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Introduction

In the field of condensed matter physics, one of the domains known to produce
complex emergent properties is that of strong electron-electron correlations. Band
theory, the most straightforward approach to solid state physics, breaks down
when electron-electron interactions are significantly stronger than the width of
energy bands. This allows for the appearance of a wealth of physical phenomena
that goes beyond the standard properties of metals and insulators. Examples in-
clude high-temperature superconductivity in cuprates [1], metal–insulator transi-
tions triggered by environmental changes [2], and the emergence of quasiparticles
like heavy fermions [3]. Those properties are of great scientific and industrial
interest.

Strongly correlated materials typically have incompletely filled d-shells and
f -shells, as those shells are more localized and have narrower energy bands. A
particular class of materials that exhibits interesting strongly-correlated proper-
ties is metals with embedded or adhesed impurities — atoms of a different element
from the material’s composition which break the crystal’s symmetry. Under some
conditions, impurities with magnetic moment may cause the appearance of the
Kondo effect — the existence of a conductivity minimum at a finite temperature.
Moreover, magnetic impurities play a major role in inducing magneto-crystalline
anisotropy in materials, giving their magnetization a preferred direction.

Ab-initio computational exploration of strongly correlated materials is not
straightforward, since electronic structure methods generally assume weak elec-
tron correlations. The usual approach thus involves combining an ab-initio method
with a method that can model strong interactions, such as dynamical mean-field
theory (DMFT) or exact diagonalization (ED).

One of the most popular ab-initio methods is density functional theory (DFT),
a versatile method for calculating the electronic density of a many-body system
using a self-consistent loop. DFT can employ a wide variety of formalisms and
approximations suited for different materials and different degrees of balance be-
tween precision and efficiency. These include local approximations of the exchange
interaction, effective potential treatment of the atomic cores, selection of basis
set and the incorporation of additional phenomena, such as spin-orbit coupling
and magnetic fields.

As mentioned before, on its own DFT is insufficient for dealing with strongly-
correlated materials, since approximations of the exchange interaction assume
a locally homogeneous density, characteristic of weakly-interacting electrons. A
common variant of DFT that addresses the issue is DFT+U, which includes
an additional energy term for the d and f -shells in the vicinity of nuclei. The
interaction energy is calculated from the density matrix, and is approximated
according to the nature of the problem.
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Another approach, used specifically for magnetic impurities, employs the An-
derson impurity model (AIM). Under AIM, the impurity’s orbital structure is
described by a local Hamiltonian matrix, and the rest of the system, named the
“bath” for its thermodynamic role, is described as a spectrum of states, coupled
to the impurity. The combination of the two methods is performed by using the
projected density of states (DOS) of the impurity as calculated in DFT to con-
struct AIM, which is then solved by a quantum Monte Carlo (QMC) algorithm.
Alternately, the bath can be discretized so that the system’s entire Hamiltonian
can be solved by exact diagonalization (ED). This method is known as DFT+ED.

The objectives of this thesis are to study the strengths and limitations of
DFT+U and DFT+ED, to apply those computational methods to systems with
magnetic impurities, and to evaluate their performance by comparing them to
experimental results, as well as to other ab-initio work.

The structure of this thesis is as follows:

• Chapter 1 lays out the formalism and assumptions behind density functional
theory and presents an overview of some of the methods applied to each
part of it that are relevant to our work.

• Chapter 2 covers the Anderson impurity model and the many-body formal-
ism used to describe it. This part describes how the results of a DFT calcu-
lation can be used to build an impurity that includes electron-electron inter-
action in the impurity, crystal field splitting and spin-orbit coupling.QMC
is briefly described as one of the methods commonly used to solve AIM.
Then, the method of exact diagonalization of a discretized impurity model
is described, along with implementation details.

• Chapter 3 documents the application of DFT+ED to three systems of mag-
netic cobalt impurities coupled to crystals — a cobalt atom in bulk copper,
a cobalt adatom on a copper surface, and finally a copper adatom on a
Cu2N surface which itself is situated on copper. For each system, FLAPW
with LDA is used to calculate the projected DOS on the impurity’s valence
shell, which is then used to create a discrete model, solvable by Lanczos di-
agonalization. The results for cobalt atom in bulk copper are compared to
calculations performed with CT-QMC. The adatom systems’ ground states
were interpreted using a phenomenological model of magnetic anisotropy,
finding Kondo resonance. Their differential conductance was characterized
and compared to experimental results.

• Chapter 4 deals with the magnetic properties of two permanent magnet
candidates — Fe2Hf doped with antimony and UFe12 doped with silicon.
FLAPW is used to calculate the magnetic parameters of each crystal and
to compare them to the required properties of good permanent magnets.

Additionally, there are three appendices. Appendix A.1 specifies the notational
conventions used in this thesis. Appendix A.2 gives additional details on the
Metropolis-Hastings algorithm of CT-QMC. Appendix A.3 shows how the Kondo
model is derived from the single-impurity Anderson model.
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Chapter 1

Density functional theory

1.1 Basics
Density functional theory is one of the most popular methods for computational
modeling and investigation of many-body quantum systems. Its original form
was introduced by Hohenberg and Kohn in 1964, building on previous density
functional formalism by Thomas and Fermi [4].

DFT describes a many-body system of nuclei and N electrons which uses
the Born-Oppenheimer approximation [5] — the nuclei are assumed to be static,
which allows us to separate the total wavefunction into the nuclear and electronic
parts, remove the nuclear kinetic term from the Hamiltonian and convert the
electron-nucleon interaction into a static potential. The system’s Schrödinger
equation can then be described solely in the electronic Hilbert space.

Ĥψj ({r1 . . . rN}) = Ejψj ({r1 . . . rN}) (1.1)

The system is assumed to be spinless. The extention to spin-polarized systems is
done by converting the wavefunction into a two-component spinor.

The Hamiltonian consists of three operators:

Ĥ = T̂ + V̂ + Û . (1.2)

T̂ = −1
2
∑︁N
n=1 ∇2

n represents kinetic energy, V̂ = ∑︁N
n=1 V (rn) represents

electron-nucleus interaction and Û = ∑︁
n ̸=n′

1
|rn−rn′ | represents electron-electron

interaction (we use a reduced unit system where m = e = ℏ = 1). While T̂ and
Û are universal operators, V̂ is unique for every system and encodes its atomic
structure.

Exact solution of the system is not viable for more than very few electrons.
Fortunately, in systems where interactions are weak and local, the one-electron
approximation is sufficient to describe the system’s physics up to a satisfactory
degree of accuracy. Being a one-electron method, the principal parameter of DFT
is electron density, which is found by integrating out all spatial degrees of freedom
out of the probability density save for one:

ρ (r) ≡ |⟨r2, . . . , rN |r, r2, . . . , rN⟩|2 =
∫︂

dr2 · · ·
∫︂

drN |ψ (r, r2, . . . , rN)|2 . (1.3)
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The density element ρ (r) dr can be interpreted as the probability of finding an
electron at a certain point in volume element . The density can also be expressed
in the second quantization formalism using the operators c† (r) and c (r) which
respectively create and annihilate an electron at position r in the state |ψ⟩:

ρ (r) = ⟨ψ| c† (r) c (r) |ψ⟩ . (1.4)

Though the integration removes most of the information in the wavefunction,
the electron density still contains much chemically-useful information. In particu-
lar, the projection of the density on the eigenstates of a single atom characterizes
the coupling between it and the environment.

The ground state density ρ0 (r) is found by expressing the system’s energy as a
functional of the electronic density and finding the functional’s global minimum.
The total energy functional is defined as

E [ρ] ≡ min
{ψ|ρ=ρ(ψ)}

⟨ψ| Ĥ |ψ⟩ . (1.5)

(For brevity, in the expressions of other energy functionals below, min{ψ|ρ=ρ(ψ)}
will be omitted.) In words, the energy functional E [ρ] returns the eigen-energy
of the Hamiltonian corresponding to the least energetic wavefunction ψ whose
electronic density is ρ.

The energy functional can be separated in the same manner as Eq. (1.2):

E [ρ] = T [ρ] + V [ρ] + U [ρ] . (1.6)

The nucleus-electron interaction functional can be expressed exactly as a func-
tion of the electronic density:

V [ρ] = ⟨ψ| c† (r)V (r) c (r) |ψ⟩ =
∫︂

d3rV (r) ρ (r) . (1.7)

The electron-electron interaction functional U [ρ] has coupling terms between
every two possible |ψ⟩ states. The leading terms of the functional include two-
electron interactions, and will be separated from the rest of the functional, which
will be dubbed the correlation term Ec [ρ]. The antisymmetry of the electron
wavefunction necessitates differentiating the creation and annihilation operators
by index. The electron-electron interaction is thus

U [ρ] = ⟨ψ| c†
m (r) c†

n (r′) 1
|r − r′|

cn (r′) cm (r) |ψ⟩

− ⟨ψ| c†
m (r) c†

n (r′) 1
|r − r′|

cm (r′) cn (r) |ψ⟩ + Ec [ρ]

=
∫︂∫︂

d3rd3r′ρ (r) ρ (r′)
|r − r′|

+ Ex [ρ] + Ec [ρ] . (1.8)

The first term (often called the Hartree term) represents the classical Coulomb
repulsion between electrons, appearing as interaction between different parts of
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the electronic density. The second term (often called the Fock term) represents
the exchange interaction, and can be seen as a correction to Eq. (1.8) that removes
the self-interaction from the first term. It can be expressed in terms of the two-
electron density

ρ (r, r′) ≡
∫︂

dr3 · · ·
∫︂

drN |ψ (r, r′, r3, . . . , rN)|2 = ⟨ψ| c† (r) c (r′) |ψ⟩ ,

so that

Ex [ρ] = −
∫︂∫︂

d3rd3r′ |ρ (r, r′)|2

|r − r′|
.

As with the electronic density, ρ (r, r′) d3rd3r′ can be interpreted as the prob-
ability of finding an electron in each of the points r and r′.

The correlation term Ec [ρ] represents the remainder of U [ρ] — the part of
the electron-electron energy which isn’t covered by the Hartree and Fock terms.
It has no exact expression, and an appropriate approximation is chosen on case-
by-case basis. The exchange and correlation interactions are usually grouped
together as the exchange-correlation (xc) term:

Exc [ρ] = Ex [ρ] + Ec [ρ] ,

since electronic density approximations treat both at the same time.
Due to the contribution of electronic correlation to the total kinetic energy,

the kinetic energy functional can only be expressed exactly in the case with no
electron-electron interactions, where each electron is subject only to the external
atomic potential. The kinetic energy energy can be split into the non-interacting
term

T0 [ρ] = −1
2 ⟨ψ| c† (r) ∇2c (r) |ψ⟩ = −1

2

∫︂
d3rρ (r) ∇ρ (r) (1.9)

and the correction term Tc [ρ] which is incorporated into the correlation term
Ec [ρ].

It is customary to group the universal functionals into a single functional
F [ρ] ≡ T [ρ] + U [ρ], since it can be explored and approximated analytically on
its own. The total energy can thus be expressed as the sum

E [ρ] = F [ρ] +
∫︂

d3rV (r) ρ (r) , (1.10)

where the first element is universal and the second is particular to the system.

1.2 Hohenberg-Kohn theorems and Kohn-Sham
equations

DFT relies on the two Hohenberg-Kohn theorems [4].
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Theorem 1. The external single-particle potential V (r) and the ground state
electron density ρ0 (r) are unique functionals of each other1.

The ground state density ρ0 (r) is determined uniquely from V (r) via the
ground eigenstate of the Hamiltonian which uses V (r) as the nuclear potential.
V (r) is determined uniquely from ρ0 (r) up to a constant due to the fact that two
different nuclear potentials cannot produce the same electron density. This can
be proven by contradiction — if two such potentials existed, it could be shown
that the ground-state energy of each of their Hamiltonians would be smaller
than the other one [4]. As a consequence, the solution of the system depends
on finding self-consistency between the Hamiltonian and the electronic density.
Another consequence is that the ground-state density ρ0 (r) not only represents
the ground state, but determines all of the system’s excited states as well via the
Hamiltonian.

Theorem 2. The energy functional E [ρ] has a minimum at the ground state
density ρ0.

The second theorem implies that the ground-state energy is

E [ρ0] = min
ρ

{E [ρ]} . (1.11)

It can be proven using Rayleigh-Ritz variational principle [5]. An arbitrary
state |ψ⟩ in the system is expanded in the eigenstate basis:

|ψ⟩ =
∞∑︂
n=0

Cn |ψn⟩ .

The energy of the state is (assuming the state has been normalized)

E = ⟨ψ| Ĥ |ψ⟩ =
∞∑︂
n=0

|Cn|2 En.

If E0 is the lowest energy (assuming no degeneracy), then it is also the lowest
value E can take, and occurs only if |ψ⟩ = |ψ0⟩, which is the state corresponding
to the density ρ0. Therefore

E [ρ0] = E0.

The formal solution for DFT thus involves the minimization of the energy
functional under a conserved number of electrons. Since the number of electrons
is

N =
∫︂

d3r′ρ (r′) ,

the condition can be expressed using the Lagrange multiplier µ as
1Though this formulation assumes unique ground states, the theory has been extended to

degenerate ground states [6].
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δ

δρ (r)

(︃
E [ρ (r)] − µ

(︃∫︂
d3r′ρ (r′) −N

)︃)︃
= 0, (1.12)

which reduces to
δE [ρ (r)]
δρ (r) = µ. (1.13)

We use F [ρ] from Eq. (1.10) in order to separate the equation into the uni-
versal and particular parts.

δF [ρ (r)]
δρ (r) + V (r) = µ. (1.14)

Solving Eq. (1.14) directly via a minimization algorithm is not practical due to
the effectively infinite dimensions of the space of possible densities, and because
the exact functional F [ρ (r)] is not known. In order to make the evaluation of
the condition more tractable, the system will be mapped to an effective non-
interacting model with an effective potential Veff (r). Its energy functional is

Eeff [ρ] = T0 [ρ] +
∫︂

d3rVeff (r) ρ (r) . (1.15)

By equating this energy functional with the exact one in Eq. (1.6), Veff (r) can be
written as

Veff (r) = V (r) +
∫︂

d3rV (r) ρ (r) + Vxc (r) , (1.16)

with the xc potential

Vxc (r) ≡ Exc [ρ (r)]
δρ (r) .

Substituting the energy functional from Eq. (1.15) into Eq. (1.14) gives the
minimization equation for the effective system:

δT0 [ρ (r)]
δρ (r) + Veff (r) = µ.

The many-body ground state wavefunction of the non-interacting system is a
Slater determinant of the single-particle orbitals:

ψ (r1 . . . rN) =

⃓⃓⃓⃓
⃓⃓⃓⃓ϕ1 (r1) · · · ϕN (r1)

... . . . ...
ϕ1 (rN) · · · ϕN (rN)

⃓⃓⃓⃓
⃓⃓⃓⃓ (1.17)

Each of the single-particle wavefunctions can be derived by solving a single-
particle Schrödinger equation with the effective potential Veff (r), known as the
Kohn-Sham equation:
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(︃
−1

2∇2 + Veff (r)
)︃
ϕn (r) = εnϕn (r) . (1.18)

The ground state density of the effective system is equal to the ground state
density of the original system, due to the equivalence of their energy functionals.
It is built from the eigenstates of Eq. (1.18) as

ρ0 (r) =
N∑︂
n=1

|ϕn (r)|2 . (1.19)

The Kohn-Sham system’s total energy can be expressed in terms of functionals
by integrating Eq. (1.18) over all eigenfunctions:

T0 [ρ0] +
∫︂

drρ0 (r)Veff [ρ0] =
N∑︂
n=1

ϵn. (1.20)

By combining Eq. (1.15), Eq. (1.16) and Eq. (1.20), we get the total energy,
which is the quantity that is being minimized by the whole process [7]:

E =
N∑︂
n=1

ϵn − 1
2

∫︂
dr
ρ0 (r) ρ0 (r′)

|r − r′|
−
∫︂

drρ0 (r)Vxc (r) + Exc [ρ] . (1.21)

All of the basic components of the DFT process have introduced. Its pur-
pose is to achieve self-consistency between the electron density and the energy
functional by repeatedly calculating one from the other until the system’s energy
stabilizes. There are many variations on this common theme, differing from each
other by their choice of basis, method of solving the Kohn-Sham equation, the ap-
proximation of the exchange correlation, the inclusion of additional phenomena,
like spin or a magnetic field, and extensions to relativistic and time-dependent
theories. Those choices determine the quality and value of the process — how
quickly will the loop converge, how long will each iteration take, how closely will
the converged energy and ground state match the real values, how much will the
conserved quantities be conserved, and ultimately how much will the resulting
model reflect the behavior of the real material under study.

Below is a short overview of various DFT methods, categorized by the part
of the process they address. Some of those will be presented in the following
sections:

1. xc functional approximation (electron-electron potential)

(a) Local density approximation (LDA)
(b) generalized gradient approximation (GGA)

2. Basis set

(a) Augmented plane-wave (APW), linearized APW (LAPW)
(b) Korringa-Kohn-Rostoker (KKR), linearized muffin-tin orbitals (LMTO)
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3. Effective potential treatment (electron-nucleus potential)

(a) Muffin-tin potential
(b) Pseudo-potential, ultrasoft pseudopotential
(c) Full-potential
(d) Atomic sphere approximation (ASA)

4. Additional phenomena

(a) Spin-polarization, spin-orbit coupling, magnetic field (LSDA)
(b) DFT+U (particularly LDA+U)
(c) Relativistic kinetic energy
(d) Time-dependent electron-nucleus interaction

1.3 Local density approximation
Though the xc energy functional in Eq. (1.8) cannot be expressed exactly as a
functional of ρ, it can be approximated by one of several xc functionals that
differ in accuracy and complexity. The simplest of those is LDA. It exploits the
short range of xc interactions and assumes that it depends only on the electronic
density at each point in space. The functional then takes a similar form to that
of the electron-nucleus interaction term:

ELDA
xc [ρ] =

∫︂
d3rρ (r) εxc (ρ (r)) . (1.22)

εxc (ρ (r)) is the xc energy per particle of a homogeneous electron gas.
The effective LDA xc potential is [5]

V LDA
xc (r) = δELDA

xc
δρ

= εxc (ρ (r)) + ρ (r) δεxc (ρ (r))
δρ

.

The εxc (ρ (r)) function can be divided into exchange and correlation parts:

εxc (ρ) = εx (ρ) + εc (ρ) . (1.23)

The exchange energy, being a compensation for the self-interaction in the
Coulomb term, can be expressed as interaction with the effective Kohn-Sham
exchange hole function ρx (r, r′):

ELDA
xc [ρ] =

∫︂
d3r

ρ (r) ρx (r, r′)
|r − r′|

. (1.24)

In order to cancel the self-interaction exactly, the hole function should have
a total charge exactly inverse to that of a single electron. This is known as the
sum rule
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∫︂
drρx (r, r′) = −1. (1.25)

The simplest expression of ELDA
x [ρ] that fulfills the above criterion is the

Thomas-Fermi approximation, the progenitor of DFT [5]. By demanding that

ETF
x [ρ] = −3

4

(︃ 3
π

)︃ 1
3
∫︂

drρ
4
3 (r) !=

∫︂
drρ (r) εTF

x (ρ (r)) ,

we get

εTF
x (ρ) = −3

4

(︃ 3
π
ρ
)︃ 1

3
.

εc (ρ) doesn’t have an analytical expression, but it can be calculated using
quantum Monte Carlo [8, 9].

1.3.1 Local spin density approximation
The DFT formalism as described in Chapter 1 applies to a spinless system. A
spinless approach is insufficient for our work, since magnetic phenomena necessar-
ily involve spin polarization. Spin-dependence can be worked into the theoretical
model either in the DFT phase or in the AIM phase that comes later (and is de-
scribed in Sec. 2.3). The former case requires the extension of the DFT formalism
to the spin-dependent case.

The full 1
2 -spin density requires two scalar fields, for the two directions of spin

along some axis (conventionally ẑ) — ρ↑ (r) and ρ↓ (r) [10]. The electronic density
used up until now has been the sum of the two fields:

ρ (r) = ρ↑ (r) + ρ↓ (r) .

The Kohn-Sham eigenstates would also need to be spin-dependent, so that
the electronic density of each spin can be expressed as

ρσ (r) =
∑︂
n

ϕnσ (r)ϕnσ (r) .

Out of the functionals, the only one with an explicit spin dependence is the
xc energy. The treatment of spin-polarization can thus be performed using local
spin density approximation (LSDA)2.

The magnetization density is

m (r) =
∑︂
nσσ′

ϕnσ (r) [σ⃗]σσ′ ϕnσ′ (r) ,

where σ⃗ is the Pauli matrix vector
2A complete extension of the DFT formalism to the spin polarized case can be read in

Ref. [11].
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σ⃗ =
(︄

0 1
1 0

)︄
x̂+

(︄
0 −i
i 0

)︄
ŷ +

(︄
1 0
0 −1

)︄
ẑ. (1.26)

The presence of magnetization requires the introduction of a new term to the
xc potential — the internal magnetic field [10]

Bxc (r) = −δExc [ρ,m]
δm

.

The LSDA xc potential is

V LSDA
xc (r) = εxc (ρ (r) ,m (r)) + ρ (r) δεxc (ρ (r))

δρ
− Bxc (r) · σ⃗.

In the standard choice of ẑ as the axis of magnetization, m (r) = m (r) ẑ with

m (r) = ρ↑ (r) − ρ↓ (r) .

The LSDA energy functional can be expressed as ELSDA [ρ,m], with only the
xc term depending on m.

1.3.2 LSDA+U
LDA and LSDA have a weakness in treating materials where the density can’t be
assumed to be locally homogeneous. As such, it is unsuitable for treating strongly
correlated atoms, such as transition metals and rare earth elements. The popular
method of dealing with such systems is to explicitly introduce to make the energy
functional directly dependent on interaction between local electronic orbitals [12].
This allows DFT, generally a weak interaction method, to be applied to strongly
correlated systems.

The LSDA+U xc functional is generated by adding to the LSDA energy func-
tional the electron-electron interaction term Ee-e [nγγ′ ] (here γ ≡ mσ is a com-
mon index for both the spin and orbit) and subtracting the double-counting term
EDC [nγγ′ ]. Both of those are functionals of nγγ′ ≡

⟨︂
c†
γcγ′

⟩︂
, the occupation matrix

of local spin-orbitals γ and γ′. The energy functional is then

ELSDA+U [ρ,m, nγγ′ ] = ELSDA [ρ,m] + Ee-e [nγγ′ ] − EDC [nγγ′ ] . (1.27)

The interaction term is [13]

Ee-e [nγγ′ ] = 1
2
∑︂
{γi}

nγ1γ2

(︂
U e-e
γ1γ3γ2γ4 − U e-e

γ1γ3γ4γ2

)︂
nγ3γ4 , (1.28)

where Û e-e is the interaction matrix between orbitals:

U e-e
γ1γ3γ2γ4 = ⟨ψ| c†

γ1 (r) c†
γ3 (r′) 1

|r − r′|
cγ4 (r′) cγ2 (r) |ψ⟩ δσ1σ2δσ3σ4 . (1.29)
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The interaction matrix can be expressed in a manner that highlights its sym-
metry in the spherical basis around the atomic nucleus. It’s expressed as a series
of terms, each having a lower symmetry than the previous one [14]:

U e-e
γ1γ3γ2γ4 =

l∑︂
n=0

a2n (m1,m3,m2,m4)F2n, (1.30)

with l as the valence shell’s azimuthal quantum number. Each term in this
expression is separated into the radial and angular components. The Slater in-
tegrals Fn are integrals over the products of radial parts, and an are products of
spherical harmonics:

an (m1,m3,m2,m4) = 4π
2n+ 1

n∑︂
q=−n

⟨lm1|Y q
n |lm3⟩ ⟨lm2| [Y q

n ]⋆ |lm4⟩ .

The Slater integrals for the unscreened potential can be calculated from the
radial parts R (r) of the atomic orbitals [15]:

Fk =
∫︂ ∞

0
r2

1dr
∫︂ ∞

0
r2

2drR2 (r1)R2 (r2)
rk<
rk+1
>

.

Those values, however, will be vastly exaggerated for atoms embedded inside
a material. There are multiple ways to address the problem. The Slater inte-
grals can be used as parameters and be reduced by some amount, judged by the
agreement of the observables (e.g. the impurity occupation or magnetic moment)
with values achieved in other methods (experimental or computational). Alterna-
tively, the values can be taken from ab-initio calculations using methods such as
constrained LDA [16] or constrained random-phase approximation (cRPA) [17].
Both approaches are used in this work.

Generally, the Slater integrals are expressed in terms of Coulomb direct inter-
action U and exchange interaction J . for d-shell orbitals (l = 2), those are [12]

F0 = U,

F2 = 8.615J,
F4 = 0.625F2.

For f -shell orbitals (l = 3), [12]

F0 = U,

F2 = 11.922J,
F4 = 0.668F2,

F6 = 0.494F2.

1.3.2.1 Double-counting

The functional Ee-e [nγγ′ ] accounts for all interactions, including terms that have
already been accounted for in U [ρ]. Those terms need to be explicitly substracted
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from Ee-e [nγγ′ ] in the form of EDC [nγγ′ ]. The double-counting term approximates
the value of Ee-e in the absence of orbital polarization (so that the LSDA+U func-
tional will converge to the LSDA functional), and is a function of the occupation
matrix’s orbital trace nσ ≡ Trmm′ [nmm′σσ].

Two commonly used approximations for the double counting term in d and f
orbitals are the fully-localized limit [18, 12]

EDC
FLL [nσ] = U

2 (n↑ + n↓) (n↑ + n↓ − 1) − J

2
∑︂
σ

nσ (nσ − 1) ,

and the around mean-field form [19, 13]

EDC
AMF =

(︄
U

2 n↑n↓ +
n2

↑ + n2
↓

2
2l

(2l + 1) (U − J)
)︄
.

Both expressions are spherically symmetrical, which is enough for most cases
where the spherical term isn’t canceled out.

1.3.2.2 Orbital polarization correction

One of the uses of LSDA+U is to describe local orbital magnetism in d and f
orbitals, a task that LSDA without interactions performs relatively poorly [13].
In particular, the orbital polarization correction (OPC) approach is useful in cases
where the Coulomb interaction is weak.

Under the OPC method, the electron-electron energy functional and double-
counting term in Eq. (1.27) are grouped as a correction term to the LSDA energy
functional, so that

ELSDA+U [ρ,m, n̂γγ′ ] = ELSDA+U [ρ,m] + ∆Ee-e [n̂] .

The correction term is separated into the spherical term (which includes the
spherical double-counting terms) and the remaining, anisotropic term [20, 21],
which consists of the orbital polarization correction EOPC and the non-spherical
double-counting term ENSDC:

∆Ee-e [n̂] = U − J

2
(︂
Tr [n̂] − Tr

[︂
n̂2
]︂)︂

+ EOPC [n̂] − ENSDC [n̂] . (1.31)

In systems where U = J , the spherical term is canceled out, and the OPC
becomes the leading term.

The energy contributions of the terms EOPC [n̂] and ENSDC [n̂] depend on the
structure of the atom’s valence shell.

1.3.3 Generalized Gradient Approximation
A popular alternative to LSDA is the generalized gradient approximation (GGA),
which relaxes the local homogeneity demand, and assumes the local interactions
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depend on both the local density and the local density’s gradients ∇ρσ. The most
general GGA functional has the shape

EGGA
xc [ρ] =

∫︂
d3rf (ρ↑, ρ↓,∇ρ↑,∇ρ↓) . (1.32)

There are many possible choices of the f function, some analytical and some
semi-empirical [22]. The various forms of GGA constitute compromises between
computational expense and preservation of the properties of LDA’s εxc (ρ), such
as the shape of the potential curve, the scaling properties and the sum rule in
Eq. (1.25). In this work, the GGA potentials used are those calculated using the
Perdew-Burke-Ernzerhof (PBE) functional.

PBE uses two dimensionless density gradients, representing the length scales
of the inhomogeneity and screening respectively:

s (r) ≡ |∇ρ (r)|
2kF (r) ρ (r) ,

t (r) ≡ |∇ρ (r)|
2ks (r) ρ (r) .

kF = (3π2ρ)
1
3 and ks =

√︂
4kF/π are the Fermi wavelength and screening

wavenumber respectively, under the Thomas-Fermi approximation. Other im-
portant parameters and functions are the local Wigner-Seitz radius rs =

(︂
3

4πρ

)︂ 1
3

and the relative spin polarization ζ ≡ m
ρ

.
The correlation functional of PBE is generated by adding to the correlation

energy density of LSDA the term Hc (rs, ζ (r) , t (r)), so that

EPBE
c [ρ↑, ρ↓] =

∫︂
d3rρ (r)

(︂
εLSDA

c (ρ (r) , ζ (r)) +Hc (rs (r) , ζ (r) , t (r))
)︂
.

The exchange functional of PBE is generated by multiplying the exchange
energy density of LSDA by an enhancement factor Fx, which is a function of the
screening:

EPBE
x [ρ] =

∫︂
d3rρ (r) εLDA

x (ρ (r))Fx (s (r)) .

The functions Hc and Fx are constructed to satisfy numerous conditions. Hc
should converge to the second-order gradient approximation in the slowly-varying
limit t → 0, and make the correlation cancel out in the rapidly varying limit
t → ∞. Fx should give the exchange functional the same linear response to small
density variations (s → 0) as LSDA. The exchange functional should fulfill the
Oliver-Perdew spin-scaling relation [23]

Ex [ρ↑, ρ↓] = 1
2 (Ex [2ρ↑] + Ex [2ρ↓])

and Lieb-Oxford bound [24]
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Ex [ρ↑, ρ↓] ≥ Exc [ρ↑, ρ↓] ≥ −1.679e2
∫︂

drρ
4
3 (r) .

Finally, the xc energy should also maintain a linear scaling under uniform scaling
to the high density limit.

The expressions of Hc and Fx that fulfill those conditions can be seen in
Ref. [22, 25] (or a more concise form in Ref. [7]). The expressions use several
empiricaly-derived constants, whose values were revised in further variations on
PBE [26, 27].

PBE allows for a considerably more accurate total energy calculation than
LSDA, and a better description of magnetic moments in metals. Its main draw-
backs compared to LSDA are the computational expense and the poor approxi-
mation of the asymptotic behavior −1/r expected from electronic potentials.

1.4 Plane-wave basis
Numerical solution of the Kohn-Sham equations almost never involves direct solu-
tion of the differential equation Eq. (1.18). Instead, a basis set {|φm⟩} is selected
to represent the system, and a wavefunction ϕn (r) can be numerically represented
with a discrete vector of expansion coefficients {cnm} in the form

ϕn (r) = ⟨r|ϕn⟩ =
∑︂
m

cnmφm (r) . (1.33)

The Kohn-Sham equation then take the form of the matrix eigenvalue equation(︂
Ĥ − ϵnŜ

)︂
cn = 0, (1.34)

where Ĥ is the Kohn-Sham Hamiltonian in the basis {|φm⟩} and Ŝ is the
overlap matrix Smm′ ≡ ⟨φm|φm′⟩. The overlap matrix is diagonal in the case of
an orthogonal basis set and an identity matrix in the case of an orthonormal basis
set.

The systems that concern our work are crystals, and those are described by
a periodic Hamiltonian. According to Bloch’s theorem, the eigenstates of such a
Hamiltonian are plane-waves multiplied by functions with the same periodicity
as the crystal [28]. The periodic factor of the wavefunction can undergo a Fourier
transform to the reciprocal space and become a linear combination of planewaves
with a wavevector g [10]. The Kohn-Sham eigenstates are therefore |ϕnk⟩, their
projection on the real space being

ϕnk (r) = ⟨r|ϕnk⟩ = 1√
ΩG

∑︂
g
cgnke

i(g+k)·r, (1.35)

with ΩG as the reciprocal volume of the g vector range. The g vectors are
limited to the first Brillouin zone, because the periodicity of the crystal makes it
possible to map every vector k to a vector inside the Brillouin zone. In practice,
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the expansion coefficients usually decrease with the size of g, so their range can
be truncated by a ceiling value |g| < gmax.

The eigenstates form a band structure in the Brillouin zone, with ϵnk as the
energy of the n-th band at point k. The basis set is enumerated by the vectors g.
The secular equations Eq. (1.34) are performed at each k-point independently:

∑︂
g′

(︂
Hk

gg′ − ϵnS
k
gg′

)︂
cg′nk = 0, (1.36)

with Hk
gg′ = ⟨k + g| Ĥ |k + g′⟩ and Sk

gg′ = ⟨k + g|k + g′⟩ .

1.4.1 Partial occupancies
The first term in the Kohn-Sham energy Eq. (1.21) is the integral over all energy
bands below Fermi energy ϵF . In the plane-wave basis, it takes the shape

E =
∑︂
n

1
ΩBZ

∫︂
dkϵnkΘ (ϵnk − ϵF ) , (1.37)

where ΩBZ is the reciprocal volume of the Brillouin zone and ϵF is defined to
preserve the number of electrons:

N =
∑︂
n

1
ΩBZ

∫︂
dkΘ (ϵnk − ϵF ) . (1.38)

Fully-occupied bands are fully integrated over, while partially-occupied bands
are integrated only over the parts below ϵF .

The total energy is computed numerically in a discretized k space [29, 30, 31]:

E ≃
∑︂
n,k

wkϵnkΘ (ϵnk − ϵF ) , (1.39)

where wkare the weighing factors of each k-point, which should be normalized:

∑︂
k
wk = 1 (1.40)

The more k-points are included, the closer will the calculated energy be to the
accurate one. However, the convergence is very slow, because the discretization
loses information about the limits of integration over partially occupied bands.
It can be boosted by replacing the step-function in Eq. (1.39) by a smoother
function, such as the Fermi-Dirac distribution function

f (ϵ) = 1
e

ϵ−ϵF
σ + 1

, (1.41)

or the Gaussian
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f (ϵ) =
1 − erf

(︂
ϵ−ϵF
σ

)︂
2 . (1.42)

Smearing out the function makes the sum more responsive to variations in the
Fermi energy, thereby reducing its error. The total energy is then

E =
∑︂
n,k

wkϵnkf (ϵnk) , (1.43)

and the electron density in Eq. (1.19) is then converted to

ρ0 (r) =
∑︂
n,k

wkf (ϵnk) |ϕnk (r)|2 . (1.44)

As can be seen, the electron density can be described numerically in terms of
the discrete values of wk, ϵnk and |ϕnk⟩.

The use of Fermi-Dirac distribution function gives a physical interpretation
to the smearing - we work in the canonical ensemble, and σ = 1

β
≡ kBT . With

a nonzero temperature, E is no longer the minimal energy — under the ther-
modynamic interpretation, the system gained heat. The true minimal energy is
therefore the free energy

F = E − 1
β

∑︂
n,k

wkS (f (ϵnk)) , (1.45)

where the entropy per state is

S (f (ϵnk)) = f (ϵnk) ln f (ϵnk) − (1 − f (ϵnk)) ln (1 − f (ϵnk)) . (1.46)

Fermi-Dirac smearing is rarely used in practice, due to the poor compromise
between convergence speed and accuracy of the converged state. In our work,
we use Gaussian smearing for ionic relaxation, and the tetrahedron method with
Blöchl corrections [32] for calculating the total energy, DOS and magnetic mo-
ments of pre-relaxed structures.

1.5 Augmented plane-wave methods

1.5.1 Augmented plane-wave method
The augmented plane-wave method (APW) is an alternative to the plane-wave
basis, commonly used for transition metals and their compounds [10]. APW
generally retains the size of the basis set, including all electrons in the calculation,
but reduces the incidence of high-order waves. It divides space into different
regions with different basis expansions - plane waves in the interstitial region,
and atomic orbitals in spheres centered around nuclei (dubbed “muffin-tins”,
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due to the shape of their 2D analogue) [10]. The effective potential Veff (r) is
approximated as being constant in the interstitial region and radially symmetrical
inside the muffin-tin region:

Veff (r) ≈

⎧⎨⎩0 r ∈ I
VMT (r) r ∈ MT

The Kohn-Sham eigenstates are then (the n and k indices for cg have been ignored
for convenience)

ϕnk (r) =
⎧⎨⎩

1√
ΩG

∑︁
g cge

i(g+k)·r r ∈ I∑︁
lmAlmul (r)Ylm (θ, ϕ) r ∈ MT

. (1.47)

Inside the muffin-tin, the coordinates are spherical. Ylm (θ, ϕ) are spherical
harmonics which depend on the r vector’s azimuth θ and altitude ϕ. ul (r) is
the radial component, a function of the distance from the nucleus, and is derived
from the radial Schrödinger’s equation

(︄
− d2

dr2 + l (l + 1)
r2 + VMT (r) − El

)︄
rul (r) = 0, (1.48)

where VMT (r) is a radial muffin-tin potential and El is the energy eigen-
value and a free parameter. The continuity of the wavefunction in the boundary
between the muffin tin and the interstitial area is maintained by a constraint
imposed on the spherical expansion coefficients Alm:

Alm = 4πil√
ΩGul (R)

∑︂
g
cgjl (|k + g| · R)Y ⋆

lm (k + g) , (1.49)

where R is the radius of the muffin tin and jl are the spherical Bessel functions.
The coefficients Alm are uniquely defined from the planar coefficients cgnk and
the energies El, which are used as the variational parameters when solving the
Kohn-Sham equations.

One of the main difficulties of the APW method is that the exact solution
requires the eigenvalues of Eq. (1.48) to be equal to the band energies. If the
calculation is performed by selecting constant values for El, solving Eq. (1.48)
and getting a basis which is then used to solve Eq. (1.34), the eigenvalues ϵn
may be different from energies El. On the other hand, setting El to be equal
to the band energies would turn the secular equation from a simple eigenvalue
problem to a much more computationally complex problem of finding the roots
of a polynomial.

Another possible problem is the asymptote problem — if ul (R) is small or
equal to zero, then unless the coefficients Alm are very large to infinite (as can
be deduced from the presence of ul (R) in the denominator of the coefficients in
Eq. (1.49)), the function ϕ (r) asymptotically approaches zero from within the
muffin-tin zone, making the muffin-tin effectively decoupled from the interstitial
zone.
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1.5.2 Linearized augmented plane-wave method
The most popular solution to the problems of APW mentioned above is the
linearized augmented plane-wave method (LAPW). It extends the APW method
by converting the radial component ul into a linear combination of itself and its
own derivative with respect to energy, u̇l ≡ dul

dϵ . The derivative of ul must be
orthogonal to it, so that ⟨ul|u̇l⟩ = 0. The wavefunction becomes

ϕnk (r) =
⎧⎨⎩

1√
ΩG

∑︁
g cge

i(g+k)·r r ∈ I∑︁
lm (Almul (r) + Blmu̇l (r))Ylm (θ, ϕ) r ∈ MT

. (1.50)

The energy derivative of the radial component satisfies the equation(︄
− d2

dr2 + l (l + 1)
r2 + VMT (r) − El

)︄
ru̇l = rul. (1.51)

The new expansion coefficients Blm give the basis additional variational free-
dom — if there is a discrepancy between the band energy ϵ and the muffin-
tin energy El, the coefficients can be chosen to make the linear combination
Almul (r) +Blmu̇l (r) into an effective radial component with an energy closer to
ϵ. The LAPW has an error on the order of (ϵ− El)2 in the wavefunction and on
the order of (ϵ− El)4 in the band energy. This enables the calculation to converge
to a solution much more quickly.

The variational freedom allows for greater flexibility in treating non-spherical
potentials inside the sphere. Additionally, LAPW resolves the asymptote prob-
lem at the muffin-tin boundary — even if ul (r) approaches zero at the muffin-tin
boundary, u̇l (r) generally doesn’t, and the decoupling of the two zones is pre-
vented.

1.5.3 Full-potential LAPW
LAPW outperforms APW in reduced-symmetry solids, such as bcc crystals. How-
ever, the muffin-tin approximation of the potential makes it less than optimal for
calculating the local charge density of a specific atom. The full-potential LAPW
method (FLAPW), introduced by Wimmer et al. in 1981 [33, 34], uses the ex-
act potential in both the muffin tin spheres and the interstitial area. The core
electrons are treated relativistically, while the valence electrons are treated semi-
relativistically [34].

In each zone, the potential is expressed in the same basis as the charge density
- plane waves in the interstitial area and multipoles in the muffin-tin sphere:

Veff (r) =
⎧⎨⎩
∑︁

G Ṽ Ge
iGr r ∈ I∑︁

lm Vl (r)Ylm (θ, ϕ) r ∈ MT
(1.52)

The full potential is derived from the charge density through a process detailed
in Ref. [33, 35], intended to maintain the potential’s smoothness at the muffin-tin
radius. The charge density inside the muffin-tin is used to generate a smooth
pseudo-charge density, which has the same multipoles on the boundary as the
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original charge but a more rapidly converging Fourier (plane-wave) components.
The interstitial potential can then be calculated using effective pseudo-charge
density, since it’s only influenced by the charge density’s multipoles. The muffin-
tin potential is then calculated from interstitial potential and original charge
density.

1.6 Pseudo-wavefunction methods
The plane-wave basis is efficient for describing free conduction electrons, since
those are generally found at a large distance from the nuclei, where the potentials
of many nuclei affect the electrons in aggregate. For core and valence electrons,
however, the potential of their nucleus is dominant, and their natural basis is that
of atomic orbitals. Attempting to describe them using planewaves would create a
Kohn-Sham wavefunction with many high-order g components, which would be
costly and inaccurate.

This situation can be remedied by using pseudo-wavefunction methods, in
which the basis of wavefunctions |ϕn⟩ is substituted by the basis of pseudo-
wavefunctions

⃓⃓⃓
ϕ̃n
⟩︂

(in PAW texts the transformation is sometimes called “pseudiza-
tion” [36]). The pseudo-wavefunctions are made to be equal to the original wave-
functions outside of a defined core radius while being much smoother inside the
core region.

The pseudo-wavefunction method utilized in this work is the projector-augmented
wave (PAW) method, which combines techniques used for ultrasoft pseudo-potentials
and LAPW [37, 36]. The details of PAW will be preceded by an overview of
pseudo-potentials and Vanderblit’s ultrasoft pseudo-potentials method.

1.6.1 Pseudo-potentials
The first method which utilized pseudo-wavefunctions is the pseudopotential
method, which involves replacing each atom’s core (the nucleus and core elec-
trons) with an effective potential Ṽ (r) whose ground state matches the real
ground state outside of the core radius rc [10]. This treats the core electrons
as static and takes them out of the electronic density. The pseudo-wavefunction
ϕ̃n is then the solution of the Schrödinger equation for the valence shell with
azimuthal quantum number l:

(︄
− d2

dr2 + l (l + 1)
r2 + Ṽ (r) − En

)︄
ϕ̃n (r) = 0,

while also being definitionally equal to ϕn for r < rc.
When using the pseudopotential method, the crystal’s potential is assembled

in the unit cell from a library of pseudo-potentials, pre-calculated in isolation
or inside a crystal. For the library pseudo-potentials to be useful in different
systems, they need to be transferable — a pseudopotential calculated in one
atomic configuration can be accurately transferred to another one. This condition
is maintained by requiring the logarithmic derivative of the real wavefunctions
and pseudo-wavefunctions to be equal at the core radius [10]:
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1
ϕ̃n (rc)

dϕ̃n (rc)
dr = 1

ϕn (rc)
dϕn (rc)

dr .

Other desirable properties are the accuracy of the pseudo-wavefunction’s charge
density, and softness — the pseudo-wavefunction’s planewave expansion should
converge as quickly as possible. A popular approach to a compromise between
these features is to require pseudo-wavefunctions to have the same norm inside the
core region as the exact wavefunction [38]. The most popular norm-conserving
pseudopotential generation method is the Bachelet-Hamann-Schlüter process [39].
It works by adding to the generation algorithm three additional steps — deriva-
tion of the pseudo-wavefunction from the pseudopotential, normalization of the
pseudo-wavefunction, and the derivation of a new pseudopotential via the in-
version of the Schrödinger’s equation. The compromise between softness and
transferability is maintained by selecting the core radius - a larger core allows for
a softer wavefunction, but worsens the transferability [36].

1.6.2 Ultrasoft pseudo-potentials
The ultrasoft pseudopotential approach abandons the requirement for norm con-
servation inside the core sphere, thereby allowing the pseudo-wavefunctions to
be much smoother [36, 40]. Without norm conservation, a difference is formed
between the core charges of the all-electron wavefunctions |ϕn⟩ and pseudo-
wavefunctions

⃓⃓⃓
ϕ̃n
⟩︂
, which is compensated using the augmentation term3

Qmn = ⟨ϕm|ϕn⟩ − ⟨ϕ̃m|ϕ̃n⟩. (1.53)

The augmentation charges are expanded inside the core radius using the pro-
jectors |pn⟩, fixed functions which form a reciprocal basis with

⃓⃓⃓
ϕ̃n
⟩︂

inside the
core, so that

⟨pm|ϕ̃n⟩ =
⎧⎨⎩δmn r ≤ rc

0 r > rc
.

The charge density is then expressed as a sum of the pseudo-wavefunction
charge density and the augmentation charges [10]:

ρ (r) =
∑︂
n

(︄
ϕ̃
⋆

n (r) ϕ̃n (r) +
∑︂
mm′

Qmm′ (r) ⟨ϕ̃n|pm⟩⟨pm′ |ϕ̃n⟩
)︄
. (1.54)

The added augmentation charges give the overlap matrix S in the secular
equation Eq. (1.34) the form

S = I +
∑︂
mn

Qmn |pm⟩ ⟨pn| . (1.55)

3State products like ⟨ϕm|ϕn⟩ are generally performed not over all space but inside a radius
that encompasses rc [40].
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The smoothness of ultrasoft pseudo-potentials allows for a much lower energy
cutoff, which improves the computational cost. They can also have much larger
core radii, as much as half of the distance to the nearest neighbor. They are
particularly useful for 3d-metals. Their disadvantage is the difficulty of their
construction, since they require several cutoff radii to be adjusted [36].

1.6.3 Projector-augmented wave method
The PAW method is an all-electron method that usually implements frozen cores
— the core states are represented explicitly, but are calculated in advance for
isolated atoms. The method borrows from LAPW the notion that the interstitial
and atomic regions have different natural basis sets. The Kohn-Sham state |ϕnk⟩
and the pseudo-wavefunction

⃓⃓⃓
ϕ̃nk

⟩︂
are both expressed in the basis of plane waves.

Inside a core radius, |ϕnk⟩ is expanded by the all-electron partial waves |φRlm⟩,
which are expressed in the atomic orbital basis, and the pseudo-wavefunction
is expanded by the pseudo partial waves |φ̃Rlm⟩. The all-electron and pseudo
partial waves are constructed so that the expansion coefficients are the same for
the exact and pseudo-wavefunction:

|ϕnk⟩ =
∑︂
Rlm

cRlm |φRlm⟩ ,⃓⃓⃓
ϕ̃nk

⟩︂
=
∑︂
Rlm

cRlm |φ̃Rlm⟩ . (1.56)

The coefficients in Eq. (1.56) are expressed as the projection of the pseudo-
wavefunction on the projectors |pRn⟩, similar to the ones introduced in Sec. 1.6.2:

cRlm = ⟨pRlm|ϕ⟩. (1.57)
The Kohn-Sham states can then be described in the form

|ϕnk⟩ =
⃓⃓⃓
ϕ̃nk

⟩︂
+
∑︂
Rlm

(|φRlm⟩ − |φ̃Rlm⟩) ⟨pRlm|ϕ̃nk⟩.

The charge density then has an analogous shape to Eq. (1.54):

ρ (r) =
∑︂
nk

⟨ϕnk|r⟩⟨r|ϕnk⟩

=
∑︂
nk

(︄
ϕ̃
⋆

nk (r) ϕ̃nk (r) +
∑︂

Rlml′m′
QRlml′m′ (r) ⟨ϕ̃nk|pRlm⟩⟨pR′l′m′ |ϕ̃nk⟩

)︄
.

Like the projector functions, the augmentation matrix in PAW is in the basis
of atomic orbitals:

QRlml′m′ = ⟨φRlm|φRl′m′⟩ − ⟨φ̃Rlm|φ̃Rl′m′⟩ (1.58)
PAW potentials generally have smaller core radii than ultrasoft pseudo-potentials,

limiting the approximation to a smaller area. This makes the calculation more
accurate, but also requires higher energy cutoffs and larger basis sets, which
makes computation more expensive [37]. The smaller core radius, as well as the
all-electron character of the method, makes PAW particularly useful for core-
sensitive properties such as magnetic moments.
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1.7 Summary
In this chapter, the general DFT formalism was derived from first principles for
the non-relativistic, non-interacting, spinless case. This was followed by descrip-
tions of DFT techniques relevant to our work — the choice of basis, the choice
of xc energy approximation and the addition of spin-dependence and electron-
electron interaction to the formalism.

The DFT process is shown in Fig. 1.1. The names of several methods appear
to the right of the step to which they apply. Self consistency between the electron
density and the energy functional is generated by repeatedly calculating one from
the other until the system’s energy stabilizes. After each iteration, the newly
calculated density is mixed with the existing one using the parameter α in order
to have a smoother descent.

Once the DFT process converges to a solution, it’s possible to calculate the
local density of states (DOS) — the projection of the DFT eigenstates on the
local spin-orbitals, integrated over the momenta so that it’s a function of only
the local spin-orbital and energy:

ρmσ (ϵ) = 1
ΩBZ

∫︂
BZ

dkδ (ϵ− ϵnk) |⟨nk|mσ⟩|2 , (1.59)

with ΩBZ as the Brillouin zone volume. The local DOS employs the single-site
approximation, as it averages away all of the electronic structure outside of the
atom to which it is applied.

In the context of a DFT+ED calculation, the goal of the DFT process is
to generate the impurity’s local Green’s function. The Green’s function (also
known as the correlation function of creation and annihilation operators) contains
information about the energy spectrum and dynamics of a many-body system.
For the non-interacting case, it is expressed in the complex frequency space z as

GDFT
mm′σσ′ (z) = 1

ΩBZ

∫︂
BZ

dk ⟨mσ|
(︃
z + ϵF − Ĥ

DFT (k)
)︃−1

|m′σ′⟩ . (1.60)
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{ϕnk}, Veff, ρ, m

Exc [ρ,m]

Veff [ρ, Exc]

HKS [ρ, Veff]

(HKS − ϵnkS)ϕnk = 0

fnk =
(︁
eβ(ϵnk−ϵF ) + 1

)︁−1

E =
∑︁

nkwk

(︂
ϵnkfnk − 1

βS (fnk)
)︂

∆E < Ebreak ρ

ρ′ (r) =
∑︁

nkwkfnk |ϕnk (r)|2

ρ← α · ρ′ + (1− α) · ρ

LDA, LSDA, GGA

LAPW, FLAPW, PAW

yes

no

Figure 1.1: Flowchart of a DFT algorithm.
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Chapter 2

Methods of many-body physics
for realistic materials

In the previous chapter, LSDA+U was proposed as a method for extending the
DFT formalism to materials with strong interactions. Though LSDA+U is an
effective method for bulk materials, it is not particularly well-suited for describing
the orbital characteristics of magnetic impurities explicitly.

In this chapter another approach will be presented, which employs the Ander-
son impurity model, introduced by Anderson in 1961 [41] in order to qualitatively
describe the behavior of magnetic impurities embedded in metals. A real material
can be modeled by using the impurity’s local DOS found by DFT to construct
the Anderson model’s bath and local Hamiltonian. This is done by requiring that
under the one-electron approximation, the model’s properties will match those of
the DFT output.

Two of the methods of solving AIM are continuous-time quantum Monte Carlo
(CT-QMC) and exact diagonalization. In quantum Monte Carlo, measurement
of observables like the Green’s function is performed by randomly sampling the
state space and summing over the observables in each state. Since we have not
used this method in practice, it is only presented here for reference.

Exact diagonalization is applied to AIM by discretizing discretizing each impu-
rity’s bath to a small number of energy levels and then diagonalizing the resulting
Hamiltonian. The construction of the discrete model is done with the principle
that its behavior should be as close as possible to the continuous model. This is
implemented by fitting the discrete model’s parameters so that the hybridization
functions of both models are as close as possible, where the closeness is defined by
a residual function. Observables are measured in the grand-canonical ensemble
using matrix operations. The computational methods involved in the procedure
are detailed in this chapter.

2.1 Anderson impurity model
The AIM, introduced by Anderson in 1961 [41], describes an impurity atom em-
bedded in a material or adhesed to it using second quantization formalism. The
conduction electron sites are numbered with a single index k (not to be confused
with the plane-wave wavevector k), and the hybridization between them and the
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impurity is limited to one-electron hoppings. The system’s Hamiltonian is

Ĥ imp = Ĥ0 + Ĥ int + Ĥbath + Ĥhyb. (2.1)

The terms in Eq. (2.1) represent, in order, the energy of impurity orbitals,
the spherically symmetric Coulomb interaction of the impurity electrons, the
energy of bath orbitals, and the hybridization between the bath and the impurity
electrons. The operators are

Ĥ0 =
∑︂
mσ

ϵmn
d
mσ, (2.2)

Ĥ int =1
2

∑︂
mm′m′′m′′′σσ′

Umm′m′′m′′′d†
mσd

†
m′σ′dm′′σ′dm′′′σ, (2.3)

Ĥbath =
∑︂
kσ

ϵkn
b
kσ, (2.4)

Ĥhyb =
∑︂
mkσ

(︂
Vmkd

†
mσbkσ + h.c.

)︂
. (2.5)

Where d†
mσ creates an impurity electron in orbital m and spin σ1, b†

kσ creates an
impurity electron with energy ϵk and spin σ, and ndmσ = d†

mσdmσ and nbkσ = b†
kσbkσ

are the number operators for the impurity and bath respectively. The bath is at its
lowest energy state when all and only negative energy levels are occupied, giving
it an effective Fermi energy of 0. For now, the local Hamiltonian is assumed to
be diagonal.

Following the formalism of Gunnarsson et al. [42, 43], the bath will be trans-
formed into a basis that is diagonal in the impurity’s spin-orbital basis, so that
each state is coupled to one of the impurity’s orbitals. The basis’ vectors are

|b (ϵ,m, σ)⟩ = 1
Vm (ϵ)

∑︂
k

Vmkδ (ϵ− ϵk) |kσ⟩ , (2.6)

where

[Vm (ϵ)]2 =
∑︂
k

V 2
mkδ (ϵ− ϵk) . (2.7)

This transformation introduces a continuous energy spectrum to the formal-
ism. Though the expressions in Eq. (2.6) and Eq. (2.7) are still effectively discrete,
it is now possible to treat them as effectively continuous in the limit of very nu-
merous and dense bath states by converting every Dirac delta function to a very
narrow peak.

The Hamiltonian after the transformation is

Ĥ imp =
∑︂
mσ

ϵmn
d
mσ +

∑︂
mkσ

∫︂
dϵnbmσ (ϵ) +

∑︂
mσ

∫︂
dϵ
(︂
Vm (ϵ) d†

mσbmσ (ϵ) + h.c.
)︂

+ 1
2

∑︂
mm′m′′m′′′σσ′

Umm′m′′m′′′d†
mσd

†
m′σ′dm′′σ′dm′′′σ, (2.8)

where nbmσ (ϵ) = b†
mσ (ϵ) bmσ (ϵ) is the continuous occupation of the bath cou-

pled to spin-orbital mσ.
1It is denoted with the character d because we primarily work with d-shell electrons.
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2.2 Density of states and many-body functions
We facilitate the mapping from DFT to AIM through the DFT local density of
states in Eq. (1.59). The diagonal part of the non-interacting, one-particle local
Green’s function in Eq. (1.60) can be rewritten as a Hilbert transform of the
DOS:

GDFT
mσ (ϵ− iη) =

∫︂ ∞

−∞
dϵ′ ρmσ (ϵ′)

ϵ− ϵ′ − iη
, (2.9)

where η is an imaginary additive that prevents a singularity for ϵ = ϵ′ and
provides a way to derive the DOS analytically from the Green’s function:

lim
η→0

(Im [Gmσ (ϵ− iη)]) = lim
η→0

(︄∫︂ ∞

−∞
dϵ′ρmσ (ϵ′) η

(ϵ− ϵ′)2 + η2

)︄
= πρmσ (ϵ) ,

(2.10)

ρmσ (ϵ) = lim
η→0

(︃
− 1
π

Im [Gmσ (ϵ− iη)]
)︃
. (2.11)

The non-interacting local Green’s function of the AIM is the resolvent of the
interaction-free model, measured in the local spin-orbitals:

GAIM
mσ (z) = ⟨mσ|

(︂
z − Ĥ0 − Ĥbath − Ĥhyb

)︂−1
|mσ⟩ (2.12)

In order to work with a Hamiltonian matrix limited to the local states, the
non-interacting Hamiltonian Ĥ0 + Ĥbath + Ĥhyb will be downfolded to the local
basis. The resulting form of the diagonal Green’s function is

GAIM
mσ (z) = ⟨mσ|

(︂
z − Ĥ0 − ∆̂ (z)

)︂−1
|mσ⟩ = 1

z − ϵm − ∆mσ (z) . (2.13)

∆̂ (z) is the hybridization function, which is expressed as a matrix in the
local basis for every given z, and ∆mσ (z) are its diagonal elements. It represents
the shift in impurity energy levels induced by the bath. It can be derived for a
discrete model by expressing the entire Hamiltonian as a block matrix, calculating
Eq. (2.12) explicitly and bringing it to the form of Eq. (2.13). In the case of a
continuous bath, the hybridization function is

∆̂ (z) = Ĥ
†
hyb

(︂
z − Ĥbath

)︂−1
Ĥhyb =

∫︂
dϵ′ [Vmσ(ϵ′)]2

z − ϵ′ . (2.14)

The self-consistency between DFT and AIM is manifested by equating the
Green’s functions in Eq. (2.9) and Eq. (2.13):

GDFT
mσ (z) = GAIM

mσ (z) (2.15)
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This equation allows to construct an effective hybridization function that cor-
responds to a given DOS, by substituting GDFT

mσ (z) into Eq. (2.13):

∆mσ (z) = z − ϵm −
[︂
GDFT
mσ (z)

]︂−1
(2.16)

We expect the hybridization function to approach 0 when the absolute value
of z is very large. The conditions that this expectation imposes on the DOS can
be found by following Ref. [44] and expanding the Green’s functions in the limit
|z| → ∞ using the geometric series

1
z − ϵ

=
∞∑︂
n=0

ϵn

zn+1 . (2.17)

For the DFT-derived Green’s function, the expansion is.

GDFT
mσ (z) =

∞∑︂
n=0

1
zn+1

∫︂ ∞

−∞
dϵ · ϵnρmσ (ϵ) . (2.18)

For the AIM Green’s function, it is

GAIM
mσ (z) =

∞∑︂
n=0

1
zn+1 (ϵm + ∆mσ (z))n . (2.19)

In order to get a full expansion of GAIM
mσ (z), we need to expand the hybridiza-

tion function as well, using the explicit expression in terms of the AIM parameters
as appearing in Eq. (2.49). Nevertheless, since the first term of the hybridization
function’s expansion is on the order of z−1 as well, it has no terms before the
Green’s function’s third order.

By equating Eq. (2.18) and Eq. (2.19) up to the second order, we get the
conditions

∫︂ ∞

−∞
dϵρmσ (ϵ) = 1 (2.20)

and ∫︂ ∞

−∞
dϵ · ϵρmσ (ϵ) = ϵm. (2.21)

The first condition imposes normalization on the DOS. The second gives the
criteria for setting the AIM’s spin-orbital energies - each should be the statistical
center of mass of the respective projected DOS.

The FLAPW method is sensitive to the choice of the muffin-tin radius, since
part of the impurity’s electronic density remains outside of it. As a result, the to-
tal sum of states as calculated by the FLAPW method is expected to be less than
1. Each spin-orbital will thus be manually normalized by dividing it by the inte-
gral Amσ. The integrals Amσ will be later used to re-normalize the hybridization
function.
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The occupation of a spin-orbital in the limit of low temperatures is the integral
of the DOS over energy, weighed by the Fermi-Dirac function:

nmσ =
∫︂ ∞

−∞
dϵf (ϵ) ρmσ (ϵ) . (2.22)

For low temperatures, the occupation is simply the integral up to the Fermi
energy:

nmσ ≈
∫︂ ϵF

−∞
dϵρmσ (ϵ) . (2.23)

2.3 Crystal field splitting and spin-orbit cou-
pling terms

The electronic structure of an individual atom in vaccum is usually described in
the basis of atomic orbitals, where the angular part of each orbital is a Laplace
spherical harmonic. The advantage of this basis is that each of its states is de-
scribed uniquely by the quantum numbers {n, l,m}. However, in quantum chem-
istry it is customary to work in the basis of real harmonics, since computation
with real numbers is considerably less expensive than with complex numbers.
The real harmonics are sometimes called cubic harmonics, since their shape is
relatively simple to describe in a Cartesian coordinate system.

A d valence shell (i.e. with azimuthal quantum number l = 2) has five orbitals.
Its spherical harmonics are

⎛⎜⎜⎜⎜⎜⎜⎝
Y −2

2
Y −1

2
Y 0

2
Y 1

2
Y 2

2

⎞⎟⎟⎟⎟⎟⎟⎠ =
√︄

15
8π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x−iy)2

2r2
(x−iy)z
r2

3z2−r2
√

6r2

− (x+iy)z
r2

(x+iy)2

2r2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.24)

In the basis of cubic harmonics, the orbitals are denoted as

m ∈
{︂
yz, xz, xy, x2 − y2, 3z2 − r2

}︂
. (2.25)

The transition from spherical harmonics Y m
l to cubic harmonics Km

l is done
using the following transformation matrix [45]:

⎛⎜⎜⎜⎜⎜⎜⎝
Kyz

2
Kzx

2
Kxy

2

Kx2−y2

2
K3z2−r2

2

⎞⎟⎟⎟⎟⎟⎟⎠ =
√︄

15
4π

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yz
r2
zx
r2
xy
r2

x2−y2

2r2
3z2−r2

2
√

3r2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i√
2

i√
2

1√
2 − 1√

2
i√
2 − i√

2
1√
2

1√
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
Y −2

2
Y −1

2
Y 0

2
Y 1

2
Y 2

2

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.26)

In the absence of external potentials, the energies of all orbitals of the same
shell are equal. An atom embedded in a crystal, however, experiences a potential

31



induced by the electric field of the surrounding atoms which breaks the degeneracy
of the valence states. The contribution of the crystal field to the energy of each
orbital can be evaluated by measuring the potential inside the muffin-tin sphere.
The potential from the surrounding atoms at positions Rj and charges qj is [46]

v (r) = e
∑︂
j

qj
|r − Rj|

.

where e is the electron charge. When expanded around r = 0, the potential
of an octahedral ligand structure with a distance is

voct (r) = 35qoct

4a5

(︃3
5r

4 − x4 − y4 − z4
)︃
,

where all ligand atoms are of charge qoct and are at a distance of a from the
central atom [45, 46]. A cubic ligand structure with the same charges and a side
length of 2a has a potential of a similar shape but inverted sign [45]:

vcube (r) = −8
9voct (r) .

The crystal field contribution to the energy of each orbital is

εml = Ir

∫︂
MT

drvcube (r) |Km
l (r)|2 , (2.27)

where Ir is the part of the integral which depends on the radial component. As
can be seen, for the cubic harmonics Kyz

2 , Kzx
2 and Kxy

2 , the integrals are identical
up to coordinate change. Performing the calculation for Kx2−y2

2 andK3z2−r2

2 shows
that their energies are equal too [45, 46]. Cubic symmetry thus splits the orbitals
into two groups — t2g for {yz, xz, xy} and eg for {x2 − y2, 3z2 − r2}.

The local Hamiltonian described in Eq. (2.1) can now be extended to include
the energy splitting induced by the crystal field ∆CF

mm′ , as well as the spin-orbit
coupling term ξl · s:

Ĥ0 =
∑︂

mm′σσ′

(︂
ϵdδmm′ + ∆CF

mm′ + ξl · s
)︂
d†
mσdm′σ′ . (2.28)

The spin vector s is

s = 1
2
∑︂
mσσ′

d†
mσσ⃗σσ′dmσ′ , (2.29)

with σ⃗ from Eq. (1.26).
In a system with cubic symmetry, the orbital vector l = lt2g + leg consists of

separate parts for t2g and eg orbitals [47]:

lt2g = i
∑︂
σ

⎛⎝ ∑︂
m′m′′∈{yz,xz,xy}

ϵmm′m′′d†
m′σdm′′σ

⎞⎠ , (2.30)

leg = 1
2
∑︂
σ

⎛⎝ ∑︂
mm′∈{x2−y2,3z2−r2}

d†
mσσ⃗mm′dm′σ

⎞⎠ , (2.31)
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where ϵmm′m′′ is the Levi-Civita symbol, and σ⃗mm′ is the Pauli matrix vector
applied to the two eg levels instead of two spins.

The spin-orbit coupling strength ξ is calculated using the LDA solution inside
the muffin-tin radius [48]:

ξ =
∫︂ RMT

0
dr · r 1

2 (Ml (r) c)2
dV (r)

dr (ul (r))2 , (2.32)

where V (r) is the atomic potential, ul (r) are the radial solutions of the Kohn-
Sham-Dirac scalar-relativistic equations, and Ml (r) = m+ El−V (r)

2c2 is the relativis-
tic mass with El as the eigenenergy of ul (r).

2.4 Continuous-time quantum Monte Carlo
Solving the Anderon impurity model entails finding the full local Green’s function.
This is a challenging task, since intra-d-shell interactions in the impurity greatly
complicate the structure of the Hamiltonian, and prevent the sort of analytical
simplifications performed in Sec. 2.2. One of the most common approaches to
deal with the complexity is continuous-time quantum Monte Carlo [49]. It is
applicable to systems with arbitrary bath size, but its quality goes down at low
temperatures.

In general, a Monte Carlo algorithm calculates the value of an observable in a
thermodynamic system using a representative sampling of the system’s thermo-
dynamic ensemble, obtained by stochastically transitioning from state to neigh-
boring state over the course of many steps. In the case of continuous-time quan-
tum Monte Carlo, the ensemble in question is the sum of all Feynman diagrams
contributing to the interacting imaginary-time Green’s function of the impurity.

The thermodynamic ensemble of the system is encoded in its partition func-
tion, which can be expressed as

Z = Tr
[︃
T̂ τe

−
∫︁ β

0 dτĤ(τ)
]︃
. (2.33)

The parameter τ represents imaginary time — an analytical continuation of
time into the imaginary number line, so that the thermodynamic beta is β ≡ −iτ .
In the expression above, T̂ τ is the imaginary time-ordering operator, and Ĥ (τ) is
the system’s Hamiltonian in the interaction picture. The Hamiltonian is split into
two parts — the exactly solvable, time-independent Ĥ0 and the time-dependent
Ĥ1:

Ĥ (τ) = Ĥ0 + Ĥ1 (τ) (2.34)

There are multiple possible ways to split the Hamiltonian into Ĥ0 and Ĥ1, de-
pending on the physical properties of the system, such as the size of the impurity,
the strength of the interaction parameters and the temperature. Out of those, the
algorithm most applicable for strongly-correlated single-impurity systems and to
relatively low temperatures is the hybridization expansion (CT-HYB), where Ĥ0
describes a bath and an interacting impurity decoupled from each other and Ĥ1 is
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the impurity-bath coupling term. Though the bath is continuous, it is discretized
for the purposes of the calculation. The Hamiltonian’s parts are thus

Ĥ0 = Ĥ loc + Ĥbath (2.35)

and

Ĥ1 (τ) =
∑︂
mk

(︂
Vmkd

†
mσ(τ)bmkσ (τ) + V ⋆

mkdmσ(τ)b†
mkσ (τ)

)︂
. (2.36)

The full derivation of the CT-HYB partition function appears in Ref. [49].
The derivation consists of taking the time-independent part out of the integral,
expressing the time-dependent exponent as a Taylor series, time-ordering each
term in the series, cancelling the terms where the creation and annihilation op-
erators aren’t paired, separating the bath operators from the impurity operators
and integrating the bath operators out. Additionally, since the bath-impurity
coupling is diagonal in the impurity’s spin-orbital basis, the partition function
can be factorized into separate partition functions for each orbital. The resulting
partition function takes the form

Z =
∏︂
mσ

Zm, (2.37)

where the partition function of each separate orbital is

Zmσ = Zbath det [∆m]

×
∞∑︂
n=0

∫︂∫︂∫︂∫︂
dτ1 · · · dτndτ ′

1 · · · dτ ′
nTr

[︂
T̂ τe

−βĤlocdmσ(τn)d†
mσ(τ ′

n) · · · dmσ(τ1)d†
mσ(τ ′

1)
]︂
.

(2.38)

Zbath is the partition function of the bath. det [∆m] is the determinant of the
matrix ∆ whose elements are the imaginary time hybridization functions

∆m
ij = ∆̃m (τi − τj) , (2.39)

generalized to the non-diagonal case from Eq. (2.49) and transformed, so that

∆̃m (τ) = 1
β

∑︂
n

eiωnτ
∑︂
k

|Vmk|2

iωn − ϵk
=
∑︂
k

|Vmk|2

eβϵk + 1×

⎧⎨⎩−e−ϵk(τ−β) 0 < τ < β

e−ϵkτ −β < τ < 0
.

(2.40)

Each of the configurations that are summed and integrated over in Eq. (2.38)
represents the imaginary time evolution of the impurity, with ladder operators
adding and removing particles. Each operator pair dmσ(τn)d†

mσ(τ ′
n) can be repre-

sented by a segment contained in the periodic line [0, β), with no two segments
overlapping. Each term of the interaction only affects imaginary time intervals
in which all involved impurity electrons are present.
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The most widely used updating method in CT-QMC is the Metropolis-Hastings
algorithm, a relatively simple method that preserves detailed balance [50, 51].
The details of the methods are described in Appendix A.2.

The Green’s function is calculated in the imaginary time domain:

Gmm′σσ′ (τA − τB) = −
⟨︂
T̂ τdmσ (τA) d†

m′σ′ (τB)
⟩︂
Seff

= −Zbath det [∆m]
∑︂
n,{i}

∫︂∫︂∫︂∫︂
dτ1 · · · dτ ′

n

×Tr
[︂
T̂ τe

−βĤlocdmσ (τA) d†
m′σ′ (τB) din(τn)d†

in(τ ′
n) · · · di1(τ1)d†

i1(τ ′
1)
]︂
.

(2.41)

Since an n-order configuration with the added points at τA and τB is equivalent
to an n + 1-order configuration where those points are part of the ensemble,
Green’s function can be measured by taking two of the configuration’s points,
designating them τA and τB and treating the calculated trace as a contribution
to the value of Gmm′σσ′ (τA − τB).

2.5 Exact diagonalization
The exact diagonalization model consists of an impurity with Nd spin-orbitals,
each of which is coupled to Nk bath orbitals. The total number of spin-orbitals
in the system is Ntot = Nd (Nk + 1).

The bath of Eq. (2.8) will be discretized — the continuous energy spectrum
ϵ will be replaced by Nk discrete energy levels ϵmk, coupled to the m impurity
orbital by amplitude Vmk. The crystal field term will be assumed to be diagonal
and included in the orbital energy ϵm. The SOC term will be neglected, due to
the difficulty of extending the fitting (which will be described further on) to a
non-diagonal local Hamiltonian. The new Hamiltonian is

Ĥ imp =
∑︂
mσ

ϵmn
d
mσ

+ 1
2

∑︂
abcdσσ′

Uabcdd
†
aσd

†
bσ′dcσ′ddσ (2.42)

+
∑︂
mkσ

ϵmkn
b
mkσ +

∑︂
mkσ

(︂
Vmkd

†
mσbmkσ + h.c.

)︂
. (2.43)

An example of the model’s structure is depicted in Fig. 2.1, for the case of an
impurity in a potential with cubic symmetry and 4 bath orbitals. Each rectangle
represents a two-electron site. Each impurity orbital is coupled to the four sites
in the respective bath column. In this example, there are zero bath excitations
— all and only the bath states below the Fermi energy are occupied.

The energies and amplitudes of the discrete bath will be chosen to make
the discrete model represent the behavior of the continuous model’s impurity as
accurately as possible. Since the effect of the bath on the impurity is encoded
entirely in the hybridization function, the discrete model will be built by fitting
its hybridization function to the hybridization function of the continuous model.
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Figure 2.1: Illustration of the discrete AIM with a 3d-shell impurity in the basis
of cubic harmonics, where each impurity orbital is coupled to four bath sites. The
depicted configuration has Ntot = 28 with no bath excitations.

The fitting will be performed in the Matsubara frequency space ωn = π
β

(2n+ 1),
where β is the inverse temperature. Unlike the real energy space, where the
discrete model hybridization function has singularities at each energy level and
the continuous model hybridization function is non-smooth if it is derived from a
non-smooth DOS, the Matsubara frequency hybridization function is smooth and
continuous over its entire domain. The hybridization function is derived from the
DOS in the manner shown in Sec. 2.2.

Gmσ (iωn) =
∫︂ ∞

−∞
dϵ ρmσ (ϵ)
iωn − ϵm

, (2.44)

∆mσ (iωn) = iωn − ϵm −G−1
mσ (iωn) . (2.45)

If the given DOS has been normalized as shown in SSec. 2.2 for the purpose
of calculating the hybridization function, the hybridization function will be de-
normalized, so that its analytical continuation to real frequencies will have a real
part which corresponds to the original DOS. If the normalized DOS is ρ′

mσ ≡
ρmσ (ϵ) /Amσ, the effect of the normalization on the Green’s function is

G′
mσ (iωn) =

∫︂ ∞

−∞
dϵ ρ′

mσ (ϵ)
iωn − ϵ− ϵm

= Gm (iωn)
Amσ

. (2.46)

The effect is similar in real frequencies due to the analytical continuity of the
Green’s function over the two domains. The effect on the real frequency hy-
bridization function is thus

Im [∆′
mσ (ϵ)] = −Im

[︂
[G′

mσ]−1 (ϵ)
]︂

= −AmσIm
[︂
G−1
m (ϵ)

]︂
= AmσIm [∆m (ϵ)] .

(2.47)
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For the same analytical continuity argument as with the Green’s function, the
effect can be generalized back to Matsubara frequencies. The de-normalization
process is therefore

∆mσ (iωn) = ∆′
mσ (iωn)
Amσ

. (2.48)

2.5.1 Fitting
The Matsubara frequency hybridization function of the discrete Anderson model
in Eq. (2.43) is

∆̃mσ (iωn) =
Nk∑︂
k=1

V 2
mk

iωn − ϵmk
. (2.49)

The fitting is done by minimizing the residual function

fm ({ϵkm, Vkm}) =
Nω∑︂
n=1

1
ωγn

⃓⃓⃓
∆̃mσ (iωn) − ∆mσ (iωn)

⃓⃓⃓2
. (2.50)

The factor 1
ωγ

n
is used to attenuate the significance of the higher frequencies.

The higher γ is, the more the minimization neglects the hybridization function’s
tail. We will always set γ = 1

2 .
The minimization is done using the Limited-memory, bounded Broyden-Fletcher-

Goldfarb-Shanno method (L-BFGS-B) [52, 53] in the space of parameters {ϵmk, Vmk}.
In the algorithm, the direction of the next iteration’s step is determined by the
gradient of the residual function. In the Fortran implementation we used, the
function’s gradient needs to be supplied manually per step. It was therefore cal-
culated analytically as a function of iωn, ∆m (iωn) and {ϵmk, Vmk} from Eq. (2.49)
and Eq. (2.50). It is expressed as

g = ∇f ({ϵk, Vk}) =
[︄
∂f

∂ϵk
,
∂f

∂Vk

]︄
, (2.51)

where

∂f

∂ϵk
= −

Nω∑︂
n=1

2
√
ωn

⎛⎝Re
[︂
∆ − ∆̃

]︂ ∂Re
[︂
∆̃
]︂

∂ϵk
+ Im

[︂
∆ − ∆̃

]︂ ∂Im
[︂
∆̃
]︂

∂ϵk

⎞⎠ , (2.52)

∂f

∂Vk
= −

Nω∑︂
n=1

2
√
ωn

⎛⎝Re
[︂
∆ − ∆̃

]︂ ∂Re
[︂
∆̃
]︂

∂Vk
+ Im

[︂
∆ − ∆̃

]︂ ∂Im
[︂
∆̃
]︂

∂Vk

⎞⎠ . (2.53)

The analytical derivatives of ∆̃ are

∂∆̃
∂ϵk

= V 2
k

(iωn − ϵk)2 = V 2
k

2iωnϵk − ϵ2
k − ω2

n

, (2.54)

∂∆̃
∂Vk

= 2Vk
iωn − ϵk

. (2.55)
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2.5.2 Diagonalization and calculation of observables
The complete Fock space of the system whose Hamiltonian is Eq. (2.43) is spanned
by all possible occupation configurations of the system’s Ntot sites. If we sort the
configurations by occupation number N and make a separate space for each N ,
we can describe the Fock space as the direct sum of Ntot +1 Hilbert spaces, where
the N -th Hilbert space is spanned by all of the possible ways N electrons can be
distributed across Ntot sites. A method for truncating the dimensionality of each
Hilbert space is presented in Sec. 2.5.4.

The eigenstates of Ĥ imp in the Hilbert space N will be denoted as |Nα⟩,
where α is the eigenstate index. The eigenvalues will be denoted as ENα, so
that Ĥ imp |Nα⟩ = ENα |Nα⟩. Observables are calculated in the grand-canonical
ensemble, as a sum over the weighted averages in each sector:

⟨︂
Ô
⟩︂

= 1
Z

∑︂
N,α

e−βENα ⟨Nα| Ô |Nα⟩ , (2.56)

where β ≡ 1
kBT

is the inverse temperature and Z = ∑︁
N,α e

−βENα is the grand
partition function. The chemical potential is included in the energy ENα.

The Green’s function is calculated in the grand-canonical ensemble as the sum
of the retarded and advanced Green’s functions [44]. The diagonal elements of
the Green’s function are

Gmmσσ (z) = 1
Z

∑︂
N,α

e−βENα ([G>
Nα (z)]mmσσ + [G<

Nα (z)]mmσσ) , (2.57)

where

[G>
Nα (z)]mmσσ = ⟨Nα| dmσ

(︂
z + ENα − Ĥ imp

)︂−1
d†
mσ |Nα⟩ , (2.58)

[G<
Nα (z)]mmσσ = ⟨Nα| d†

mσ

(︂
z − ENα + Ĥ imp

)︂−1
dmσ |Nα⟩ . (2.59)

The Lehmann representation of Green’s function describes it in terms of tran-
sition amplitudes between different eigenstates.

G>
mmσσ (z) =

∑︂
Nα,N ′α′

⃓⃓⃓
⟨Nα| d†

mσ |N ′α′⟩
⃓⃓⃓2 e−βENα + e−βEN′α′

z + ENα − EN ′α′

=
∑︂
Nαα′

⃓⃓⃓
⟨Nα| d†

mσ |N − 1, α′⟩
⃓⃓⃓2 e−βENα + e−βEN−1,α′

z + ENα − EN−1,α′
. (2.60)

The density of states is calculated using Eq. (2.11). In the Lehmann repre-
sentation, it acquires the form

ρmσ (ϵ) =
∑︂
Nαα′

⃓⃓⃓
⟨Nα| d†

mσ |N − 1, α′⟩
⃓⃓⃓2 (︂

e−βENα + e−βEN−1,α′
)︂
δ (ϵ+ ENα − EN−1,α′) .

(2.61)

In this form it is apparent that the spectral density is made of resonance peaks
between eigen-energies in neighboring sectors. The resonance peaks are very
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dense, which makes the DOS a continuous spectrum at high temperatures, when
broadened by the imaginary additive in Eq. (2.11). For very low temperatures
(β ≫ 1) all eigen-energy contributions to Eq. (2.61) fall off except for the ground
state energies, which makes the resonance peaks between them sparse enough to
be visible.

2.5.2.1 Discrete domain

The energy domain of the computer model is a discrete collection of values that
are arranged uniformly between the minimum and maximum energy (which are
opposites) with a resolution of ∆ϵ. An imaginary additive of η creates a peak
with a full width at half-maximum (FWHM) of 2η: with f (ϵ) ≡ Im [1/ (ϵ− iη)]
as a single broadened peak around ϵ = 0, the two energies at half maximum are
ϵ0, where

f (ϵ0) != f (ϵ)
2 ,

Im
[︄

1
ϵ0 − iη

]︄
= η

ϵ2
0 + η2

!= 1
2η ,

ϵ0 = ±η.

A discretized integral over f (ϵ) diverges for imaginary additives that approach
zero. In order to prevent the integral from diverging, the imaginary additive will
not be set to a smaller value than π∆ϵ.

2.5.3 The Lanczos method
The diagonalization of each sector’s Hamiltonian matrix is performed using the
implicitly restarted Lanczos method implemented in the Arnoldi Package (ARPACK) [44,
54]. The Lanczos method is a special case of Arnoldi iteration for Hermitian ma-
trices, used to approximate the extremal (largest or smallest; in our case, the
latter) eigenvalues of a matrix. It uses an iterative process to transform the
Hamiltonian matrix H into a tridiagonal matrix T, which can then be easily
diagonalized.

The tridiagonalization process starts by setting up an arbitrary normalized
Lanczos vector v1 with a non-zero overlap with every eigenvector of H. Each
subsequent Lanczos vector is generated by multiplying H by the previous Lanczos
vector, orthogonalizing the result to the previous Lanczos vectors and normalizing
it. After n iterations, the result is the the unitary matrix V with vectors v1 . . .vn
and the tridiagonal matrix T which fulfills

T = V†HV.

The diagonal and near-diagonal elements of T are produced during the iter-
ative process [55].

The implicitly restarted Lanczos method is an algorithmic variant of Lanczos
method which reduces the storage and computational requirements. It does so
by periodically compressing the size of the Krylov space spanned by vectors vi to
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N full Nexc
1 2 3 4 5

26 1.22 · 1014 7650 1.4 · 106 1.7 · 107 1.53 · 107 1.09 · 108

27 1.08 · 1014 5220 1.03 · 106 1.31 · 107 1.22 · 107 8.86 · 107

28 8.87 · 1013 2645 6.07 · 105 8.42 · 106 8.29 · 106 6.27 · 107

29 6.73 · 1013 930 2.77 · 105 4.42 · 106 4.76 · 106 3.83 · 107

30 4.71 · 1013 201 9151 1.84 · 106 2.26 · 106 2 · 107

Table 2.1: Dimensions of the full and reduced Hilbert space for Nd = 10, Nb = 20
and Nb = 20, for selected values of N and Nexc.

a smaller collection of Lanczos vectors, so that their orthonormality is conserved
and the components with the desired quality (in our case — small eigenvalues)
are enhanced. This process is known as implicit restarting, and is performed
using a truncated form of the implicitly shifted QR scheme [54].

2.5.4 Reduced Fock space
The Hilbert space of a system with Ntot sites occupied by N electrons is spanned

by
(︄
Ntot
N

)︄
states. For all models except for the simplest ones this number can

get exceedingly large — a AIM with a d valence shell and a 4-peak discrete
bath (50 states) populated by 28 electrons, for example, has a dimension of 88.7
trillion. In order to make the Hilbert space more manageable, we employ the
Gunnarsson-Schoenhammer expansion, which includes only bath fillings that are
likely to contribute significantly to the grand-canonical potential [56, 44]. The
reduced Hilbert space is expressed as

HN [Nexc] =
{︂
|fnbpbq⟩ , 0 ≤ p+ q ≤ Nexc, n+ p− q = N −Nb

}︂
, (2.62)

where n is the number of electrons in the impurity valence shell, p is the
number of bath electrons above the Fermi energy and q is the number of bath
holes below the Fermi energy and Nb is the number of bath states below Fermi
energy. The total number of excitations and holes in the bath is capped by the
parameter Nexc. With Nb = Ntot −Nimp −Nb as the number of bath sites above
Fermi energy, the dimensionality of the reduced Hilbert space is

dim [HN [Nexc]] =
∑︂

p+ q ≤ Nexc
n+ p− q = N −Nb

(︄
Nimp
n

)︄(︄
Nb

p

)︄(︄
Nb

q

)︄
, (2.63)

where
(︄
N
n

)︄
≡ N !

n!(N−n)! is the binomial coefficient.

As an example, the dimensions of full and reduced Hilbert spaces for selected
electron occupations were calculated and are shown in Tab. 2.1. The system
chosen for the calculations has 10 impurity levels and a bath of 40 levels, half of
which are below Fermi level.
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2.6 Summary
In this chapter, the formalism of multi-orbital AIM was presented. The method
of constructing the model from the DFT output was shown in detail, justified by
the requirement that the Green’s function of the impurity model will match the
Green’s function of DFT. The orbital structure of a d valence shell in a crystal
field was described. QMC was described in brief, as an alternative to ED. The
methods of diagonalization and calculation of observables were shown, as well as
the Fock space’s representation in the software.

There are remaining implementation details that were not covered in this
chapter — the choice of Nk, Nexc and double-counting term in AIM. Those will be
described in the next chapter, as part of the theory’s application to real materials.
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Chapter 3

Application of DFT+ED to
materials with magnetic 3d metal
impurities

In this chapter, we use the DFT+ED method described in Sec. 2.5 to examine
the properties of strongly correlated systems with cobalt impurities. In the first
section, we study a cobalt impurity in bulk copper. We test our method by setting
up a system with similar parameters to the DFT+QMC calculations in Ref. [57]
(room temperature and zero SOC) and compare the results. We then perform
diagonalization on a low-temperature system, with and without SOC, in order to
study the behavior of the ground states and lowest excitations.

In the second section, we apply our method to study a cobalt adatom on a
copper substrate. We detect a state where a resonance peak occurs, and spin-
orbit coupling creates a singlet ground state, indicating a Kondo effect. We then
calculate the differential conductance and find it to be in agreement with exper-
imentally observed scanning tunneling spectroscopy (STS) measurements [58].

In the third section, we study a cobalt adatom situated on a Cu2N layer on top
of a copper substrate. We find a conducting mixed ground state with resonance
between a singlet and a doublet, indicating a Kondo effect. The energy gaps
between each sector’s ground-state energy and the first excited energy are used
to construct an effective model of the system’s anisotropy, which is then used to
sketch the system’s differential conductance. We then use the method to study
the effect of a strong external magnetic field on the system, and compare the
results to X-ray magnetic circular dichroism (XMCD) measurements.
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3.1 Kondo effect
AIM’s main early success was the modeling of the Kondo effect — the scattering
of conduction electrons by magnetic impurities, which contributes to the elec-
tric resistivity at low temperatures and converts its characteristic monotonically
increasing shape into a convex shape with a resistance minimum at a positive
temperature. The effect was explained by Kondo in 1964 [59] — he derived the
magnetic impurity’s logarithmic contribution to resistivity by constructing an
Anderson-like model (the Kondo model) and applying third-order perturbation
theory to AIM.

The Kondo model is single-impurity and spin-dependent. The derivation of
Eq. (3.2) from the ground state and first excitation of the discrete AIM is shown
in Appendix A.3. Its Hamiltonian is [3]

ĤK =
∑︂
kσ

ϵknkσ +
∑︂
kk′
Jkk′skk′Sd. (3.1)

The second term represents the spin-impurity exchange interaction. The spin
operators of the bath and impurity respectively are skk′ ≡ ∑︁

σσ′ b†
kσσ⃗σσ′bk′σ′ and

Sd ≡ ∑︁
σσ′ d†

σσ⃗σσ′dσ′ . In the case of a spin parallel to the z-axis, the exchange
interaction is simplified so that

ĤK =
∑︂
kσ

ϵknkσ +
∑︂
kk′
Jkk′

(︂
nd↑ − nd↓

)︂ (︂
b†
k↑bk′↑ − b†

k↓bk′↓
)︂
. (3.2)

The coefficient Jkk′ represents the exchange interaction strength between the
impurity and bath states k and k′. In Appendix A.3, its value is shown to be

Jkk′ = V ⋆
k Vk′

(︃ 1
ϵd + U − ϵk′

+ 1
ϵk − ϵd

)︃
, (3.3)

where ϵd is the single-impurity orbital energy and U is the impurity’s electron
interaction.

The sign of Jkk′ determines the nature of the exchange interaction. If Jkk′

is positive, the anti-parallel spin alignment is energetically preferrable, and the
coupling anti-ferromagnetic. In that case, the system’s lowest energy state is a
singlet.
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Figure 3.1: Model CoCu15 supercell, consisting of two unit cells.
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Figure 3.2: The projected t2g and eg orbital components of the LDA DOS (top)
and the LDA hybridization function (bottom).

3.2 A cobalt atom in bulk copper

3.2.1 Setup, DFT and fitting
Cobalt is a transition metal whose incomplete shell is 3d, a shell with an angular
momentum number of L = 2 which holds 10 spin-orbital states. When coupled to
a copper crystal with a fcc structure, the 3d orbitals become diagonal in the basis
of cubic harmonics m ∈ {yz, xz, xy, x2 − y2, 3z2 − r2}, which was introduced in
Sec. 2.3.

The cobalt impurity in bulk copper is modeled as CoCu15, a 2 × 2 × 2 fcc
supercell of copper with a single atom substituted with a cobalt atom, as depicted
in Fig. 3.1. The cubic crystal field splits the orbitals into two blocks, the triply-
degenerate t2g (for yz, xz and xy) and the doubly-degenerate eg (for x2 − y2 and
3z2 − r2), where the eg block has a higher energy [45].

45



-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0 10 20 30 40 50 60

Im
Δ

(i
ω

n)
 (

eV
)

t2g

-0.5

-0.4

-0.3

-0.2

-0.1

0 10 20 30 40 50 60

eg

DFT
III
IV

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

0 10 20 30 40 50 60

R
eΔ

(i
ω

n)
 (

eV
)

n

 0

 0.1

 0.2

0 10 20 30 40 50 60

n

Figure 3.3: Fit of the discrete bath impurity model Eq. (2.49) to the DFT hy-
bridization function Eq. (2.45) via minimization of the function in Eq. (2.50),
using both sets of bath parameters in Tab. 3.1.

The material’s electronic density was calculated using an implementation of
the FLAPW method with LDA without spin-orbit coupling, as shown in Chap-
ter 1 . The DOS for each spin-orbital was found by integrating the electronic
density in the MT-sphere of the impurity. The upper cutoff of the DOS was
chosen to be 6 eV. Fig. 3.2 shows the projected DOS for t2g and eg orbitals, as
well as the imaginary part of the real-energy hybridization function.

The DOS of each orbital was normalized so that its total integral is equal to 1,
in accordance with the condition in Eq. (2.20). This ensures that the occupation
of each spin-orbital, which is the integral of the DOS up to the Fermi energy, can
never exceed 1. The calculated occupations of the spin-orbitals are nt2g = 0.772
and neg = 0.793. The total occupation is 7.804.

The DOS was used to construct the SIAM Hamiltonian of the material, which
is shown in Eq. (2.43). The crystal field terms were found to be ∆CF

t2g
= 0.039 eV

and ∆CF
eg

= −0.059 eV. Parameters ϵmk and Vmk were obtained by the fitting
procedure described in Sec. 2.5, with Nω = 637. The parameter Nk defines the
number of “bath” orbitals included in the discrete model: 30 spin-orbitals for
Nk = 3 (model III), and 40 spin-orbitals for Nk = 4 (model IV). The fitting of
the hybridization function is shown in Fig. 3.3, and the resulting parameters are
shown in Tab. 3.1. The number of bath sites below Fermi energy for models III
and IV is 10 and 20 respectively.

The interaction term of the impurity Hamiltonian was parameterized with the
Slater integrals F0 = 4.0 eV, F2 = 7.75 eV and F4 = 4.85 eV, which correspond to
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m k ϵmk (eV) Vmk (eV)

t2g

1 -2.062 1.150
2 0.316 0.407
3 3.655 1.508

eg

1 -2.337 1.077
2 0.022 0.146
3 1.395 0.790

m k ϵmk (eV) Vmk (eV)

t2g

1 -2.320 1.172
2 -0.053 0.136
3 0.432 0.476
4 3.955 1.511

eg

1 -2.693 1.104
2 -0.132 0.206
3 0.252 0.280
4 2.306 0.830

Table 3.1: Values of the bath parameters ϵmk and Vmk obtained by fitting the
hybridization function obtained from DFT, for models III (left) and IV (right).

µ (eV) N ∆N nd S L J Zt2g Zeg

DFT+ED, III
26 21.93 0.29 7.47 1.13 3.01 3.35 0.06 0.25
27 22.31 0.50 7.77 0.99 2.89 3.18 0.10 0.23
28 23.67 0.47 8.17 0.80 2.66 2.88 0.31 0.34

DFT+ED, IV
26 28.02 0.17 7.46 1.14 3.03 3.36 0.12 0.29
27 28.71 0.49 7.77 0.99 2.90 3.18 0.30 0.23
28 29.92 0.27 8.20 0.79 2.64 2.86 0.43 0.40

QMC[57]
26 7.51 1.02 0.38 0.39
27 7.78 0.92 0.42 0.47
28 8.06 0.82 0.48 0.56

Table 3.2: The total occupation N , fluctuation ∆N =
√︂

⟨N2⟩ − ⟨N⟩2, impurity
occupation nd, impurity spin S, orbital L and total moments J and quasiparticle
weights Zt2g and Zeg for each µ, at a temperature of β = 40 eV−1, calculated by
exact diagonalization and compared to the QMC calculations from Ref. [57].

an intra-orbital repulsion U = 4.0 eV and to an exchange interaction J = 0.9 eV,
the characteristic values for 3d metals [17]. In order to correct for the double-
counting of the Hartree-like contribution in the interaction term of Eq. (2.43),
a constant value needs to be subtracted from the energy of each spin-orbital,
physically interpreted as the chemical potential µ. This parameter defines the
value of ϵd in Eq. (2.43), and was set to the three values used in Ref. [57], namely
26 eV, 27 eV and 28 eV. With two bath models and three chemical potential
values, there are six discrete Anderson models in total.

The last step in the setup is the setting of the spin-orbit coupling. For the
purpose of comparison of our method with Ref. [57], it will be set to zero. When
modeling the Kondo effect, a SOC of ξ = 0.079 eV is included, derived using
Eq. (2.32). A minuscule magnetic field of 0.001 T in the direction of the z axis
is added in order to force the angular momenta to align with the z axis.
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µ (eV) N Energy (eV) nd Pd6 Pd7 Pd8 Pd9 Multiplicity
26 28 −137.8498 7.459 0.082 0.413 0.449 0.050 3

27 28 −145.4226 7.689 0.046 0.317 0.532 0.100 3
29 −145.4363 7.806 0.037 0.278 0.525 0.153 4

28 30 −153.4686 8.211 0.013 0.152 0.480 0.321 1
−152.9139 8.083 0.015 0.176 0.532 0.268 3

Table 3.3: The energies and non-negligible (≥ 0.01) probability weights of impu-
rity occupation numbers for the lowest eigen-energies of every sector, for different
chemical potentials, for zero SOC. The multiplicity column indicates the number
of eigenstates with the same energy and probability weights.

3.2.2 Exact diagonalization, comparison with CT-QMC
The exact diagonalization was performed using the Lanczos method in a reduced
many-body Hilbert space, as described in Sec. 2.5. The excitation cutoffs were
chosen to have the largest values allowed by memory constraints. The selected
values were 5 for model III and 4 for model IV. The number of Lanczos states
was set to 20. Convergence tests were performed in order to assess the influence
of the number of Lanczos states on the results. No difference was found between
the use of 20 or 60 Lanczos states.

For each model, several observables were measured as grand-canonical aver-
ages (Eq. (2.56)) — the total number of electrons, the occupation of the impurity
d shell, and the spin moment in the d shell. The observables have been mea-
sured at room temperature, β = 1/kBT = 40 eV−1, the same temperature used
in Ref. [57]. The spin, orbital and total moments, S, L and J , were found using
the expectation value ⟨Ô

2
⟩ =

⟨︂
Ô
(︂
Ô + 1

)︂⟩︂
. The results are shown in Tab. 3.2.

For every value of µ, the observables of models III and IV are in good agreement
with each other, which demonstrates convergence with respect to the bath-size
parameter Nk. The observables of all models are in good agreement with the
corresponding DFT+QMC results as well.

The mean impurity occupation is

nd =
∑︂
n

Pdn · n, (3.4)

where Pdn is the probability of finding n occupied spin-orbitals in the impurity.
With |ΩNα⟩ as an eigenstate of the entire system and |dni⟩ as the i-th impurity
eigenstate with occupation n, Pdn = |∑︁i⟨dni|ΩNα⟩|2. The Pdn values for each
eigen-energy are shown in Tab. 3.3.

Since the Kondo effect is a low-temperature phenomenon that can’t be ob-
served directly at the high temperatures in which QMC is usually applied, the
Kondo physics of the system were characterized in Ref. [57] with the help of
renormalized perturbation theory [3]. By expressing the self-energy as a first-
order Taylor expansion around ω = 0

Σmσ (ω) = Σmσ (0) + ω
∂Σmσ (ω)

∂ω

⃓⃓⃓⃓
⃓
ω=0

+ Σrem
mσ (ω) , (3.5)
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Figure 3.4: Density of states of the t2g and eg orbitals for model III and IV, for
µ values of 26 eV, 27 eV and 28 eV. Lorentzian broadening with a full width at
half maximum (FWHM) of 0.2 eV was applied.
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the local Green’s function can be rewritten as the effective Green’s function
of a quasi-particle whose self-energy is in on the order of ω2:1

Gimp
mσ (ω) = 1

ω − ϵm + i∆mσ − Σmσ (ω) = Zm

ω − ϵ̃m + i∆̃mσ − Σ̃mσ (ω)
, (3.6)

with the effective orbital energies ϵ̃m = Zm (ϵm + Σmσ (0)), hybridizations
∆̃mσ = Zm∆mσ and self-energies Σ̃mσ (ω) = ZmΣrem

mσ (ω). The parameter

Zm =
(︄

1 − ∂Re [Σm (ω)]
∂ω

⃓⃓⃓⃓
⃓
ω=0

)︄−1

(3.7)

is called the wavefunction renormalization factor, or the quasi-particle weight.
The self-energy Σmσ (ω) was computed from the Green’s function of the An-

derson impurity model as Σmσ (ω) = ω −
[︂
H

(0)
imp

]︂
mσ

−
[︂
G−1

imp (ω)
]︂
mσ

where H(0)
imp is

the impurity Hamiltonian without the Coulomb term [44].
The spectral function of each discrete model was calculated from the impu-

rity’s Green’s function using Eq. (2.11) as

ρED
m (ϵ) = 1

π
Im

[︂
Tr
[︂
Gimp (ϵ− iδ)

]︂
m

]︂
, (3.8)

with Lorentzian broadening of δ = 0.1 eV. The spectra are depicted in Fig. 3.4.
For each value of µ, the spectra of model III and IV are largely in agreement with
each other.

The system’s observables and quasi-particle weights as calculated by CT-QMC
in Ref. [57] are shown in Tab. 3.3. For the t2g states, our quasi-particle weights
behave qualitatively similarly to the ones calculated by QMC, increasing with nd.
For the eg states, the quasi-particle weight for µ = 27 eV breaks the pattern, as
it is slightly lower than for µ = 26 eV.

A comparison of the spectral functions derived by ED and CT-QMC for µ =
27 eV is shown in Fig. 3.5. The QMC DOS for each orbital contains a single
smooth peak slightly below the Fermi energy. The ED spectra have peaks close to
the Fermi energy as well, but they also show peaks for more distant energies. This
discrepancy is expected, since the QMC peaks have been obtained by analytical
continuation and thus can only be expected to be accurate close to the Fermi
energy [60].

Throughout the rest of the chapter, model IV will be used.

3.2.3 Kondo effect
For the purpose of modeling the Kondo effect, a low temperature of β = 500 eV−1

(23.2 K) was set . Since the Kondo effect occurs when there is a resonance peak
at the Fermi level, it can only be observed when the two sectors with the lowest

1The theory assumes a wide conduction band with a hybridization function independent
of ω, so that it would be independent of the magnetic field. Since in our system there is no
magnetic field, the wide band assumption is not necessary.
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Figure 3.5: Comparison of the model IV DOS for µ = 27 eV to the DOS derived
by CT-QMC [57]. The QMC DOS has been re-scaled.

SOC (eV) µ (eV) N ∆N nd S L J

0

26 28.000 0.000 7.459 1.144 3.027 3.367
27 28.999 0.028 7.806 0.971 2.875 3.152

27.4 29.902 0.297 8.048 0.850 2.738 2.974
28 30.000 0.000 8.211 0.784 2.629 2.846

0.079

26 28.000 0.000 7.462 1.138 3.031 3.749
27 28.837 0.370 7.787 0.980 2.893 3.437

27.5 29.516 0.500 8.011 3.164 0.873 2.761
28 30.000 0.000 8.208 0.785 2.631 2.933

Table 3.4: The total occupation N , fluctuation ∆N , impurity occupation nd,
impurity spin S, orbital L and total moments J for µ = 27.4 eV, at β = 500 eV−1,
with and without SOC. µ was set so that nd ≈ 8.

µ (eV) N Energy (eV) nd Pd6 Pd7 Pd8 Pd9 Multiplicity
26 28 −137.8498 7.459 0.082 0.413 0.450 0.050 4

27 28 −145.4226 7.689 0.046 0.317 0.532 0.100 4
29 −145.4363 7.807 0.037 0.278 0.525 0.154 4

27.4
29 −148.5790 7.908 0.029 0.240 0.530 0.193 4

30 −148.5862 8.063 0.019 0.197 0.507 0.257 1
−148.1052 7.946 0.021 0.224 0.549 0.200 3

28 30 −153.4686 8.212 0.013 0.152 0.480 0.321 1
−152.9139 8.083 0.015 0.176 0.532 0.268 3

Table 3.5: Impurity occupation numbers for the lowest eigen-energies of every
sector, for different chemical potentials, without SOC.
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Figure 3.6: ground-state energy of a sector EGS vs. the sector’s population N ,
for multiple values of µ.

ground-state energies have ground-state energies that are very close to each other,
as indicated by Eq. (2.61) for α = α′ = 0. For this purpose, the chemical potential
is adjusted to µ = 27.4. The observables for this value are shown in Tab. 3.4. It
can be seen that nd is approximately equal to 8, in accordance to the DFT+QMC
calculations in Ref. [57].

Fig. 3.6 shows the lowest energy per sector for each value of µ. The dependence
in each model is roughly quadratic, since the leading energy terms are the chemical
potential, which rises linearly with the number of particles, and the coupling
energy, which is proportional to the number of electron–electron interactions [61]:

E (N) = −µN + U

2 N (N − 1) . (3.9)

Fig. 3.6 gives insight into the observed total population N shown in Tab. 3.4.
For µ = 26 eV, the system’s ground state is |Ω28,0⟩. The second-lowest state in the
ensemble, |Ω29,0⟩ is ~0.1 eV away from the ground state, well above the excitation
range of about 1/β = 0.002 eV for the temperature of β = 500 eV−1. For this
reason, The observed total occupation is exactly N = 28, with zero fluctuation
(in comparison, for β = 40 eV−1 the excitation range is 1/β = 0.025 eV, so the
fluctuation has a relatively large size, as seen in Tab. 3.2). For µ = 28 eV, the
ground state is likewise a pure state, and the observed total occupation is N = 30.
For µ = 27 eV, the states and |Ω28,0⟩ and |Ω29,0⟩ are in resonance with each other,
as evident by the DOS in Fig. 3.4 having a peak at Fermi energy. Due to the
resonance, the fluctuation ∆N for µ = 27 eV is nonzero even at a low temperature.
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µ N Energy (eV) Sz Lz Jz

26 28
−137.8498 0.9203 0.0158 0.9361
−137.8498 0.0000 0.0000 0.0000
−137.8498 −0.9203 −0.0158 −0.9361

27

28
−145.4226 0.8298 0.0174 0.8472
−145.4226 0.0000 0.0000 0.0000
−145.4226 −0.8298 −0.0174 −0.8472

29

−145.4363 0.5457 0.0174 0.5631
−145.4363 0.5457 0.0013 0.5470
−145.4363 −0.5457 −0.0013 −0.5470
−145.4363 −0.5457 −0.0174 −0.5631

27.4

29

−148.5790 0.5199 0.0181 0.5380
−148.5790 0.5199 0.0010 0.5209
−148.5790 −0.5199 −0.0010 −0.5209
−148.5790 −0.5199 −0.0181 −0.5380

30

−148.5862 0.0000 0.0000 0.0000
−148.1052 0.5232 0.0086 0.5318
−148.1052 0.0000 0.0000 0.0000
−148.1052 −0.5232 −0.0086 −0.5318

28 30

−153.4686 0.0000 0.0000 0.0000
−152.9139 0.5091 0.0093 0.5185
−152.9139 0.0000 0.0000 0.0000
−152.9139 −0.5091 −0.0093 −0.5185

Table 3.6: The energies and spin values for the ground states for various values
of µ, with no SOC.

For µ = 27.4 eV, the resonance is between |Ω29,0⟩ and |Ω30,0⟩, and ∆N = 0.297, a
high value (for comparison, the highest possible fluctuation value is 0.5).

Tab. 3.6 shows the lowest eigen-energies per sector and and the spin (Sz), orbit
(Lz) and total (Jz) observables of each state (⟨ΩNα| Ô |ΩNα⟩), for each chemical
potentials. Though the eigenvalues of each sector’s ground state have different
energies and moments for different values of µ, their qualitative structure is the
same. The ground state of the N = 28 sector is a degenerate triplet, and the
ground state of the N = 29 sector is a degenerate quadruplet. The ground
state of the N = 30 sector is a singlet, and the first excitation is a triplet that is
excited by roughly 0.5 eV. The spin moment is approximately 0.5, and the orbital
moment is negligible. This structure corresponds to solution of the Kondo model
for a localized S = 1/2 spin anti-ferromagnetically coupled to a single band of
conduction electrons, as described in Sec. 3.1.

The calculations were performed with a SOC of ξ = 0.079 eV as well. The
observabled occupations and moments are shown in Tab. 3.4. The chemical po-
tential corresponding to nd ≈ 8 shifted to µ = 27.5 eV. The qualitative behavior
of the observables is similar to the case without SOC, other than the spin for
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µ N Energy (eV) Sz Lz Jz

27.5

29

−149.4050 0.4724 0.8453 1.3178
−149.4050 0.3823 0.1446 0.5268
−149.4050 −0.3823 −0.1446 −0.5268
−149.4050 −0.4724 −0.8453 −1.3178

30

−149.4067 0.0000 0.0000 0.0000
−148.9334 0.4512 0.4907 0.9419
−148.9334 0.0000 0.0000 0.0000
−148.9334 −0.4512 −0.4907 −0.9419

Table 3.7: The energies and spin values for the ground states of model IV for
µ = 27.5 at room temperature (β = 40 eV−1), with a SOC of 0.079 eV.

µ (eV) N Energy (eV) nd Pd6 Pd7 Pd8 Pd9 Multiplicity
26 28 −137.8932 7.462 0.081 0.412 0.452 0.049 3

27 28 −145.4678 7.689 0.046 0.317 0.535 0.098 3
29 −145.4704 7.807 0.037 0.278 0.526 0.153 4

27.5
29 −149.4050 7.933 0.027 0.230 0.531 0.202 4

30 −149.4067 8.085 0.018 0.190 0.505 0.266 1
−148.9334 7.970 0.020 0.214 0.549 0.211 3

28 30 −153.4799 8.208 0.013 0.153 0.482 0.320 1
−152.9471 8.085 0.014 0.175 0.533 0.268 3

Table 3.8: Impurity occupation numbers for the lowest eigen-energies of every
sector, for different chemical potentials, for a SOC of 0.079 eV.

µ = 27.5 eV being significantly higher than for µ = 27.4 eV without SOC, and
the orbital being significantly lower.

Tab. 3.7 shows the lowest eigen-energies per sector and the observables Sz, Lz,
Jz for each state for ξ = 0.079 eV and µ = 27.5 eV, similarly to Tab. 3.6. It can
be seen that for the N = 30 sector, spin is no longer a good quantum number,
since there is a significantly large orbital moment.

The energies and impurity occupation probability weights of the lowest eigen-
states for every sector included in the grand-canonical calculations are shown in
of Tab. 3.8, alongside their zero SOC counterparts. As can be seen, the effect of
SOC on the occupations is negligible.

Fig. 3.7 shows the local DOS for CoCu15 at β = 500 eV−1, for the cases with
and without SOC for which a resonance occurs at Fermi energy. The imaginary
additive was set to η = 6.28 · 10−3. It can be seen that in both systems there is
a peak close to Fermi energy. As inferred from Lehman’s representation of the
spectral function in Eq. (2.61), those peaks correspond to transitions between
sectors (the addition or the removal of an electron). In this case, the peaks
correspond to the 30 → 29 transition resonance. This, together with the ground
state singlet in both systems, indicates the presence of a Kondo singlet state.
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Figure 3.7: DOS for CoCu15 at a low temperature (β = 500 eV−1) for µ = 27.4 eV
without SOC and for µ = 27.5 eV with a SOC of 0.079 eV.

3.3 A cobalt atom on a copper surface

3.3.1 Setup, DFT and fitting
The material under study consists of a copper crystal with the same fcc structure
as in the previous section, and a cobalt atom situated on top of the surface
between four copper atoms. The DFT calculations were performed on a supercell
of four layers of Cu(100) on which the cobalt atom is situated, followed by empty
space in the size of four copper layers above it. The system is depicted in Fig. 3.8,
along with the x and y axes of the chosen axis system. The z axis is perpendicular
to the plane.

This system has a lower symmetry than the system of a cobalt atom in bulk
copper, since the z axis is now distinguishable from the x and y axes, while the
chosen x and y axes are indistinguishable. The system exhibits a C4v crystal
symmetry which induces degeneracy between the xz and yz orbitals. There are
thus four distinct orbitals — yz, xy, x2 − y2, 3z2 − r2.

Partial structure relaxation was performed in VASP [62] together with the
generalized gradient approximation (GGA) to spin-polarized DFT without SOC.
The relaxed parameters were the atomic positions of the cobalt adatom and the
two upper layers of copper. The relaxed distance between the cobalt adatom
and the first Cu substrate layer was found to be 2.91 a.u., in a good agreement
with previously reported value of 2.87 a.u. [63]. Afterwards, the DOS has been
calculated in VASP. The orbitally resolved DOS is shown in Fig. 3.10.
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Figure 3.8: Model of the supercell of cobalt on Cu(100). The x and y axes of the
coordinate system are depicted.

m yz,xz xy x2 − y2 3z2 − r2

∆CF −0.043 0.117 0.053 −0.082
ϵm,k=1 −2.16 −1.99 −2.01 −2.57
Vm,k=1 0.85 0.65 0.65 0.72
ϵm,k=2 −0.08 0.001 −0.02 −0.05
Vm,k=2 0.18 0.08 0.10 0.13
ϵm,k=3 0.51 1.45 0.53 0.43
Vm,k=3 0.36 0.55 0.34 0.32
ϵm,k=4 7.56 7.80 8.16 7.72
Vm,k=4 2.08 2.12 1.78 1.70

Table 3.9: Values of the bath parameters ϵmk and Vmk for cobalt on Cu(100),
obtained by fitting the hybridization function obtained from DFT. (right).
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Figure 3.9: Orbitally resolved DOS and imaginary part of real-frequency hy-
bridization function for Co@Cu(100) for each orbital.
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ξ = 0.0 eV

µ (eV) ⟨N⟩ ∆N nd S L J Pd6 Pd7 Pd8 Pd9

27 26.00 0.01 7.74 1.03 3.01 3.32 0.03 0.27 0.62 0.08
27.4 26.55 0.50 7.93 0.94 2.87 3.15 0.02 0.21 0.58 0.18
27.5 27.00 0.02 8.03 0.89 2.79 3.04 0.02 0.19 0.55 0.24
28 27.00 0.00 8.17 0.82 2.68 2.91 0.01 0.14 0.51 0.33

ξ = 0.079 eV

µ (eV) ⟨N⟩ Var [N ] nd S L J Pd6 Pd7 Pd8 Pd9

27 26.00 0.00 7.75 1.03 3.01 3.82 0.03 0.26 0.62 0.08
27.5 26.00 0.02 7.87 0.97 2.93 3.68 0.02 0.22 0.62 0.14
27.6 26.38 0.48 7.96 0.93 2.86 3.51 0.02 0.20 0.58 0.19
28 27.00 0.00 8.17 0.82 2.68 3.16 0.01 0.14 0.51 0.33

Table 3.10: The total occupation ⟨N⟩, fluctuation ∆N , impurity occupation ⟨nd⟩,
angular momentum observables S, L, J and non-zero probability weights per
impurity occupation as functions of µ, for SOC values of 0 eV (top) and 0.079 eV
(bottom), calculated by exact diagonalization.

3.3.2 Exact diagonalization
Exact diagonalization was performed using an excitation cutoff of 4, for several
chemical potentials ranging between 26 eV to 28 eV, with SOC and without it.
As with CoCu15, the spin-orbit coupling was chosen to be ξ = 0.079 eV using the
method shown in Sec. 2.3. For each system, the total occupation ⟨N⟩, fluctuation
∆N , impurity occupation ⟨nd⟩ and the angular momentum observables S, L, J
were measured at a low temperature of β = 500 eV−1. The observables measured
for each model, along with the probability weights Pd6 to Pd9 , are shown in
Tab. 3.10.

For µ = 27 eV, the system’s ground state is |Ω26,0⟩, the ground state of the pure
N = 26 sector, as evident from the integer total occupation and zero variance.
The main contributions to the impurity’s occupation come from the Pd8 (which
has a spin value of S = 1) and Pd7 (S = 3

2) states. Accordingly, the observed spin
is between 1 and 3

2 . For µ = 28 eV, the ground state is |Ω27,0⟩, again with no state
mixing. Compared to µ = 27 eV, the impurity occupation has less contribution
from Pd7 and Pd8 and more from Pd9 (S = 1

2). We expect a Kondo state to have
a large contribution from the Pd8 state, since its spin value of S = 1 is capable of
producing a singlet.

Since the resonance we’re looking for occurs in a mixed state, we calibrate the
chemical potential to value between 27 eV and 28 eV where significant fluctuation
is detected. We find resonance close to µ = 27.5 eV: µ = 27.4 eV for ξ = 0 eV
and µ = 27.6 eV for ξ = 0.079 eV. Both of those systems have a fluctuation value
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Figure 3.10: The total DOS for of a cobalt adatom on Co@Cu(100) with and
without SOC, for chemical potentials of 27 eV, 27.5 eV and 28 eV.

of Var [N ] = 0.5. For chemical potential values close to 27.5 eV, the impurity
occupation is close to 8.

The DOS for chemical potentials 27 eV and 28 eV is shown in Fig. 3.10.
Neither has a resonance peak near the Fermi energy, with or without SOC, which
indicates the lack of Kondo resonance. The DOS for the intermediate chemical
potentials is shown in Fig. 3.11. We find that for µ = 27.5 eV there is a resonance
peak close to Fermi level — below Fermi level for ξ = 0.0 eV and above for
ξ = 0.079 eV. For, the adjusted chemical potentials, µ = 27.4 eV for ξ = 0 eV
and µ = 27.6 eV for ξ = 0.079 eV, there is a peak right on the Fermi level. In
Ref. [63], CT-QMC calculations in Co@Cu (100) with an occupation of nd = 8
and the same choice of Coulomb and exchange potentials have also detected a
resonance peak near Fermi level in the spectral function, which was interpreted
as Kondo resonance.

The energies and measured angular momentum observables Sz, Lz, Jz for each
model are shown in Tab. 3.11. When there is no SOC, the |Ω26,0⟩ ground state
is a degenerate triplet (with J = 1), and |Ω27,0⟩ ground state is a degenerate
doublet (with J = 1

2). For µ = 27.4 eV, the ground state is a mixture of both,
and the difference in energies between the two is only 1.2 meV, close enough
for resonance. Nevertheless, the lack of a singlet state indicates that no Kondo
resonance is taking place.
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ξ = 0 eV

µ (eV) N Energy (eV) Sz Lz Jz

27 26
−142.2319 0.0000 0.0000 0.0000
−142.2319 0.8847 0.0222 0.9069
−142.2319 −0.8847 −0.0222 −0.9069

27.4
26

−145.3478 0.0000 0.0000 0.0000
−145.3478 0.8343 0.0216 0.8127
−145.3478 −0.8343 −0.0216 −0.8127

27 −145.3490 0.5736 0.0222 0.5514
−145.3490 −0.5736 −0.0222 −0.5514

28 27 −150.1992 0.5354 0.0220 0.5134
−150.1992 −0.5354 −0.0220 −0.5134

ξ = 0.079 eV

µ (eV) N Energy (eV) Sz Lz Jz

27 26
−146.2063 0.0000 0.0000 0.0000
−146.2023 1.4788 0.9074 0.5714
−146.2023 −1.4788 −0.9074 −0.5714

27.6
26

−146.9950 0.0000 0.0000 0.0000
−146.9912 1.1040 0.6992 0.4048
−146.9912 −1.1040 −0.6992 −0.4048

27 −146.9931 1.4289 0.9467 0.4822
−146.9931 −1.4289 −0.9467 −0.4822

28 27 −150.2373 1.3645 0.9117 0.4528
−150.2373 −1.3645 −0.9117 −0.4528

Table 3.11: The energies and angular momentum values for the ground states
and lowest excitations for various values of µ, for SOC values of 0 eV (top) and
0.079 eV (bottom).
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Figure 3.12: Splitting of the effective spin J = 1 triplet by SOC for µ = 27.6 eV.

When SOC is present, the triplet’s energy creates an energy gap between the
Jz = 0 state and the Jz = ±1 states. This indicates that the magnetic anisotropy
can be modeled using the effective Hamiltonian

ĤMA = DĴ
2
z. (3.10)

The splitting is portrayed in Fig. 3.12 For µ = 27.6 eV, it is a 3.9 meV gap,
compared to the 1.9 meV difference between the singlet state and the |Ω27,0⟩
ground state. This indicates the presence of Kondo resonance.

3.3.3 Differential conductance
The DFT+ED model can be evaluated by comparing its observable properties
to experimental data. Experimental exploration of adatom systems is performed
using spin tunneling spectroscopy (STS) measurements. In an STS experiment,
a conducting tip is placed close to the adatom, a bias voltage V is applied be-
tween the tip and the sample and the tunneling current I is measured [58]. The
measurement’s results usually come in the form of the differential conductance

dI
d(eV ) (the nonlinear extension of classical conductance G = I

V
) plotted against

the bias eV . This plot allows identifying the various channels that contribute to
the conductance.

The STS measurements for Co@Cu(100) are shown in Ref. [58]. The tunneling
spectrum takes an asymmetric Fano line shape, which occurs due to Abrikosov-
Suhl-Kondo resonance — interference between the tip-adatom tunneling and the
tip-substrate tunneling [64]. The strength of the resonance for each spin-orbital
is characterized by the Fano parameter
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qmσ (ϵ) =
tmσ + wmσV Re

[︂
Gbath
mσ (ϵ)

]︂
πwmσV ρbath

mσ (ϵ) (3.11)

where tmσ is the tip-adatom tunneling coefficient, wmσ is the tip-substrate
tunneling coefficient, and Gbath

mσ (ω) and ρbath
mσ (ω) are the bath’s Green’s function

and DOS respectively. In terms of the bath energies ϵmk from Eq. (2.43),

Gbath
mσ (ϵ) =

∑︂
mk

1
ϵ− ϵmk + iη

, (3.12)

ρbath
mσ (ϵ) = − 1

π
Im

[︂
Gbath
mσ (ϵ)

]︂
. (3.13)

For the strongly localized d-orbitals, the Fano parameter can be approximated
to its value in the vicinity of the Fermi energy [65]. In the limit of wmσ ≫ tmσ,
the Fano parameter is independent of both tunneling coefficients:

qmσ (EF ) = −
Re

[︂
Gbath
mσ (EF )

]︂
Im [Gbath

mσ (EF )] . (3.14)

The Fano line shap of differential conductance in an STS system is derived in
Ref. [66] using a non-equilibrium Green’s function method. The theory uses the
Tersoff and Hamann model [67], which assumes the tip to be a single atom with
only an s-shell. The bias V is assumed to be small compared to the tunnelling
barrier. The differential conductance is

dI (ϵ)
d (eV ) =

∑︂
mσ

Gσ (1 + Ymσ (ϵ)) , (3.15)

where the transition intensity is

Ymσ (ϵ) = Γmσ (EF )
(︂(︂

1 − q2
mσ

)︂
Im

[︂
Gd
mσ (ϵ)

]︂
+ 2qmσRe

[︂
Gd
mσ (ϵ)

]︂)︂
. (3.16)

Γmσ (ϵ) = −Im [∆mσ (EF )] is the level-broadening caused by hybridization be-
tween the impurity and the surface. The tip-substrate conductance Gσ is treated
as independent of spin and can be ignored.

In order to highlight the Fano line shape, the energy of each orbital can be
rescaled as

ϵ̃mσ ≡ ϵ− ϵmσ + Re [Σmσ (ϵ)]
Im [Σmσ (ϵ)] , (3.17)

where ϵmσ is the occupation energy of orbital m and Σmσ (ϵ) is the impurity’s
self-energy. The differential conductance is then [64]

dI (ϵ)
d (eV ) ∼

∑︂
mσ

(ϵ̃mσ (ϵ) + qmσ)2

ϵ̃2
mσ (ϵ) + 1 . (3.18)

Fig. 3.13 depicts the calculated differential conductance in the vicinity of
the Fermi energy. It can be seen that the predicted differential conductance is
qualitatively similar in shape to the experimental one.
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Figure 3.13: Simulated differential conductance, plotted against the STS spec-
trum from Ref. [58], using arbitrary units.

m yz,xz xy x2 − y2 3z2 − r2

∆CF 0.028 0.039 -0.076 −0.019
ϵm,k=1 -3.78 -3.86 -3.44 −3.57
Vm,k=1 1.43 1.87 1.37 1.53
ϵm,k=2 -0.60 -0.72 -0.70 −0.53
Vm,k=2 0.44 0.62 0.63 0.30
ϵm,k=3 0.06 0.10 0.06 0.06
Vm,k=3 0.17 0.21 0.16 0.13
ϵm,k=4 1.53 2.86 1.76 3.69
Vm,k=4 0.61 1.81 0.64 0.96

Table 3.12: Values of the bath parameters ϵmk and Vmk obtained by fitting the
hybridization function obtained from DFT.

3.4 A cobalt atom on a surface of Cu2N/Cu (001)

3.4.1 Setup, DFT and fitting
The modeled material is a supercell of three Cu(001) layers, a Cu2N-(2 × 2)
monolayer, and a cobalt adatom placed on a copper ion. Above the material there
is vacuum with the height of four layers of copper. It is depicted in Fig. 3.14.
Similarly to Co on Cu, the material does not exhibit cubic symmetry in relation to
the adatom. However, if choosing a Cartesian coordinate system where the x and
y axes are both at an angle of 45 degrees to the vectors that span the Cu2N layer,
the system becomes physically symmetrical to transformation between them. Like
with copper on bare Cu(001), there are four distinct orbitals — yz, xy, x2 − y2,
3z2 − r2.

The DFT calculation was performed using FLAPW with LDA, without the
inclusion of spin.
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Figure 3.14: Model of the supercell of Co@Cu2N/Cu (001). The x and y axes of
the coordinate system are depicted. The z axis is perpendicular to the plane.
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Figure 3.15: Orbitally resolved DOS and imaginary part of real-frequency hy-
bridization function for Co@Cu2N/Cu (001) for each orbital.
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Figure 3.16: Fit of the discrete bath impurity model Eq. (2.49) to the DFT
hybridization function Eq. (2.45) via minimization of the function in Eq. (2.50),
using the bath parameters in Tab. 3.12.
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ξ (eV) µ (eV) ⟨N⟩ ∆N nd S L J

0
25 27.00 0.00 7.074 1.38 2.94 3.41
26 27.00 0.00 7.289 1.29 2.94 3.36
27 28.00 0.00 7.697 1.07 2.97 3.82

0.079
25 27.00 0.00 7.07 1.38 2.95 3.96
26 27.76 0.43 7.40 1.21 2.98 3.90
27 28.00 0.00 7.70 1.07 2.97 3.82

Table 3.13: The total occupation ⟨N⟩, fluctuation ∆N , impurity occupation ⟨nd⟩
and impurity spin as functions of µ, calculated by exact diagonalization.

The discrete bath was chosen to have Nk = 4. The fitted hybridization func-
tion is shown in Fig. 3.16, and the calculated bath parameters are shown in
Tab. 3.12. As with CoCu15, there are 20 bath sites below Fermi level.

3.4.2 Exact diagonalization
Exact diagonalization was performed with an excitation cutoff of 4. Three chem-
ical potential values were used — 25 eV, 26 eV and 27 eV. Spin-orbit coupling
was set to ξ = 0.079 eV. For the purpose of comparison, the calculations were
also performed for zero SOC.

Tab. 3.13 shows the total electron occupation ⟨N⟩, fluctuation ∆N , impurity
occupation ⟨nd⟩ and expectation values for the spin (S), orbital (L) and total (J)
moments at the low temperature of β = 500 eV−1.

Tab. 3.14 shows the lowest eigen-energies for each sector that significantly
contribute to the ground state for every µ value, and the corresponding non-
negligible probabilities for each occupation number of the impurity. Focusing
on the case with SOC, For µ = 25 eV, the ground state is a doublet which is a
predominantly d7 state with non-integer valence (nd = 7.07) due to hybridization
with the substrate. For µ = 27 eV, the ground state is a singlet which is a
predominantly d8 state. For µ = 26 eV, the singlet and the doublet’s energies are
very close to each other — the gap is of 3.4 meV, in the same order of magnitude
as the temperature (2 meV), which enables the charge fluctuation.

When looking at the case without SOC, in comparison, the ground state for
µ = 26 eV and N = 27 is a quadruplet, and the lowest two states for µ = 27 eV
have a negligible gap between them, so the ground state is effectively a triplet.

The lowest energy as a function of N for µ = 26 eV and ξ = 0.079 eV is shown
in Fig. 3.17. This dependence roughly quadratic, as described by Eq. (3.9). The
minimum corresponds to a non-integer occupation of NGS = 27.85 (The observed
occupation, for comparison, is ⟨N⟩ = 27.76).

The spectral functions of each of the models are shown in Fig. 3.18. The imag-
inary additive used is the smallest one allowed for this quantization in accordance
with Sec. 2.5.2.1 — 0.00314 eV. For µ = 26 eV with SOC there is a resonance peak
at Fermi energy. The occupation observables in Tab. 3.13 allow us to identify
the resonance peaks. The total occupation for µ = 26 eV is a number between 27
and 28, indicating that the resonance peak on the Fermi energy corresponding to
the transition from |Ω28,0⟩ to |Ω27,0⟩. For µ = 25 eV, the peak is shifted ~0.1 eV
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ξ = 0 eV

µ (eV) N Energy (eV) nd Pd6 Pd7 Pd8 Pd9 Multiplicity
25 27 −147.8402 7.074 0.166 0.579 0.228 0.016 4

26
27 −155.0182 7.289 0.106 0.518 0.336 0.034 4

28 −154.9914 7.417 0.079 0.461 0.411 0.045 1
−154.9913 7.417 0.079 0.461 0.411 0.045 2

27 28 −162.5560 7.695 0.037 0.322 0.547 0.090 1
−162.5559 7.694 0.037 0.322 0.547 0.090 2

ξ = 0.079 eV

µ (eV) N Energy (eV) nd Pd6 Pd7 Pd8 Pd9 Multiplicity

25 27 −147.8939 7.074 0.165 0.581 0.227 0.016 2
−147.8855 7.074 0.164 0.582 0.227 0.016 2

26

27 −155.0725 7.289 0.105 0.520 0.335 0.034 2
−155.0635 7.289 0.105 0.520 0.335 0.034 2

28
−155.0759 7.432 0.077 0.453 0.420 0.046 1
−155.0711 7.428 0.078 0.455 0.417 0.046 1
−155.0710 7.428 0.078 0.455 0.417 0.046 1

27 28 −162.6486 7.697 0.037 0.320 0.549 0.090 1
−162.6406 7.695 0.037 0.322 0.547 0.091 2

Table 3.14: The energies and non-negligible (≥ 0.01) probability weights of impu-
rity occupation numbers for the lowest eigen-energies of every sector, for different
chemical potentials, for SOC values of 0 eV (top) and 0.079 eV (bottom).
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Figure 3.17: ground-state energy EGS vs. number of electrons N for µ = 26 eV
and ξ = 0.079 eV. The energy minimum is indicated with a black circle.
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Figure 3.18: Total density of states for µ values of 26 eV, 27 eV and 28 eV, with
SOC of 0.079 eV.

above the Fermi energy, which matches the observation that its occupation is
N = 27 with zero charge fluctuation. For µ = 27 eV, the 28 → 27 peak is shifted
~0.15 eV down, so the total occupation is N = 28. The peak 0.1 eV above the
Fermi energy corresponds to the transition from 29 → 28 transition.

3.4.3 Magnetic anisotropy
The expectation values of spin, orbit and total moments for each of the lowest
eigenstates of each model are shown in Tab. 3.15. Those observables illuminate
the structure of the ground state quadruplet and triplet, and can be used to
model them as the approximate eigenstates of the phenomenological Hamiltonian
of magnetic anisotropy [68]:

ĤMA = DĴ
2
z + E

(︃
Ĵ

2
x − Ĵ

2
y

)︃
. (3.19)

The amplitudes D and E set the strength of the uniaxial and transverse
magnetic anisotropy respectively. Those values can be deduced from the energies
in Tab. 3.15.

Fig. 3.19 shows the structures of the ground-state quadruplet of N = 27 and
the ground-state triplet of N = 28, for ξ = 0.079 eV. The quadruplet is an ef-
fective d7 state with J = 3

2 which is split into the doublets
⃓⃓⃓
±1

2

⟩︂
and

⃓⃓⃓
±3

2

⟩︂
by

the uniaxial component of ĤMA. In general, the transverse component mixes the
doublets and creates four distinct energy levels, but according to the quadruplet
energies in Tab. 3.15 no in-plane anisotropy takes place. From the Jz observables
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ξ = 0 eV

µ (eV) N Energy (eV) Sz Lz Jz

25 27

−147.8402 0.4229 0.0029 0.4257
−147.8402 −0.4229 −0.0028 −0.4257
−147.8402 1.2686 0.0086 1.2771
−147.8402 −1.2686 −0.0086 −1.2771

26

27

−155.0182 0.3915 0.0034 0.3949
−155.0182 −0.3915 −0.0034 −0.3949
−155.0182 1.1745 0.0101 1.1846
−155.0182 −1.1745 −0.0101 −1.1846

28
−154.9914 0.0000 0.0000 0.0001
−154.9913 0.2769 −0.0016 0.2754
−154.9913 −0.2769 0.0016 −0.2752

27 28
−162.5560 0.0001 0.0000 0.0001
−162.5559 0.3775 −0.0026 0.3749
−162.5559 −0.3775 0.0026 −0.3749

ξ = 0.079 eV

µ (eV) N Energy (eV) Sz Lz Jz

25 27

−147.8939 0.3661 0.2193 0.5855
−147.8939 −0.3661 −0.2193 −0.5855
−147.8855 1.0825 0.6408 1.7233
−147.8855 −1.0825 −0.6408 −1.7233

26

27

−155.0725 0.3415 0.2242 0.5657
−155.0725 −0.3415 −0.2242 −0.5657
−155.0635 1.0078 0.6453 1.6531
−155.0635 −1.0078 −0.6453 −1.6531

28
−155.0759 0.0000 0.0000 0.0000
−155.0711 0.0012 0.0000 0.0016
−155.0710 −0.0012 0.0000 −0.0016

27 28
−162.6486 0.0000 0.0000 0.0000
−162.6406 0.0018 0.0000 0.0022
−162.6406 −0.0018 0.0000 −0.0022

Table 3.15: The energies and spin values for the ground states for various values
of µ, for zero SOC values of 0 eV (top) and 0.079 eV (bottom).
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Figure 3.19: Splitting of the effective spin J = 3
2 quadruplet by the magnetic

anisotropy in Eq. (3.19). The spin excitation ∆0 from
⃓⃓⃓
m = ±1

2

⟩︂
to
⃓⃓⃓
m = ±3

2

⟩︂
gives rise to an inelastic step in the differential conductance.

we can see that the
⃓⃓⃓
±1

2

⟩︂
doublet has a lower energy, hence D > 0. The projec-

tions of DĴ2
z on the

⃓⃓⃓
±1

2

⟩︂
and

⃓⃓⃓
±3

2

⟩︂
doublets are 1

4D and 9
4D respectively, which

means that the uniaxial component induces an energy gap of ∆0 = D. From the
quadruplet energies we get D = 9 meV.

The triplet is an effective d8 state with J = 1. The uniaxial component splits
the triplet into a singlet |0⟩ and a doublet |±1⟩ with a gap of D, and the transverse
component splits the doublet into the two linear combinations 1√

2

(︂⃓⃓⃓
1
2

⟩︂
±
⃓⃓⃓
−1

2

⟩︂)︂
with an energy gap of 2E between them. The doublet energies are thus expected
to be at gaps of ∆1,2 = D ± E from the singlet. Using the triplet energies in
Tab. 3.15 we find that, ∆1 = 4.8 meV and ∆2 = 4.9 meV, thus D = 4.85 meV and
E = 0.05 meV.

3.4.4 Differential conductance
The results of STS measurements of Co@Cu2N/Cu (001) can be seen in Ref. [69,
70]. The plot of differential conductance against the bias voltage is symmetrical,
with a peak at zero bias and a single step at ~5 meV in each direction of the bias.

In theoretical models of magnetic anisotropy, the differential conductance plot
is expected to have a step corresponding to every excitation energy [71, 72].
Whenever the bias grows larger than an the excitation energy, this excitation
becomes energetically possible. The steps seen in the experimental results [69, 70]
correspond to the lowest excitation, or multiple overlapping excitations.
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Figure 3.20: Calculated inelastic contribution to the differential conductance at
the ground state for µ = 26 eV, plotted against the STS spectrum for T = 2.5 K
from Ref. [70], using arbitrary units. The spectrum was normalized to fit the
experimental result.

The expression for the inelastic part of the finite-temperature tunneling spec-
trum through a magnetic anisotropy is [71]

I (V ) =
∑︂
Nαα′

pNα
⃓⃓⃓
⟨Nα| ĤMA |Nα′⟩

⃓⃓⃓2 ∑︂
ζ=±1

eV − ζ (ENα − ENα′)
1 − e−ζβ(eV−ζ(ENα−ENα′ )) . (3.20)

ζ = ±1 is used to symmetrize the function around eV = 0.
The state occupations p27,α and p28,α are taken to be equal to the relative

weights of the respective sectors in the ground state mixture, namely 0.15 and 0.85
respectively. The matrix element ⟨Nα| ĤMA |Nα′⟩ defines the transitions that are
possible according to conservation laws, thereby prohibiting transitions between
sectors. At low temperatures (β ≫ 1), the double derivative of the function
consists of peaks at every energy equal to a gap ENα − EN ′α′ , and the lower
the temperature, the narrower the peak. This gives the differential conductance
a characteristic stepwise structure. The derivative of differential conductance
corresponding to our system should describe the three aforementioned transitions:

d2I

d (eV )2 ≈
∑︂
Nαα′

∑︂
ζ=±1

pNα
⃓⃓⃓
⟨Nα| ĤMA |Nα′⟩

⃓⃓⃓2
δ (eV − ζ (ENα − ENα′)) (3.21)

∼
∑︂
ζ=±1

0.15 (δ (eV − ζ∆0)) + 0.85 (δ (eV − ζ∆1) + δ (eV − ζ∆2)) .

The inelastic contribution to the differential conductance G = dI
d(eV ) was cal-

culated for T = 2.5K (β = 4640 eV−1) by numerically calculating Eq. (3.20) and
differentiating it. It is shown in Fig. 3.20, plotted against the experimental spec-
trum from Ref. [70] with the same temperature. It has a main inelastic step at
~5 meV and a secondary step at ~9 meV. This plot can be compared to the exper-
imental differential conductance, measured by STM [69, 70]. In the experimental
data, only the main step is present.

3.4.5 Strong magnetic field
The DFT+ED method will be used to study the system’s behavior under a strong
external magnetic field. The XMCD experiments we compare our calculations to
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B (meV) µ (eV) nd Sz Lz Tz RLS

0.01 26 7.397 0.0000 0.0000 0.0000 —
0.6 26 7.396 0.0425 0.0314 −0.0015 0.422
20 26.15 7.407 0.7882 0.7048 −0.0182 0.487

Exp. [73] — — — 0.91±0.23 — 0.62±0.1

Table 3.16: Occupation nd, spin Sz, orbital Lz, dipole moment Tz, and orbit-
dipole ratio RLS = Lz/ (2Sz + 7Tz) for the impurity per external magnetic field
B and chemical potential µ.
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Figure 3.21: Spectral DOS for systems with external magnetic fields of B = 10 T
and B = 300 T.

were performed in an external magnetic field of 5 T, at a temperature of 8 K.
A system was set up with µ = 26 eV and a magnetic field of B = 0.6 meV
(~10 T) parallel to the z-axis. The resulting solution, seen in Tab. 3.16, is nearly
paramagnetic with very small spin and orbital moments, mainly due to the spin-
flip terms included in the full Coulomb interaction matrix [74]. In order to get
a magnetic solution, we increased the field strength to B = 20 meV (~300 T).
The impurity occupation for the new system is nd = 7.29. In order to bring the
impurity occupation nd to the same value of 7.4 as for B = 0.6 meV, we changed
the chemical potential to 26.15 eV. The resulting spin, orbital magnetic moments
are MS = µB · 2Sz = 1.58µB and ML = µBLz = 0.7µB, and the orbit-dipole
ratio RLS = Lz

2Sz+7Tz
are in reasonable agreement with the XMCD experimental

data [73].
The spectral density of the magnetic system (B = 20 meV) is compared to

the paramagnetic system (B = 0 meV) in Fig. 3.21. The near-Fermi level peak
for B = 0 meV is split into two peaks by the B = 20 meV field, in agreement with
STM spectra [70].
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Chapter summary
Three systems with cobalt atoms as impurities were studied using the DFT+ED
method — CoCu15, Co@Cu (001) and Co@Cu2N/Cu (001). For each material,
the DOS generated by DFT was used to construct a discrete AIM with four bath
sites per impurity orbital. The chemical potential µ was used as a parameter,
whose value was adjusted according to the observed occupation of the impurity’s
valence shell. Each system was measured with spin-orbit coupling and without
it, in order to assess its effect on the qualitative shape of the ground state and
first excitations.

For CoCu15, the observed impurity occupation and impurity spin for three
values of µ were found to be in good agreement with the DFT+QMC measure-
ments in Ref. [57]. A resonance peak was achieved with a singlet ground state,
which we interpret as Kondo resonance.

For Co@Cu (001), a resonance peak was found between the sectors |Ω26,0⟩ and
|Ω27,0⟩. When calculated without SOC, the ground state is a mixture between
degenerate triplet and a degenerate doublet. The application of SOC caused the
triplet to split, forming a ground-state singlet. This indicates that a Kondo effect
depends on the presence of SOC. The system was modeled as an STS system with
Abrikosov-Suhl-Kondo resonance, and its Green’s function was used to construct
a Fano line shape that was used compared to an experimentally observed zero-bias
anomaly.

For Co@Cu2N, a Kondo peak was found between the J = 3
2 -like d7 state and

the J = 1-like d8 state. The ground state and lowest excitations were modeled
using a phenomenological Hamiltonian of magnetic anisotropy, and the energy
gaps were used to construct a differential conductance curve that was found to
be reasonably close to STS measurements. Finally, the system was run with a
considerably higher magnetic field, and the resulting magnetic moments and DOS
were found to show large orbital contributions to the magnetic moment of the
cobalt adatom that were not accounted for in the S = 3

2 models [70, 69].
Possible future extensions of the work in this chapter include the use of

more than 4 excitations in the truncated Fock basis, direct comparison between
DFT+ED and DFT+U, and the conduction of comparison with DFT+QMC on
materials other than CoCu15.
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Chapter 4

Magnetic anisotropy of alloys

−Ha 0 Ha

H

−Ms

0

Ms

M

Hysteresis loop

Figure 4.1: The magnetization as a function of external magnetic field in a hys-
teresis loop according to the Stoner-Wohlfarth model, for a uniaxial magnetic
anisotropy parallel to the external field. In this case, Mr = Ms. The red line
depicts the magnetization for a monotonic reduction of the external field from
Ha to −Ha, and the blue line shows the opposite process.

In this chapter, we use various DFT schemes to investigate the magnetic
anisotropy of hexagonal alloys of Fe2Hf and Fe7Hf3Sb2. The investigation was
done as part of an effort to find good permanent magnets among alloys that are
free of rare earth elements [75].

A permanent magnet is a material that, once magnetized, is capable of sus-
taining its own magnetic field even when the external magnetic field is removed.
This property manifests as a hysteresis loop. When the external magnetic field
varies from a high value (higher than the saturation value) in one direction to
a high value in the opposite direction and back, the magnetization as a func-
tion of the field follows different (but symmetrical) paths in each direction. The
magnetic saturation Ms is the magnetization to which the material asymptoti-
cally approaches in the limit of high external field. The anisotropy field Ha is
the smallest magnetic field needed to completely reverse the magnetization. The
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coercivity Hc and saturation remanence Mr are the absolute values of the loop’s
intersection of the M = 0 and H = 0 axes respectively.

Hysteresis is caused by magnetic anisotropy — dependence of the magnetic
field’s energy on its direction, due to the material’s crystal structure. Hysteresis
is particularly strong in materials with uniaxial magnetic anisotropy, i.e. mate-
rials that have only one easy axis (direction in which the anisotropy energy is
at minimum [76]). In such a material, flipping the direction of magnetization
necessarily requires applying a magnetic field strong enough to overcome the ma-
terial’s hard axis, which is perpendicular to the easy axis. The parameter that
characterizes this energy is the magneto-crystalline anisotropy energy (MAE),
the energy difference between the easy and hard axis.

Fig. 4.1 depicts the hysteresis loop of a system with a uniaxial magnetic
anisotropy parallel to the external field, modeled by the Stoner-Wohlfarth model [77].
In this case, remanence is perfect, so that Mr = Ms, and the coercivity is at its
upper value, so that Hc = Ha.

A good permanent magnet needs a high saturation moment in order to sus-
tain strong magnetization, a Curie temperature (the temperature below which
ferromagnetism occurs) significantly higher than room temperature, and a coer-
civity of at least µ0Hc = 1.5 T, which is achieved when the MAE density is about
4 MJ/m3 [78]. Another important parameter is the maximum energy product
(BH)max = 1

4µ0M
2
s , which is proportional to the magnet’s energy density [77].

The larger the maximum energy product, the smaller the volume of the magnet
necessary for its application. Finally, in order to resist self-demagnetization, the
material’s hardness parameter k ≡

√︂
K1

µ0M2
s

should be higher than 1 [77].
For example, the neodymium-based alloy Nd2Fe14B, a widely used rare-earth

permanent magnet, has a Curie temperature of 588 K, a saturation moment of
1.28 MA/m, and a uniaxial MAE of 4.9 MJ/m3 with a tetragonal easy c-axis [79].

An additional condition for the practical viability of a material is its thermo-
dynamic stability relatively to its constituent elements. The stability is evaluated
using the enthalpy of formation — the energy required to assemble the crystal
from its constituent elements.

In the first part, the investigated materials are the hexagonal alloy Fe2Hf and a
version of it with iron atoms substituted by antimony. Using a FLAPW basis with
PAW potentials and LSDA, the MAE and magnetic moments of Fe2Hf with and
without antimony substitutions are calculated, and are compared to experimental
values. The rest of the magnetic parameters are derived by modeling it as a
uniaxial magnet, and are compared to criteria appearing in literature.

In the second part, the alloys UFe12 and UFe10Si2 are studied using two parallel
approaches to LSDA+U — the orbital polarization correction method and the
Hubbard-I approximation. The two methods are used to examine the itinerant
and localized features of interactions between incomplete 5f -shells. The magnetic
moments of individual atoms, as well as the spectra of f -shell and other states
were calculated by both of the approaches.
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Figure 4.2: Left: crystal structure for a pristine Fe2Hf with site indices for iron
and hafnium. Center: crystal structure of the Fe58-Hf25-Sb17 configuration with
the lowest total energy ([Fe (1) − Hf (4)]). Right: crystal structures of the con-
figurations corresponding to the remaining symmetry groups of Fe58-Hf25-Sb17
(top to bottom: [Fe (2) − Hf (4)], [Fe (4) − Hf (4)], [Fe (8) − Hf (4)]).

4.1 Hexagonal Fe-Hf-Sb

4.1.1 Material
The Fe2Hf crystal is in a hexagonal Laves phase with Strukturbericht designa-
tion C14 (space group P63/mmc) [80]. It is depicted in Fig. 4.2 (left). It has
three special Wyckoff positions — (2a) and (6h) are occupied by iron atoms, and
(4f) is occupied by hafnium atoms. The unit cell is a 60◦ angle rhombic prism
with the lattice constants a = 4.968Å and c = 8.098Å, the length of the base’s
side and height of the unit cell respectively [81]. The volume of the unit cell is
thus 173.1 Å3 (it will be denoted as formula unit, or f.u.). The relative coordi-
nates, Wyckoff positions and elements of each site are shown in the three leftmost
columns of Tab. 4.1. The space group has two free parameters with experimen-
tally determined values, x = 0.17 for (6h) and z = 0.56 for (4f) [82, 83].

Hafnium is a refractory metal (RM) in the wider definition [84]. Fe2Hf has
been explored as an example of a Fe-RM system that could exhibit high MAE,
due to the difference in ionic radius between iron and hafnium which causes a
difference in the spin-orbit coupling of the unfilled d-shells [85, 76]. Nevertheless,
it is not considered as a viable candidate for a magnetically hard material, because
it has been experimentally shown that the stochiometric C14 phase (where the
iron-to-hafnium atom number ratio is exactly 2) is less stable at room temperature
than the C15 phase, which has low MAE [85].

One of the proposed approaches to modify Fe2Hf into a stable material is to
mix it with antimony. In a study by Goll et al. [76], an alloy Fe60.0-Hf26.5-Sb13.5
was synthesized, in an off-stochiometric phase of the form (Fe, Sb)2+x Hf1−x. It
had undergone scanning tunneling microscopy and energy dispersive X-ray anal-
ysis. It was found to have a saturation polarization of Ms ∼ 1 T, an anisotropy
constant of K1 ∼ 1.5 MJ/m−3 and a Curie temperature of Tc ∼ 470 K, fulfilling
the standards mentioned in this chapter’s introduction.

For computational efficiency reasons, the alloy Fe60.0-Hf26.5-Sb13.5 alloy is
approximated here in a single unit cell, where a single iron site and a single
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Wyckoff
positions Internal position Fe2Hf Fe58-Hf25-Sb17

Element Magnetic
moments
(µB)

Element Magnetic
moments
(µB)

(2a) (0, 0, 0) Fe (1) 1.71 Sb –0.03
(0, 0, 1/2) Fe (2) 1.71 Fe 2.00

(6h)

(x, 2x, 1/4) Fe (3) 1.74 Fe 1.64
(−2x,−x, 1/4) Fe (4) 1.74 Fe 1.64
(x,−x, 1/4) Fe (5) 1.74 Fe 1.64
(2x, x,−1/4) Fe (6) 1.74 Fe 1.55
(−x,−2x,−1/4) Fe (7) 1.74 Fe 1.55
(−x, x,−1/4) Fe (8) 1.74 Fe 1.55

(4f)

(1/3, 2/3, z) Hf (1) –0.35 Hf –0.28
(2/3, 1/3, z − 1/2) Hf (2) –0.35 Hf –0.30
(1/3, 2/3, 1/2 − z) Hf (3) –0.35 Hf –0.27
(2/3, 1/3,−z) Hf (4) –0.35 Sb 0.01
Total 13.48 10.48

Table 4.1: Calculated magnetic moments inside the MT-spheres of each atom
in the unit cell. The coordinates are relative to the dimensions of the unit cell.
The parameters’ values are x = 0.17 and z = 0.56. Negative coordinates can be
converted to positive by adding 1 to them.

hafnium site are occupied by antimony atoms. This makes the alloy to be effec-
tively Fe58-Hf25-Sb17 (the ratios are given as approximate parts of 100). The
unit cell has 32 possible configurations. Due to the crystal’s symmetry, those con-
figurations can be categorized into 4 groups, so that the configurations in each
group are physically equivalent. A representative configuration from each group
is shown in Fig. 4.2 (center and right).

4.1.2 Results
The system’s electronic structure was calculated using the PAW method (as de-
scribed in Sec. 1.6.3), implemented using VASP, without SOC. The total energy
of each of the 32 configurations of Fe58-Hf25-Sb17 was calculated. As was ex-
pected, the configurations in each group all have the same energy. The energies
per f.u. (formula unit) of each group relative to the lowest are shown in Tab. 4.2.
The configurations are denoted in terms of the Fe2Hf atoms that the antimony
atoms replace; for example, [Fe (1) − Hf (1)] corresponds to the crystal where
Fe (1) and Hf (1) are replaced by antimony. The groups were numbered from the
lowest-energy one to the highest. In Fig. 4.2, a configuration of the lowest energy
([Fe (1) − Hf (4)]) is shown in the center, and representative of the three others
(top to bottom: [Fe (2) − Hf (4)], [Fe (4) − Hf (4)], [Fe (8) − Hf (4)]) are shown to
the right. As can be seen, Fe58-Hf25-Sb17 has the lowest total energy when
the antimony dopants are as far from each other as possible. For this reason,
Fe58-Hf25-Sb17 is represented in the rest of the chapter by the configuration
[Fe (1) − Hf (4)].
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Group Sb substitution sites ∆E (eV/f.u.)

1

[Fe (1) − Hf (1)]

0[Fe (2) − Hf (2)]
[Fe (2) − Hf (3)]
[Fe (1) − Hf (4)]

2

[Fe (3) − Hf (1)]

0.137

[Fe (4) − Hf (1)]
[Fe (5) − Hf (1)]
[Fe (6) − Hf (2)]
[Fe (7) − Hf (2)]
[Fe (8) − Hf (2)]
[Fe (3) − Hf (3)]
[Fe (4) − Hf (3)]
[Fe (5) − Hf (3)]
[Fe (6) − Hf (4)]
[Fe (7) − Hf (4)]
[Fe (8) − Hf (4)]

3

[Fe (6) − Hf (1)]

0.215

[Fe (7) − Hf (1)]
[Fe (8) − Hf (1)]
[Fe (3) − Hf (2)]
[Fe (4) − Hf (2)]
[Fe (5) − Hf (2)]
[Fe (6) − Hf (3)]
[Fe (7) − Hf (3)]
[Fe (8) − Hf (3)]
[Fe (3) − Hf (4)]
[Fe (4) − Hf (4)]
[Fe (5) − Hf (4)]

4

[Fe (2) − Hf (1)]

0.258[Fe (1) − Hf (2)]
[Fe (1) − Hf (3)]
[Fe (2) − Hf (4)]

Table 4.2: The 32 possible configurations of the Fe7Hf3Sb2 unit cell, grouped ac-
cording to shared symmetry, and their energy relative to the lowest configuration.
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Figure 4.3: Spin-projected DOS of the 3d-states of iron and 5d-states hafnium
in Fe2Hf, with EF = 0. Left: Total DOS. Right: DOS summed over each atom
species and Wyckoff position. The up and down spins are shown on the top and
bottom part of each plot respectively.

The magnetic moments for each atom in the unit cell were calculated in the
muffin-tin volume of each atom, and are shown in Tab. 4.1. For Fe2Hf, all atoms
of the same Wyckoff positions have the same moments, with hafnium and iron
being anti-aligned. The antimony dopants in Fe58-Hf25-Sb17 have almost no
magnetic moment. Their presence raises slightly the moment of Fe-(2a), reduces
slightly the moments of hafnium and Fe-(6h), and reduces the total magnetic
moment by 3µB.

Fig. 4.3 shows the density of states for Fe2Hf, projected on the valence shells
of iron and hafnium. It can be seen that for the iron atoms (in both (2a) and
(6h) Wyckoff positions), the spin-down states are shifted upwards compared to
the spin-up states, whereas for the hafnium atoms the splitting is in the oppo-
site direction. This matches the measured anti-alignment of iron and hafnium’s
magnetic moments.

4.1.3 Magnetic parameters
The phenomenological model of MAE in uniaxial crystals up to the first approx-
imation is

EMA = K1 sin2 θ, (4.1)

with K1 as the magneto-crystalline anisotropy constant and θ as the angle be-
tween the magnetization and the easy axis [0001] [77]. The magnetic anisotropy
energy of the system was evaluated by calculating the total energy for two ori-
entations of the magnetization — the easy axis [0001] and the in-plane direction
[1100] — and subtracting the two:

EMA = E [1100] − E [0001] (4.2)

The energies were calculated using relativistic FLAPW [86] using LSDA with
SOC. The discrete Brillouin zone incorporated about 3200 k-points for Fe2Hf
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Composition Msat
(︂
µB

f.u.

)︂
EMA

(︂
meV
f.u.

)︂
Volume

(︂
Å3)︂ c

a

Unrelaxed Fe2Hf 13.48 -0.57 173 1.63
Unrelaxed Fe58-Hf25-Sb17 10.48 0.88 173 1.63
Relaxed Fe58-Hf25-Sb17 10.93 1.37 179 1.64

Exp. Fe60-Hf26.5-Sb13.5 [76] 10.87 − 15.53 1.57 − 1.69 180 1.627

Table 4.3: The saturation magnetization Ms, MAE EMA, unit cell volume and
lattice constant ratio for each of the calculated substances and the experimental
results.

and 5400 points for Fe58-Hf25-Sb17, with Gaussian smearing (see Eq. (1.42)) of
σ = 1 mRy.

The doping of Fe2Hf by antimony is expected to affect the atomic coordinates
and the unit cell’s volume and shape. For this reason, Fe58-Hf25-Sb17 underwent
relaxation of the atomic coordinates, the unit cell’s volume and the c/a ratio
before calculating its electronic structure. The relaxation was performed in VASP
using the quasi-Newtonian RMM-DIIS method [87] with a residual force threshold
of 0.1 meV/Å. For comparison, the system was also run without relaxation.

The results are given in Tab. 4.3, and are compared to the experimental results
from Ref. [76] for Fe60-Hf26.5-Sb13.5. Fe2Hf has a negative MAE, which indi-
cates preference to the in-plane direction, whereas Fe58-Hf25-Sb17 has positive
MAE, which indicates uniaxial magnetic anisotropy as desired. The relaxation
of the Fe58-Hf25-Sb17 system significantly changes the measured MAE, bringing
it closer to the experimental values.

The saturation magnetization of each system is the total magnetic moment
per unit volume (Ms = mtot/f.u.). The saturation magnetization is only slightly
increased by the relaxation, and is on the low end of the experimental measure-
ments. The saturation magnetization’s relatively low value may be the caused
by our model having a larger concentration of antimony than the experiment,
since antimony has been shown to reduce its value. The relaxation caused the
unit cell’s volume to increase, which is consistent with the increase in saturation
magnetization.

The anisotropy field in a uniaxial crystal is [77]

µ0Ha = 2K1

Ms

= 4.5 T. (4.3)

The other magnetic parameters mentioned in this chapter’s introduction have
been calculated and are shown in Tab. 4.8, alongside the recommended magnetic
parameters from literature. Though the material has relatively low MAE density,
magnetic saturation and maximum energy product, it has a high anisotropy field
and hardness parameter.

4.1.4 Stability
In order to evaluate the thermodynamic stability of Fe58-Hf25-Sb17, we need to
calculate its enthalpy of formation — the difference between the total energy of
the crystal and the total energy of its constituent elements. A negative enthalpy
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Relaxed Fe58-Hf25-Sb17 Requirements

K1
(︂

MJ
m3

)︂
1.27 4 [78]

µ0Ms(T) 0.71 1.25 [88]
µ0Ha (T) 4.51 3.75 [88]

(BH)max

(︂
KJ
m3

)︂
99.6 460 [89]

k 1.79 1 [77]

Table 4.4: Magneto-crystalline anisotropy constant K1, magnetic saturation mo-
ment Ms, anisotropy field Ha, maximum energy product (BH)max and hardness
parameter k of the relaxed Fe58-Hf25-Sb17 model, compared to requirements
from literature.

indicates a stable material, since it is energetically favorable when created by
annealing. The expression for the enthalpy is [90]

∆H = E −
∑︂
i

xiµi, (4.4)

where E is the total energy of the supercell, xi is the number of atoms of
element i in the supercell and µi is its chemical potential of element i. By con-
vention, the chemical potentials are calculated from the unit cell total energy of
each element’s crystalline form, which is found by DFT. The enthalpies of the
systems are

∆HFe2Hf = EFe2Hf − 8
2EFe − 4

2EHf (4.5)

and

∆HFe58-Hf25-Sb17 = EFe58-Hf25-Sb17 − 7
2EFe − 3

2EHf − 2
6ESb. (4.6)

The enthalpy of Fe2Hf was found to be −1.165 eV/f.u., and the enthalpy of
Fe58-Hf25-Sb17 was found to be −0.724 eV/f.u. The negative sign of the enthalpy
indicates that the antimony-doped crystal is thermodynamically stable, albeit less
so than Fe2Hf.
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Figure 4.4: Left: Crystal structure of pristine UFe12, consisting of two unit cells.
Right: crystal structure of a configuration of UFe10Si2 with both silicon atoms in
the unit cell replacing (8f) iron atoms.

Wyckoff positions Internal position Element

(2a) (0, 0, 0) U
(8f)

(︂
±1

4 ,±
1
4 ,±

1
4

)︂
Fe

(8i) (±x3, 0, 0),(0,±x3, 0) Fe
(8j)

(︂
±x4,

1
2 , 0

)︂
,
(︂

1
2 ,±x4, 0

)︂
Fe

Table 4.5: The Wyckoff positions and coordinates of the atoms in UFe12. The
values of the variables are x3 = 0.36 and x4 = 0.28.

4.2 Magnetic anisotropy of U-based ferromag-
nets

4.2.1 Crystal structure
UFe12 has a body-centered tetragonal structure with tetragonal symmetry. Its
Strukturbericht designation is D2b (space group I4/mmm, no. 139), as depicted
in Fig. 4.4 (left). The dimensions of the supercell, which includes two unit cells,
are a = 8.47 Å (length and width) and c = 4.72 Å (height) [91]. This gives it a
volume of 338.6 Å3. The size of the unit cell is half of it, 169.3 Å3.

The crystal consists of four distinct Wyckoff positions — (2a) is occupied by
uranium, and (8f), (8i) and (8j) are occupied by iron. Their coordinates are
shown in Tab. 4.5. The coordinates of each Wyckoff position are determined by
the crystal structure up to two parameters, x3 and x4, which are unique for each
material. The parameter values for UFe12 are x3 = 0.36 and x4 = 0.28 [91].

In UFe12, uranium is a 5f -shell actinide with the electronic configuration
[Rn] 5f 36d17s2. Its valence shells are 6d and 5f , with 10 and 14 spin-orbitals
respectively. Since the 5f -shell is more local, it has a narrower bandwidth, and
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thus a higher DOS around the Fermi energy, which makes it dominate the con-
ductivity.

UFe10Si2 is the instance of the UFe10−xSix class of materials with the high-
est Curie temperature and molecular magnetic moment [92]. It has the same
crystal structure as UFe12, with silicon atoms randomly occupying the (8f) and
(8j) Wyckoff positions [91, 93]. An ab-initio computation of a periodic system
can’t model a disordered system exactly, so our system will consist of a single
unit cell with two iron sites replaced by silicon. In order to keep the system as
symmetrical as possible, both silicon atoms will be placed in (8f) positions. The
crystal structure used in this work is depicted in Fig. 4.4 (right). The dimentions
of the UFe10Si2 supercell are a = 8.37 and c = 4.721, making a supercell volume
of 330.7 Å3 and a unit cell volume of 165.35 Å3 [91, 92].

4.2.2 LSDA+U approaches
The system’s electronic structure has been calculated using a FLAPW solver,
using LSDA+U, as described in Sec. 1.3.2.

Two different approaches to LSDA+U were used — the orbital polarization
correction (OPC) method, an itinerant model which assumes a low Coloumb
interaction in the 5f -shell, and the Hubbard-I approximation (HIA), a localized
model which assumes a weak hybridization between the uranium impurity and the
rest of the system. The two approaches are used because in systems of uranium
impurities embedded in transition metals, the 5f -shell states may exhibit either
itinerant superconducting behavior or localized magnetic behavior, depending
roughly on the shortest distance between impurities. According to the Hill plot
for uranium compounds, the transition from itinerant to local behavior generally
occurs for distances larger than 3.5 Å, through some crystals such as UBe13 and
UPt3 retain superconducting behavior for larger distances [94]. For UFe12, the
U-U distance is the supercell’s height, 4.72 Å.

4.2.2.1 LSDA+U(OPC)

The LSDA+U(OPC) approach is described in Sec. 1.3.2.2. The interaction pa-
rameters used in our calculation are U = 0.51 eV and J = 0.51 eV, using Slater
integrals reduced to 70% of the atomic Hartree-Fock values [95]. By choosing
the Coulomb interaction U to be equal to the exchange interaction J , the model
includes the anisotropic energy only.

The OPC term can be expressed as an eigenvalue shift term by replacing the
orbital interaction term −1

2
∑︁
i ̸=j L̂iL̂j, which applies to every couple of electrons i

and j in the ground state, with the mean-field approximation −1
2
∑︁
i ̸=j L̂

z

i L̂
z

j [96].
The resulting one-electron eigenvalue shift is

EOPC = −E3lml, (4.7)
where E3 is the third Racah parameter [97], l = 3 is the f -shell orbital

momentum and ml is the magnetic quantum number [96].
The non-spherical double-counting term consists of the contributions ⟨lm| Ŷ |lm′⟩,

where Ŷ are the spherically non-symmetric harmonics from the muffin-tin part
of Eq. (1.52) [98].
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Under the OPC scheme, the MAE is calculated in a similar manner to Tab. 4.3:

EMA = E [100] − E [001] . (4.8)

E [100] and E [001] were calculated in the same discretized reciprocal space in
every iteration of the DFT algorithm. The total energy convergence was found
to be better than 0.1 meV.

4.2.2.2 LSDA+U(HIA)

The LSDA+U(HIA) method incorporates interaction into DFT+U via the exact
diagonalization of an atomic Hamiltonian. Unlike the DFT+ED method used in
the previous chapter, under LSDA+U(HIA) the diagonalization is a part of the
DFT self-consistency loop, and is used to produce the occupation matrix nγγ′ ,
which can then be plugged into the LSDA+U energy functional in Eq. (1.27). This
method assumes the atomic limit, where there’s a weak hybridization between the
impurity’s f -states and its other, more itinerant shells. Under this assumption,
the system’s f -states are described using the impurity part of Anderson impurity
model [99]:

Ĥ imp = H0 +HU , (4.9)

where

H0 =
∑︂
γ

ϵff
†
γfγ +

∑︂
γγ′

(︄
ξl · s + ∆CF

γγ′ + ∆ex

2 σ̂z

)︄
f †
γfγ′ (4.10)

and

HU = 1
2

∑︂
m1m2m3m4σσ′

Um1m2m3m4f
†
m1σf

†
m2σ′fm3σ′fm4σ. (4.11)

The non-interacting term of H0 includes, in addition to the spin-orbit coupling
term ξl · s and crystal field term ∆CF used in previous chapters, the exchange
field ∆ex.

The local Hamiltonian Ĥ imp is diagonalized using the Lanczos method, and
is used to construct the local Green’s function of the decoupled system, with and
without interaction respectively:

Gimp
γγ′ (z) = ⟨γ|

(︂
z − Ĥ imp

)︂−1
|γ′⟩ , (4.12)

G0
γγ′ (z) = ⟨γ|

(︂
z − Ĥ0

)︂−1
|γ′⟩ . (4.13)

The self-energy Σ̂ (z) is obtained from the Green’s function via the Dyson
equation:

Σ̂ (z) =
[︃
Ĝ

0 (z)
]︃−1

−
[︃
Ĝ

imp (z)
]︃−1

(4.14)
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The self-energy matrix represents the energy contribution of the interaction.
It is incorporated into the DFT model by adding it to the Hamiltonian matrix in
the expression of the Green’s function DFT from Eq. (1.60):

GDFT
γγ′ (z) = 1

ΩBZ

∫︂
BZ

dk ⟨γ|
(︃
z + µ− Ĥ

LSDA (k) − Σ̂ (z)
)︃−1

|γ′⟩ (4.15)

The full Green’s function is then used to derive the occupation matrix nγγ′

— the integral over the non-diagonal spectral density −ImGDFT
γγ′ (ϵ) /π for the

energies below the Fermi energy:

nγγ′ = − 1
π

Im
∫︂ ϵF

−∞
GDFT
γγ′ (ϵ) dϵ. (4.16)

The Coulomb repulsion was set to U = 3 eV, while for exchange interaction
we used the same value as before, J = 0.51 eV.

MAE calculation with HIA is more difficult than with OPC, because the strong
interaction raises each energy in the two terms of Eq. (4.8), and catastrophic
cancellation1 harms the precision of their difference. Using the previous method,
an accuracy of 0.1 meV was not achieved. The MAE is thus calculated using a
Hamiltonian term describing the crystal field energy of the uranium atom [89, 91]:

ĤCF =
∑︂
nm

Amn ⟨rn⟩ Θn (J) Ôm

n (4.17)

In this term, Ôm

n are the Stevens operators [100], Θn (J) are the Stevens factors
for a ground state multiplet J and Amn ⟨rn⟩ are the crystal-field parameters for
the 5f -shell. With θ as the altitude angle of the quantization axis, the energy
contribution of the CF term is [89]

EMA (θ) = 1
4 ⟨J, Jz (θ) = −J | ĤCF |J, Jz (θ) = −J⟩ − const. (4.18)

The MAE contribution of a Uranium atom can be calculated as the difference
EMA

(︂
π
2

)︂
− EMA (0). In the first approximation, the MAE is equal to K1 sin2 θ.

4.2.3 Results
The two LSDA+U approaches were used to calculate the spin, orbital and total
magnetic moments parallel to the [001] crystal direction for each atom in each
crystal. The calculated momenta are shown in Tab. 4.6, along with the sum
of spin, orbital and total moments per unit cell. As can be seen, the moments
of iron and silicon sites are almost identical between the methods, as uranium’s
interactions affect them very weakly. The orbital moments of uranium are much
larger when calculated in HIA. The spin momenta of uranium and iron are anti-
parallel to each other. This matches the known mechanism, where a transition
impurity couples anti-ferromagnetically to a transition ferromagnetic host if the

1Loss of significant digits which occurs when two floating point numbers are substracted.
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UFe12

Element HIA OPC
mS mL mtot mS mL mtot

U (2a) -2.28 4.57 2.29 -1.98 2.30 0.32
Fe (8f) 1.68 0.06 1.74 1.69 0.05 1.74
Fe (8i) 2.42 0.10 2.52 2.40 0.10 2.50
Fe (8j) 2.05 0.09 2.14 2.00 0.09 2.09

Unit cell 21.94 5.61 27.55 21.97 3.25 25.21

UFe10Si2

Element HIA OPC
mS mL mtot mS mL mtot

U (2a) −2.28 4.70 2.42 −2.76 2.95 0.19
Si (8f) −0.08 0.00 −0.08 −0.08 0.00 −0.08
Fe (8f) 1.69 0.07 1.76 1.72 0.08 1.80
Fe (8i) 2.29 0.11 2.40 2.30 0.11 2.41
Fe (8j) 1.91 0.11 2.02 1.93 0.11 2.04

Unit cell 17.25 5.73 21.92 16.98 3.95 20.93

Table 4.6: Spin mS, orbital mL and total mtot magnetic moments (all in units of
µB) alongside the [001] direction for individual atoms and the total unit cell, for
UFe12 (top) and UFe10Si2 (bottom).
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U MAE (meV/f.u.) Total MAE (meV/f.u.)
UFe12 (OPC) — -67.5
UFe12 (HIA) 8.92 11.12

UFe10Si2 (HIA) 2.56 3.99
UFe10Si2 (Exp.) — 3.1

Table 4.7: MAE of the uranium atom and the total MAE, for UFe12 and UFe10Si2.
Experimental data from Ref. [93] is provided for reference.

Figure 4.5: Total DOS and DOS projected on the U-5f states in the
LSDA+U(OPC) approach, for UFe12 (A) and UFe10Si2 (B).

two elements are on the opposite sides of the transition series [101, 102]. Silicon
atoms are almost non-magnetic.

The comparison of the two tables in Tab. 4.6 allows to examine the effect of
substitution of Fe-(8f) atoms by silicon on the rest of the moments. The moments
of uranium are very weakly affected, while the spin moments of Fe-(8i) and Fe-(8j)
are reduced. The reduction is caused by silicon’s valence shell having a smaller
total spin than iron — with three electrons in a p-shell, it has a total spin of
S = 3

2 , compared to iron’s 6 electrons in a d-shell with a spin of S = 2. In
total, where UFe12 has a total magnetic moment per unit cell of mtot = 27.6µB,
for UFe10Si2 it is reduced to mtot = 21.9µB (as per the HIA calculations). The
experimental value, in comparison, is mtot = 16.5µB [93].

For UFe12, the MAE was calculated using both OPC and HIA approaches.
The results are shown in Tab. 4.7. Of the two approaches, only HIA is in qual-
itative agreement with the experimental results [91, 102] — the itinerant OPC
approach results in a very high negative MAE for UFe12, indicating preference
for an easy-plane magnetic moment, while the localized HIA approach predicts a
uniaxial MAE. The MAE for UFe10Si2 was calculated using the HIA approach.
It is significantly lower than the undoped crystal, and reasonably close to the
experimental results [93].

Densities of states have been calculated for both UFe12 and UFe10Si2, using
both OPC and HIA. Fig. 4.5 shows the total DOS for LSDA+U(OPC), as well
as the DOS projected on the U-5f states, and the sum of the spectra for all
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Figure 4.6: DOS in the LSDA+U(HIA) approach, for UFe12 (A) and UFe10Si2
(B) — total, projected on the U-5f states, and the difference between the latter
and the former.

states other than the U-5f shell. Fig. 4.6 shows the total and U-5f DOS for
LSDA+U(HIA). It can be seen that in the OPC approach there is a contribution
to spectrum around the Fermi level, while in the HIA approach the impurity
spectrum has a peak roughly 0.5–1.5 eV below the Fermi energy. This reflects
the difference between the two LSDA+U approaches — for the itinerant OPC,
the impurity electrons are more mobile than for the localized HIA, which exhibits
a gap.

4.2.4 Stability
The thermodynamic stability of UFe12 can be calculated using the method de-
scribed in Sec. 4.1.4, with LSDA. Using EFe as the energy of the iron crystal and
EU as the energy of the α-U crystal (the orthorhombic phase of uranium), the
enthalpy is

∆HUFe12 = EUFe12 − EU − 12
2 EFe = 3.349 eV

f.u. . (4.19)

The enthalpy is positive, which indicates that UFe12 is not thermodynamically
stable.

Applying a similar calculation to UFe10Si2, we get

∆HUFe10Si2 = EUFe10Si2 − EU − 10
2 EFe − 2

4ESi = −1.425 eV
f.u. , (4.20)

where ESi is the energy of the face-centered diamond cubic crystal of silicon.
This enthalpy is negative, which indicates that UFe10Si2 is thermodynamically
stable.

Within the LSDA+U(HIA) model, we can’t calculate the enthalpies ∆HUFe12

and ∆HUFe10Si2 in the aforementioned manner, because the energy functional for
α-U is different from the ones for UFe12 and UFe10Si2. Nevertheless, the difference
in enthalpies can be calculated:
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LSDA+U (HIA) Requirements

K1
(︂

MJ
m3

)︂
2.41 4 [78]

µ0Ms (T) 1.54 1.25 [88]
µ0Ha (T) 3.92 3.75 [88]

(BH)max

(︂
KJ
m3

)︂
475 460 [89]

k 1.13 1 [77]

Table 4.8: Magneto-crystalline anisotropy constant K1, magnetic saturation mo-
ment Ms, anisotropy field Ha, maximum energy product (BH)max and hardness
parameter k of UFe10Si2 as calculated by LSDA+U(HIA) and compared to re-
quirements from literature.

∆HUFe10Si2 − ∆HUFe12 = EUFe10Si2 − EUFe12 + 2
2EFe − 2

4ESi

= −3.234 eV
f.u. . (4.21)

This indicates that the silicon-doped crystal tends to be more stable.

4.2.5 Magnetic parameters
The calculated MAE and magnetic moment of UFe10Si2 can be used to derive its
magnetic parameters, and compare them to the requirements of a good permanent
magnet, as mentioned in the chapter’s introduction.

Using the first approximation for uniaxial MAE from Eq. (4.1), the magneto-
crystalline anisotropy constant is found to be K1 = 2.41 MJ

m3 .
The other relevant magnetic parameters have been calculated similarly as

in Sec. 4.1, and are shown in Tab. 4.8, compared to requirements taken from
literature. It can be seen that while the MAE of UFe10Si2 is below the required
standard, the rest of the required parameters are above their respective required
values.

Chapter summary
Fe58-Hf25-Sb17 and UFe10Si2 have been studied by the appropriate DFT ap-
proaches in order to evaluate their potential as stable permanent magnets.

Out of four distinct configurations of Fe58-Hf25-Sb17, the energetically prefer-
able configuration was found. Fe2Hf and Fe58-Hf25-Sb17 had their total energies
and magnetic moments per atom calculated using a FLAPW basis with PAW
potentials and LSDA. The magnetic saturation and MAE of each material were
found to be in agreement with experimental results. It was found that doping
Fe2Hf with antimony turns its MAE from positive to negative, and thus making
it uniaxial. It was also found that the doping makes the crystal less thermody-
namically stable. The MAE density and magnetic moment calculated using HIA
were used to derive the material’s anisotropy field, maximum energy product and
hardness parameter. Comparing those to recommended values from literature,
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it’s possible to predict that the material can function as a hard magnet, albeit
not a very compact one.

The magnetic moments of UFe12 and UFe10Si2 were calculated using two
LSDA+U approaches, the itinerant OPC and the local HIA. Out of the two,
only HIA calculations yielded a uniaxial MAE, in agreement with experimental
data. This suggests that a strong local interaction plays an important role in the
material’s MAE. The MAE density and magnetic moment calculated using HIA
were used to derive the material’s other magnetic parameters, and were found
to satisfy the requirements of a permanent magnet. While the substitution of
two iron atoms in UFe12 with silicon reduces the uniaxial MAE, it significantly
stabilizes it thermodynamically. UFe10Si2 is thus a promising candidate to be a
magnetically hard material.
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Conclusions

In this work, we have described methods for ab-initio computation of the elec-
tronic properties of strongly correlated materials, and applied them to a selection
of systems that have experimental results available for comparison.

The first two chapters laid down the theoretical foundations of the methods
used in our work, and provided some computational details. Chapter 1 focused
on DFT and the various methods used as part of the self-consistent loop. In
particular, the methods most relevant to our work are LSDA+U, GGA, FLAPW
and PAW. Chapter 2 described the DFT+ED process, by which the results of
the DFT calculation can be used to construct a discrete multi-orbital Anderson
impurity model. Computational details of the diagonalization and the calculation
of the spectral function have been provided.

In Chapter 3, we applied DFT+ED to three systems of cobalt impurities
coupled to metals, for the purpose of studying the conductive properties of the
systems. The first system, a cobalt atom in bulk copper, was found to produce
observables that partially agree with existing DFT+QMC results. The second
and third system, a cobalt adatom on a copper surface with and without a Cu2N
layer, were found to predict a differential conductance curve that agree with
experimental measurements. Moreover, for CoCu15 and Co@Cu2N/Cu (001) the
exact diagonalization made it possible to detect a singlet as the ground state,
which, along with the resonance at Fermi level, indicates the presence of a Kondo
effect.

In Chapter 4, we studied the magnetic properties of the alloys Fe2Hf and
Fe58-Hf25-Sb17, as well as UFe12 and UFe10Si2. We found the configuration of
Fe58-Hf25-Sb17 with the lowest energy and calculated its MAE and magnetic
saturation, which were found to be in reasonable agreement with experiment.
The other magnetic parameters were calculated and compared to recommended
values from literature.

UFe10Si2 was used as a test case for comparing two LSDA+U approaches,
an itinerant and a local one. The local method yielded a uniaxial MAE, in
qualitative agreement with experimental data, while the itinerant one didn’t. The
local method was then used to model the magnetic properties of UFe10Si2, which
were found to fulfill the needed criteria for a magnetically hard material. The
calculated enthalpies of formation showed that the doping of Fe2Hf by antimony
makes it slightly more unstable, whereas the doping of UFe12 by silicon stabilizes
it.

Overall, this work shows that DFT+ED and LSDA+U(HIA) are capable of
producing results that qualitatively agree with experiments and other compu-
tational methods, as well as giving new interpretations of existing phenomena.
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The work also points to Fe58-Hf25-Sb17 and UFe10Si2 as promising permanent
magnets.

As computer clusters increase in processing power and storage, ab-initio cal-
culation of the electronic properties of materials becomes less time- and power-
consuming and more accessible to researchers, increasing the size of the systems
to which computational methods can be applied. However, the trend depends
on the constant miniaturization of electronic components, and as they shrink to
the atomic level, research into the properties of many-body quantum systems is
in constant demand. Essentially, Moore’s law affects both sides of the equation,
perpetually giving computational physicists more ability, but also more demands
and challenges. This work is a contribution to the effort to keep the feedback
loop going.
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Appendix A

Attachments

A.1 Notation
The notation in this work is the product of compromise. Ideally, it should adhere
to convention, be consistent and not be too busy. Since those three goals are
contradictory at times, choices had to be made. This section describes in brief
the notation used. Examples are shown in brackets.

• Constants are depicted using normal letters, either small or capital (kB, B)

• Vectors in real space or the reciprocal space are depicted using a bold letter
(k).

• Quantum operators and matrices are depicted as capital letters with a hat
(Ĥ). Operators which are applied to a specific set of indices are depicted
without a hat, as are matrix elements (Hmσ). Creation/annihilation oper-
ators are depicted with small letters (dmσ).

• Functions are depicted with the domain parameter in round brackets (ρ (r)).
The derivative of a function omits the parameter.

• Functionals are depicted with square brackets (E [ρ]). The function’s pa-
rameter is generally omitted.

• Quantum states are depicted as wavefunctions (ϕnk (r)) or as vectors in
Dirac notation (|ϕ⟩).

• A group of parameters enumerated by indices is depicted in curly brackets
({ϵkm, Vkm}). The range of the indices is omitted.

A.2 Metropolis-Hastings algorithm
In CT-QMC, each configuration can be specified by the variable-length vector τ
which contains, in order, every segment (τ ′

i , τi) in the configuration, where the
segments don’t overlap (i.e. τi−1 < τ ′

i and τi < τ ′
i+1). Under the Monte Carlo

method, the summation is performed by stochastically moving from one configu-
ration to a neighboring one over a large number of steps. During each step, the
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current configuration either undergoes a transition or stays the same. A transi-
tion is performed by either removing one of the segments in τ , or by inserting
a new one in an unoccupied space. The probability of each transition is set to
preserve detailed balance — every possible transition should be in equilibrium
with its opposite [50, 51].

τ ′ will represent a configuration where a new segment is inserted into τ . pτ

is the probability weight of configuration τ :

pτ = wloc (τ ) dτ1 · · · dτndτ ′
1 · · · dτ ′

n,

with the local state space density

wloc (τ ) = det [∆m] Tr
[︂
T̂ τe

−βĤlocdmσ(τn)d†
mσ(τ ′

n) · · · dmσ(τ1)d†
mσ(τ ′

1)
]︂
.

The probability densities of the insertion and its reverse process are Wτ→τ ′

and Wτ ′→τ respectively. Detailed balance is maintained when

pτWτ→τ ′ = pτ ′Wτ ′→τ (A.1)

Under the Metropolis-Hastings algorithm, in order for a transition to man-
ifest, it must pass through two steps — proposal and acceptance. Its total
probability density is then the product of the probability densities of each step:
W = W propW acc.

There is a degree of freedom in choosing the acceptance probability densities.
They are chosen to be as large as possible in order to make the process converge
to equilibrium as fast as possible and to explore as much of the configuration
space as it can within the given number of steps:

W acc
τ→τ ′ = min [1, Rτ→τ ′ ] , (A.2)

W acc
τ ′→τ = min

[︃
1, 1
Rτ→τ ′

]︃
, (A.3)

where Rτ→τ ′ is the acceptance ratio:

Rτ→τ ′ ≡ pτ ′W prop
τ ′→τ

pτW
prop
τ→τ ′

. (A.4)

For CT-HYB, the proposition of a segment is done in two steps - selecting the
segment’s starting time τ ′

i from 0 to β (which is rejected if it lies on an existing
segment), and then selecting the segment’s endpoint τi in the interval

(︂
τ ′
i , τ

′
i+1

)︂
of length lmax. The proposition probability is

W prop
τ→τ ′ = dτ

β
· dτ
lmax

. (A.5)

The deletion pribability density is equally divided between all vertices that
can be removed:
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W prop
τ ′→τ = 1

n+ 1 . (A.6)

The acceptance ratio is then

Rτ→τ ′ = βlmax

n+ 1 · wloc (τ ′) det [∆ (τ ′)]
wloc (τ ) det [∆ (τ )] . (A.7)

Since the insertion and removal of anti-segments is mathematically equivalent,
the acceptance ratio for them is the same as in Eq. (A.7).

The proposal probability of shifting a point is identical to the proposal prob-
ability of the inverse move. Their acceptance ratio is then

Rτ→τ ′ = wloc (τ ′) det [∆ (τ ′)]
wloc (τ ) det [∆ (τ )] . (A.8)

A.3 Derivation of the Kondo model
The following model will model the lowest states of a discrete AIM using a sim-
plified single-impurity Anderson model, and then map it on the Kondo model
using a procedure described in Ref. [3]

The SIAM Hamiltonian is

Ĥ =
∑︂
σ

ϵdn
d
σ + 1

2
∑︂
σ

Undσn
d
σ̄ +

∑︂
kσ

ϵkn
b
kσ +

∑︂
kσ

(︂
Vkd

†
σbkσ + h.c.

)︂
, (A.9)

The impurity’s possible states can be represented by its occupation, as |0⟩,
|1⟩ or |2⟩ (The fact that |1⟩ represents two degenerate states is not a problem for
our purposes), with the energies

E0 = 0, (A.10)
E1 = ϵd, (A.11)
E2 = 2ϵd + U. (A.12)

Assuming ϵd < 0, E1 is the impurity’s lowest state, and E0 and E2 are excitations.
The space of the system’s states will be subdivided into three partitions,

each corresponding to one of the states |0⟩, |1⟩, |2⟩. The projection operators
Pn ≡ |n⟩ ⟨n| can be used to partition the system’s Hamiltonian into blocks:

Ĥmn ≡ P̂mĤP̂ n

represents the coupling of |m⟩ states to |n⟩ states. The operator P̂ n is hermi-
tian, therefore so is the matrix of Ĥmn:

Ĥmn = Ĥ
†
nm.
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We’re looking for an effective Hamiltonian for a half-occupied impurity — a
Hamiltonian Ĥ ′

11 whose eigenstates are |1⟩, with the same eigenenergies E as the
full Hamiltonian. This is done by downfolding it to the |1⟩ subspace :

Ĥ
′
11 = Ĥ11 + Ĥ10

(︂
E − Ĥ00

)︂−1
Ĥ01 + Ĥ12

(︂
E − Ĥ22

)︂−1
Ĥ21, (A.13)

where E is the total energy of the system — the sum of occupied bath levels
and a single occupied impurity level, plus the impurity-bath coupling term:

E = Ebath + ϵm + O
(︂
V 2
)︂
. (A.14)

The two additional elements describe virtual excitations. The former term de-
scribes a process where the impurity loses an electron for the bath and then gains
another one. The second term describes a process where the impurity gains an
electron first and then loses an electron.

In AIM terms, the relevant transition elements (in which the impurity gains
an electron) are

Ĥ10 =
∑︂
kσ

Vkd
†
σ

(︂
1 − ndσ̄

)︂
bkσ,

Ĥ12 =
∑︂
kσ

Vkd
†
σn

d
σ̄bkσ,

where σ̄ is the opposite spin from σ.
The virtual excitation terms of Eq. (A.13) can be calculated in the first order

by neglecting the coupling energy in Eq. (A.14). In the first transition, the
impurity energy goes to 0, and the bath gains the energy ϵk of the newly-occupied
bath level. The term is thus

Ĥ10
(︂
E − Ĥ00

)︂−1
Ĥ01 =

∑︂
kk′σσ′

V ⋆
k d

†
σ

(︂
1 − ndσ̄

)︂
bkσ

1
E − (Ebath + ϵk)

Vk′dσ′

(︂
1 − ndσ̄′

)︂
b†
k′σ′

≈
∑︂
kk′σσ′

V ⋆
k Vk

ϵd − ϵk
d†
σbkσdσ′b†

kσ′

(︂
1 − ndσ̄′

)︂
. (A.15)

The second excitation has an impurity and energy of 2ϵm + U and a bath
energy that loses the energy of the transitioning bath level. The term is

Ĥ12
(︂
E − Ĥ22

)︂−1
Ĥ21 =

∑︂
kk′σσ′

V ⋆
k d

†
σbkσ

1
E − (2ϵd + U + Ebath − ϵk′)Vk

′dσ′b†
k′σ′ndσ̄′

≈
∑︂
kk′σσ′

−V ⋆
k Vk′

ϵd + U − ϵk′
d†
σbkσdσ′b†

kσ′ndσ̄′ . (A.16)

Assuming a spin parallel to the z-axis, the up and down spins don’t hybridize,
allowing us to remove all terms where σ ̸= σ′.

Substituting Eq. (A.15) and Eq. (A.16) into Eq. (A.13), we get
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Ĥ
′
11 − Ĥ11 =

∑︂
kk′σ

(︃
V ⋆
k Vk

ϵd − ϵk
d†
σbkσdσb

†
kσ

(︂
1 − ndσ̄

)︂
− V ⋆

k Vk′

ϵd + U − ϵk′
d†
σbkσdσb

†
kσn

d
σ̄

)︃
,

=
∑︂
kk′

(︃
V ⋆
k Vk′

ϵd + U − ϵk′
+ V ⋆

k Vk′

ϵk − ϵd

)︃ (︂
nd↑ − nd↓

)︂ (︂
b†
k↑bk′↑ − b†

k↓bk′↓
)︂

(A.17)

+
∑︂
kk′σ

(︃
V ⋆
k Vk′

ϵk − ϵd
− V ⋆

k Vk′

ϵd + U − ϵk′

)︃
b†
kσbk′σ (A.18)

The first term of this Hamiltonian has the same form as the Kondo model in
Eq. (3.2), with

Jkk′ = V ⋆
k Vk′

(︃ 1
ϵd + U − ϵk′

+ 1
ϵk − ϵd

)︃
. (A.19)

The second term is the scattering term:

Kkk′ = V ⋆
k Vk′

(︃ 1
ϵk − ϵd

− 1
ϵd + U − ϵk′

)︃
(A.20)
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