the SU(3)c × SU(2)L × U(1)Y , and subsequently even further to the
SU(3)c × U(1)Q. We shall identify the minimal potentially realistic renormaliz-

SO(10)

SU(5) x U(1)Z
SU(4)c xSU(2)L x SU(2)R

SU(5)'x U(1)Z'

SU(3)c xSU(2)L xSU(2)R xU(1)BL SU(4)c xSU(2)L xU(1)R

SU(5)
SU(3)c xSU(2)L xU(1)R xU(1)BL

SU(3)c xSU(2)L xU(1)Y

SU(3)c x U(1)Q

 45, 210 45 

16, 126

54, 210

45, 210

45, 210
45

45, 210 45, 210

16, 126, 144

10, 16, 45, 54, 120, 126, 144, 210

16, 126

16, 126

 144

 45, 54, 144, 210

 144

 45, 54, 210

16, 126, 144

45

45, 210

16, 126, 144

16, 126, 144

210

Figure 1.2: Symmetry breaking chains [103–105] of the SO(10) GUT which lead
to the SU(3)c × SU(2)L × U(1)Y , and subsequently to the SU(3)c ×U(1)Q, with
representations of dimension less than 300 employed.

able realisation of the SO(10) GUT, i.e. the renormalizable realization which still
has a chance to be viable and contains the smallest number of field degrees of
freedom.6 The scalar content of such a scenario can be determined by considering

6There are two perspectives on how to assess the minimality of a given model — either by
the number of field degrees of freedom or by the number of independent parameters of the
Lagrangian. The SO(10) GUT studied in this thesis is minimal only concerning the former
criterion as there exist alternative SO(10) GUT realizations which are determined by an even
smaller number of lagrangian parameters, see for example [106].
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restrictions coming from the Yukawa sector and from the successful SSB of the
SO(10) down to the SM gauge group.

The SO(10) decomposition of the spinor bilinear [103]

16 ⊗ 16 = 10 ⊕ 126 ⊕ 120 (1.15)

dictates that any renormalizable Yukawa Lagrangian engages only 10, 126 and
120 scalar representations of SO(10) (see studies [106–119]). The minimal renor-
malizable Yukawa sector that can support viable fermion mass fits [109] consists
of the 126-dimensional tensor and the complexified 10-dimensional vector repre-
sentations of SO(10).7

The scalar 10 does not contain any SM singlet and thus cannot contribute to
the SSB of the SO(10) down to the SM gauge group, c.f. Fig. 1.2. The 126 accom-
modates one complex SM singlet, which, however, breaks SO(10) only to SU(5).
Hence it is necessary to employ yet additional scalar irreducible representation to
spontaneously break SO(10) to the SU(3)c × SU(2)L × U(1)Y and to avoid phe-
nomenologically disfavoured breaking chain containing SU(5) intermediate stage.
The smallest such representation is the adjoint 45.

In total, the scalar sector of the minimal renormalizable SO(10) GUT consists
of

45 ⊕ 126 ⊕ 10C, (1.16)
where 45 is real and 126, 10C are complex representations.

7It is necessary to consider at least two different scalar representations employed in the
Yukawa Lagrangian to avoid undesirable correlations between quark and lepton masses. More-
over, the realization with the 126 and the real 10 SO(10) representations likewise leads to a
contradiction with the fermion mass and mixing data [108]. For further details, see Sec. 2.1.3.
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2. Structure and phenomenology
of the minimal SO(10) GUT
Let us reiterate that the gauge fields of the SO(10) GUT reside in the adjoint
45G representation. The fermionic fields including right-handed neutrinos are
accommodated in three copies of the 16-dimensional spinorial representation. We
parametrize the bispinor (16F ,16F )T by

Ωp
x, x = 1, . . . , 32, (2.1)

where p = 1, 2, 3 denotes family index. The decomposition of 16F spinors into
various subgroups can be found in Appendix F.4. The scalar sector consists of

45 ⊕ 126 ⊕ 10C.

In what follows, we write 45 as a set of 2-index real antisymmetric components

ϕij, i, j = 1, . . . , 10, ϕji = −ϕij. (2.2)

The 126 is represented by a 5-index self-dual antisymmetric tensor with complex
components

Σijklm, i, j, k, l,m = 1, . . . , 10, Σijklm = − i

5!ϵijklmnopqrΣnopqr, (2.3)

where the totally antisymmetric Levi-Civita tensor convention is

ϵ12345678910 = +1. (2.4)

Last, but not least, we write the 10C as a vector with complex components1

Hi, i = 1, . . . , 10. (2.5)

Since Σ and H are complex, we denote the corresponding complex conjugated
components as Σ∗ and H∗, respectively. For more details, see Appendix A of
[120].

Decomposition of the 45 ⊕ 126 ⊕ 10C into several physically relevant SO(10)
subgroups can be found in Appendix F.4. The model’s scalar content in terms
of the irreducible SU(3)c × SU(2)L × U(1)Y representations is gathered in Ta-
ble 2.1. Every SM representation is accompanied by information about its real-
ity/complexity, multiplicity, SO(10) origin and the number of would-be Goldstone
modes.

2.1 Lagrangian
The most general form of the renormalizable Lagrangian L in an unbroken phase
can be written as

L = Lkin − V0 + LY . (2.6)

It consists of the kinetic part Lkin, the scalar potential V0 and the Yukawa inter-
actions LY .

1The 10-dimensional vector representation of SO(10) is real, however, we work with its
complexified version, and hence the components Hi are complex.
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Table 2.1: Scalar content of the 45 ⊕ 126 ⊕ 10C SO(10) GUT in terms of the
SU(3)c × SU(2)L × U(1)Y irreducible representations. Each SM representation
R has its reality/complexity, multiplicity # and SO(10) origins indicated. The
column labeled “WGB” indicates the number of massless would-be Goldstone
modes that transform as a given SM representation.

R ∼ GSM R/C # WGB ⊆ SO(10)

(1, 1, 0) R 4 1 ϕ, ϕ, Σ, Σ∗

(1, 1,+1) C 2 1 ϕ, Σ
(1, 1,+2) C 1 0 Σ
(1, 2,+1

2) C 4 0 Σ, Σ∗, H, H∗

(1, 3,−1) C 1 0 Σ
(1, 3, 0) R 1 0 ϕ

(3, 2,−5
6) C 1 1 ϕ

(3, 2,+1
6) C 3 1 ϕ, Σ, Σ∗

(3, 2,+7
6) C 2 0 Σ, Σ∗

(3, 3,−1
3) C 1 0 Σ

(3̄, 1,−2
3) C 2 1 ϕ, Σ

(3̄, 1,+1
3) C 5 0 Σ, Σ, Σ∗, H, H∗

(3̄, 1,+4
3) C 1 0 Σ

(6, 3,+1
3) C 1 0 Σ

(6̄, 1,−4
3) C 1 0 Σ

(6̄, 1,−1
3) C 1 0 Σ

(6̄, 1,+2
3) C 1 0 Σ

(8, 1, 0) R 1 0 ϕ

(8, 2,+1
2) C 2 0 Σ, Σ∗

2.1.1 Kinetic part
The kinetic part is

Lkin = 1
4 (Fµν)ij (F µν)ij + iΩp

xγµD
µΩp

x + 1
4 (Dµϕij)∗ (Dµϕij) +

+ 1
5! (DµΣijklm)∗ (DµΣijklm) + (DµHi)∗ (DµHi) , (2.7)

16



where γµ are the Dirac gamma matrices and [11, 15]

(F µν)ij = ∂µAνij − ∂νAµij − i g [Aµ, Aν ]ij , (2.8)

Dµϕij = ∂µϕij − ig [Aµ, ϕ]ij, (2.9)

DµΣijklm = ∂µΣijklm − ig(AµinΣnjklm + AµjnΣinklm+
+ AµknΣijnlm + AµlnΣijknm + AµmnΣijkln) (2.10)

DµHi = ∂µHi − ig (AµH)i , (2.11)

DµΩp
x = ∂µΩp

x − ig
1
4
(︂
Aµ̃Ω

)︂p
x
. (2.12)

The contribution of gauge vector fields is conveniently described in terms of

Aµ = Aµ(ij)T(ij) (2.13)

with T(ij) being SO(10) generators in the 10-dimensional vector representation
and

Aµ̃ = Aµ(ij)S̃(ij), (2.14)

where S̃(ij) are SO(10) generators in the 32-dimensional reducible spinorial repre-
sentation. For their explicit forms, see Appendix F. The indices i, j ∈ {1, . . . , 10};
x ∈ {1, . . . , 32} and the subscript (ij) stands for 45 ordered pairs of indices i, j.
Three fermion families are distinguished by p ∈ {1, 2, 3}. As usual, summation
over repeated indices is assumed.

2.1.2 Scalar potential
The most general tree-level renormalizable scalar potential can be expressed as

V0 = V45 + V126 + V10 + Vmix (2.15)

with

V45 = −µ2

4 (ϕϕ)0 + a0

4 (ϕϕ)0(ϕϕ)0 + a2

4 (ϕϕ)2(ϕϕ)2, (2.16)

V126 = −ν2

5! (ΣΣ∗)0 + λ0

(5!)2 (ΣΣ∗)0(ΣΣ∗)0 + λ2

(4!)2 (ΣΣ∗)2(ΣΣ∗)2+

+ λ4

(3!)2(2!)2 (ΣΣ∗)4(ΣΣ∗)4 + λ′
4

(3!)2 (ΣΣ∗)4′(ΣΣ∗)4′+

+ η2

(4!)2 (ΣΣ)2(ΣΣ)2 + η∗
2

(4!)2 (Σ∗Σ∗)2(Σ∗Σ∗)2, (2.17)

V10 = −ξ2(H∗H)0 − ξ′2(HH)0 − ξ′∗2(H∗H∗)0+
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+ h4 (HH)0(HH)0 + h∗
4 (H∗H∗)0(H∗H∗)0+

+ h3 (HH)0(HH∗)0 + h∗
3 (H∗H∗)0(H∗H)0+

+ h2 (H∗H)0(H∗H)0 + h′
2 (H∗H∗)0(HH)0, (2.18)

Vmix = κ0

2 (H∗H)0(ϕϕ)0 + κ2 (H∗H)2(ϕϕ)2+

+ κ′
0

2 (HH)0(ϕϕ)0 + κ′
0

∗

2 (H∗H∗)0(ϕϕ)0+

+ κ′
2 (HH)2(ϕϕ)2 + κ′

2
∗ (H∗H∗)2(ϕϕ)2+

+ ζ

4(ϕϕ)4(HΣ)4 + ζ∗

4 (ϕϕ)4(H∗Σ∗)4+

+ ζ ′

4 (ϕϕ)4(H∗Σ)4 + ζ ′∗

4 (ϕϕ)4(HΣ∗)4+

+ ρ0

5! (H∗H)0(ΣΣ∗)0 + ρ2

4! (H∗H)2(ΣΣ∗)2+

+ ρ′
0

5! (HH)0(ΣΣ∗)0 + ρ′
0

∗

5! (H∗H∗)0(ΣΣ∗)0+

+ ψ2

4! (HH)2(ΣΣ)2 + ψ∗
2

4! (H∗H∗)2(Σ∗Σ∗)2+

+ +ψ1

4! (HH∗)2(ΣΣ)2 + ψ∗
1

4! (H∗H)2(Σ∗Σ∗)2+

+ ψ0

4! (H∗H∗)2(ΣΣ)2 + ψ∗
0

4! (HH)2(Σ∗Σ∗)2+

+ φ

3!(HΣ)4(ΣΣ∗)4 + φ∗

3! (H∗Σ∗)4(ΣΣ∗)4+

+ φ′

3! (H∗Σ)4(ΣΣ∗)4 + φ′∗

3! (HΣ∗)4(ΣΣ∗)4+

+ iτ

4! (ϕ)2(ΣΣ∗)2 + iτ ′(ϕ)2(HH∗)2+

+ γ2

4! (ϕϕ)2(ΣΣ)2 + γ∗
2

4! (ϕϕ)2(Σ∗Σ∗)2+

+ α

2 · 5!(ϕϕ)0(ΣΣ∗)0 + β4

4 · 3!(ϕϕ)4(ΣΣ∗)4+

+ β′
4

3! (ϕϕ)4′(ΣΣ∗)4′ . (2.19)

The following abbreviated notation of invariant contractions is used:

(HH)0 = HiHi,

(HH)2 = HiHj,

(ϕϕ)0 = ϕijϕij,

(ϕϕ)2 = (ϕϕ)jk = ϕijϕik,

(ϕϕ)4 = ϕijϕkl,

(ΣΣ∗)0 = ΣijklmΣ∗
ijklm,

(ΣΣ∗)2 = (ΣΣ∗)mn = ΣijklmΣ∗
ijkln,

(ΣΣ∗)4 = (ΣΣ∗)lmno = ΣijklmΣ∗
ijkno,

(HΣ)4 = (HΣ)ijklm = HiΣijklm,
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(ϕ)2 (HH∗)2 = ϕijHiH
∗
j ,

(ϕϕ)2 (HH)2 = (ϕϕ)jkHjHk,

(ϕϕ)4 (HΣ)4 = ϕijϕkl (HΣ)ijkl ,
(ϕ)2 (ΣΣ∗)2 = ϕmn (ΣΣ∗)mn ,
(ϕϕ)2 (ΣΣ)2 = (ϕϕ)jk (ΣΣ)jk ,

(ϕϕ)4 (ΣΣ∗)4 = ϕlmϕno (ΣΣ∗)lmno ,
(ϕϕ)4′ (ΣΣ∗)4′ = ϕlmϕno (ΣΣ∗)lnmo ,
(ΣΣ∗)2 (ΣΣ∗)2 = (ΣΣ∗)mn (ΣΣ∗)mn ,
(ΣΣ∗)4 (ΣΣ∗)4 = (ΣΣ∗)lmno (ΣΣ∗)lmno ,

(ΣΣ∗)4′ (ΣΣ∗)4′ = (ΣΣ∗)lmno (ΣΣ∗)lnmo ,
(HH)2 (ΣΣ)2 = HmHn (ΣΣ)mn ,
(HΣ)4 (ΣΣ∗)4 = (HΣ)lmno (ΣΣ∗)lmno . (2.20)

The normalization of the scalar potential terms was chosen in such a way that
it compensates for the combinatorical factors appearing once the abbreviated
invariants are expanded. In addition to that, this normalization ensures that
expressions µ2 and ν2 represent the mass-squares of the fields in 45 and 126 in
the unbroken phase, respectively.

The scalar potential contains 30 dimensionless parameters, out of which 15
are real

{a0, a2, λ0, λ2, λ4, λ
′
4, α, β4, β

′
4, h2, h

′
2, κ0, κ2, ρ0, ρ2} (2.21)

and the remaining 15 couplings are complex

{γ2, η2, h3, h4, κ
′
0, κ

′
2, ζ, ζ

′, ρ′
0, ρ

′
2, ψ0, ψ1, ψ2, ϕ, ϕ

′}. (2.22)

These are accompanied by 5 real

{µ, ν, ξ, τ, τ ′} (2.23)

and one complex dimensionfull parameter

{ξ′}. (2.24)

2.1.3 Yukawa interactions
Last, but not least, the tree-level Yukawa interaction Lagrangian can be schemat-
ically sketched as

LY = −16pF
[︂
(Y10)pq 10C +

(︂
Ỹ 10

)︂pq
10∗

C + (Y126)pq 126
]︂

16qF + h.c., (2.25)

where Y10, Ỹ 10 and Y126 are 3 × 3 complex Yukawa matrices that are symmetric
in the generation space over which the indices p, q get summed.

The Lagrangian LY is rather complicated with three Yukawa matrices deter-
mining Yukawa interactions, thus it is typically subject to additional constraints
that increase the predictive power of the model [108], such as extra global sym-
metry of the Peccei-Quinn type or demanding 10 is real. Let us discuss in brief
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the former option and postpone the discussion of the latter one to Sec. 2.4.3.The
global Peccei-Quinn U(1)PQ symmetry [106–114] assigns charges to all SO(10)
representations:

[16F ]PQ = +1, [45]PQ = 0, [126]PQ = +2, [10C]PQ = −2. (2.26)

Consequently, the 16F10∗
C16F term in LY is not U(1)PQ symmetric and thus

the Yukawa couplings Ỹ 10 must vanish. This greatly improves the predictive
power of the model as it reduces the number of free parameters that have to
be determined. At the same time, a number of scalar couplings has to vanish
to make V0 symmetric with respect to the U(1)PQ, which leads to even greater
model simplification. One such parameter is γ2 of Vmix and it is forbidden for
any non-trivial assignment of the PQ charges, see Appendix C in [17]. Since
the γ2 coupling turns out to be crucial in fixing the tree-level tachyonicity of the
pseudo-Goldstone masses, c.f. Sec. 3.2.1, its value cannot vanish in the minimal
renormalizable SO(10) theory. Hence the PQ symmetry cannot be imposed as
the theory would run into issues with tachyonicity of its spectrum.

The non-viability of the alternative scenario with the real 10 is discussed in
Sec. 2.4.3. Therefore the LY of Eq. (2.25) is the minimal Yukawa Lagrangian that
can be written with a chance of satisfying all phenomenological requirements.

2.2 VEVs and Symmetry breaking
The scalar spectrum of the minimal SO(10) GUT contains three SM singlets: the
45 accommodates two real ones and an additional complex SM singlet resides in
the 126. Their vacuum expectation values can be parameterized as

⟨(1, 1, 1, 0)ϕ⟩ ≡
√

3ωBL, (2.27)
⟨(1, 1, 3, 0)ϕ⟩ ≡

√
2ωR, (2.28)

⟨(1, 1, 3, 2)Σ⟩ ≡
√

2σ. (2.29)

For unambiguous identification of these fields, in parentheses it is referred to
their SU(3)c × SU(2)L × SU(2)R × U(1)B−L transformational properties. The
lower indices of ϕ and Σ indicate that these fields belong to the 45 and 126,
respectively. In general, one can always redefine the overall phase of Σ in such a
way that σ is real and positive. A similar transformation can be performed on ϕ
allowing one of ω’s values to be positive. Although this simplification is utilized
in our scans in Sec. 3, all analytical expressions onward are written without
capitalizing on the freedom in choosing phases and signs of σ and ω’s.

As sugested by their names, the ωBL VEV preserves the U(1)B−L symmetry
and the ωR VEV, on the other hand, conserves U(1)R symmetry. The residual
gauge symmetries in all relevant symmetry-breaking chains are summarized in
Table 2.2.

The SO(10) gauge symmetry of the minimal model is assumed to be sponta-
neously broken down to the SU(3)c × SU(2)L × U(1)Y of the SM in two stages
with separate energy scales as the single-stage symmetry breaking does not lead
to a successful gauge coupling unification due to heavy part of the spectrum be-
ing clustered around the unification scale. Hence the GUT symmetry is broken
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Table 2.2: Residual gauge symmetries for various VEV configurations. The
abbreviated notation n ≡ SU(n) is introduced. The penultimate column cor-
responds to the flipped SU(5) intermediate symmetry stage [121, 122], see Ap-
pendix F.3 for SM embedding details. The SU(5) symmetry in the last column
remains unbroken due to the SU(5)-singlet nature of σ.

ωBL ̸= 0 ωBL = 0 ωBL ̸= 0 ωBL ̸= 0 ωBL ̸= 0
ωR ̸= 0 ωR ̸= 0 ωR = 0 ωR = −ωBL ωR = ωBL

σ = 0 3c 2L 1R 1B−L 4C 2L 1R 3c 2L 2R 1B−L 5′ 1Z′ 5 1Z
σ ̸= 0 3c 2L 1Y 3c 2L 1Y 3c 2L 1Y 3c 2L 1Y 5

down by the larger of the ω VEVs down to a rank-5 subgroup. Subsequently,
this intermediate symmetry is broken by the rank reducing σ VEV down to the
SU(3)c × SU(2)L × U(1)Y . The max[|ωBL|, |ωR|] plays the role of the GUT unifi-
cation scale (max[|ωBL|, |ωR|] ∼ MGUT ) and σ determines the seesaw scale. The
seesaw-compatible regime implies the scale hierarchy

|σ| ≪ max[|ωBL|, |ωR|], (2.30)

which is confirmed by results in Sec. 3.
Last, but not least, a fully realistic symmetry breaking chain has to involve

spontaneous symmetry breaking of the SU(3)c × SU(2)L × U(1)Y down to the
SU(3)c × U(1)Q. Hence at least some of the SU(3)c × U(1)Q neutral components
of scalar fields must acquire a non-zero expectation value. However, the SM sym-
metry breaking does not affect the preceding step of the SO(10) breaking to the
SU(3)c × SU(2)L × U(1)Y , thus it will be mostly omitted from the following
considerations. The interested reader is kindly deferred to Sec. 2.4.3, which con-
templates on some explicit implications of the SU(3)c×SU(2)L×U(1)Y symmetry
breaking for the flavour sector.

2.3 Vacuum stability conditions
The presence of three non-zero vacuum expectation values entails the existence
of three non-trivial vacuum stationarity conditions

∂V (⟨ϕ⟩, ⟨Σ⟩, ⟨H⟩)
∂ωBL

= 0, (2.31)

∂V (⟨ϕ⟩, ⟨Σ⟩, ⟨H⟩)
∂ωR

= 0, (2.32)

∂V (⟨ϕ⟩, ⟨Σ⟩, ⟨H⟩)
∂σ

= 0, (2.33)

where V (⟨ϕ⟩, ⟨Σ⟩, ⟨Ω⟩) denotes the effective scalar potential with all the fields
evaluated in a vacuum.

Eqns. (2.31)-(2.33) are used to relate the dimensionfull scalar parameters
{µ, ν, τ} with the VEVs {ωBL, ωR, σ}. Let us note that if there were any non-
trivial relations between VEVs, the number of non-trivial vacuum stationarity
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conditions would reduce and some of the {µ, ν, τ} parameters could not be ex-
pressed as a function of VEVs and dimensionless scalar couplings. For example,
if ωR = ωBL, Eqns. (2.31) and (2.32) are identical and a certain combination of
{µ, ν} becomes an independent structure whose value is not restricted by vacuum
stability conditions (2.31)-(2.33).

By inserting the tree-level scalar potential V0 into Eqns. (2.31)-(2.33), one
obtains the following tree-level relations

µ2 = (12a0 + 2a2)ω2
BL + (8a0 + 2a2)ω2

R + 2a2ωBLωR + 4(α + β′
4)|σ|2, (2.34)

ν2 = 3(α + 4β′
4)ω2

BL + 2(α + 3β′
4)ω2

R + 12β′
4ωBLωR + 4λ0|σ|2+

+ a2
ωBLωR

|σ|2
(ωBL + ωR)(3ωBL + 2ωR), (2.35)

τ = 2β′
4(3ωBL + 2ωR) + a2

ωBLωR
|σ|2

(ωBL + ωR). (2.36)

Notice that expressions (2.35) and (2.36) contain a peculiar VEV structure ac-
commodating the σ VEV in the denominator. This structure will become im-
portant in the considerations about perturbativity of Sec. 3.1.3 and it will help
narrow down a set of viable symmetry breaking patterns, see Sec. 3.1.3. For later
convenience, we will define the dimensionless universal VEV ratio as

χ = ωBLωR
|σ|2

. (2.37)

2.4 Tree-level spectrum
Let us determine the full tree-level mass spectrum of the scalar, vector and
fermionic fields.

2.4.1 Tree-level gauge masses
Gauge mass-squared matrix M2

G originates from the scalar-field-dependent part
of Lkin of Eq. (2.7), which contains the gauge mass term

L ⊃ 1
2M2

G(ij)(kl)A
µ
(ij)Aµ(kl), (2.38)

where
2
g2 M2

G(mn)(op) = δmo⟨Σ∗
n(jklm)⟩⟨Σp(jklm)⟩ + δnp⟨Σ∗

m(jklm)⟩⟨Σo(jklm)⟩−

− δmp⟨Σ∗
n(jklm)⟩⟨Σo(jklm)⟩ − δno⟨Σ∗

m(jklm)⟩⟨Σp(jklm)⟩+
+ ⟨Σ∗

mp(klm)⟩⟨Σno(klm)⟩ + ⟨Σ∗
no(klm)⟩⟨Σmp(klm)⟩−

− ⟨Σ∗
mo(klm)⟩⟨Σnp(klm)⟩ − ⟨Σ∗

np(klm)⟩⟨Σmo(klm)⟩+

+ 1
2
[︂
T(mn), ⟨ϕ⟩

]︂
ij

[︂
T(op), ⟨ϕ⟩

]︂
ji

+
(︄
m ↔ o
n ↔ p

)︄
(2.39)
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is 45 × 45 dimensional Hermitian matrix [15]. All the Latin indices j, . . . , p run
over {1, . . . , 10} and the superscripts (i1, . . . , in) denote ( 10

n ) ordered pairs of n
indices. As before, ⟨Σ⟩ and ⟨ϕ⟩ stand for fields Σ and ϕ evaluated in the vacuum,
respectively. Let us note that 10C does not contribute to M2

G as it acquires zero
vacuum expectation value unless SU(3)c × SU(2)L × U(1)Y symmetry breaking is
considered.

The tree-level gauge mass-squared matrix eigenvalues at the GUT scale are

M2
G(1, 1, 0) = 10g2|σ|2, (2.40)

M2
G(1, 1,+1) = 2g2

(︂
|σ|2 + ω2

R

)︂
, (2.41)

M2
G(3, 1,+2

3) = 2g2
(︂
|σ|2 + ω2

BL

)︂
, (2.42)

M2
G(3, 2,+1

6) = 2g2
(︂
|σ|2 + 1

4 (ωR + ωBL)2
)︂
, (2.43)

M2
G(3, 2,−5

6) = 1
2g

2 (ωR − ωBL)2 , (2.44)

where the SU(3)c×SU(2)L×U(1)Y transformation properties of the corresponding
gauge fields are written in parentheses. The remaining 12 zero modes correspond
to 12 generators of the unbroken SM gauge group.

2.4.2 Tree-level scalar masses
The tree-level scalar mass-squared matrix M2

S is obtained by taking second deriva-
tives of the scalar potential V0:

M2
S = ∂2V0

∂Φ∂Φ∗

⃓⃓⃓⃓
⃓
Φ=⟨Φ⟩

, (2.45)

where Φ ∈ {ϕ,Σ, H} and ⟨Φ⟩ denotes a scalar field evaluated in the vacuum.
Eq. (2.45) implicitly assumes that stationarity conditions (2.34)-(2.36) are em-
ployed. In general, M2

S is the 317 × 317 dimensional2 Hermitian matrix. As
the eigenstates belonging to different SU(3)c × SU(2)L × U(1)Y representations
do not mix, there exists a basis in which the scalar mass-squared matrix takes
a block diagonal structure with every block corresponding to a separate SM
representation. The collection of scalar mass-squares associated with distinct
SU(3)c × SU(2)L × U(1)Y representations, without considering 10C, is presented
in Appendix E.1 in several VEV limits.

The minimal renormalizable SO(10) model is known to be suffering from the
presence of tachyonic tree-level states in the scalar spectrum [8, 9]. Observe that
the scalar masses of the fields transforming as (8, 1, 0) and (1, 3, 0) under the SM
SU(3)c × SU(2)L × U(1)Y gauge group have the form

M2
S(8, 1, 0) = 2a2(ωR − ωBL)(ωBL + 2ωR), (2.46)

M2
S(1, 3, 0) = 2a2(ωBL − ωR)(ωR + 2ωBL), (2.47)

which can be simultaneously made non-tachyonic if and only if

a2 > 0, −2 < ωBL
ωR

< −1
2 . (2.48)

2It spans over the 45 real fields ϕij together with the 126 and 10 complex fields Σijklm and
Hi, respectively.

23



the VEV configuration in Eq. (2.48) directly corresponds to the vicinity of the
scenario with flipped-SU(5) intermediate symmetry stage, c.f. Table 2.2. Such a
breaking scheme, however, inevitably runs into issues with phenomenological re-
quirements — either one respects the seesaw-compatible hierarchy between VEVs
|σ| ≪ max[|ωR|, |ωBL|] in the flipped-SU(5)-compatible regime ωBL ≈ −ωR, caus-
ing the mass of the proton mediating gauge boson M2

G(3, 2,+1
6) to be suppressed

well below the GUT scale, c.f. Eq. (2.43), which leads to violating current proton
lifetime limits, or one performs flipped-SU(5) and SO(10) symmetry breakings
close to each other by lifting σ to be right below the GUT scale (almost one-stage
symmetry breaking pattern), which inevitably spoils successful gauge coupling
unification [104, 123]. Thus no phenomenologically viable scenario allows for a
non-tachyonic tree-level scalar spectrum. As a consequence, the minimal renor-
malizable SO(10) model had been regarded as non-viable for almost 30 years
[8, 11]. Fortunately, it was resurrected by invoking radiative corrections [11] —
if the a2 parameter is artificially set to be small, i.e. |a2| ≪ 1, then the tree-level
masses (2.46)-(2.47) are accidentally suppressed and one-loop mass corrections
may remedy undesirable tree-level tachyonicities along potentially viable break-
ing schemes outside the problematic flipped-SU(5) scenario (2.48).

Let us note that it was shown recently [15] that the tree-level scalar mass
spectrum accommodates another state that is prone to tachyonic instabilities
outside of the regime (2.48). This scalar field is transforming as a singlet with
respect to the SU(3)c × SU(2)L × U(1)Y gauge group and its mass acquires the
following form

M2
S(1, 1, 0)3 = a2(ωBL − ωR)2

+ 4a0
(︂
3ω2

BL + 2ω2
R

)︂(︄
1 −

√︃
1 +

(︂
a2
a0

)︂ 3(3ω2
BL−2ω2

R)(ω2
BL−ω2

R)
2 (3ω2

BL+2ω2
R)2 +

(︂
a2
a0

)︂2 9 (ω2
BL−ω2

R)2

16 (3ω2
BL+2ω2

R)2

)︄

+ O
(︄

|σ|2

max[|ωR|, |ωBL|]2

)︄
, (2.49)

assuming the seesaw-compatible regime |σ| ≪ max[|ωR|, |ωBL|]. The subscripts
denote the multiplicity index in the presence of more fields with the same SM
quantum numbers in ascending mass ordering. Note that four scalar fields are
transforming as singlets with respect to the SM: one is the would-be Goldstone
boson, one is the intermediate symmetry breaking Higgs field and the remaining
two correspond to the state (2.49) and its companion with the mass M2

S(1, 1, 0)4,
which is the same as (2.49), but with the opposite sign in front of the square root.

In the well-motivated regime |a2| ≪ |a0|, stemming from the requirement
|a2| ≪ 1, the expression (2.49) can be approximated as

M2
S(1, 1, 0)3 ≈ a2

(︃
− 45ω4

BL

3ω2
BL + 2ω2

R

+ 13ω2
BL − 2ωBLωR − 2ω2

R

)︃
+

+ O
(︄
a2

2
a2

0
,

|σ|2

max[|ωR|, |ωBL|]2

)︄
. (2.50)

In the opposite regime |a0| ≪ |a2|, the masses M2
S(1, 1, 0)3 and M2

S(1, 1, 0)4 are
approximately equal to the octet and triplet masses (2.46)-(2.47).

Assuming a2 > 0, the expression (2.50) is positive if and only if ωBL ≈ −ωR.
Hence we demonstrated again that tachyonic instabilities in the tree-level scalar
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mass spectrum can be avoided only in the regime (2.48), which is in the proximity
of the troublesome breaking chain with the flipped-SU(5) intermediate symme-
try. Thus the radiative mass corrections have to be invoked and the minimal
renormalizable SO(10) GUT has to be treated on the quantum level.

Pseudo-Goldstone nature of the tachyonic states

Observe that the tree-level masses of the scalar fields (8, 1, 0), (1, 3, 0) and (1, 1, 0),
whose masses are prone to tachyonic instabilities, are determined by one scalar
parameter — a2. Let us show that these fields are pseudo-Goldstone bosons cor-
responding to a symmetry explicitly broken by the a2 term in the scalar potential.

We consider the case of an exactly vanishing VEV σ = 0, which is the lim-
iting case of the phenomenologically motivated seesaw-compatible VEV regime
|σ| ≪ max[|ωBL|, |ωR|]. We can thus focus solely on the 45-dependent part of the
scalar sector and neglect any mixing between 45 and 126⊕10C. The relevant part
of the scalar potential becomes V45 defined in Eq. (2.16). It possesses extra global
O(45) symmetry for a2 = 0 [11]. However, once 45 acquires a nonzero VEV in the
direction of the SM singlet, the O(45) gets broken to O(44) and 44 massless fields
corresponding to the 44 generators of the O(45)/O(44) coset space are expected
to appear in the scalar spectrum. As the SO(10) part of the O(45) is gauged and
the general alignment of the ωBL, ωR VEVs in 45 triggers spontaneous symmetry
breaking of the SO(10) to the SU(3)c×SU(2)L×U(1)R×U(1)B−L, c.f. Table 2.2,
32 out of these 44 massless modes coincide with would-be Goldstone bosons as-
sociated with this local symmetry breaking. The remaining 12 physical massless
fields residing in (8, 1, 0), (1, 3, 0) and (1, 1, 0) SM respresentations become true
Goldstone bosons.

For non-zero values of a2, the O(45) breaking term (ϕϕ)2 (ϕϕ)2 in V45 is re-
instated. Hence the Goldstone bosons (8, 1, 0), (1, 3, 0) and (1, 1, 0) can receive
only a2-proportional tree-level contribution, which can be verified by looking at
Eqns. (2.46), (2.47) and (2.50). Therefore, from now on, we will refer to these
states as pseudo-Goldstone bosons (PGBs).

Thus, to this end, one distinguishes four types of scalar fields:

1. The would-be Goldstones have zero mass and get absorbed into longitu-
dinal components of the corresponding massive gauge boson companions.
These transform as (3, 2,−5

6), (1, 1,+1)1, (3, 1,−2
3), (3, 2,+1

6), (1, 1, 0)1 SM
multiplets.

2. The heavy scalars are defined as having masses that are well estimated by
the dominant M2

GUT−proportional contributions.

3. The pseudo-Goldstone bosons are scalars with accidentally suppressed tree-
level a2 ·M2

GUT -proportional mass-squares, assuming |a2| ≪ 1, whose corre-
sponding one-loop mass corrections can be of the comparable size or domi-
nate over the tree level.

4. The intermediate-scale scalars have masses that are |σ|−proportional to
all orders in the perturbative expansion as this property is protected by
symmetry, see [124] and Appendix E.2.
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2.4.3 Fermion spectrum
The fermion masses can be derived from the Yukawa part LY (2.25) of the La-
grangian by inserting scalar fields evaluated in the vacuum after the SM gauge
symmetry SU(3)c × SU(2)L × U(1)Y is broken down to the SU(3) × U(1)Q. The
complex representations 126 and 10C contain two complex weak doublets each
so four corresponding SU(3)c × U(1)Q neutral components can obtain non-zero
VEVs,3 c.f. Tables F.1 and F.4. The projections of the SM Higgs VEV vSM onto
these four individual weak doublets are labeled

vu10 =
⟨︂
(1, 2,+1

2)10
⟩︂
, vd10 = ⟨( 1, 2,−1

2)10⟩, (2.51)

vu126 =
⟨︂
(1, 2,+1

2)126

⟩︂
, vd126 = ⟨( 1, 2,−1

2)126⟩, (2.52)

where we refer to the SU(3)c × SU(2)L × U(1)Y transformation properties of the
fields and the subscripts mark their SO(10) origin. Nonzero VEVs are acquired
by SU(2)L doublet components with either positive +1

2 (denoted u) or negative
−1

2 (denoted d) hypercharge. Notice that the SU(3)c × U(1)Q neutral component
of the SU(2)L triplet in 126 will also obtain the non-zero induced VEV

w = ⟨(1, 3,+1)126⟩ . (2.53)

Hence the tree-level quark and lepton mass matrices at the GUT scale have the
following form [12, 108]:

MU = Y10v
u
10 + Ỹ 10v

d ∗
10 + Y126v

u
126, (2.54)

MD = Y10v
d
10 + Ỹ 10v

u ∗
10 + Y126v

d
126, (2.55)

ME = Y10v
d
10 + Ỹ 10v

u ∗
10 − 3Y126v

d
126, (2.56)

MD
ν = Y10v

u
10 + Ỹ 10v

d ∗
10 − 3Y126v

u
126 (2.57)

with U , D and E subscripts referring to the up, down and charged lepton sectors,
respectively, and

MM,type I
ν = cIY126 σ, MM,type II

ν = cIIY126 w, (2.58)

where the superscripts D and M denote the Dirac and (type-I and type-II see-
saw) Majorana neutrino mass contributions, respectively. The coefficients cI , cII
include extra numerical factors, such as Clebsch-Gordan coefficients. Note that
the presence of Majorana neutrino mass contributions (2.58) directly implies that
the Yukawa Lagrangian (2.25) LY evaluated in the SM broken phase explicitly
violates lepton number conservation [125]. The light neutrino mass can then be
written as

mν = MM,typeII
ν −MD

ν

(︂
MM,typeI

ν

)︂−1
MD

ν . (2.59)

There are several comments to be made concerning the v-VEVs in this minimal
realization of the SO(10) GUT:

3For the sake of completeness, let us mention that there are three additional SU(3)c ×U(1)Q

singlets residing in 45, two of which are also SM singlets which obtain ωBL and ωR proportional
VEVs, c.f. Table F.3
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• Non-trivial relations between the VEVs (2.51)–(2.53) can be derived by
looking at mass ratio ϱ0 ≡ m2

W

m2
Z cos2 θW

, which acquires the following tree-level
form [126]

ϱ0 = |vu10|2 + |vd10|2 + |vu126|2 + |vd126|2 + 2|w|2

|vu10|2 + |vd10|2 + |vu126|2 + |vd126|2 + 4|w|2
. (2.60)

Thus the w VEV is expected to be much smaller than the other v-VEVs as
it explicitly violates the measured relation ϱ0 = 1.00030±0.00020 [127], i.e.

|w|2 ≪ |vu10|2 + |vd10|2 + |vu126|2 + |vd126|2. (2.61)

Consequently,

|vu10|2 + |vd10|2 + |vu126|2 + |vd126|2 ≃ v2
SM . (2.62)

Let us point out that the smallness of w VEV is simultaneously enforced by
the requirement mν ≲ 1 eV [127], see Eq. (2.59), if no cancellations between
type-I and type-II neutrino mass contributions are assumed.

• The predictive power of the fermion mass relations (2.54)-(2.57) can be in-
creased by considering the non-complexified 10-dimensional representation.
In such a case, the real 10 contains only one complex weak doublet; thus

vu10 = vd10, (2.63)

which significantly reduces the complexity of a flavour fit. However, the
relation (2.63) is in direct contradiction with the phenomenological require-
ment [108] ⃓⃓⃓⃓

⃓vu10
vd10

⃓⃓⃓⃓
⃓ ≈ mt

mb

≫ 1. (2.64)

Hence a realistic Yukawa sector is supported only if 10 is complexified.

• A phenomenologically viable flavour fit obtained with tree-level fermion
mass relations (2.54)-(2.57) enforces the SM Higgs VEV vSM to be an ad-
mixture of the v-VEVs from 10C as well as 126. If the SM Higgs VEV
projections vu126, vd126 vanish, the SU(5)−like correlation

MD ≈ ME (2.65)

is recovered at the GUT scale. On the other hand, if vu10, vd10 are zeroed
out, the relation

MD ≈ −3ME (2.66)

holds at the GUT scale. Such correlations are, however, not phenomeno-
logically viable [128].
By employing the fermion fit results from [113], we can further estimate the
amount of the 126 component in the vSM by evaluating the size of the ratio⌜⃓⃓⎷ |vu126|2 + |vd126|2

v2
SM

= 1
4

|TrMD − TrME|
vSM

√︂
1 + |r|2|s|2

|TrY126|
, (2.67)
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where

r = vu10
vd10

, s = vu126
vd126

vd10
vu10

. (2.68)

As the Yukawa matrix Y126 is typically subject to perturbativity constraints
Tr [Y126] ≲ 1, the ratio (2.67) can be restricted from below⌜⃓⃓⎷ |vu126|2 + |vd126|2

v2
SM

≳

√︂
1 + |r|2|s|2

4
|TrMD − TrME|

vSM
. (2.69)

Plugging in numerical values from [113], we obtain⌜⃓⃓⎷ |vu126|2 + |vd126|2
v2
SM

≳ 3 × 10−2. (2.70)

This demonstrates that the SM Higgs VEV vSM and, consequently, the SM
Higgs field ΦH ∼ (1, 2,+1

2) has to contain a non-zero admixture of 126
component in a successful fermion mass fit.
Let us note that the numerical fermion fit results used to make the esti-
mate (2.70) assumed the Peccei-Quinn-like symmetry. However, the size
of TrMD − TrME in Eq. (2.69) is fixed by the difference between the SM
Yukawas yb−yτ at the GUT scale, irrespective of the Y10 and Ỹ 10. Similarly,
the appropriately large top Yukawa from MU and a small Dirac neutrino
mass contribution MD

ν is achieved only with large |rs| as MU − MD
ν =

(MD − ME)rs. Hence the 2-Yukawa-case fermion fit [113] is applicable
for estimating the ratio (2.70) even in the general scenario with 3 Yukawa
matrices.

2.5 Proton decay
The Standard Model of Particle Physics possesses accidental global symmetries
which manifest themselves in the conservation of baryon B and lepton L numbers
[129]. Thus one cannot write any SM renormalizable-level Lagrangian operators
that would directly lead to the perturbative B and L violation. However, such
a restriction is lifted in the renormalizable SO(10) GUTs due to the presence of
additional gauge and scalar fields.

The aforementioned feature of the SO(10) GUTs opens the door for possible
experimental searches for baryon and lepton number violating processes that
could test the viability of the model under consideration. Let us focus solely on
the proton decay, BNV process which will be further probed by the upcoming
large-volume neutrino experiments (DUNE [1], Hyper-K [3], JUNO [2], Theia
[4]) that aim to improve nucleon lifetime lower bounds by one order of magnitude
with respect to the current limits.

2.5.1 d = 4 BNV operators
Let us go back to the SM framework for a moment. As we mentioned earlier, there
are no dimension d ≤ 4 baryon and lepton number violating operators that one
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can write into the SM Lagrangian. Since proton decay is mediated by operators
with non-zero baryon number, we have to look at the SM Lagrangian beyond
the renormalizable level. Suitable non-renormalizable operators, containing at
least three quarks that conceive a colour singlet, are composed of at least four
fermionic fields.Hence the dimension of BNV operators in the SM is at least six
[130].

There are four classes of d = 6 BNV operators, which can be schematically
written as [130–133]:

O(1) = 1
Λ2 (dRuR)(QLLL), (2.71)

O(2) = 1
Λ2 (QLQL)(uReR), (2.72)

O(3) = 1
Λ2 (QLQL)(QLLL), (2.73)

O(4) = 1
Λ2 (dRuR)(uReR), (2.74)

where all SU(2)L and SU(3)c indices were suppressed, Λ is the SM cutoff scale
and, for simplicity, only first-family fermions were used. It turns out that these
operators also violate lepton number, but conserve B − L as there is exactly one
lepton present in every expressions (2.71)–(2.72). In proton decay, ∆B = −1,
and therefore ∆L = −1, which implies that the final states of the d = 6 proton
decay processes always contain an antilepton.

Now let us come back to the framework of the minimal SO(10) GUT. The
presence of additional scalar and gauge fields allows one to write renormalizable-
level operators that directly break baryon number. Consequently, the effective
operators (2.71)-(2.74) of four-fermion interactions in the SM correspond to tree-
level processes in the SO(10) mediated by heavy gauge or scalar bosons with
mass Λ ∼ max [|ωR|, |ωBL|], where the heavy field was integrated out. This
situation is schematically depicted in Fig. 2.1 for case of the O(1) operator.

Figure 2.1: Schematic depiction of the relation between the effective SM four-
fermion non-renormalizable interaction described by the O(1) operator and the
corresponding tree-level renormalizable SO(10) processes mediated by heavy
gauge and scalar bosons.

All possible proton decay mediators in the minimal SO(10) and the corre-
sponding effective SM non-renormalizable operators are summarized in Table 2.3.
We have already met some of these fields when discussing the gauge sector of
SO(10), see Sec. 1.5.

The gauge-boson-mediated proton decay processes often dominate since the
tree-level interaction vertices of the scalar mediated decays are suppressed by the

29



Table 2.3: Proton decay mediators in the minimal SO(10). We present their
SM transformation properties, gauge or scalar bosonic type (G or S, respec-
tively) and effective SM non-renormalizable operators they give rise to.

label 3c2L1Y
representation G/S effective operator

Xµ (3, 2,+5
6) G O(1), O(2)

Yµ (3, 2,−1
6) G O(1)

∆c (3, 1,+1
3) S O(1), O(2), O(3), O(4)

∆̃c (3, 1,−4
3) S O(4)

∆cT (3, 3,−1
3) S O(3)

numerical smallness of the fist generation Yukawa couplings. Therefore, from
now on we will focus solely on the gauge-boson-mediated proton decay.

2.5.2 Partial proton decay widths and experimental limits
All the relevant d = 6 proton decay channels are summarized in Table 2.4 together
with the corresponding 90% confidence level exclusion bounds. In what follows,
we will assume that the neutrino flavour and the chirality of charged leptons
cannot be distinguished by proton decay experiments.

Table 2.4: Proton decay channels and the corresponding 90% confidence level
exclusion bounds, where τ is the total proton lifetime and B is the branching
ratio of a proton decay channel. The numerical values were taken from the
Super-Kamiokande experimental results [134–139].

proton decay channel τ
B [years]

p → π0e+ > 2.4 · 1034

p → π0µ+ > 1.6 · 1034

p → K0e+ > 1.1 · 1033

p → K0µ+ > 3.6 · 1033

p → η0e+ > 4.1 · 1033

p → η0µ+ > 1.2 · 1033

p → π+ν > 3.9 · 1032

p → K+ν > 6.6 · 1033

A detailed compilation of d = 6 partial proton decay width formulae can be
found in [140, 141]. Let us focus on proton decay channels with antineutrinos in
the final state:

p → π+ν, (2.75)
p → K+ν. (2.76)

as the corresponding partial decay widths take on a simple form which does not
depend on the flavour structure of the SO(10) GUT due to the symmetric nature
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of the Yukawa matrices, c.f. Section. Hence,

Γ
(︂
p → π+ν

)︂
= Cπ

[︂
k4

1|(VCKM)11|2 + k4
2 + 2k2

1k
2
2|(VCKM)11|2

]︂
, (2.77)

Γ
(︂
p → K+ν

)︂
= CKk

4
1

(︂
B2

2 |(VCKM)11|2 +B2
3 |(VCKM)12|2

)︂
, (2.78)

where we adhered to the notation of [6]. The VCKM is the CKM quark mixing
matrix,

k1 = g√
2MG(3, 2,−5

6)
= 1

|ωR − ωBL|
, (2.79)

k2 = g√
2MG(3, 2,+1

6)
= 1

2
√︂

|σ|2 + 1
4(ωR + ωBL)2

(2.80)

with mass relations (2.43)–(2.44) inserted in, and g is the unified gauge coupling
at the GUT scale. The prefactors are defined as

Cπ =
(m2

p −m2
π±)2

8πm3
pf

2
π

A2
L

(︂
A

(1)
S

)︂2
|α̃|2(1 +D + F )2, (2.81)

CK =
(m2

p −m2
K±)2

8πm3
pf

2
π

A2
L

(︂
A

(1)
S

)︂2
|α̃|2 (2.82)

and

B2 = 2mN

3mB

D, (2.83)

B3 = 1 + mN

3mB

(D + 3F ). (2.84)

The proton, pion and kaon masses are denoted by mp, mπ± and mK±, respec-
tively; mN ≈ mp, mB stands for an average baryon mass (mB ≈ mΣ ≈ mΛ) and
fπ labels the pion decay constant. The proton decay constant α̃ and the coef-
ficients D, F are the chiral Lagrangian parameters evaluated at the µhad scale.
The factor

AL =
(︄
αS(µhad)
αS(mb)

)︄ 6
25
(︄
αS(mb)
αS(MZ)

)︄ 6
23

(2.85)

governs the running effects of the one-loop evolution of the effective four-fermion
BNV operators from µhad to MZ ; αS and mb are the strong gauge coupling and
the bottom quark mass, respectively. The coefficient

A
(1)
S = Π3

i=1Π
MZ<MI<MGUT
I

[︄
αi(MI+1)
αi(MI)

]︄ γ
(1)
i

bIi

(2.86)

takes care of the RGE running effects from MZ to the GUT scale MGUT . It de-
pends on the SM gauge coupling factors αi = g2

i

4π ; bIi are one-loop beta coefficients
of αi in the effective theory between the scales MI and MI+1, and

γ(1) =
(︂

11
20 ,

9
4 , 2

)︂
. (2.87)

A detailed derivation of the expression (2.86) can be found in Appendix C.
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2.5.3 Theoretical uncertainties
As we already mentioned, the upcoming new experiments [1–4] will further im-
prove the exclusion bounds on partial widths of various proton decay channels.
However, such advancement will typically reach a maximal proton decay width
improvement rate of one order of magnitude per decade of experimental measure-
ments. Hence the community would benefit the most from the aforementioned
experimental progress if the theoretical uncertainties of proton lifetime predic-
tions were confined within the one-order-of-magnitude window. Unfortunately,
that is not the case as proton lifetime theoretical uncertainties typically span
several orders of magnitude, c.f. Table II in [142] or Figure 2 in [5].

The proton lifetime theoretical uncertainties [6] come from the ambiguities in
measurements and/or calculations of quantities entering the partial decay width
formulae such as Eqns. 2.77-(2.78). They can be divided into two main cat-
egories, resulting either from insufficient experimental data at low energies or
from purely theoretical uncertainties originating from perturbative expansion and
Planck-scale physics.

Purely theoretical uncertainties

Purely theoretical uncertainties are reducible or irreducible. Reducible theoretical
uncertainties typically stem from the finite perturbative order calculations, the
irreducible theoretical uncertainties arise from Planck-scale effects:

• Reducible uncertainties: As we have mentioned before, the reducible uncer-
tainties come from the fact that proton lifetime calculations are typically
performed at a fixed order in perturbation theory. These uncertainties can
be improved by adding higher-order corrections.
It turns out that the proton lifetime calculations are most affected by the
accuracy of the perturbative computation of proton decay mediator masses
since they enter d = 6 partial decay widths as inverse fourth powers through
the ki dependence, c.f. Eqns. (2.77)-(2.78). Hence, even small perturbative
uncertainty in ki can result in huge ambiguity in the final proton lifetime
prediction.
The values of MGUT , unified gauge coupling g and, consequently, the ki
quantities are determined by the gauge coupling unification constraints.
The difference between proton decay widths obtained by employing one-
loop or two-loop gauge beta functions can be estimated by [6]

Γ2−loop

Γ1−loop ≈ exp
(︃

4k log MGUT

MZ

)︃
, (2.88)

where

log MGUT

MZ

≈ 34.5 (2.89)

for MGUT ≈ 1015 GeV and k is the typical size of the ratio between two-loop
corrections of beta coefficients and their one-loop values. Expression (2.88)
potentially exceeds several orders of magnitude even for |k| ≈ O(1)% and
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therefore every perturbatively robust proton lifetime calculation requires at
least two-loop gauge coupling RGE analysis. Let us note that the require-
ment of the two-loop gauge unification goes hand in hand with the need
for proper high-energy scalar spectrum analysis to account for threshold
corrections.

• Irreducible uncertainties: Irreducible uncertainties stem from the effects of
the Planck-scale physics and thus there are typically no means to control
them. However, we can estimate their effect by considering Planck-scale
suppressed non-renormalizable operators. The biggest impact on proton
lifetime prediction have d = 5 operators

O1 = κ1F
µνFµν

ϕ

MPl

, (2.90)

O2 = κpq2 ΩpΩqHSM
ϕ

MPl

, (2.91)

where κ1, κ2 ∈ O(1) are unknown couplings, HSM ∈ {Σ, H} contains the
SM Higgs doublet, p, q = 1, . . . , 3 are family indices and we suppressed the
spinorial structure of O2. Expressions (2.90)-(2.91) form a complete set of
d = 5 structures which contain SO(10) symmetry breaking field ϕ.4

The O1 operator alters the gauge-kinetic part of the Lagrangian in the bro-
ken phase and thus introduces inhomogeneous shifts in the gauge coupling
values at high-energy scales. This can dramatically modify the determina-
tion of the GUT scale and, consequently, the proton lifetime predictions
through the ki dependence, c.f. discussion about reducible uncertainties.
The O2 operator affects Yukawa matching conditions between the SO(10)
GUT at high energies and the SM at low energies. Such Planck-scale-
induced modifications directly alter flavour-dependent parts of the proton
decay width.
Let us emphasise that the minimal SO(10) GUT under out to be robust with
respect to both aforementioned irreducible uncertainties. The O1 operator
can be formed if and only if the scalar 45 is contained in the symmetric
product of two adjoint representations. Since the product decomposition
[103]

(45 ⊗ 45)sym = 1sym ⊕ 54sym ⊕ 210sym ⊕ 770sym (2.94)

does not contain 45 of SO(10), the O1 vanishes identically. Moreover, the
numerical study [7] showed that the flavour effects induced by the O2 oper-

4In principle, the aforementioned set of operators can be accompanied by two additional
operators

O3 = κpq
3 Ωp /DΩq ϕ

MP l
, (2.92)

O4 = κ4DµΦDµΦ ϕ

MP l
, (2.93)

where κ3, κ4 ∈ O(1) are unknown couplings, Φ ∈ {ϕ,Σ, H}, p, q = 1, . . . , 3 are family indices
and spinorial structure of O3 was suppressed. However, these can be removed by using equations
of motion and integration by parts [143].
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ator are not spoiling the desired one-order-of-magnitude window of theoret-
ical uncertainties in proton decay channels (2.75)–(2.76) with antineutrino
final states.

Low-energy uncertainties

Low-energy uncertainties come from the limited information available in the low-
energy data — either for hadronic matric elements or for flavour fits.

• Uncertainties in hadronic matrix elements: An integral part of the proton
decay predictions is the knowledge of hadronic matrix elements which pro-
vide translation between hadronic initial/final states and quark-level pro-
cesses. They are computed on lattice and/or by using chiral perturba-
tion theory [144]. Luckily, the accuracy of their determination has greatly
improved over the last decades [6, 144–146] and the errors introduced by
hadronic matrix elements are no longer obstructing relatively good proton
lifetime predictions [6].

• Flavour structure uncertainties: Successful determination of partial decay
widths involves the matching of the GUT-scale Yukawa matrices with the
low-energy flavour data. Such a task is complicated by the insufficient
amount of available experimental observables (lepton and quark masses,
PMNS and CKM mixing parameters), which typically do not admit a full
recontruction of the GUT-scale Yukawa matrices. Fortunately, the sym-
metric nature of the minimal SO(10) Yukawa matrices yields great simplifi-
cation in proton width formulae for channels with antineutrinos in the final
state [140], c.f. Eqns. (2.77)-(2.78).

We have shown that the proton lifetime predictions are typically plagued by
many theoretical uncertainties that are not always under control. In the minimal
SO(10) GUT framework, it turns out that the calculation of partial proton decay
widths with antineutrinos in the final state is robust with respect to the irreducible
uncertainties coming from the flavour fits as well as the Planck-scale physics. Such
observation implies that for these decay channels, it is, in principle, possible to
carry out partial proton decay width analysis in the minimal SO(10) GUT with
theoretical uncertainties confined within the one-order-of-magnitude window.
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3. Analysis of the minimal SO(10)
GUT
Motivated by the possibility to achieve proton lifetime prediction with theoretical
uncertainty confined within the one-order-of-magnitude window, we perform a
thorough analysis of the minimal SO(10) GUT under consideration.

The analysis of the minimal SO(10) GUT is presented in the following steps:
In Sec. 3.1, various theoretical and phenomenological consistency constraints ap-
plied to the allowed parameter space are introduced at the conceptual level.
We show that only two breaking chains with the SU(4)C × SU(2)L × U(1)R and
SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermediate symmetries lead to poten-
tially realistic scenarios. In Sec. 3.2, we provide the numerical model analysis
of these two fully consistent breaking chains in the simplified 45 ⊕ 126 SO(10)
Higgs model where details of the Yukawa sector are neglected. A clear preference
for the former symmetry breaking pattern is identified. Therefore in Sec. 3.3 we
carry out the full analysis of the 45 ⊕ 126 ⊕ 10C SO(10) theory in case of the
breaking chain with a well-pronounced SU(4)C × SU(2)L × U(1)R intermediate
symmetry.

Let us stress that we present only a streamlined version of both model analy-
ses. The interested reader is deferred to articles [16, 17] to account for all details.

3.1 Viability constraints
We provide an overview of the viability constraints that have to be satisfied
by the minimal SO(10) theory. All the criteria are considered for any given
point in the parameter space and they include non-tachyonicity of the mass spec-
trum (Sec. 3.1.1), SM gauge coupling unification (Sec. 3.1.2) and perturbativity
(Sec. 3.1.3). These can be imposed upon the 45 ⊕ 126 ⊕ 10C SO(10) GUT as
well as the simplified 45 ⊕ 126 SO(10) Higgs model.

3.1.1 Non-tachyonicity of the scalar spectrum
The perturbative expansion in the broken phase has to be developed around a
vacuum that corresponds to the minimum of the scalar potential in which all
physical scalar masses are non-tachyonic.

At the tree level, the (8, 1, 0), (1, 3, 0), (1, 1, 0) scalar SM multiplets suffer from
tachyonic mass instabilities in realistic symmetry breaking scenarios, c.f. Sec. 2.4.
Hence radiative corrections have to be invoked to correct for these undesirable
tree-level tachyonicities. For that purpose, we developed a numerical procedure
to calculate the full one-loop effective masses to all scalar states in the simplified
45 ⊕ 126 SO(10) Higgs model as well as in the 45 ⊕ 126 ⊕ 10C SO(10) GUT,
c.f. Appendix D for definition of the one-loop effective mass. Let us emphasize
that this is a significant improvement from the partial one-loop calculations in
[11, 13–15].

There are several conceptual remarks to be made:
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• One-loop corrections do not significantly alter masses, and consequently the
tree-level non-tachyonicity, of the heavy scalars whose tree-level masses are
dominated by the MGUT -proportional contributions.

• One-loop corrections to the intermediate-scale scalars with σ-proportional
masses should be calculated in the intermediate-stage effective field theory,
which typically has a much smaller number of field degrees of freedom than
the full SO(10) model and thus the σ-proportional masses are expected to
obtain only small one-loop corrections. We therefore simplify the analysis
by considering such intermediate-scale masses only at the tree level.

• In the simplified 45 ⊕ 126 SO(10) Higgs model we have only partial in-
formation about the mass matrices of the SM scalar multiplets (3, 1,+1

3)
and (1, 2,+1

2) as they will eventually mix with additional pair of doublets
(1, 2,+1

2) and two triplets (3, 1,+1
3) from 10C.1 In such a case, we have ac-

cess only to the full 3 × 3 (triplet) or 2 × 2 (doublet) sub-blocks of the 5 × 5
and 4 × 4 full mass matrices, respectively, c.f. Eqns.(3.58) and (3.61). Still,
it is possible to formulate the necessary, but not sufficient, non-tachyonicity
condition on the sub-blocks of the mass matrices corresponding to these SM
multiplets by invoking Sylvester’s criterion [147] and requiring positivity of
all their leading principal minors (i.e. determinants of the 1 × 1, 2 × 2, . . .
upper-left matrix sub-blocks).

Finally, let us stress that the one-loop effective mass is not physical since it
lacks contributions from the momentum-dependent part of the field self-energy
[148]. As such it is prone to large logarithmic contributions of the form

log
[︄
m2
l

µ2
R

]︄
, (3.1)

where m2
l ≪ µ2

R is the mass of a scalar or a gauge field which is much lighter
than the rest of the spectrum and appears in the loop of a Feynman diagram
contributing to the relevant one-loop effective mass. By studying the Abelian
Higgs model. c.f. Appendix D, it is suggested to replace the unphysically large
logarithm (3.1) by

log
[︄
m2
l

µ2
R

]︄
↦→ log

[︄
m2
S

µ2
R

]︄
+ log[c] + I(c) (3.2)

with m2
S being the tree-level mass of the field we calculate the one-loop effective

mass to, c = m2
l

m2
S

and I(c) =
∫︁ 1

0 dx log
⃓⃓⃓
1 − x(1−x)

c

⃓⃓⃓
. Since the numerical evaluation

of I(c) for every effective mass contribution would be time-consuming, and the
behaviour of log[c] + I[c] and log[c] does not differ much for most values of c,
see Figure 3.1, we simplify the replacement rule (3.2) by following log[c] (blue
curve) for c > c0 ≈ 0.0763 with c0 being determined by I(c0) = 0 and then using
constant value log[c0] for c ≤ c0.

1Notice that in the minimal SO(10) Higgs model we also neglect the one-loop scalar mass
corrections originating from 10C. These, however, are likely to be insignificant due to the small
number of additional scalar fields in loops.
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Figure 3.1: The behaviour of logarithmic contributions to the one-loop effective
scalar masses without (blue curve, log[c]) and with (orange curve, log[c]+I(c))
taming of the large logarithms. The ratio c = m2

l

m2
S

relates the tree-level scalar
masses m2

l and m2
S of fields in the loop and on the outer legs of a Feynman dia-

gram contributing to the one-loop effective mass.

Therefore we define the regularized one-loop effective scalar mass as an im-
proved version of the one-loop effective mass with all logarithmic terms (3.1)
replaced by

log
[︄
m2
l

µ2
R

]︄
↦→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
log

[︃
|m2

l |
µ2

R

]︃
if |c| > c0,

log
[︃
c0 · |m2

S |
µ2

R

]︃
if |c| ≤ c0.

(3.3)

The ratio c and all the arguments of the logs are taken in absolute values to avoid
computational issues with potentially tachyonic contributions. This procedure
is referred to as taming of the logs. It can be shown that in the perturbative
regime, non-tachyonicity of the regularized one-loop effective mass implies non-
tachyonicity of the physical mass; for details see Appendix A of [16]. Hence we
use the regularized one-loop effective masses to assess the non-tachyonicity of the
scalar spectrum.

3.1.2 Gauge coupling unification
In consistent Grand Unified Theory the SM gauge couplings are expected to unify
at MGUT . We employ the top-down approach, where the value of the SO(10)
unified gauge coupling g is run from MGUT down to the Z-boson mass scale
by using gauge coupling RGEs to properly fit the EW-scale experimental values
[149–153]

α−1
c (MZ) = 8.550 ± 0.065, (3.4)
α−1
L (MZ) = 29.6261 ± 0.0051, (3.5)
α−1

1 (MZ) = 59.1054 ± 0.0031, (3.6)

c.f. Appendix A.
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Gauge unification in the 45 ⊕ 126 SO(10) Higgs model

For the purposes of the 45 ⊕ 126 SO(10) Higgs model study, the gauge cou-
pling unification is examined at the one-loop level, despite proper proton decay
analysis requiring implementation at least at two loops, c.f. Sec. 2.5. The gauge
coupling unification is performed in the SM effective theory complemented by
the information about the full SO(10) mass spectrum. However, in the simplified
Higgs model, we have access only to part of the mass matrices of the SM mul-
tiplets (3, 1,+1

3) and (1, 2,+1
2), and hence their eigenvalues M2

S(3, 1,+1
3)1,2,3 and

M2
S(2, 1,+1

2)1,2 (see Table E.1 for their tree-level form) are not the proper eigen-
values of the corresponding full mass matrices. We mimic the realistic situation
with an extra 10C scalar representation in the following way:

• One of the doublets (1, 2,+1
2) is set to play the role of the SM Higgs and

its mass is fixed to be 125 GeV. The mass of another doublet is assigned to
be equal to the geometric mean of M2

S(2, 1,+1
2)1,2.

• Masses M2
S(3, 1,+1

3)1,2,3 are used as an approximation of three eigenvalues
of the full triplet mass matrix.

• Remaining two doublet (1, 2,+1
2) and two triplet (3, 1,+1

3) eigenstates stem-
ming from an extra 10C are assumed to have masses exactly equal to MGUT

and thus they induce only negligible shift in the position of g and no change
in the unification scale. In the realistic case with the minimal survival hy-
pothesis invoked, these doublets and triplets cluster around MGUT and their
masses deviate from the degenerate scenario only minimally.

For every parameter point, the positions of MGUT and σ scales, as well as gauge
coupling g at the point of unification, are analytically determined to exactly fit
the experimental values (3.4)-(3.6). For further details, the interested reader is
deferred to Appendix B 1 b of [16].

Gauge unification in the 45 ⊕ 126 ⊕ 10C SO(10) GUT

Fully-fledged two-loop gauge coupling unification analysis with one-loop threshold
corrections is applied in case of the 45 ⊕ 126 ⊕ 10C SO(10) model study. It is
carried out by considering a sequence of two effective theories

SO(10) → G → SU(3)c × SU(2) × U(1)

with G being the intermediate gauge symmetry. The procedure assumes a spec-
trum with one of the doublets identified with the SM Higgs. This requires that
two remaining doublets have masses around MGUT and one doublet mass resides
around σ scale, c.f. Sec. 3.3.2. Unlike in the one-loop case, the gauge coupling g
and the scales MGUT , σ cannot be determined analytically; hence they are taken
as input parameters of the numerical two-loop gauge RGE analysis, and we con-
strain their values by requiring the computed SM gauge couplings to be within
χ2 < 9 of the experimental values (3.4)-(3.6). Further details can be found in
Appendix B of [17].
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3.1.3 Perturbativity
All one-loop mass computations implicitly assume that the use of a perturbation
expansion is justified. However, the presence of O(100) quantum fields contribut-
ing to the loop corrections raises concerns about the robustness of the perturbative
calculations. Therefore we introduce several perturbativity criteria which ensure
that our computations remain self-consistent. Let us note that the following per-
turbativity constraints are discussed here only conceptually and technical details
can be found in Appendix B 1 c of [16]. Perturbativity constraints imposed upon
viable parameter points are deliberately chosen to be rather mild and thus we
discard only severely non-perturbative points.

Perturbative VEV configurations

First perturbativity constraint stems from the potentially large VEV structure
ωBLωR

|σ|2
(ωBL + ωR) (3.7)

appearing in stationarity conditions and consequently in scalar masses. At the
tree level, the structure (3.7) is always accompanied by the a2 scalar parameter,
c.f. (2.35)-(2.36), and thus all possible divergencies for |σ| ≪ |ωBL|, |ωR| can be
tamed by imposing a2 ≪ 1, which is precisely the limit suitable for solving the
PGB tree-level tachyonicity issue. However, the VEV structure (3.7) occurs not
only at the tree level but also in the (polynomial part of the) one-loop correc-
tions with several dimensionless parameters other then a2 as prefactors. Let us
explicitly demonstrate this on the one-loop stationarity condition for τ :

τ1−loop = 1
64π2

(︂
64π2a2 − 288a0a2 − 228a2

2 + 24αa2 − 48a2β4 − 480a2β
′
4+

+2a2λ0 − 492a2λ2 − 708a2λ4 + 48a2λ
′
4 + 15β2

4 − 180β4β
′
4+

+300β′2
4 − 1680|γ|2 − 5g4

)︂ ωBLωR(ωBL + ωR)
|σ|2

+ · · · (3.8)

It is difficult to keep τ1−loop perturbative by suppressing the coupling-dependent
prefactor due to the presence of relatively large gauge coupling (g ∼ 0.5). More-
over, if the scalar coupling values were fine-tuned so that they compensate for
the effect of g, the prefactor cancellation would eventually be disrupted even by a
small change in the renormalization scale due to the non-negligible RGE running
of all scalar parameters. Thus we deal with problematic VEV structure (3.7) by
restricting possible VEV configurations, i.e. we require

|ωBLωR(ωBL + ωR)|
|σ|2

≲ max [|ωBL|, |ωR|] . (3.9)

There are only four possible distinctive breaking chains corresponding to four
perturbative VEV combinations in which the structure (3.7), omnipresent at the
quantum level, is tamed:

1. |σ| ≈ max [|ωBL|, |ωR|] inducing approximate single-stage spontaneous sym-
metry breaking of SO(10) to the SM SU(3)c × SU(2)L × U(1)Y ,
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2. ωBL ≈ −ωR inducing two-stage spontaneous symmetry breaking with the
flipped-SU(5) intermediate-symmetry stage,

3. |ωBL| ≪ |σ| ≪ |ωR| inducing two-stage spontaneous symmetry breaking
with the SU(4)C × SU(2)L × U(1)R intermediate-symmetry stage,

4. |ωR| ≪ |σ| ≪ |ωBL| inducing two-stage spontaneous symmetry breaking
with the SU(3)c×SU(2)L×SU(2)R×U(1)B−L intermediate-symmetry stage.

As we already mentioned in Sec. 2.4.2, single-stage spontaneous symmetry break-
ing is not compatible with gauge coupling unification and the scenario with the
flipped-SU(5) intermediate-symmetry stage violates current proton lifetime lim-
its. Therefore the first two cases are phenomenologically disfavoured and we are
left with only two viable scenarios corresponding to the |ωBL| ≪ |σ| ≪ |ωR|
(referred to as ωBL → 0) and the |ωR| ≪ |σ| ≪ |ωBL| (referred to as ωR → 0)
limits with SU(4)C × SU(2)L × U(1)R and SU(3)c × SU(2)L × SU(2)R × U(1)B−L
intermediate breaking stages, respectively. Let us note that in both of these
scenarios, the subdominant ω plays a role of an induced VEV and it influences
our computation only through the universal VEV ratio χ defined in Eq. (2.37).
Consequently the criterion (3.9) implies

|χ| ≲ 1. (3.10)

Global mass perturbativity

Let us now introduce the global mass perturbativity criterion which restricts the
relative size of one-loop corrections with respect to the tree-level masses. In
practice, we define the quantity ∆ to measure overall mass shifts

∆ :=
maxi,j∈heavy fields

[︂
|M2

ij,one-loop −M2
ij,tree|

]︂
M2

heavy
, (3.11)

where M2
ij,tree and M2

ij,one-loop are tree-level and regularized one-loop effective
scalar masses, c.f. Sec. 3.1.1, respectively; M2

heavy denotes the average of the
heavy tree-level scalar masses over real degrees of freedom. Observe that ∆ in-
cludes only one-loop corrections to heavy masses as intermediate-scale masses are
taken at tree-level and for the one-loop shifts of the PGBs it is even desirable
that they are larger than the corresponding accidentally light tree-level masses.
All the viable points in the parameter space then have to satisfy

∆ < 1. (3.12)

Stability under RG running

Regularized one-loop effective masses discussed in Sec. 3.1.1, and consequently
global mass perturbativity criterion (3.12), possess residual renormalization scale
dependence, c.f. the Abelian Higgs model study in Appendix D. Hence we demand
loop corrections to be under control even if the renormalization scale is changed,
which is not always easy to accomplish in the environment of GUTs with many
field degrees of freedom contributing to loops.
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Potential pathologies stemming from the renormalization scale dependence
technically manifest themselves by the presence of a Landau pole in the RG flow
of a coupling. To avoid such scenarios, the full set of one-loop beta functions of
all dimensionless scalar couplings was derived, see Appendix B, and it was used
to impose stability under the RG running. We define the following perturbativity
measures:

t± := log10

⃓⃓⃓⃓
⃓µR±

µR

⃓⃓⃓⃓
⃓ (3.13)

and

t :=
√︂
t+t−, (3.14)

where µR labels the initial choice of the renormalization scale and µR± are up-
per/lower renormalization scale limits at which the system of dimensionless cou-
plings’ RGEs blows up. Quantities t+ and t− determine how many orders of
magnitude the scalar couplings can run above and below the initial µR value
before encountering a Landau pole, respectively, whereas t is interpreted as the
averaged amount of RGE running up and down before the RGE system blows up.
The larger the t± and/or t, the more numerically robust our loop calculations are
with respect to the RG running. We impose

t+ > 0.5 (3.15)

to ensure that one can safely run the viable points at least half-an-order magnitude
up in the renormalization scale.

Vacuum position stability

Another perturbativity criterion concerns the stability of the position of the
broken-phase vacuum in the VEV space. In practice, we require that the one-
loop {µ2, ν2, τ}-values are not “too far” from their tree-level positions, c.f. point 3
in Appendix B 1 c of [16]. The vacuum position stability test is repeated also af-
ter the running of the dimensionless scalar couplings half an order of magnitude
up in the renormalization scale, thus further establishing the robustness of our
numerical calculations with respect to the RG running.

Such perturbativity constraint may seem rather arbitrary as it depends on
the rescaling of the non-physical quantities {µ2, ν2, τ} whose normalization was
chosen in such a way that −µ2 and −ν2 are masses of the scalar fields in the
unbroken phase. However, stationarity conditions, and consequently {µ2, ν2, τ},
are an integral part of the scalar effective mass calculations and a big shift in
the one-loop vacuum position typically induces large one-loop mass corrections.
Moreover, the vacuum position stability is easier to computationally verify than
the preceeding two perturbativity constraints and thus it is therefore used as the
first fast criterion to discard badly non-perturbative patches of the parameter
space.

Iterative PGB masses

The last perturbativity constraint we implement emerges from the technical as-
pects of the taming of the logs (3.2), due to which the one-loop calculation of the
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regularized effective masses is prone to being non-reliable for pseudo-Goldstone
bosons. In practice, a one-loop regularized effective mass of a PGB scalar can be
schematically written as

M2
PBG,1−loop = C1 + C2 log

M2
PGB,tree

µ2
R

, (3.16)

where C1 and C2 are coefficients independent of the PGB mass M2
PGB. Logarith-

mic dependence in (3.16) originates from contributions of Feynman diagrams with
pseudo-Goldstone fields in the loop or from the replacement rule (3.3) in case of
one-loop mass corrections involving lighter (intermediate-scale) fields. Since the
PGB tree-level mass M2

PGB,tree is accidentally suppressed, the log contribution
in (3.16) is artificially enhanced and the C2-proportional term might dominate
over C1. This situation is undesirable because the C2 contribution stems from the
mere approximations introduced in the taming of the logs and hence the compu-
tationally stable loop calculation should not be overly sensitive to log M2

P GB,tree

µ2
R

-
proportional terms.

We test for such ill-behaved cases by carrying out iterative PGB mass com-
putation according to the prescription

M2
PGB,(i+1) = C1 + C2 log

|M2
PGB,(i)|
µ2
R

(3.17)

with the starting values M2
PGB,(0) = M2

PGB,tree, M2
PGB,(1) = M2

PGB,1−loop and
i ≤ 30. Ultimately, the one-loop calculations are deemed reliable only if M2

PGB,(1))
and the converged PGB mass are not “too far” from each other, c.f. point 4
in Appendix B 1 c of [16].

3.2 The minimal SO(10) Higgs model analysis
The preliminary numerical analysis of the 45 ⊕ 126 SO(10) Higgs model is per-
formed in the two symmetry breaking scenarios ωBL → 0 and ωR → 0 with
SU(4)C × SU(2)L × U(1)R and SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermedi-
ate symmetry stages, respectively, which were identified in Sec. 3.1.3 as the only
phenomenologically viable breaking chains leading to perturbative VEV combina-
tions. Although the minimal SO(10) GUT requires adding a 10C into the scalar
sector of the theory to account for the observed SM fermion masses, c.f. Sec. 2.4.3,
the aforementioned extra scalars do not influence spontaneous symmetry break-
ing of the SO(10) to the SM SU(3)c × SU(2)L × U(1)Y . Moreover, the one-loop
mass corrections originating from 10C are subdominant because of the small rep-
resentation dimensionality. Hence the absence of 10C has only a little qualitative
effect on the high energy part of the spectrum and thus it allows us to analyse the
shape of the viable parameter space enforced by non-tachyonicity, perturbativity
and gauge coupling unification constraints in the simplified setting of the minimal
SO(10) Higgs model.

First, we semi-analytically discuss the non-tachyonicity criterion in the σ → 0,
a2 → 0 limit in Sec. 3.2.1. The full numerical analysis of the parameter space and
its results are presented in Sec. 3.2.2, where the preference for ωBL → 0 regime
is clearly demonstrated. The main results are summarized in Sec. 3.2.4.
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3.2.1 Analytical aspects
It turns out that one can get a semi-analytical insight into the non-tachyonicity
constraint in the limit σ → 0, motivated by the seesaw-compatible hierarchy
|σ| ≪ max[|ωBL|, |ωR|], and a2 → 0, in which the tree-level potentially large
tachyonic scalar mass contributions (2.46)–(2.47) are suppressed.

In such a σ → 0, a2 → 0 regime of the minimal SO(10) Higgs model, the
intermediate-scale masses vanish, the pseudo-Goldstone masses are fully deter-
mined by radiative corrections and the heavy scalar masses are well approximated
by the tree-level expressions in Table E.1. Consequently, the whole tree-level
scalar spectrum is dictated by three real scalar couplings a0, β4, β

′
4, one complex

scalar coupling γ2 and the unified gauge coupling, whose value can be fixed to
g = 0.5 in consistency with the numerical results of Sec. 3.2.2. The coupling
a0 influences solely the mass of the heaviest SO(10)-breaking Higgs field (trans-
forming as the SM singlet) whose non-tachyonicity can always be assured by a
suitable choice of a0 value.

Furthermore, the one-loop radiative corrections to PGBs do not depend on the
phase of the γ2 parameter. Such observation can be deduced from Figures 3.2–3.3
as the non-tachyonic regions of the PGB one-loop masses in the σ → 0, a2 → 0
limit adhere to the (β4, β

′
4) → (−β4,−β′

4) symmetry, which prohibits the presence
of β4γ2, β′

4γ2 mixed terms. Thus the relevant part of the scalar spectrum is fully
controlled by the β4, β′

4, |γ2| parameters.

Figure 3.2: In the σ → 0, a2 → 0 and ωBL → 0 limit, we depict the β4–β′
4

regions where the tree-level heavy masses or one-loop PGB masses are non-
tachyonic for different colour-coded |γ2| values. Left panel: Areas enclosed by
coloured contours and labelled by |γ2| values represent regions in which heavy
fields are non-tachyonic. Solid purple areas support non-tachyonic PGB masses
for |γ2| = 0 with dots along the β′

4 = 1
4β4 line being numerical artifacts. The

coloured points in the β4 > 0, β′
4 < 0 quadrant are data from the full numerical

scan of Sec. 3.2.2. Right panel: Areas of non-tachyonic numerically evaluated
one-loop PGB masses with the colour encoding the minimal |γ2| value for which
all PGBs are non-tachyonic. The black contour in both panels enclosed an area
where a fully non-tachyonic spectrum exists for a suitable choice of the |γ2| pa-
rameter.
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Figure 3.3: The same as in Fig. 3.2, only in the ωR → 0 limit.

The |γ2| = 0 regime

In the case of |γ2| = 0, the scalar masses in question are determined by only two
parameters: β4, β′

4. In addition to that, all relevant mass formulae are available
analytically, see Table E.1 for the tree-level expressions and Table X in [16] for
the one-loop PGB masses. Non-tachyonicity of the tree-level heavy fields implies

β′
4 < 0 β′

4 <
1
2β4, (3.18)

and the corresponding allowed region in the β4-β′
4 plane is depicted in left panels

of Figures 3.2–3.3 by purple thin contour.
The PGB one-loop masses are non-tachyonic in the solid purple areas2 in the

β4 > 0, β′
4 > 0 and β4 < 0, β′

4 < 0 quadrants of the left panels of Figures 3.2–3.3.
Observe that the regions of non-tachyonicity for the heavy fields and PGBs do not
overlap, thus demonstrating that the one-loop scalar spectrum cannot be made
non-tachyonic in the |γ2| = 0 regime.

The |γ2| ≠ 0 regime

Non-tachyonicity of the tree-level heavy fields in the |γ2| ≠ 0 regime implies

β′
4 < 0, β′

4 <
1
4β4 − |γ2|,

(︃
β′

4 − 1
2β4

)︃(︃
β′

4 − 1
18β4

)︃
>

4
9 |γ2|2 (3.19)

for ωBL → 0 and

β′
4 < 0, β′

4 <
7
18β4 − 2

9 |γ2|,
(︂
β′

4 − 1
2β4

)︂ (︂
β′

4 − 1
50β4

)︂
> 4

25 |γ2|2,

(︂
β′

4 − 1
4β4

)︂ (︂
β′

4 − 1
16β4

)︂
> 1

4 |γ2|2 (3.20)

2Regions of non-tachyonic PGB masses do not extend to the point β4 = 0, β′
4 = 0 in the

a2 → 0 limit as the gauge one-loop mass corrections cannot be made simultaneously non-
negative for all PGBs, see Table X in [16], and these negative gauge mass contributions have
to be overwhelmed by considering β4 ̸= 0, β′

4 ̸= 0.
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for ωR → 0, c.f. Table E.1, with corresponding allowed regions depicted by dif-
ferent |γ2|-coloured contours for several values of |γ2| ∈ [0, 1] in the left panels
of Figures 3.2–3.3. Notice that these regions retreat with increasing |γ2| towards
the bottom-right corner in the β4-β′

4 plane.
Numerically evaluated PGB one-loop masses are non-tachyonic in the areas

displayed in the right panels of Figures 3.2–3.3, where for every relevant β4 and
β′

4 point the assigned colour stands for the minimal |γ2| value needed to achieve
non-tachyonic PGB scalar spectrum. Observe that for |γ2| ≲ 0.15 the PGB non-
tachyonic regions are located in the β4 > 0, β′

4 > 0 or β4 < 0, β′
4 < 0 quadrants

and bear no overlap with the areas where heavy fields are non-tachyonic. On the
other hand, for |γ2| ≳ 0.15 the non-tachyonic PGB one-loop spectrum can be
found also in the β4 > 0, β′

4 < 0 quadrant into which the areas of non-tachyonic
heavy masses recede.

Finally, the black contours showed in the panels of Figures 3.2–3.3 enclosed
the β4-β′

4 regions where both tree-level heavy and one-loop PGB masses are non-
tachyonic for a suitable choice |γ2| ≠ 0. In the limit ωBL → 0, such region
is obtained for 0.19 ≲ |γ2| ≲ 0.47, while in case ωR → 0, it is attained for
0.14 ≲ |γ2| ≲ 0.29. Hence, a non-tachyonic scalar spectrum is expected to be
found only for non-negligible |γ2| values. Note that the fully consistent region in
the β4-β′

4 plane in the latter scenario is rather narrow, thus providing the first
hint that the ωR → 0 regime is much more restrictive.

The relevance of this simplified semi-analytic consideration is illustrated by
adding the |γ2|-coloured results of the numerical scans from Sec. 3.2.2 into the left
panels of Figures 3.2–3.3. Observe that the viable points in the minimal SO(10)
Higgs model are located in the β4 > 0, β′

4 < 0 quadrant as it is expected from
the position of the black contours. The discrepancies between the scan data and
the semi-analytic approach can be attributed to non-zero a2 values allowed in the
numerical scans.

3.2.2 Viable regions of the parameter space
We now discuss the full numerical analysis of the 45 ⊕ 126 SO(10) Higgs model
at the one-loop level. The space of parameters covers 9 real dimensionless scalar
couplings

a2, a0, λ0, λ2, λ4, λ
′
4, α, β4, β

′
4, (3.21)

2 complex dimensionless scalar couplings

γ2, η2, (3.22)

the unified gauge coupling g and the VEVs

ωBL, ωR, σ; (3.23)

in total spanning over 16 real dimensions.3 Notice that all scalar couplings from
Eqns. (2.21)–(2.24) associated with the Lagrangian terms containing 10C effec-
tively vanish in the minimal SO(10) Higgs model. The values of µ2, ν2 and τ

3We exploited the freedom in defining the overall phases of Σ and ϕ fields, so that σ > 0 is
real and the larger of the ω’s is positive.
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are related by the stationarity conditions (2.31)–(2.33) to (3.21)–(3.23) and thus
they do not belong to the set of independent parameters of the model. For ev-
ery parameter point, the “optimal” renormalization scale µ2

R is calculated as an
arithmetic average of all heavy tree-level scalar masses-squares. Dimensionless
couplings are restricted to the O (1) domain and VEVs have to satisfy the per-
turbativity constraint (3.10).

Viability of a point is determined by the criteria introduced in Sec. 3.1, in par-
ticular non-tachyonicity (see Sec. 3.1.1), gauge coupling unification (see Sec. 3.1.2)
and perturbativity (see Sec. 3.1.3). It is worth repeating some of the shortcom-
ings of viability constraints defined in the simplified setting of the minimal SO(10)
Higgs model:

• We lack full information about mass matrices of the SM doublet (1, 2,+1
2)

and triplet (3, 1,+1
3) multiplets as the relevant states from 126 eventually

mix with fields from 10C in the 45 ⊕ 126 ⊕ 10C SO(10) GUT. It is possible
to formulate the necessary non-tachyonicity test by applying Sylvester’s
criterion, c.f. Sec. 3.1.1, whose influence upon parameter space scans was
studied in Sec. IV C 4 of [16].

• The gauge coupling unification is implemented only at the one-loop level.
Hence, for every parameter point the position of MGUT , σ and g is analyt-
ically determined to fit experimental SM gauge coupling values exactly at
MZ scale, c.f. Sec. 3.1.2.

The viability constraints introduced in Sec. 3.1 are numerically implemented
by introducing a penalization function which is always non-negative and monoton-
ically raises with the quantitative amount of a violation of any viability criterion,
c.f. Appendix B in [16] for its explicit form. Such penalization function is then
applied on every point in the parameter space. Viable regions of the parame-
ter space are located and examined by the stochastic version of the differential
evolution algorithm, version “DE/rand/1” with F ∈ (0.5, 2) randomly chosen for
every point [154], which iteratively produces new improved generations of candi-
date parameter points from the preceding generation. The algorithm can be used
in two modes:

1. Minimization mode in which the penalization function never reaches zero.
The algorithm progressively explores parts of the parameter space with
improved obedience to certain criteria. Scans obtained by adopting such a
mode are referred to as biased.

2. Search mode in which only parameter points with zero penalization function
are accepted. The algorithm thus almost uniformly explores regions of the
parameter space with desired features.

All the datasets of parameter points with various constraints imposed and
obtained by different algorithm modes are listed in Table 3.1. The main datasets
containing viable parameter points are labeled B and R in the ωBL → 0 and
ωR → 0 limits, respectively, and they satisfy, among other criteria, t+ > 0.5 and
∆ < 1. As the perturbativity criteria from Sec. 3.1.3 possess a certain level of
arbitrariness, we produce several numerical parameter space scans with different
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levels of RG perturbativity imposed on them. Viable points in the datasets Bx

and Rx satisfy stricter t > x stability under the RG running in the ωBL → 0 and
ωR → 0 cases, respectively. No points with t > 2 were found in the ωR → 0 limit,
hence there are no R2,3 datasets for this case. Finally, the biased datasets BRG

and RRG were obtained by pushing the parameter space scans to highest possible
t values in the ωBL → 0 and ωR → 0 regimes, respectively. Note that similar
biased datasets were produced for quantity the ∆, c.f. Sec. IV in [16], however,
we opt to omit them from the current discussion.

Table 3.1: The datasets of viable points in the parameter space obtained by
imposing various constraints and using different modes of the differential evo-
lution algorithm. Their detailed description is provided in the main text above
the table.

Dataset VEV regime RG range Bias # of points Mode
B ωBL → 0 t+ > 0.5 30000 Search
B1 ωBL → 0 t̄ > 1.0 20000 Search
B2 ωBL → 0 t̄ > 2.0 20000 Search
B3 ωBL → 0 t̄ > 3.0 20000 Search
BRG ωBL → 0 t+ > 0.5 t̄ 10000 Minimization
R ωR → 0 t+ > 0.5 30000 Search
R1 ωR → 0 t̄ > 1.0 20000 Search
RRG ωR → 0 t+ > 0.5 t̄ 10000 Minimization

Scatter plots of dimensionless scalar parameters

One way to represent the viable regions of the parameter space, with viability
criteria introduced in Sec. 3.1, are 2D scatter plots correlating two dimensionless
scalar couplings. We choose 6 such correlation pairs and the corresponding plots
are shown in Figs. 3.4 and 3.5 for the ωBL → 0 and ωR → 0 regimes, respectively.
Note that the values of the phases δγ2 , δη2 are distributed almost uniformly over
the [0, 2π) interval and thus are excluded from the plots.4

In Figs. 3.4–3.5, the points in main viable datasets B and R are combined
with the ones in the biased datasets BRG and RRG. The colour scheme encodes
various levels of t perturbativity measure fom Eq. (3.14). Points with better t
are displayed in the front, thus allowing to identify the RG-stable hot spots.

There are several observations to be made:

• The highest value of the RG-perturbative measure t globally achieved was
t ≈ 3.1 in the ωBL → 0 case and t ≈ 1.9 for ωR → 0, thus indicating that
the former scenario is more perturbatively stable.

• The region in which all the scalar couplings vanish is not viable due to the
need to balance out the gauge coupling contributions in the one-loop scalar
beta functions for the RG-perturbative points, c.f. Appendix B.2.

4In the ωR → 0 regime, one can observe a mild preference for phase values satisfying relation
2δγ2 = δη2 which ensures that the γ2 and η2 phases do not change during the one-loop RG
running, c.f. Eqns. (B.28)–(B.29) with κ2, κ

′
2, ζ, ζ

′, ψ0, ψ1, ψ2 couplings zeroed out.
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Figure 3.4: 2D scatter plots correlating pairs of dimensionless scalar parameters
of the 45 ⊕ 126 SO(10) Higgs model in the ωBL → 0 limit. The points were
obtained by combining the B and BRG datasets from Table 3.1 with the colour
coding the value of the RG-perturbativity measure t.

Figure 3.5: The same as in Fig. 3.4, only in the ωR → 0 limit.

• a2 ≪ 1: Potentially tachyonic tree-level masses of the PGBs are suppressed
for a2 → 0, thus allowing one-loop corrections to dominate. Having a2 < 0
for all points in the ωR → 0 regime implies that the PGB triplet always
acquires non-tachyonic tree-level mass, see Table E.1.

• β4 > 0, β′
4 ≲ 0, 0.1 ≲ |γ2| ≲ 0.4: These ranges of β4, β′

4,|γ2| values are en-
forced by the required non-tachyonicity of the PGBs and the heavy fields,
c.f. semi-analytical discussion in Sec. 3.2.1. Let us emphasise that no viable
points were found in the |γ2| → 0 limit.
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• a0 > 0, λ0 ≥ 0: Positive a0 is enforced by non-tachyonicity of the SO(10)-
breaking Higgs field whose dominant tree-level mass contribution is calcu-
lated as 8a0(3ω2

BL + 2ω2
R) for |a2| ≪ |a0|, c.f. Table E.1. Consequently,

the σ-proportional tree-level mass of the U(1)B−L-breaking Higgs field is
non-tachyonic only if λ0 ≳ (α+β′

4)2

4a0
≥ 0.

• λ4 ∼ −λ2: The couplings λ2 and λ4 exhibit the linear correlation that can
be attributed to the shape of the one-loop scalar β-functions for which the
λ4 ∼ −λ2 with the condition λ′

4 ≪ 1 leads to a partial cancellations of the
terms with large numerical factors, c.f. Eqns. B.21,(B.22) and (B.25), thus
contributing to the overall stability under the RG running.

Parameter ranges

The datasets B, B1,2,3, R and R1 obtained by the search mode of the differential
evolution algorithm, c.f. point 2 discussed on page 46, approximately correspond
to the uniformly sampled viable points satisfying desired level of stability under
the RG running, see Table 3.1. Projections of such datasets onto one parameter
subspaces are therefore interpreted as the parameter’s marginal probability dis-
tributions in the context of Bayesian statistics and the ranges of individual scalar
parameters can be represented by their highest density intervals (HDI).

In Figs. 3.6 and 3.7 the clustered vertical bars with the same horizontal po-
sition show the 1-, 2- and 3-σ HDIs (distinguished by decreasing opacity) of the
individual dimensionless parameters, χ and the VEVs σ, max[|ωBL|, |ωR|], re-
spectively, for the ωBL → 0 (upper/left panels) or ωR → 0 (bottom/right panels)
limit. We compare the main viable datasets B,R (coloured in blue) with those
in which stricter stability under the RG running is imposed via demanding t > 1,
t > 2 and t > 3 (coloured in light blue, green and orange, respectively).

By increasing the required stability under the RG running the viable ranges
for the parameters shrink as indicated by the position of the hot spots in the
correlation plots in Figs. 3.4–3.5. Moreover, the parameters’ HDIs of the datasets
with stricter t threshold are located in the unlikely regions of the viable parts of
the parameter space. This is best demonstrated in the case of the β4 parameter
in the ωBL → 0 regime, where the 3-σ HDI of the B3 dataset is outside the 3-σ
HDI of the main dataset B. In the ωR → 0 limit, no parameter points were found
which could be run in renormalization scale on average for more than two orders
of magnitude up and down without encountering a Landau pole, therefore there
are no R2,3 datasets. It clearly illustrates that the ωR → 0 symmetry breaking
limit is “less perturbative” of the two.

The absolute positions of the max[|ωBL|, |ωR|], σ VEVs (and unified cou-
pling g) are fixed by the gauge coupling unification since perturbativity and
non-tachyonicity constraints are practically independent of a rescaling of the di-
mensionful parameters by a common factor. Resulting scales as displayed in
Fig. 3.7 are very different for the two symmetry breaking patterns, i.e.

ωBL ∼ 1018 GeV, σ ∼ 108 GeV (3.24)
in the ωR → 0 limit with the SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermediate-
symmetry stage and

ωR ∼ 1015 GeV, σ ∼ 1010.5−12 GeV (3.25)
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Figure 3.6: The 1-, 2- and 3-σ HDIs (depicted by decreasing opacity) of the
scalar dimensionless parameters (3.21)–(3.22), g and χ from the datasets ob-
tained in the search mode in the ωBL → 0 (upper panel, B,B1,2,3 datasets) and
ωR → 0 (bottom panel, R,R1 datasets) limit, c.f. Table 3.1. The colours en-
code different stability under the RG running.
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Figure 3.7: The 1-, 2- and 3-σ HDIs (depicted by decreasing opacity) of the
VEVs σ, max[|ωBL|, |ωR|] and the renormalization scale µR from datasets ob-
tained in the search mode in the ωBL → 0 (left panel, B,B1,2,3 datasets) and
ωR → 0 (right panel, R,R1 datasets) limit. The colours encode different stabil-
ity under the RG running.

in the ωBL → 0 regime with the SU(4)C×SU(2)L×U(1)R intermediate-symmetry
stage. The VEV values in Eqns. (3.24)–(3.25) are to similar to those of [104, 123,
155] based on the minimal survival hypothesis [156, 157]. In the former case of
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ωR → 0, there is almost a ten orders of magnitude hierarchy between ωBL and σ
with the GUT scale being rather close to the Planck scale and the seesaw scale
σ located near the Davidson-Ibarra leptogenesis bound ∼ 109 GeV restricting the
mass of the lightest heavy neutrino from below [158]. On the other hand, in the
latter case of ωBL → 0, the position of the GUT scale is somewhat close to the
lower bound indicated by the proton decay searches [134–139]. Nevertheless, the
VEVs (3.24)–(3.25) were obtained from a one-loop gauge coupling unification and
should be modified by two-loop corrections in any robust theoretical proton life-
time analysis, c.f. Sec. 2.5. Lastly, the effect of the induced VEV min[|ωBL|, |ωR|]
cannot be neglected as it enters non-tachyonicity considerations through the uni-
versal VEV ratio χ defined in Eq. (2.37). The distribution of its values shown in
Fig. 3.6 suggests that both ω’s tend to have the same sign in the ωR → 0 case and
in the B3 dataset of the ωBL → 0 limit, whilst there seems to be a slight tendency
towards opposite-sign ω’s in the remaining datasets of the ωBL → 0 regime.

For every point in the parameter space, the renormalization scale µR is cal-
culated as the square root of the average heavy tree-level scalar mass-squares so
that the logarithmic one-loop mass contributions are tamed. Although the viable
points should be correctly compared only after running all parameters to the same
renormalization scale, we see from Fig. 3.7 that the spread of all point-specific
µR values is rather small in both regimes, thus justifying the comparison of the
viable points right away as they are computed at their specific µR’s. Besides that,
the imposed stability under the RG running condition guarantees that all viable
points can be, in principle, safely run to one common renormalization scale.

Finally, let us mention that we have deliberately omitted from this thesis
the results for the mass spectrum as they conform to the shape anticipated by
the symmetry breaking pattern and the parameter ranges in Figs. 3.6–3.7 in
both limiting cases; i.e. the intermediate-scale masses cluster near the σ scale,
heavy masses reside near the GUT scale and the PGB fields have masses around

1
16π2MGUT . The interested reader is deferred to Sec. IV D of article [16].

Gauge coupling unification

For completeness, we present the gauge coupling unification patterns in Fig. 3.8
for two sample points, one from each of the two ωBL → 0 and ωR → 0 limiting
cases. The corresponding input coupling values are listed in Table 3.2.

3.2.3 Calculation of the partial proton decay widths
Let us employ the B and R main datasets to perform a partial proton width
calculation for the decay channels with antineutrinos in the final state

p → π+ν, p → K+ν, (3.26)

with incoherent summation over all neutrino flavours implicitly assumed. As we
discussed in Sec. 2.5, the corresponding partial decay widths from Eqns. (2.77)–
(2.78) do not depend on the details of the flavour fit and instead, they are fixed
by the observable CKM mixing parameters. Moreover, the numerical study [7]
showed that proton width prediction of decay channels (3.26) are relatively robust
with respect to the Planck-scale induced theoretical uncertainties in the Yukawa
as well as gauge-kinetic parts of the Lagrangian.
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Table 3.2: The input parameters corresponding to sample points for which the
gauge unification patterns are shown in Fig. 3.8. The signs of the VEVs are
positive and lg (x) := log10(x/GeV).

ωBL → 0 ωR → 0
a2 0.002 −0.027
a0 0.048 0.060
λ0 0.065 0.138
λ2 −0.070 −0.158
λ4 0.037 0.025
λ′

4 0.001 0.046
α −0.062 −0.063
β4 0.341 0.856
β′

4 −0.043 −0.018
|γ2| 0.092 0.228

argγ2 3.38 4.78
|η2| 0.007 0.025

argη2 6.22 3.10
g 0.526 0.502

lg |ωBL| 7.06 17.80
lg |ωR| 14.96 −2.20

lg |σ| 11.01 7.94
lg µR 14.75 17.76

We first list the numerical values of the quantities entering the proton de-
cay width formulae (2.77)–(2.78) with estimated theoretical uncertainties. The
proton decay constant

α̃ = −0.01106 ± 0.00039 GeV3 (3.27)

is extracted from the lattice calculations carried out in [144] for the fixed values
of the chiral Lagrangian coefficients

D = 0.8, (3.28)
F = 0.47, (3.29)
fπ = 0.13055 GeV, (3.30)
mN = 0.94 GeV, (3.31)
mB = 1.15 GeV (3.32)

and µhad = 2 GeV, where we adopted the finer “32ID sample” results. Factors
governing the one-loop running effects of the effective four-fermion BNV operators
are obtained from Eqns. (2.85)–(2.86):

AL = 1.303 ± 0.028, (3.33)
A

(1)
S, ωBL→0 = 3.749 ± 0.408 ± 0.035, (3.34)
A

(1)
S, ωR→0 = 4.328 ± 0.525 ± 0.017, (3.35)

with factor A(1)
S being specific to dataset B (ωBL → 0) or R (ωR → 0). The first

contributions to the uncertainties in expressions (3.33)–(3.35) were estimated by
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Figure 3.8: Gauge-coupling-unification patterns are shown for two viable sample
points in the ωBL → 0 (upper panel) and ωR → (bottom panel) limits with the
corresponding input parameter values listed in Table 3.2. The black, blue and
red dashed vertical lines mark the location of the SM non-singlet scalar, SM-
singlet scalar and gauge masses, respectively; whilst purple solid lines indicate
the position of the VEVs. The black dots indicate the point of the one-loop
SM gauge coupling unification and simultaneously the position of the heaviest
non-singlet mass threshold.

approximating the two-loop running effects via perturbing exponents in formu-
lae (2.85)–(2.86) by O(1)/4π relative change. The second contributions to the
uncertainties in Eqns. (3.34)–(3.35) are determined from the spread of A(1)

S values
calculated for all viable parameter points. The VEVs in the viable region of the
parameter space are

lgωR = 14.92 ± 0.20 ± 0.12, (3.36)
lg |σ| = 11.09 ± 0.10 ± 0.78 (3.37)

in the ωBL → 0 regime and

lgωBL = 17.796 ± 0.500 ± 0.078, (3.38)
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lg |σ| = 7.86 ± 0.50 ± 0.37 (3.39)

in the ωR → 0 regime. The lg function is defined in Table 3.2. The first contribu-
tions to the uncertainties in expressions (3.36)–(3.39) arise from the higher-loop
corrections to the one-loop gauge coupling unification. We estimate them by as-
sessing the shift in the breaking scales resulting from one-loop and two-loop gauge
coupling unification analysis performed in [104]. Notice that such uncertainties
are rather large and any robust proton lifetime calculation thus requires at least
two-loop gauge coupling RGE analysis, see discussion in Sec. 2.5.3. The second
contributions to the uncertainties of Eqns. (3.36)–(3.39) come from the spread of
the VEV values of all viable parameter points in B or R. The min[|ωBL|, |ωR|]-
dependent contributions in denominators of k1, k2 from Eqns. (2.79)–(2.80) are
neglected since min[|ωBL|, |ωR|] ≪ |σ| ≪ max[|ωBL|, |ωR|]. Finally, the values of
the experimental inputs are [127]

mp = 938.27208816 ± 0.00000029 MeV, (3.40)
mπ± = 139.57039 ± 0.00018 MeV, (3.41)
mK± = 493.677 ± 0.016 MeV, (3.42)

|(VCKM)11| = 0.97373 ± 0.00031, (3.43)
|(VCKM)12| = 0.2243 ± 0.0008. (3.44)

Taking the numerical values in Eqns. (3.27)–(3.44) and inserting them into
the partial proton decay widths (2.77)–(2.78) for decay channels (3.26) with an-
tineutrinos in the final state, one gets

τp→π+ν ≡ ℏ
Γp→π+ν

= 1028.90+1.43
−1.42 yr, (3.45)

τp→K+ν ≡ ℏ
Γp→K+ν

= 1030.97+1.43
−1.42 yr (3.46)

in the ωBL → 0 limit and

τp→π+ν ≡ ℏ
Γp→π+ν

= 1040.30+2.48
−2.46 yr, (3.47)

τp→K+ν ≡ ℏ
Γp→K+ν

= 1042.37+2.48
−2.46 yr (3.48)

in the ωR → 0 limit.
Asymmetrical theoretical uncertainties of τp→π+ν and τp→K+ν indicated in

Eqns. (3.45)–(3.48) were obtained by taking the minimum and maximum values
of the partial decay widths calculated by inserting the quantities (3.27)–(3.44)
into formulae (2.77)–(2.78) over the entire range given by their respective un-
certainties. Let us emphasise that by far the biggest proton lifetime theoretical
uncertainty comes from the accuracy of the max[|ωBL|, |ωR|] VEV determination,
whose error can be reduced by improving the gauge running analysis to two loops.

In Fig. 3.9, we show the theoretically predicted ranges of τp→π+ν and τp→K+ν

(black horizontal bar) in both VEV regimes with the “expected” value denoted
by the red dashed vertical line. It is compared to the corresponding experi-
mental 90% confidence level exclusion bounds (black dashed vertical line) from
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Figure 3.9: Theoretical ranges of τp→π+ν and τp→K+ν from Eqns. (3.45)–(3.48)
in the 45 ⊕ 126 SO(10) Higgs model in the ωR → 0 (upper panel) or ωBL → 0
(lower panel) regime without (black bar) and with (gray bar) Planck-scale-
induced flavour fit uncertainties [7] taken into account. The red dashed vertical
lines denote the “expected” values. Experimental 90% confidence level exclu-
sion bounds from Table 2.4 are marked by black dashed lines.

Table 2.4. The plot also contains the theoretical ranges of τp→π+ν and τp→K+ν

expanded by one order of magnitude (gray horizontal bar) due to superimposing
hypothetical Planck-scale-induced flavour fit uncertainties studied in [7]. The the-
oretical ranges of inverse partial decay widths (3.47)–(3.48) in the ωR → 0 limit
are well above the 90% confidence level exclusion bounds. On the other hand, the
theoretically predicted proton decay rates in the ωBL → 0 limit are too fast for
both decay channels (3.26). Note that one cannot proclaim the ωBL → 0 regime
non-viable based on such a result as there are still several ways to improve the
proton decay width analysis, i.e. upgrade the gauge unification analysis at least
to two loops or bring a suitable scalar multiplet down to the desert to sufficiently
raise the GUT scale [12–14].
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3.2.4 Main conclusions of the 45⊕126 SO(10) Higgs model
analysis

Viable points in the parameter space passing non-tachyonicity, gauge coupling
unification and perturbativity constraints defined in Sec. 3.1 were found in both
ωBL → 0 (SU(4)C × SU(2)L × U(1)R intermediate symmetry) and ωR → 0
(SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermediate symmetry) regimes of the
45⊕126 SO(10) Higgs model. The viable part of the parameter space does not in-
clude the region in which all scalar couplings vanish, namely |γ2| ≳ 0.1 is enforced
by non-tachyonicity of the one-loop scalar spectrum. This is in contradiction to
the assumptions made in the preceding simplified studies [13–15].

The results of the numerical SO(10) Higgs model analysis clearly demonstrate
a preference for the ωBL → 0 limit as the ωR → 0 regime is disfavoured for the
following reasons:

1. Viable parameter points are less stable under the RG running in the ωR → 0
case, admitting only t < 2. Hence no point can be RG-run on average up
and down in renormalization scale by more than two orders of magnitude
without encountering a Landau-type singularity in a scalar coupling. Com-
pare it to the limit ωBL → 0 in which the t may be bigger than 3.

2. The SO(10) breaking VEV ωBL ∼ 1018 GeV in the ωR → 0 case is located
rather close to the Planck scale, which raises concern with theoretical uncer-
tainties induced by the Planck-scale suppressed d > 4 operators. Moreover,
the seesaw scale σ ∼ 108 GeV is somewhat low and potentially leads to vio-
lation of the Davidson-Ibarra leptogenesis bound. The GUT scale and the
seesaw scale in the ωBL → 0 regime have more phenomenologically attrac-
tive values around 1015 GeV and 1011 GeV, respectively.

Although the latter concern might be alleviated by fine-tuning a suitable scalar
mass into the desert [12–14], it is rather unlikely to have enough freedom to
perform such a fine-tuning in the scalar spectrum considering the very narrow
viable domain of the parameter space in the ωR → 0 regime.

From now on, we will focus solely on the ωBL → 0 limiting case. The 45⊕126
SO(10) Higgs model study discussed in this section is upgraded to the analysis of
the 45 ⊕ 126 ⊕ 10C SO(10) GUT with realistically implemented Yukawa sector
and the gauge coupling unification considered at two-loop level to fully account
for its phenomenological viability.

3.3 The minimal SO(10) GUT in the ωBL → 0
regime

In the following section, we examine the phenomenological viability of the minimal
45 ⊕ 126 ⊕ 10C SO(10) Grand Unified Theory. In the 45 ⊕ 126 SO(10) Higgs
model, there were identified two potentially realistic symmetry breaking patterns
with the SU(3)c × SU(2)L × SU(2)R × U(1)B−L (ωR → 0 limit) or the SU(4)C ×
SU(2)L×U(1)R (ωBL → 0 regime) intermediate symmetry. The simplified SO(10)
Higgs model analysis showed that only the latter case is sensibly perturbative,
albeit in the rather restricted part of the parameter space. Adding an extra 10C
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into the scalar sector has very little quantitative effect on the high energy part of
the spectrum, and so the aforementioned observation is expected to hold for the
minimal SO(10) GUT. Therefore we perform the analysis of the minimal SO(10)
GUT solely in the ωBL → 0 limit.

The ωBL → 0 regime, despite being favoured, is not without concerns as
the predicted GUT scale ∼ 1015 GeV is somewhat small and the correspond-
ing theoretical proton lifetime predictions do not exceed experimental exclusion
bounds, c.f. Fig. 3.9. However, the minimal SO(10) GUT provides several means
to improve upon the Higgs model analysis before declaring the ωBL → 0 limit
nonviable:

1. An additional 10C scalar representation brings new quantum corrections
into the one-loop calculations. Moreover, the scalar mass matrices of the
(1, 2,+1

2) and (3, 1,+1
3) SM multiplets are expanded to dimension 4×4 and

5 × 5, respectively.

2. The gauge coupling unification analysis has to be upgraded from one-loop
to two-loops, which is the lowest order of the perturbative expansion needed
for robust proton lifetime prediction, c.f. Sec. 2.5.3. Such an improvement
in the precision is, however, unlikely to significantly raise the GUT scale
as was demonstrated in the minimally fine-tuned model realizations and
it is probably necessary to resort to bringing a certain number of scalar
multiplets down to the desert [12–14].

One should also not forget that having 126 and 10C representations in the
minimal SO(10) GUT allows us to address the Yukawa sector of the theory. We
have shown in Sec. 2.4.3 that the question of a potentially realistic fit of fermion
masses and mixing is closely related to the problem of a successful fine-tuning
in the SM doublet (1, 2,+1

2) scalar mass matrix to attain a light SM-like Higgs
doublet. In particular, phenomenologically viable flavour fits require the SM
Higgs to be an admixture of fields from both 10C and 126.

We shall demonstrate that there is a significant tension between the pertur-
bativity constraints and the possibility of obtaining the light SM Higgs doublet
in the scalar spectrum. Hence the physical viability of the minimal SO(10) GUT
is questioned even without embarking on the tedious task of testing all possible
light scalar thresholds to properly raise the GUT scale as discussed in point 2.

The section is organized in the following way: in Sec. 3.3.1 we compare the
shapes of the viable parameter space domains in the minimal SO(10) GUT and
in the minimal SO(10) Higgs model. Next, the fine-tuning in the mass matrix of
the SM (1, 2,+1

2) multiplets for the purpose of attaining a SM-like Higgs doublet
is discussed in Sec. 3.3.2 at the tree and one-loop level. Finally, we summarize
the main conclusions in Sec. 3.3.3.

3.3.1 The minimal SO(10) GUT vs the minimal SO(10)
Higgs model

In the ωBL → 0 regime of the 45⊕126⊕10C SO(10) theory, the parameter space
spans over the following set of couplings

{λR, λC, g, τ ′, ξ2, ξ′2, ωR, σ, χ} (3.49)
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with λR and λC denoting the real and the complex dimensionless scalar parameters
listed already in Eqns. (2.21)–(2.22), respectively. The unified gauge coupling is
labelled g as usual; τ ′, ξ2, ξ′2 are new dimensionful scalar parameters and ωR, σ, χ
comprise the full VEV information via Eq. (2.37). The “optimal” renormalization
scale µ2

R is again calculated for every parameter point as an average of all the heavy
tree-level scalar masses-squares. In total, the parameters span the 51-dimensional
space with the imposed perturbativity constraints

|λR|, |λC|, |χ| < 1 1 GeV < |τ ′|, |ξ|, |ξ′| < 10ωR MZ < |σ| < ωR < MPl, (3.50)

where MZ and MPl are the Z-boson mass and the Planck scale, respectively.
The viable regions of the parameter space are identified by employing again the
differential evolution algorithm in the search mode, in the same manner as de-
scribed in Sec. 3.2.2, with the penalisation function vanishing only if all viability
criteria (tachyonicity, gauge coupling unification, perturbativity) introduced in
Sec. 3.1 are fulfilled. The resulting dataset of the viable points is labelled D. Let
us note that gauge coupling unification is studied at two loops and all one-loop
corrections originating from 10C are taken into account.

The viable dataset D can be readily compared with the dataset B of the viable
parameter points in the 45 ⊕ 126 SO(10) Higgs model case, c.f. Sec. 3.2.2. Their
main differences are compiled in Table 3.3.

Table 3.3: Characteristic features of the viable datasets D and B from the min-
imal SO(10) GUT and the minimal SO(10) Higgs model, both in the ωBL → 0
regime, respectively.

Dataset # of points Scalar content Gauge RGEs
B 30000 45 ⊕ 126 One-loop
D 20000 45 ⊕ 126 ⊕ 10C Two-loop
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Figure 3.10: The 1-, 2- and 3-σ HDIs, differentiated by decreasing opacity,
of the common dimensionless scalar parameters (left panel) and VEVs (right
panel) for datasets B and D.

In analogy with Sec. 3.2.2, we display in Fig. 3.10 and 3.11 all ranges of the
common parameters (i.e. the ones which are present in the full theory as well as in
the pure Higgs model) by showing the 1-, 2- and 3-σ HDIs of individual couplings
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Figure 3.11: 2D scatter plots correlating pairs of dimensionless scalar parame-
ters common to the minimal SO(10) GUT (D dataset) and the minimal SO(10)
Higgs model (B dataset) in the ωBL → 0 limit.

and the 2D correlation scatter plots, respectively. The two viable datasets assume
almost identical shapes, thus salient features of the minimal SO(10) Higgs model
apply also to the minimal SO(10) GUT under the study. However, there are some
minor differences that are worth mentioning:

• The ωR, σ VEVs and the gauge coupling g: There is a small shift in the ωR
and g values between the B and D datasets due to the gauge unification
upgrade from one-loop to two-loop. The same effect was observed in [104].
The central value of the |σ| VEV decreases from B to D, contrary to the
expectations based on the minimal fine-tuning unification analysis [104],
because one SM doublet (1, 2,+1

2) has mass fixed to the σ scale in the two-
loop gauge unification procedure, which is expected in case of the successful
SM Higgs fine-tuning, c.f. Sec. 3.3.2 and Appendix B 3 in [16].

• Parameter ranges: The 3-σ HDIs of most of the common dimensionless
parameters and the VEVs tend to be reduced in D as compared to B.
Intuitively, one would expect to see the opposite effect as a plethora of
new couplings is introduced thanks to adding 10C into the minimal SO(10)
GUT. However, the two-loop gauge unification in combination with non-
tachyonicity and perturbativity constraints induces even more serious pa-
rameter space restrictions. Finally, let us mention that the central values
of a2, β′

4 and |γ2| are subject to small shifts betweem B and D datasets,
c.f. Figs. 3.10–3.11.
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3.3.2 The doublet mass fine-tuning
Contrary to the minimal SO(10) Higgs model, the fermion masses can be accom-
modated in the 45 ⊕ 126 ⊕ 10C SO(10) GUT, which contains the 126 as well
as 10C in the scalar sector. Phenomenologically viable flavour fits require the
SM VEV vSM to be an admixture of the VEVs from both of the aforementioned
SO(10) representations, c.f. Sec. 2.4.3, thus implying that the SM Higgs doublet
(1, 2,+1

2) must be a significant admixure of the components from the 10C and
126.

Such observation has implications on the structure of the 4 × 4 doublet mass-
squared matrix, which has the schematic form

M2
S(1, 2,+1

2) =
(︄
M2

126 M2
mix

M2†
mix M2

10

)︄
(3.51)

if written in the basis of the row states

{(15, 2,+1
2)Σ, (15, 2,−1

2)∗
Σ∗ , (1, 2,+1

2)H , (1, 2,−1
2)H∗} (3.52)

with the basis fields specified by their SU(4)C × SU(2)L × U(1)R transformation
properties. The 2 × 2 sub-blocks M2

126 and M2
10 comprise contributions mixing

solely doublets from the 126 and 10C, respectively, whilst M2
mix is the 2 × 2

sub-block governing the mixing of the doublets originating from the two different
SO(10) representations. The expected sizes of the diagonal blocks are around the
GUT scale, i.e.

M2
126,M

2
10 ∼ O(ω2

R), (3.53)

while the off-diagonal mixing falls around the |σ| scale, that is

M2
mix ∼ |σ|2, (3.54)

since no mixing between doublets from the 126 and 10C representations can be
invoked until the intermediate symmetry SU(4)C × SU(2)L × U(1)R is sponta-
neously broken. In the phenomenologically viable GUT, one of the eigenvalues
of the doublet mass matrix M2

S(1, 2,+1
2) from Eq. (3.51) sets the scale of the SM

Higgs doublet mass term at about 125 GeV. Moreover, the SM Higgs doublet
eigenvector has to be a significant admixture of the components from the 126
as well as 10C. The latter requirement can be satisfied only if at least one of
the eigenvalues of both diagonal blocks M2

126, M2
10 is pre-tuned from the GUT

scale down to M2
mix ∼ |σ|2. Such a pre-tuning constraint is a necessary but not

sufficient condition for the successful SM Higgs doublet fine-tuning.
Let us denote m2

126,± and m2
10,± the eigenvalues of the diagonal blocks M2

126
and M2

10, respectively, where the + sign labels the larger and the − sign refers to
the smaller eigenvalue. In Sec. 2.4.3, we used the flavour fit [113] to estimate the
approximate “amount” of the vSM residing in 126:⌜⃓⃓⎷ |vu126|2 + |vd126|2

v2
SM

≳ 3 × 10−2 ≡ ϵ, (3.55)
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which at the same time estimates the weights of the 126 and 10C components in
the SM Higgs doublet. Thus the pre-tuning constraint reads

m2
10,− ∼ |σ|2 m2

126,− ∼ |σ|2

ϵ
, (3.56)

bringing an extra set of constraints to be applied to the scalar potential param-
eters. By plugging in the numerical values for the VEVs from the viable dataset
D of Sec. 3.3.1, we obtain approximately

m2
10,− ≲ 10−7ω2

R m2
126,− ≲ 3.3 · 10−6ω2

R. (3.57)

Pre-tuning at the tree-level — analytically

We first study the doublet pre-tuning at the tree-level as the quantum loop cor-
rections play a sub-dominant role in the non-PGB scalar sector. The tree-level
doublet mass matrix in the basis (3.52) has the form

M2(1, 2,+1
2)tree =⎛⎜⎜⎜⎜⎝

(β4
2 −9β′

4−3a2χ)ω2
R −2γ2ω2

R −
√

6ζ′χ|σ|2 −
√

6ζχ|σ|2

−2γ∗
2ω

2
R (β4

2 −β′
4−a2χ)ω2

R

√
6(16ϕ∗+ζ∗χ)|σ|2

√
6(16ϕ′∗+ζ′∗χ)|σ|2

−
√

6ζ′∗χ|σ|2
√

6(16ϕ+ζχ)|σ|2 −ξ2− τ ′ωR
24 +(2κ0+κ2)ω2

R −2ξ′2+2(2κ′
0+κ′

2)ω2
R

−
√

6ζ∗χ|σ|2
√

6(16ϕ′+ζ′χ)|σ|2 −2ξ′2∗+2(2κ′∗
0 +κ′∗

2 )ω2
R −ξ2+ τ ′ωR

24 +(2κ0+κ2)ω2
R

⎞⎟⎟⎟⎟⎠ , (3.58)

where only dominant contributions in the ωBL → 0 limit were retained.

• M2
126 sub-block tree-level eigenvalues: The tree-level M2

126 eigenvalues are

m2
126,±,(0) =

(︄
β4

2 − 5β′
4 − 2a2χ±

√︂
(4β′

4 + a2χ)2 + 4|γ2|2
)︄
ω2
R +O

(︂
|σ|2

)︂
.

(3.59)

The pre-tuning requires the ω2
R-proportional contribution to the m2

126,−,(0)
in Eq. (3.59) to be zeroed out in order to bring it down to the |σ|2 scale,
i.e. we demand

m2
126,−,(0)

ω2
R

≡ β4

2 − 5β′
4 − 2a2χ−

√︂
(4β′

4 + a2χ)2 + 4|γ2|2 = 0. (3.60)

Eq. (3.60) can be viewed as q constraint imposed upon |γ2| since it only
enters tree-level mass expressions of the (15, 2,+1

2) and (6, 1, 0) multiplets of
SU(4)C × SU(2)L × U(1)R to which the SM doublets (1, 2,+1

2) and triplets
(3, 1,+1

3) belong, respectively. The tree-level pre-tuning (3.60) of m2
126,−

thus directly influences non-tachyonicity of eigenvalues of the |γ2|-dependent
scalar mass matrices M2(1, 2,+1

2)tree from Eq. (3.58) and M2(3, 1,+1
3)tree

that is computed as
M2(3, 1 + 1

3)tree =⎛⎜⎜⎜⎜⎝
(β4−4β′

4−2a2χ)ω2
R 4γ2ω2

R 2
√

2(β4χ−8λ′
4) |σ|2 −

√
2ζω2

R −
√

2ζ′ω2
R

4γ∗
2ω

2
R (β4−4β′

4−2a2χ)ω2
R 0 −

√
2ζ′∗ω2

R −
√

2ζ∗ω2
R

2
√

2(β4χ−8λ′
4)|σ|2 0 (2β4−4β′

4−2a2χ)ω2
R −4(8φ+ζχ)|σ|2 −4(8φ′+ζ′χ)|σ|2

−
√

2ζ∗ω2
R −

√
2ζ′ω2

R −4(8φ∗+ζ∗χ)|σ|2 −ξ2+2κ0ω2
R −2ξ′∗2+4κ′∗

0 ω
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R

−
√

2ζ′∗ω2
R −

√
2ζω2

R −4(8φ′∗+ζ′∗χ)|σ|2 −2ξ′2+4κ′
0ω

2
R −ξ2+2κ0ω2

R

⎞⎟⎟⎟⎟⎠
(3.61)
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with the basis of the row states defined as

{(6, 1, 0)Σ, (6, 1, 0)∗
Σ∗ , (10, 1, 0)Σ, (6, 1, 0)H , (6, 1, 0)∗

H∗} (3.62)

under SU(4)C × SU(2)L × U(1)R. Again, only the dominant contributions
in the ωBL → 0 limit were kept in Eq. (3.61).
The necessary condition for non-tachyonicity of the triplet states can be
quantified via Sylvester’s criterion which states that M2(3, 1,+1

3)tree has
positive eigenvalues if and only if all its leading principal minors are positive,
namely if the determinants of all upper-left 1 × 1, 2 × 2, 3 × 3, . . . blocks are
positive. For simplicity, let us focus only on the 3 × 3 upper-left sub-block
of M2(3, 1,+1

3)tree in Eq. (3.61) that mixes triplets purely from the 126.
Sylvester’s criterion requires its leading principal minors

M2
1×1 = (β4 − 4β′

4 − 2a2χ)ω2
R, (3.63)

M2
2×2 = θ ω4

R, (3.64)
M2

3×3 = θ (β4 − 4β′
4 − 2a2χ)ω6

R + O(|σ|2ω2
R) (3.65)

to be positive. For later convenience, we hid the entire |γ2|-dependence in
a single parameter

θ := (β4 − 4β′
4 − 2a2χ)2 − 16|γ2|2. (3.66)

The triplet non-tachyonicity conditions can then be streamlined to

θ > 0, β4 − 4β′
4 − 2a2χ > 0, (3.67)

and they have to be accompanied by the tree-level non-tachyonicity require-
ments originating from all remaining heavy fields:

4β′
4 + a2χ < 0, 2β′

4 + a2χ < 0, (3.68)
β4 − 2β′

4 − a2χ > 0, β4 − 10β′
4 − 4a2χ > 0, (3.69)

cf. Table E.1. Thus Eqns. (3.67)–(3.69) constrain the allowed values of the
parameters β4, β

′
4, |γ2|, a2, χ and, as we shall see later, they are incompatible

with the condition (3.60).
The |γ2|-dependence of the M2

126 tree-level eigenvalues can be replaced by
the θ-dependence, hence

m2
126,−,(0)(θ) =(︄
β4

2 − 5β′
4 − 2a2χ− 1

2

√︂
4 (4β′

4 + a2χ)2 + (β4 − 4β′
4 − 2a2χ)2 − θ

)︄
ω2
R.

(3.70)

The eigenvalue m2
126,−,(0)(θ) is an increasing function of θ since

∂m2
126,−,(0)

∂θ
= 1

4
ω2
R√︂

4 (4β′
4 + a2χ)2 + (β4 − 4β′

4 − 2a2χ)2 − θ
> 0. (3.71)
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Thus, the triplet non-tachyonicity constraint θ > 0 implies that

m2
126,−,(0)(θ) ≥m2

126,−,(0)(0) (3.72)

with

m2
126,−,(0)(0) =(︄
β4

2 − 5β′
4 − 2a2χ− 1

2

√︂
4 (4β′

4 + a2χ)2 + (β4 − 4β′
4 − 2a2χ)2

)︄
ω2
R (3.73)

for any fixed choice of β4, β
′
4, a2 and χ parameters satisfying (3.67)–(3.69).

Numerically, we invoke the results of the viable dataset D from Sec. 3.3.1,
which suggests that viable regions of the parameter space obey

β4 ∈ [0.3, 1] , β′
4 ∈ [−0.2,−0.02] , (3.74)

a2 ∈ [−0.03, 0.05] , χ ∈ [−1, 1] . (3.75)

Therefore, the lowest possible numerical value of the m2
126,−,(0) mass-square

eigenvalue conforming to (3.67)–(3.69) is

min
β4,β′

4,a2χ
m2

126,−,(0)(0) ≂ 0.007ω2
R (3.76)

for β4 = 0.3, β′
4 = −0.02 and a2χ = 0.05. Thus m2

126,−,(0) can never be
zeroed out and the pre-tuning constraint (3.56) is not satisfied at the tree-
level.

• M2
10 sub-block tree-level eigenvalues: The tree-level M2

10 sub-block is the
only part of the overall tree-level scalar mass-squared spectrum that de-
pends on the scalar couplings κ′

0, κ
′
2 and τ ′. Therefore, we can always choose

these parameters appropriately so that one of the M2
10 tree-level eigenvalues

is fine-tuned to be of the order of |σ|2.

Hence, we demonstrated that the tree-level pre-tuning in the M2
126 sub-block

is problematic due to non-tachyonicity constraints required for other fields. Nev-
ertheless, the m2

126,−,(0) tree-level eigenvalue can still be sufficiently suppressed
so that one can hope that loop corrections, which in some cases reach up to
∼ 10% ω2

R, can be properly aligned and help to achieve the desired pre-tuning of
Eq. (3.57) at the loop level.

Pre-tuning in the perturbation theory

As we saw in the previous section, successful pre-tuning in the 126-sector has to
rely on the appropriate alignment of quantum corrections with respect to the tree-
level contribution. Ideally, the pre-tuning constraint (3.56) concerns quantities
calculated to all orders of perturbation theory. However, one usually has access
only to the lowest orders of the perturbative expansion; nevertheless, the effect
of the higher-order corrections, although typically sub-dominant, should not be
neglected.

We denote eigenvalues of the M2
126 and M2

10 sub-blocks of the doublet mass-
squared matrix (3.51) calculated at the n-th loop level as m2

126,±,(n) and m2
10,±,(n),
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respectively, with n = 0 representing the tree level; n-th loop eigenvalue correc-
tions are labeled δm2

126,±,(n) and δm2
10,±,(n), so that

m2
126,±,(n+1) = m2

126,±,(n) + δm2
126,±,(n+1), (3.77)

m2
10,±,(n+1) = m2

10,±,(n) + δm2
10,±,(n+1). (3.78)

For any loop order n for which loop corrections δm2
126,−,(n+1) and δm2

10,−,(n+1) are
larger than ∼ |σ|2 and ∼ |σ|2/ϵ, respectively, the pre-tuning has to be achieved
at least down to the level of the next-order loop corrections, i.e.⃓⃓⃓

m2
126,−,(n)

⃓⃓⃓
≲
⃓⃓⃓
δm2

126,−,(n+1)

⃓⃓⃓
, (3.79)⃓⃓⃓

m2
10,−,(n)

⃓⃓⃓
≲
⃓⃓⃓
δm2

10,−,(n+1)

⃓⃓⃓
, (3.80)

while one anticipates proper alignment of the higher loop corrections to satisfy the
pre-tuning constraint (3.56). Conditions (3.79)–(3.80) at the n-th perturbative
level are referred to as n-PL pre-tuning and they form necessary but not sufficient
doublet fine-tuning constraints. If n-PL pre-tuning fails, the proper pre-tuning
cannot be attained.

In practice, the n-th loop level is the highest perturbative order one has access
to and the (n+1)-th loop level mass corrections may only be estimated via e.g. loop
expansion parameter ηx that can be defined as

ηnx ≈

⃓⃓⃓⃓
⃓⃓δm2

x,(n)

m2
x,(0)

⃓⃓⃓⃓
⃓⃓ (3.81)

for a scalar field generally labeled x. Values of ηx are specific to the selected
parameter point and the quantity of comparison in the denominator (m2

x,(0)) is
assumed not to be spuriously suppressed. Consequently, the (n + 1)-th loop
level mass corrections of the lighter eigenvalues are estimated using the loop
expansion factor calculated for their heavier eigenvalue counterparts (the ones
not suppressed by fine-tuning):

δm2
126,−,(n+1) ≈ (η126+)n+1

⃓⃓⃓
m2

126,+,(0)

⃓⃓⃓
, (3.82)

δm2
10,−,(n+1) ≈ (η10+)n+1

⃓⃓⃓
m2

10,+,(0)

⃓⃓⃓
. (3.83)

In the present study of the minimal SO(10) GUT, we have access only to the
numerical one-loop scalar mass corrections. Hence we set n = 1 and test for 1-PL
pre-tuning which demands suppression of one-loop doublet eigenvalues m2

126,−,(1),
m2

10,−,(1) to the level of the two-loop corrections. We estimate the loop expansion
parameters of the heavier eigenvalues m2

126,+, m2
10,+ as

η126 :=
⃓⃓⃓⃓
⃓⃓δm2

126,+,(1)

m2
126,+,(0)

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓m2

126,+,(1) −m2
126,+,(0)

m2
126,+,(0)

⃓⃓⃓⃓
⃓⃓ , (3.84)

η10 :=
⃓⃓⃓⃓
⃓⃓δm2

10,+,(1)

m2
126,+,(0)

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓m2

10,+,(1) −m2
10,+,(0)

m2
126,+,(0)

⃓⃓⃓⃓
⃓⃓ , (3.85)

where the m2
10,+,(0) quantity in the denominator of η10 in Eq. (3.85) has been re-

placed by m2
126,+,(0) to account for instances where the numerical 1-PL pre-tuning
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in the M2
10 diagonal block spuriously suppresses both of its tree-level eigenvalues

due to the large number of relatively unconstrained scalar parameters available
there. Two-loop doublet mass corrections are thus estimated as

δm2
126,−,(2) ≈ (η126)2

⃓⃓⃓
m2

126,+,(0)

⃓⃓⃓
, (3.86)

δm2
10,−,(2) ≈ (η10)2

⃓⃓⃓
m2

126,+,(0)

⃓⃓⃓
, (3.87)

and the 1-PL pre-tuning requires⃓⃓⃓
m2

126,−,(1)

⃓⃓⃓
≲ (η126)2

⃓⃓⃓
m2

126,+,(0)

⃓⃓⃓
, (3.88)⃓⃓⃓

m2
10,−,(1)

⃓⃓⃓
≲ (η10)2

⃓⃓⃓
m2

126,+,(0)

⃓⃓⃓
, (3.89)

in accordance to Eqns. (3.79)–(3.80).
For later convenience, we introduce a pair of suppression ratios

R126 :=
⃓⃓⃓⃓
⃓⃓m2

126,−,(1)

m2
126,+,(0)

⃓⃓⃓⃓
⃓⃓ , (3.90)

R10 :=
⃓⃓⃓⃓
⃓⃓ m2

10,−,(1)

m2
126,+,(0)

⃓⃓⃓⃓
⃓⃓ (3.91)

of the smaller one-loop eigenvalues m2
126,−,(1),m

2
10,−,(1) with respect to the generic

unsuppressed tree-level mass m2
126,+,(0). The level of the 1-PL pre-tuning (3.88)–

(3.89) can then be measured for every point in the parameter space by evaluating

S126 := R126

η2
126

, (3.92)

S10 := R10

η2
10 · 10−2 (3.93)

with factor 10−2 being inserted in the definition of S10 to increase the strictness
of the 1-PL pre-tuning criterion (3.89) in order to compensate for the usage of
m2

126,+,(0) instead of m2
126,−,(0) in η10 and R10. Note that such a stricter constraint

imposed upon the 10C-sector faces no obstructions as the sufficient pre-tuning in
the M2

10 block can be achieved already at the tree-level. We then claim that a
point in the parameter space satisfies the 1-PL pre-tuning conditions if

S126 ≤ 1, (3.94)
S10 ≤ 1. (3.95)

Whenever such a point is also viable, i.e. meets the viability criteria introduced
in Sec. 3.1, it is referred to as SM-compatible.

Pre-tuning at the one-loop level — numerically

In analogy to the SO(10) Higgs model numerical study in Sec. 3.2, the suitability
criteria (viability constraints introduced in Sec. 3.1 and 1-PL pre-tuning (3.95)–
(3.94)) are implemented via penalization function and suitable regions of the
parameter space are examined by the stochastic version of the differential evolu-
tion algorithm. We generate various datasets, labeled S(x) with x = 2.0, 1.5, 1.0,
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of viable parameter points which satisfy the 1-PL pre-tuning constraint S10 ≤ 1
of Eq. (3.95) in the M2

10 doublet mass block and an increasingly more stringent
criterion S126 ≤ x in the M2

126 sector. Note that only dataset S(1.0) contains the
fully SM-compatible parameter points. For every dataset, we first use the differ-
ential evolution algorithm in the minimization mode to locate the appropriate
part of the parameter space and only after that, the search mode is engaged to
explore such region. As already indicated in the tree-level discussions, the 1-PL
pre-tuning in the 126-sector is difficult to attain as opposed to the viability and
S10 ≤ 1 criteria which were easily met. Moreover, it was noticed that the loca-
tion of the 1-PL fine-tuned parts of the parameter space tend to strongly correlate
with perturbatively problematic regions. Thus the S(x) datasets are compared to
the dataset D of the generally non-finetuned viable points discussed in Sec. 3.3.1
as well as to the dataset T of viable parameter points with increased stability
under the RG running imposed by demanding t ≥ 1. The main attributes of all
aforementioned datasets are conveniently listed in Table 3.4.

Table 3.4: Viable datasets with several extra constraints imposed on them.
The penultimate and the last column specify t and S126 ranges for points in
datasets, respectively.

Dataset # of points constraints t range S126 range
D 20000 unconstrained 0.36 − 1.06 2.88 − 267
S(2.0) 2000 S10 ≤ 1, S126 ≤ 2 0.34 − 0.49 1.57 − 2.00
S(1.5) 2000 S10 ≤ 1, S126 ≤ 1.5 0.34 − 0.52 1.19 − 1.50
S(1.0) 2000 S10 ≤ 1, S126 ≤ 1 0.34 − 0.41 0.92 − 1.00
T 20000 t ≥ 1 1.00 − 1.20 5.67 − 30.3

There are several observations one can make already from Table 3.4. Although
we were able to confirm the existence of the SM-compatible parameter points,
collected in S(1.0), they tend to acquire relatively high S126 measure, close to the
1-PL fine-tuning threshold. Such finding corresponds to the trend noticed during
searches for suitably fine-tuned points via the minimization mode of the differen-
tial evolution algorithm when it was more and more difficult to obtain better 1-PL
fine-tuned points. Furthermore, comparison of the t ranges of S(x) datasets with
D and T hints that pre-tuning favours regions with low RG-stability (t ≲ 0.5),
implying a scalar coupling value blows up when run half-an-order of magnitude
in the renormalization scale up or down for points in the S-type datasets. Such
points, although viable, cannot be considered perturbatively stable.

The same issue can be observed in Fig. 3.12, where we show the suppression
ratios R126 and the loop expansion parameters η126 for all points in the datasets
D, S(2.0), S(1.5), S(1.0) and T colour-coded by black, purple, magenta, red and
cyan, respectively. Larger values of the expansion parameter η126 indicate an
increased relative size of the radiative corrections, and smaller suppression ratio
R126 implies a bigger hierarchy between the M2

126 eigenvalues. The straight solid
grey line labeled η depicts points for which the one-loop lighter-doublet eigenvalue
m2

126,−,(1) (the one subject to the 1-PL pre-tuning) has the size of one-loop mass
corrections estimated from the heavier m2

126,+,(1). The orange curves marked x ·η2

indicate boundaries of regions where the lighter-doublet eigenvalue of the 126-
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Figure 3.12: The figure shows the suppression ratio R126 with respect to the
loop expansion parameter η126 values for all points in the datasets listed in
Table 3.4. The non-finetuned viable points from the D and T datasets reside
around the grey solid line R126 = η126, while the points complying with 1-PL
fine-tuning of various strictness S126 ≤ x, x = 2.0, 1.5, 1.0, are below the orange-
colored R126 = x · η2

126 curves. It is clear that the SM-compatible parameter
points of S(1.0) are found only in regions where large radiative corrections with
η126 ≳ 0.28 have to be invoked.

sector is 1-PL pre-tuned to the level S126 ≤ x. The smaller the x, the more
the corresponding S(x) domains shrink and recede towards regions with larger
expected loop corrections. For all SM-compatible parameter points, the loop
suppression factor is even η126 ≳ 0.28. Rather than enlarging hierarchy between
the two M2

126 eigenvalues, i.e. entering grey region with R126 ≲ 0.08, the successful
1-PL pre-tuning is carried out by enlarging quantum corrections at the expense of
stability under the RG running that prefers smaller η126, c.f. dataset T clustering
around η126 < 0.15, leading to the clear dichotomy between requiring pre-tuning
and perturbative stability. The same inconsistency between the S-type datasets
and the dataset T with increased RG-stability can be observed in Figs. 3.13–3.15,
which show 1-,2- and 3-σ HDIs for all relevant couplings. This is most evident in
the case of λ2, λ4, η2, ζ, ζ

′, φ′ and χ dimensionless parameters whose magnitudes
in the S(x) datasets are pushed towards larger values due to fine-tuning in the SM
doublet sector, whereas absolute values of the same couplings in the T datasets
are rather suppressed to maintain perturbative stability.
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Finally, notice that the τ ′ dimensionful parameter in the fine-tuned datasets
S(x) acquires very specific values |τ ′| ∼ ωR, c.f. Fig. 3.15. This is due to the
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1-PL fine-tuning criterion S10 ≤ 1 imposed upon 10C-sector of the doublet mass
matrix from Eq. (3.58) as the M2

10 sub-block is the only part of tree-level scalar
spectrum dependent on τ ′. Furthermore, it turns out that the pre-tuning criterion
applied in the S-type datasets inflicts constraints also on the complex phases of
dimensionless parameters, see Fig. 3.16, as opposed to the datasets D and T
where all phases are uniformly distributed over the [0, 2π) interval.
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Figure 3.16: 2D scatter plots correlating pairs of phases of dimensionless scalar
parameters of points from S(2.0), S(1.5) and S(1.0) datasets colour-coded by pur-
ple, magenta and red.

3.3.3 Main conclusions of the 45 ⊕ 126 ⊕ 10C SO(10) GUT
analysis

The scalar sector of the 45⊕126⊕10C SO(10) GUT, particularly the structure of
the mass matrix of the SM doublet (1, 2,+1

2) multiplets, were thoroughly studied
in the ωBL → 0 regime. We argued that the SM Higgs doublet can be properly
realized along with the phenomenologically viable flavour fits only if the doublet
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mass matrix M2
S(1, 2,+1

2) satisfies pre-tuning criteria, i.e. both diagonal sub-
blocks M2

126, M2
10 contain at least one eigenvalue as low as |σ|2.

The pre-tuning at tree-level turned out to be impossible in the 126-sector due
to tachyonicity of other scalar fields, hence we had to rely on the loop corrections
to be properly aligned. By carrying out numerical parameter space analysis at
the one-loop level, we indeed identified patches of the parameter space which are
SM-compatible (comply with the viability and 1-PL pre-tuning requirements) and
can, in principle, support pre-tuned doublet masses. However, these regions of the
parameter space are rather unstable with respect to the RG-running with t ≲ 0.5.
Every SM-compatible point thus hits a Landau-pole singularity in at least one of
the scalar couplings within half an order of magnitude around the GUT scale
and the perturbative stability of these parameter points is strongly questionable.
Hence, the realistic fermion mass fit cannot be realized at the perturbative level
in the ωBL → 0 regime of the 45 ⊕ 126 ⊕ 10C SO(10) GUT.

70



4. Conclusions
The minimal renormalizable non-supersymmetric SO(10) Grand Unified Theory
with the scalar sector 45⊕126⊕10C, where the former two representations trigger
spontaneous symmetry breaking of SO(10) to SU(3)c × SU(2)L × U(1)Y and the
latter two representations support a realistic Yukawa sector, raises attention as
a potentially viable candidate for a beyond the Standard Model theory which is
also capable to provide proton decay predictions with theoretical uncertainties
severely restrained. Such favourable features are however compensated by the
need to study the model at the quantum level [11] as its tree-level scalar spectrum
suffers from tachyonic instabilities [8–10].

For that reason we developed a numerical procedure to calculate the full one-
loop mass corrections to all scalar masses for the general configuration of VEVs
of 45⊕126, i.e. for a general symmetry breaking pattern. We thus improved the
previous state-of-the-art analytical results for one-loop mass corrections [15, 159]
devised only for potentially tachyonic scalars (dubbed PGBs), which were carried
out in the a2 → 0, |γ2| → 0, σ → 0 limit of the 45 ⊕ 126 SO(10) Higgs model.
Furthermore, the full set of one-loop beta functions of all dimensionless scalar
parameters in the scalar potential was analytically derived.

With these new computational tools at hand, we formulated a set of viability
criteria that have to be satisfied by any realistic setting of the minimal SO(10)
model, namely the non-tachyonicity of the mass spectrum, gauge coupling unifi-
cation at a suitable GUT scale and perturbativity. The last criterion ensures all
calculations are under perturbative control by restricting the magnitude of the
one-loop mass corrections and by controlling the stability of the scalar couplings
under the RG running. Consequently, it was shown that only two potentially vi-
able symmetry breaking patterns with well-pronounced SU(4)C ×SU(2)L×U(1)R
(referred to as ωBL → 0 regime) or SU(3)c × SU(2)L × SU(2)R × U(1)B−L (re-
ferred to as ωR → 0 regime) intermediate symmetries lead to a perturbative VEV
configurations that keep the VEV structure (3.7) under control.

Initially, we carried out numerical analysis of the 45 ⊕ 126 SO(10) Higgs
model in both the ωBL → 0 and ωR → 0 limiting cases with gauge coupling
unification considered at one loop. Such study allowed us to examine the basic
viability aspects (non-tachyonicity, gauge coupling unification, perturbativity) in
the simplified setting as the influence of the scalar 10C is subdominant outside the
flavour sector. We found viable points of the parameter space in both symmetry
breaking regimes. Contrary to previous simplified studies [13–15], the viable
regions of the parameter space did not admit vanishing |γ2|, namely |γ2| ≳ 0.1,
since full one-loop mass corrections to the PGBs were taken into account. Such
observation is further supported by the semi-analytical non-tachyonicity analysis
performed in the a2 → 0, σ → 0 limit.

The results of the minimal SO(10) Higgs model study revealed preference for
the ωBL → 0 regime with the SU(4)C × SU(2)L × U(1)R intermediate symmetry
stage because the ωR → 0 case is disfavoured by decreased perturbative stability,
where only parameter points with t < 2 are admitted, as well as by the position of
the GUT scale at ∼ 1018 GeV and the seesaw scale at ∼ 108 GeV, which are rather
close to the Planck scale and the Davidson-Ibarra bound [158], respectively.
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Finally, we provided proton lifetime predictions in the framework of the min-
imal SO(10) Higgs model and rough estimates of the corresponding theoretical
uncertainties for two decay channels p → π+ν and p → K+ν with antineutrinos
in the final states. We showed that the predicted partial proton decay rates are
above the experimental upper bounds in the ωBL → 0 case. However, such a
result can be alleviated by upgrading the gauge unification analysis to two-loops
or by fine-tuning mass of a suitable scalar sector down to the desert [12–14].

The full minimal 45 ⊕ 126 ⊕ 10C SO(10) GUT was subsequently analyzed in
the ωBL → 0 limit with gauge unification examined at two loops. We demon-
strated that the overall shape of the viable parameter space in the minimal SO(10)
GUT and in the minimal SO(10) Higgs model do not differ, thus retrospectively
supporting the assumption that the additional 10C has only insignificant influence
on the salient features of the viable parameter space. The GUT scale is found
to be ∼ 1015 GeV, which raises concerns about proton decay that were already
demonstrated in the SO(10) Higgs model analysis, suggesting that one should
resort to bringing mass of a suitable scalar multiplet down to the desert. Never-
theless, we managed to reveal a feature of the 45 ⊕ 126 ⊕ 10C SO(10) GUT that
makes the aforementioned potential matter stability concerns obsolete. Namely,
we argued that the Standard-Model-like Higgs doublet has to be a sufficient ad-
mixture of the components from the 126 and the 10C in all realistic flavour fits;
however such admixture cannot be achieved in the perturbative regime as the
parameter points satisfying doublet mixing hit a Landau-pole singularity when
run for less than half-an-order of magnitude up or down in the renormalization
scale. Hence parts of the viable parameter space accommodating the Standard
Model fermion masses and mixings correlate with regions of severely reduced per-
turbative stability in the minimal 45 ⊕ 126 ⊕ 10C SO(10) GUT. Such an issue
was hinted at semi-analytically at the tree level and fully confirmed numerically
at the one-loop level.

The 45⊕126 SO(10) Higgs model and the 45⊕126⊕10C SO(10) GUT anal-
yses illustrated the importance of perturbativity considerations as powerful tools
for model discrimination in the theories with a large number of field degrees of
freedom. Implementing perturbativity constraints can therefore help to severely
restrain potentially viable regions of the parameter space without adopting any
further phenomenological requirements.
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A. MZ-scale gauge couplings
We discuss the initial condition of the gauge running factors {α−1

c , α−1
L , α−1

1 } at
the MZ scale.

Strong coupling

The strong coupling at MZ scale in the MS renormalization scheme without top
threshold contribution and averaged over the values obtained by experiment and
lattice calculations is [160]

α
(5)
MS,c(MZ) = 0.1179 ± 0.0009. (A.1)

The two-loop level top quark threshold corrections follow from [161–163](︂
α

(6)
MS,c

)︂−1
(MZ) =

(︂
α

(5)
MS,c

)︂−1
(MZ) + 4πλtop(MZ), (A.2)

where λtop is the one-loop threshold factor computed as

λtop(MZ) = 1
12π2 log Mt

MZ

(A.3)

with the Z mass [160]

MZ = 91.1876 ± 0.0021 GeV (A.4)

and the top quark mass [160]

Mt = 172.89 ± 0.28exp ± 0.52MC GeV. (A.5)

Subscripts “exp” and “MC” differentiate between uncertainties given by the ex-
perimental measurements and mass parameter implementation in Monte Carlo
generators, respectively. Hence(︂

α
(6)
MS,c

)︂−1
(MZ) = 8.550 ± 0.065. (A.6)

Electromagnetic coupling

The QED coupling in the MS renormalization scheme and at theMZ scale without
top quark threshold contribution is given by [151]

α
(5)
MS(MZ) = α

1 − ∆α(5)
lep(MZ) − ∆α(5)

had(MZ) − ∆α(5)
top(MZ) − ∆̃(MZ)

, (A.7)

where [160]
α−1 = 137.035999084 ± 0.000000021. (A.8)

Four-loop contributions from leptons are calculated as [152]

∆α(5)
lep(MZ) =

(︃
α

π

)︃
13.52631(8) +

(︃
α

π

)︃2
14.38553(6) +

(︃
α

π

)︃3
84.8285(7)+
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+
(︃
α

π

)︃4
[810.65(1) − 39.8893(5)] +O

(︂
α5
)︂
, (A.9)

thus employing Eq. A.8 one has

∆α(5)
lep(MZ) =0.0314979 ± 0.0000002. (A.10)

The corresponding hadronic contribution is [160]

∆α(5)
had(MZ) = 0.02766 ± 0.00007 (A.11)

and the three-loop QCD effects originating from the top quark are included by
[150]

∆α(5)
top(MZ) = − 4

45
α

π

M2
Z

M2
t

⎧⎨⎩1 + 5.062α
MS,(5)
s (MZ)

π
+
(︄

28.220 + 9.702 ln M
2
Z

M2
t

)︄
·

·

⎛⎝αMS,(5)
s (MZ)

π

⎞⎠2

+ M2
Z

M2
t

⎡⎣0.1071 + 0.8315α
MS,(5)
s (MZ)

π
+

+
(︄

6.924 + 1.594 ln M
2
Z

M2
t

)︄⎛⎝αMS,(5)
s (MZ)

π

⎞⎠2
⎤⎥⎦
⎫⎪⎬⎪⎭ , (A.12)

which leads to

∆α(5)
top(MZ) = − 0.0000719 ± 0.0000007 (A.13)

after inserting (A.4)–(A.5). The difference between MS and on-shell schemes is
given by [160]

∆̃ = 0.007127 ± 0.000002. (A.14)
After putting all numerical values from Eqns. (A.10)–(A.11) and (A.13)–(A.14)
into Eq. (A.7), one obtains(︂

α
(5)
MS

)︂−1
(MZ) = 127.96244387 ± 0.00000002. (A.15)

Finally, the QED coupling with the top quark threshold contributions is cal-
culated by [151]

α
(6)
MS(MZ) =α(5)

MS(MZ)

⎧⎪⎨⎪⎩1 + 4
9
α

(5)
MS(MZ)
π

⎡⎢⎣15
4

⎛⎜⎝α(5)
MS,c(MZ)

5 +
α

(5)
MS(MZ)

3π

⎞⎟⎠+

+ log M
2
Z

M2
t

⎛⎜⎝1 +
α

(5)
MS,c(MZ)

5 +
α

(5)
MS(MZ)

3π

⎞⎟⎠
⎤⎥⎦
⎫⎪⎬⎪⎭ , (A.16)

hence (︂
α

(6)
MS

)︂−1
(MZ) = 128.13515390 ± 0.00000002. (A.17)

Weak mixing angle

The value of the weak mixing angle at the MZ scale in the MS renormalization
scheme including top quark threshold corrections is[149, 160]

sin2 θMS
W (MZ) = 0.23121 ± 0.00004. (A.18)
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Gauge factors at the MZ scale

Values of the gauge factors {α−1
c (MZ), α−1

L (MZ), α−1
1 (MZ)}, at the MZ scale are

related to the parameters

{α(6)
MS(MZ), sin2 θMS

W (MZ), α(6)
MS,c(MZ)} (A.19)

in the following way:

α−1
1 (MZ) =3

5(1 − sin2 θMS
W (MZ)) ·

(︂
α

(5)
MS

)︂−1
(MZ), (A.20)

α−1
L (MZ) = sin2 θMS

W (MZ) ·
(︂
α

(5)
MS

)︂−1
(MZ), (A.21)

α−1
c (MZ) =

(︂
α

(6)
MS,c

)︂−1
(MZ), (A.22)

thus

α−1
1 (MZ) = 59.1054 ± 0.0031, (A.23)
α−1
L (MZ) = 29.6261 ± 0.0051, (A.24)
α−1
c (MZ) = 8.550 ± 0.065. (A.25)
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B. Beta functions of scalar
couplings
Beta functions of scalar couplings can be derived with the help of the effective
potential approach, in which the tree-level scalar potential V0 is replaced by the
effective potential Veff . At one loop,

Veff = V0 + V1 (B.1)

with V1 involving contributions from the one-loop Feynman diagrams. In the
Landau gauge and MS renormalization scheme it reads [148]

V1 = 1
64π2 Tr

[︄
M4

S(Φ)
(︄

log M
2
S(Φ)
µ2 − 3

2

)︄]︄
+ 3

64π2 Tr
[︄
M4

G(Φ)
(︄

log M
2
G(Φ)
µ2 − 5

6

)︄]︄
,

(B.2)
where

M2
S(Φ)ij = ∂2V0

∂Φj∂Φ∗
j

, (B.3)

M2
G(Φ)ab = g2 (T aΦ)†

(︂
T bΦ

)︂
(B.4)

are elements of the tree-level 317 × 317 scalar and 45 × 45 gauge field-dependent
mass matrices, a, b = 1, . . . , 45 and i, j = 1, . . . , 317. T a denotes the SO(10)
generators in the reducible representation corresponding to the scalar field Φ
encompassing all 317 scalar degrees of freedom

Φ =
(︂
ϕ Σ Σ∗ H H∗

)︂T
. (B.5)

The effective potential satisfies the Callan-Symanzik renormalization group
equation(︄

∂

∂ log µR
+ βλ

∂

∂λ
+ βg

∂

∂g
+ βm2

∂

∂m2 +
317∑︂
i=1

γΦi
Φi

∂

∂Φi

)︄
Veff (Φ) = 0 (B.6)

with i running over all scalar fields (B.5), µR and γΦi
being the running renor-

malization scale and Φ-field anomalous dimensions, respectively. The RGE (B.6)
at one loop yields

∂V1

∂ log µR
+ βλ

∂V0

∂λ
+ βg

∂V0

∂g
+ βm2

∂V0

∂m2 +
317∑︂
i=1

γΦi
Φi
∂V0

∂Φi

= 0. (B.7)

Simultaneously, every tree-level scalar coupling λ can be expressed as a deriva-
tive of the tree-level scalar potential with respect to a suitable choice of a set of
scalar fields {Φii ,Φi2 ,Φi3 ,Φi4}:

λ = ∂4V0(Φ)
∂Φi1∂Φi2∂Φi3∂Φi4

. (B.8)
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The examples of a possible choice of the quadruples of fields {Φii ,Φi2 ,Φi3 ,Φi4}
for all dimensionless scalar couplings in the 45⊕126⊕10C SO(10) GUT is listed
in Table B.1.

Applying the derivative (B.8) on the renormalization group equation (B.7)
gives

∂4∏︁4
j=1 ∂Φij

∂V1

∂ log µR
+ βλ + λ

4∑︂
j=1

γΦij
= 0, (B.9)

and consequently, the one-loop scalar beta function is calculated as

βλ = βλ,EFF + βλ,FS, (B.10)

where

βλ,EFF = − ∂4∏︁4
j=1 ∂Φij

∂V1

∂ log µR
= 1

32π2
∂4∏︁4

j=1 ∂Φij

(︂
Tr
[︂
M4

S(Φ)
]︂

+ 3Tr
[︂
M4

G(Φ)
]︂)︂

(B.11)

and

βλ,FS = −λ
4∑︂
j=1

γΦij
(B.12)

are scalar-potential-dependent and field-strength-dependent parts of the beta
function, respectively.

B.1 Field-strength-dependent part
Calculating the field-strength-dependent parts of the scalar beta functions re-
quires the computation of the Φi-field anomalous dimension, which is defined as
[164]

γΦi
= 1

2
1
ZΦi

∂ZΦi

∂ log µR
, (B.13)

where ZΦi
is the Φi-field-strength renormalization factor in the MS renormaliza-

tion scheme. It depends on the Φi-field self-energy ΣMS
Φi

ZΦi
= 1 +

∂ΣMS
Φi

(p2)
∂p2

⃓⃓⃓⃓
⃓⃓
p2=m2

Φi

, (B.14)

whose p2−dependent part arises from the diagram depicted in Fig. B.1. The
direct Feynman diagram calculation yields

ΣMS
Φi

(p2) = C2(RΦi
) · p2 · 3g2

16π2 log µ2
R + p2 and/or µR independent part, (B.15)

where C2(RΦi
) denotes the quadratic Casimir operator of the SO(10) represen-

tation R to which the Φi field belongs. Inserting relations (B.14)-(B.15) into
Eq. (B.13) one obtains

γΦi
= C2(RΦi

) 3g2

16π2 , (B.16)
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Figure B.1: The Feynman diagram contributing to the p2−dependent part of
the scalar field self-energy which is relevant for the calculation of the field-
strength-dependent part of the scalar beta function.

and consequently, the field-dependent part of the scalar beta function (B.12) is

βλ,FS = −λ 3g2

16π2

4∑︂
j=1

C2(RΦij
). (B.17)

As all the scalar fields Φi reside in one of the three SO(10) representations 45,
126 and 10, by inserting appropriate Casimir operators we can write

βλ,FS = −λ 3g2

16π2

(︃
8nϕ + 25

2 nΣ + 9
2nH

)︃
, (B.18)

where nϕ, nΣ and nH count the number of ϕ, Σ andH fields in the quadruple of the
scalar fields {Φi1 ,Φi2 ,Φi3 ,Φi4}, respectively, and their values for all dimensionless
scalar couplings are given in Table B.1.

B.2 Resulting expressions

16π2 βa0 = 126α2 + 56αβ4 + 112αβ′
4 + 424a2

0 + 152a0a2 + 12a2
2+

+ 33
2 β

2
4 + 26β4β

′
4 + 106β′2

4 − 56|γ2|2 + 12|ζ|2 + 12|ζ ′|2+

+ 10κ2
0 + 4κ0κ2 + 40|κ′

0|2 + 8κ′
0κ

′∗
2 + 8κ′∗

0 κ
′
2 + 9

2g
4 − 96a0g

2,

(B.19)

16π2βa2 = 96a0a2 + 76a2
2 − 5β2

4 + 60β4β
′
4 − 100β′2

4 + 560|γ2|2−
− 24|ζ|2 − 24|ζ ′|2 + 4κ2

2 + 16|κ′
2|2 + 3g4 − 96a2g

2,
(B.20)

16π2βλ0 = 90α2 + 40αβ4 + 80αβ′
4 + 10β2

4 + 80β′2
4 + 520λ2

0+
+ 2440λ0λ2 + 2680λ0λ4 + 4960λ0λ

′
4 + 3460λ2

2 + 7880λ2λ4+
+ 12320λ2λ

′
4 + 4660λ2

4 + 13280λ4λ
′
4 + 16960λ′2

4 +
+ 10ρ2

0 + 10ρ0ρ2 + 40|ρ′
0|2 + 5ρ2

2 + 3840|φ|2 + 3840|φ′|2+

+ 135
2 g4 − 150λ0g

2,

(B.21)
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Table B.1: Example of a choice of the quadruple {Φi1 ,Φi2 ,Φi3 ,Φi4} that can be
used to derive one-loop beta functions of a scalar coupling combination and the
corresponding field counts nϕ, nΣ, nH .

scalar coupling combination a choice of {Φi1 ,Φi2 ,Φi3 ,Φi4} nϕ nΣ nH

a0 ϕ12, ϕ12, ϕ78, ϕ78 4 0 0
a2 + 2a2 ϕ12, ϕ12, ϕ12, ϕ12 4 0 0

α ϕ78, ϕ78, Σ123810, Σ∗
123810 2 2 0

β4 ϕ810, ϕ46,Σ12346,Σ∗
123810 2 2 0

2β′
4 + 2α + β4 ϕ12, ϕ12,Σ123810,Σ∗

123810 2 2 0
γ2 ϕ12, ϕ12,Σ123810,Σ123810 2 2 0

λ0 + 2λ2 + 3λ4 + 8λ′
4 Σ12345,Σ∗

12345,Σ12346,Σ∗
12346 0 4 0

λ2 + 4λ4 + 4λ′
4 Σ12345,Σ12345,Σ∗

12346,Σ∗
12346 0 4 0

2λ0 + 5λ2 + 5λ4 + 8λ′
4 Σ12345,Σ∗

12345,Σ123810,Σ∗
123810 0 4 0

λ4 Σ12345,Σ12345,Σ∗
123810,Σ∗

123810 0 4 0
η2 Σ12345,Σ12345,Σ12345,Σ12345 0 4 0
h2 H1, H

∗
1 , H2, H

∗
2 0 0 4

h′
2 H1, H1, H

∗
2 , H

∗
2 0 0 4

h3 H1, H1, H1, H
∗
1 0 0 4

h4 H1, H1, H1, H1 0 0 4
κ0 ϕ78, ϕ78, H1, H

∗
1 2 0 2

κ0 + κ2 ϕ12, ϕ12, H1, H
∗
1 2 0 2

κ′
0 ϕ78, ϕ78, H1, H1 2 0 2

κ′
0 + κ′

2 ϕ12, ϕ12, H1, H1 2 0 2
ζ ϕ13, ϕ810,Σ123810, H2 2 1 1
ζ ′ ϕ13, ϕ810,Σ123810, H

∗
2 2 1 1

ρ2 Σ12345,Σ∗
12346, H5, H

∗
6 0 2 2

2ρ0 + ρ2 Σ12345,Σ∗
12345, H5, H

∗
5 0 2 2

ρ′
0 Σ12345,Σ∗

12345, H5, H5 0 2 2
ψ2 Σ12345,Σ12345, H5, H5 0 2 2
ψ1 Σ12345,Σ12345, H5, H

∗
5 0 2 2

ψ0 Σ12345,Σ12345, H
∗
5 , H

∗
5 0 2 2

φ Σ12345,Σ123810,Σ∗
145810, H1 0 3 1

φ′ Σ12345,Σ123810,Σ∗
145810, H

∗
1 0 3 1

16π2βλ2 = −4β2
4 − 32β′2

4 − 32|γ2|2 − 1264|η2|2 + 24λ0λ2 − 180λ2
2−

− 584λ2λ4 − 160λ2λ
′
4 − 656λ2

4 − 800λ4λ
′
4 − 2560λ′2

4 − ρ2
2−

− 4|ψ0|2 − 2|ψ1|2 − 4|ψ2|2 − 1408|φ|2 − 1408|φ′|2 − 24g4−
− 150λ2g

2,

(B.22)
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16π2βλ4 = 2β2
4 + 16β′2

4 + 32|γ2|2 + 1328|η2|2 + 24λ0λ4 + 16λ2
2+

+ 112λ2λ4 + 128λ2λ
′
4 + 268λ2

4 + 640λ4λ
′
4 + 1408λ′2

4 +
+ 4|ψ0|2 + 2|ψ1|2 + 4|ψ2|2 + 768|φ|2 + 768|φ′|2 + 12g4−
− 150λ4g

2,

(B.23)

16π2βλ′
4

= 4β4β
′
4 − 4β′2

4 + 32|η2|2 + 24λ0λ
′
4 − 4λ2

2 − 8λ2λ4 − 16λ2λ
′
4+

+ 4λ2
4 + 112λ4λ

′
4 − 240λ′2

4 − 416|φ|2 − 416|φ′|2 − 3g4−
− 150λ′

4g
2,

(B.24)

16π2βα = 8α2 + 508αλ0 + 1220αλ2 + 1340αλ4 + 2480αλ′
4 + 376αa0+

+ 80a0β4 + 160a0β
′
4 + 76αa2 + 16a2β4 + 32a2β

′
4 + 4β2

4+
+ 16β4β

′
4 + 112β4λ0 + 272β4λ2 + 288β4λ4 + 512β4λ

′
4+

+ 144β′2
4 + 224β′

4λ0 + 544β′
4λ2 + 576β′

4λ4 + 1024β′
4λ

′
4+

+ 64|γ2|2 + 20κ0ρ0 + 10κ0ρ2 + 40κ′
0ρ

′∗
0 + 40κ′∗

0 ρ
′
0 + 4κ2ρ0+

+ 2κ2ρ2 + 8κ′
2ρ

′∗
0 + 8κ′∗

2 ρ
′
0 + 12g4 − 123αg2,

(B.25)

16π2ββ4 = 16αβ4 + 16a0β4 + 16a2β
′
4 + 48β2

4 + 80β4β
′
4 + 4β4λ0−

− 8β4λ2 + 32β4λ4 + 16β4λ
′
4 + 16β′2

4 + 16β′
4λ2 + 48β′

4λ4+
+ 640β′

4λ
′
4 + 64|γ2|2 + 24|ζ|2 + 96ζφ∗ + 96ζ∗φ+ 24|ζ ′|2+

+ 96ζ ′φ′∗ + 96ζ ′∗φ′ + 12g4 − 123β4g
2,

(B.26)

16π2ββ′
4

= 16αβ′
4 + 16a0β

′
4 + 2a2β4 − 4a2β

′
4 − β2

4 − 28β4β
′
4 + 2β4λ2+

+ 6β4λ4 + 80β4λ
′
4 − 124β′2

4 + 4β′
4λ0 − 12β′

4λ2 + 20β′
4λ4−

− 144β′
4λ

′
4 + 16|γ2|2 − 48ζφ∗ − 48ζ∗φ− 48ζ ′φ′∗ − 48ζ ′∗φ′−

− 3g4 − 123β′
4g

2,

(B.27)

16π2βγ2 = 16αγ2 + 16a0γ2 + 36a2γ2 + 28β4γ2 + 56β′
4γ2 + 4γ2λ0+

+ 40γ2λ2 + 180γ2λ4 + 160γ2λ
′
4 + 440γ∗

2η2 + 12ζζ ′ + 2κ2ψ1+
+ 4κ′

2ψ0 + 4κ′∗
2 ψ2 − 123γ2g

2,
(B.28)

16π2βη2 = 16γ2
2 + 24η2λ0 + 160η2λ2 + 600η2λ4 + 640η2λ

′
4 + 4ψ0ψ2+

+ ψ2
1 − 150η2g

2. (B.29)

16π2βh2 = 56h2
2 + 16h2h

′
2 + 16h′2

2 + 72|h3|2 + 64|h4|2 + 90κ2
0+

+ 36κ0κ2 + 10κ2
2 + 32|κ′

2|2 + 126ρ2
0 + 126ρ0ρ2 + 49ρ2

2+

+ 140|ψ0|2 + 56|ψ1|2 + 140|ψ2|2 + 15
8 g

4 − 54h2g
2,

(B.30)

16π2βh′
2

= 24h2h
′
2 + 40h′2

2 + 36|h3|2 + 224|h4|2 + 180|κ′
0|2+

+ 36κ′
0κ

′∗
2 + 36κ′∗

0 κ
′
2 + 8κ2

2 + 4|κ′
2|2 + 252|ρ′

0|2 − 35
2 ρ

2
2−

− 14|ψ0|2 + 70|ψ1|2 − 14|ψ2|2 + 3
2g

4 − 54h′
2g

2,

(B.31)
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16π2βκ0 = 252αρ0 + 126αρ2 + 376a0κ0 + 72a0κ2 + 76a2κ0+
+ 8a2κ2 + 56β4ρ0 + 28β4ρ2 + 112β′

4ρ0 + 56β′
4ρ2 − 28γ2ψ

∗
1−

− 28γ∗
2ψ1 + 84|ζ|2 + 84|ζ ′|2 + 44h2κ0 + 8h2κ2 + 8h′

2κ0+
+ 48h3κ

′∗
0 + 8h3κ

′∗
2 + 48h∗

3κ
′
0 + 8h∗

3κ
′
2 + 8κ2

0 + 32|κ′
0|2 + 4κ2

2+

+ 16|κ′
2|2 + 3

2g
4 − 75g2κ0,

(B.32)

16π2βκ2 = 16a0κ2 + 36a2κ2 + 140γ2ψ
∗
1 + 140γ∗

2ψ1 − 84|ζ|2 − 84|ζ ′|2+
+ 4h2κ2 + 8h′

2κ2 + 8h3κ
′∗
2 + 8h∗

3κ
′
2 + 16κ0κ2 + 32κ′

0κ
′∗
2 +

+ 32κ′∗
0 κ

′
2 + 20κ2

2 + 80|κ′
2|2 + 9

2g
4 − 75κ2g

2,

(B.33)

16π2βρ0 = 180ακ0 + 36ακ2 + 40β4κ0 + 8β4κ2 + 80β′
4κ0 + 16β′

4κ2+
+ 24|ζ|2 + 44h2ρ0 + 20h2ρ2 + 8h′

2ρ0 + 8h′
2ρ2 + 48h3ρ

′∗
0 +

+ 48h∗
3ρ

′
0 + 508λ0ρ0 + 252λ0ρ2 + 1220λ2ρ0 + 692λ2ρ2+

+ 1340λ4ρ0 + 788λ4ρ2 + 2480λ′
4ρ0 + 1232λ′

4ρ2 + 4ρ2
0+

+ 16|ρ′
0|2 + 4ρ2

2 + 24|ψ1|2 + 96|ψ2|2 + 9984|φ|2 + 1536|φ′|2+

+ 15
2 g

4 − 102ρ0g
2,

(B.34)

16π2βρ2 = −24|ζ|2 + 24|ζ ′|2 + 4h2ρ2 − 8h′
2ρ2 + 4λ0ρ2 − 164λ2ρ2−

− 236λ4ρ2 + 16λ′
4ρ2 + 8ρ0ρ2 + 4ρ2

2 + 96|ψ0|2 − 96|ψ2|2−
− 8448|φ|2 + 8448|φ′|2 − 102ρ2g

2,

(B.35)

16π2βh4 = 24h2h4 + 96h′
2h4 + 18h2

3 + 90κ′2
0 + 36κ′

0κ
′
2 + 18κ′2

2 +
+ 126ρ′2

0 + 126ψ∗
0ψ2 − 54h4g

2,
(B.36)

16π2βh3 = 72h2h3 + 72h′
2h3 + 144h∗

3h4 + 180κ0κ
′
0 + 36κ0κ

′
2+

+ 36κ′
0κ2 + 36κ2κ

′
2 + 252ρ0ρ

′
0 + 126ρ′

0ρ2 + 126ψ∗
0ψ1+

+ 126ψ∗
1ψ2 − 54h3g

2,

(B.37)

16π2βκ′
0

= 252αρ′
0 + 376a0κ

′
0 + 72a0κ

′
2 + 76a2κ

′
0 + 8a2κ

′
2 + 56β4ρ

′
0+

+ 112β′
4ρ

′
0 − 28γ2ψ

∗
0 − 28γ∗

2ψ2 + 84ζζ ′∗ + 4h2κ
′
0 + 40h′

2κ
′
0+

+ 8h′
2κ

′
2 + 24h3κ0 + 4h3κ2 + 96h4κ

′∗
0 + 16h4κ

′∗
2 + 16κ0κ

′
0+

+ 8κ2κ
′
2 − 75κ′

0g
2,

(B.38)

16π2βκ′
2

= 16a0κ
′
2 + 36a2κ

′
2 + 140γ2ψ

∗
0 + 140γ∗

2ψ2 − 84ζζ ′∗ + 4h2κ
′
2+

+ 4h3κ2 + 16h4κ
′∗
2 + 16κ0κ

′
2 + 16κ′

0κ2 + 40κ2κ
′
2 − 75κ′

2g
2,

(B.39)

16π2βζ = 8αζ + 16a0ζ − 8a2ζ + 64β4ζ + 160β4φ+ 48β′
4ζ − 640β′

4φ+
+ 96γ2ζ

′∗ + 8ζκ0 − 8ζκ2 + 2ζρ0 − 4ζρ2 + 24ζ∗ψ2 + 16ζ ′κ′
0−

− 16ζ ′κ′
2 + 4ζ ′ρ′

0 + 12ζ ′∗ψ1 − 99ζg2,

(B.40)

16π2βζ′ = 8αζ ′ + 16a0ζ
′ − 8a2ζ

′ + 64β4ζ
′ + 160β4φ

′ + 48β′
4ζ

′−
− 640β′

4φ
′ + 96γ2ζ

∗ + 16ζκ′∗
0 − 16ζκ′∗

2 + 4ζρ′∗
0 + 12ζ∗ψ1+

+ 8ζ ′κ0 − 8ζ ′κ2 + 2ζ ′ρ0 + 6ζ ′ρ2 + 24ζ ′∗ψ0 − 99ζ ′g2,

(B.41)
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16π2βρ′
0

= 180ακ′
0 + 36ακ′

2 + 40β4κ
′
0 + 8β4κ

′
2 + 80β′

4κ
′
0 + 16β′

4κ
′
2+

+ 12ζζ ′∗ + 4h2ρ
′
0 + 40h′

2ρ
′
0 + 24h3ρ0 + 12h3ρ2 + 96h4ρ

′∗
0 +

+ 508λ0ρ
′
0 + 1220λ2ρ

′
0 + 1340λ4ρ

′
0 + 2480λ′

4ρ
′
0 + 8ρ0ρ

′
0+

+ 4ρ′
0ρ2 + 24ψ∗

0ψ1 + 24ψ∗
1ψ2 + 5760φφ′∗ − 102ρ′

0g
2,

(B.42)

16π2βψ2 = 32γ2κ
′
2 + 12ζ2 + 440η2ψ

∗
0 + 4h2ψ2 + 4h3ψ1 + 16h4ψ0+

+ 4λ0ψ2 + 40λ2ψ2 + 180λ4ψ2 + 160λ′
4ψ2 + 8ρ0ψ2 + 8ρ′

0ψ1−
− 16ρ2ψ2 + 3840φ2 − 102ψ2g

2,

(B.43)

16π2βψ1 = 32γ2κ2 + 24ζζ ′ + 440η2ψ
∗
1 + 4h2ψ1 + 8h′

2ψ1 + 8h3ψ0+
+ 8h∗

3ψ2 + 4λ0ψ1 + 40λ2ψ1 + 180λ4ψ1 + 160λ′
4ψ1 + 8ρ0ψ1+

+ 16ρ′
0ψ0 + 16ρ′∗

0 ψ2 + 4ρ2ψ1 + 7680φφ′ − 102ψ1g
2,

(B.44)

16π2βψ0 = 32γ2κ
′∗
2 + 12ζ ′2 + 440η2ψ

∗
2 + 4h2ψ0 + 4h∗

3ψ1 + 16h∗
4ψ2+

+ 4λ0ψ0 + 40λ2ψ0 + 180λ4ψ0 + 160λ′
4ψ0 + 8ρ0ψ0 + 8ρ′∗

0 ψ1+
+ 24ρ2ψ0 + 3840φ′2 − 102ψ0g

2,

(B.45)

16π2βφ = β4ζ − 4β′
4ζ + 12λ0φ− 8λ2φ+ 40λ4φ− 656λ′

4φ+ 6ρ0φ+
+ 12ρ′

0φ
′ − 8ρ2φ+ 48ψ2φ

∗ + 24ψ1φ
′∗ − 126φg2,

(B.46)

16π2βφ′ = β4ζ
′ − 4β′

4ζ
′ + 12λ0φ

′ − 8λ2φ
′ + 40λ4φ

′ − 656λ′
4φ

′+
+ 6ρ0φ

′ + 12ρ′∗
0 φ+ 14ρ2φ

′ + 24ψ1φ
∗ + 48ψ0φ

′∗ − 126φ′g2.
(B.47)
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C. RGEs for d = 6 proton decay
operators
In this Appendix, we derive the form of the coefficients which take care of the
one-loop running effects for the effective four-fermion BNV operators O(1) and
O(2), c.f (2.86). Note that these two operators are of our main interest as they
give rise to the dominant gauge-boson-mediated proton decay contributions.

Suppose C(i)(µ) is a renormalization-scale-dependent coefficient associated
with the operator O(i). Typically,

C(i)(MGUT ) ∼ g2

M2
G

(C.1)

with g and MG being the unified gauge coupling and the gauge boson mass,
respectively. It was shown that these coefficients satisfy one-loop RGEs [165]

µ
dC(i)

dµ
= − 1

2π

3∑︂
j=1

γ
(i)
j αjC

(i), (C.2)

where only the leading order contributions from the one-loop Feynman diagrams
depicted in Fig C.1 were included, αj = g2

j/4π are the SM gauge coupling factors
and

γ(i) =
⎧⎨⎩{11

2 ,
9
4 , 2} for i = 1,

{23
12 ,

9
4 , 2} for i = 2.

(C.3)

Figure C.1: One-loop diagrams dominating the one-loop proton decay opera-
tors’ RGEs (C.2).

We reshuffle (C.2) to obtain

dC(i)

C(i) = − 1
2π

3∑︂
j=1

γ
(i)
j αj

dµ

µ
= −

3∑︂
j=1

γ
(i)
j

bj

dαj
αj

, (C.4)

where the one-loop gauge coupling RGEs

µ
dαj
dµ

= 1
2πbjα

2
j (C.5)
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were employed in the second step and bj are the one-loop beta coefficient of
gauge couplings αj whose specific values depend on the effective theory under
consideration.

Once the differential equation (C.4) is integrated between two renormalization
scales µ1 and µ2, µ1 > µ2, we obtain the relation

log
[︄
C(i)(µ2)
C(i)(µ1)

]︄
= −

3∑︂
j=1

γ
(i)
j

bj
log

[︄
αj(µ2)
αj(µ1)

]︄
, (C.6)

and consequently

C(i)(µ2) = C(i)(µ1)
3∏︂
j=1

(︄
αj(µ2)
αj(µ1)

)︄ γ
(i)
j
bj

. (C.7)

In a realistic case, we typically have to work through all intermediate effective
field theories between the renormalization scales µ2 and µ1, i.e.

C(i)(µ2) = C(i)(µ1)
3∏︂
j=1

µ2<µI<µ1∏︂
I

(︄
αj(µI+1)
αj(µI)

)︄ γ
(i)
j

bIj

, (C.8)

where the bI coefficients include contributions from all fields in the effective field
theory between the µI and µI+1 scales. Note that the exponent in Eq. (C.8)
differs from the ones listed in [87, 166], where its denominator involved only
contributions of fields with masses in the range from µ2 to µ1.
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D. Abelian Higgs model as a case
study
It is instructive to demonstrate the peculiarities of the one-loop calculations on
the example of a simple Abelian U(1) gauge model containing a Higgs boson Φ
and a gauge field Aµ (see also [167]). The general Lagrangian in the unbroken
phase is

L = Lkin − V0, (D.1)
where

Lkin = −1
4FµνF

µν + (DµΦ)†(DµΦ), (D.2)

V0 = −m2Φ†Φ + λ
(︂
Φ†Φ

)︂2
. (D.3)

The covariant derivative is defined as DµΦ = (∂µ− igAµ)Φ, the gauge field tensor
is Fµν = ∂µAν − ∂νAµ and the complex scalar field Φ can be written using real
components

Φ(x) = 1√
2

(H(x) + iG(x)) . (D.4)

Let us further assume that the U(1) symmetry is spontaneously broken by the
non-zero VEV ⟨Φ⟩ = ⟨H⟩ = v acquired by the Higgs field. Thus one obtains a
nontrivial stationarity condition

∂V0

∂H

⃓⃓⃓⃓
⃓ ⟨H⟩=v

⟨G⟩=0

= 0. (D.5)

It relates the mass parameter m2 with the VEV v by the tree-level relation

m2 = λv2. (D.6)

The scalar tree-level masses are obtained by employing Eq. (D.6):

m2
H = 3λv2 −m2 = 2λv2, (D.7)

m2
G = λv2 −m2 = 0. (D.8)

The mass m2
G vanishes due to the would-be Goldstone nature of the G field.

One-loop scalar spectrum calculations are most conveniently performed in
the framework of the effective potential Veff = V0 + V1 with the one-loop part
V1 defined in Eq. (B.2). The tree-level field-dependent scalar and gauge mass
matrices (B.3)–(B.4) in the current mode take the following form:

M2
G(ϕ) = g2(H2 +G2), (D.9)

M2
S(ϕ) =

(︄
−m2 + λ(3H2 +G2) 2λHG

2λHG −m2 + λ(H2 + 3G2)

)︄
, (D.10)
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where ϕ = {H,G}. The only non-trivial one-loop stationarity condition is com-
puted from

∂Veff
∂H

⃓⃓⃓⃓
⃓ ⟨H⟩=v

⟨G⟩=0

= 0 (D.11)

and the one-loop effective scalar masses are calculated as
∂2Veff
∂ϕ2

⃓⃓⃓⃓
⃓
ϕ=⟨ϕ⟩

, (D.12)

where expression (D.12) is assumed to be evaluated in the one-loop vacuum by
means of the stationarity condition(D.11).

D.1 Beta function for λ
Let us calculate the scalar coupling one-loop beta function. It can be always
written as a sum β = βEFF + βFS of the scalar-potential-dependent part (B.11)
and the field-strength-dependent part (B.12); we follow the methods introduced
in Appendix B.

The scalar coupling λ can be extracted from the field-dependent tree-level
scalar potential V0 from Eq. (D.3) via

λ = 1
6
∂4V0

∂H4 . (D.13)

Thus, applying (B.11) one has

βλ,EFF = 1
6

1
32π2

∂4

∂H4

(︂
Tr
[︂
M4

S(ϕ)
]︂

+ 3Tr
[︂
M4

G(ϕ)
]︂)︂

= 1
8π2 (10λ2 + 3g4), (D.14)

provided

Tr
[︂
M4

S(ϕ)
]︂

+ 3Tr
[︂
M4

G(ϕ)
]︂

= (−m2 + 3λH2 + λG2)2 + 8λ2H2G2+
+ (−m2 + 3λG2 + λH2)2 + 3g4(H2 +G2)2

(D.15)
which was acquired by inserting the field-dependent matrices (D.9)-(D.10) into
Eq. (D.15).

The field-strength-dependent part of the beta function for λ is connected
to the ϕ−field anomalous dimension. Generators of the underlying U(1) gauge
symmetry in all representations are normalized in such a way that the quadratic
Casimir is C2(ϕ) = 1, thus Eqns. (B.16)-(B.17) yield

γϕ = 3g2

16π2 (D.16)

and, thus

βλ,FS = −λ3g2

4π2 . (D.17)

Finally, with relation (D.14) and (D.17) at hand we obtain the full one-loop scalar
beta function:

βλ = 1
8π2 (10λ2 + 3g4 − 6λg2). (D.18)
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D.2 The VEV beta function
In general, all the couplings in the Lagrangian (D.1) run with the renormal-

ization scale, particularly the m parameter with the dimension of mass. As the
stationarity condition (D.6) relates m to v, the VEV will also acquire the non-
trivial renormalization-scale dependence.

Let us derive the one-loop VEV beta function βv from the renormalization
scale dependence of m2. At the tree-level, the mass parameter m2 can be ex-
pressed as

∂2V0

∂H2

⃓⃓⃓⃓
⃓
⟨H⟩,⟨G⟩=0

= −m2. (D.19)

Applying derivative (D.19) on the one-loop RGE from Eq. (B.7), and evaluating
it at ⟨H⟩ = 0, ⟨G⟩ = 0 leads to the one-loop βm2 in the form

βm2 =
(︄
∂2

∂H2
∂V1

∂ log µ

)︄⃓⃓⃓⃓
⃓
⟨H⟩,⟨G⟩=0

− 2γHm2 (D.20)

with V1 being the one-loop effective potential calculated as (B.2). At the same
time, the effective potential is subject to the stationarity condition

0 = ∂Veff
∂H

⃓⃓⃓⃓
⃓ ⟨H⟩=v

⟨G⟩=0

= −m2v + λv3 + ∂V1

∂H

⃓⃓⃓⃓
⃓ ⟨H⟩=v

⟨G⟩=0

, (D.21)

which allows us to relate the beta functions of m2 and that of the VEV v in the
following way:

βv
v

= −βλ
2λ + βm2

2λv2 − 1
2λv3

∂

∂ log µ
∂V1

∂H

⃓⃓⃓⃓
⃓ ⟨H⟩=v

⟨G⟩=0

(D.22)

for non-zero λ an v. Inserting βm2 from Eq. (D.20) and the tree-level relation (D.6)
into Eq. (D.22) gives

βv
v

= −βλ
2λ − γH + 1

2λv2

(︄
∂2

∂H2
∂V1

∂ log µ

)︄⃓⃓⃓⃓
⃓
⟨H⟩,⟨G⟩=0

− 1
2λv3

(︄
∂

∂H

∂V1

∂ log µ

)︄⃓⃓⃓⃓
⃓ ⟨H⟩=v

⟨G⟩=0

,

(D.23)

and consequently

βv
v

= − 1
2λβλ − γH + 1

2λ
1
v2

1
32π2

∂2

∂H2

(︂
Tr
[︂
M4

S(Φ)
]︂

+ 3Tr
[︂
M4

G(Φ)
]︂)︂⃓⃓⃓⃓⃓

⟨H⟩,⟨G⟩=0
−

− 1
2λ

1
v3

1
32π2

∂

∂H

(︂
Tr
[︂
M4

S(Φ)
]︂

+ 3Tr
[︂
M4

G(Φ)
]︂)︂⃓⃓⃓⃓⃓ ⟨H⟩=v

⟨G⟩=0

, (D.24)

c.f. Eq. (B.11). At one loop,

1
v2

1
32π2

∂2

∂H2

(︂
Tr
[︂
M4

S(Φ)
]︂

+ 3Tr
[︂
M4

G(Φ)
]︂)︂⃓⃓⃓⃓⃓

⟨H⟩,⟨G⟩=0
= − 1

16λπ2 4λ2, (D.25)
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− 1
v3

1
32π2

∂

∂H

(︂
Tr
[︂
M4

S(Φ)
]︂

+ 3Tr
[︂
M4

G(Φ)
]︂)︂⃓⃓⃓⃓⃓ ⟨H⟩=v

⟨G⟩=0

= − 1
16λπ2

(︂
6λ2 + 3g4

)︂
(D.26)

and
1

2λβλ = 1
16λπ2

(︂
10λ2 + 3g4

)︂
− 2γH , (D.27)

where Eqns. (D.14)–(D.15) and (D.17) were employed. In total,

βv
v

= γH = 3g2

16π2 (D.28)

with the anomalous dimension taken from Eq. (D.16).

D.3 The Higgs boson one-loop effective mass
As the Higgs field possesses the non-vanishing VEV, i.e. ⟨H⟩ = v, its one-loop

effective mass contribution can be derived from the one-loop effective poten-
tial (B.1) evaluated in the vacuum

⟨V1⟩ = 1
64π2

[︄
(3λv2 −m2)2

(︄
log 3λv2 −m2

µ2 − 3
2

)︄
+

(λv2 −m2)2
(︄

log λv
2 −m2

µ2 − 3
2

)︄
+ 3(g2v2)2

(︄
log g

2v2

µ2 − 5
6

)︄]︄
, (D.29)

where m2 depends on parameters {v, λ} via the one-loop stationarity condi-
tion (D.11)

m2 = λv2 + 1
16π2

(︄
4λm2 − 10λ2v2 − g4v2 − 3λ(m2 − 3λv2) log

[︄
3λv2 −m2

µ2

]︄
+

+λ(λv2 −m2) log
[︄
λv2 −m2

µ2

]︄
+ 3g4v2 log

[︄
g2v2

µ2

]︄)︄
. (D.30)

The one-loop effective Higgs mass is calculated as

m2
H,eff = ∂2⟨V0⟩

∂v2

⃓⃓⃓⃓
⃓ ∂⟨V0+V1⟩

∂v
=0

+ ∂2⟨V1⟩
∂v2

⃓⃓⃓⃓
⃓ ∂⟨V0⟩

∂v
=0
, (D.31)

which gives, after employing (D.6), (D.29) and (D.30), the final result

m2
H,eff = 2λv2+

+ v2

8π2

(︄
λ2 log

[︄
0WGB

µ2

]︄
+ 9λ2 log

[︄
2λv2

µ2

]︄
+ 3g4 log

[︄
g2v2

µ2

]︄
+ 2g4

)︄
, (D.32)

where 0WGB stands for the would-be Goldstone mass. The effective Higgs mass
is IR diverging due to the presence of the vanishing masses in the scalar mass
spectrum and as such manifests its non-physicality.
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Let us take a closer look at the renormalization scale dependence of the effec-
tive mass m2

H,eff calculated in (D.32). At one-loop,

d

d log µm
2
H,eff =

∂m2
H,eff

∂ log µ + βλ
∂m2

H

∂λ
+ βv

∂m2
H

∂v
+ two-loop contributions, (D.33)

where m2
H is tree-level Higgs mass (D.7), βλ and βv are one-loop beta func-

tions (D.18) and (D.28), respectively. Explicitly,

∂m2
H,eff

∂ log µ = − v2

4π2

(︂
10λ2 + 3g4

)︂
, (D.34)

∂m2
H

∂λ
= 2v2, (D.35)

∂m2
H

∂v
= 4λv. (D.36)

Substituting relations (D.34)-(D.36) into (D.33), one obtains

d

d log µm
2
H,eff = − v2

4π2

(︂
10λ2 + 3g4

)︂
+ 2v2

(︄
5λ2

4π2 + 3g4

8π2 − 3g2λ

4π2

)︄
+

+ 4λv 3g2v

16π2 = −6g2λv2

4π2 + 6g2λv2

8π2 = −6g2λv2

8π2 ̸= 0. (D.37)

Thus the effective mass is renormalization scale dependent as it is not, in general,
a physically measurable quantity.

D.4 The Higgs boson one-loop physical mass
We proceed to calculate the one-loop Higgs boson physical mass m2

H,phys. In
general [148, 164, 167],

m2
H,phys = m2

H,eff + ΣMS(p2 = m2
H,phys) − ΣMS(p2 = 0), (D.38)

where ΣMS(p2) is the Higgs field self-energy and we exploited the fact that the
U(1) representation containing the H field has multiplicity equal to one. The
difference ΣMS(m2

H,phys) − ΣMS(0) represents the shift from the effective mass to
the physical mass and it can be approximated at one-loop as

ΣMS(p2 = m2
H) − ΣMS(p2 = 0). (D.39)

Only the p2-dependent part of the self-energy can contribute to the mass
shift (D.39), thus for all further purposes

ΣMS(p2) ≈ Σbubbles
MS (p2) (D.40)

with Σbubbles
MS (p2) calculated from bubble diagrams depicted in Figure D.1. Hence

Σbubbles
MS (p2) = 9λ2v2

8π2

∫︂ 1

0
dx log

[︄
2λv2 − p2x(1 − x)

µ2

]︄
+

+ λ2v2

8π2

∫︂ 1

0
dx log

[︄
−p2x(1 − x)

µ2

]︄
+
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Figure D.1: Feynman diagrams contributing to the p2-dependent part of the
Higgs field self-energy Σbubbles

MS (p2).

+ g4v2

4π2 + g4v2

4π2

∫︂ 1

0
dx log

[︄
g2v2 − p2x(1 − x)

µ2

]︄
+

+ g4v2

8π2

∫︂
D3(x) log

⎡⎣g2v2 − p2 (x+y)(1−x−y)
(1−y)

µ2

⎤⎦+

+ g4v2

16π2

∫︂
D3(x) p2(x+ y)2

g2v2(1 − y) − p2(x+ y)(1 − x− y) −

−g4v2

8π2

∫︂
D3(x) p2(x+ y)

g2v2(1 − y) − p2(x+ y)(1 − x− y) −

− g4v2

48π2

∫︂
D4(x) p4(x+ z)2

(g2v2(y + x) − p2(x+ z)(1 − x− z))2 +

+ g4v2

96π2

∫︂
D4(x) p2

g2v2(y + x) − p2(x+ z)(1 − x− z)−

− g2p2

4π2

∫︂ 1

0
dx log

[︄
g2v2(1 − x) − p2x(1 − x)

µ2

]︄
−

− g2p2

32π2 + g2p2

16π2

∫︂
D3(x) log

[︄
g2v2 − p2y(1 − y)

µ2

]︄
+

+ g2p2

8π2

∫︂
D3(x) p2y2

g2v2x− p2y(1 − y) , (D.41)

where ∫︂
D3(x) = 2!

∫︂ 1

0
dx
∫︂ 1

0
dy
∫︂ 1

0
dzδ(1 − x− y − z),∫︂

D4(x) = 3!
∫︂ 1

0
dx
∫︂ 1

0
dy
∫︂ 1

0
dz
∫︂ 1

0
dwδ(1 − x− y − z − w).

Computing the mass shift (D.39) from (D.41), one obtains the one-loop physical
mass

m2
H,phys = 2λv2 + v2

8π2

(︄
λ2
∫︂ 1

0
dx log

[︄
2λv2x(1 − x)

µ2

]︄
+

+ 9λ2
∫︂ 1

0
dx log

[︄
2λv2 − 2λv2x(1 − x)

µ2

]︄
+

+ 2g4
∫︂ 1

0
dx log

[︄
g2v2 − 2λv2x(1 − x)

µ2

]︄
+

+g4
∫︂
D3(x) log

⎡⎣g2v2 − 2λv2 (x+y)(1−x−y)
(1−y)

µ2

⎤⎦+ 2g4

⎞⎠+
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+ g4v2

16π2

∫︂
D3(x) 2λ(x+ y)2

g2(1 − y) − 2λ(x+ y)(1 − x− y) −

−g4v2

8π2

∫︂
D3(x) 2λ(x+ y)

g2(1 − y) − 2λ(x+ y)(1 − x− y) −

− g4v2

48π2

∫︂
D4(x) 4λ2(x+ z)2

(g2(y + x) − 2λ(x+ z)(1 − x− z))2 +

+ g4v2

96π2

∫︂
D4(x) 2λ

g2(y + x) − 2λ(x+ z)(1 − x− z)

)︄
−

− 8g2λv2

16π2

∫︂ 1

0
dx log

[︄
g2v2(1 − x) − 2λv2x(1 − x)

µ2

]︄
−

−4g2λv2

64π2 + 8g2λv2

64π2

∫︂
D3(x) log

[︄
g2v2 − 2λv2y(1 − y)

µ2

]︄
+

+ 8g2λv2

32π2

∫︂
D3(x) 2λy2

g2x− 2λy(1 − y) . (D.42)

We immediately see that the one-loop physical mass does not suffer from IR
divergences. These have been regularized by the shift (D.39), which replaces the
logarithmic tree-level mass-dependent contributions according to the scheme

log
[︄
m2
tree

µ2

]︄
→
∫︂ 1

0
dx log

[︄
m2
tree −m2

Hx(1 − x)
µ2

]︄
+ . . . , (D.43)

wherem2
tree is the tree-level mass of the field in the loop of a one-loop contribution.

Thus the physical mass does not contain any diverging logarithmic contributions
even for vanishing m2

tree. We used the prescription (D.43) as the main inspiration
behind the definition of the regularized effective mass in Sec. 3.1.1.

Finally, we explicitly demonstrate that the one-loop physical mass is renor-
malization scale independent. In analogy to the effective mass,

d

d log µm
2
H,phys =

∂m2
H,phys

∂ log µ +βλ
∂m2

H

∂λ
+βv

∂m2
H

∂v
+two-loop contributions (D.44)

at one loop, where m2
H is the tree-level Higgs mass (D.7), βλ and βv are the one-

loop beta functions (D.18) and (D.28), respectively. Inserting Eqns.(D.35)-(D.36)
and

∂m2
H,phys

∂ log µ = − v2

4π2

(︂
10λ2 + 3g4 − 3g2λ

)︂
(D.45)

into the RGE (D.44) we get

d

d log µm
2
H,eff = − v2

4π2

(︂
10λ2 + 3g4 − 3g2λ

)︂
+ 4λv 3g2v

16π2 +

+ 2v2
(︄

5λ2

4π2 + 3g4

8π2 − 3g2λ

4π2

)︄
= 0. (D.46)

Thus the one-loop physical Higgs mass is indeed renormalization scale indepen-
dent.
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E. Tree-level scalar masses in the
45 ⊕ 126 Higgs model

E.1 Tree-level masses in the limiting cases
In this section we collect the analytical expressions for the tree-level masses of
the scalar fields in the 45⊕126 SO(10) Higgs model in the ωBL → 0 and ωR → 0
limits of interest, and, for the sake of completeness, in the phenomenologically
non-viable regime ωR → −ωBL for which the tree-level tachyonic instabilities in
the scalar spectrum get resolved. The interested reader is deferred to [12, 15] for
the general form of the tree-level scalar mass matrices in the 45 ⊕ 126 SO(10)
Higgs model.

The scalar spectrum of the minimal SO(10) is dependent on the dimensionful
parameter τ , whose value is given by the stationarity condition (2.36), implying
implicit dependence of the mass spectrum on the VEV ratio

(ωBL + ωR)ωBLωR
|σ|2

. (E.1)

Since the perturbativity constraint |τ | ≲ MGUT prevents (E.1) from acquiring
large values, the limits ωBL → 0, ωR → 0 and ωR → −ωBL should be properly
understood as

|ωR| ≫ |σ| ≥
√︂

|ωR||ωBL| ≫ |ωBL|, (E.2)

|ωBL| ≫ |σ| ≥
√︂

|ωR||ωBL| ≫ |ωR|, (E.3)

and

|ωBL| ≫ |σ| ≥
√︂

|ωBL||ωBL + ωR| ≫ |ωR + ωBL|, (E.4)

respectively. Hence it is worthwhile to present the tree-level masses as functions
of the dimensionless scalar couplings and the set of parameters {ωR, σ, χ} for
ωBL → 0 case, {ωBL, σ, χ} in the ωR → 0 regime and {ωR, σ, χ2} in the ωR →
−ωBL limit, where the universal VEV ratio χ is defined as in Eq. (2.37) and

χ2 := (ωBL + ωR)ωBL
|σ|2

. (E.5)

The tree-level scalar mass-squared eigenvalues for all three limiting cases are
compiled in Table E.1. We display only the dominant contributions, which are
proportional either to the SO(10)-breaking VEVs ωBL or ωR, or the intermediate-
symmetry-breaking scale σ.1 Observe that the heavy scalars with mass-squared
eigenvalues proportional to M2

GUT belong to multiplets of the intermediate sym-
metry SU(4)C × SU(2)L × U(1)R in the ωBL → 0 limit, SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L in the ωR → 0 case and SU(5)′ × U(1)Z′ in the ωR → −ωBL
regime, c.f. Tables F.1-F.4 for representation decompositions.

1Note that the |σ|2-proportional mass contributions cannot compete with the M2
GUT -

proportional ones due to the large hierarchy between the scales
(︁
|σ|/ω ∼ 10−(4−10))︁ . Con-

sequently, the one-loop mass contributions of the order ∼ M2
GUT /16π2 also dominate over the

subleading |σ|2-proportional terms.
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Table E.1: Dominant contributions to the tree-level scalar masses in all three
scenarios ωBL → 0, ωR → 0 and ωR → −ωBL.
Mass ωBL → 0 ωR → 0 ωR → −ωBL
M2

S(1, 3, 0) +4a2ω
2
R −2a2ω

2
BL +4a2ω

2
BL

M2
S(8, 1, 0) −2a2ω

2
R +4a2ω

2
BL +4a2ω

2
BL

M2
S(1, 1,+2) −4(4β′

4 + a2χ)ω2
R +4(2λ2 + 2λ4 + 8λ′

4 − a2χ
2)|σ|2 −4(4β′

4 + a2χ2)ω2
BL

M2
S(1, 3,−1) −2(2β′

4 + a2χ)ω2
R −6(6β′

4 + a2χ)ω2
BL −4(4β′

4 − a2χ2)ω2
BL

M2
S(3, 1,+4

3) −4(4β′
4 + a2χ)ω2

R +2(β4 − 2β′
4 − a2χ)ω2

BL +2(β4 − 2β′
4 + a2χ2)ω2

BL

M2
S(3, 3,−1

3) −2(2β′
4 + a2χ)ω2

R +2(β4 − 8β′
4 − 2a2χ)ω2

BL +2(β4 − 2β′
4 − a2χ2)ω2

BL

M2
S(6, 3,+1

3) −2(2β′
4 + a2χ)ω2

R −2(2β′
4 + a2χ)ω2

BL +2(4λ2 + 4λ4 + 16λ′
4 + a2χ

2
2)|σ|2

M2
S(6, 1,−4

3) +4(2λ2 + 2λ4 + 8λ′
4 − a2χ

2)|σ|2 −4(4β′
4 + a2χ)ω2

BL −4(4β′
4 − a2χ2)ω2

BL

M2
S(6, 1,−1

3) +2(β4 − 2β′
4 − a2χ)ω2

R −4(4β′
4 + a2χ)ω2

BL +2(β4 − 2β′
4 − a2χ2)ω2

BL

M2
S(6, 1,+2

3) −4(4β′
4 + a2χ)ω2

R −4(4β′
4 + a2χ)ω2

BL +4(4λ2 + 6λ4 + 4λ′
4 + a2χ

2
2)|σ|2

M2
S(1, 2,+1

2)1 +1
2 (β4 − 10β′

4 − 4a2χ − +1
2(7β4 − 18β′

4 − 6a2χ− 4|γ2|)ω2
BL +2(β4 − 2β′

4 − a2χ2)ω2
BL

− 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R

M2
S(1, 2,+1

2)2 +1
2 (β4 − 10β′

4 − 4a2χ + +1
2(7β4 − 18β′

4 − 6a2χ+ 4|γ2|)ω2
BL +6β4ω

2
BL

+ 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R

M2
S(3, 2,+7

6)1 +1
2 (β4 − 10β′

4 − 4a2χ − +1
2 (β4 − 26β′

4 − 6a2χ − +2(β4 − 2β′
4 + a2χ2)ω2

BL

− 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R − 4

√︂
|γ2|2 + (6β′

4 + a2χ)2
)︂
ω2
BL,

M2
S(3, 2,+7

6)2 +1
2 (β4 − 10β′

4 − 4a2χ + +1
2 (β4 − 26β′

4 − 6a2χ + −4(4β′
4 + a2χ2)ω2

BL

+ 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R + 4

√︂
|γ2|2 + (6β′

4 + a2χ)2
)︂
ω2
BL

M2
S(8, 2,+1

2)1 +1
2 (β4 − 10β′

4 − 4a2χ − +1
2(β4 − 18β′

4 − 6a2χ− 4|γ2|)ω2
BL +2(β4 − 2β′

4 − a2χ2)ω2
BL

− 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R

M2
S(8, 2,+1

2)2 +1
2 (β4 − 10β′

4 − 4a2χ + +1
2(β4 − 18β′

4 − 6a2χ+ 4|γ2|)ω2
BL +(12λ2 + 12λ4 + 16λ′

4 + 3a2χ
2
2)|σ|2

+ 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R

M2
S(3, 1,+1

3)1 +(β4 − 4β′
4 − 2a2χ− 4|γ2|)ω2

R + (β4 − 10β′
4 − 3a2χ − +6β4ω

2
BL

−
√︂

16|γ2|2 + (6β′
4 + a2χ)2

)︂
ω2
BL

M2
S(3, 1,+1

3)2 +2(β4 − 2β′
4 − a2χ)ω2

R +2(β4 − 2β′
4 − a2χ)ω2

BL +2(β4 − 2β′
4 − a2χ2)ω2

BL

M2
S(3, 1,+1

3)3 +(β4 − 4β′
4 − 2a2χ+ 4|γ2|)ω2

R + (β4 − 10β′
4 − 3a2χ + +2(4λ2 + 4λ4 − 16

3 λ
′
4 + a2χ

2
2)|σ|2

+
√︂

16|γ2|2 + (6β′
4 + a2χ)2

)︂
ω2
BL

M2
S(1, 1,+1)2 +2(β4 − 2β′

4 − a2χ)ω2
R −2a2ω

2
BL +2(β4 − 2β′

4 + a2χ2)ω2
BL

M2
S(3, 1,−2

3)2 −2a2ω
2
R +2(β4 − 2β′

4 − a2χ)ω2
BL +2(β4 − 2β′

4 − a2χ2)ω2
BL

M2
S(3, 2,+1

6)2 +1
2 (β4 − 10β′

4 − 4a2χ − +1
2 (β4 − 26β′

4 − 6a2χ − +2(β4 − 2β′
4 − a2χ2)ω2

BL

− 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R − 4

√︂
|γ2|2 + (6β′

4 + a2χ)2
)︂
ω2
BL

M2
S(3, 2,+1

6)3 +1
2 (β4 − 10β′

4 − 4a2χ + +1
2 (β4 − 26β′

4 − 6a2χ + +4a2ω
2
BL

+ 2
√︂

4|γ2|2 + (4β′
4 + a2χ)2

)︂
ω2
R + 4

√︂
|γ2|2 + (6β′

4 + a2χ)2
)︂
ω2
BL

M2
S(1, 1, 0)2 +

(︂
8λ0 − 8((α+β′

4)2+(α+β′
4)a2χ)

4a0+a2
+ +

(︂
8λ0 − 12((α+β′

4)2+(α+β′
4)a2χ)

6a0+a2
+ +

(︂
8λ0 − 4(5(α+β′

4)2−(α+β′
4)a2χ2)

10a0+a2
−

+4(6a0+a2)a2χ2

4a0+a2

)︂
|σ|2 + (24a0+a2)a2χ2

6a0+a2

)︂
|σ|2 − (48a0+5a2)a2χ2

2)
10a0+a2

)︂
|σ|2

M2
S(1, 1, 0)3 −2a2ω

2
R −2a2ω

2
BL +4a2ω

2
BL

M2
S(1, 1, 0)4 +4(4a0 + a2)ω2

R +4(6a0 + a2)ω2
BL +4(10a0 + a2)ω2

BL

Finally, note that the set of the scalar states is extended in the full version
of the 45 ⊕ 126 ⊕ 10C SO(10) model by two SM doublets (1, 2,+1

2) and two SM
triplets (3, 1,+1

3). Thus, the mass-squares M2(1, 2,+1
2)1,2 and M2(3, 1,+1

3)1,2,3
are eigenvalues of the subparts of a larger mass matrix structure, c.f. full doublet
and triplet mass matrices in Eqns. (3.58) and (3.61), respectively.

E.2 Decoupling issue for general case
Let us study the general combination of ωBL ̸= 0, ωR ̸= 0, where none of these
VEVs is subject to any of the limits ωBL → 0, ωR → 0 or ωR → ±ωBL. We show
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that in such a case, contrary to general expectation, the mass of the intermediate-
symmetry-breaking Higgs M2

S(1, 1, 0)2, c.f. Table E.1 for the limiting cases, is not
necessarily proportional to the σ scale.

The argument in [124] demonstrated that the mass of the Higgs boson is al-
ways proportional to its VEV. The proof uses the Appelquist-Carazzone theorem
[168] to constrain the behaviour of the 1PI Green’s functions. However, when-
ever the Appelquist-Carrazone theorem does not hold, the Higgs boson mass
does not necessarily have to be proportional to its VEV. The manifestation of
the aforementioned situation can be found in the minimal SO(10) model, where
for the general ω-VEV configuration the intermediate stage SU(3)c × SU(2)L ×
U(1)R × U(1)B−L (broken by the non-zero σ VEV) and the full SO(10) (broken
by the non-zero ω VEV) effective field theory cannot decouple in the sense of the
Appelquist-Carrazone decoupling theorem.

First, it is instructive to recollect the ω-VEV-induced vacuum stationarity
conditions (2.31)-(2.32) which lead to the τ−dependent tree-level equation

(ωBL − ωR)|σ|2τ = a2ωBLωR(ωBL + ωR)(ωBL − ωR)+
+ 2β′

4(3ωBL + 2ωR)(ωBL − ωR)|σ|2. (E.6)

Outside the limiting cases ωR → 0, ωBL → 0 and ωR → ±ωBL, which are excluded
from our current discussion, Eq. (E.6) is solved by

τ = 2β′
4(3ωBL + 2ωR) + a2

ωBLωR(ωBL + ωR)
|σ|2

(E.7)

and the condition (E.7) contains the VEV structure (E.1) with the σ-dependent
denominator. The tree-level SM singlet mass-squared matrix then acquires the
form

M2
S(1, 1, 0) =

(︄
M2

S(1, 1, 0) 0
0 0

)︄
(E.8)

with the zero-eigenvalue subspace corresponding to the would-be Goldstone boson
rotated out and

M2
S(1, 1, 0) =

⎛⎜⎜⎜⎝
−2 (6β′

4σ
2 − 12a0f [1, 0, 0] + a2f [−2, 1, 1]) −4

√
6 (β′

4σ
2 − 2a0f [0, 1, 0]) 2

√
6
(︂
ιBLσ + a2

σ
Υ
)︂

−4
√

6 (β′
4σ

2 − 2a0f [0, 1, 0]) −2 (4β′
4σ

2 − 8a0f [0, 0, 1] + a2f [1,−1,−2]) 4
(︂
ιRσ + a2

σ
Υ
)︂

√
6
(︂
ιBLσ + a2

σ
Υ
)︂

2
(︂
ιRσ + a2

σ
Υ
)︂

8λ0σ
2

⎞⎟⎟⎟⎠ ,

where

f [z1, z2, z3] := z1ω
2
BL + z2ωBLωR + z3ω

2
R, (E.9)

Υ := ωBLωR(ωBL + ωR), (E.10)
ιR/BL := 2(α + β′

4)ωR/BL. (E.11)

For simplicity, the σ complex phase is absorbed into an overall phase of the
representation 126, so the preceding expressions assume real σ > 0.

In the decoupling limit
⃓⃓⃓
σ
ω

⃓⃓⃓
→ 0, the a2

σ
Υ-dependent singlet mass matrix

elements, and consequently the tree-level mass of the intermediate-symmetry-
breaking Higgs, diverge due to the presence of the 1

|σ|2 -proportional term in the τ
coupling from Eq. (E.7). In such a case, the Appelquist-Carrazone theorem does
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not hold and the dynamics of the SO(10) effective field theory cannot decouple
from the subsequent SU(3)c × SU(2)L × U(1)R × U(1)B−L intermediate effective
theory stage. Hence, we have shown that the intermediate-symmetry-breaking
Higgs does not have to obtain the σ−proportional mass outside the special VEV
regimes ωBL → 0, ωR → 0 and ωR → ±ωBL.

The attentive reader can wonder if the validity of the Appelquist-Carazzone
theorem is re-established in case of a2 = 0, since the potentially problematic

1
|σ|2 -proportional VEV structure (E.1) in (E.7) vanishes at the tree-level. Indeed,
the stationarity conditions (2.31)-(2.32) at one-loop level with a2 → 0 lead to the
equation

τ1−loop = 2β′
4(3ωBL + 2ωR) + λλ̃+ g4

16π2
ωBLωR(ωBL + ωR)

|σ|2
+ · · · , (E.12)

where λ, λ̃ denote dimensionless scalar parameters and g is the gauge coupling,
c.f. Eq. (3.8). Hence the presence of the 1

|σ|2 -proportional VEV structure per-
severes beyond tree-level and Appelquist-Carazzone theorem does not hold for
general combination ωBL ̸= 0, ωR ̸= 0 even if a2 → 0.

Finally, we explicitly demonstrate that there is no σ-proportional singlet mass
at the tree-level for general ωBL ̸= 0, ωR ̸= 0 VEVs. The mass matrix M2

S(1, 1, 0)
has three real eigenvalues, call them m1, m2, m3, which can be obtained by
finding three roots of the characteristic polynomial. As such a task can be rather
cumbersome, we will employ easier-to-calculate principal invariants

I1 := Tr
(︂
M2

)︂
= m1 +m2 +m3, (E.13)

I2 := 1
2

(︃
Tr
(︂
M2

)︂2
− Tr

(︂
M4

)︂)︃
= m1m2 +m1m3 +m2m3, (E.14)

I3 := det
(︂
M2

)︂
= m1m2m3 (E.15)

to show that no eigenvalue of M2
S(1, 1, 0) can be σ2−proportional. By inserting

the singlet mass matrix, we find that

I1 = O(σ0), (E.16)

I2 = xI2

σ2 + O(σ0), (E.17)

I3 = xI3

σ2 + O(σ0), (E.18)

where

xI2 = −20a2
2Υ2, (E.19)

xI3 = −8a2
2Υ2 (24a0f [1,−2, 1] + a2f [1,−5, 4]) . (E.20)

Now, let us assume for a moment, that m1 is the σ2−proportional eigenvalue,
i.e. m1 = bσ2 with b being a real dimensionless parameter. Then

I2 = bσ2I1 − b2σ4 + λ2λ3 (E.21)

and Eqns. (E.16)-(E.17) imply

λ2λ3 = xI2

σ2 + O(σ0). (E.22)
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Consequently,

I3 = bσ2λ2λ3 = bxI2 + O(σ2), (E.23)

which is in complete contradiction with relation (E.18). Thus we conclude that no
SM singlet has the tree-level σ-proportional mass in the minimal SO(10) model
with the general combination of ωBL ̸= 0, ωR ̸= 0.
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F. SO(10) group theory tidbits
Symmetry groups of Particle Physics models typically form Lie groups. Lie group
is a group of continuous transformations whose group elements depend on at least
one continuous parameter [169]. Every element g of a connected Lie group can
be expressed via infinitesimal Lie group generators T a by invoking exponential
map

g(α) = exp (iαaT a) . (F.1)

A complete set of infinitesimal Lie group generators forms the Lie algebra. Gen-
erators satisfy fundamental commutation relations

[T a, T b] = ifabcT c, (F.2)

where fabc are called structure constants and they are specific to every Lie algebra.
Rather than Lie groups, Lie algebras are usually of interest in the context of
Particle Physics because the algebra generators act directly on quantum fields
and the operators T a are referred to as gauge symmetry generators.

The symmetry group governing gauge transformations of the SO(10) GUT is
Spin(10), double cover of the SO(10) Lie group [170]. As corresponding Lie alge-
bras, and consequently gauge symmetry generators, of both SO(10) and Spin(10)
groups are isomorphic, there is no difference in the calculation of physical quan-
tities between the two. Hence, for simplicity, we will claim that the gauge group
of the model under study is SO(10).

F.1 Generators in defining representation
In the defining 10-dimensional vector representation [169], the SO(10) group el-
ements act as rotations on the 10-dimensional Euclidean vector space and they
can be represented by the 10 × 10 real matrices M which satisfy

MTM = I10, detM = 1. (F.3)

Henceforth we will not deal with the SO(10) symmetry transformations on the
Lie group level but rather always focus on their infinitesimal generators that form
the corresponding Lie algebra. Simultaneously we will adhere to the physicist’s
habit of sometimes using the term “group” even when talking about “algebra”.

The SO(10) gauge symmetry generators form the set of all 10 × 10 purely
imaginary Hermitian matrices T(ij) with zero trace, i.e.

T †
(ij) = T(ij), Tr T(ij) = 0, (F.4)

where (ij) stands for 45 different ordered pairs of indices i, j = 1, . . . , 10, and
they satisfy commutation relations

[T(ij), T(kl)] = i√
2
(︂
δjkT(il) − δikT(jk) − δjlT(ik) + δilT(jk)

)︂
. (F.5)
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The generators in the defining vector representation adopt the form of matrices
with individual matrix elements(︂

T(ij)
)︂
mn

= − i√
2

(δimδjn − δjmδin) . (F.6)

Such a choice automatically guarantees proper normalization

Tr
(︂
T(ij)T(kl)

)︂
= δikδjl − δilδjk. (F.7)

F.2 Generators in spinor representation
Apart from the vector and the tensorial representations, the SO(10) group has
another type of representation called spinorial [11, 169]. The SO(10) gauge gen-
erators in the spinorial representation take the form of

S̃(ij) = 1
4i [Γi,Γj], (F.8)

where Γi are basis operators of the Clifford algebra Cliff(10), i, j = 1, . . . , 10 and
Γi obey anticommutation relations

{Γi,Γj} = 2δij. (F.9)

Operators Γi are direct generalizations of Dirac Gamma matrices well known from
the spinor calculus of charged fermionic fields. They can be explicitly expressed
by the 32 × 32 matrices

Γ2p+1 =
(︄⨂︂

p

I2

)︄
⊗ σ2 ⊗

⎛⎝⨂︂
4−p

σ3

⎞⎠ , (F.10)

Γ2p+2 = −
(︄⨂︂

p

I2

)︄
⊗ σ1 ⊗

⎛⎝⨂︂
4−p

σ3

⎞⎠ , (F.11)

(F.12)

where p = 0, . . . , 4 and σi are 2 × 2 Pauli matrices. Hence, gamma matrices Γi
act on the 32-dimensional vector space. Spinorial 32-dimensional representation
is reducible and we can construct chiral projectors P± = 1

2 (I32 + Γ11) onto two
irreducible 16-dimensional subspaces. Clifford algebra element Γ11 is defined as

Γ11 = −Γ1Γ2 · · · Γ10 (F.13)

and it commutes with all the gauge generators S̃(ij).

F.3 Various SO(10) subgroups
While discussing the spontaneous symmetry breaking in Sec. 2.2, we mentioned
several SO(10) subgroups. Hence we will have a look at the explicit form of their
gauge symmetry generators in the vector representation.
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The SU(4) subgroup has 15 generators which can be indentified with the
SO(10) generators T(ij), i, j ∈ {1, . . . , 6}. Subset of 8 generators of the form(︄

−X̃ 0
0 04×4

)︄
, (F.14)

where

X̃ =
⎧⎨⎩−1

2I2 ⊗ λq if q = 2, 5, 7
−1

2σ2 ⊗ λq if q = 1, 3, 4, 6, 8
(F.15)

and λq are Gell-Mann matrices, constitute the subgroup SU(3) ⊂ SU(4). Let us
add that the following relation holds for the U(1)BL charge generator TBL:

X̃BL = −2
3σ2 ⊕ I3. (F.16)

Generators of the SU(2)L × SU(2)R subgroup have the form(︄
06×6 0

0 −1
2 Ỹ

)︄
(F.17)

and they commute with group generators of the SU(3) and the U(1)BL. Gauge
symmetry generators of the SU(2)L are defined by

Ỹ ∈ {I2 ⊗ σ2, σ2 ⊗ σ1, σ2 ⊗ σ3}, (F.18)

and generators of the SU(2)R are determined by

Ỹ ∈ {σ2 ⊗ I2, σ1 ⊗ σ2, σ3 ⊗ σ2}, (F.19)

where the Ỹ R := σ2 ⊗ I2 gives rise to the U(1)R generator T (3)
R . Consequently,

the hypercharge U(1)Y is generated by

TY = 1
2TBL + T

(3)
R = i

(︄
1
3σ2 ⊗ I3 0

0 1
2σ2 ⊗ I2

)︄
. (F.20)

The subgroup SU(5) has 24 generators, 11 out of which correspond to the
SU(3) and the SU(2)L generators introduced earlier. The remaining gauge group
generators are proportional to

T(i7) − T(j9), (F.21)
T(i8) − T(j10), (F.22)
T(i9) + T(j7), (F.23)
T(i10) + T(j8) (F.24)

and

T(14) + T(25) + T(36), (F.25)

where pairs (i, j) ∈ {(1, 4), (2, 5), (3, 6)}. If the SU(5) × U(1)Z symmetry group
is considered, additional U(1) generator is defined as [11]

TZ = −4T (3)
R + 3TBL. (F.26)
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Let us note that there exists an alternative embedding of the SU(5)′ × U(1)Z′

into the SO(10), commonly called as the flipped SU(5). In such a case, SU(5)′

contains the subgroup SU(3) × SU(2)L × U(1)Y ′ with

TY ′ = 1
2TBL − T

(3)
R (F.27)

and an additional U(1) factor generator is determined by

TZ′ = 4T (3)
R + 3TBL. (F.28)

F.4 Representation decomposition
Decompositions of the SO(10) representations that accommodate fermion, scalar
and gauge fields of the GUT model under consideration can be found in Ta-
bles F.1-F.4. We consider only the subgroups SU(3)c×SU(2)L×SU(2)R×U(1)B−L
and SU(4)C × SU(2)L × U(1)R corresponding to the potentially viable regimes
ωR → 0 and ωBL → 0, respectively, and the flipped embedding SU(5)′ × U(1)Z′

leading to the limiting case ωR → −ωBL which, although being phenomenologi-
cally non-viable, resolves the tachyonic mass instabilities in the tree-level scalar
spectrum as discussed in Sec. 2.4.2.

All tables adhere to the same colour scheme which indicates whether given
representation is real (blue), complex (black) or complex conjugate (red) of a
different multiplet within the same SO(10) representation. The 45 and 10 are
real and hence consist of real multiplets or complex-conjugated pairs; the 126
and 16 are complex and thus contain only complex multiplets.

Table F.1: Decomposition of the 10-dimensional defining representation of the
SO(10) into the multiplets of SU(4)C × SU(2)L × U(1)R (the left sub-table),
SU(3)c×SU(2)L×SU(2)R×U(1)B−L (the middle sub-table) and SU(5)′ ×U(1)Z′

(the right sub-table) subgroups.

4C2L1R 3c2L1Y

(6, 1, 0) (3, 1,−1
3)

(3, 1,+1
3)

(1, 2,+1
2) (1, 2,+1

2)
(1, 2,−1

2) (1, 2,−1
2)

3c2L2R1BL 3c2L1Y
(3, 1, 1,−2

3) (3, 1,−1
3)

(3, 1, 1,+2
3) (3, 1,+1

3)

(1, 2, 2, 0) (1, 2,+1
2)

(1, 2,−1
2)

5′1Z′ 3c2L1Y

(5,−2) (3, 1,−1
3)

(1, 2,−1
2)

(5, 2) (3, 1,+1
3)

(1, 2,+1
2)
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Table F.2: Decomposition of the 16-dimensional spinorial representation of the
SO(10) into the multiplets of SU(4)C × SU(2)L × U(1)R (the left sub-table),
SU(3)c×SU(2)L×SU(2)R×U(1)B−L (the middle sub-table) and SU(5)′ ×U(1)Z′

(the right sub-table) subgroups.

4C2L1R 3c2L1Y

(4, 2, 0) (3, 2,+1
6)

(1, 2,−1
2)

(4, 1,−1
2) (3, 1,−2

3)
(1, 1, 0)

(4, 1,+1
2) (3, 1,+1

3)
(1, 1,+1)

3c2L2R1BL 3c2L1Y
(3, 2, 1,+1

3) (3, 2,+1
6)

(3, 1, 2,−1
3) (3, 1,−2

3)
(3, 1,+1

3)
(1, 2, 1,−1) (1, 2,−1

2)

(1, 1, 2, 1) (1, 1, 0)
(1, 1,+1)

5′1Z′ 3c2L1Y

(10, 1)
(3, 2,+1

6)
(3, 1,+1

3)
(1, 1, 0)

(5,−3) (1, 2,−1
2)

(3, 1,−2
3)

(1, 5) (1, 1,+1)

Table F.3: Decomposition of the 45-dimensional adjoint representation of the
SO(10) into the multiplets of SU(4)C × SU(2)L × U(1)R (the left sub-table),
SU(3)c×SU(2)L×SU(2)R×U(1)B−L (the middle sub-table) and SU(5)′ ×U(1)Z′

(the right sub-table) subgroups.

4C2L1R 3c2L1Y
(1, 3, 0) (1, 3, 0)

(15, 1, 0)

(8, 1, 0)
(3, 1,−2

3)
(3, 1,+2

3)
(1, 1, 0)

(6, 2,−1
2) (3, 2,−5

6)
(3, 2,−1

6)

(6, 2,+1
2) (3, 2,+5

6)
(3, 2,+1

6)
(1, 1,+1) (1, 1,+1)
(1, 1,−1) (1, 1,−1)
(1, 1, 0) (1, 1, 0)

3c2L2R1BL 3c2L1Y
(1, 3, 1, 0) (1, 3, 0)
(8, 1, 1, 0) (8, 1, 0)

(3, 2, 2,−2
3) (3, 2,−5

6)
(3, 2,+1

6)

(3, 2, 2,+2
3) (3, 2,+5

6)
(3, 2,−1

6)

(1, 1, 3, 0)
(1, 1,+1)
(1, 1,−1)
(1, 1, 0)

(3, 1, 1,−4
3) (3, 1,−2

3)
(3, 1, 1,+4

3) (3, 1,+2
3)

(1, 1, 1, 0) (1, 1, 0)

5′1Z′ 3c2L1Y

(24, 0)

(1, 3, 0)
(8, 1, 0)
(3, 2,+1

6)
(3, 2,−1

6)
(1, 1, 0)

(10,−4)
(3, 2,−5

6)
(3, 1,−2

3)
(1, 1,−1)

(10, 4)
(3, 2,+5

6)
(3, 1,+2

3)
(1, 1,+1)

(1, 0) (1, 1, 0)
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Table F.4: Decomposition of the 126-dimensional tensor representation of the
SO(10) into the multiplets of SU(4)C × SU(2)L × U(1)R (the left sub-table),
SU(3)c×SU(2)L×SU(2)R×U(1)B−L (the middle sub-table) and SU(5)′ ×U(1)Z′

(the right sub-table) subgroups.

4C2L1R 3c2L1Y

(10, 1,+1)
(1, 1,+2)
(3, 1,+4

3)
(6, 1,+2

3)

(10, 3, 0)
(1, 3,−1)
(3, 3,−1

3)
(6, 3,+1

3)

(10, 1,−1)
(6, 1,−4

3)
(3, 1,−2

3)
(1, 1, 0)

(10, 1, 0)
(6, 1,−1

3)
(3, 1,+1

3)
(1, 1,+1)

(15, 2,+1
2)

(1, 2,+1
2)

(3, 2,+7
6)

(8, 2,+1
2)

(3, 2,−1
6)

(15, 2,−1
2)

(1, 2,−1
2)

(3, 2,−7
6)

(8, 2,−1
2)

(3, 2,+1
6)

(6, 1, 0) (3, 1,+1
3)

(3, 1,−1
3)

3c2L2R1BL 3c2L1Y

(1, 1, 3,+2)
(1, 1,+2)
(1, 1,+1)
(1, 1, 0)

(1, 3, 1,−2) (1, 3,−1)

(3, 1, 3,+2
3)

(3, 1,+4
3)

(3, 1,+1
3)

(3, 1,−2
3)

(3, 3, 1,−2
3) (3, 3,−1

3)
(6, 3, 1,+2

3) (6, 3,+1
3)

(6, 1, 3,−2
3)

(6, 1,−4
3)

(6, 1,−1
3)

(6, 1,+2
3)

(1, 2, 2, 0) (1, 2,+1
2)

(1, 2,−1
2)

(3, 2, 2,+4
3) (3, 2,+7

6)
(3, 2,+1

6)

(3, 2, 2,−4
3) (3, 2,−7

6)
(3, 2,−1

6)

(8, 2, 2, 0) (8, 2,+1
2)

(8, 2,−1
2)

(3, 1, 1,+2
3) (3, 1,+1

3)
(3, 1, 1,−2

3) (3, 1,−1
3)

51′
Z′ 3c2L1Y

(50, 2)

(6, 3,+1
3)

(3, 1,+1
3)

(6, 1,+2
3)

(1, 1, 0)
(3, 2,+1

6)
(8, 2,+1

2)

(45,−2)

(3, 3,−1
3)

(6, 1 − 1
3)

(3, 1,−2
3)

(3, 2,−1
6)

(1, 2,−1
2)

(8, 2,−1
2)

(3, 1,−1
3)

(15,−6)
(1, 3,−1)
(6, 1,−4

3)
(3, 2,−7

6)

(10, 6)
(1, 1,+1)
(3, 1,+4

3))
(3, 2, 7

6)

(5, 2) (1, 2,+1
2)

(3, 1,+1
3)

(1, 10) (1, 1,+2)
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certainties in proton lifetime estimates. Phys. Rev. D, 99(3):035005, 2019.

[8] Masaki Yasue. Symmetry Breaking of SO(10) and Constraints on Higgs
Potential. 1. Adjoint (45) and Spinorial (16). Phys. Rev. D, 24:1005, 1981.

[9] G. Anastaze, J. P. Derendinger, and F. Buccella. Intermediate symmetries
in the SO(10) model with 16 ⊕ 16 ⊕ 45 Higgses. Z. Phys. C, 20:269–273,
1983.

[10] K. S. Babu and Ernest Ma. Symmetry Breaking in SO(10): Higgs Boson
Structure. Phys. Rev. D, 31:2316, 1985.

[11] Stefano Bertolini, Luca Di Luzio, and Michal Malinsky. On the vacuum
of the minimal nonsupersymmetric SO(10) unification. Phys. Rev. D,
81:035015, 2010.

[12] Stefano Bertolini, Luca Di Luzio, and Michal Malinsky. Seesaw Scale in
the Minimal Renormalizable SO(10) Grand Unification. Phys. Rev. D,
85:095014, 2012.

[13] Stefano Bertolini, Luca Di Luzio, and Michal Malinsky. Light color
octet scalars in the minimal SO(10) grand unification. Phys. Rev. D,
87(8):085020, 2013.
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in non-renormalizable SO(10) GUT models. JHEP, 02:086, 2020.

[121] Stephen M. Barr. A New Symmetry Breaking Pattern for SO(10) and
Proton Decay. Phys. Lett. B, 112:219–222, 1982.

[122] J. P. Derendinger, Jihn E. Kim, and Dimitri V. Nanopoulos. Anti-SU(5).
Phys. Lett. B, 139:170–176, 1984.

[123] N. G. Deshpande, E. Keith, and Palash B. Pal. Implications of LEP results
for SO(10) grand unification with two intermediate stages. Phys. Rev. D,
47:2892–2896, 1993.

[124] Matěj Hudec and Michal Malinský. Hierarchy and decoupling. J. Phys. G,
47(1):015004, 2020.

[125] M. Fukugita and T. Yanagida. Barygenesis without grand unification.
Physics Letters B, 174(1):45–47, 1986.
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