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Introduction
The physics community celebrated a massive success in the now illustrious experi-
mental confirmation of the Higgs’ boson in 2012 by the ATLAS Collaboration [1].
Apart from providing yet another validation of the Standard Model of particle
physics, this widely celebrated success showcased to the world the state-of-the-
art technological maturity and the particle accelerating capabilities of the Large
Hadron Collider. In past years, particle accelerators were mostly presented to the
general public as a tool for studying the most fundamental questions regarding
our universe, such as it’s history and evolution, or the elementary structure of
mass, energy, space and their various interactions.

Figure 1: The scale of Large Hadron Collider in Geneva. Reproduced from the
website of Dr. Helen Klus thestargarden.co.uk

Apart from these worthy goals, it might not be that clear to the general pub-
lic, thanks to such publicity, that almost all accelerators in operation around
the world are used for many other fields, some quite different from high energy
physics, such as materials science, biological research, chemistry, oncology, medi-
cal imaging, radiotherapy, nuclear power and many more [2]. In fact, it wouldn’t
be too big of a stretch to say that most people have in some way interacted with
a particle accelerator, notably when being irradiated by conventional medical X-
ray machines. In many of the applications of particle acceleration in these fields,
the electromagnetic radiation resulting from the particle’s motion is the desired
product, not the particles themselves.

When we look more than a century back in history, it is also quite clear that X-
ray radiation has been interwoven with particle acceleration since it’s accidental
discovery in 1895 by W. C. Röntgen [3]. He noticed during his experiments
with a Crookes tube, evacuated glass tube with electrodes encapsulated within,
that fluorescent green glow was being emitted from an accidentally placed board
covered with phosphorus a meter away. This persistent glow lasted even after
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he covered the cathode ray emitting tube with a heavy black paper, covering it’s
ghastly glow. To his surprise, the board was still emitting a fluorescent glow while
tube was in operation even though, as he presumed, cathode rays couldn’t leave
the tube. This accidental 1901 Nobel Prize winning discovery was followed by a
flurry of similar experimentation, one of which his wife was involved in, resulting
in the following historically first medical X-ray.

Figure 2: Medical X-ray of Mrs. Röntgen’s hand. Reproduced from com-
mons.wikimedia.org

As we understand now, these luminiscent tubes are, in fact, nothing but small
particle accelerators. The residual gas in the evacuated glass tube is ionized
due to high enough voltage being present, which results in the electrons being
accelerated towards the anode. Upon collision with the anode, bremsstrahlung
and electroluminiscent radiation characteristic of the anode material is emitted.
Modern high vacuum X-ray tubes operate on a similar principle. The electrons are
however generated not by gas ionization, but through thermionic emission from a
tungsten cathode, which is heated up to 2000 K, more recent designs also include
a rotating anode which provides improved cooling in continuous operation. High
vacuum in these tubes is necessary to reduce the detrimental effect the neutral
and ionized gas atoms would have on the propagation of the electrons emitted
from the cathode, as shown by W. Coolidge in his pioneering work [4]. The
decades following Röntgen’s discovery were characterized by continous research
and development of X-ray tubes providing a reliable scientific instrument for
generations to follow.

In the year 1944, a couple of russian scientists named Iwanenko and Pomer-
anchuk predicted a new limitation in the form of generated radiation on the
recently conceived accelerator Betatron, “Indeed, electrons moving in a magnetic
field will be accelerated and must radiate in accordance with the classical electro-
dynamics.” [5] These theoretical predictions followed R. Widerøe’s realization of
the first radio-frequency linear accelerator in 1928 [6], which further motivated
new accelerator concepts, like E. Lawrence’s 1929 Cyclotron, patented in 1932
[7], and Betatron, which was succesfully realized by D. Kerst in 1940 [8].
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(a) Diagram of Lawrence’s Cyclotron. Retrieved from [9]

(b) Betatron at the U. of Illinois. D. Kerst
at the right examining vacuum chamber
between the 4-ton magnet. Retrieved
from [10]

Figure 3: Accelerators of the first half of the 20th century.

These accelerators allowed scientists to observe particles with energies previ-
ously unreached. The Cyclotron utilized high frequency alternating voltage and
a constant perpendicular magnetic field to keep particles on a outward spiralling
orbit during acceleration. This concept was more cost and space effective com-
pared to previous linear accelerators. However, due to the limitations on the
magnetic fields at the time availible, the accelerated ion energy was limited to
few MeVs. Therefore, more energetic ions simply could not be kept on this out-
ward spiral trajectory. The Betatron, essentialy a transformer, utilized changing
magnetic field in the core due to ”primary coil” to generate tangential electric
field in the ”secondary coil” - a toroidal vacuum tube. This resulted in circling
motion of electrons in the vacuum torus, which were injected into it once again
from thermionic emission. These relativistic electrons were then made to strike
a tungsten rod, generating X-rays.
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In 1944 and 1945, the Synchrotron concept was independently invented by V.
Veksler [11] and E. McMillan [12], the latter of which managed to construct a
first operational machine in 1945. This accelerator is essentially a hybrid of the
ones previously mentioned. The synchrotron utilizes accelerating radio frequency
field and alternating magnetic field synchronized to the increasing energy of the
particles to guide them and keep them on a stable orbital trajectory. This allows
the vacuum chamber containing the particles to be of a thin toroidal shape,
instead of a disk as in cyclotron. The key principle is that unlike the cyclotron,
synchrotrons cannot accelerate particles from rest due to their toroidal shape
and therefore alredy relativistic particles in phase with the accelerating radio-
frequency field need to be injected into the rings for acceleration to happen.

In the same year of 1945, another pivotal study on the accelerator radiation
generation was produced in preprint form by J. Schwinger and distributed only to
few selected colleagues [13], the full work was however published in 1949 [14]. In
this work he concludes, after the analysis of an electron moving in an alternating
magnetic field, “Hence the betatron is a source of visible radiation, rather than
ultra-high frequency radio waves.” This first step in the validation of synchrotrons
as viable lightsources, at the time considered only limitations on particle energy
gain by most, was confirmed in the historic discovery of synchrotron radiation in
the visible spectral region by F. R. Elder et al. in 1947 [15] using the prototype
General Electric 70 MeV synchrotron.

National Bereau of Standards comissioned Synchrotron Ulatrivolet Radia-
tion Facility (SURF) in 1961, starting the age of 1st generation synchrotrons.
Deutsches Elektronen-Synchrotron (DESY) in Hamburg produced 6 GeV elec-
trons in 1964 and the radiation wavelength barrier of 0.1 Å was broken. This
synchrotron generation was marked by the fact that they were operated as sources
of both high energy particles and radiation. The emergance of 2nd generation syn-
chrotrons begun in 1970 with the comissioning of Synchrotron Radiation Source
(SRS) in Daresbury Laboratory, United Kingdom. These resulted in operational
shift, since the synchrotrons were now operated as dedicated sources of high en-
ergy radiation. The 3rd generation synchrotron lightsources emerged with the
first installation of undulator for radiation generation in 1970 on the synchrotron
in Lebedev Institute in Moscow. Modern synchrotron light sources currently in
operation are 3rd generation facilities utilizing insertion devices.

Another paradigm shift came with the theoretical prediction by J. M. Madey
in 1971 [16], when he theoretically described a device that is essentially a linear
accelerator with a very long undulator. The big size of the undulator allows for
longer emission of radiation, which in turn spatially modulates the emitting elec-
tron bunch, producing microbunches separated by wavelength of the radiation.
This turns the radiation generation into a fully coherent process which causes the
intensity of the radiation to scale as a square of the number of radiating electrons,
dramatically increasing it’s power output. The device was named Free Electron
Laser (FEL). In 1997, first free electron laser was realized at Stanford University
beginning the age of 4rd generation light sources. Since then, many other accel-
erators and FELs were developed, notably LCLS in Stanford, European XFEL
in Hamburg, LHC in Geneva and many more. Figures 4 and 5 showcase the
dramatic evolution X-ray sources underwent during the 20th century.
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(a) European Synchrotron Radiation Facil-
ity (ESRF) in Grenoble, France. Perimeter
of the storage ring is 844 m.

(b) European X-Ray Free Electron Laser
(XFEL) in Hamburg. Length roughly 3 km.

Figure 4: Contemporary accelerators. Source xfel.desy.de

Figure 5: Evolution of peak brilliance of X-ray sources over the years. In units
of photons/s·mrad2·mm2·0.1%BW. Source xfel.desy.de
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In the introduction so far, we’ve been trying to highlight the tight bond be-
tween accelerators and radiation sources throughout the history of last century
and today. The kind reader might have also noticed the enormous scale of con-
temporary facilities shown in Fig. 4. This large size doesn’t come without reason,
which is two-fold.

The first principal problem of accelerators arises because state-of-the-art facil-
ities like the XFEL or LHC utilize accelerating electric fields provided by evacu-
ated niobium radio-frequency (RF) cavities made to resonate with RF field in the
GHz range, which is produced by RF antennas inside the cavity. State-of-the-art
RF cavities are able to sustain electrical gradients of less than ∼ 50 MV/m (15
MV/m in normal operation), because increasing the voltage induces electrical
breakdown of the RF cavity walls through field emission, permanently damaging
the cavities. This forces the accelerator to be ∼ 100s of meters long for particles
to reach ∼ GeV energies [17].

The second reason is more specific to light-source facilities like Synchrotrons
and FELs. Magnets in insertion devices like undulators cannot be manufac-
tured arbitrarily small and usually provide minimum magnet period in milime-
ters. Achieving more electron oscillations is therefore possible once again only
through length increase of the undulator. It would seem that the way towards
higher brilliance and particle energies lies in increasing the length of the acceler-
ators, a notable example being LHC, XFEL or the International Linear Collider
(ILC), which will be 10s of km long with estimated costs reaching 20 billion Euro.
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A New Way through Plasma

The issue of electrical breakdown can be avoided by using plasma as the accelerat-
ing medium, since it is alredy electrically broken down to it’s charged constituents.
This idea was first conceived by V. I. Veksler in 1956 [18] with following research
on acceleration of charged particles by Ya. B. Fainberg in 1967 [19]. The two
key steps of plasma acceleration are to ionize neutral gas and then create large
accelerating electric gradient through separation of electrons and ions.

In 1979, Tajima and Dawson proposed an all-optical scheme of plasma accel-
eration through their ”Laser Electron Accelerator” [20]. Their simplified scheme
combined the previous two steps into one. Ionization and charge separation
of electrons and ions were envisioned by an intense laser pulse exceeding 1018

W/cm2, yielding accelerating gradients of ∼ 100s GV/m, four orders of magni-
tude higher than conventional RF accelerators. Such accelerator could effectively
shrink the accelerating distance necessary to boost electrons to GeV energy range
to milimeters, dramatically reducing the costs and size demands of new accelera-
tors at the same time. This concept is today called Laser Wakefield Acceleration
(LWFA) and has been extensively studied both theoretically and experimentally
in the last two decades. Newest research at the time of writing reports 60 pC
quasimonoenergetic electron beams with 8 GeV energies within 0.5 mrad x 0.5
mrad divergence achieved with petawatt-class laser systems [21].

Figure 6: Schematic of LWFA. Intense laser pulse ionizes the neutral gas at the
front edge and ponderomotive force pushes the electrons away while heavy ions
stay immobile. This plasma generated ”wakefield” accelerates electrons caught
in it. Source Corde et al. RMP 85.1 (2013).
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The historical pact between accelerators and novel radiation sources revealed
itself once again in the case of LWFA, when in 2004 a breakthrough was achieved
in ultrashort X-ray generation. A. Rousse measured ultrafast synchrotron-like
X-ray pulses being generated from the inside of the plasma bubble [22]. This
was named Betatron X-ray radiation due to the similarity of the nature of it’s
generation, which is oscillatory motion of the electrons throughout their propa-
gation, to the Betatron (fig. 3). Extensive research followed [23] [24] [25] and
continues, with latest reports of femtosecond X-ray flashes with peak brightness
of 1022−23 photons/s/mm2/mrad2/0.1% BW [26] rivaling 3rd generation Syn-
chrotron facilites and opening the possibility for all-optical, spatially coherent
and Synchrotron-like facilities with femtosecond time-resolution capabilities for
fraction of the cost.

Figure 7: Schematic of Betatron X-ray radiation. Electrons with transverse mo-
mentum get injected into the accelerating phase of the wakefield, resulting in
Betatron oscillations due to the radial electric field inside the ion cavity. Source
Corde et al. RMP 85.1 (2013).
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Thesis Outline

In Chapter 1, we will present a theoretical summary of LWFA descending from
relativstic electrodynamics. Chapter 2 will present theory explaining the mech-
anisms behind radiation generation from relativistic electrons. In Chapter 3, we
will present numerical methods used for laser-plasma interactions and my work on
the development of radiation post-processing routines, which allowed me to obtain
numerical results used for theoretical support of the experiments. In Chapter
4, we will present experimental design and setup, which I was a part of, for an
upcoming Betatron X-ray generation experiment with the L3 petawatt-class laser
system at ELI Beamlines, Prague. In the last Chapter 5, we will provide a sum-
mary of various X-ray imaging applications and consider their feasibility when
employed with the Betatron X-ray source.

Role of the Author

The role of the author was to theoretically and numerically investigate laser
produced Betatron X-ray sources, become part of the experimental design, and
find out whether these X-ray sources are suitable for imaging applications. I have
done a thorough research of availible literature, compiled and recasted parts of
the availible theory in fashion which I hope is a bit more lucid and modern. I have
mainly conducted numerical simulations investigating laser-plasma interactions
and co-developed radiation post-processing and data visualization routines which
allow for theoretical analysis and wider understanding of the underlying processes
in the laser-plasma interactions and radiation generation during the experiment.
I have been part of the design of the experimental setup inside the P3 interaction
chamber at ELI Beamlines, notably I’ve designed and set up the in-vacuum gas
supply for the gas jet target and electron charge and energy diagnostics. These
results are presented in Chapter 3 and 4. In Chapter 5, I have summarized
imaging methods and estimated their feasibility with the Betatron X-ray source.
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1. Laser Wakefield Acceleration
The dynamics involved in LWFA force relativistic velocities upon the acceler-
ated particles. For this reason, relativistic mechanics have to be considered for
complete description of the phenomenon. In this chapter, we will attempt to
summarize physical theory describing LWFA, often in a fashion naturally mani-
festing Lorentz covariance. This approach will include relativistic effects affecting
the dynamics and showcase possible generalizations into the realm of quantum
electrodynamics (QED), which is increasingly relevant in modern facilities and
non-trivially alters the dynamics in laser-plasma interactions in many experimen-
tal schemes. Some exceptions will be made to improve lucidity of the presented
theory to the kind reader. Most of the work in this chapter is a compilation
of availible literature, often with some modifications. In the first part, we will
familiarize ourselves with the emergance of relativistic mechanics from first prin-
ciples, and then proceed to describe the relevant physics involved in laser-plasma
interactions. At the end of the chapter, we will thoroughly discuss the various
methods of electron injection into the accelerating phase of the wakefield, which
was experimentally shown to be the the most important way of influencing ener-
gies achieved by particles accelerated through plasma wakefields [27].

1.1 Relativistic Electrodynamics

The guiding principles of physical theories in the last century have, among few
others, proven to be the postulates of theories of special and general relativity
by A. Einstein. We will consider only the special case, since the gravitational
forces can be generously neglected compared to the strengths of electromagnetic
fields involved. This leaves us with the assumptions of the existence of phys-
ically equivalent inertial reference frames and the finite and Lorentz invariant
speed of light, which will simplify some calculations later on. The dynamics of
the evolution of physical system satisfying previous postulates are then invoked
mathematically through Hamilton’s principle of stationary action, which dictates
that for a given physical system, only such evolution is physically realized whose
action is extremalized. Mathematically speaking

δS = 0 (1.1)

where the action of the system S is defined as the functional

S =
∫︂ τf

τi

L(qµ, q̇µ, τ)dτ (1.2)

where the Lagrangian L with dimension of energy is integrated with respect
to proper time between fixed end points τf and τi. qµ and q̇µ are respectively the
configuration coordinate and it’s proper time τ derivative. The logical conjunc-
tion of previously mentioned postulates forces the action to be Lorentz invariant,
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otherwise the dynamics of the system would change with respect to different
inertial reference frames, negating our postulates.

In classical mechanics, Lagrangian is defined to be the difference of kinetic
and potential energy T − V . However, if we consider relativistic postulates, we
have to be a bit more careful. Kinetic energy can be different depending on the
choice of inertial reference frame. This forces us to describe our physical system
only by Lorentz invariant Lagrangians, since proper time is alredy invariant. The
necessary condition for the extremalization of action is then expressed through
the Euler-Lagrange (E-L) equations

∂L
∂qµ

− d
dτ

(︄
∂L
∂q̇µ

)︄
= 0 (1.3)

Where we didn’t consider any dynamical constraints and made an assumption
of δdτ = 0, which is justified in Appendix A.1. The construction of manifestly
covariant theory describing relativistic electrodynamics then demands that we
find possible Lorentz invariant Lagrangians.

First, we define the principal quantities which describe electrodynamics. The
fields are prescribed through the four-potential Aµ and sources through the four-
current Jµ as

Aµ =
(︄

ϕ

c
, A

)︄
(1.4)

Jµ = (ρc, j) = ρ

γ
γ (c, v) = ρ

γ
ẋµ = ρ0u

µ (1.5)

where ϕ is the electric potential, A is the magnetic vector potential, c is
the speed of light in vacuum, ρ is the charge density, j is the current density,
γ = 1/

√︂
1 − v2

c2 is the Lorentz factor, v is velocity and xµ = (ct, x) and uµ =
(γc, γv) are the four-position and four-velocity respectively. The observable fields
are given by the electromagnetic tensor Fµν defined through the antisymmetric
differentiation of the four-potential

Fµν = ∂µAν − ∂νAµ =

⎛⎜⎜⎜⎝
0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

⎞⎟⎟⎟⎠ (1.6)

where E = −∂A/∂t − ∇ϕ is the electric field strength and B = ∇ × A is
the magnetic flux density. A more complete discussion of the following lies in
Appendix A.2. The Lagrangian describing the dynamics of the fields is selected
by the criterion of Lorentz invariance, which simply means that all the terms it
contains must necessarily be Lorentz invariant. Since Lagrangian has the dimen-
sion of energy, we must select only those invariant combinations of (Aµ, Jµ, F µν),
whose dimension is the same. If we check the dimension of these quantities, we
find that the only non-vanishing unique scalars are F µνFµν and JµAµ. We also
note that throughout this whole thesis we are using Einstein’s summation con-
vention. We can see that the first quantity describes only the free fields and the
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second couples the fields to the sources. We can therefore recognize the correct
Lagrangian density describing relativistic electrodynamics as sum of a free term
and an interaction term

L = Lfields + Lint = − 1
4µ

F µνFµν + JµAµ (1.7)

where the vaccum permeability µ was added for correct dimensionality of the
Lagrangian density. Once again, we guide the kind reader towards Appendix A.2
for a more thorough approach of the following result. A correct extremalization of
the action or the application of equations (1.3) leads to the covariant formulation
of Maxwell’s equations of electrodynamics

∂µF µν = µJν (1.8)

F[µν,ρ] = 0 (1.9)

where the two Maxwell’s equations with sources (1.8) follow from (1.3). The
other two source-less equations (1.9) are fulfilled automatically thanks to the
definition of the electromagnetic tensor (1.6). From the theory built so far, we can
model the behaviour of fields in the presence of sources, but Maxwell’s equations
alone aren’t complete for the full dynamical description, since we also need to
model the behaviour of sources in the presence of fields. We will once again rely
on Hamilton’s principle to derive correct mechanics. Since we alredy identified
the term that is responsible for the interaction of matter and fields Lint = JµAµ,
we only need to find the correct Lagrangian of free matter. We will focus on the
special case where we only consider a point charged particle. In Appendix A.3, we
present to the kind reader that there exists a most trivial choice which requires a
slightly more complete treatment of (1.1) than previously presented. This allows
the Lagrangian of a free particle to be intuitively chosen as Lmatter = −m0c

2,
which gives the Lagrangian of a particle interacting with electromagnetic fields
as

L = Lmatter + Lint = −m0c
2 + JµAµ (1.10)

The application of Euler-Lagrange equations then gives the equations of mo-
tion for the particle interacting with fields as

dpµ

dτ
= qFµνuν (1.11)

where q is the charge of the particle. We recognize the right-hand side as
the Lorentz force. Equations (1.8), (1.9) and (1.11) now form a closed system of
equations. We have to warn the kind reader that there are some inconsistencies
within the classical regime, which will be discussed in 1.1.3.
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1.1.1 Electron Motion in Laser Field
If we consider the Lorenz gauge condition ∂µAµ = 0, we immediatelly obtain the
non-homogeneous wave equation from the equation (1.8) via the definition of the
electromagnetic tensor (1.6)

□Aν = −µJν (1.12)

where ∂/∂xµ = ∂µ = (∂t/c, ∇) is the covariant four-gradient, □ = ∂µ∂µ =
∂µ∂µ = ηµν∂ν∂µ =

(︂
− 1

c2
∂2

∂t2 + △
)︂

is the d’Alembert operator and ηµν = ηµν =
diag(−1, 1, 1, 1) is the Minkowski metric. We will consider now the case of an elec-
tromagnetic plane wave, which is the solution of the source-less homogeneous wave
equation □Aν = 0. Since there are no sources, static fields can also be neglected
(we assume electron’s field to be too weak compared to the laser) and thus we ob-
tain plane wave solutions in the form of Aν = (0, A(kµxµ)) = (0, A(kx−ωt)). We
will consider a system where such generally polarized plane wave A = (Ax, Ay, 0)
propagating in the z direction interacts with an electron.

We will now enjoy the fruits of our Lagrangian approach to electrodynamics,
since we will be able to trivially reveal all the symmetries of the system very
easily. With the plane wave A(z − ct), the Lagrangian (1.10) doesn’t depend
on the x and y coordinates, since the first term in (1.10) only depends on four-
velocity (see Appendix A.3). Let us now apply the Euler-Lagrange equations to
reveal all the symmetries and equations of motion of our system. First, since
the Lagrangian doesn’t depend on x and y, we obtain conservation of x and y
generalized momenta (µ = 1, 2) from E-L equations.

d
dτ

(︄
∂L
∂uµ

)︄
= d

dτ
(pµ + qAµ) = 0 (1.13)

In other words, if we consider the electron to be initally at rest, we obtain
after integration

px = eAx

py = eAy

The E-L equation in the z-direction (µ = 3) is

dpz

dt
= −ev · ∂A

∂z
(1.14)

And finally for the time component (µ = 0) we have for the energy of the
particle from the E-L equation

d
dt

(γmec
2) = −ev · E = ev · ∂A

∂t
= −ecv · ∂A

∂z
(1.15)
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Where we’ve transformed from proper to observer time and used the chain
rule ∂

∂t
= −c ∂

∂z
valid for plane wave travelling in vacuum in the positive direction.

By combining (1.14) and (1.15), we obtain another conserved quantity

d
dt

(γmec
2 − cpz) = 0 (1.16)

If we integrate (1.16) from ti to t with the initial condition that the electron
was initially at rest, we get

γmec
2 − cpz = mec

2 (1.17)

A usual and practical convention in relativistic physics is to work within nor-
malized units, since they often clearly define relativistic regimes. Therefore, we
define the normalized vector potential a = eA/mec, velocity β = v/c and mo-
mentum p = p/mec = γβ. Reaching values of ∼ 1 in all of these normalized
quantities indicates a shift towards relativistic dynamics. With previous defini-
tions, we have

px = ax (1.18)

py = ay (1.19)

pz = γ − 1 (1.20)

By evaluating the energy-momentum relation E2 = (pc)2 + (mec
2)2 with the

previous three results we get pz = a2/2 which gives us dependence of the particle
energy on the intensity of the laser field as

γ = 1 + a2

2 (1.21)

where we have used a2 = a2
x + a2

y. Equations (1.21) and (1.20) tell us that
the particle gains energy in the laser propagation direction. This acceleration
scheme is sometimes called j × B heating. This result couldn’t be obtained in
the non-relativistic limit, since the magnetic part of the Lorentz force v × B is
the driving force and in the non-relativistic limit we have |v ×B|/|E| .= v/c ≪ 1.
We will now focus on the simplest case of a linearly polarized plane wave in the
form a = a0 cos(kz − ωt)ex = a0 cos(η)ex where η/k = z − ct is the coordinate
in the co-moving frame of the laser.

px = γ

c

∂x

∂t
= a0 cos(η) (1.22)

py = γ

c

∂y

∂t
= 0 (1.23)

pz = γ

c

∂z

∂t
= a2

2 = a2
0

2 cos2(η) (1.24)
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Integration with respect to time of the co-moving frame τ with the usage of
∂t/∂τ = γ yields the solution

x = a0

k
sin(η) (1.25)

z = a2
0

4k

(︃
η + 1

2 sin(2η)
)︃

(1.26)
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Figure 1.1: Trajectory of electron observed within the laboratory reference frame.
Corresponding laser strength was a0 = 1 (blue) and a0 = 3 (black).

In Fig. 1.1, we have plotted the solutions (1.25) and (1.26) for a0 = 1 and
a0 = 3. As observed from the laboratory frame, the electron conducts a sharply
oscillating saw-like motion with twice the laser frequency in the longitudal di-
rection, the amplitude of the longitudal oscillations also increases as ∼ a2

0/2
compared to the transverse amplitude ∼ a0. If we take the time average of the
equations (1.22), (1.23), (1.24) we observe that there is an average drift velocity
of the electron ⟨vz⟩ = ca2

0/(4 + a2
0). The motion of the electron within the refer-

ence frame moving with the drift velocity can be acquired in the same fashion as
(1.25), (1.26), except we substract the cycle-averaged longitudal momentum from
(1.24), that is p

′
z = pz − ⟨pz⟩ = a2/2 − a2

0/4. The notorious figure of eight motion
reveals itself in the drift frame and is plotted for different values of a0 in the Fig.
1.2. As a quick note, solving (1.18), (1.19), (1.20) for circular polarization gives
helical trajectory in the lab frame and no oscillations in the z direction in the
drift frame.
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Figure 1.2: Trajectory of the electron observed within the co-moving electron
drift frame. Corresponding laser strength was a0 = 1 (blue) and a0 = 3 (black).

To consider energy the electron can obtain with availible lasers, let us first
return to SI units to connect the normalized vector potential to intensity.

a0 = eA0

mec
= eEL

mecω
=

⌜⃓⃓⎷ e2λ2
LI0

2πϵ0m2
ec

5
.= 0.855

√︂
I[1018W/cm2]λ2

L[µm] (1.27)

Many laser systems are now able to operate at focused peak intensities above
1020 W/cm2, which for a laser with wavelength 800 nm corresponds to a0

.= 6.9.
Cycle-averaged momentum within the lab frame is ⟨p⟩ = meca2

4 , which corresponds
to momentum gain of 6 MeV/c. While this is still worse than conevntional accel-
erators, it is 5 orders of magnitude worse compared to the momentum achievable
by LWFA as put forward in the introduction. Previous results also inherently
assume the laser beam is infinite. In reality, as can be also seen in the co-moving
drift frame, the electron is only pushed by the presence of the laser to a new
longitudal position, but doesn’t gain any net energy over one laser cycle. Once
the laser stops, the acceleration stops as well and no net energy gain is achieved,
which is the case with a real laser pulse. These results summarize the Lawson-
Woodward theorem, which states that the net energy of an electron interacting
with electromagnetic radiation in vacuum is zero [28]. However, in the next sec-
tion we will maybe surprisingly see that the spatial distribution of the intensity
is a crucial and necessary part of plasma accelerators.
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1.1.2 Ponderomotive Force
We’ve briefly mentioned at the end of the previous subsection that the spatial
distribution of intensity plays a dominant effect during the interaction of the
laser field and the electron. This effect manifests itself through the Ponderomo-
tive Force, which pushes all charged particles from the regions of high intensity.
Before we once again utilize the Lagrangian approach to derive a fully relativistic
treatment, we will quickly offer an intuitive feel for it’s non-relativistic emergance.

Figure 1.3: Ponderomotive force pushing all charged particles from the region of
the laser beam.

Non-relativistic case
Let us consider the motion of a charged particle in the laser field as presented in
the previous subsection. If we consider the non-relativistic case where a0 ≪ 1,
we have pz = a2/2 ≈ 0. The quivering motion of the particle is then described
by equations (1.18), (1.19), which gives the velocity as

v = c

γ
a ≈ ca (1.28)

We then define the ponderomotive or cycle-averaged quiver energy of the
particle as the cycle-averaged kinetic energy of such motion

Up = 1
2mc2⟨a2⟩ (1.29)

If we now consider the laser field described by a to have a slowly varying
envelope and consider this ponderomotive energy to be the potential energy of
the particle, we obtain the ponderomotive force in the non-relativistic case

Fp = −1
2mec

2∇⟨a2⟩ = − q2

4mω2 ∇|E|2 (1.30)

where q and m are the particle’s charge and mass and ω is the angular fre-
quency of the laser. This heuristic derivation shows us that the existence of a
spatial distribution of the electromagnetic field gives rise to the ponderomotive
force.
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Relativistic case
In the relativistic regime where a0 ≫ 1, the longitudal momentum pz becomes
dominant and previous result is invalid. The following result is a highly simplified
approach to the rigorous treatment presented in [29]. We will once again shift
into the drift frame with center corresponding to the electron oscillation center.
Once again with the substitution η/k = z − ct valid for a monochromatic plane
wave. We can assume the existence of η(xν) for a general electromagnetic field
when an oscillation center exists. We will obtain the Lagrangian transformed into
the drifting wave frame from Lorentz invariance of the action

δS = δ
∫︂ τf

τi

L(qµ, q̇µ, τ)dτ = δ
∫︂ τf

τi

L(qµ, q̇µ, τ)dτ

dη
dη = δ

∫︂ τf

τi

L(η)dη = 0 (1.31)

The cycle-averaged Lagrangian in the drift frame is then

⟨L(η)⟩ = 1
2π

∫︂ η+2π

η
L(ζ)dζ (1.32)

The non-trivial and lengthy proof in [29] then presents that the motion of the
particle’s oscillation center is given by the cycle-averaged E-L equations

∂⟨L⟩
∂⟨qµ⟩

− d
dτ

(︄
∂⟨L⟩
∂⟨q̇µ⟩

)︄
= 0 (1.33)

where ⟨qµ⟩ and ⟨q̇µ⟩ are configuration coordinate and velocity of the particle’s
oscillation center and generally ⟨L⟩ = ⟨L(η)⟩(dη/dτ). In the case of a charged
particle interacting with a laser field, the Lagrangian describing the dynamics of
the particle’s oscillation center (treated as described in A.3) is

⟨L⟩ = −meffc2 (1.34)

where meff = m⟨γ⟩ and ⟨γ⟩ corresponds to the oscillating particle’s cycle-
averaged gamma as observed within the drift frame. We can obtain ⟨γ⟩ immedi-
atelly from (1.18), (1.19), (1.20) and the energy-momentum relation, since

⟨γ2⟩ = ⟨1 + p2⟩ = 1 + ⟨a2⟩ ⇒ ⟨γ⟩ =
√︂

1 + ⟨a2⟩ (1.35)

where we’ve used the fact that cycle-averaged longitudal momentum (1.20)
vanishes within the drift frame, ⟨p′

z⟩ = ⟨pz − ⟨pz⟩⟩ = 0. The fully relativistic case
of the ponderomotive force then easily follows from the E-L equations (1.33) for
the spatial components µ = 1, 2, 3 as

F rel.
p = −mc2∇

√︂
1 + ⟨a2⟩ (1.36)

We also note that for linear polarization ⟨a2⟩ = a2/2 and for circular polar-
ization ⟨a2⟩ = a2.
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In the formula (1.36), we can see with the definiton of a = qA/mc that
F rel.

p ∼ 1√
m2+1 ∼ 1

m
, which means that the exerted force on protons will be at

least three orders of magnitude weaker than on electrons. This is an important
observation, because within the ultrafast interaction of LWFA, protons or even
heavier ions won’t be able to move during the few femtosecond long interactions
with a laser pulse compared to the electrons. This means that the positive ions
effectively don’t affect the dynamics of the interaction and we are able to separate
and simplify the dynamics of electrons and ions in the following sections by taking
the ions as an immobile, charged background.

We can see that for a laser pulse with the wavelength 800 nm and peak in-
tensity I ≈ 1020 W/cm2 corresponding to a0

.= 6.9, the ponderomotive potential
is U rel.

p = meffc2 = 2.5 MeV, which in combination with the short time scale of
interaction renders the ponderomotive force useless for direct acceleration pur-
poses. However, as we’ve previously mentioned the ponderomotive force is still
critical for the acceleration scheme of LWFA, because it excites plasma waves due
to the fast expulsion of electrons from the high intensity regions.
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1.1.3 Radiation Reaction
Before we move onto collective laser-plasma phenomena, we need to inform the
kind reader that there are some inconsistencies within the classical regime of rela-
tivistic electrodynamics that we’ve described. These inconsistencies mainly stem
from the fact that, as we will see in Chapter 2, Maxwell equations (1.8), (1.9)
describe that an accelerating charged particle radiates electromagnetic waves.
As radiation carries momentum, there must be some back-reaction causing the
radiating particle to lose energy due to conservation laws. This is often called
radiation reaction.

Non-relativistic case
In Chapter 2, we will derive the classical result of Larmor [30] which gives the
radiated power by a non-relativistic charged particle as

P = q2

6πϵ0c3 a2 (1.37)

from the radiated power we can obtain the radiation back-reaction force act-
ing on the radiating particle by considering the energy it loses due to radiation
emission over some time interval (ti, tf ) as

E =
∫︂ tf

ti

(Frad · v) dt =
∫︂ tf

ti

−Pdt =
∫︂ tf

ti

(︄
− q2

6πϵ0c3 v̇ · v̇
)︄

dt

=
[︄
− q2

6πϵ0c3 v̇ · v
]︄tf

ti

−
∫︂ tf

ti

(︄
− q2

6πϵ0c3 v̈ · v
)︄

dt =
∫︂ tf

ti

(︄
q2

6πϵ0c3 v̈ · v
)︄

dt

(1.38)

Where we assumed that the velocity or acceleration is zero at the beginning
or end of the motion over some time interval. By comparing the first and the
last integrand in the previous derivation, the radiation reaction force can be then
assigned in the non-relativistic case as

Frad = q2

6πϵ0c3 ȧ (1.39)

A particle moving in a cyclotron orbit will experience jerk ȧ in the opposite
direction of velocity, so we see that this force indeed provides a braking action
for the radiating particle. However, a quick comparison with the radiated power
(1.37) immediatelly tells us that this must be dynamically wrong, since radiation
is emitted during constant acceleration, but particle’s dynamics are unchanged
due to (1.39) being zero. Another unsatisfactory behaviour of this solution is the
fact that Newton’s equations of motion become third order differential equations
in time and therefore also need to provide the initial acceleration of the particle.
This increase in the order of the differential equations unfortunately introduces an
even worse offender in the form of pathological runaway solutions, which emerge
due to the third derivative in time.
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We can easily see this pathology when we solve Newton’s equations of motion
with constant external force Fext acting on an initally inertial particle a(0) = 0

mea = q2

6πϵ0c3 ȧ + Fext ⇒ a(t) = Fext

(︂
1 − et/τrad

)︂
(1.40)

where τrad = e2/6meπϵ0c
3 tells us that the electron being acted upon even

by weak external forces could accelerate to relativistic energies in few τrad =
6.26 · 10−24 s. This obviously doesn’t satisfy conservation of energy and we are
forced to look for a more complete description of the radiation reaction force in
the relativistic regime.

Relativistic case
The total radiated power (1.37) is Lorentz invariant as shown in [28] and therefore
we can do a straightforward generalization to the relativistic regime by simply
switching towards Lorentz invariant product of four-acceleration through a → aµ,
which will be properly validated in Chapter 2, then the radiated power becomes

Prel. = − q2

6πϵ0c3 aµaµ (1.41)

where aµ = duµ/dτ is four-acceleration. If we use the definition of four-
velocity in (1.5), the radiated power from a relativistic charged particle is given
as

Prel. = − q2

6πϵ0c3

(︄
duµ

dτ
· duµ

dτ

)︄
= q2

6πϵ0c3 γ6a2(1 − β2 sin2 θ)

= q2

6πϵ0c3 γ6
(︄

a2 −
⃓⃓⃓⃓v × a

c

⃓⃓⃓⃓2)︄
= q2

6πϵ0c
γ6
(︃

β̇
2 −

⃓⃓⃓
β × β̇

⃓⃓⃓2)︃ (1.42)

The last equation tells us that radiated power scales with γ6, which means
that radiative energy losses can be potentially neglected for non-relativistic or
non-accelerating particles, but they get increasingly relevant once accelerating
particles enter relativistic regime. Classical electrodynamics therefore predict
significant radiative losses for accelerating relativistic particles, however these
losses are not accounted for in the description of particle dynamics by Lorentz
force (1.11), since we inherently assumed that the electromagnetic tensor F µν

describes only fields generated externally, as a laser for example. If we wanted
to modify the Lorentz’ force to account for the particle’s own generated field, we
would have to include them into the electromagnetic tensor F µν = F µν

ext + F µν
rad,

producing a modified Lorentz force law

dpµ

dτ
= q

mc
(F µν

ext + F µν
rad)pν = q

mc
F µν

extpν + Fµ
rr (1.43)

Where Fµ
rr is the radiation reaction force acting on the charged particle. Un-

fortunately, with this modification we face our first obstacle. For a point-like
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charged particle, which we assume is the case for elementary particles like elec-
tron, F µν

self is divergent, as shown in [28]. It is possible to derive the radiation
reaction force by considering a charged object of finite volume and then taking a
point-like limit, however in Appendix A.4 we offer a derivation that simply rests
on conservation laws and symmetry. The result is

Fµ
rr = q2

6πϵ0c3

(︄
daµ

dτ
+ uµ

c2 (aνaν)
)︄

(1.44)

Combining (1.43) with (1.44) gives the fully relativistic Lorentz-Abraham-
Dirac (LAD) equation [31]

dpµ

dτ
= qFµνuν + q2

6πϵ0c3

(︄
daµ

dτ
+ uµ

c2 (aνaν)
)︄

(1.45)

Note that (1.44) now forces the charged particle to experience drag even
in constant acceleration, which was impossible with the non-relativistic version
(1.39). The LAD equation enables radiative drag in arbitrary accelerating cases,
however it is still addled with the runaway solutions that violate conservation of
energy. This pathology can be removed by demanding that acceleration tends to
zero after long enough time duration. This in turn introduces another pathology
in the form of pre-acelerated solutions, where acceleration at some time depends
on acceleration in the future. These pathologies are the result of the first term
in (1.44), called Shott term, which depends on jerk, as it was the case in the
non-relativistic regime. These problems of LAD equation are still to this day
being adressed, some succesfully through corrections, as reviewed in [32].

One such approach to the treatment of radiation reaction was proposed by
Landau and Lifshitz in [33]. This approach lies in the reduction of order of the
differential equations, which we will now follow. The fact that τrad is of such small
order allows us to iteratively obtain a solution correct to the first order in τrad. If
we substitute dpµ/dτ → (q/mc)F µνpν to (1.44), we obtain the Landau-Lifshitz
force, which approximates the LAD equation to first order in τrad and eliminates
dependence on jerk, which consequentely eliminates the pathologies. If we add
this Landau-Lifshitz force to (1.43), an exact solution can be obtained for the
motion of an electron in a plane wave [34], similarly to how we proceeded in
1.1.1. This solution works as a very useful reference for the effect of the radiation
reaction. In Fig. 1.4, we can see that at very high intensities, the exclusion of
the radiation reaction would lead to neglection of the radiative drag the particle
experiences during acceleration.
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Figure 1.4: The black trajectory describes the disturbed figure-of-eight motion in
the drift frame due to the Landau-Lifshitz force. The red trajectory corresponds
to the case when radiation reaction is neglected. Laser strength was set at a0 =
100. Reprinted from [35]

If we inspect closely the radiation reaction force in (1.44), we can see that the
radiation reaction is strongest during transverse acceleration, since

Fµ
rr ∼ aνaν = −γ6a2(1 − β2 sin2 θ) =

⎧⎨⎩−γ6a2, if v ∥ a
−γ4a2, if v ⊥ a

(1.46)

We can expect to observe strong signatures of radiation reaction during ex-
periments with counter propagating electron and laser beams, which could be
realized in an all-optical setup thanks to LWFA. If we also consider electric field
strong enough to do work equal to the rest energy of the electron mec

2 over the
Compton wavelength λc = h/2πmec, we get

Es = mec
2

λc

= m2
ec

3

eh/2π
= 1.3 × 1016 V.cm−1 (1.47)

which is the Schwinger field. This corresponds to the intensity Is = 2.3 ×
1029 W.cm−2, still around 7 orders of magnitude away from intensities currently
achievable in laboratory conditions. If the electric field approaches Es in the rest
frame of an electron, non-linear effects of the quantum electrodynamics (QED)
in vacuum like pair-production will begin manifesting [36]. However, this QED
regime can be explored experimentally with much lower intensities. In the rest
frame of an relativistic electron travelling with velocity β, electric field of a laser
is Lorentz transformed to E ′ = γ(1 + β)E ∼ 2γE. The frequency of the field
also becomes Doppler upshifted, ω′ = γ(1 + β)ω. If the photon energy becomes
of the same order as electron rest energy hν ′ = mec

2, or the electric field in the
rest frame approaches Schwinger field, QED effects need to be considered.
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We will conclude this section with the following observations. As shown in
[36], the LAD equation and the Landau-Lifshitz reduction are equivalent in the
first order of fine-structure constant α

.= 1/137 to a perturbative QED result.
We can see that the radiative time we introduced is comparable to the time it
takes light to traverse the classical electron radius re

τrad = 2
3

re

c
= α

2
3

λc

c
= ατ

QED
(1.48)

This means that the pathological radiative time scales of the LAD equation
are smaller than the time scales of QED interactions, by a factor of α. This
tells us that the onset of radiation reaction effects during these time scales where
pathologies manifest must be necessarilly tied in with the QED effects. It would
seem reasonable to explore the radiation reaction within the QED framework,
where the quantization of fields and particles naturally enforces momentum and
energy conservation during interactions. The QED regime also introduces effects
like straggling, where the stochastic nature of radiation emission allows higher
energetic electrons to propagate significantly longer distances without radiating,
which in turn enhances emission of higher energy photons and further deviates
the radiation emission spectrum and particle dynamics from the classical regime
[37]. Upcoming high energy experiments involving collisions of laser and elec-
tron beams will therefore require complete description within the QED regime to
sufficiently describe energy spectra of measured photons and electrons.
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1.2 Plasma Interacting with
Electromagnetic Field

The dynamics of many particles interacting with electromagnetic field will reveal
collective behaviour that is inexplicable within the single particle framework we
have developed in the previous section. This collective behaviour will reveal ac-
celerating schemes dramatically superior to the possibilities of direct acceleration
by the laser field.

1.2.1 Plasma Generation
Plasma is the fourth state of matter and probably the most abundant one in
the universe, if we neglect the existence of dark matter [38]. The plasma can be
generated in laboratory, for example if we focus an intense laser beam upon a
gas target. In 1965 L. V. Keldysh pioneered theory describing the interaction of
a bound electron with electromagnetic wave [39]. This theory identifies possible
regimes of laser induced ionization for given laser field intensity through the
Keldysh parameter

Γ =
√︄

Ip

2Up

(1.49)

where Ip is the ionization potential, the energy necessary to ionize the bound
electron and Up ∼ Ilaser is the ponderomotive energy (1.29). The value of Γ
compares the strength of the laser field quivering with the electron to the energy
that must be given to the bound electron so it becomes free from it’s parent atom.
Γ ≪ 1 identifies the perturbative regime where laser field effectively doesn’t affect
the atomic Coulomb potential that bounds the electron. This perturbative regime
however still allows ionization through non-linear absorption of multiple photons,
this is called multiphoton ionization. Reaching Γ ∼ 1, which for lighter gases
corresponds to laser intensity of I ≈ 1014−15 W.cm−2 brings us to the regime of
tunnel ionization. The perturbation of the Coulombic potential is now strong
enough to allow the electron to tunnel through the induced potential barrier.
Γ ≫ 1 identifies the regime of barrier-suppressed ionization, where the electric
field is strong enough to completely suppress the Coulombic potential and directly
release the bound electron. As an example, 808 nm laser pulse with focused
intensity ∼ 1016 W.cm−2 completely ionizes both hydrogen and helium [40].

Figure 1.5: Changing ioniziation regimes with respect to increasing electric field
intensity. Reprinted from [40]
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1.2.2 Electromagnetic Waves in Plasma
The plasma consisting of electrons and ions generated through mechanisms of
gas ionization we’ve presented is a very different medium compared to empty
vacuum. By combining Maxwell equations (1.8), (1.9) re-arranging for E and
applying the curl operator, we obtain

∇ × ∇ × E = − 1
c2

∂2E

∂2t
− µ

∂j

∂t
(1.50)

By applying the Fourier-Laplace transform on the field E(r, t), we obtain for
each Fourier-Laplace mode E(k, ω) = Ek,ω the following condition

k × k × Ek,ω = 1
c2

(︄
nee

2

meϵ0
− ω2

)︄
Ek,ω (1.51)

Where we’ve made the assumption that electrons are freely moving in the pres-
ence of the electromagnetic field and the source term then became j = −ene⟨v⟩ =
−e2neĖ/meω

2. These equations describe allowed electromagnetic field modes in
plasma. We can easily obtain dispersion relations for two boundary cases. If we
consider only modes satisfying k ∥ E, the left hand side is identically zero and
the right hand side produces the only possible oscillation frequency as

ωp =
√︄

nee2

meϵ0
(1.52)

which is called plasma frequency. Since generally electromagnetic modes sat-
isfy k×E = ωB, we see that this mode is a longitudal electrostatic wave. We can
immediatelly see that it must be these waves that will produce plasma accelera-
tion, since they carry electric intensity in the direction of the wave propagation.
The second boundary case corresponds to electromagnetic waves in vacuum, that
is k ⊥ E. For this condition, (1.51) produces dispersion relations for transverse
electromagnetic waves in plasma as

ω2 = ω2
p + c2k2 (1.53)

these dispersion relations allow us to compute the phase and group velocities
of electromagnetic waves inside plasma. If ω > ωp, k is real and the wave can
propagate through the medium. For ω < ωp, k is imaginary and the electromag-
netic wave must be reflected upon reaching the plasma interface and exponentially
attentuated inside the plasma due to conservation of energy. For a given electro-
magnetic wave frequency, only the plasma density ne can affect this behaviour.
This defines the critical density separating the real and evanescent wave cases as

nc = ω2meϵ0

e2 (1.54)

If ne < nc, electromagnetic wave propagation is allowed and we say that the
plasma is underdense. On the other hand, if ne > nc, electromagnetic wave
proapgation is unfavoured and the plasma is called overdense.
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1.2.3 Relativistic Nonlinear Optics
Let us focus now on the effect the plasma medium has on propagating lasers.
From dispersion relations for electromagnetic waves in plasma (1.53) we obtain
the phase and group velocity as

vp = ω

k
= c

/︄√︄
1 −

(︃
ωp

ω

)︃2
(1.55)

vg = dω

dk
= c ·

√︄
1 −

(︃
ωp

ω

)︃2
(1.56)

we can therefore easily see that the refractive index of plasma is

n = c

vp

=
√︄

1 −
(︃

ωp

ω

)︃2
=
√︄

1 −
(︃

ne

nc

)︃
(1.57)

for this formula to work there’s a hidden assumption we would like to remind
the kind reader of, which is that the response of electrons is much quicker than
the heavier ions. For laser frequency we have ω ≫ ωions at low temperatures. The
contribution of ions is reached at frequencies well below ωp, therefore interaction
with electromagnetic waves is inaccessible. We can therefore safely neglect the
contribution of ions and neutrals to the refractive index in this case at low tem-
peratures [38]. Furthermore, we note that n < 1 always during low temperature
laser-plasma interactions. Relativistic nonlinear optical effects come into picture
when we include the increase of electron relativistic mass me → γme into the
plasma frequency

ω2
p = nee

2

γmeϵ0
(1.58)

which naturally modifies the index of refraction due to relativistic electrons

n = c

vp

=

⌜⃓⃓⎷1 −
(︄

ωp

γω

)︄2

≈ 1 − 1
2

(︃
ωp

ω

)︃2
(︄

1 − a2

4

)︄
(1.59)

where we’ve used the result γ = 1 + a2/2 of our model of electron interacting
with laser (1.21) and used gamma averaged over some time period to account for
various electrons at different phases, that is γ → ⟨γ⟩ = 1 + a2/4, valid for linear
polarization. The ponderomotive force discussed previously can cause variations
in the electron density. These density variations naturally correspond to varia-
tions in the refractive index (1.59), which causes perturbations in laser frequency.
If we consider small perturbations of electron density δne and due frequency δω,
we have ne ≈ n0 + δne and ω ≈ ω0 + δω. If we neglect second order perturbations
we obtain the relativistic nonlinear refractive index of plasma

n ≈ 1 − 1
2

(︃
ωp

ω

)︃2
(︄

1 − a2

4 + δne

n0
− 2δω

ω0

)︄
(1.60)
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Self-focusing
The increase in relativistic mass with intensity (1.21) produces intensity depen-
dence in refractive index. If we consider a laser pulse with gaussian spatial dis-
tribution a(r) = a0e

−(r/w0)2 , the refractive index gains transverse dependence

∂n

∂r
.= 1

4

(︃
ωp

ω

)︃2 ∂a(r)
∂r

< 0 (1.61)

where we’ve neglected small perturbations of density from ponderomotive
force ∂δne/∂r

.= 0 and used ∂a/∂r < 0. (1.61) tells us that laser wavefront
becomes curved in relativistic plasma since phase velocity increases further away
from propagation axis. This effect is called relativistic self-focusing. Relativistic
cold plasma essentially acts as a convex lens. Critical laser power Pc necessary
for self-focusing to overpower laser diffraction to achieve self-guiding was shown
to be [41].

Pc = 8πϵ0c
5m2

e

e2

(︄
ω

ωp

)︄2
.= 17

(︄
ω

ωp

)︄2

[GW] = 17
(︃

nc

ne

)︃
[GW] (1.62)

Refractive index also depends on electron density modulations from pondero-
motive force (1.60), therefore critical power necessary to achieve self-guiding is
slightly decreased due to the fact that electrons are pushed from the regions of
high intensity and therefore generate higher density off-axis ∂n/∂r ∼ −∂δne/∂r <
0. Due to this ponderomotive self-focusing, critical power necessary to achieve
self-guiding is slighlty relaxed to [41]

Pc
.= 16.8

(︄
ω

ωp

)︄2

[GW] (1.63)

where ω is laser frequency. Self-focusing over tens of Rayleigh lenghts was
observed in [42].

Self-compression
Refractive index (1.60) causes the pulse to self-compress. Shifting into the laser
frame by substitution ξ = z − ct, the group velocity satisfies

∂vg

∂ξ
= c

∂n

∂ξ
=∼ 1

2
∂a

∂ξ
− 1

n0

∂δne

∂ξ
=

⎧⎨⎩≪ 0, at the pulse front
> 0, at the pulse back

(1.64)

the first case is due to the fact that for a guassian pulse ∂a/∂ξ < 0 at the
front. The ponderomotive force causes accumulation of electrons at the front
edge and there is a steep plasma density increase ∂δne/∂ξ ≫ 0, which is the
reason laser pulse compresses and dramatically steepens at the leading edge in
plasma. In the second case, at the pulse back, once again ∂a/∂ξ < 0. Small
plasma density at the back is due to the fact that electrons are expelled from
this region by ponderomotive force, therefore ∂δne/∂ξ ≤ 0. Such compression in
plasma of 38 fs laser pulse to 10 - 14 fs was measured in [43].
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Self-induced transparency
If a high intensity laser beam strikes a plasma target, electrons in the target may
become accelerated due to the presence of the field as discussed in the previous
subsections, increasing critical density observed in the laboratory frame (1.54) to

n′
c = ω2meγϵ0

e2 = γnc (1.65)

this effectively causes the target to become transparent for the high intensity
laser beam, an effect called self-induced transparency [35].

Photon acceleration
Plasma naturally introduces dispersion through (1.57), the group velocity then
tells us that high frequency waves travel faster than lower frequency waves within
plasma. We might expect blueshift in the laser pulse front, but as we will see,
this natural dispersion is outweighed within non-homogeneous plasma. Within
the laser reference frame ξ = z − ct we have

∂ω

∂τ
≈ c

ω

n2
∂n

∂ξ
(1.66)

where we’ve estimated the change of frequency as ∆ω = 2πc/∆λ with ∆λ =
(−2πc2/ω2)∆ω = ∆vp∆τ , ∆vp ≈ λ∂vp/∂z and used (1.55). Laser pulse prop-
agating away from a co-propagating density decrease will therefore experience
blueshift in time, this is called photon acceleration, evidence of which was found
in [44]. However, high intensity pulses in plasma mostly experience an increasing
density at the laser front due to ponderomotive force as discussed previously, in
this case the dependency ∂n/∂ξ is completely identical in (1.66) as in (1.64) and
we therefore conclude that high intensity laser pulses become redshifted at the
front and blueshifted at the back while propagating in plasma, as was experimen-
tally confirmed in [45].
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1.2.4 Plasma Dynamics
To see the emergence of accelerating plasma wakefields from collective behaviour
of electrons, we will first need to describe system consisting of many particle
systems like electrons and ions. Since we’re mostly interested in macroscopic
quantities like density and related electromagnetic field, we don’t have to con-
sider a full microscopic description and a kinetic description based on particle
distribution function f(r, p, t) will suffice. Evolution of such a non-equilibrium
thermodynamic system is generally described by the Boltzmann equation, but
we’re mostly interested in the response of the plasma to the propagating electro-
magnetic fields and therefore if we neglect the short-range Coulombic collisions
between particles and work within field strengths where no particles are created or
annihilated as mentioned in 1.1.3, we obtain the collisionless Boltzmann equation,
also known as Vlasov equation

df(r, p, t)
dt

= ∂f

∂t
+ v · ∇rf + F · ∇pf = 0 (1.67)

which tells us that the distribution function is constant along any trajectory
in phase space or equivalently that phase space volume occupied by a collection
of particle systems evolving in time is constant. If we consider multiple particle
systems, for example electrons and ions, distribution function of each particle
system fi(r, p, t) must satisfy equation (1.67). Coupling Vlasov equations of the
particle systems to the Maxwell equations gives the full kinetic description of
plasma through the Vlasov-Maxwell equations

∂fi

∂t
+ v · ∇rfi + qi

mi

(E + v × B) · ∇vfi = 0

∇ × E = −∂B

∂t

∇ × B = 1
c2

∂E

∂t
+ µj

∇ · E = ρ

ϵ
∇ · B = 0

(1.68)

where the current density j and charge density ρ are associated with the first
two velocity moments of fi as

ρ =
∑︂

i

qini =
∑︂

i

qi

∫︂
fi(x, v, t)d3v

j =
∑︂

i

qinivi =
∑︂

i

qi

∫︂
vfi(x, v, t)d3v

(1.69)

This Vlasov-Maxwell system of equations self-consistently describes dynamics
of collisionless relativistic plasma on the kinetic scale if we neglect collisions, re-
action forces or quantum effects. These effects can still be somehow included into
the collisionless Boltzmann equation (1.67) through the force term, inclusion of
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the collison term [35] or through Monte Carlo algorithms [46], [47]. Analytical so-
lutions to these equations are extremely rare and for general boundary conditions
they have to be solved numerically. Usually the way to solve them is through the
Particle-In-Cell (PIC) method which we will describe in Chapter 3, where we will
also present our numerical solutions to such equations.

Fluid Description
While numerical solutions of the Vlasov-Maxwell system (1.68) completely de-
scribe plasma dynamics on the kinetic scale, they are often computationally
demanding and non-intuitive. We can however obtain analytic solutions if we
make another reductive approximation from the microscopic description, where
we move from the kinetic to the fluid description of plasma. The fluid model
of plasma is an Eulerian description where we focus on macroscopic quantities
of the particle distributions, which are the first velocity moments, respectively
particle density, mean velocity density and energy density [35]. By integrating
(1.67) over momentum, we get

∂n

∂t
+ ∇ · (nv) = 0 (1.70)

which is the equation of continuity. By first multiplying (1.67) with v and
then integrating over momentum, we also get

me

(︄
∂v

∂t
+ v · ∇v

)︄
= −e(E + v × B) (1.71)

which is the equation of motion for a fluid element. By combining these
equations with Maxwell’s equations where different species are coupled to each
other and the electromagnetic fields through the source terms ρ and j, we have
a closed system of equations. This gives us hydrodynamic description of plasma.

1.2.5 Relativistic Nonlinear Plasma Waves
As we’ve briefly discussed in 1.2.2, we wish to describe the longitudal wakefields,
which means we are mostly interested in describing an electrostatic wave propa-
gating in relativistic plasma, which can be obtained by Gauss’ law

∇ · E = −∆ϕ = ρ

ϵ
= −e(ne − ni)

ϵ
(1.72)

where ρ is the charge density, ne is the electron density and ni is the ion
density. Since we assume the ions to be a homogenously charged immobile back-
ground due to their heavy mass, ion density is unperturbed, constant, and equal
to equilibrium electron density ni = n0. If we assume the wave to be propagating
in the z direction, we can shift into the wave frame with ξ = z − vpt, where vp

33



is the phase velocity of the plasma wave (1.55). Spatial derivatives transform as
∂ξ = ∂z and Poisson equation in the wave frame becomes

∂2ϕ

∂ξ2 = en0

ϵ0

(︃
ne

n0
− 1

)︃
(1.73)

To find the dependence of the electric potential ϕ on density perturbations
ne/n0, we will work within the fluid description of plasma. We therefore need
to include the continuity equation (1.70), which by transforming into the wave
frame becomes

evp
∂ne

∂ξ
+ ∂j

∂ξ
= 0 (1.74)

for relativistic electrons propagating in the z direction, we have j = −enevz.
After integration with the initial condition ne(ξ = 0) = n0, we get

nevp − n0vp = nevz → ne

n0
= 1

1 − vz/vp

≈ 1
1 − βz

(1.75)

where we assumed the plasma waves to be relativistic vp ≈ c. This gives the
Poisson equation (1.73) as

∂2ϕ

∂ξ2 = k2
p

(︄
1

1 − βz

− 1
)︄

(1.76)

where we introduced the plasma wave vector kp = ω/vp and the normalized
electric potential ϕ = eϕ/mec

2 which is once again normalized to signify relativis-
tic electric field potential energy, notably when eϕ ≫ mec

2. Let us also note that
since pz = γβz, we have

1
1 − βz

− 1 = βz

1 − βz

γ

γ
= pz

γ − pz

(1.77)

Now we only need to find how the normalized longitudal momentum pz of
the electrons generating current j depends on electric potential ϕ. With some
work, we can retrieve this similarly to how we obtained momenta for an electron
interacting with laser (1.18), (1.19), (1.20). The whole approach is completely
analogic, except now we also have to include the longitudal electrostatic part
described by the electric potential ϕ in the four-potential Aν = (ϕ/c, A). A
very important observation in the following derivation comes from the fact that
by A = (Ax, Ay, 0), we are describing the transverse electromagnetic wave that
generates the plasma density perturbations through ponderomotive force. On
the other hand by ϕ(z − vpt), we only describe the electrostatic longitudal field
response to these density perturbations, which are correlated through Poisson
equation (1.76).
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Now we proceed analogically as in 1.1.1, first by applying the Euler-Lagrange
equations (1.3) on the Lagrangian (1.10). With the electric potential included in
the four-potential, we get

px = eAx (1.78)

py = eAy (1.79)

dpz

dt
= −ev

∂A

∂z
+ e

∂ϕ

∂z
(1.80)

d
dt

(γmec
2 − eϕ) = ev

∂A

∂t
− e

∂ϕ

∂t
(1.81)

once again by combining the last two equations and using the chain rule
∂/∂t = −c∂/∂z valid for modes propagating in the positive direction, we get a
new constant of motion, which also includes the electric potential

d
dt

(γmec
2 − cpz − eϕ) = 0 (1.82)

After integration this becomes in normalized units

γ = 1 + ϕ + pz (1.83)

By squaring γ, we have

γ2 = (1 + ϕ + pz)2 = (1 + ϕ)2 + 2(1 + ϕ)pz + p2
z (1.84)

Energy-momentum relation E2 = (pc)2 + (m0c
2)2 with the combination of

(1.78), (1.79) produces in normalized units

γ2 = 1 + p2 = 1 + a2 + p2
z (1.85)

If we equate (1.84) and (1.85) and solve for pz, alas, we obtain the dependence
of the longitudal momentum of the electrons on the normalized electric potential

pz = 1 + ϕ

2

(︄
1 + a2

(1 + ϕ)2 − 1
)︄

(1.86)

Now that we know the dependence of the longitudal momentum, the Poisson
equation (1.76) with the fact that γ − pz = 1 + ϕ becomes thanks to (1.77)

∂2ϕ

∂ξ2 =
k2

p

2

(︄
1 + a2

(1 + ϕ)2 − 1
)︄

(1.87)

which is the relativistic non-linear one-dimensional plasma wave equation.
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Figure 1.6: Solutions to the relativistic plasma wave equation (1.87) with increas-
ing laser strength. n0 is the equilibrium electron density and E0 = meωpc/e is
the non-relativistic wavebreaking limit (1.90).
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Solving equation (1.87) gives us the normalized electric potential ϕ due to
presence of the laser pulse described by a(ξ). First derivative of the potential in
the direction of propagation gives us the electric field of the plasma wave, the
second derivative gives us the perturbed density δne = ne − n0 through equation
(1.73). If we describe the laser pulse as a(ξ) = a0e

−2(ξ/π)2 , which corresponds
to the pulse length condition cτL = λp/2, we obtain with increasing laser field
strength solutions shown in 1.6. Fig. 1.7 shows that the following pulse length
condition must be satisfied for optimal wakefield generation

τL ≃ τp

2 = λp

2c
(1.88)

This condition characterizes the resonance between the ponderomotive force
and the oscillatory response of electrons [48].

Figure 1.7: Plasma wakefield response to variations of pulse length. a0 = 1,
cτ = 0.3, 1, 1.6 · λp/2.
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Fig. 1.6 show us that within the non-relativistic peak laser strength a0 < 1,
we’re observing linear response of the plasma and the electrons are oscillating
in a sinusoidal fashion. Entering the relativistic regime produces sharp electron
density peaks and the plasma wave assumes a sawtooth-like shape. Equations
(1.73) and (1.76) tell us that

ne

n0
∼ ∂2ϕ

∂ξ2 ∼ 1
1 − βz

→ ∞ ⇐⇒ βz = ve/vp → 1 (1.89)

This tells us that as the phase velocity of the individual electrons that build
the plasma wave approaches phase velocity of the plasma wave ve → vp, the sharp
plasma density peaks become unbounded ne → ∞. This is called wavebreaking,
since the phase velocity of individual electrons reaches or overtakes the phase
velocity of the plasma wave and thus the longitudal electrostatic plasma wave
breaks, similarly to an ocean wave crashing upon a beach. This mechanism
also sets the cold relativistic wavebreaking limit, which dictates the maximum
attainable longitudal electrostatic field of the plasma wave in cold plasma as [49]

Emax
0 = meωpc

e

√︂
2(γp − 1) (1.90)

where γp = (1 − β2
p)−1/2 = ω/ωp due to (1.55). (1.90) gives us a simple tool to

check for the maximum possible theoretically achievable accelerating gradient. As
an example, let us consider Ti:Sapphire laser with central wavelength of 0.808 µm
shooting into a gas target with particle density 5×1018 cm−3, this gives us γp

.= 5.8
and the maximum achievable electric intensity of the plasma wave is therefore
Emax

0
.= 2 TV/m. We will briefly remind the kind reader that previous analysis of

laser wakefields was only considered in the 1D case. The complete 3D description
must be solved numerically as done in Chapter 3. We must however mention
the blowout regime, in which a laser pulse with a0 ≥ 2 generates approximatelly
spherical plasma cavity with radius rb, as shown in introduction of this thesis on
Fig. 6. This bubble shape is assumed when the ponderomotive force acting on
the electrons is balanced by the radial electrostatic attraction caused by the ions
behind the laser pulse. Through 3D simulations it was found in [50] that this
balance emerges when the laser waist w0 satisfies

kprb ≈ kpw0 = 2√
a0 (1.91)

Within this blowout regime, electrons experience a radial electrostatic force
from the ions, keeping the electrons that are injected into the accelerating phase
roughly on axis, which makes this scheme ideal for acceleration due to reduced
transverse emittance. (1.88) and (1.91) combined with sufficient laser strength
a0 ≥ 2 give us three rules of thumb for achieving optimal electron laser wakefield
acceleration. We’ve shown that enormous accelerating gradients can be gener-
ated within these laser produced plasma wakefields, however as is the case in
other contemporary accelerators, particles to be accelerated need to be injected
into the accelerating phase of the field. In the next section, we will see that al-
though wavebreaking limits the maximum electric intensity of the plasma wave,
it provides one of the methods for such electron injection.
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1.2.6 Electron Trapping
As we’ve previously mentioned, electrons need to be trapped within the acceler-
ating phase of the field to accelerate and gain energy. We will follow the results
of [51] to characterize this trapping into the accelerating phase. The Hamiltonian
of a relativistic electron in a plasma wave transformed into the wave frame is

H(ξ, pz) = γmec
2(1 − βzβp) − eϕ (1.92)

Where βp = vpc is the normalized phase velocity of the plasma wave. Since
the total mechanical energy along any electron trajectory doesn’t change, the
Hamiltonian is constant and we can rewrite it in terms of the normalized electron
momentum pz

H + ϕ = γ − pzβp =
√︂

1 + p2
z − pzβp (1.93)

where we’ve introduced the normalized Hamiltonian H = H/(mec
2). Solving

the equation for pz gives

pz = βpγ2
p

(︂
H + ϕ

)︂
± γ2

p

√︃(︂
H + ϕ

)︂2
− 1/γ2

p (1.94)

Employing the potential ϕ for a0 = 0.2 obtained from solving (1.87) produces
phase space evolution for electrons with various initial energies by setting different
initial kinetic energy thanks to the conservation of energy for every trajectory
H = H0 = const. Different trajectories are sampled like this in Fig. 1.8.

We can see that there are two kinds of trajectories, closed (solid black) and
open (dashed black) orbits which are separated by a separatrix (red). The sepa-
ratrix trajectory is obtained when an electron is moving within minimum of the
plasma wave potential. That means it’s Hamiltonian satisfies Hs = 1/γp − ϕmin.
The open orbits H0 < Hs correspond to electrons conducting fluid motion within
the plasma wave whose initial energy was either too small or too high to be
trapped by the longitudal field. The orbits close when H0 > Hs, which corre-
sponds to the case of electrons that have just right initial kinetic energy, therefore
they are trapped by the plasma wave. To see that these electrons are accelerated
inside the plasma, let us assume that an electron has initial velocity βz < βp

and large enough initial energy to become trapped, then it will eventually start
gaining energy, reaching a point when βz = βp (green arrow tip). Subsequent
energy gain results in βz > βp and the electron obtains maximum energy at some
point during it’s evolution (blue arrow tip). At this point the acceleration should
ideally stop, however without any changes to the system the electron begins los-
ing energy (red arrow tip), giving it back to the plasma wave, which eventually
completes the rotation in phase space. This deceleration is known as dephasing
and is one of the limitations of energy gain, it can be however prevented through
various methods, such as tuning the plasma density and target length to prevent
it completely.

39



We can see that wavebreaking is a necessary condition for acceleration, since
for both βz > βp. As seen in Fig 1.8, the separatrix orbit is the one that requires
least initial kinetic energy and produces the most energy from all the closed orbits.

Figure 1.8: Top: Wakefield excitation as shown in previous figures. Bottom:
Corresponding phase space (ξ, pz) evolution of electrons with different initial en-
ergies. Each line is electron trajectory corresponding to different initial energy.
Description in text.

The conditions for electron trapping can be also summarized generally in 3D,
as was done in [52]. The first condition also results from our previous analysis
and that is that the trapped electrons must have axial velocity larger than the
phase velocity of the plasma wave vz > vp. The second condition dictates that
the trapped electron trajectories cross the plasma sheath. This comes from the
ponderomotive force, which forces electrons from near the radial axis to cross
electrons from the plasma sheath. They can then be attracted inwards and ar-
rive on axis before the bulk of the electrons that constitute the sheath. These
conditions are generally satisfied when there are large wake amplitudes, which
facilitates easier wavebreaking, therefore large a0 ≥ 2 is often necessary. Plasma
density ne determines the phase velocity of the plasma wave vp, which decreases
with decreasing density, therefore trapping of accelerated electrons is also favor-
able with sudden density decrease. These conditions have been experimentally
shown to be satisfied when the laser power satisfies [53]

P >
Pc

16

(︃
ln
(︃2nc

3ne

)︃
− 1

)︃3
(1.95)

where Pc is the critical power necessary for self-focusing (1.62).
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1.2.7 Electron Injection
In previous section we’ve talked about how electrons can be trapped within the
accelerating regime and mostly we’ve described a regime where an electron has
enough initial kinetic energy to be broken out of the plasma fluid motion within
the wakefield and become trapped without any external changes to the physical
system, this is called Self-injection. The downside of this method is that the
electron self-injection occurs in random phase of the plasma wave and therefore
is difficult to control. These random injections result in an electron beam with
a high relative energy spread. Large advantage of this scheme is the fact that it
all occurs inherently within one laser shot and doesn’t necessiate any temporal
synchronization of the laser [54].

Ionization injection occurs when we mix a light gas, for example He, with
a heavier gas like O, N, Ar. This technique is based on the fact that the laser
pulse ionizes the lighter gas and the L-shell electrons of the heavier gas to create
plasma, but the peak intensity inside the laser pulse is also high enough to allow
for tunnel ionization of the K-shell electrons from the heavier gas, allowing for
spatially controlled electron injection directly into the accelerating phase. This
method generates temporally and spatially well defined electron beams, often also
with small relative energy spread compared to self-injection [55].

Optical injection is a scheme where a second laser pulse triggers the electron
injection. The second laser is often propagating at an angle to the main laser
which excites the wakefield. The second pulse’s ponderomotive force can perturb
the plasma sheath enough to break out electrons and allow them to inject into
the accelerating phase. The second pulse must not be too strong otherwise it
may destroy the wakefield [27].

Density modulation injection occurs when we work with a non-homogeneous
gas density target and use additional tools like wires across the target to create
density bow shocks, tilting the gas nozzle to create density ramps or utilize a
custom manufactured gas nozzle with tailored gas density [56], [57]. All of this
allows us to tune density and therefore plasma wave phase velocity, which allows
us to define spatial regions where wavebreaking and therefore trapping occurs
due to sudden plasma wave phase velocity changes [58].
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2. Electromagnetic Radiation
from Relativistic Electrons
In the introduction, we’ve alredy briefly mentioned the fact that relativistic elec-
trons within the accelerating phase oscillate transversely, due to the distribution
of charge. In this section, we will describe how charged particles generate radi-
ation and we will especially analyze the special case of an electron undertaking
transverse oscillations.

Maxwell’s equations with the application of Lorenz gauge condition ∂µAµ = 0
produce, as in (1.12), the non-homogeneous wave equation

□Aν = −µJν (2.1)

This equation is Lorentz covariant, but this more importantly also means that
all changes within the potentials travel at the speed of light. General solution to
the non-homogeneous wave equation is found by convolving the right hand side
of (2.1) with the Green function of (2.1), which is the solution of

□G(r, t) = δ(r)δ(t) (2.2)

Through Fourier transform, it can be found to be

G(r, t) = 1
4π|r|

δ

(︄
t − |r|

c

)︄
(2.3)

the solution to (2.1) for arbitrary source configuration is therefore

Aν(r, t) = µ(G ⋆ Jν) = µ

4π

∫︂ Jν(r′, t′)
|r − r′|

δ

(︄
t − t′ − |r − r′|

c

)︄
dt′d3r′ (2.4)

2.1 Radiation from a Moving Charge
Electron is considered to be an elementary particle within the Standard Model,
which makes it a non-composite point charge. We can therefore describe the
source terms for a relativistic charge, such as electron, moving with arbitrary
trajectory x(t) and velocity v(t) = cβ(t) as

ρ(r, t) = qδ(r − x(t))
j(r, t) = qcβ(t)δ(r − x(t))

(2.5)
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plugging (2.5) into (2.4) and evaluating the integral, which is done in Ap-
pendix A.5, gives the famous Liénard-Wiechert potentials for a moving charge

ϕ(r, t) = q

4πϵ0

[︄
1

(1 − β · n)|R|

]︄
ret.

(2.6)

A(r, t) = qcµ0

4π

[︄
β

(1 − β · n)|R|

]︄
ret.

(2.7)

where R(t) = r − x(t) is the distance vector between the observer and the
radiating charge and n(t) = R(t)/|R(t)| is the direction towards observer. Both
potentials are evaluated at retarded time t′, which is the time at which the signal
reaches the observer

t′ = t − |r − x(t)|/c (2.8)

v(t)

v(t')

x(
t)

x(
t')

r

R(t)

R(t')

particl
e tra

jectory

arbitrary origin

observerθ ≃1/γ radiation

Figure 2.1: A charged particle travelling in the present at x(t) is seen by the
observer to be at x(t′) due to the fact that the radiation signal travels at finite
speed of light c. At each instantaneous moment, radiation of a relativistic charge
is emitted in a collimated forward cone with opening angle θ ≃ 1/γ.

From the definition of potentials, we obtain the electric and magnetic fields
of a moving charge as

E(r, t) = q

4πϵ0

[︄
n − β

γ2|R|2(1 − n · β)3 + n × ((n − β) × β̇)
c|R|(1 − n · β)3

]︄
ret.

(2.9)

B(r, t) = −qcµ0

4π

[︄
n × β

γ2|R|2(1 − n · β)3 + n × (β̇ + n × (β × β̇))
c|R|(1 − n · β)3

]︄
ret.

(2.10)

It’s easy to check that B = (n×E)/c holds. Let us now discuss the two terms
in these fields. We can see that in the rest frame of the particle, β, β̇ = 0, the
magnetic field and the second term of the electric field is zero and the first term
reduces to the electrostatic Coulomb law. With constant velocity, the term gets
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diminished by γ2 and the field is tilted in the direction of particle propagation by
n − β in the numerator. This first term is therefore the generalized relativistic
Coulomb law for a moving charge. Similarly, the first term in the magnetic field
is the generalized relativistic Biot-Savart law. The second terms are the only
ones that depend on acceleration, which means that they are responsible for the
dynamic changes in fields, which is electromagnetic radiation. It is also clear that
these second terms become dominant far away from the charged particle |R| ≫ 1.
If the charged particle is relativistic, the static terms of the fields can also be
neglected. Being interested only in the radiation by relativistic charged particles,
we can safely neglect these terms. If we denote the second terms as Erad, Brad,
it can be easily checked that these raditative fields are indeed perpendicular to
the radiation propagation direction n

n · Erad = n · Brad = 0 (2.11)

The radiative energy flux is then given by the Poynting vector as

S(r, t) = 1
µ0

Erad × Brad = 1
µ0c

Erad × (n × Erad) =
√︄

ϵ0

µ0

[︂
|Erad|2n

]︂
ret.

(2.12)

The magnitude of the energy flux in the direction of propagation n is then

S · n = q2

16π2ϵ0c

(︄
n × ((n − β) × β̇)

|R|(1 − n · β)3

)︄2

ret.

(2.13)

The total power radiated per unit solid angle follows

d2W

dΩdt
=
[︂
|R|2(S · n)

]︂
ret.

= cϵ0
[︂
|Erad · R|2

]︂
ret.

(2.14)

A lenghty integration over the solid angle yields the total radiated power by
the charged particle in the form [28]

Prel. = dW

dt
= q2

6πϵ0c
γ6
(︂
β̇

2 − |β × β̇|2
)︂

(2.15)

which validates our comments about Lorentz invariance of radiated power
(1.41), discussion of the features of the total radiated power is the same. We
also point out that the non-relativistic limit β ≪ 1 reduces (2.15) to the well
known classical Larmor’s formula (1.37). We are often more interested in spectral
distribution of radiated energy, which can be retrieved from Plancherel’s theorem
(⋆)

dW

dΩ =
∫︂ ∞

−∞

d2W

dΩdt
dt = cϵ0

∫︂ ∞

−∞
|R · Erad|2(t)dt

(⋆)= cϵ0

2π
2
∫︂ ∞

0
F|R · Erad|2(ω)dω =

∫︂ ∞

0

d2W

dΩdω
dω

(2.16)
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where we’ve used the fact since the integrand f(t) is real, f(−ω) = f ∗(ω)
and |f(ω)|2 is even in ω. This allowed us to reduce the integration domain to
non-negative values. The angular spectral distribution of radiated energy is then

d2W

dΩdω
= cϵ0

π
|F [R · Erad]ret.|

2 (2.17)

With the knowledge of position, velocity and acceleration of a moving charged
particle, (2.17) completely describes the angular spectral distribution. By plug-
ging Erad into (2.17), we get the well known radiation integral [28] [59]

d2W

dΩdω
= q2

16π3ϵ0c

⃓⃓⃓⃓
⃓
∫︂ ∞

−∞

n × ((n − β) × β̇)
(1 − n · β)2 eiω(1−n·R/c)dt

⃓⃓⃓⃓
⃓
2

(2.18)

which is entirely evaluated within the retarded time t′. Integral (2.18) can be
used to characterize some basic features of radiation emitted by charged particles.
Finding analytic solutions to this integral is generally very hard and it is usually
solved numerically [60]. We also note that numerically computing the Fourier
transform in (2.17) directly is a viable and equivalent alternative to numerical
solutions of (2.18). We have used the first approach based on (2.17) to produce
radiation results in Chapter 3.

Without any analytic computation of the integral (2.18), let us first proceed to
point out some characteristics of radiation of relativistic electrons that the inte-
grand indicates. The denominator in the integrand tells us that most energy is ra-
diated in the direction of electron’s velocity and that relativistic electrons radiate
dramatically more, since d2W/dΩdω → ∞ ⇐⇒ β ·n → 1 ⇐⇒ β ∼ 1∧β ∥ n.
From the numerator, we also see that radiation vanishes for zero acceleration
β̇ = 0. Therefore we see that, as expected, acceleration is responsible for ra-
diation generation. The expression (n − β) × β̇ also tells us that transverse
acceleration generates more radiation than longitudal acceleration. Lastly, the
phase factor exp[iω(t − |R|/c)] can give us an estimate for the frequency of emit-
ted radiation. Observing the field near electron |r − x(t)| = ∆x ≪ 1 allows us
to approximate ω(1 − |R|/tc) ≈ ω(1 − β). Integration over time is maximized
only when the exponential phase factor and the integrand, excluding the expo-
nential, oscillate at the same frequency. Therefore, if the electron oscillates along
it’s propagation with some frequency ωe, the integration and therefore radiated
energy is maximized for radiation at frequencies near ω

.= ωe/(1 − β) ∼ 2γ2ωe.
This tells us that the frequency of the emitted radiation, as observed within the
laboratory frame, is double Doppler upshifted from the frequency of the electron’s
motion.

Previous estimate tells us that X-ray radiation in the exahertz region can be
generated by electrons oscillating along their propagation with ∼ cm wavelengths.
If these electron trajectories were also mostly longitudal, we could possibly create
a very collimated X-ray beam. As we have foreshadowed in the introduction, such
beams can be generated by electrons being accelerated through laser wakefields,
as we will show in the following section.
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Before we conclude this section, we have to mention the effects of Lorentz
transformation through relativistic aberration on observed radiation emitted by
charged particles. Let us consider an inertial frame where the observer and a
charged partcile don’t move longitudally and the charge oscillates transversally.
This acceleration generates radiation that has a doughnut-like appearance, which
can be easily checked by plugging the sinusoidal acceleration into the Larmor
formula (1.37). The emitted power is then P ∼ sin2(θ′), which gives the dis-
tintinctive look portrayed in figure 2.2 [59].

observer

a(t)

θ'

sin²(θ')

Figure 2.2: Radiation pattern as seen in the average electron drift frame where
the longitudal velocity is zero.

If the observer now moves into the laboratory frame of reference, the emitted
power gets folded into a narrow forward radiation cone [59]. A simple argument
for this can be made through Lorentz transformation. In [59], it is shown that
the angles that are measured from the direction of motion are related due to
relativistic aberration as

tan θ = sin θ′

γ(β + cos θ′) (2.19)

where the angle θ corresponds to the average drift frame portrayed in figure
2.2 and θ′ corresponds to the laboratory frame of reference portrayed in figure 2.3.
For a highly relativistic electron, we have β

.= 1 and γ ≫ 1, thus for radiation
emitted at arbitrarily large angles θ′ in the electron frame, the corresponding
angle θ at which we observe the emitted radiation within the laboratory frame of
reference becomes

θ ≃ 1
2γ

(2.20)

which means that for a relativistic charged particle, the radiation is collimated
to a cone with half opening angle (2.20). This radiation pattern is often described
as a ”searchlight beam” [59].

observerθ ≃1/2γ 

tra
jec

to
ry

Figure 2.3: Radiation pattern as seen in the laboratory frame of reference. The
inset shows that maximum photon energy drops off-axis.
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2.2 Radiation from Wakefield Electrons
Radiation generated by laser wakefield accelerated electrons has many features
which can be related to synchrotron radiation [23], [24], [25], [26], [28]. We will
now proceed to solve the equations of motion for an electron travelling within
the wakefield in simplified geometry and then provide these solutions for (2.18)
to obtain angularly resolved spectral distribution of radiated energy. We will
simplify the problem by working in cylindrical coordinates. The electrostatic
potential affecting the accelerated electron can be found by solving the Poisson’s
equation

1
r

∂

∂r

(︄
r

∂ϕ

∂r

)︄
= e(ne − n0)

ϵ
=⇒ ϕ = −r2 en0

4ϵ
(2.21)

Where we’ve assumed that the electron will be moving inside the ion cavity,
therefore ne ≈ 0. We further simplify this problem by considering the potential in
(2.21) as the source of the radial restoring force of the ion channel and include the
acceleration in the form of a longitudal constant electric field Ez. By including
these terms into the Lagrangian (1.10), we get from the Euler-Lagrange equations,
in observer time and rewritten to normalized units,

d
dt

(γmeṙ) = −en0

2ϵ
r (2.22)

d
dt

(γmeż) = eEz (2.23)

Let us first consider an alredy accelerated relativistic particle close to dephas-
ing, that is oscillating with small amplitude. Then Ez ≈ 0 and we have γ̇ ≈ 0,
therefore

d
dt

(γṙ) = γ̇ṙ + γr̈ ≈ γr̈ (2.24)

then (2.22) becomes

r̈ + ω2
βr = 0 (2.25)

where ωβ = ωp/
√

2γ is the betatron frequency. The solution shows that the
electron is conducting radial betatron oscillations

r = rβ sin(ωβt) (2.26)

where rβ is the amplitude of the betatron oscillations, which is related to the
maximum normalized electron transverse momentum, called betatron strength
parameter Kβ = γβmax

r = γrβkβ. As we will see, this parameter distinguishes
various radiation regimes. In this ultra relativistic limit, it can be perturbatively
shown that these transverse oscillations modify the longitudal motion and a fa-
miliar figure-of-eight motion, as seen in 1.1.1, is conducted [23]. If we consider
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an electron that is still under the effect of the strong accelerating field Ez ̸= 0,
then we have to consider (2.23) without any approximations. Then we have from
(2.23)

d
dt

(γmeż) = eEz =⇒ γβz = e

mec
Ezt + γ0β0 (2.27)

If we consider the electron to be relativistic, which is often the case right after
injection, we get βz ≈ 1 and (2.27) becomes

γ̇ = eEz

mec
(2.28)

If we take (2.28) and insert it into the equation for radial motion (2.22), we
get the equation for radial oscillations of an accelerating electron

(︃
eEz

mec
t + γ0β0

)︃
r̈ +

(︃
eEz

mec

)︃
ṙ +

(︄
ω2

p

2

)︄
r = 0 (2.29)

We can solve this equation numerically, as shown in figure 2.4. We can see
that as the electron accelerates, it gains energy linearly according to (2.28). The
increase of relativistic mass diminishes the amplitude of oscillations, but also in-
creases the wavelength. This makes accelerating relativistic electrons an ideal
radiator due to their diminishing source size. We can also estimate the depen-
dency of the energy of radiated photons on the electron energy, since at the
beginning of this chapter we’ve shown ω ≈ 2γ2ωe. Since the electrons oscillate at
the betatron frequency ωβ in the relativistic limit, the photon frequency becomes
ω ≈ 2γ2ωβ =

√
2γ3/2ωp. This tells us that higher energy electrons conducting

betatron oscillations radiate much higher energy radiation.

Figure 2.4: Solution of (2.29). We’ve chosen parameters typically achieved in
experiments, Ez = 200 GV/m, n0 = 2 · 1018 cm−3. We’ve considered an electron
injected with γ0 = 10, β0

.= 1, ṙ(0) = 0, r(0) = rβ = −2.5 µm.
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We’ve mentioned that the ultra-relativistic small amplitude limit produces
a second harmonic oscillation in the longitudal direction identical to motion in
1.1.1. This longitudal oscillation necessarily generates radiation of a moving
charge in transverse direction, which generates a second harmonic component in
the observed radiated spectrum. Such motion corresponds to motion of electrons
in inserted devices which produces synchrotron radiation [23]. However, during
the injection of the electron and it’s acceleration, there are various trajectories
and radiating regimes the electron can undertake. We can quantitatively analyze
the different radiation regimes by defining the deflection parameter K = Ω/θ,
which is the ratio of the maximum angle between the electron velocity and the
axis of propagation Ω, and the opening angle of the radiation cone θ ∼ 1/γ. The
deflection parameter separates the wiggler and the undulator radiation regimes,
as shown in figure 2.5.

θ ≃1/γ 

Ω

K≫1 Wiggler

θ ≃1/γ 
K≪1 Undulator

Figure 2.5: Illustration of the wiggler and undulator radiation regimes as sepa-
rated by the deflection parameter K.

The deflection parameter is also defined for various insertion devices like bend-
ing magnets, undulators and wigglers, which are used in synchrotrons [59]. For
betatron radiation, the deflection parameter K can be easily obtained. First, let’s
find the maximum angle Ω by comparing the longitudal and tangential velocity
of a relativistic electron βz ≈ 1

tan ϑ = βr

βz

≈ βr = rβkβ cos ωβt (2.30)

where kβ = ωβ/c is the betatron wavenumber. Thanks to the fact that be-
tatron oscillations are usually rβ ∼ µm and the wavenumber is kβ = 2π/λβ ∼
mm−1, small-angle approximation tan θ

.= θ is valid and we get the maximum
angle as Ω = rβkβ. Since the opening angle of the radiation cone is θ ≃ 1/γ, we
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see that the deflection parameter is the betatron strength parameter mentioned
previously

K = Ω
θ

= γrβkβ = 1.33 · 10−10
√︂

γne[cm−3]rβ[µm] (2.31)

This equation tells us what kind of radiaton regime can we generally expect
for given experimental and electron parameters. As we’ve previously mentioned,
the injected electrons undertake various trajectories and the radiating regime can
change even throughout their propagation. The observed radiation spectrum is
then often a sum of both the wiggler and the undulator regimes, it is therefore
necesary to describe characteristics of both.

Wiggler regime

For K ≫ 1, the radiation by the electron is emitted within the maximum opening
angle Ω = Kθ = K/γ. In most cases, this also has the consequence that over
the whole trajectory of the radiating particle, the radiation is not constructively
interfering. Due to the numerator in radiation integral (2.18), most radiation
will be emitted at the turning points, where the electron accelerates the most.
The ”searchlight beam” flashes emitted at these turning points do not interfere
constructively. This allows us to treat the radiation emitted similarly to a charged
particle undergoing at any instantaneous moment circular motion along some
radius of curvature ρ. Such radiation emitted along the curved turning points
is at any instantaneous moment described by (2.18). Following [28], radiation
emitted along curvature can be computed analytically as

d2W

dΩdω
= e2

16π2ϵ0c

(︃2ωρ

3c

)︃2 (︄ 1
γ2 + θ2

)︄2 [︄
K2

2/3(ξ) + θ2

1/γ2 + θ2 K2
1/3(ξ)

]︄
(2.32)

where ρ is the local radius of curvature, θ is the off-axis angle and K2/3, K1/3
are the modified Bessel functions of the second kind. The argument ξ is

ξ = ωρ

3c

(︄
1
γ2 + θ2

)︄3/2

(2.33)

Radiation distribution (2.32) tells us that the radiation becomes negligible for
ξ ≫ 1 due to the behaviour of the modified Bessel functions. Critical frequency
is defined on-axis θ = 0 for ξ = 1/2, which follows from (2.23) as

ωc = 3c

2ρ
γ3 (2.34)

The critical frequency is the typical frequency up to which most radiation is
emitted. In Appendix A.6, it is derived for a wiggler as

ωc = 3
2Kγ2ωβ (2.35)
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The calculation of (2.23) from the radiation integral shows that the radiated
field is composed of two independent polarization components perpendicular to
the radiation propagation direction n. The parallel polarization is within the
orbital plane and the perpendicular polarization is perpendicular to parallel po-
larization. The terms in (2.23) can be accordingly re-written as

d2W

dΩdω
= d2W∥

dΩdω
+ d2W⊥

dΩdω
(2.36)

these distributions are plotted in figure 2.6. As the figure shows, the generated
radiation is linearly polarized in the orbital plane θ = 0. For θ ̸= 0, the radiation is
generally eliptical. We also note that, as previously mentioned, most radiation is
emitted within a radiation cone with opening angle θ ∼ 1/γ. The total radiation
distribution (2.32) without any polarization distinction is plotted in figure 2.7.

1/𝛄

Figure 2.6: Radiation distribution for parallel polarization (left) and perpendic-
ular polarization (right). In normalized units.

Figure 2.7: Radiation distribution (2.32). In normalized units.
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If we’re only interested in the spectral content of emitted radiation, we can
integrate (2.32) over all angles and obtain the radiation spectrum [28]

dW

dω
= γ

√
3e2

4πϵ0c

(︃
ω

ωc

)︃ ∫︂ ∞

ω/ωc

K5/3(x)dx (2.37)

this clearly shows the meaning of critical frequency. Half of total energy
emitted by the charged particle is at frequencies below ωc and half is above ωc,
since it can be numerically verified that∫︂ ωc

0

dW

dω
=
∫︂ ∞

ωc

dW

dω
(2.38)

The spectral distribution (2.37) plotted in figure 2.8 gives us evidence to
believe that, indeed, we can expect synchrotron-like betatron radiation within
the wiggler regime, as was experimentally observed in [23], [24], [25], [26].

Figure 2.8: Betatron radiation spectrum in the wiggler regime (2.37). In normal-
ized units. Red area is equal to grey area.
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Undulator regime

While it is often the case that experimental parameters are set such that wiggler
regime is dominant, mostly due to the use of high-powered lasers, there is also the
possibility of reaching the undulator regime K ≪ 1. Interference from overlap-
ping radiation cones emitted during electron’s trajectory, as shown on Fig. 2.5,
then has to be taken into consideration. We can derive a very important char-
acteristic of undulator radiation by simply considering the effects of constructive
interference of radiation emitted at various points.

θ 

Δ=nλ

λ 
/β
β

z

λ 
co

s θ

β
λβ

Δ

Figure 2.9: Schematic useful for derivation of undulator equation.

From figure 2.9, we see that after oscillating electron traverses one beta-
tron wavelength λβ, radiation will interfere constructively if the path difference
between the respective wavefronts is equal to integer multiple of their wave-
length ∆ = nλ. The electron traverses one wavelength λβ after time λβ/⟨vz⟩.
Therefore, the first emitted wave traverses, during the same time, the length
cλβ/⟨vz⟩ = λβ/⟨βz⟩. The first wave therefore overtakes the second wave by the
path difference between their wavefronts, which for them to interfere construc-
tively must equal

∆ = λβ cos θ − λβ

⟨βz⟩
= λβ cos θ − λβ

⟨βz⟩
= nλ (2.39)

from (2.30) and (2.31), we know that βr = (K/γ) cos(ωβt). We can use this
to find the averaged longitudal normalized velocity ⟨βz⟩, since

βz =

⌜⃓⃓⎷1 − 1
γ2 −

(︄
K

γ

)︄2

cos2(ωβt) ≈ 1 − 1 + K2/2
2γ2 − K2

4γ2 cos(2ωβt) (2.40)

averaging over time makes the last term zero. After plugging back to (2.39)
with small-angle approximation cos θ ≈ 1 − θ2/2 valid for the undulator regime,
we get after some algebraic manipulation the famous undulator equation [59]

λn = λβ

2γ2n

(︄
1 + K2

2 + θ2γ2
)︄

(2.41)
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where n is a natural number and λβ is the betatron wavelength. This equation
describes the harmonic spectrum characteristic for the undulator regime and gives
quantitative estimates for wavelengths emitted due to the interference effects.

Calculating the angularly resolved spectral radiation distribution through the
radiation integral (2.18) is possible and it was first done by D. F. Alferov in 1974
[61], however due to the sheer cardinality of the result, we will not force the
kind reader to read through it and instead refer to mentioned original paper. We
however must mention a general result that odd harmonics n = 1, 3, ... described
by (2.41) are emitted on-axis and even harmonics n = 2, 4, ... are emitted off axis.
We will now instead only present the on-axis θ = 0 spectrum and show how it
relates to the wiggler regime. The on-axis radiation spectrum is [28]

d2W

dΩdω

⃓⃓⃓⃓
⃓
θ=0

= e2γ2N2

4πϵ0c

∞∑︂
n=1

sin2[πN(ω/ω1 − n)]
[πN(ω/ω1 − n)]2

(ω/ω1)K2

(1 + K2/2)2

[︂
Jn−1

2
(Z) − Jn+1

2
(Z)

]︂2
(2.42)

where K is the betatron strength parameter (2.31), N is the number of os-
cillation periods, n = 1, 3, ... is the odd harmonic number, ω1 is the fundamental
frequency and Jm is the Bessel functions of the first kind. The argument Z is

Z = (ω/ω1)K2

4(1 + K2/2) (2.43)

from the undulator equation (2.41) the fundamental frequency ω1 also follows
as

ωn = 2γ2ωβ
n

1 + K2/2 ≈ 2γ2ωβn → ω1 = 2γ2ωβ (2.44)

which validates our estimates for frequencies emitted by radiating relativistic
charges in (2.1). On-axis radiation distribution for various regimes is showcased
in figure 2.10. We see that within the undulator regime, spectrum is pure and
only the fundamental harmonic is being emitted. The spectral width can be
directly deduced from (2.42) as ∆ω/ω1 = 1/N . This tells us that with more
oscillations, we can obtain very narrow spectral lines. Increasing the number of
oscillations enough within this regime could possibly even lead to free electron las-
ing. With increasing strength parameter K, more harmonic frequencies are being
present due to the diminishing interference effects and eventually, wiggler regime
is reached and the spectrum approaches the continuous synchrotron spectrum
(2.32) evaluated for θ = 0. We also note that this transition introduces radiation
emitted at dramatically higher energies. This transition can also be explained
analytically, as it has been shown in [28] that for K ≫ 1, (2.42) approaches the
on-axis value of (2.32)

d2W

dΩdω

⃓⃓⃓⃓
⃓
θ=0,K≫1

≈ e2

16π2ϵ0c
γ2
(︃

ω

ωc

)︃2
K2

2/3

(︃
ω

ωc

)︃
(2.45)

where the critical frequency ωc is (2.35).
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Figure 2.10: Radiation spectrum (2.42). Here we’ve shown the transition from the
undulator to the wiggler regime with increasing deflection parameter K. Number
of oscillations was selected as N = 10. From top to bottom K = 0.2, 1, 2, 4
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3. Numerical Methods and
Results
In this chapter, I will describe numerical methods modeling physical processes in
plasma as described by the Maxwell-Vlasov equations (1.68) and calculating ra-
diation emitted by interacting particles through (2.17). This will be done mostly
thanks to the Particle-in-Cell (PIC) method, for which many codes are availible.
The PIC method will be described in the first section. In the second section, I
will proceed to describe the radiation calculation procedure which was initially
developed in [62]. My work included developing a particle tracking algorithm
generating particle trajectories from PIC code data outputs and upgrading the
original code in [62] to fully handle even complicated trajectories from large PIC
code data outputs. In the last section, I present my numerical results simulating
plasma processes and radiation generation utilizing both of these methods.

3.1 Particle-in-Cell Method
The PIC method represents one of the most powerful and popular algorithms sim-
ulating collisionless plasma on the kinetic scale [63], [64], [65]. The PIC method
utilizes computational macro-particles with finite size within the phase space that
represent a number of real particles. These macro-particles discretize the distri-
bution function in (1.68) for each particle species present in the system. The
distribution function fs for species s is given as the sum of distribution functions
of macro-particles fs,i(r, v, t). Therefore distribution function of species s with
Ns macroparticles is

fs(r, v, t) =
Ns∑︂
i=1

fs,i =
Ns∑︂
i=1

wiSr(r − ri(t))Sv(v − vi(t)) (3.1)

where wi is the particle’s weight, which represents the number of real particles
the macro-particle i represents and often reaches values above 109. Sr and Sv

are the shape functions, which determine the macro-particle’s size within the
phase space. The introduction of macro-particles instead of real physical particles
dramatically improves the computation time for large-scale simulations, but it
also allows us to probe the dynamics of real particles, since the macro-particles
representing some number of real particles obey the same dynamics. This is
indeed true, because the Lorentz force depends only on the particle’s charge to
mass ratio q/m, which for macro-particles is the same as for any number of real
particles they represent. The shape functions are usually chosen to reduce the
computational costs at desired physical resolution. The velocity phase function is
often simply a delta function Sv = δ(v − vi(t)), while the spatial shape function
is chosen usually as b-spline basis of order n. With higher order n, numerical
stability, accuracy and computational costs are increased [64].
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Substituting (3.1) into the first Vlasov equation in (1.68), multiplying by v
and integrating over velocity and position respectivelly results in equations of
motion for the macro-particles

dxi

dt
= ui

γi

dui

dt
= qs

ms

(︄
Ei + ui

γi

× Bi

)︄ (3.2)

where ui = γivi, γi =
√︂

1 + u2
i /c2 is the gamma factor for the macro-particle

and Ei and Bi are the electric and magnetic fields acting on the macro-particle.
While equations (3.2) track macro-particles in the continuous phase-space, we also
need to calculate how the fields change due to macro-particle dynamics. This re-
quires solving the Maxwell equations, which are often solved through discretiza-
tion of spatial coordinates to an equidistant spatial grid r → rijk. Numerical
solution of Maxwell equations also requires discretization of time to equidistant
timesteps t → tn. We note here that the PIC method therefore combines Eulerian
frame of reference for fields and Lagrangian frame of reference for particles.

Figure 3.1: Computational PIC loop.

The PIC computational cycle in figure 3.1 illustrates how the PIC method
works. It is not within the scope of this thesis to fully describe the algorithms
involved within each step, so we will instead briefly describe each one of them
and for details refer the kind reader to the availible literature [65], [64]. The
computation begins with grid initialization, where we generate an equidistant
rectangular grid rijk = (i∆x, j∆y, k∆z), we also discretize time as tn = (n∆t).
Positions of macro-particles in phase-space are usually initialized randomly based
on particle distribution function fs(r, v, t = 0), which is provided by the user.
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Current deposition refers to the calculation of charge and current on grid
points from macro-particle positions and velocities in the continuous phase-space.
By substituting the macro-particle distribution function into (1.69), we get for
given species s

ρs =
Ns∑︂
p

qs

∫︂
fs,p(r, v, t)d3v =

Ns∑︂
p

qswpSr(rijk − rp(tn))

js =
Ns∑︂
p

qs

∫︂
vfs,p(r, v, t)d3v =

Ns∑︂
p

qswpvp(tn)Sr(rijk − rp(tn))
(3.3)

In addition to this calculation, current deposition also contains the evaluation
of the continuity equation. If it is not satisfied, there will be errors in the Gauss’
law and it is necessary to calculate charge correction from the Poisson equation
and add it to (3.3). These discrete charge error correcting techniques are known
as charge conservation methods [65], [66].

Field solver usually refers to the numerical method that solves Maxwell’s
equations, which is most commonly the finite-difference time-domain method
(FDTD). This method utilizes Yee’s scheme, which applies centered finite dif-
ference operators on staggered grids in space and time. This scheme has been
throughout time shown to be extremely robust and numerically stable [67]. It
staggers vector field components from the point (i, j, k) around a cartesian cell
centered at (i+1/2, j +1/2, k +1/2), as shown in figure 3.2. Current components
are co-located with the electric field components and the charge is assigned at
the middle of the cell (i + 1/2, j + 1/2, k + 1/2). Spatial derivatives are assigned
according to Yee’s scheme and time derivatives according to standard leap-frog
scheme [64]. In this method, divergence Maxwell’s equations serve as initial con-
ditions that must be satisfied. These equations will be fulfilled with each timestep
only if continuity equation is satisfied [65], [66], [67]. This is at each timestep
checked during current deposition.

Figure 3.2: Yee’s lattice used in standard FDTD. Yee’s scheme staggers field
components around points in the rectangular grid.
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Field weighting refers to the interpolation of the grid values of fields to
the spatial components of macro-particles. The interpolation is done simply by
taking the spatial averages and utilizing the shape functions

Ep(tn) =
∑︂
ijk

E(rijk, tn)Sr(rijk − rp(tn))

Bp(tn) =
∑︂
ijk

B(rijk, tn)Sr(rijk − rp(tn))
(3.4)

Particle pusher involves solving the equations of motion (3.2) at each time
step. This can be done in multiple ways, the easiest of which is the leap-frog
algorithm [64]. However, due to it’s excellent stability, Boris method is generally
used [68].

Numerical stability and physical resolution

Numerical scheme is stable if a numerical error caused in one timestep is not
source for the increase of error in the next time step. Due to high stability of
previously presented numerical schemes, stability of the PIC simulation depends
mainly on the spatial and temporal resolution of the initialized grid. Discretiza-
tion of continuous space into grid introduces non-physical instabilities, like nu-
merical Cherenkov instability, which is due to the fact that particle dispersion
relations ω(k) on discrete grid are not the same as in continuous space [64]. Small
resolution of the spatial grid and low order of the particle shape function may
lead to particles travelling faster than gridded fields, generating non-physical
Cherenkov radiation. One of the worst numerical instabilities of PIC codes is
however the effect of numerical heating, which causes particle temperature in the
simulation to grow exponentially until the effective Debye length is similar to the
grid cell size. This is due to numerical errors that are obtained from interpo-
lation of gridded fields to particle positions and gridded currents from particle
trajectories. Numerical heating can be eliminated with higher resolution or shape
function order. This tells us the first condition that must be fulfilled within PIC
simulations is

∆x, ∆y, ∆z ≤ λD =
√︄

ϵ0kBTe

nee2 = 7.43

⌜⃓⃓⎷ Te[eV]
ne[cm−3] m (3.5)

where λD is the Debye length of quasi-neutral cold plasma at which the electric
charge of a particle is effectivelly screened by the plasma. This condition makes
it computationally intensive to study high density plasma phenomena within PIC
codes. The Courant-Friedrichs-Lewy (CFL) condition assures that particles do
not cross more than one cell during each time step [69]

1
∆x2 + 1

∆y2 + 1
∆z2 = C

c2∆t2 (3.6)

The condition is satisfied when the CFL number satisfies C ≤ 1. Physically,
this condition assures that particles cannot propagate faster than light. Lastly, we
need to resolve all physical frequencies in the simulation, such as plasma or laser
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frequency. Nyquist-Shannon theorem states that frequency ω will be properly
resolved if the time step satisfies ∆t ≤ 2/ω [70].

3.2 Radiation Calculation
In this section, we describe the numerical solution of equation (2.17). Once again,
we will only briefly present the main algorithm developed in [62], where details
can be found. Once we have obtained the trajectory of a particle in the form
(t, r, p), we provide it as an input for the main algorithm for each time step
tn = n∆t. The main algorithm comes in three parts

Radiation Field

At each time step tn = n∆t

1. Calculate the distance between the electron and observer |R(tn)| = |r −
x(tn)|.

2. Calculate the observer time t′
n = tn − |R(tn)|/c.

3. Calculate the Lorentz factor γ(tn) and normalized electron velocity β(tn).

4. Calculate electron acceleration using forward difference method β̇(tn+1) =
β(tn+1)−β(tn)

∆t

5. Radiation field is evaluated at each time step according to (2.9), where only
the second term Erad is taken.

Radiation field part of the algorithm was designed for well resolved trajectories
prepared by the user. However, PIC simulations often come in large discrete data
dumps reaching ∼ 100 GB, where each data dump is separated by a time step of
∼ 10 fs. We included a 0th algorithm step that interpolates particle trajectories
into smooth trajectories that are then sampled so that acceleration calculated
in the 5th step is well resolved. All of this strongly depends on the type of
interaction we are simulating. For example, how long does the particle accelerate
along the turning points, which can be few fs. For LWFA electrons, this usually
means sampling the trajectory with a sampling period T ∼ 0.01 fs.

Radiation Spectrum

After the field is calculated, we have to apply Fourier transform according to
(2.17). The algorithm can be modified to sustain coherence properties of ra-
diation at higher computational cost by first calculating radiation field of each
investigated electron and then proceed with this part of the algorithm, however in
plasma betatron electrons are mostly incoherent therefore the resulting spectrum
coming from an accelerated electron bunch is simply summed up for all electrons.
The algorithm for calculation of radiation spectrum follows as

1. Maximum and minimum observer time t′
min, t′

max is assigned
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2. Necessary amount of samples Nτ to satisfy Nyquist-Shannon theorem [70]
is found by numerically finding value P , such that

Nτ = 2P ≥
⃓⃓⃓⃓
⃓2Emax · (t′

max − t′
min)

2π(h/2π)

⃓⃓⃓⃓
⃓ (3.7)

Emax is an expected maximum energy in the radiated spectrum, it’s overesti-
mation adversely affects performance. Correct estimate depends on correct
evaluation of all relevant radiation parameters presented in Chapter 2.

3. Sampled observer time τ ∈ (t′
max, t′

min) is created with Nτ equidistant sam-
ples

4. Radiation field Erad calculated in the previous step is interpolated and
resampled for Nτ samples in observer time τ .

5. Fast Fourier transform is then applied on Erad(τ) and the spectral intensity
of radiation is obtained as

d2W

dΩdω
= cϵ0

π

|F [ERxR(τ)]|2 + |F [ERyR(τ)]|2 + |F [ERzR(τ)]|2

Fs

(3.8)

where Fs = 1/(∆τ) is the sampling frequency

Angular resolution in (3.8) is achieved by repeating this algorithm for each
angle θ, ϕ in a solid angle |ϕmax −ϕmin|× |θmax −θmin| that is specified along with
angle steps ∆θ, ∆ϕ in the input file. The angles are used in the position vector
of the observer r = (x, y, z) as

x = x

y = x · tan(ϕ)
z = x · tan(θ)

(3.9)

Radiation Algorithm Limitations

The most important things to consider when using this algorithm is the choice
of expected maximum energy Emax which specifies the sampling rate Fs and the
observed solid angle |ϕmax −ϕmin|× |θmax −θmin| with angle steps ∆θ, ∆ϕ. These
must be initially selected by the user and incorrect estimate may result in orders
of magnitude longer computation time. It is always better to analyze the situation
with theory developed in Chapter 2 first and then restrict the parameters as much
as possible to test the computational demands. The sampling rate dictated by the
Nyquist-Shannon theorem is however necessary condition, otherwise numerical
aliasing will be present in the spectrum. This calculation also neglects all QED
effects mentioned in Chapter 1 or the electron losing energy due to radiation
reaction. It is therefore important to use it only for regimes where these effects can
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be neglected. For relativistic electrons, the dominant term in radiation reaction
comes from the energy-momentum transferred to the scattered electromagnetic
wave [71]. It can be estimated from the radiated power (1.42) that radiation
reaction can be neglected when the number of oscillations N the electron conducts
along it’s trajectory satisfies [71]

N ≪ NRR = λβ

2π2cτ0γK2 (3.10)

where τ0 is the interaction time scale and γ is the electron gamma factor. For
current Betatron radiation experimental parameters, NRR is on the order of 107.
During LWFA, electrons usually oscillate for N ∼ 10 with energies ranging up to
∼ GeV. Radiation reaction can be therefore neglected for Betatron radiation.

62



3.3 Results
Test simulation

To showcase that the PIC method is able to reproduce the plasma physics involved
in LWFA, we’ve prepared a 2D simulation within the fully parallel EPOCH code
with initial parameters corresponding to the non-linear relativistic regime a0 > 1,
for which we’ve presented one-dimensional analytic results in figure 1.6. The
initial laser parameters were selected as a0 = 2.3, λL = 0.808 µm, τ(1/e) = 25 fs,
w0 = 5.5 µm. The laser is in all following simulations described in paraxial
approximation as a gaussian beam with gaussian temporal envelope. The gas
target was prepared as a homogeneous underdense pre-ionized helium gas, which
is not at all a rough approximation, since helium becomes completely ionized
through barrier suppresed ionization at values above a0 = 0.065 [72]. This means
that within the non-linear regime, laser strength is large enough to allow for
complete helium gas ionization by the laser pulse front edge. Initial plasma
density was set as n0 = 5 · 1018 cm−3 with temperature corresponding to kBT =
100 eV. The laser was focused at the plasma entrance. The resolution of the grid
was selected to satisfy (3.5), (3.6) and resolve plasma and laser wavelengths. The
number of macro-particles per cell was set as Nppc = 3.

Results of the simulation are presented in figures 3.3, 3.4 and 3.5. In Fig. 3.3
(a), we see that at simulation time t = 90 fs, the laser is entering the plasma. At
t = 170 fs (b), the laser has entered the plasma and begins to push away electrons
through the ponderomotive force. 100 microns into the gas, at t = 550 fs (c), the
electrons start forming the plasma wakefield due to the lower potential behind
the driving laser pulse. We also notice that the plasma response is not linear and
sharp density crests are alredy forming and that the laser strength a0 has increased
due to self-focusing. At t = 980 fs (d), the plasma wakefield corresponding to
the bubble regime is estabilished and laser strength is diminishing due to laser
energy depletion into the wakefield. The last frame at t = 4.6 ps (e) shows laser
filamentation due to modulation from plasma. As laser intensity drops through
pump depletion below the critical threshold for self-focusing, the laser begins
diffracting and subsequently the plasma wakefield deteriorates.

In Fig. 3.5, we’ve plotted at t = 980 fs the longitudal and transverse com-
ponents of the electric field corresponding respectively to the laser and plasma
wave. The accelerating longitudal electric field Ez of the plasma wave is after 200
microns of laser pulse propagation inside the gas target reaching magnitude of
200 GV/m. This test simulation validates previously presented analytic results
and extends our understanding of plasma wakefield evolution inside the target
within the non-linear regime.
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(a)

(b)

(c)

Figure 3.3: PIC simulation results in normalized units. (a) Laser pulse is enter-
ing the gas target. (b) Laser pulse has entered the gas target and formation of
wakefield through ponderomotive force begins (c) Non-linear wakefield is being es-
tabilished and the plasma response causes the laser pulse to self-focus, increasing
peak a0.
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(d)

(e)

Figure 3.4: PIC simulation results in normalized units. (d) Bubble regime is
estabilished. Laser pulse energy is depleted into plasma excitation. Low intensity
regions of the pulse begin diffracting, unable to continue self-focusing. (e) Laser
pulse is filamented and deteriorating due to low intensity from pulse depletion.
Non-linear wakefield has deteriorated and follows filamentation of laser pulse.
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(a) (b)

(c) (d)

Figure 3.5: Electric intensity at t = 980 fs. (a) Transverse electric intensity Ex

corresponding to the laser pulse. (b) Ex at x = 0. (c) Longitudal electric intensity
Ez corresponding to the plasma wave. (d) Ez at x = 0.
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Gas density scan

Our goal in this thesis is to design and numerically optimize the gas target for Be-
tatron X-ray radiation being generated with state-of-the-art petawatt-class laser
systems. In an experimental setting, changing pressure of the gas is often the
simplest way to tune both the acceleration of particles and radiation generation.
We’ve therefore set up three 2D PIC simulations with the EPOCH code with var-
ious gas densities n0 = 3, 5, 10 · 1018 cm−3 and compared the results. The reason
for conducting 2D instead of 3D simulations is a practical one. It is well known
in literature that 2D PIC simulations only offer a qualitative insight, however
3D simulations typically require two orders of magnitude more computational
resources [73]. Purpose of this work is to provide such qualitative estimate for
various density cases and benchmark for future study. For the purpose of total
charge estimation of the accelerated bunches, we estimated the size of the elec-
tron bunch in the missing transverse y direction to be same as in the transverse
x direction. This might result in an overestimation of the total charge, which will
be checked in future quantitative 3D simulations. For all of these simulations,
we’ve selected the same laser paramaters that were simulated on target for the
first stage of operation of the L3 laser system at ELI Beamlines. The focused
beam parameters at diffraction limit are a0 = 4, λL = 0.808 µm, τ(1/e) = 28 fs,
w0 = 14 µm. The corresponding peak laser intensity is I0

.= 3.4 · 1019 W/m2.

Case I

The results of the PIC simulation with the density set at n0 = 3 · 1018 cm−3

is presented in Fig. 3.6 and 3.7. Fig. 3.6 shows snapshots of evolution of the
plasma wakefield and the propagating laser. At the beginning of the simulation
at t = 90 fs (a), we see that the laser pulse is focused upon the gas target with
transverse electric intensity plotted in Fig. 3.7 (a), (b). The wakefield is very
well estabilished at t = 10650 fs (b), with the magnitude of electric intensity
reaching 700 GV/m as shown in Fig. 3.7 (c), (d). While the accelerating electric
intensity is very high, there is negligible number of electrons injected into the
wakefield and therefore this low gas density is not suitable for betatron radiation
generation from self-injected electrons. It could however serve well in multi-stage
targets for subsequent acceleration of injected electrons or in density tailored
targets. At t = 16780 fs (c), we show the laser pulse leaving the 5 mm long gas
target. It has been modulated by the plasma and positive chirp due to photon
acceleration is observed in Fig. 3.7 (e), (f). To save computational resources,
we didn’t proceed with needless radiation calculation due to negligible injected
electron charge (Qtotal ∼ 1 pC) into the accelerated wakefield compared to cases
with higher density, as will be shown in the following.
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(a)

(b)

(c)

Figure 3.6: PIC simulation results in normalized units. (a) Laser pulse is entering
the gas target. (b) Plasma wakefield is estabilished with high accelerating gradi-
ent, no electrons are injected. (c) Depleted and positively chirped laser pulse is
leaving the gas target.
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Figure 3.7: (a) Transverse electric intensity Ex corresponding to the laser pulse
at t = 90 fs. (b) Ex at x = 0. (c) Longitudal electric intensity Ez corresponding
to the plasma wave at t = 10650 fs. (d) Ez at x = 0. (e) Modulated transverse
electric intensity Ex at t = 16780 fs. (f) Ex at x = 0.
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Case II

Results of PIC simulation of the case n0 = 5 · 1018 cm−3 are presented in figures
3.8, 3.9, 3.10, 3.11 and 3.12. In Fig. 3.8, we see the laser enter the gas target
(a) and proceed to excite the plasma wakefield through ponderomotive force (b).
The excitation in this case is much more violent and immediate compared to
the previous case. This is due to higher density and therefore plasma frequency.
Higher density also facilitates wavebreaking more easily and injection of electrons
freed from the fluid motion of the plasma takes place very soon. At t = 2430 fs
(c), we alredy observe electron bunch within the main accelerating phase gaining
energy. In Fig. 3.9 at t = 5.26 ps (d), the electron bunch with total charge of 85.9
pC reaches up to γ ≈ 700, the accelerating longitudal field is plotted in Fig. 3.11
(a), (b). At t = 8.51 ps (e), the accelerated bunch reaches maximum energy and
starts losing energy due to dephasing. Energy spectrum of the bunch at maximum
energy before dephasing at t = 8.51 ps is shown in Fig. 3.11, (d). At the same
moment, we can also see a second electron bunch being self-injected through
wavebreaking at the back of the bubble and proceeding to rapidly accelerate at t
= 9.07 ps (f). Here we’ve also hidden the laser field to showcase dephasing of the
first accelerated electron bunch and also highlight it’s oscillatory motion during
acceleration. Around t = 12.45 ps, we see that the first bunch has lost enough
energy to be scattered from the wakefield by the ponderomotive and coulombic
force, while electrons within the second bunch reach up to γ ≈ 1500. The exiting
beam divergence is θ ≈ 15 mrad.

The accelerating longitudal field is plotted in Fig. 3.11 (e), (f). At t = 14.2
ps (h), around 4.1 mm into the target, closely behind the second bunch we see
the injection of a smaller third bunch. The total charge of these two bunches is
Qtotal

.= 848 pC. Before leaving the 5 mm target at t = 16.7 ps (i), we see the
accelerated electrons reaching up to γ ≈ 2000. Charge density integrated along
x and energy spectrum of the exiting accelerated electrons is shown in Fig. 3.12
(a), (b). In Fig. 3.12 (c), (d), we’ve also shown the modulated laser pulse on
exit showing the energy depletion and positive chirp it suffered throughout it’s
propagation.
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(a)

(b)

(c)

Figure 3.8: PIC simulation results in normalized units. (a) Laser pulse is entering
the gas target. (b) High plasma density causes more violent response to the
ponderomotive evacuation, wakefield is estabilishing with wavebreaking occuring
in highest density crests. (d) Wakefield is estabilished and electrons are trapped
within the accelerating phase of the wakefield.

71



(d)

(e)

(f)

Figure 3.9: PIC simulation results in normalized units. (d) Electrons within the
main bubble are reaching γ ≈ 750. (e) Electrons that reached γ ≈ 1000 begin
dephasing and losing energy. High charge electron bunch is injected through
wavebreaking at the back of the bubble. (f) Electrons from the first bunch are
dephasing, electrons from the second bunch are rapidly gaining energy.
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(g)

(h)

(i)

Figure 3.10: PIC simulation results in normalized units. (g) Electrons from the
second bunch are quickly reaching high energies. Laser field is depleting. (h)
Third electron bunch is injected at the back of the bubble. (i) High charge bunch
of electrons reaching γ ≈ 2000 exits the gas target. Laser pulse is depleted.
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Figure 3.11: (a) Longitudal electric intensity Ez at t = 5.26 ps. (b) Ez at x =
0. (c) Charge density corresponding to the accelerated electron bunch integrated
along x at t = 5.26 ps. (d) Energy spectrum of accelerated electrons in arbitrary
units before dephasing t = 8.51 ps. (e) Longitudal electric intensity Ez at t =
12.45 ps. (f) Ez at x = 0.
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Figure 3.12: (a) Charge density corresponding to the second and third acceler-
ated electron bunch integrated along x at t = 16.7 ps. (b) Energy spectrum of
accelerated electrons in arbitrary units after exiting the gas target at t = 16.7 ps.
(c) Modulated laser pulse after exiting the gas target. (d) Profile at x = 0.

According to radiation calculation algorithm presented at the beginning of
this chapter, we can calculate the radiation emitted by the whole bunch, however
such precision would be very computationally demanding, on the time scale of
weeks. For such large number of electrons that we have in the simulation, we
have instead carefully selected trajectories best characterizing electron bunches
according to electron spectrum, trajectories and bunch charge results from the
PIC results.
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(a)

(b) (c)

injections

Figure 3.13: (a) Trajectories and gamma evolution of electrons. Maximum γ =
1000 to highlight distinct injection points. (b) Trajectories of the first injected
electron bunch. (c) Trajectories of the second injected electron bunch.

In Fig. 3.13 (a), we’ve plotted trajectories of 0.1% of accelerated electrons
within the PIC simulation. These post-processed trajectories highlight that, just
as we’ve pointed out from the PIC results, there are mainly three major wave-
breaking events where large numbers of electrons are injected into the accelerated
phase. Trajectories of the first and the second bunch are highlighted in Fig. 3.13
(b), (c). We know from PIC results that the second bunch is roughly ten times
as large as the first one, but it is also much more energetic, reaching up to 1 GeV
before exiting the gas target. We also note that the trajectories follow a roughly
similar evolution and therefore the radiation emitted by the electrons within the
same bunch won’t differ significantly. For the larger and higher energy bunch,
we’ve selected two characteristic trajectories, results of both of which are in Fig.
3.14, 3.16. To also consider the effect of the first bunch, we present radiation
results for the trajectory characteristic of the first bunch in Fig. 3.17.

76



0 50 100 150

10-3

10-2 (b)

(a)

(c)

Figure 3.14: Radiation calculated for a γ = 800 electron. (a) Angular distribu-
tion of the radiated energy. (b) Radiation spectrum in logarithmic scale. (c) γ
evolution of the electron.
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Figure 3.15: Betatron X-ray radiation spectrum in linear scale, highlighting the
synchrotron-like shape.

Electron in Fig. 3.14 reaching up to γ = 800 emitted radiation with 1.7 · 10−3

photons / 0.1% bandwidth at critical energy of ωc
.= 7.4 keV. The total number

of emitted photons per electron for this case is Nγ
.= 4.4 with beam divergence

at full width at half maximum of approximately ≈ 60 mrad. This trajectory
characterizes the third injected bunch, which makes up the low energy part of
the electron spectrum in Fig. 3.12 (b).
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Figure 3.16: Radiation calculated for a γ = 1600 electron. (a) Angular distribu-
tion of the radiated energy. (b) Radiation spectrum in logarithmic scale. (c) γ
evolution of the electron.

Electron in Fig. 3.16 reaching up to γ = 1600 emitted radiation with 2.3 ·10−2

photons / 0.1% bandwidth at critical energy of ωc
.= 28 keV. The total number

of emitted photons per electron for this trajectory is Nγ
.= 215.5 with beam

divergence of approximately ≈ 20 mrad. This trajectory represents the higher
energy tail of the electron spectrum in Fig. 3.12 (b), which consists of the second
injected bunch. We can expect these electrons to boost the critical energy and
photon flux for total emitted radiation near axis quite significantly.
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Figure 3.17: Radiation calculated for a γ = 700 electron. (a) Angular distribu-
tion of the radiated energy. (b) Radiation spectrum in logarithmic scale. (c) γ
evolution of the electron.

Electron in Fig. 3.17 reaching up to γ = 900 emitted radiation with 5.4 · 10−3

photons / 0.1% bandwidth at critical energy of ωc
.= 7 keV. The total number of

emitted photons per electron is Nγ
.= 8.7 with beam divergence of approximately

≈ 60 mrad. This trajectory characterizes the first injected bunch with spectrum
shown in Fig. 3.11 (d). This bunch is emitting lower energy radiation, with the
spectrum however being still well above the 1 keV range with significant photon
flux.

With the previous results, we can estimate the total radiation emitted per
shot. With 848 pC of charge, the main bunch contains 5.29 ·109 electrons charac-
terized by the first two trajectories. With the estimation that the higher energy
trajectories make ∼ 20% of the larger bunch, we get the total number of emitted
photons per shot as N bunch

γ = 2.3 · 1011. The smaller bunch of 84.8 pC contains
only 5.29 · 108 electrons, contributing only Nγ ≈ 9 photons per electron, that is
N bunch

γ = 4.7 · 109 photons, or 2% of the total number of radiated photons. With
this in mind, we conservatively estimate total emitted X-ray radiation with pho-
ton flux of Nγ

.= 2.4 ·1011 photons per shot with ∼ 108 photons / 0.1% bandwidth
between 1 and 20 keV and ∼ 107 photons / 0.1% bandwidth between 20 and 50
keV with beam divergence of θ

.= 50 mrad. The Betatron X-ray pulse length is
roughly equal to the relativistic electron bunch length [71], which is in this case
approximately 10 µm, making the X-ray pulse duration τ ≈ 30 fs. The source
size is d ≈ 7 µm.
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Case III

Results of the PIC simulation for the case n0 = 1019 cm−3 are presented in
figures 3.18, 3.19, 3.20 and 3.22. For this case we have omitted the snapshost
of the laser pulse entering the gas jet, since it is same as the previous case.
Some time into the simulation at t = 1.7 ps, the laser pulse is being sharply self-
focused while exciting the plasma and we alredy see some accelerating electrons.
At t = 3.4 ps (b), the wakefield is well estabilished and electrons are reaching
γ ≈ 800. A second wavebreaking event is triggered at approximately t = 3.82 ps
(c) with the longitudal field approaching magnitude of 1000 TV/m as seen in Fig.
3.22 (a), (b). This wavebreaking triggered a continuous chain reaction where a
very large number of electrons is injected, as seen at t = 6.35 ps (d). Due to
the large number of electron macro-particles overlaping in the figures, we have
separated two layers of electrons to highlight the energy range within the bunch
with a dashed line. Presence of such large number of electrons however effectively
increases the potential within the cavity, producing a shallow longitudal wakefield
as seen in Fig. 3.22 (c), (d) with largest accelerating gradient at the back of the
bubble. At t = 8.08 ps (e), the laser pulse is almost depleted and the electrons
accelerated at the back of the bubble attained highest energy, while injection still
continues. Electrons continue to accelerate in the shallow wakefield at t = 10.91
ps (f) with the laser pulse almost completely depleted. Charge of the bunch and
energy spectrum are highlighted in Fig. 3.22 (e), (f) with total charge of the
bunch being Qtotal

.= 1.22 nC. At t = 12.10 ps, the laser wakefield is depleted
and the wakefield starts to collapse, which allows the Coulombic repulsion of the
electrons to expand the bunch in transverse direction. When the wakefield is
depleted, the Coulombic repulsion diverges the electrons off-axis. Divergence of
the exiting electron beam is θ ≈ 20 mrad.
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(a)

(c)

(b)

Figure 3.18: PIC simulation results in normalized units. (a) Laser pulse is excit-
ing the plasma wakefield and undergoes self-focussing. First electrons are being
accelerated. (b) Electrons are accelerated by the wakefield while the laser pulse
loses energy. (c) Second large bunch is injected.
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(d)

(e)

(f)

Figure 3.19: PIC simulation results in normalized units. (d) The second injection
triggered chain wavebreaking, injecting large number of electrons. (e) Wavebreak-
ing continues at the back of the wakefield, laser pulse front is depleted. (f) Large
number of electrons continue to accelerate in the shallow wakefield while laser
pulse is almost completely depleted.
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(g)

(h)

Figure 3.20: PIC simulation results in normalized units. (g) Laser is depleted and
wakefield starts to collapse. (h) Wakefield is collapsed and Coulombic repulsion
within the accelerated bunch causes individual electrons to diverge off axis.
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Figure 3.21: (a) Longitudal electric intensity Ez at t = 3.82 ps. (b) Ez at x = 0.
(c) Longitudal electric intensity Ez at t = 8.08 ps. (d) Ez at x = 0. (e) Charge
density corresponding to the accelerated electron bunch integrated along x at t =
10.91 ps. (f) Energy spectrum of accelerated electrons in arbitrary units before
scattering at t = 10.91 ps.
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(a) (b)

Figure 3.22: (a) Trajectories and gamma evolution of electrons. Maximum γ =
1400 to highlight distinct major injection points. (b) Trajectories of the first and
major accelerated electron bunch.

Trajectories of accelerated electrons are plotted in Fig. 3.22. Trajectories of
0.1% of the accelerated electrons are shown in (a). While continuous injection was
indeed happening throughout most of the propagation, we see that there are two
particular wavebreaking events that injected considerable amount of particles.
The larger of the two is shown in (b). Once again, we have selected characteristic
trajectories representing these bunches to estimate the total emitted radiation
per shot.
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Figure 3.23: Radiation calculated for a γ = 900 electron. (a) Angular distribu-
tion of the radiated energy. (b) Radiation spectrum in logarithmic scale. (c) γ
evolution of the electron.

First trajectory selected of an electron reaching γ = 900 is representative of
the major bunch injected at z

.= 0.75 mm highlighted in Fig. 3.22, (b). While the
achieved electron energy is smaller compared to the previous density case, we have
much higher number of photons emitted per electron Nγ = 777 with a significant
amount of 4.7·10−1 photons / 0.1% bandwidth emitted at critical energy ωc = 8.8
keV. The X-ray beam divergence is ≈ 120 mrad. While the betatron oscillation
amplitude is similar to previous density case, all the oscillations at high energy
are conducted in a much shorter length of ∼ 2.5 mm, which significantly increases
the deflection parameter K. That signifies sharper turns and therefore stronger
transverse acceleration at these turning points, resulting in larger amounts of
radiated energy.
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Figure 3.24: Radiation calculated for a γ = 900 electron. (a) Angular distribu-
tion of the radiated energy. (b) Radiation spectrum in logarithmic scale. (c) γ
evolution of the electron.

Trajectory with γ = 900 is another one of the many almost identical trajecto-
ries of the first injected bunch of electrons at z = 0.7 mm. We observe 3.5 · 10−1

photons / 0.1% bandwidth at critical energy ωc = 8.9 keV with total number of
photons Nγ = 562. Trajectories within the first bunch seem to emit very similar
radiation. Beam divergence is ≈ 100 mrad.
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Figure 3.25: Radiation calculated for a γ = 1200 electron. (a) Angular distribu-
tion of the radiated energy. (b) Radiation spectrum in logarithmic scale. (c) γ
evolution of the electron.

At last, we consider the contribution of trajectory with γ = 1200. This
electron characterizes the second bunch injected at z ≈ 1.7 mm. The radiation
has divergence of ≈ 100 mrad with Nγ = 533. We observe 3.4 · 10−1 photons /
0.1% bandwidth at ωc = 8.9 keV.

With the calculated photon flux of the presented trajectories, it seems reason-
able to us to conservatively estimate that radiation from higher energy electrons
injected within the main bunch dominates within the total radiation emitted per
shot. The total charge is 1.22 nC, which is approximately 7.6·109 electrons. Elec-
trons with γ above 600 at t = 10.91 ps make ∼ 40% of the accelerated electrons.
Considering these radiate ∼ 500 photons per electron, we estimate the total emit-
ted X-ray radiation per shot with photon flux of Nγ

.= 1.6 · 1012 photons per shot
with ∼ 109 photons / 0.1% bandwidth between 1 and 15 keV and ∼ 108 photons
/ 0.1% between 15 and 50 keV with beam divergence of θ

.= 100 mrad. Electron
bunch length of ≈ 20 µm makes the X-ray pulse length τ ≈ 65 fs. The source
size is d ≈ 7 µm.
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3.4 Summary
We have conducted a PIC simulation parametric scan with variable gas density.
For the first case of n0 = 3 · 1018 cm−3, we have found that almost no significant
charge Qtotal ∼ pC is being injected into the accelerating phase due to the inability
of lower gas density to promote wavebreaking in such short gas target of 5 mm.
This case is however potentially of interest for multi-stage or density tailored
electron accelerating setups [56] [57] due to it’s large accelerating gradient and
wakefield stability. This wakefield stability reflects in it’s potential to accelerate
electron beams over long distances, as it was shown in [21], where 5 pC charges
were accelerated up to record breaking 8 GeV over 15 Rayleigh lengths with
density of n0 = 3.4 · 1017 cm−3.

The second case of n0 = 5 ·1018 cm−3 revealed the necessity for high density in
all-optical single stage homogeneous gas targets for electron injection and beta-
tron X-ray generation. Broadband radiation within 1 - 150 keV range with photon
flux of 2.4 · 1011 photons per shot was estimated. The last case of n0 = 1019 cm−3

further supports this photon flux scaling. Radiation within 1 - 200 keV range
with photon flux of 1.6 · 1012 photons per shot was calculated, further indicating
the need for higher density in betatron X-ray radiation generation with petawatt
laser systems. These results suggest that with high intensity laser pulses with
peak a0 ∼ 4, higher densities are favorable for X-ray generation within the gas
density range of 1018−19 cm−3 in homogeneous gas targets. Our results also sup-
port recent experimental work that shows that Betatron X-ray radiation with
photon flux of 108−10 photons/sr/0.1%BW/shot in a 10 - 40 keV energy band can
be generated with petawatt scale laser systems [74]. Another recent work also
indicates that X-ray photon flux with these gas targets could be further enhanced
with tailored density modulation [57].
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4. Experimental Design
In this chapter, we will present the design for the Betatron X-ray source in the
Plasma Physics Platform (P3) vacuum chamber [75] in the E3 experimental hall
at ELI-Beamlines. The driving laser for the Betatron X-ray source will be the L3
petawatt-class laser system with energy of 30 J operating at repetition rate of 10
Hz reaching up to 1 PW. Due to LWFA laser requirements discussed in Chapter
3, the laser pulse must be optimally focused on target to match the plasma
density. Above critical peak power, the laser propagates through the target self-
focused and oscillates around w0 before it loses enough energy to continue self-
focusing. To partially counter this and especially in the case of experiments with
lower powered laser pulses, longer focusing length must be selected to mitigate
diffraction [71]. Optimal X-ray generation demands larger f-number f/N , ideally
above 10 with spherical mirrors, which was shown for example at Astra-Gemini
(f/17) [76] or Texas Petawatt (f/47) [77].

In our case, a spherical mirror with a focusing length f = 5 m gives at
full aperture the f-number larger than f/20. Optical simulation in Fig. 4.1
shows that this focusing provides a spot size close to the diffraction limit at
2w0 ≈ 40 µm. From previously mentioned experimental works and preliminary
simulations presented, we expect ∼ 109 electrons with a total charge of ∼ 100 pC
and energy of 400 - 1500 MeV. X-ray radiation is expected with tunable critical
energy up to ∼ 50 keV, divergence of 20 mrad, pulse duration of sub 10 fs with
a photon flux of 1010 per shot [78].

Figure 4.1: (a) Optical simulation setup in Virtual Lab optical simulation pack-
age. The L3 laser beam is reflected by the mirror with hole and reflected to the
spherical mirror, which focuses it back through the mirror with hole. (b),(c) Typ-
ical focal spot and intensity profile at the focus showing the focal spot diameter
of about 40 microns.
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4.1 Experimental Setup
The experimental setup in P3 chamber is shown in Fig. 4.2 including the spher-
ical mirror. Close-up of the experimental layout in P3 chamber is highlighted in
Fig. 4.3. The L3 beam (yellow) enters from the bottom of the P3 chamber (at 6
o’clock), and is reflected by a mirror with a hole upon the long focal length spher-
ical mirror (f = 5 m) in the adjacent vacuum chamber. The beam is then focused
onto the gas target accelerating electrons and generates betatron X-ray radiation.
Multiple diagnostics are used to characterize the interaction. A vacuum compat-
ible integrated charge circuit is placed behind the gas target to measure electron
bunch charge. A dipole magnet with scintillating screen is placed in laser propa-
gation direction behind the gas target to deflect the electrons, serving as electron
spectrometer. Part of the L3 beam is transmitted from the laser beam through
the mirror with a hole. This split off beam (green) is used for plasma diagnostics
such as shadowgraphy or interferometry, since it is in phase with the main beam.
Focal spot diagnostics (purple) and Thomson scattering (top view, red) are also
included to serve as additional diagnostics, providing information on laser and
plasma behaviour. The betatron X-ray beam (blue) is transmitted through a
laser reflecting foil and recorded by a back-illuminated X-ray CCD camera or
X-ray detecting screen viewed by a CCD camera. X-ray spectrometers covering
the broadband Betatron radiation from few keV to 100s of keV are placed before
the X-ray detector.

Figure 4.2: 3D model of the experimental setup in P3 chamber. L3 beam (yellow)
enters from the bottom of the chamber and continues onto the spherical mirror
in adjacent vacuum chamber.
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Figure 4.3: Close-up of the experimental layout for the betatron generation with
diagnostics. L3 beam (yellow), interferometry beam (green), L3 diagnostics (pur-
ple), Thomson scattering (red), X-ray beam (blue).

4.1.1 Gas Target
The gas jet has been designed to provide either sub or supersonic flows appropriate
for a repetition rate of 10 Hz. The gas target can be characterized with a Mach-
Zehnder or Wollaston prism interferometer. This provides information about gas
density of the target, which allows us to compare the experiment with simulations
in greater detail. The nozzles are mounted on solenoid valves triggered and
opened for ≈ 10 ms before the laser pulse arrives. Typical density ranges between
1018 − 1019 cm−3. This density is set by proper backing pressure of the gas jet,
which is remote controlled by pressure regulators.

Figure 4.4: Left: Density profile of a cylindrical 4 mm de Laval nozzle. Right:
Typical supersonic gas jet system.
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4.1.2 Thomson Scattering
The laser pulse is scattered by free electrons through Thomson scattering. The
intensity of scattered radiation depends linearly on laser intensity, which makes
the measurement of Thomson scattering useful to monitor the laser propagation
and electron density inside the gas target. The plasma is imaged by an achro-
matic doublet with magnification that will depend on the selected nozzle. The
magnification may vary from 2 to 10.

Figure 4.5: Thomson scattering (top view) imaging setup. Inset: Typical topview
image.

4.1.3 Interferometry / Shadowgraphy
Information about plasma density is obtained through interferometry. Either the
Mach-Zehnder or Wollaston prism interferometer can be selected for this purpose.
Each can be chosen based on the availible space within the interaction chamber
for a given experiment. Shadowgraphy provides us the laser position inside the
plasma as a function of time. Both shadowgraphy and interferometry use the
same setup. The plasma is imaged once again with an achromatic doublet with
a magnification ranging from 2 to 10.

Figure 4.6: Mach-Zehnder interferometry setup.
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4.1.4 Electron Diagnostics
A turbo integrated charge circuit (ICT) with a dynamic range of 80 dB capable
of resolving fC scale pulsed charges is placed beyond the gas target to measure
the charge of the electron bunch. The stability and divergence of the outcoming
accelerated electron beam is measured through shot-to-shot pointing stability
with the use of a scintillator screen and CCD camera along the beam path. A
thin metallic filter is placed before the scintillator to block the laser radiation.
The scintillator mostly emits green light around 546 nm. A bandpass filter for
this wavelength is utilized to reduce noise. A 30 cm long magnetic spectrometer
is used to deflect electrons with energies up to 1.5 GeV onto a scintillator screen
viewed by a 14-16 bit CCD camera. The on-axis magnetic field is roughly 1.1
T for a 10 cm long segment. Three such modules are combined to produce a 30
cm long field that allows good resolution up to 1.5 GeV. The distance from the
magnet to the 60 cm wide scintillator is around 10 cm.

Figure 4.7: Vacuum compatible turbo integrated charge circuit.

Figure 4.8: Design and assembly of the modular magnetic spectrometer. Inset:
one 10 cm modular piece of the spectrometer.
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Figure 4.9: Magnetic field inside the 10 cm long module measured with a Hall
sensor.

4.1.5 X-ray Diagnostics
The profile of the X-ray beam is measured with various tools depending on the
energy of the radiation. X-ray cameras can directly image radiation up to 10 keV
or even 20 keV for deep depletion chip types. Hard X-ray camera with scintillator
can be used for indirect detection of radiation with energy up to the MeV range.
Scintillator screens with various thickness and material or crystals can also be
used depending on energy of the source.

For a source below 30 keV, single photon counting CCD will be used with filters
in front of the detector to attentuate the X-ray signal and detect less than one
photon per 10 pixels. In that case, the signal produced by one photon is directly
proportional to it’s energy and spectrum is obtained. For radiation below 100
keV, spectrum is measured using Ross filter pairs. The transmission difference in
each filter pair allows to extract the radiation in a limited spectral band. By using
multiple pairs with various materials, we can obtain spectrum up to 100 keV with
10 spectral bands. The X-ray spectrum is reconstructed using the knowledge of
the filter transmission and fitting with the synchrotron radiation function. For
X-rays over 100 keV, transmission through a thick filter will be used.

Figure 4.10: X-ray camera for the measurement of beam profile.
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Figure 4.11: High energy X ray Ross filter spectrometer developed at ELI Beam-
lines. The spectrometer consists of 19 filters, which makes 10 spectral bands
covering the spectrum from 5 keV to 88 keV.
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Figure 4.12: The spectrometer consists of 19 filters, which makes 10 spectral
bands covering the spectrum from 5 keV to 88 keV.

Figure 4.13: Schematic for the spectral characterization of the X-ray source
through Ross filter pairs.

96



5. Imaging Applications

Compared to visible light, shorter wavelengths of X-ray radiation allow it
to penetrate thicker structures and resolve finer details. These properties make
X-ray radiation an ideal tool for crystallography, biological and medical imaging
[79]. However, radiation damage is a factor that must be taken into consideration
with X-ray sources. The nature of Betatron X-ray radiation generation through
acceleration of µm scale electron bunches makes the Betatron source an ideal
candidate for X-ray absorption and phase contrast imaging due to it’s small source
size [79]. In this chapter, we will present various imaging methods and consider
their viability for the expected parameters of the Betatron source generated with
L3 laser system at ELI Beamlines. The necessity for a small source size in imaging
methods can be seen from a simple geometric consideration, which is highlighted
in Fig. 5.1 with the maximum geometric unsharpness U given in terms of source
size f , distance from source to sample a and distance from sample to detector b
as

U = f · b

a
(5.1)

f

a

b

U

source

sample

detector

Figure 5.1: Schematic for the derivation of geometric unsharpness.

An ideal point source f → 0 is therefore best for obtaining sharpest details
and therefore good resolution of the sample.
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5.1 Absorption-Contrast Imaging

This technique utilizes the fact that an X-ray beam passing through a sample
of different components, for example a biological cellular structure, suffers atten-
tuation due to absortpion corresponding to the imaginary part of the refractive
index, which varies for each component of the sample. This attentuation gener-
ates contrast within the transmitted beam, producing an image of the sample on
the detector. As presented in Fig. 5.1, small source size is desirable for increased
spatial resolution, as well as sufficient radiation exposure. Absorption contrast
imaging with high contrast is however limited to dense tissues, for example bone
tissue. Contrast can be enhanced with radioopaque and radiolucent agents in
living soft tissue through invasive applications [80]. We expect that our Betatron
X-ray source with photon flux greater than 109 photons / 0.1% BW with mi-
cron scale source size and critical energy tunable beyond 10 keV should provide
sufficient brightness and resolution for single shot image acquisition.

Figure 5.2: Radiography imaging used in paleontology. Radiographs of two spec-
imen of Darwinius masillae. Reprinted from [80].
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5.2 Phase-Contrast Imaging

The small source size of Betatron X-ray radiation makes it an ideal tool for
X-ray Phase-Contrast Imaging (XPCI). This technique utilizes the spatial coher-
ence of the small source for much improved resolution and image quality compared
to standard absorption radiography [81]. While absorption contrast imaging re-
lies on differences of absorption coefficient in different components of the sample,
phase contrast imaging relies on the differences of refractive index within the sam-
ple, causing bending of the wavefront. Phase contrast imaging therefore sidesteps
the need for radioopaque agents to visualize soft tissue. Dosage can be also re-
duced with XPCI compared to standard radiography by using harder X-rays [82].
XPCI has been alredy realized with a Betatron X-ray source in many cases [81]
[82] [83]. Results of [81] are shown in Fig. 5.3, where the Betatron source had
critical energy of 10 keV. To detect disturbanes within the wavefront properly, the
X-ray source requires excellent spatial coherence. We will give a simple estimate
for the transverse coherence length of our source from the properties of Fourier
transform, since ∆x · ∆k ≥ 1/2. If the relative spectral bandwidth of the source
∆λ/λ = ∆k/k is small, then the uncertainity in wavevector is mostly due to
uncertainity in direction θ, which means ∆k = k∆θ. The radiation occupies the
smallest phase space volume when equality is reached. Physically, that means
that source size is indiscernable beyond the value set by the inequality. If we
identify the source diameter as d = 2∆x, and the divergence half-angle θ with
the uncertainity in direction ∆θ, as shown in Fig. 5.5, we have the condition for
a spatially coherent source given as

d · θ = λ/2π (5.2)

Radiation satisfying (5.2) is said to be diffraction limited. At some propaga-
tion distance z from the source, the transverse coherence length is Ltransverse = zθ,
where the angle is set by (5.2). Phase-contrast imaging can be implemented in
free-space propagation, crystal analyser-based and crystal or grating interferom-
eter based techniques [84]. Free-space propagation is the often chosen and easiest
technique for microscopy applications with micron scale resolution, with the only
requirement being that the transverse coherence length at detector satisfies [84]

Ltransverse ≥ 2
√︄

λD

2 (5.3)

where D = a · b/(a + b) is the defocusing distance with a being the source-
sample distance and b being the sample-detector distance. Acquistion of projected
X-ray phase contrast images with a Betatron X-ray source has been also realized
in a tomographic setting, which allowed for 3D reconstruction of trabecular bone
sample, as presented in Fig. 5.4. These results suggest that our micron scale
Betatron source should be viable for XPCI.
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Figure 5.3: X-ray absorption contrast image of an orange tetra fish (a) and dam-
selfly (b). X-ray phase contrast image of a damselfly (c) and a yellow jacket (d).
Reprinted from [81].
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Figure 5.4: Tomographic reconstruction of a trabecular bone sample. (a) Raw
image recorded on X-ray camera. (b) A sinogram of a particular row in the image,
generated by stitching together 180 images at 1 degree intervals. (c) Application
of inverse Radon transform to the sinogram in (b) generates a 2D reconstruction
of a one-pixel horizontal slice of the sample. (d) Classification of pixels as bone
(black) or vacuum (white). (e) 3D voxel map of the bone sample obtained by
stacking together 1300 slices. Reprinted from [83].

Figure 5.5: A schematic for the derivation of condition for diffraction limited
radiation based on Fourier transform properties.
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5.3 Ghost Imaging
Ghost imaging, also known as two-photon or correlated-photon imaging [85], was
first realized in 1995 with visible light [86]. Ghost imaging has a rich history of
research [86], [87], [85]. In this method, image is produced through measurement
of second degree (intensity) correlation function. Setup of first realization of pure
quantum ghost imaging with two entangled photons of visible light produced
through parametric down-conversion [86] is shown in Fig. 5.6.

Figure 5.6: Experimental setup for quantum ghost imaging. Reprinted from [86].

In this scheme, a laser photon is converted through parametric down conver-
sion in a BBO crystal into two photons of lower energy, signal and idler. Signal
continues down one arm of the experimental setup to interact with the sample
(aperture in Fig. 5.6) and is then collected by the single pixel detector D1. Idler
is sent onto a multi-pixel detector D2, which records both spatial position and
intensity. Coincidence circuit calculates the intensity correlation which produces
the ”ghost” image, which is produced due to the known location and intensity
of idler, known intensity of signal and their spatial correlation. This works only
if signal and idler are correlated, otherwise no image will be resolved. Since the
first realization, there have been many advances in ghost imaging, which is now
realized in both quantum and classical settings. In the quantum setting, the cor-
relation is a result of the conservation of energy and momentum of the photon
pair generated, for example in down-conversion. In a classical setting, spatial
correlations are for example introduced by creating a random speckle pattern in
the beam profile as shown in Fig. 5.7. There is also computational ghost imaging,
where we pre-record the speckled patterns in the idler arm, eliminating it com-
pletely from the setup during imaging of the object, as shown in Fig. 5.8. Within
the quantum regime, high efficiency CCDs allow for sub shot noise imaging below
the diffraction limit [88].

102



Figure 5.7: Experimental setup for classical ghost imaging where correlations are
produced in the beam profile by a rotating diffuser. Reprinted from [89].

Figure 5.8: Experimental setup for classical computational X-ray ghost imaging
where speckled beam is pre-recorded with a set of patterned filters, eliminating
the need for expensive X-ray CCDs and optics for the user. Illustration by C.
Bickel for article Seeing Ghosts in sciencemag.org

While there is great interest for these features within the X-ray imaging com-
munity, X-ray ghost imaging is still in it’s infancy with great scope for opti-
mization and further development [90]. It was recently shown that X-ray ghost
imaging could potentially significantly reduce costs of X-ray imaging within a
compact tabletop imaging setting, while also significantly reducing radiation ex-
posure in biological samples [90]. Currently, the biggest issue with X-ray ghost
imaging lies in producing a suitable beam splitter. Bragg or Laue diffraction in
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crystals is often used, treating one of the diffracted beams as a separate path,
however there is often loss of intensity due to absorption and the split is not 50/50,
further reducing image quality [91]. Recent development of kinoform X-ray beam
splitters may be used for ghost imaging in the future [91], [92]. Sharing most
features with Synchrotron sources, Betatron source could potentially be used for
X-ray ghost imaging. Excellent spatial coherence of the source could also be used
for phase sensitive X-ray ghost imaging, which is a method that is currently being
researched [93].

Figure 5.9: Setup for X-ray ghost imaging with a thermal X-ray source, like
Betatron or Synchrotron radiation, with crystals serving as beamsplitters and
short decay time scintillators with cameras for high-repetition operation. The
sample aperture ”LANL” is not seen by the pixel array camera. Reprinted from
[91].

Figure 5.10: X-ray ghost imaging with a synchrotron source. (a) Direct image
of the sample when illuminated by speckled X-ray beam. (b) Ghost image pro-
duced with 5000 measurements. (f) Image refined with 150 Landweber iterations.
Reprinted from [90].
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Figure 5.11: X-ray ghost imaging with realized with X-ray tube. (a) Direct photo
of the ”CAS” sample. (b) Ghost image of the ”CAS” sample for 104 exposures.
(c) Photo of a shell. (d) Projection X-ray image of the shell taken with CCD
under 10 s exposure. (e) Ghost image of the shell for 104 exposures. Reprinted
from [94].
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Conclusion
In this thesis, I have presented a summary of literature and theory on radiation
from relativistic laser wakefield accelerated electrons in Chapters 1 and 2. In
Chapter 3, I have presented our work on numerical simulation and calculation
of radiation emitted by these electrons. I have predicted that for a laser pulse
with a0 = 4, λL = 0.808 µm, τ(1/e) = 28 fs, w0 = 14 µm interacting with a
homogeneous gas target with density n0 = 5·1018 cm−3, we can expect broadband
X-ray radiation with photon flux of Nγ

.= 2.4 ·1011 photons per shot with energies
extending up to 150 keV with pulse duration of τ ≈ 30 fs, beam divergence of
50 mrad and source size less than 10 mrad. Subsequently, I have predicted that
interaction of the same laser pulse with gas target of density n0 = 1019 cm−3

will result in broadband X-ray radiation with photon flux of Nγ
.= 1.6 · 1012

photons per shot with energies extending up to 200 keV with pulse duration of
τ ≈ 65 fs, beam divergence of 100 mrad and source size less than 7 µm. In
Chapter 4, I have presented experimental design, of which I was a part of, for
the upcoming experiment with the L3 laser system at ELI Beamlines. In the last
Chapter 5, I have presented currently employed X-ray imaging techniques and
their requirements, concluding that the X-ray Betatron source generated with the
L3 laser system will be a viable source for these imaging methods.

The numerical results within this thesis further motivate towards full 3D PIC
simulations to quantitatively analyze total charge and energy of accelerated elec-
trons and to account for subtleties arising in 3D space. Following experimental
results of [57], [58], it seems that there is an increasing desire for both theoretical
and experimental exploration of non-trivial target geometries and gas density dis-
tributions due to their potential for X-ray generation enhancement with improved
shot-to-shot stability. One of the goals of future study should be to consider var-
ious laser and non-homogeneous gas target simulation setups to pave road for
future experiments involving Betatron X-ray generation in advanced setups.
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A. Appendix

A.1 Relativistic Euler-Lagrange equations
We can simplify the derivation of relativistc Euler-Lagrange equations by assum-
ing that virtual world lines xµ∗ = xµ + δxµ are, instead of their own proper times
τ ∗, all parametrized by the proper time of the real world line τ . This simplifies
the variation of action, since then we have δdτ = 0 producing

δS =
∫︂ τ2

τ1
δLdτ + Lδdτ =

∫︂ τ2

τ1

(︄
∂L
∂xµ

δxµ + ∂L
∂uµ

δuµ

)︄
dτ + 0

=
∫︂ τ2

τ1

(︄
∂L
∂xµ

δxµ + ∂L
∂uµ

dδxµ

dτ

)︄
dτ =

∫︂ τ2

τ1

[︄
∂L
∂xµ

δxµ − d
dτ

(︄
∂L
∂uµ

)︄
δxµ

]︄
dτ

=
∫︂ τ2

τ1

[︄
∂L
∂xµ

− d
dτ

(︄
∂L
∂uµ

)︄]︄
δxµdτ = 0

Where we’ve used per partes in the fourth equality. Since the variation δxµ

is arbitrary, Hamilton’s principle for the evolution in non-trivial time interval is
given by the Euler-Lagrange equations

∂L
∂xµ

− d
dτ

(︄
∂L
∂uµ

)︄
= 0

As we’ve mentioned previously, uµ is the four-velocity only along the real
world line, therefore we can use the normalization of four-velocity uµuµ = −c2

only after substituting into the Euler-Lagrange equations.
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A.2 Maxwell’s Equations
Euler-Lagrange equations can be used to derive equations of motion for fields
with infinite number of degrees of freedom, we simply have to consider the fields
themselves as the canonical coordinates. This produces Euler-Lagrange equations
in the form

∂L
∂Aµ

− ∂µ

[︄
∂L

∂(∂νAµ)

]︄
= 0

with the Minkowski metric ηµν = ηµν = diag(−1, +1, +1, +1), the four-
gradient is ∂ν = ∂/∂ν = (−∂t/c, ∇) and therefore with the field Lagrangian
density 1.7 we have for the derivatives

∂L
∂Aν

= Jν

and for the second term

∂L
∂(∂νAµ) = − 1

4µ

∂

∂νAµ

(︂
FαβηαληβσFλσ

)︂
= 1

4µ
ηαληβσ

[︂
(Fλσ(δν

αδµ
β − δν

βδµ
α) + Fαβ(δν

λδµ
σ − δν

σδµ
λ)
]︂

= F µν

µ

where we’ve used the definition and anti-symmetry of the electromagnetic
tensor in the third equality. Substituting into the Euler-Lagrange equations gives
the first set of Maxwell’s equations

∂µF µν = µJν ⇐⇒ ∇ × H = J + ∂D

∂t
, ∇ · D = ρ

the two equations arise for µ = 0 and µ = i. The second set of source-less
equations

F[µν,ρ] = 0 ⇐⇒ ∇ × E = −∂B

∂t
, ∇ · B = 0

these two equations arise for µνρ = 0jk and µνρ = 123. They are produced
identically due to the definition of electromagnetic tensor

F[µν,ρ] = Fµν,ρ + Fρµ,ν + Fνρ,µ = Aν,µρ − Aµ,νρ + Aµ,ρν − Aρ,µν + Aρ,νµ − Aν,ρµ = 0
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A.3 Lagrangian of a Free Particle
For the simplest Lagrangian of a free particle, we assumed a most logical choice
where the particle is simply described by it’s resting energy

Lfree = −m0c
2

where the sign of the Lagrangian is determined by the signature of the metric
tensor. According to our comments in A.1, we can’t use the normalization uµuµ =
−c2 before we substitute into the E-L equations, which means that we can use
this normalization only after we calculate the derivatives. For simplicity, we
didn’t want to trouble the kind reader with nuances of relativistic electrodynamics
within the main text, so we will validate our results with a quick computation
with the proper lagrangian

Lfree = −m0c
√︂

−uµuµ

Substituting into the Euler-Lagrange equations, we get

∂L
∂uµ

= m0c
uµ√

−uνuν
= m0uµ = pµ

with the interacting term included Lint = JµAµ, we get

∂L
∂uµ

= m0c
uµ√

−uνuν
+ qAµ = m0uµ + qAµ = pµ + qAµ

where we have now correctly used the normalization uµuµ = −c2. For the
second term

∂L
∂xµ

= qAν,µuν

substituting these results into the E-L equations produces the Lorentz force
law result (1.11)

dpµ

dτ
= q(Aν,µ − Aµ,ν)uν = qFµνuν
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A.4 Derivation of Radiation Reaction Force
Let us assume that there is a radiation reaction force term Fµ

rr describing the
loss of energy-momentum due to emitted radiation, then the equations of motion
become

dpµ

dτ
= qFµνuν + Fµ

rr

To derive the form of the radiation reaction term, let us first consider a scalar
product of a general force term F µ with four-velocity uν

ηµνF µuν = ηµν
dpµ

dτ
uν = ηµν

d(m0u
µ)

dτ
uν

= ηµν
dm0

dτ
uµuν + ηµνm0

duµ

dτ
uν = −c2 dm0

dτ
+ ηµνm0a

µuν = −c2 dm0

dτ

where we’ve used the fact that four-velocity and four-acceleration are orthog-
onal, since

0 = d
dτ

(−c2) = d
dτ

(ηµνuµuν) = ηµν(aµuν + uµaν) = 2ηµνaµuν

these results tells us that unless the F µuµ = 0, the rest mass of the particle
will change. Geometrically, this means that four-velocity is parallel along a world
line and since four-acceleration is it’s rate of change, it is always orthogonal to it.
We can therefore proceed with our derivation of the radiation reaction force by
demanding that the force term Fµ

rr is a tensor product of some general vector yµ

and the projecting tensor P µν = ηµν − uµuν/c2, which projects a four-vector to
hyper-plane orthogonal to the four-velocity. To include the jerk dynamic of the
radiation reaction, four-vector yµ must be at least of the form

yµ = Auµ + B
duµ

dτ
+ C

d2uµ

dτ 2

We can set A = 0 due to orthogonality of uµ to the projection tensor P µν

within the force term. By shifting the term with B on left side of the equation
of motion, we can renormalize the mass into the physically observable mass as
m = m0 − B. To reproduce the Larmor formula, the last constant must be
C = q2/6πϵ0c

3. These conditions for the tensor product produce the final form
of Abraham-Lorentz radiation reaction force as

Fµ
rr = q2

6πϵ0c3

(︄
daµ

dτ
+ uµ

c2 (aνaν)
)︄
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A.5 Four-Potential of a Point Charge
Here we evaluate the four-potential (2.4) for a point charge. The four-current
term Jν is given by (2.5) as

Jν(r, t) = (qδ(r − x(t)), qcβ(t)δ(r − x(t))) = Bν(t)δ(r − x(t))

where we’ve defined the four-vector Bν(t) = (q, qcβ(t)). The four-potential is
therefore

Aν(r, t) = µ(G ⋆ Jν) = µ

4π

∫︂ Bν(t′)
|r − r′|

δ(r′ − x(t′))δ
(︄

t − t′ − |r − r′|
c

)︄
dt′d3r′

= µ

4π

∫︂ Bν(t′)
|r − x(t′)|δ

(︄
t − t′ − |r − x(t′)|

c

)︄
dt′

The last integral can be evaluated if we note that for functions f(t), g(t) we
have the following equality

∫︂
f(t′)δ(t−g(t′))dt′ =

∫︂
f(t′(g))δ(t−g)dt′

dg
dg =

∫︂ f(t′(g))
ġ(t′(g)) δ(t−g)dg = f(t′(t))

ġ(t′(t))

where we’ve used the fact that dt = dt
dg

dg = 1
dg
dt

dg. We recognize the functions
f(t), g(t) as

f(t) = Bν(t)
|r − x(t)| = Bν(t)

|R|

g(t) = t + |r − x(t)|
c

ġ(t) = 1 − β(t) r − x(t)
|r − x(t)| = 1 − β · n

where we’ve defined the distance between observer and particle |R| = |r−x(t)|
and the direction towards observer n = R/|R|. The four-potential therefore
becomes

Aν(r, t) = µ

4π

Bν(t)
|R|(1 − β · n)

which encompasses the famous Liénard-Wiechert potentials (2.6) and (2.7).
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A.6 Critical Frequency Dependence on Deflec-
tion Parameter

As we’ve shown in (2.34), the critical frequency for an electron travelling along
bending trajectory with K ≫ 1 is

ωc = 3c

2ρ
γ3

where ρ is the local radius of curvature. We can calculate dependence of
critical frequency on the deflection parameter K by simply calculating the radius
of curvature of a sinusoidal trajectory of the form (2.26)

r = rβ sin(ωβt) = K

γkβ

sin(kβz)

The second equality is simply following from the definition of deflection pa-
rameter K, which resulted for Betatron oscillations as (2.31). The formula for
the radius of curvature is given as

ρ(z) =
⃓⃓⃓⃓
⃓ [1 + r′2(z)]3/2

r′′(z)

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓ [1 + (K/γ)2 cos2(kβz)]3/2

(Kkβ/γ) sin(kβz)

⃓⃓⃓⃓
⃓

Since most radiation is emitted along the turning points, we are interested
in the smallest radius of curvature. The minimum is attained at turning points
satisfying kβz = π/2 + πZ where Z is a whole number, which gives the minimum
radius of curvature as

ρmin = γ

Kkβ

substituting into the critical frequency, we get the dependence on the deflec-
tion parameter K, generalized for any sinusoidal trajectory as

ωc = 3
2Kγ3ωβ
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