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Title: Generating synthetic data for an assembly of police lineups

Author: Patrik Dokoupil

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., Department of Software Engineering

Abstract: Eyewitness identification plays an important role during criminal pro-
ceedings and may lead to prosecution and conviction of a suspect. One of the
methods of eyewitness identification is a police photo lineup when a collection of
photographs is presented to the witness in order to identify the perpetrator of
the crime. In the lineup, there is typically at most one photograph (typically ex-
actly one) of the suspect and the remaining photographs are the so-called fillers,
i.e. photographs of innocent people. Positive identification of the suspect by the
witness may result in charge or conviction of the suspect.

Assembly of the lineup is a challenging and tedious problem, because the wrong
selection of the fillers may end up in a biased lineup, where the suspect will stand
out from the fillers and would be easily identifiable even by a highly uncertain
witness. The reason why it is tedious is due to the fact that this process is still
done manually or only semi-automatically.

This thesis tries to solve both issues by proposing a model that will be capable
of generating synthetic data, together with an application that will allow users
to obtain the fillers for a given suspect’s photograph.

Keywords: GAN, generative adversarial network, police lineup, deep learning,
image generation
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Introduction
Eyewitnesses often play an important role in identifying possible suspects and
uncovering the details about a crime. One of the eyewitness identification pro-
cedures is called police photo lineup, sometimes also referred to as a photo array,
police lineup, or just lineup. An example of a simple police lineup is depicted in
Figure 1.

Figure 1: Example of a police photo lineup. These images were artificially gen-
erated and do not show real persons.

The evidence provided by this procedure can lead to incrimination and even-
tually to the conviction of the suspected criminals, therefore it is crucial that the
eyewitness evidence is as reliable and as accurate as possible, in order to prevent
the possibility of charging and convicting innocent suspects.

In the context of this thesis, police lineups refer to the process of presenting
a collection of photographs to a witness in order to determine if the witness can
recognize a person involved with the crime. There are two types of photographs
that could appear in a police lineup—the suspect, which is a photograph of a
person who police believe has committed the crime, and so-called filler which is
a photo of a person other than the suspect.

The example of a lineup in Figure 1 shows 6 images, where the image with a
red border is the suspect and the remaining 5 images are the filler. Using lineups
of size 6 is quite common in practice but the actual size could be affected by
various factors, one of them is a country. For example, in the United States, the
lineup size is typically 6, but in the United Kingdom, lineups of size 9 are more
common [1].

The accuracy and reliability of police lineups are highly affected by the way
how the fillers are selected [2]. It is very important that the selected fillers are
similar in appearance and overall in all the characteristics including gender, age,
race, and other extraordinary facial features [2]. The selected photographs should
also keep the consistency of color, quality, size, and resolution [3][4].

Typically, the lineup contains only one suspect and the rest are fillers, but
there are situations or variations of the lineup where the suspect’s photo was
replaced by a filler. Before the identification process, the witness should be told
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that the suspect may or may not be present in the lineup [5]. The witness is then
asked whether he or she recognizes anyone from the presented images.

It is generally agreed that using low-similarity fillers increases the risk of
mistaken identification of an innocent suspect [6][7]. Lineups consisting of low-
similarity fillers are called biased lineups [8]. An artificial example of a lineup that
could be considered unfair or biased is shown in Figure 2. On the other hand,
the lineup from Figure 1 seems to be fair, because all the images show persons
with a similar appearance, age, and other characteristics.

Figure 2: Example of an unfair or biased police photo lineup. These images were
artificially generated and do not show real persons.

The reason why the police lineup from Figure 2 might be considered biased is
that the suspect is very different from the fillers. Notice that the suspect is the
only one who has no beard and that the suspect is considerably younger than
the fillers. Some attention could also be attracted by the garish red t-shirt. The
unfairness can be even more prominent when there is such a significant difference
between the fillers and the suspect as for example different ethnicity.

There are two main strategies for selecting the fillers, namely: match-to-
description strategy and resemble-suspect strategy [9][10]. The former strategy
uses a verbal description of the suspect that was provided by the witness, while
the latter strategy involves selecting fillers who physically resemble the suspect.
One of the difficulties of the resemble-suspect strategy is to determine a thresh-
old of how similar the fillers should be to the suspect [10]. If the fillers are not
similar enough, it would lead to a biased lineup [10]. On the other hand, if the
fillers are too similar to the suspect, the resulting lineup would be a collection
of near-clones, therefore making it too difficult to identify the suspect from such
a lineup. The match-to-description strategy does not have this issue, because it
is simple enough that the fillers comply with the verbal description given by the
witness. Despite this seeming disadvantage of the first strategy, both strategies
were shown to be equally effective in reducing innocent suspect identifications.
Some studies show that the resemble-suspect strategy might result in a reduction
of accurate identifications of the suspect, while the match-to-description strategy
does not [10][8]. However, other studies have shown that there is no significant
difference between the strategies [11] and their impact on making the suspect
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stand out [9]. More information about police lineups and recommendations re-
garding their construction and organization of the whole process could be found
in the following article [12].

Assembling unbiased lineups is a challenging and time-consuming task because
large databases of faces have to be traversed in order to find appropriate fillers
[13]. It is still very common that this process is being done in a manual way which
makes the assembling even slower. However, with the increasing advancement
of technology, there were several attempts to simplify this task by making it
(semi-)automatic. A certain level of automation can be achieved by using tools
that are able to search the database for the fillers that are similar to the suspect
and then “recommend” [14][13] these fillers to the lineup administrator.

Automatic lineup assembling has the potential to greatly simplify and speed
up the whole process, yet still, some problems are preventing the automation
from being successful. There are two issues connected to the automatic search
of the face databases. First is that it is difficult to define the similarity of two
faces so that it matches people’s notion of the similarity. Second, even when
the similarity measure is available, it may happen—and it actually frequently
happens in practice—that the database simply does not contain face photos that
are similar enough to the suspect, i.e. there are either not enough appropriate
fillers in the database or there are no appropriate fillers at all [14][13].

The lack of appropriate fillers in the photo databases could be solved by
extending the database and an elegant way to do this would be to do it in an
automatic way using some kind of generative model that would be capable of
generating face photographs. We presume that this could be done, thanks to the
recent advances in the fields of artificial intelligence, especially machine learning
and deep learning.

Goals
The difficulties connected with the process of police lineup assembling, most
notably the problem of finding appropriate fillers lead us to the main goal of this
thesis which is to propose a new variation of—or to adapt—an existing model
to a task of generating synthetic face photographs. The proposed model has to
adhere to the following requirements, which are essential for building unbiased
lineups:

1. The model should be able to generate images with a reasonable quality (in
terms of image resolution).

2. The generated faces should not be easily distinguishable from photos of real
people, i.e. it should not be obvious that the image does not depict a real
person.

3. The output of the model should be diverse enough.

4. The output of the model should be controllable, meaning that the consumer
of the model should have some control over the resulting images.

Apart from the critical requirements mentioned above, there are some features
which would be appropriate to achieve, when it would be possible:
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1. The model should be capable of generating images of people with extraor-
dinary or rare facial features.

2. The control over the model’s output should be achieved by seeding or ini-
tializing the model with a photo of the suspect and the generated images
then should be similar to the seed image (in terms of facial features).

Afterward, the resulting model should be incorporated into a framework for
the assembly of the police photo lineups.
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1. Background
This chapter presents a brief introduction to artificial neural networks, followed
by a description of the main types of deep neural networks that are needed for
understanding the rest of this thesis. This chapter does not attempt to provide
a comprehensive and rigorous description of all the principles of artificial neural
networks as this is something out of the scope of this thesis. Instead, a special
emphasis is taken on a description of the core principles of the two types of deep
neural networks, namely: generative adversarial networks and autoencoders as
these two will play an essential role throughout the whole thesis. It should be
mentioned that sometimes the terminology is not unambiguous and similar ideas
are called by different names and conversely different things are given similar
or same names. Rather than trying to describe all the possible variations of
the presented models and theoretical constructs, this chapter only presents these
variants that are assumed throughout this thesis by its author. It should be
mentioned that at least a basic knowledge of machine learning terminology and its
techniques is assumed, as these topics are used throughout this thesis even though
they are not described in this chapter. Machine learning related information can
be found, for example, in any of the following books [15], [16], [17].

1.1 Artificial neural networks
Artificial neural networks are a computational model that is inspired by biological
neural networks present in animal brains. Although there are many parallels
between artificial neural networks and biological neural networks, artificial neural
networks are rather only an oversimplification of their biological counterpart.

Based on their biological inspiration, artificial neural networks consist of pro-
cessing units that are connected by edges. These units are also sometimes called
artificial neurons. Connections between the units mimic the purpose of synapses
in the biological brain so that they are able to transmit a signal to other units.
Each individual connection has associated a real-valued weight that determines
the importance of that connection. These weights1 are adaptive and are adjusted
during a process that is called learning or training. A unit can receive a signal,
perform computation and then send a signal to its neighboring units. In artificial
neural networks, these signals are represented by real numbers, and outputs of
the units are calculated by first taking a weighted sum of the neuron’s inputs in
order to obtain an activation which is then passed through the activation function
to yield the final output.

1.1.1 Historical overview
The first computational model of an artificial neuron was introduced by McCul-
loch [18] in 1943. This model of a neuron expected boolean inputs and produced
boolean output. Schematics of McCulloch’s neuron is depicted in Figure 1.1.

1The weights are also often called parameters.
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...
y ∈ {0, 1}fg

x1 ∈ {0, 1}

x2 ∈ {0, 1}

xn-1 ∈ {0, 1}

xn ∈ {0, 1}

Figure 1.1: Schematics of McCulloch’s neuron model.

In Figure 1.1, the links denoted by x1, . . . , xn correspond to the inputs of
the neuron, g is called aggregation function and f is a function computing the
output y, often called activation2 function. Frequently it is convenient to use
vector notation for the inputs because it allows them to write the inputs in a
more concise way:

x = (x1, x2, . . . , xn)
The aggregation function g typically performs a summation of the inputs:

g(x) =
n∑︂

i=1
xi

The inputs to the neuron were either inhibitory or excitatory and based on
it, the output of the neuron is computed by using the following formula:

y =
⎧⎨⎩0 if any xi is inhibitory

y = f(g(x)) otherwise

Definition of the output function f is following:

f(g(x)) =
⎧⎨⎩1 if g(x) ≥ θ

0 if g(x) < θ

Parameter θ is the so-called threshold. When an output of the neuron is equal to
1 it is said the neuron fires.

This model had several limitations, most notably the fact that both inputs
and outputs were boolean variables, thresholding parameter had to be set by
hand, and that this kind of neuron was only able to represent linearly separable
functions (so for example, XOR function could not be represented by this kind
of neuron).

In 1958—after McColluch’s work—Frank Rosenblatt [19] introduced a new
and improved model that was called the classical perceptron model. Rosenblatt’s
model can be thought of as the simplest model of a contemporary neural network.
The classical perceptron model is a generalization of the McColluch neuron model

2Using term “activation” for a simple McCulloch’s neuron may seem excessive, but actually
the function for computing an output of the McCulloch’s neuron can be implemented using
hard limit function as an activation.

8



and it brought several improvements which have remained present in neural net-
works to this day. The main improvements are the introduction of numerical
weights for inputs and a mechanism for learning these weights. Also, the in-
puts are no longer restricted to boolean values. The schematics of the classical
perceptron model are shown in Figure 1.2.

...

x1

x2

xn-1

xn

w
1

w
2

wn-1

wn

x0=1

b

yfg

Figure 1.2: Schematics of Rosenblatt’s classical perceptron model.

In Figure 1.2, the components of the model (g, f , x and y) have the same
meaning as in McCulloch’s neuron model. The only differences are the fact that
the inputs are no longer binary, weights were added to the connections and there
is a new term called bias b. The computation of the classical perceptron model can
be obtained as the following generalization of McCulloch’s neuron computation:
The aggregation function g is adjusted as follows:

g(x, w) =
n∑︂

i=1
xiwi

But now, instead of using f in the same way as it was done with McCulloch’s per-
ceptron, it is often convenient to get rid of the θ threshold by using the following
transformation:

f(g(x, w)) =
⎧⎨⎩1 if g(x, w) = ∑︁n

i=1 xiwi ≥ θ

0 if g(x, w) = ∑︁n
i=1 xiwi < θ

could be rewritten into the following equation:

f(g(x, w)) =
⎧⎨⎩1 if g(x, w) = ∑︁n

i=1 xiwi − θ ≥ 0
0 if g(x, w) = ∑︁n

i=1 xiwi − θ < 0

the −θ part could get replaced by b together with adding new weight w0 = 1 in
order to finally arrive at the following, more concise definition of f

f(g(x, w)) =
⎧⎨⎩1 if g(x, w) = ∑︁n

i=0 xiwi ≥ 0
0 if g(x, w) = ∑︁n

i=1 xiwi < 0

Although the classical perceptron model solves some issues of McCulloch’s
neuron model, others still remain present, for example, the classical perceptron
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model is only able to implement linearly separable functions. To remove this
constraint, two key concepts are needed, namely: the notion of layers and activa-
tion functions both of which will be discussed in the subsequent sections of this
chapter.

1.1.2 Organization of neurons
The neurons are typically organized into layers where a single layer means a
group of neurons. Neurons within a single group do not have any connections
within each other, but they are typically connected to neurons in the previous
layer and/or to the neurons in the next layer. This idea is illustrated in Figure
1.3. The signal is transmitted from the first layer (input layer) to the last layer
(output layer), the layers in between these two layers are called hidden layers.

...

(a) Input layer

...

...

...

...

ith layer i+1th layer

... ...

(b) Hidden layers

...

(c) Output layer

Figure 1.3: Organization of neurons in input, hidden, and output layers.

The left image in Figure 1.3 shows the organization of the input layer. Notice
that the neurons in this layer do not have any input connections going from the
left, but only output connection that is going to the next layers (to the right).

The middle image in Figure 1.3 shows how the neurons are organized in the
hidden layers. In each hidden layer, neurons are connected to some neurons from
the previous layer (which might be either the precedent hidden layer or an input
layer) and to some neurons from the next layer (which is either the next hidden
layer or an output layer).

Lastly, the right image in Figure 1.3 shows an organization of neurons within
the output layer, which is symmetrical to the input layer, i.e. there are no out-
put connections going from the neurons of this layer and instead, only input
connections are present (from the left).

1.1.3 Feedforward networks
Feedforward networks are a kind of neural network architecture where the units
and their connections form a directed acyclic graph. Feedforward networks typi-
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cally consists of a special kind of a layer called dense layer. As the name “dense”
says, the neurons in such a layer are densely connected, which means that a single
neuron is connected to all neurons from a previous layer (receiving the inputs)
and also to all neurons in the next layer (passing the outputs). This is illustrated
in the Figure 1.4.

...

...

Figure 1.4: Illustration of a dense layer.

Computation of the feedforward networks consisting of dense layers can be
written in the following, very concise way:

y = f(W x + b)
or simply

y = f(W x) if Wi,0 = 1 ∀ i ∧ xi = bi

Single-layer-perceptron

The simplest architecture of a neural network is called a single-layer perceptron.
This architecture does not contain any hidden layers, but only the input and
output layers. The architecture of a single-layer perceptron is depicted in Figure
1.5.

... ...

Figure 1.5: The architecture of a single-layer perceptron.

Notice that the architecture depicted in Figure 1.5 basically corresponds to
stacking multiple Rosenblatt’s classical perceptrons onto each other.
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The output of a single layer perceptron is computed in a way that the compu-
tation of output for Rosenblatt’s perceptron is performed for each output neuron
separately. Therefore the output will be a vector, where each output neuron cor-
responds to a single scalar component of that vector. The main drawback of a
single-layer perceptron is the fact that it can only learn linear functions.

Multi-layer perceptron

The idea of a single-layer perceptron can be improved and further generalized to
the so-called multi-layer perceptron, where there are one or more hidden layers in
between the input and output layer. Figure 1.6 shows an example of multi layer
perceptron.

...
...

...

...

...

...

...
...

hidden layer 1 hidden layer 2 hidden layer m

Figure 1.6: The architecture of a multi-layer perceptron.

Multi-layer perceptron is capable of learning non-linear functions (i.e. XOR
problem can be solved), but there is one more thing needed for gaining this
ability—non-linear activation [20]. There exists various kinds of activation func-
tions, a few most frequently used activation functions are the following: ReLU ,
tanh, sigmoid. Activation function can also be applied to the output layer,
frequently this is done with for example sigmoid or softmax functions. The
definitions of the aforementioned activation functions are following:

ReLU: max(0, x) (1.1)
tanh: tanh(x) (1.2)

sigmoid: σ(x) = 1
1 + e−x

(1.3)

The ReLU , tanh and sigmoid activation functions are shown in Figure 1.7.
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Figure 1.7: Plot of a ReLU , tanh and sigmoid activation functions.

1.1.4 Function approximation
Another way to look at artificial neural networks is from a function approxi-
mation point of view. When looking from this perspective, the main goal of a
(feedforward) network is to approximate a function y = f ∗(x) that maps an input
x to an output y. The network defines a mapping ŷ = f(x; θ) where θ are the
parameters that the network tries to learn in such a way that the resulting func-
tion is the best function approximation of f ∗(x). When the network has several
layers, each layer describes a function and the resulting function represented by
the whole network is a composition of these functions, i.e.:

y = f (m)(f (m−1)(. . . f (2)(f (1)(x)))) (1.4)

with f (1) corresponding to the first layer, f (2) corresponding to the second layer,
and so on all the way up to the f (m) which corresponds to the mth layer.

One of the main theoretical results about multi-layer feedforward networks
is called Universal Approximation theorem [21] which can be formulated in the
following way [22]:

Theorem 1. Let f(x) be a nonconstant, bounding and nondecreasing contiunous
function. Then for any ϵ > 0 and any continuous function f ∗ on [0, 1]m there
exists an N ∈ N, vi ∈ R, bi ∈ R and wi ∈ Rm such that if we denote

F (x) =
N∑︂

i=1
vif(wi · x + bi)

then for ∀x ∈ [0, 1]m :
|F (x)− f ∗(x)| < ϵ

Roughly speaking, this theorem says that any multi-layer neural network with
at least a single hidden layer has enough power to approximate arbitrary contin-
uous function f ∗ to a desired degree of accuracy (specified by ϵ) assuming that it
uses activation function f that satisfied all the abovementioned conditions. More
rigorous explanation including formal proofs can be seen in [21].

More generally, this theorem was also proven for some of the unbounded
activation functions [23] e.g. for ReLU .
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1.1.5 Learning and backpropagation
As it was already mentioned above in Section 1.1, learning means the adaptation
of the weights of the neural network. During the training of a network, the
network weights θ are adjusted so that the function approximation f(x; θ) better
matches the function f ∗. At the beginning of the training, the weights of the
network are typically initialized to random values [24].

In order to be able to adjust the weights so that the function approximation
f(x; θ) “gets closer” to the function, f ∗ some function measuring the quality of the
current approximation is needed. This function is called loss function, sometimes
also called objective function or cost function (although in some special contexts
these two terms might have a slightly different meaning). The goal of the learning
process then can be formulated as minimizing the loss function on the training
data with respect to the input.

The per-sample loss function is denoted as L(f(x, θ), y), but instead of work-
ing on the per-sample basis, the loss function gets aggregated (typically averaged)
over a training dataset as follows:

J(θ) = E(x,y) p̂data
L(f(x; θ), y)

Examples of the commonly used loss functions are:

Mean squared error MSE(y, ŷ) = 1
m

m∑︂
i=1

(ŷi − yi)

Kullback-Leibler divergence DKL(p||q) =
∑︂
x∈X

p(x)log(p(x)
q(x))

Cross-Entropy H(p, q) = Ep[log q]
where p, q are compared distributions (typically data distribution and model dis-
tribution in the context of neural networks). The X in the definition of Kullback-
Leibler divergence corresponds to a probability space over which the distributions
p and q are defined.

Because the loss function should be minimized, a natural way to do it is to
adjust the parameters θ in the direction opposite to the direction of the gradient.
The direction of the gradient corresponds to a direction of the steepest ascent,
therefore the opposite direction corresponds to the direction of steepest descent—
so-called gradient descent. This leads to the following formula:

θ ← θ − α∇θJ(θ) (1.5)
Notice that there is an additional parameter α which is called learning rate

and it specifies the length of the step in the given direction. This update is
performed iteratively and it stops once a local minimum is reached. Beware of
the word “local”, this specifically means that the algorithm is not guaranteed to
reach the global minimum of the loss function.

It is a common practice to adaptively modify the learning rate during training
(typically decrease it) in order to gain faster convergence and better training sta-
bility. There are several schemes for adaptive learning rate decay, e.g. exponential
learning rate decay [25].

Generally, there are three variants [26] of gradient descent that differ in a way
of computing J(θ):
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1. Regular (or vanilla) Gradient Descent—Use all the data to compute it.

2. Stochastic Gradient Descent—Estimate the expectation inside the defini-
tion of J(θ) by a single example that is randomly sampled from the training
data.

3. Minibatch Stochastic Gradient Descent—which stands between the above
two variants and estimates the expectation using a batch of m random
independent examples from the training data.

A common way to compute the gradient in an efficient manner is by us-
ing a backpropagation algorithm. Roughly speaking, backpropagation works by
computing the derivatives (needed for the gradient) by propagating information
through a network in a backward direction. A more detailed description will be
given in the rest of this section.

From a high-level perspective, the learning procedure can then be described
using two phases: forward pass and backward pass. During forward pass, the
output of the network given the input data is computed allowing to compute
the loss function (parameters are kept fixed while forward pass continues). Then
comes the backward pass which is responsible for computing the gradient of the
loss function by going from the last layer (output) back towards the first layer
(input). Derivatives with respect to each weight are calculated by the chain rule,
but this approach is more effective than a naive chain rule because redundant
calculations are skipped thanks to the fact that the algorithm goes backward and
derivatives at each level (layer) only depend on the derivatives from previous,
already computed layers. To illustrate the whole process, it is useful to introduce
the notation depicted in the Figure 1.8

...

...

hidden layer i

ini,1 outi,1

ini,j outi,j

ini,n outi,n

ini outi

Figure 1.8: Notation for representation of neuron input and output.

In Figure 1.8 the jth neuron in ith layer has its weighted input denoted as
ini,j and its output is denoted by outi,j. A collection of these inputs and outputs
for the whole layer are then denoted by ini and outj respectively. The relation
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between inputs and outputs is following: outi = activation(ini). The weighted
inputs are ini = W (i)x where the x is either the output of the previous layer
outi−1 or input to the whole network (this depends on value of i) and W (i) are
the weights between layers i and i− 1 which can be specified by matrix:

W (i) =

⎡⎢⎣wi
1,1 . . . wi

1,n

. . . . . . . . .
wi

n,1 . . . wi
n,n

⎤⎥⎦
where wi

jk is a weight between kth node in the i− 1th layer and jth node in the
ith layer as depicted in Figure 1.9.

...

...

...

...

hidden layer i - 1 hidden layer i

Figure 1.9: Notation for representation of neuron weights.

After introducing the notation for a concise representation of the network
computation and giving a high-level overview of the backpropagation, it is now
the right place to provide a more in-depth explanation. Keep in mind that the
goal of backpropagation is to compute a gradient of the loss function and this
can be achieved by computing partial derivatives of the loss with respect to the
network’s inputs.

First notice, that by using an equation 1.4 the forward pass, i.e. the computa-
tion of the output of the network could be written in the following way (assuming
that the bias term is hidden inside the weights W ):

ŷ = f (m)(W (m)f (m−1)(W (m−1) . . . f (2)W (2)(f (1)(W (1)x))))

This calculation of ŷ is done by evaluating the network from left to right (i.e.
from layer 1 all the way to the last layer m).

Furthermore, assume that the loss function is denoted as L(y, ŷ), then the
derivative of the loss function with respect to the inputs can then be obtained by
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using the chain rule as follows:

∂L

∂x
= ∂L

∂outm

· ∂outm

∂inm

· inm

outm−1
· · · · · out1

in1
· in1

x

Rewriting this expression back into the original notation yields the following
formula:

∂L

∂x
= ∂L

∂outm

· (f (m))′ ·W (m) · (f (m−1))′ ·W (m−1) · · · · · (f (1))′ ·W (1)

The backward pass then corresponds to incremental evaluation of this expression
from the left to right computing the gradient at each layer—actually, there is
one more multiplication needed in order to obtain gradient with respect to the
weights.

Denoting δi = ∂L
∂outm

(f (m))′ ·W (m) · (f (m−1))′ ·W (m−1) · · · · · (f (i+1))′ ·W (i+1) ·
(f (i))′ allows the gradient of the ith layer’s weights to be computed as:

∇W iL = δi(outi−1)T

and δi can be calculated recursively as:

δi−1 = (f (i−1))′ · (W i)T · δi

Hereby leading towards a more efficient computation that naively computing
each δi from scratch without using the knowledge obtained during computation
of δi−1.

To conclude, it should be emphasized that the backpropagation algorithm is
not guaranteed to find a global optimum, because it could get stuck in a local
optimum as was already mentioned at the beginning of this section. However,
for many practical problems, this is not a major issue [27]. There exist several
variants and improvements of the simple SGD algorithm (the one using the update
from equation 1.5) that were proposed with an intention of obtaining an algorithm
with better properties (most importantly, better stability and/or convergence
speed), for example, Adam [28], RMSProp [29], etc.3

1.1.6 Regularization
As usual for machine learning methods, neural networks are also prone to over-
fitting and there exist several regularization techniques that try to combat over-
fitting.

Frequently used regularization techniques include the following:

• L1, L2 regularization4.

• Dataset augmentation

• Dropout

3Other variations of the update step can be found in [30].
4These techniques are frequently used in classical machine learning scenarios so their de-

scription is omitted and can be found in [17].
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L1, L2 regularizations are a sort of classical techniques that are also fre-
quently used in standard machine learning (even when no deep neural networks
are used) where they are commonly used in the context of ridge regression and
lasso regression. Roughly speaking, these regularizations works by adding a model
complexity penalty term to a loss function and the difference between L1 and L2
is in the way what the penalty looks like. An exact definition and more details
about these regularizations can be found in [31]. Note that in the context of deep
learning, these regularizations are commonly called weight decay.

Dataset augmentation combats overfitting by enlarging the training dataset
with slightly modified versions of the original examples. In the domain of image
processing, this means performing some processing/modification of the images,
for example, horizontal flipping, rotations, translations, etc. Some image aug-
mentations are shown in Figures 1.10 and 1.11.

Figure 1.10: Illustration of random cropping augmentation. This image was taken
from: [32].

Figure 1.11: Illustration of random brightness augmentation. This image was
taken from: [32].

Figure 1.10 shows how an image can be augmented by taking a random crop.
Figure 1.11 then shows how an image can be augmented by randomly changing
its brightness. In both figures, the image on the left shows the original image and
the image on the right corresponds to an output image.

Dropout [33] is another frequently used regularization technique and it can
be applied to a layer of neurons. When the dropout is applied, each neuron is
dropped independently with a probability of p. It is usually implemented in such
a way that for the rest of the network, these dropped neurons seem to have a
value of 0.
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1.2 Deep neural networks
Deep neural networks take the idea of the “classical” artificial neural networks
even further, by stacking several layers onto each other in the hope of a more
powerful model. However, this comes at some price, because several new problems
arise when multiple layers are being stacked (for example, vanishing and exploding
gradients [34] [35]).

Deep learning methods have various real-world applications, like image pro-
cessing, speech recognition, creation of transcripts, etc. and almost all of the
state-of-the-art models in all these applications are using very deep5 neural net-
works.

1.2.1 Convolutional networks
Convolutional neural networks (CNNs) are a kind of neural network that is useful
for dealing with data that has some underlying structure. As their name says,
convolutional neural networks are using an operation called convolution.

Assume two functions x and w then the convolution x ∗ w is defined as:

(x ∗ w)(t) =
∫︂

x(a)w(t− a)da

where x is the input (a function of a single parameter), t is the so-called time
index, w is a weighting function (t − a represents the age of the input) and the
output is often referred to as a feature map. The weighting function is frequently
called kernel or filter. Convolution is commutative, therefore it can be written
as:

(w ∗ x)(t) =
∫︂

x(t− a)w(a)da

When t is discrete then this operation is called discrete convolution and it can be
written in the following way:

(w ∗ x)(t) =
∞∑︂

a=−∞
x(t− a)w(a)

Discrete convolution can be generalized into two dimensions as follows:

(K ∗ I)i,j =
∑︂
m

∑︂
n

Ii−m,j−nKm,n

where K is the two-dimensional kernel (with size m × n) and I is the two-
dimensional input.

However, deep learning libraries often implement a slightly different operation
[31]—cross-correlation—and call it convolution. The cross-correlation is defined
in the following way:

(K ⋆ I)i,j =
∑︂
m

∑︂
n

Ii+m,j+nKm,n (1.6)

In this thesis, cross-correlation is referred to as a convolution as it is often the
case in the context of convolutional neural networks.

5Meaning they contain a large number of layers.
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Convolutions help to achieve the following three properties6: parameter shar-
ing, local interactions and shift-invariance which is something that is not achiev-
able by the fully connected layers.

Convolutional neural networks are frequently used for processing images, if
that is the case, the input image has C (input) channels and the convolutional
layer is parametrized by a kernel K of a total size H × W × C × F where F
is the number of output channels. Often it is useful to consider only every Sth
pixel of the input7 which can be achieved by using a convolution with a stride
S8. Another way of thinking about stride is the number of “cells” or pixels for
which the kernel or sliding window is moved over the input. The default value
for stride is S = 1. Furthermore, the equation (1.6) can be written in an even
more general way as:

(K ⋆ I)i,j,o =
∑︂
m

∑︂
n

∑︂
c

Ii·S+m,j·S+n,cKm,n,c,o

where c is the number of input channels and o is the number of output channels.
When applying a convolution with a filter to a given input image, there is

a problem of handling the convolution operation at the borders of the images.
These problems are solved by adding padding, and the two, most commonly used
padding schemas are:

• Valid: does not pad the data, this causes the spatial dimension to reduce
after performing the convolution.

• Same: pads the input with 0 values in such a way that the spatial reso-
lution after performing convolution is the same as before performing the
convolution.

Valid padding and same padding are illustrated in Figures 1.12 and 1.13 re-
spectively.
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Figure 1.12: Valid padding illustration.
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Figure 1.13: Same padding illustration.

Figure 1.12 shows usage of a valid padding, with a kernel of size 3 × 3 over
input of size 5 × 5 with stride S = 1. Notice that the spatial resolution of the
output is smaller than that of the input which is not a case for the same padding
from Figure 1.13 which preserves spatial dimensions of the output.

6These properties and the main motivation for convolutional neural networks are nicely
described in [31].

7There are various reasons why it is useful, e.g. performance/memory improvement.
8Using stride S > 1 causes the spatial resolution of the output to be smaller than that of

the input.
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Another operation that is frequently used in convolutional neural networks
is called pooling and it replaces the output of a previous layer with summary
statistics of the neighboring cells or units. Especially this means, that it performs
downsampling of its input to produce an output with smaller spatial dimensions.
The two most popular pooling layers/operations are max pooling and average
pooling where the cells are replaced by their maximum and average respectively.
Max pooling and average pooling with a pool size m = 2 and stride S = 2 are
shown in Figures 1.14 and 1.15 respectively.
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Figure 1.14: Max pooling operation.
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Figure 1.15: Average pooling operation.

Figures 1.14 and 1.15 illustrates a 2D version of a pooling operation, but it
should be mentioned that the pooling operation can also be generalized into dif-
ferent dimensionalities than 2D (1D or 3D). There is yet another frequently used
operation—a special case of pooling—called global pooling [36] which downsam-
ples the whole input into a single value.

An example of CNN architecture is shown in Figure 1.16.

Figure 1.16: The architecture of a typical CNN (in this case VGG 16). This
image was taken from [37].

Figure 1.16 illustrates the architecture of VGG 16 network [38] which is com-
monly used for image recognition or as a feature extractor. On the left of this
figure, there is an input image with dimensions 224 × 224 × 3 which is used as
the input to the network. The network itself starts with a series of convolutional
layers interleaved with max-pooling layers. When the input is passed through
these layers, its spatial dimensions are decreased while the number of channels
increases. The network ends with a series of fully connected layers with a ReLU
activation function followed by a softmax (classification) layer.
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1.2.2 Feature pyramid networks

Feature pyramid networks [39] or simply feature pyramids is an architecture that
allows extracting features at various levels of detail (i.e. resulting in multi-scale
feature maps). Motivation is that using several feature maps with varying levels of
detail should result in better network performance (this property will be later used
for the final encoder model in Section 3.4). These networks are frequently used
in object detection, but a similar principle can be applied for feature extraction
in a more general sense. The architecture of a feature pyramid network is shown
in Figure 1.17.

predict

predict

predict
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2x upsample

1x1 conv

c3

c4

c5

p3

p4

p5

predict

predict

p6

p7

p5'

p4'

p3'

Figure 1.17: The architecture of a typical feature pyramid network.

As illustrated in Figure 1.17, the feature pyramid network take an image on
its input, perform several downsampling convolutions (their outputs are denoted
as c3, c4, c5 in the figure) during a bottom-up pathway. Then the c3, c4, and
c5 are passed through a 1 × 1 convolution (in order to change the number of
channels) to obtain p3’, p4’, p5’ respectively. During a top-down pathway, p5
is taken, upsampled, and then “merged” with p4’ to obtain p4. The merge is
typically performed using addition or concatenation. This process continues all
the way to the bottom where p3 is produced. “The top-down pathway hallucinates
higher resolution features by performing a 2x upsampling of spatially coarser but
otherwise semantically stronger feature maps.” [39]. Later, these features are
enhanced with features from the bottom-up pathway via merging (the merge
connection is also called lateral connection.
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1.3 Generative adversarial networks
There are several widely used generative models that are frequently used for
image generation. The two that are most frequently used and that bring the
best results are generative adversarial networks (GAN) [40] and variational au-
toencoders [41]. This section is concerned with a description of GANs, while
variational autoencoders will be described later, in sub-section 1.4.1.

GAN is an architecture or a model that consists of two components — gen-
erator G and discriminator D — that are competing (in an adversarial manner)
with each other in a zero-sum game. The main purpose of GANs is to use them
as a generative model, where for a given training dataset, the GAN generates
new data with the same statistics (from the same distribution) as the training
dataset. GANs are frequently used to generate images and this is a scenario that
is assumed in the rest of this section.

The generator component is given a “seed” (called latent vector z) and then it
syntheses or generates an image from it, i.e. given z ∼ P (z), generator G(z; θg)
generates data x. The discriminator D(x; θd) takes an image x and predicts the
probability of whether this image is real or fake (generated by the generator).
The generator is trained indirectly through the discriminator – it tries to fool
the discriminator – this fact enables the model to be learned in an unsupervised
manner (training the discriminator is easy because it is known which image was
generated by the generator and which is taken from the input dataset).

The GAN architecture is depicted in Figure 1.18.

Train
dataset

Sample

SampleG

D

z

Figure 1.18: Illustration of GAN architecture.

The original loss of the GAN is the following:

L(D, G) = Ex∼Pdata
[logD(x, θd)] + Ez∼P (z)[log(1−D(G(z, θg), θd)]

And it is optimized by playing the following game:

min
G

max
D

L(D, G)

Generator and discriminator are being trained alternately, the generator by:

arg min
θg

Ez∼P (z)[log(1−D(G(z))]

i.e., trying to fool the discriminator to think that the generated data is real. And
the discriminator by:

arg max
θd

Ex∼Pdata
[log(D(x)] + Ez∼P (z)[log(1−D(G(z)))]
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These loss functions are the ones used in the original GAN [40] and since then,
there were quite a few variants of loss functions for training GANs, for example,
the loss used in Wasserstein GAN [42].

Training of the GANs is very fragile and there are several issues with training
of the GANs (mode collapse, unstable training, divergence, etc.) all of them are
described in Section 1.3.1. Moreover, when the GANs were introduced, there
were several limitations to them, for example, initial GAN models were not able
to generate images with higher resolutions (they were typically generating images
with a very small resolution, something like 16 × 16 or 32 × 32 and the overall
quality of the generated images was not very impressive).

1.3.1 Problems of GAN models
Training GAN models is not easy and there are various problems (although some
of them are either solved or at least mitigated in the state-of-the-art models) that
are happening frequently. One of these problems is training instability which
stems from the nature of training GAN. For example, when the discriminator is
much better than the generator, it prevents the generator from learning anything
because it always detects that the image is fake. The training instability is further
magnified by the limited GPU memory which typically leads to the usage of very
small batch sizes (using batch sizes of 8 or 16 is not uncommon for large GAN
models). The training instability frequently causes the training to diverge in such
a way that the model generates only noise, black color, or some other kind of a
mess. There were several attempts to improve GAN convergence to the date [43]
[44].

A big challenge of GAN models is a generation of high-quality images because
when the resolution is large, the discriminator can easily spot that the image is
fake based on some very detailed flaws in the image.

Another problem related to GAN models is called mode collapse [45] which
means that the generator does not generate outputs that are diverse enough.
This typically means that the generator output space is very little, often contain-
ing only several same or highly similar images. The result of a mode collapsed
generator is shown in Figures 1.19 and 1.20.

Figure 1.19: Illustration of progressive growing, together with a few samples
generated by Progressive GAN. This image was taken from [45].

Figure 1.19 considers a case of a GAN trained on a dataset with a 2D mix-
ture of Gaussians and it shows heatmaps of generator distributions (at different
training steps) and the final column shows the data distribution. See that the
generator simply rotates over the modes of the data distribution, it never con-
verges to a fixed distribution and moreover, it assigns a significant probability to
only a single sample.

Figure 1.20 presents a typical mode collapse scenario where the GAN is able
to generate only a single sample.
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Figure 1.20: Outputs of a GAN trained on MNIST dataset that generates only a
single character. This image was taken from [45].

1.3.2 Vector manipulation
An interesting property of GANs is that that they allow—at least to some
extent—to perform meaningful linear interpolations and/or vector arithmetics
in the latent space. These operations, together with a more general task of latent
space exploration will be referred to as vector manipulations. Ideally, these ma-
nipulations of a latent vector should lead to a meaningful change of the generated
image. For example, assume a latent vector z that generates image x which de-
picts a female with brown hair, and suppose that we would like to find an image
x′ that would depict the same person but now with blonde hair. This problem
could be formulated as a finding of a ż = f(z) such that G(ż) = x′ where f is a
function representing latent vector manipulation.

Vector interpolation

Suppose two latent vectors z1, z2 then their linear interpolation is defined as
z̃ = (1− t)z1 + tz2 where t ∈ [0, 1]. An example of latent interpolation is shown
in Figure 1.21

Figure 1.21: Illustration of latent vector interpolations and their effect on the
generated images. This image was taken from [46].
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Latent space exploration

Sometimes it might be interesting to observe the neighborhood of a latent vector
within the latent space. This operation could be called latent space exploration
and it could be performed by slightly moving a latent vector z in a given direction
to produce a new latent vector ẑ. As an example of usage of this operation,
consider an image of a person (e.g., the suspect in the context of police lineup
construction), then the goal of this operation might be to find a new latent vector
that will generate a similar person (e.g., one filler) but with a slightly different
face.

Vector arithmetic

Vector arithmetic then typically refer to queries of type:

smiling woman − neutral woman + neutral man = smiling man

An example of vector arithmetics is shown in Figure 1.22.

Figure 1.22: Illustration of latent vector arithmetics and their effect on the gen-
erated images. This image was taken from [46].

The following example scenario presents the usage of vector arithmetic that
is more relevant for the topic of this thesis. Assume that there is an image of
suspect x and that the suspect has some rare combination of facial features, e.g. a
face tattoo together with green hair. In that case, it would be extremely difficult
to find appropriate fillers but the vector arithmetic could help there. Assume,
that there are images of people having green hair and images of people having
a face tattoo (but not both). Then a query similar to the following could be
constructed:

green hair + face tattoo = green hair and face tattoo

hopefully allowing to generate an appropriate filler image.
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Problems of vector manipulation

Although the vector arithmetic queries above may seem intuitive and the results
presented in this section so far may seem impressive, it is not always easy to
produce results of similar quality. Generally, there two major issues related to
vector manipulations: feature entanglement and features that are not general.

Feature entangelement means that when a latent vector is changed in some
direction, more than only one attribute in question changes. Consider the ar-
tificial example from the first paragraph of this section where to goal was to
generate an image of the blonde hair woman that looks otherwise the same as the
brown-haired woman. If the features were entangled, then there would be more
attributes apart from the hair color that would have changed.

Non-general features refer to a problem that the learned features are not
universal enough and they are not generally applicable. For example, someone
might find a direction that seems to affect the age of the generated person, but
it may easily happen, then given a different latent vector, this direction will have
a very different meaning than a change of the age.

1.3.3 Progressive GAN
Progressive GAN [47] can be considered as a milestone in GAN models because
was one of the first models that allowed to generate high-resolution images and
therefore overcame one of the big issues or weakness of early GAN models which
were only capable of generating low-resolution images.

The key concepts and characteristics of the Progressive GAN are following:

• During training, the number of layers is increased incrementally.

• Both generator and discriminator have similar architecture, they start from
a resolution of 4× 4 and continue all the way up to the 1024× 1024.

• During training, new layers are added to both generator and discriminator.

• Incremental increasing of the layers allows the models to first discover and
learn the large-scale (coarse) structure of the image distribution and then
continually move the attention to lower-scale, finer details.

• When a new layer is added, the “fade-in” phase is performed so that the
already trained layers are not “shocked” by the change.

The essence of progressive learning is the fact that the scales are learned
incrementally instead of learning all of them simultaneously which seems to bring
several benefits. One of these benefits is the fact that the generation of smaller
images is significantly more stable because there is less class information and
fewer modes [48]. Another benefit is reduced training time because most of the
training iterations are done at lower spatial resolutions.

The progressive growing together with several images generated by the Pro-
gressive GAN are shown in Figure 1.23.
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Figure 1.23: Illustration of progressive growing, together with a few samples
generated by Progressive GAN. This image was taken from [47].

The left side of Figure 1.23 illustrates the progressive growing of the generator
and discriminator networks. The N ×N boxes shown in the picture correspond
to convolutional layers operating on images with a spatial resolution of N × N
pixels. Notice that both networks start with a spatial resolution of 4 × 4 pixels
and they keep increasing the spatial resolution (by adding new layers to both
networks) as the training process progresses until ending up with a final resolution
of 1024×1024 pixels. Note that all the existing layers remain trainable throughout
the whole process. The right side of this figure shows several sample images that
were generated using Progressive GAN.

Figure 1.24 shows several images that illustrate how the quality of GAN mod-
els has evolved.

Figure 1.24: Evolution of quality of GAN-generated images in time. This image
was taken from [49].

In Figure 1.24 the right-most image was generated by the Progressive GAN
and the remaining images were generated by other, older models. Notice the huge
difference in the overall quality of the images and also in the resolution of the
individual images.

1.3.4 StyleGAN
StyleGAN [50] is built on Progressive GAN and it introduces an alternative gener-
ator architecture for GANs which allows for automatically learned, unsupervised
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separation of high-level attributes (pose, identity) and stochastic variation (mi-
nor facial attributes, for example, freckles) in the generated images. Additionally,
StyleGAN also enables scale-specific control of the synthesis. Another, very im-
portant enhancement introduced by this architecture is that it leads to better
interpolation properties and feature disentanglement.

Better feature disentanglement is achieved by introducing the so-called map-
ping network through which the latent vector z is passed before feeding it through
the generator itself. The mapping network consists of several dense layers (au-
thors use 8) and it represents a non-linear function f : Z → W. Vectors w ∈W
are often referred to as the style vectors. Other details are not that important for
this thesis and if needed, they could be found in the original article [50].

The style vector w is transformed and incorporated into every generator’s
block using a so-called adaptive instance normalization (denoted as AdaIN ).
Adaptive instance normalization performs scaling or normalization of the feature
map to a standard normal distribution N(0, 1) and then adds the style vector as
a bias term. It should be mentioned that the addition of the mapping network
resulted in a slight change in the naming convention because the actual generator
is now frequently called a synthesis network and the term generator now refers
to a whole generator as such, including mapping network and synthesis network.

AdaIN operation is defined as follows:

AdaIN(xi, y) = ys,i
xi − µxi

σxi

+ yb,i

where yi = (ysi
, yb,i) = f(w) and f represents a learned affine transformation

(dense layer with a linear activation) and yi are the styles.
StyleGAN architecture is shown in Figure 1.25.

Figure 1.25: The architecture of the StyleGAN network. [50].
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Figure 1.25 presents an architecture of the StyleGAN network, more specif-
ically, of the StyleGAN’s generator, because the discriminator is fairly similar
to the standard discriminator. Notice the mapping network in the left of the
figure which takes the latent vector and processes it to produce vector w ∈ W .
This intermediate vector w then controls the generator through the AdaIN op-
eration [50] at each convolutional layer. The “A” boxes correspond to learned
affine transformation which is just some dense layer with linear activation as
it was already described above. Furthermore, the box B applies learned per-
channel scaling factors to the noise inputs [50]. The mapping network consists of
8 dense (fully connected) layers and the synthesis network which is shown in the
right part of the figure consists of 9 blocks (one block for each of the resolutions
4 × 4, . . . , 1024 × 1024 and each block consists of 2 layers (so each block gets 2
style vectors).

Issues of the StyleGAN

Even though StyleGAN produces high-resolution images of remarkable quality,
after analyzing its outputs thoroughly, the authors of StyleGAN have found sev-
eral issues in the generated images.

One of the issues with images generated by the StyleGAN models is that
they often contain the so-called water droplet-like artifacts. These artifacts are
illustrated in Figure 1.26. It was hypothesized that these artifacts are caused by
the usage of AdaIN operation and it was shown that removal of this operation
lets the droplet artifacts disappear.

Figure 1.26: Presence of a water-droplet effect in the images generated by Style-
GAN. This image was taken from [51].

Another issue is the presence of “phase” artifacts in the generated images as
illustrated in Figure 1.27.

Figure 1.27: Presence of phase artifacts in the images generated by StyleGAN.
This image was taken from [51].
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In Figure 1.27, notice the position of teeth in the image, which remains the
same even though the pose of the face changes.

Authors of StyleGAN believe that these artifacts are caused by progressive
growing [51] because it causes the generator to have a strong location preference
for details (at which that detail is placed, even when the rest of the image moves).

1.3.5 StyleGAN2
The issues that were described in subsection 1.3.4 has led to a new architecture,
called StyleGAN29 [51] which is another GAN model that builds on StyleGAN
and it tries to solve these StyleGAN issues.

The important difference from a StyleGAN are removal of a progressive grow-
ing in a hope of reducing the phase artifacts and removal of the adaIN in order
to get rid of the water droplet effect. There were a few more improvements and
they are all described in the rest of this section.

Overall, the improvements of the StyleGAN2 architecture are the following:

• Weight demodulation
• Lazy regularization
• Path length regularization
• No growing, new generator and discriminator architectures

Weight demodulation

StyleGAN2 uses a slightly different structure of a synthesis network than that
which was used in the original StyleGAN. The change consists of replacing the
AdaIN with a weight demodulation operation. It was shown that the AdaIN
operation can be divided into two operations: modulation and normalization.
Authors later show that the style block consists of modulation convolution and
normalization and also that the modulation could be implemented in an alterna-
tive way by scaling convolution weights as follows:

w
′

ijk = si · wijk

where w and w
′ are original and modulated weights, respectively, si is the scale

corresponding to the ith input feature map. Similarly, the normalization could
also be written differently by baking scaling into convolutional weights. The
resulting equation looks in the following way:

wijk” =
w′

ijk√︂∑︁
i,j w

′2
ijk + ϵ

These adjustments result in the simplification of a style block so that the whole
style block is baken into a single convolution layer whose weights are modified
based on scale s. These changes are illustrated in Figure 1.28.

9Starting from the next Chapter 2, StyleGAN2 will be frequently referred to as just Style-
GAN.
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Figure 1.28: Evolution of the synthesis network’s structure. This image was taken
from [51].

Figure 1.28 shows how did the synthesis network evolve from the original
StyleGAN to the new StyleGAN2. Part a) shows the original structure of the
StyleGAN synthesis network, part b) shows the same structure, but zoomed in
to greater detail (with AdaIN operation split into explicit normalization followed
by modulation). Part c) removes some redundant operations, moves the addition
of B outside the style block, and also modifies only the standard deviation per
feature map. Finally, d) shows the new architecture that allows the AdaIN opera-
tion to be replaced by demodulation which could be applied to weights associated
with each convolutional layer [51].

Lazy regularization

StyleGAN and other GAN models typically utilize regularization during training
and they do it in such a way that the regularization term is included directly in the
computation of the loss function. However, it turns out, that this is not necessary
and that the regularization can be computed less frequently (every k iterations)
without harming the performance thus significantly reducing the computational
cost. In StyleGAN2, it was proposed to perform regularization only once every
16 mini-batches.

Path length regularization

Perceptual path length was introduced with the original StyleGAN [50] and it was
originally intended as a metric for quantification of latent space entanglement,
i.e. to measure how a small change in latent space affects the generated image.
Perceptual length of an arbitrary interpolation path can be computed by dividing
this path into n linear segments and then taking a limit (for n → ∞) of a sum
of perceptual differences over individual segments. The perceptual difference of
a single segment is calculated by using image distance metric d. In practice,
the subdivision into n → ∞ segments is not feasible therefore the authors of
StyleGAN do an approximation by subdividing the path into very small segments
(ϵ = 10−4). The average PPL over in the latent space Z, average over all possible
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endpoints is then defined as:

lZ = E[ 1
ϵ2 d(G(slerp(z1, z2; t)), G(slerp(z1, z2; t + ϵ)))]

where G is the generator, z1, z2 are latent vectors, d is image distance metric and
t ∼ U(0, 1). Note that slerp stands for spherical linear interpolation [52]. PPL
forW space can be obtained similarly, by replacing z1, z2 by mappingnetwork(z1),
mappingnetwork(z2) and replacing slerp with lerp [50].

Although it may not be clear at a first glance, the authors observe a correlation
between perceived image quality and PPL [50]. According to [51] it seems that
images with lower PPL have a better overall quality than those with high PPL.
With this observation in mind, the PPL can be considered as one of the metrics
that could be used for comparing the overall quality of the generated images10.

Because of the abovementioned property, it is desired to generate low PPL
images, but encouraging the generator to generate minimal PPL is not a good
way to achieve this goal, because this would lead the generator to produce degen-
erated images. Instead, the same goal could be achieved by making the generator
smoother, meaning that a small change within a latent space should result in a
small change in generated image (actually this corresponds to minimizing PPL).
More specifically, there was an intention to modify the generator in such a way
that a fixed-size step in W results in a non-zero, fixed-magnitude change in the
generated image [51] and this was achieved by introducing the following path
length regularizer11:

Ew,y∼N (0,I)(∥JT
wy∥2 − a)2

Where y are random images with pixel intensities distributed according to
N (0, I), w = f(z), w ∈ W , z ∼ N , JwT y = ∇w(g(w) · y) and a is exponential
moving average of the lengths ∥JT

wy∥2.
The idea is, roughly speaking, that corresponding w ∈ W gradients should

have close to an equal length regardless of w or the direction, which indicates
that the mapping from latent space to image space is not ill-conditioned. Detailed
description could be found in the original paper [51].

No growing, new generator and discriminator architectures

StyleGAN was using progressive growing with a simple feedforward design in the
generator and discriminator, but some of the recent studies were dedicated to
finding a better architecture. As such, authors of the StyleGAN2 also decided to
search for a better architecture that would still be able to produce high-resolution,
high-quality images but now without a need of progressive growth.

The two most promising GAN architectures without progressive growing that
the authors of StyleGAN2 evaluated were skip connections [55][56] and residual
networks [57][58]. These new architectures are shown in Figure 1.29.

10There are several other frequently used metrics that are used for the same case, for example,
FID [53] or LPIPS [54]

11This calculation increased computational time so that was the reason for introducing lazy
regularization that was described in sub-section 1.3.5
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Figure 1.29: New architectures for generator and discriminator networks. This
image was taken from [51].

Figure 1.29 shows new architectures for the generator and discriminator net-
works. The architectures in the first row correspond to the generator while the
architectures in the second row correspond to the discriminator. The architec-
tures that were eventually used in the final model are highlighted in green color.
Up and Down correspond to bilinear upsampling and downsampling respectively.
tRGB and fRGB denote conversions from high-dimensional per-pixel data to
RGB data and vice versa. The part (a) of Figure 1.29 shows the architecture of
MSG-GAN [56] which works so that it allows the discriminator to look not just at
the final output (with the highest resolution) but also on the intermediate, lower
resolution results. This is achieved by connecting the generator and discrimina-
tor by using several skip connections. In part (b), the generator’s architecture
is simplified by upsampling and summing the RGB contributions corresponding
to different resolutions (similarly for the discriminator which performs downsam-
pling instead of upsampling). Part (c) shows a further improved version of (b)
by adding skip connections (addition of two paths).

According to the authors [51], “the skip connections in the generator drasti-
cally improve PPL and a residual discriminator is clearly beneficial for FID”.

1.4 Autoencoders
Autoencoder is a kind of architecture that allows learning compressed represen-
tations in an unsupervised manner. Autoencoder consists of two components
— encoder and decoder. Given an input, the encoder processes the input and
returns output which is a compressed representation of the original input. The
compression typically refers to a dimensionality reduction, for example, the input
might be an image with a resolution 128× 128× 3 pixels and the encoder might
“encode” it into a 512-dimensional vector which corresponds to the compressed
representation of the image. The encoder’s output is frequently referred to as an
encoding of the input. The second component is called decoder and it is used for
reconstructing the original input from the encoding.

The autoencoder is typically training using a so-called reconstruction loss (or
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some variation of a loss that incorporates reconstruction loss into its computa-
tion). Ideally, the resulting encoding should work in such a way that the recon-
struction of the input corresponds (as close as possible) to the original input. The
architecture of a simple autoencoder is shown in Figure 1.30.

x xz D(x)E(x)

Figure 1.30: Autoencoder’s architecture.

Figure 1.30 shows an architecture of an autoencoder. On the left of that
figure, there is an input x which could be for example an image. The x is
then encoded by the encoder to produce a latent vector z = E(x). Finally, the
latent vector is passed through a decoder to ideally reconstruct the original input
x = D(z) = D(E(x)). Notice that the size of z is considerably smaller than that
of x.

Autoencoders could be trained by using different kinds of loss functions, but
they are typically trained by using MSE or binary cross-entropy (the choice of
the loss function is also somewhat dependent on the data in this case).

1.4.1 Variational autoencoders
There are several types of autoencoders and one that is frequently used is called
variational autoencoder (VAE) [41] which is, similarly to GANs considered as a
generative model.

Before introducing variational autoencoders and further delving into them,
consider the following, different viewpoint of generative models that will be useful
for further definitions. For this viewpoint, assume that the generative model is
given a set of observations X = {x(i)}N

i=1 of a random variable X and its goal
is to estimate P (x(i)) [22]. One of the approaches for estimating P (x(i)) is by
assuming that the random variable X in question depends on a latent variable
Z. Then the whole generation process consists of sampling z ∼ P (Z) followed
by generating x(i) from some conditional distribution P (X|Z), i.e.:

P (x(i)) =
∑︂

z

P (z)P (x(i)|z) = Ez∼P (z)P (x(i)|z)

The conditional probability P (x(i)|z) will be estimated using a neural network
Pθ(x(i)|z).

Variational autoencoders take a similar approach to this problem and they fur-
ther assume that P (Z) is fixed and independent on X. The probability P (x(i)|z)
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then can be approximated using Pθ(x(i)|z). Problem is that in order to train the
variational autoencoder, the posterior probability distribution Pθ(z|x(i)) must be
known but it is usually intractable. Fortunately, this small issue can be solved
by approximating Pθ(z|x(i)) by a trainable Qϕ(z|x(i)).

VAEs are trained by maximizing the following loss [41] (evidence lower bound
(ELBO) or variational lower bound):

L(θ, ϕ; x(i)) = EQϕ(z|x(i))[logPθ(x(i)|z)]−DKL(Qθ(z|x(i))||Pθ(z))

Where the expectation EQϕ(z|x(i)) could be estimated by taking a single sample.
Furthermore, N(0, 1) is used as a prior P (z). The distribution Qϕ(z|x(i)) is
parametrized as N (z|µ, σ2) which brings several benefits, most importantly, it
allows for backpropagation, because problem of derivating through z ∼ Qϕ(z|x(i))
could be solved by using reparametrization trick [41].

More intuitively, this loss consists of the following two components:

• Reconstruction loss ensuring that when starting with x and passing it
through Q followed by P should result back in x.

• Latent loss forcing the distribution of Qϕ(z|x) to be as close to the P (z)
as possible.

An illustration of images generated by VAE is shown in Figure 1.31.

Figure 1.31: Random samples generated by VAE trained on MNIST dataset,
compared for different latent space dimensionalities. This image was taken from
[41].

Figure 1.31 compares images generated from latent vectors of different dimen-
sionalities. Notice that the latent vector with the least dimensionality (2-D in
this case) results in worse results than the images generated from higher dimen-
sionality latent vectors. Especially, see the blurriness of the first image in that
figure. The blurriness and/or noisiness is somewhat typical of images generated
by VAE and it is often attributed to the dimensionality reduction that happens
in autoencoders in general.
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2. Our Approach
This chapter briefly describes the analysis, decisions, and overall approach that
was used when trying to fulfill the goals defined in Section Goals. A very high-
level overview is that the user will somehow specify the suspect’s “appearance”
and the model will then generate the fillers that have a “similar appearance” to
that of the suspect, more detailed description and reasoning over this will be a
part of this chapter.

2.1 Analysis
The first big question was to decide and determine the high-level architecture
of the model, together with an expected workflow of using the model for po-
lice lineup construction. More specifically, the following questions have to be
answered before specifying the high-level architecture:

1. What is the ideal user workflow?
2. Choose VAE or GAN?
3. How to control the output of the model?
4. Use a pre-trained model or train from scratch?
5. Which technologies to choose?

All these questions are elaborated upon and eventually answered in the fol-
lowing sub-sections.

Ideal user workflow

Ideally, the user workflow should look in a way that the user simply provides a
suspect’s photograph together with the number of fillers n and receives a lineup
consisting of n photographs of fillers that are very similar1 to the input (seed)
image. Moreover, the user should be able to select some of the generated fillers
and let the framework generate more fillers that are similar to the selected filler.
This feature should allow the user to continually leverage the generation process
towards samples with the desired appearance. This use case is depicted in Figure
2.1.

Even though the abovementioned scenario itself might be sufficient, it can be
useful to give the user an opportunity of gaining more control over the generated
images. One of the ways to do this could be allowing the user to specify two
images and then generate interpolations between these two images. The two
images could depict the same person (e.g. two different photographs of a single
suspect which might be useful in situations where the suspect has, for example,
changed his/her hair color) or they could depict two different persons where each
of them has some facial features which are important and which should ideally
be present in the output. This leads to the second use case, which is illustrated
in Figure 2.2.

1According to some similarity measure.
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suspect's image Our framework

lineup
1
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k

The user can select any generated filler to generate similar fillers

fillers

Use case 1

Figure 2.1: Illustration of the ideal user workflow which allows the user to specify
the suspect image and obtain the specified number n of fillers with a consequent
possibility to recursively generate fillers similar to the selected, already generated
filler.
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lineup
1
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The user can select any pair of generated fillers to generate their interpolations

limage 2

interpolations between image 1 and image 2

Use case 2

Figure 2.2: Illustration of the second user workflow where the user is allowed
to specify two images to the framework which in turn removes n interpolations
between these two images. The user is then allowed to recursively select two
images from the output and obtain interpolations. It should be mentioned that
both use cases 1 and 2 could be combined, so that for example, the user first
generates interpolations (use case 2) and then could generate images similar to
any of the generated fillers (use case 1).

VAE versus GAN

Both GAN and VAE models have been successfully used for high-resolution, high
quality face image generation in the past [59][47][50][51]. However, despite the
both’s model ability or potential to generate quality face images, it still seems that
state-of-the-art GAN models like for example StyleGAN2 [51] outperforms most
of the currently available VAE models in terms of image quality. Furthermore, the
research in the GAN area also seems to be more active when compared to VAE
related research. Because of these reasons, we have decided to choose GAN—more
specifically, StyleGAN2—as a model for image generation that will be used.

Controlling the output of the model

The next question is about choosing a way in which the user of the model will be
able to control the model’s output, i.e. how the “appearance” of the suspect will
be described. With GANs, this is usually achieved by somehow passing attributes
(e.g. facial attributes of the suspect, hair color, etc.) into the model. This ap-
proach will be referred to as an attribute approach and examples of architectures
where it is used include Controllable GAN [60], Conditional GAN [61]. However,
there is a minor issue with the attribute approach because these models need
labels as a part of their input which seems to be less convenient for the user. To
relieve the user from having to specify these labels manually, it is preferred to
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choose another approach allowing to describe the suspect’s “appearance” directly
by the suspect’s photograph, i.e. the model’s output is controlled by passing the
suspect’s photo onto its input. Ideally, this approach should simplify the lineup
construction even further because the user (in this case, the lineup administrator)
does not need to explicitly think about the most important and characteristic fea-
tures or attributes of the suspect. The aforementioned approach will be referred
to as a “similarity” approach or “image seeded” approach because it works with a
similarity between the input and output image and the input image can be con-
sidered as a form of seed to the model. The attribute approach versus similarity
approach could be thought of as some analogy between match-to-description and
resemble-suspect strategies that were previously described in Introduction.

Pre-trained model versus training from scratch

Even though there exist pre-trained StyleGAN2 models, the problem with them
is that they were trained on very different data than is needed for purposes of
police lineup construction. Either, they were trained on something different than
people’s faces or they were trained on people’s faces but the people came from
a very different social group (e.g. actors, celebrities, or other kinds of famous
persons) than a typical convict or suspect. Because of this reason, we have
decided to train the model from scratch by using a custom dataset that will be
more appropriate for this task.

Choice of technologies

There are various deep learning frameworks that are suitable for building deep
neural networks and that should be able to cover all the needs of this thesis,
therefore it makes perfect sense to stick to some framework instead of imple-
menting everything from scratch. Two, probably the most well-known and most
used frameworks are TensorFlow2 by Google and PyTorch3 by Facebook. Both
of these frameworks could be used from multiple languages, most notably from
Python and C++. It was decided to use the Python version of TensorFlow in-
stead of PyTorch because the author of this thesis has more experience in it and
Python makes it easier and faster to prototype than C++.

2.2 Dataset
As it was already mentioned, there is a need for a dataset that will be more closely
related to the topic of police lineups. An ideal candidate for such a task is the
databases of either wanted or missing persons (these typically contain quite “raw”
and descriptive images, without any filters and effects that are often present in
photographs on social networks and similar sources). Images in such a database
are often canonical passport-style photos, which is useful because for lineups it
is important to have images that are similar in terms of background, resolution,
and other factors.

2Visit the project’s website [62] for more information.
3For more information about PyTorch visit the following website [63].
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A lot of countries have their own missing and/or wanted person databases that
are typically available through a local police website. Sometimes, the databases
are too small, difficult to access or they contain corrupted or somehow broken
data. The first idea was to use the Czech database of missing persons4 but it turns
out that this database is too small (containing between 4000 and 5000 records at
the time of writing this thesis). After investigating databases from various other
European countries, it seems that the database of Polish5 and Slovak6 police
provide a sufficient number of images of reasonable quality, therefore, images
from these two databases will be used for training the generative model in this
thesis. When combined together, these two databases contained around 130 000
raw (including corrupted) images7.

The idea is to download these images, filter them, preprocess them and pro-
duce a dataset that contains only images that are appropriate for training the
StyleGAN2 model. The word appropriate encompasses that the images should be
of sufficient quality (resolution, color, etc.) and they should only display a face of
a single person. It makes perfect sense to do this in advance so that the amount
of preprocessing steps during model training is minimized in order to maximize
the training performance. The preprocessing and filtering parts are really crucial
and they deserve a thorough explanation which will be given later, in Section 3.1.

2.3 High-level architecture
The analysis from Section 2.1 showed some of the needed components and most
importantly, the expected, high-level overview of the two workflows or use cases
from the user’s point of view. To remind, the first use case is a similarity search
seeded by the suspect’s photo, and the second use case is an interpolation between
two photos (presumably one of them is the suspect). In both cases, the user should
be able to recursively repeat this procedure by either selecting a single filler for
which new similar images will be generated (in the first use case) or to select two
fillers and generate another set of interpolations of them (in the second use case).

The user will be able to follow both of these use cases and work with the
framework through a frontend of some software application. At the same time,
the backend part of the software application will be responsible for preparing
the output images that will later be served to the user. In order to do this, the
application needs to access two models: generator and encoder, both of them
pre-trained on a custom dataset that was briefly described above in Section 2.2.
The generator will be needed for image generation itself, while the encoder will
be needed for obtaining a latent vector z from the suspect’s image and therefore
to allow filler generation by using vector arithmetics and interpolations of the
latent vector z. The training of generator and encoder works in two stages, first,
the whole StyleGAN is trained, and second, the encoder is trained by using a
generator from the first stage as the decoder. Overall high-level architecture is
shown in Figure 2.3.

4The Czech database is accessible from the following url [64].
5The Polish database is accessible from the following url [65].
6The Slovak database is accessible from the following url [66].
7Note that this number will change because these databases are “live”.
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Figure 2.3: An overview of high-level architecture. Notice that the StyleGAN is
trained separately and when it finishes, the trained generator is taken as a decoder
for an encoder training which is again independent of the previous StyleGAN
training. Once both training stages finish, there is a software application that
uses the trained generator and encoder to serve the lineups desired by the user.

41



42



3. Design
This chapter provides a more detailed explanation of the concepts that were
briefly described in Chapter 2. To be more specific, this chapter provides an in-
depth description and design choices regarding dataset, generative model (Style-
GAN2), encoder and other, feature-related models that play an important role
throughout the whole thesis.

3.1 Dataset preprocessing
Even though the Polish and Slovak databases provide images of reasonable qual-
ity, the problem is that these databases contain a lot of records that either do
not contain any image—making it more difficult to parse—or they contain cor-
rupted, low quality, low resolution, or otherwise inappropriate images. A typi-
cal example of an inappropriate image that could not easily be used for model
training is an image where there is a photograph of a whole person instead of
just its face, or a photo where there is several persons, no person, or when the
photo is monochrome/grayscale which is sometimes the case with images in these
databases. Examples of inappropriate images are shown in Figures 3.1, 3.2.

Figure 3.1: An example of inappropriate, multi-view face image. The noise was
added intentionally to the images for the sake of anonymization.

Figure 3.1 shows an image that is not suitable for training the model because
it contains several sub-images showing a person from different views. Another
problem with this image is that it does not show only the face, but also a certain
part of the upper body.

Figure 3.2: Examples of two inappropriate, low-quality images. The noise was
added intentionally to the images for the sake of anonymization.

The left image in Figure 3.2 shows a photo that has very poor quality because
it is grayscale or maybe almost a monochromatic image and there is not even a
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clear border between the face and background because the image is too bright.
The right image in Figure 3.2 shows another grayscale photo with poor quality.

Another problem relates to the fact that the images in these databases have
various resolutions which makes it impractical to train a model. This problem is
further supported by a limitation that the chosen StyleGAN2 expects the images
to have a squared resolution n× n where n = 2k (i.e. powers of two). These two
observations suggest that the images should be resized to an adequate power of
two. The exact choice of the resolution depends on two factors: the size of the
images in the dataset and expected training time. The size of the images within
the dataset should be considered, because choosing a resolution that would be
larger than most of the images of the data from the database would require most
of the images to be upscaled, therefore decreasing the quality of these images. On
the other hand, choosing a resolution that is too small would waste the potential
of images, i.e. if all the images were of size 512×512 and larger, it would not make
much sense to downscale them to 32× 32. Finally, the resolution is also subject
to performance limitations, because training such a large model as StyleGAN2
might be very demanding and time-consuming when high-resolution images are
used. The histogram illustrating the number of images above a certain resolution
threshold is shown in Figure 3.3.

Figure 3.3: The number of images satisfying a constraint that smaller of their
sides is not smaller than the specified threshold.

With these observations and limitations in mind, it was decided that all the
images will be downscaled to 256 × 256 so that the potential of the data is
maximized and the resulting dataset is as good as possible (given the source
images), even when this slightly contracts with the second expectation that the
model should take a reasonable time to train (this will be described in more detail
later in this chapter.

The problem that the database contains both colored (RGB) and grayscale
images can be solved in one of the following two ways: either convert everything to
grayscale and train the model on grayscale images or use only the colored images
and omit the grayscale images. Choosing between these two options involves
some tradeoff because if everything is converted to grayscale, there is a benefit of
a larger number of images but at the same time, there is a drawback of generating
only grayscale images. On the other hand, omitting all the grayscale images and
using only the colored images decreases the dataset size, but allows to generate
colored images that are more suitable for police lineups. Based on the relatively
low proportion of greyscale images (see Table 3.1) it was decided to keep only
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colored images in the dataset.
All these quality-related issues are the reason why the downloaded images

should first be filtered and preprocessed. The goals of the filtering and prepro-
cessing steps are the following:

1. Discard all invalid images.

2. Discard all images with very low quality (either with a very small resolution,
without a person’s face, or with a small color spectrum, etc.).

3. Ensure that all the images have the same size.

4. Discard all grayscale images.

These goals has led to a design of a “dataset preprocessing pipeline”. The
dataset preprocessing pipeline works in a way that it takes the downloaded im-
ages and then passes every downloaded image through a series of filtering and
preprocessing (mapping) steps. Finally, the images at the output of this pipeline
are then used to build the resulting dataset. This approach is illustrated by the
pseudocode in Listing 1.

dataset = (dataset
.filter(filter_1)
.apply(mapping_1)
.apply(mapping_2)
.filter(filter_2)
.filter(filter_3))

Listing 1: Illustration of dataset preprocessing pipeline

In order to get rid of low-quality images and to obtain the images of the same
size depicting faces of persons (i.e. crop to the face) the designed pipeline from
Listing 1 was instantiated with particular steps leading to the following pipeline:

FacesDataset \
.load([folder_path_1, ..., folder_path_n]) \
.filter(size_filter, min_size=256) \
.filter(color_filter) \
.apply(extract_face, min_face_width=128,

min_face_height=128, confidence_threshold=0.9,
output_face_width=256, output_face_height=256) \

.filter(quality_filter, white_threshold=240,
black_threshold=15, white_ratio_threshold=0.55,
black_ratio_threshold=0.2) \

.filter_window(remove_too_similar, window_size=2,
similarity_threshold=0.9) \

.apply(convert_to_rgb) \

.create()

Listing 2: Dataset preprocessing pipeline
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Listing 2 shows how exactly is the data filtered and preprocessed when creating
the dataset that will be used for training. The description of the individual steps
from this pipeline follows:

• .load([folder path 1, ..., folder path n]) takes paths of directories
that contain the images and it basically creates an iterator over that images.

• .filter(size filter, min size=256) adds a new filter operation calling
size filter filter function with a parameter min size=256 which removes
all the images whose size is smaller than 256 pixels.

• .filter(color filter) adds a filter operation calling color filter. This
removes all the grayscale images.

• .apply(extract face, min face width=128, min face height=128,
confidence threshold=0.9) adds a preprocessing step that takes an
incoming image and extracts a rectangular sub-image containing the
person’s head. This works by finding bounding boxes of all faces in
the image and returning the largest one that at the same time, satisfies
additional constraints. These constraints are that the bounding box should
have dimensions of at least 128 × 128 and the reported confidence of this
detection should be ≥ 0.9. If none of the bounding boxes satisfy these
conditions, the image is filtered out1. The face detection is done using
OpenCV and a simple, pre-trained, deep neural network2 based on ResNet
[57]. From this step on, all the upcoming steps will work with the extracted
face. More details about the implementation of extract face will be
given later in sub-section 3.1.1.

• .filter(quality filter, white threshold=240,
black threshold=15, white ratio threshold=0.55,
black ratio threshold=0.2) adds a filtering operation that attempts to
filter out all images with poor quality. The two police databases contained
quite a number of whitish, (not exactly) grayscale or monochromatic
images and some of these were not captured by the basic color filter
therefore this step serves as an additional filter that attempts to filter
them out. This filter takes arguments that specify what is a threshold for
a pixel value to be considered a black or white color and then filter images
whose percentage of white or black color is above white ratio threshold
or black ratio threshold respectively.

• .filter window(remove too similar, window size=2, similar-
ity threshold=0.9) adds a filter window operation, which has a purpose
similar to filter operation, but instead of taking a single image, it takes
multiple images (a window or range of images). In this case, the re-
move too similar takes two consecutive images and it makes sure, that
the second image is included in the result only if it is not too similar to

1This might seem like a design flaw, but this is done due to the performance reasons so that
it is enough to detect the faces only once, instead of first detecting and ensuring that there is
big enough face and then detecting again and cropping that face out.

2More information about the model can be found in OpenCV respository [67].
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the first image (i.e. similarity threshold should be < 0.9). This filter
is really specific to the data and it is because the database sometimes
contained several images of the same person (either completely identical
images or very similar images) in a row and it is not desired to have all of
these included in the resulting dataset. This filter exploits the feature of
the dataset that if the same person is depicted multiple times, his/her IDs
always represent an uninterrupted sequence. More details about filtering
similar images of the same person including an example will be given later
in sub-section 3.1.2.

• .apply(convert to rgb) converts the images from BRG format used by
OpenCV back to RGB format.

• .create() Finally, the create method creates an iterator that allows iterat-
ing over the new, filtered and processed dataset. In particular, this means
that the pipeline is lazy i.e. it loads at most window size3 images at a time
instead of having to load all of them at once.

3.1.1 Face extraction
The extract face step is actually slightly more complicated than as described
above, and that is because there is a fundamental problem with how the face
detection model detects the bounding boxes around the face. The problem is
that the bounding box is frequently too small, containing only the face without
the neck, ears, and hair. This is something that is considered a problem because
if the model is trained only on such images, it would probably generate images
that have the same flaws (i.e. no ears). To solve this issue, the bounding box that
was detected by the face detection model should be slightly extended. Simply
speaking, the bounding box should be extended as much as possible, but at the
same time, this extension should be the same for both vertical directions and for
both horizontal directions (so that the face itself is kept centered plus it should be
ensured that this extension does not make the bounding box to grow beyond the
desired image size of 256×256 pixels). When the bounding box was extended then
if its size is still below the desired size, upsampling should be performed. This
procedure works that for each image a goal size is set to the following quantity:

goalsize = 2max(Wface, Hface)

where Wface and Hface corresponds to the width and height of the largest (in
terms of area) face detected in the given image. The idea behind goalsize is that
there should be enough free space around the detected face itself so that ears,
hair, and neck fit into the image. After that, compute the padding for both
horizontal directions as:

paddingleft = ⌊goalsize −Wface

2 ⌋

paddingright = goalsize −Wface − paddingleft

3Maximum of window sizes in the case that multiple of them were specified and 1 if no
window filter was specified.
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Then ensure that the padding fits into the image:

paddingleft = min(paddingleft, leftface)

where leftface is the x coordinate of the face’s bounding box top left corner and
similarly:

paddingright = min(paddingright, Wimage − rightface)

where rightface is the x coordinate of the face’s bounding box bottom right corner.
Finally, in order to keep the face horizontally centered, the padding is set to:

paddingleft = paddingright = min(paddingleft, paddingright)

Symmetrical procedure is then performed for the vertical padding and after
that, the calculated paddings paddingleft, paddingright, paddingtop, paddingbottom

are added to the corresponding side around the face and this padded face is
cropped and then resized to the desired dimensions of 256× 256 pixels. The only
problem with this procedure is that it may change a ratio between face width
and face height, however, it turns out that on average, these changes are not very
significant, as can be read from the Figures 3.4a, 3.4b, 3.4c. Note that in these
three figures, outliers (ratios occurring in less than 500 images were omitted).

(a) Ratios of the original data. (b) Ratios of the new, processed data.

(c) Change in ratio between new and old
data.

Figure 3.4: The degree of preservation of face image proportions.
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Figure 3.4a shows the Wface/Hface ratios, that is the rations of the face’s
width to face’s height in the original data, while Figure 3.4b shows the same
quantity for new data, i.e. data after adding padding and resizing the image to
the resolution of 256 × 256 pixels. Figure 3.4c shows how did the ratio change.
Notice that even though the ratio has indeed changed, the change is quite small
on average meaning that in most of the images the ratio has changed by no more
≈10 % in absolute value.

An example of cropping and padding face from an image is shown in Figure
3.5.

Figure 3.5: The result of cropping and then padding a face image where the left
image represents the original image from which the face was cropped then padded
and resized to 256 × 256 pixels. Notice that in the original image, the face is in
the top left corner of the image, while in the output image, the face is properly
centered, both vertically and horizontally. The noise was added intentionally to
the images for the sake of anonymization.

3.1.2 Filtering photos of a single person
An example of two similar images of the same person is shown below, in Figure
3.6. In this case, the two images are not exactly the same, because the image
on the left is slightly shifted, but nevertheless, they still show the same person.
Intentionally, there is a red border around the images so that their boundary is
highlighted to emphasize the fact that the first image is shifted.

Because the images are not exactly the same, it is not enough to compare them
pixel by pixel, but this issue can be overcome by comparing their embeddings
(which can be obtained using for example a pre-trained OpenFace4 [69] model)
instead of comparing their pixels. More specifically, by calculating an L2 distance
between their embeddings. This allows, to some extent, to capture whether two
different images show the same person based on a result of comparing this distance
to some threshold. However, the threshold should be set in such a way that
persons that are only similar, but not same, are not filtered out. Note that this
image would be filtered out anyway, because it is in grayscale, so it serves only
as an illustration of the purpose of similarity filtering.

4More information about the OpenFace model can be found on the following website [68].

49

http://cmusatyalab.github.io/openface/


Figure 3.6: Two consecutive images of a single person. The noise was added
intentionally to the images for the sake of anonymization.

3.1.3 Preprocessing results
After passing the images downloaded from the databases and passing them
through the filtering and preprocessing pipeline, the number of images has de-
creased from ≈ 130000 to ≈ 90000—as can be seen from Table 3.1—which is
still comparable to FFHQ dataset [50] that was used by authors of StyleGAN(2).
The resulting images are then divided into 10 batches each of them having a size
of 10000 images (except for the last one which is smaller) and these batches are
then serialized into TensorFlow’s .tfrecord5 files which are easily consumable
by TensorFlow dataset API6.

Total images Valid images Grayscale/RGB Only RGB
≈ 130 000 ≈ 128 000 ≈ 100 000 ≈ 91 000

Table 3.1: Number of images in the dataset.

Table 3.1 shows the number of images that remain after filtering the original
database with 130 000 images. Some of the images in the original database were
not valid (those that could not be read by OpenCV) and after removing them
about 128 000 images remained. When the valid images were filtered using all
the filters except for filter removing grayscale images (color filter) the number
of images decreased to 100 000. When the color filter was also included, the
number of images further decreased to approximately 91 000. The impact of
individual filters on the number of filtered images is shown in Figure 3.7.

5For more information about TFRecord format, visit the following website [70].
6More information about TensorFlow dataset API can be found at the following website

[71].
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Figure 3.7: The number of images filtered by each of the filters.

3.2 StyleGAN2
The StyleGAN2 model that is being used has the original architecture [51] as was
described in Chapter 1 without any modifications.

The model has been trained on the Faces dataset which was resized from
256× 256 pixels down to 128× 128 pixels in order to gain better performance in
terms of training speed. All the images were in channels first format and their
pixel values were rescaled to [−1, 1] range. The training was done in a distributed
manner on 4 Nvidia Tesla V100 GPUs with a batch size 8 per GPU and it was
done for 400 000 training steps.

The hyperparameters (learning rates, frequency of regularization steps, etc.)
that were used are the same as those used in the original work, see the Github
repository [72]7.

3.3 Feature extraction
Before starting work on the encoder, it is important to realize that there will be a
need of measuring similarity between two images. The most essential reason for
this need is the fact that the encoder basically tries to perform a reconstruction
so there will be a need to compare the reconstructed image to the original. How-
ever, this is not the only reason for needing the similarity measure, because the
requirement of the similarity measure actually pops up everywhere throughout
this thesis. Another example is that it will be important to evaluate similarity
when deciding whether the generated filler is similar to the input suspect.

There exist various approaches for measuring similarity between two images,
the most basic one is probably taking either L2 or L1 distance of their pixels.

7Even though the source code of the repository may change and so the hyperparameters,
it is always possible to look up the hyperparameters in the source code of this work. See
attachment A.
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Another option would be to use binary cross-entropy for the same task. The
general problem with these approaches is that they do not always express the
similarity of two images in the same way as people perceive it. As an example,
consider two face images showing almost the same person but each time with
different eye color. In this example, the L2 or L1 distance of these two pictures
will be very small, although the two pictures are quite different, especially in the
context of this thesis and generation of fillers for police lineups where it may be
quite important that eye color between the filler and suspect matches.

A common approach for solving the aforementioned problem would be to first
extract some features from the pictures and only then calculate their distance or
similarity using a standard L2 or L1 distance. The intuition behind this approach
is that the features better represent the meaning and attributes or characteristics
of the images than pixels do. Ideally, the low distance between two feature
vectors should correspond to similar images. Moreover, the distance between
images imgi, imgj should be lower than distance between images imgk, imgl

⇐⇒ imgi, imgj are more similar to each other than imgk, imgl are.
The task of extracting features and calculating their distance can be achieved

by using some standard, pre-trained face recognition model, e.g. VGG-Face.
However, it would be useful to be able to not only measure a distance between
two faces but also to classify faces to some facial attributes, e.g. predict the hair
color of a person from an image. This is especially useful for the analysis of the
generated data diversity. For these reasons, it was decided to use a custom model
that could predict facial attributes and also be used to generate feature vectors
by using outputs of a certain hidden layer (typically the one before the classi-
fication layer). Before proceeding with training the custom model for attribute
classification a suitable training dataset should be found.

3.3.1 Datasets
There exist several datasets of person faces with some facial attribute annotation,
but a problem with most of them is that they are either too small, poorly anno-
tated, contain only a few attributes, or that the images have a poor resolution.
Some of the datasets are quite rich but they frequently do not contain attributes
and instead they provide a link to some open data which is rarely uniform so pars-
ing attributes from such a link is quite demanding. Some of the larger datasets
are also often private and therefore not suitable for this thesis. After analyzing
several possibilities, the two suitable datasets are CelebA [73] and FairFace [74]
datasets.

The CelebA dataset contains more than 200 000 images with a resolution of
178 × 218 pixels, altogether depicting more than 10 000 identities of celebrities.
With its 40 binary attributes per image, this dataset is one of the attribute
richest datasets publicly available. Examples of the attributes are, for example,
Eyeglasses, Wavy Hair, Smiling which determine whether the person on the image
wears eyeglasses has wavy hair and is smiling respectively. However, not all of
these attributes are suitable for the purpose of this thesis. For example, it is
not that important whether the person is smiling or whether the person wears
a hat (this is something that will almost never be the case due to the nature
of the images from the police lineup domain) so several attributes were skipped
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in a favor of gaining better accuracy on the remaining attributes. The list of
attributes that were preserved is shown in Table 3.2.

5 o Clock Shadow Bags Under Eyes Bald Bangs
Big Lips Big Nose Black Hair Blond Hair

Brown Hair Chubby Double Chin Goatee
Gray Hair Male Mustache Narrow Eyes
No Beard Oval Face Pointy Nose Receding Hairline
Sideburns Straight Hair Wavy Hair

Table 3.2: The selected subset of attributes from the CelebA dataset.

Fairface dataset consists of more than 100 000 images that are diverse in terms
of ethnicity in order to mitigate the bias which is typically present in the face
images datasets. There are 7 race categories by which the images are annotated:
White, Black, Indian, East Asian, Southeast Asian, Middle Eastern, and Latino
Hispanic. Furthermore, the dataset is also diverse in terms of age as each image is
also annotated by one of the following age groups: 0-2, 3-9, 10-19, 20-29, 30-39,
40-49, 50-59, 60-69, 70+. Apart from the race and the age group, each image is
also annotated by gender, but this information is not that important, because it
was also present in the CelebA dataset. All the images from the dataset have a
resolution of 224× 224 pixels.

The fact that there are two datasets that are quite different (in terms of image
resolution, attributes, and so on) it seems reasonable to train two separate models
one for each dataset. The model trained on CelebA dataset will be referred to as
the CelebA model while the model trained on FairFace dataset as the FairFace
model.

3.3.2 CelebA model
The main task of the CelebA model will be to classify an input image into the
subset of the attributes listed above in Table 3.2.

Because the images generated by the generative model will have a resolution
of 128 × 128 pixels it makes sense to train this model on the same resolution
so that the output images from the generator can be easily passed through this
model, therefore the whole CelebA dataset should be resized from 178×218 pixels
to 128 × 128 pixels. The resizing is done so that the image is downscaled while
preserving the aspect ratio and then it is padded with zeros to the desired size.
This approach ensures that the aspect ratio of the face is preserved.

The problem of classification into the selected subset of attributes essentially
corresponds to a multi-label classification, i.e. that a single image can have as-
signed several attributes. An easy way to do this would be to consider each
attribute as a binary attribute (this is actually in correspondence with the way
how it is represented in the data) and predict a probability for each of the at-
tributes (by using a sigmoid activation function). This means that each attribute
is either present or not present, but what is a problem with this approach is that
in some circumstances it is not desired that all attributes from a certain group are
not present. For example, there are several attributes representing hair color and
attribute stating whether the person is bald or not. Typically it is expected that
each person has assigned either a single hair color attribute or a bald attribute
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which is not always true when using the sigmoid function (consider an empty
prediction scenario when all these attributes have a probability < 0.5).

After observing the empty prediction issue it may be tempting to divide the
selected attributes into several categories of exclusive attributes and classify them
by using softmax activation in each of the categories. However, it turns out that
even this approach is not ideal and that is for the following reasons. First, there
are not that many groups apart of the hair color that could be identified therefore
this approach leads to one or some small number of moderately sized groups of
attributes, and the rest are small groups of a single attribute that still need to
use sigmoid activation. The second and more important issue is that the data
annotations are not perfect and often there are either missing annotations (e.g.
that the given image has assigned neither hair color nor bald attribute) or multiple
attributes which would be considered exclusive when softmax was used (i.e. there
are cases, where for example, a single image has assigned multiple hair colors).
After all these observations and corner cases, it seems easier to stick to a simple
binary classification into several attributes with a possibility to solve some of
the corner cases using a kind of postprocessing (e.g. if neither of the hair colors
nor bald attribute was classified because they all were under a threshold for the
sigmoid activation, then simply choose the one with the largest value).

The architecture of the model is illustrated in Figure 3.8.

GlobalMaxPooling

Dropout

Dense DenseDense

SigmoidSigmoidSigmoid

EfficientNetB7 Backbone

classification head
Gender

classification head
Hair

classification head
Remaining attributes

Figure 3.8: The architecture of the CelebA model.

As can be seen from Figure 3.8 the model itself is a fairly standard classifi-
cation model, using an EfficientNetB7 [75]—without top layers, pre-trained on
ImageNet [76]—as a backbone, followed by a global max pooling and a dropout
layer with 0.5 rate. At the end of the model, there are three classification heads
for hair, gender, and remaining attributes. Having these three classification heads
means that instead of producing a single large vector of outputs, the model ac-
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tually produces several smaller vectors of outputs corresponding to the following
three categories: outputs hair, outputs gender, outputs remaining. The rea-
son for this division is mostly because of the historical reasons when experimenting
with different activations (i.e. using softmax for hair categories) and also to get
extra control over the outputs (i.e. to have a possibility to easily select the hair
outputs). There is also an L2 regularization incorporated which together with
the dropout layer tries to mitigate overfitting.

Training of the model proceeds as follows: first, there is a fine-tuning for 15
epochs when the backbone weights are kept frozen and then there are another 15
epochs with backbone weights unfrozen, so in total, the model is trained for 30
epochs. During training, an Adam optimizer is used with a learning rate that for
the fine-tuning part starts at 1e−4 for the first 10 epochs and then gets decreased
to 1e−5 for the next 5 epochs. After the fine-tuning, the first 5 training epochs
continue with the learning rate 1e−5, and then it is decreased to 1e−6 for the
last 10 epochs. The exact details could be found in the accompanying source
code. Moreover, two callbacks are used, one for reducing the learning rate on the
plateau and another for early stopping. The batch size was set to 64.

There is a problem which is related to the CelebA dataset, that it is highly
imbalanced and several attributes are very rare in the data. This causes the
model to have a poor recall thus being unable to classify these rare attributes
even when they are present in the input image. There exist different strategies
for mitigating the problem of the imbalanced dataset and the two which are used
in the CelebA model are a bias initialization trick [77] together with a focal loss
[78].

Bias initialization trick is used to manually initialize bias to a value that
reflects the class imbalance. This was done by implementing a custom initializer
called ConstantTensorInitializer.

Focal loss is a loss function that can be helpful when training in cases when the
data classes are highly imbalanced. Generally, the idea is that the well-classified
examples are down-weighted (so they are treated as a kind of easy example) to
allow the model to focus on the hard examples. Originally this loss function
was used in the object detection where there was an extreme imbalance between
background class and other classes (in the case of CelebA there might be an
extreme imbalance between, for example, positive Bald examples and negative
Bald examples (only around 2 % of the images have the Bald attribute). Focal
loss deals with two parameters [78]: α and γ and in this case their values were
set to α = 0.5, γ = 2.0.

3.3.3 FairFace model
The FairFace model predicts age and race for each input image. In contrast to
the CelebA model, the FairFace model does not perform multi-label classification
into several binary labels, but instead, classifies always exactly two labels (age
and race) each behaving as a multiclass classification. Said in other words, the
classification is performed using softmax activation instead of sigmoid activation.
The main reason why it is done in this way and not the same way as for the
CelebA model is that the individual attributes are much more exclusive than
for CelebA attribute. This decision is further supported by the fact that in the
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training data, each image has exactly one age group and exactly one race assigned,
i.e., multi-class annotations are used.

The architecture of the model is again, fairly standard and similar to that of
the CelebA model as illustrated in Figure 3.9.

GlobalMaxPooling

Dense

Dense

DenseDense

SoftmaxSoftmax

Race
classification head

Age
classification head

EfficientNetB3 Backbone

Figure 3.9: The architecture of the FairFace model.

As with the CelebA model, also the FairFace model uses a pre-trained Effi-
cientNet [75] backbone, but EfficientNetB3 is used instead of the EfficientNetB7,
and Noisy Student [79] weights are used instead of using the ImageNet weights
as was the case with CelebA model. The reason for choosing different backbone
and weights was that they have empirically shown slightly better performance
in this case. The backbone is followed by a global max pooling but in contrast
to CelebA model, there are two more hidden layers with 2048 units and ReLU
activations because they empirically showed to bring good performance. Similar
to the CelebA model, the FairFace model also has its output divided into multiple
parts, namely: into age and race providing more readable and intuitive access to
the individual attributes and giving an extra control over these parts (e.g. getting
embedding representing only the age).

The model uses neither L2 regularization nor dropout—because the B3 back-
bone is substantially smaller than B7 so the overfitting is not that visible—but
still, in order to mitigate possible overfitting and to make the model more robust
a data augmentation is used (saturation, brightness, etc.).
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The model is trained using Adam optimizer against categorical cross-entropy
loss for 5 epochs with backbone’s weights frozen and learning rate set to 1e−4
followed by another 25 epochs with unfrozen backbone and learning rate decreased
to 1e−5. Same as with the CelebA, there is a callback for reducing the learning
rate on plateau combined with an early stopping callback, but otherwise, the
learning rate is not changed during training. The batch size during training is
set to 64 as was the case with the CelebA model.

3.3.4 Combining the models
To simplify working with predictions of the CelebA and FairFace models, it makes
sense to create a pre-trained CelebA model and pre-trained FairFace model and
then make a new model which will call these two models and concatenate their
outputs into a single output vector. This is useful because instead of having to
call two models every time during prediction, it is enough to call only a single
model.

It is also useful to create a wrapper for using the CelebA model and FairFace
mode to get the embedding of an image. This is done by using outputs of a
layer (last dropout in the case of CelebA model and last dense in the case of
FairFace model) before the classification head of each of the models and then
concatenating these outputs into a single large feature vector/embedding with
dimensionality equal to 4608. Although the number 4608 may seem weird it is
because CelebA uses EfficientNetB7 as a backbone which has layers with 2560 at
the end while FairFace model uses EfficientNetB3 followed by some hidden layers
with 2048 units.

3.4 Encoder
As it was already briefly mentioned in Chapter 2 an encoder will be needed for
controlling the generator’s output and subsequently to allow generation of similar
images by “slightly adjusting” the latent vector corresponding to the suspect’s
image. This section describes the architecture of the encoder and also clarifies
the phrase “slightly adjust the latent vector to generate similar images”.

3.4.1 Initial approaches
Remember from Chapter 1 that the generator takes a latent vector z and then
produces an image from it. Therefore the simplest approach for the encoder is
to attempt to encode the input image as a latent vector z′ and then feed it to
the generator which should, ideally, generate (reconstruct) an image similar to
the input img. However, the problem with this approach is that the input image
reconstructions have very low quality and they are often not very similar to the
input image as can be seen in Figure 3.10.

After failing with the first approach, another attempt was to use the encoder
to encode the image into w instead of z where w8 is the output of the map-

8The term w will also sometimes be used when referring to the whole space (W) of all
w’s and similarly for z (Z) and w+ (W+, which will be described later). Nevertheless, the
meaning should be clear from the context.
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ping network, i.e. w = mapping network(z) as it was described in Chapter 1.
However, this approach also was not successful because even though the gener-
ated images were more similar to the input image, they were blurred as shown
in Figure 3.10. Generating from w also required a slight change in the way how
the generator is called, i.e., the mapping network should be skipped during these
calls (calling synthesis network directly). Through the rest of this thesis, these
two approaches will be frequently referred to as z approach and w approach.

Figure 3.10: Comparison of w approach (first row) and z approach (second row).

The first row of the Figure 3.10 shows several reconstructions (for different
architectures and/or hyperparameters) using w approach, while the second row
shows reconstruction using z approach. In each row, the left-most image is the
(censored) input image and the rest of the images in each row are the recon-
structions. Although the input image is censored it can be easily seen that the
reconstructions from z are quite dissimilar from the input. On the other hand,
reconstructions from w seem to be more accurate (notice for example the beard)
but are very blurry.

3.4.2 Final approach
One of the possible reasons why the images were so blurry in the w approach
could be the large compression that the encoder has to make when encoding
in the image (a tensor with 128 × 128 × 3 dimensions is reduced to only 512
dimensions). Intuitively, this problem could be mitigated by increasing the output
dimensionality of the encoder hereby giving the encoder more power. The problem
is, that the output dimension of the encoder cannot be just arbitrarily changed
because it needs to match the dimensionality the generator is expecting.

Note that in StyleGAN the synthesis network consists of 9 blocks where each
of the blocks receives 2 style vectors where each of them originates from w. This
means that at some point, there are a total of 9 · 2 copies of w that will be
referred to as w+ (i.e., w gets broadcasted to w+). Therefore it is possible to
let the encoder encode images into w+ instead of w which further means that the
encoder’s output dimensionality can be effectively increased from 512 to 18 · 512.
This approach is also used by other authors [80]. In the rest of this thesis, the
whole, aforementioned approach will be referred to as w+ approach. The results
for the w+ approach will be shown later, in Section 5.3.

The w+ approach outperforms both previous approaches (z and w) and
therefore it was decided to use this approach in the final model of the encoder.
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Note that the dimensionality of w+ is 18 · 512 in the case of a generator working
with images having a resolution of 1024 × 1024. In the case of working with
128×128 pixels images, the number of blocks is 6 thus the dimensionality of w+
is 12 · 512 which is still quite an improvement when compared to 512 in the case
of w or z.

3.4.3 Encoder model
The initial experiments were using an encoder model with a simple convolutional
network with a standard ResNet-like architecture. Hover, after plenty of exper-
iments with different hyperparameters and adjustments of the architecture (i.e.,
changing number of channels, layers, etc.), the results still were not satisfying so
the ResNet-like architecture was abandoned and a different architecture—which
will be described below—was used for the final version of the encoder model.

The architecture of the encoder model is based on feature pyramid network
architecture similarly to [80]. An EfficientNetB7 model pre-trained on ImageNet
is taken as a backbone from which the features for the pyramid are extracted.
From the backbone, the last layers of any block which are also the last layers
before the spatial resolution changes are taken as the feature layers, and their
outputs are the features themselves. For the EfficientNetB7 operating on input
with a resolution of 128 × 128 this approach results in five layers and only the
last three of them are taken and used as c3, c4, c5 in the feature pyramid (see
sub-section 1.2.2 for more details and illustration of feature pyramid network
architecture).

Once p3, p4, p5 are computed from c3, c4, c5 in the way it was described
in sub-section 1.2.2, they are passed through the so-called map2style [80] block
which reduces their spatial dimension all the way down to 1 × 1 (1 × 1 × 512
) producing a single w vector. Because there would be only 3 vectors (one for
each of p3, p4, p5 ) and totally 12 are needed, there are actually 12 map2style
blocks mp1, . . . , mp12 where mp1, . . . , mp3 take p5 on their inputs, mp4, . . . , mp6
take p4 on their input and the rest mp7, . . . , mp12 take p3 on their input. This
distribution of p3, p4, p5 into the map2style blocks showed empirically the best
performence from the tested combinations. Note that this distribution is also
slightly different to that used in [80] mainly because working with different spatial
resolution. There was also an attempt to incorporate p6, p7 into the process but
it did not seem to have any beneficial effect on performance.

Finally, the outputs of all the map2style blocks mp1, . . . , mp12 are stacked onto
each other to produce the w+. After that, the w+ is passed through a layer that
performs normalization similar to the normalization which is used in the mapping
network of the StyleGAN. This normalization seems to improve the performance,
empirically, because without it the results were sometimes diverging.

The encoder was trained using Adam optimizer with a learning rate 1e−3 for
5 epochs. The loss function that was used during training is the following:

L(y, w+) = Lpixel + λLfeature, λ = 0.5

Where the y were input images for the encoder and w+ were latent vectors
predicted by the encoder for the given input images. Lpixel was calculated by
reconstructing the input images from w+ as ŷ = G(w+) followed by calculating
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pixel-based MSE(y, ŷ). Lfeature was calculated as MSE(yfeatures, ŷfeatures).
Both losses were also normalized into [0, 1] range.

3.4.4 Fine-tuning approach
After running several experiments it started to seem that the problem is the
generator not being able to generate some of the images, i.e. that the problem
was no longer in the encoder. To verify this expectation—at least partially—it is
possible to try to fine-tune the encoder by using only a small subset of the training
dataset and running it for many iterations. Ideally, the encoder should overfit on
this small dataset and should be able to provide an almost perfect reconstruction
of these few images, albeit performing worse on unseen data. However, it turned
out that even these efforts have failed and the encoder is not able to provide
a perfect reconstruction even in this simplified scenario. This clearly supports
the previous belief that there is a problem with the generator and not with the
encoder.

There are various possible reasons why the generator is not able to generate
some kinds of images, but the most probable one is that it is caused by the
dataset which was used for StyleGAN training. It does not seem that there is a
problem with the dataset size, because the Faces dataset is actually larger than
FFHQ dataset that was originally used by StyleGAN authors. Instead, it seems
that the Faces dataset does not provide enough diversity in the images, at least,
when compared to FFHQ. For example, the Faces dataset contains mostly male
photographs and there is only a small percentage of females in it as it will be
shown later, in Section 5.2. The problem of a weak generator could be solved,
to a certain extent, by extending the training dataset if more data is available.
However, this is not always an easy task to do, because getting more images with
a reasonable quality is quite demanding.

The fact that the encoder cannot be fine-tuned on the small sample until
overfitted is rather unfortunate because if it was possible then the problem of an
(almost) perfect reconstruction would be nearly solved. Although it may seem
counterintuitive that fine-tuning until overfitting would help somehow (because
generally, overfitting is something undesirable that should be avoided) it is actu-
ally true, because in an extreme case, the subset of the data to which the encoder
could be overfitted is just the single image that should be reconstructed. Provided
that the fine-tuning can be done in a reasonable time (at most a few minutes),
the encoder can get fine-tuned to the suspect image provided by the user. When
the user provides a new suspect image, the encoder should be discarded and a
new encoder could get fine-tuned until again overfitted to that new image and
so on and so forth. The two problems that are connected to this idea are the
fact that the fine-tuning must be fast enough and also that the encoder itself is
not able to do this. The first problem could be solved by using a pre-trained en-
coder and then perform fine-tuning to a dataset consisting single image provided
by the user and repeated reasonably many times. The second problem can be
resolved by realizing that even though the encoder still cannot be fine-tuned un-
til eventually overfitting and starting producing perfect reconstructions, another
component should be able to do so, namely, the generator.

The abovementioned idea could be summarized as intetionally overfitting a
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generator by fine-tuning on a single image—the user-provided suspect’s image—
so that the image could be reconstructed in a better way and it will be referred
to as fine-tuning approach or overfitting approach throughout this thesis. Indeed,
this approach will just work, provided that the generator is being trained for
a sufficient number of steps it will eventually learn the weights so that it can
perfectly reconstruct the suspect’s image provided by the user. However, there is
yet another problem and that is the fact the generator could overfit so much that
it eventually stops generating anything meaningful beyond that single image.
A possible approach to this problem could be decreasing the number of steps
for which the generator is being fine-tuned, therefore giving a trade-off between
reconstruction quality and generator’s degeneration with a hope that after finding
a proper threshold the reconstruction will be better than without fine-tuning the
generator at all, while at the same time, the generator will still be able to generate
meaningful results (“around” the suspect’s image).

The trade-off between reconstruction quality and generator degeneration could
be alleviated by realizing that the encoder can get involved in this process so that
the encoder and generator weights are updated alternately. This is done in a hope
that even though the encoder itself does not have a capacity to overfit onto the
given suspect’s image and provide a perfect reconstruction of it, in cooperation
with the generator’s weights updates it will eventually be possible. Furthermore,
this reduces the generator degeneration because it is updated only half the steps
as before (the rest half are the encoder updates). To further support the decrease
in generator degeneration, the generator updates can be done even less frequently
than every second step, i.e. every kth step. The goal of this approach is then to
find proper hyperparameters, namely: number of steps (or epochs and steps per
epoch) together with a number k determining the frequency of the generator’s
weights updates so that the generator does not degenerate and the reconstruction
is good enough. Moreover, it should be ensured that this process does not break
the semantics of the generator’s latent space, namely, that vector arithmetics and
vector interpolations are not completely broken and lost.

The generator training step is quite different from a standard generator train-
ing step because it uses a different loss function. The loss that is used is MSE
between pixels of the generated image and input image. In conclusion, it is
important to mention that this is rather an experimental approach that may help
(and also helps as will be seen later in Section 5.3) but it is not intended as an
always working, generally applicable approach.

3.4.5 Generating similar images
This section will clarify the phrases somehow manipulate/adjust/modify the latent
vectors to generate similar images that were used in the previous sections.

The basic idea of generating similar images is following: take an input, encode
it as v ∈ W+ latent vector, shift this vector in certain direction(s) to produce
a set of latent vectors v1, . . . , vk ∈ W+ and then generate images from these
vectors as imgi = G(vi) i ∈ {1, . . . , k}. Ideally, the resulting images should be
similar (in terms of appearance and/or facial attributes) to the input image.

The problem with this idea is that it is quite difficult to decide in which direc-
tions the latent vector should be shifted and also what should be the magnitude
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of the shift. Shifting in the wrong direction or shifting the latent vector too far
from the original latent vector could lead to very poor results.

To avoid the necessity of deciding on the direction and magnitude of the shift,
a simpler approach would be to take latent vector v of the input image and think
of it as a point in a n dimensional space, where n is the dimensionality of the
latent vectors from W+, i.e., 12 · 512. When looking at the problem from this
perspective, the manipulations with the v could be replaced by sampling points
that are close to v. Ideally, the latent space should behave nicely so that the close
latent vectors correspond to similar images. The close points are exactly those
that lie in a neighborhood, or in other words, inside a n dimensional ball with a
center at v and yet unknown radius r. Getting the latent vectors v1, . . . , vk then
corresponds to sampling random points from this ball.

Sampling latent vectors from an n dimensional ball simplify generating similar
images because it is no longer needed to think about directions and magnitudes
of the shifts. Instead, these parameters were reduced to a single parameter and
that is the radius r of the n dimensional ball. Results when using this method
will be shown later, in Section 5.3.

After experimenting with the aforementioned approach for generating similar
images a difficulty with using latent vectors from W+ arose. It seemed that for
a significant portion of the latent space, the generated images are corrupted or
visibly defected. These issues are most visible when sampling random vectors
fromW+ itself (just random, normally distributed vectors from the whole space,
not from the n dimensional ball around some point) which led to really bad results
as can be seen in Figure 3.11.

Figure 3.11: Very poor results when sampling random latent vectors from W+.

Figure 3.11 shows 10 images generated from latent vectors that were randomly
sampled from a normal distribution. The quality of these images is so low that
it is not even recognized they are showing persons. The hypothesis why this
is happening is that the W+ space with its 12 · 512 is simply too large that it
contains several areas that are not properly covered by the generator and that
leads to such poor results as those from Figure 3.11.

Under the assumption of the aforementioned hypothesis, it makes sense to
attempt limiting the W+ to its subspace that contains only (or mostly) latent
vectors corresponding to meaningful images. An idea of a simple approach to
do this is to use principal component analysis (PCA [81]). The intuition behind
using PCA for this scenario is to reduce W+ to keep only the directions that
significantly affect the change in images and skip the rest in a hope that the
directions being kept are those that allow adjusting a latent vector to another yet
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still having a meaningful corresponding image.
Next, the number of dimensions (components) to which the PCA should re-

duce the latent vectors from W+ should be decided. Empirically, after several
experiments, it seemed that the results are reasonable with dimension being equal
to 48 for easily reconstructable images, but a larger value was needed for the dif-
ficult9 and eventually, it was set to 256.

The PCA implementation from Sklearn10 requires to first fit the PCA on some
data. For this task, a sample of 10 000 images generated by the generator was
used. The reason for using images generated by the generator instead of the real
images is the fact that the encoder performs better on them but this decision
was not verified by comparing it with fitting on real images. Once PCA is fitted,
it can be used to first transform the latent vector v to v′ in the subspace of
W+, then sample vectors vi from the ball around the resulting point v′ (in the
subspace) and perform inverse transform of all the sampled vectors. Obviously,
the inverse transform is not “loss-less” and therefore it will not lead back to the
vi. Ideally, the “loss” of information should be connected to those components of
vi whose change would break the corresponding image. The results of sampling
random vectors in the subspace of W+, then inverse transforming these vectors
and generating images from them are shown in Figure 3.12.

Figure 3.12: Better results when sampling random latent vectors from the sub-
space of w+.

As can be seen from Figure 3.12 the results are much better (although not very
diverse in this case) than those from Figure 3.11 because now all the generated
images are meaningful and show persons face.

It should be mentioned, that when the images are generated from latent vec-
tors randomly sampled from a nball (instead of the whole space W+) around
latent vector v that corresponds to a meaningful image then the quality drop
does not appear (or at least it is much less significant). However, even in that
case, it is quite difficult to decide a correct value for radius because it seems,
empirically, to be more sensitive than the PCA version (i.e. the difference be-
tween radius producing images which are almost the same versus those that are
corrupted is quite small).

Finally, it should be mentioned that the way how similar images are generated
partially invalidates the statement from 3.4.4 about fine-tuning of the encoder un-
til overfitting being safe. Actually, it is no longer safe because using an overfitted
encoder for obtaining latent vectors on which PCA is fitted may lead to poor

9For an explanation of easy and difficult to reconstruct images, see Section 5.3.
10For more information about Sklearn, visit the project website [82].
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results. Furthermore, notice that after fine-tuning the encoder, the PCA should
be re-fitted because the vectors on which it was previously fitted no longer corre-
spond to the encoder. After realizing that the overfitted encoder is not safe and
also after experimenting with generating similar images for various input images,
the final frequencies for training steps of the encoder, generator (MSE on pixels
of generated and input image) was set to 75 and 1 respectively and the results
will be shown later, in Section 5.3.
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4. Software Architecture
This chapter is concerned with an architecture of a software application that will
allow the user to use the models from previous sections for a task of filler image
generation.

The high-level architecture that was shown in Section 2.3 already revealed
that the user will be controlling the generation of the fillers through a software
application and it remains to show the architecture of this application in a greater
detail. A very high-level look at the software architecture is shown in Figure 4.1.
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upload img

Web Serverrequest

response
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Figure 4.1: An overview of high-level architecture.

Figure 4.1 presents a high-level architecture of the proposed software appli-
cation. The idea is that the application will consist of two main parts: web UI
(frontend) and web server (backend). The frontend part will be handling all the
user interactions transforming them to requests that are then going to be passed
to the server, handling the incoming responses, and subsequently transforming
these responses to results that are then presented to the user. The server is re-
sponsible for handling the requests from the frontend and for sending responses.
When building the responses it will sometimes be needed that the server uses
(consumes) the pre-trained models from Chapter 3.

It is important to mention, that the machine which will consume the pre-
trained models needs to have a CUDA-available GPU because the StyleGAN
model is quite large and it works in channels first mode which requires a hardware
accelerator—in this case, the GPU.

The easiest way how the server can consume the pre-trained TensorFlow mod-
els is that it could load the models directly. As mentioned before, the GPU capa-
bility is crucial, but often CUDA-available GPUs are not part of standard server
installations. This problem could be solved by moving the image generation us-
ing TensorFlow models outside of the server into some separate service (denoted
as TensorFlow model serving in Figure 4.1). Such an approach is more flexible
because it allows it to keep only a single instance of this service running on some
GPU-equipped machine and then there can be a separate server(s) running on
less powerful hardware and communicating with the service through some APIs.

TensorFlow already supports the scenario of serving the models in a separate
container and there already exists a serving system called TensorFlow Serving
[83] but there is a problem with this system—the models in TensorFlow Serving
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are expected to be used for prediction/inference and this is something that is not
sufficient for the purpose of this thesis. One of the reasons why it is insufficient is
that for example, the fine-tuning approach from Section 3.4.4 needs to modify the
generator’s weights and therefore a simple inference is not enough. This reason
makes TensorFlow Serving inapplicable for our scenario and a custom way of
serving the models will be needed.

4.1 Implementation analysis
This section briefly describes all the decisions that were made during the devel-
opment of the application, together with reasoning over other possibilities and
some of the issues encountered and tackled during the development.

4.1.1 GPU cluster

The need for a GPU for running the StyleGAN model has led to a decision to
host the whole application in a computational cluster. Assume a generic cluster
with the following properties:

• The cluster consists of nodes divided into partitions; the user of the cluster
can run jobs on these nodes. Each job is identified by some unique job ID.

• Regardless of the partitions, the nodes are of two categories: frontend nodes
which are visible from the outside of the network (and could be accessed
via e.g. SSH), and worker nodes that eventually run the jobs.

• The worker nodes inside the cluster are managed by an arbitrary resource
manager with an additional feature of running jobs as containers where the
actual job is running.

• Worker nodes are of two types: gpu and cpu where the former are equipped
only with CPU while the latter also has a CUDA-available GPU(s).

• Jobs are queued to partitions which, among others, define a priority of
the job which could be one of high priority, low priority, extra-low priority
having runtime time limits equal to, e.g., 1 hour, 24 hours, and 7 days
respectively.

• Cluster nodes are accessible through cluster-local connection and host OS
can connect to the container.

Note that hosting the application in the computational cluster is by no means
necessary, any machine with a suitable, sufficiently powerful GPU card can sub-
stitute for it, but on the other hand, it should be emphasized that the intention
to run the application in the cluster highly affected the overall architecture of the
application (for some specific reasons described in the rest of this section).
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Distributing the components among cluster nodes

Because the StyleGAN needs a GPU for both the inference (channels first format)
and training, it must be served by one of the gpu nodes, while the rest of the
application, especially the frontend part may run on an arbitrary node, preferably
on some cpu node in order to prevent blocking of gpu nodes1. This kind of
distribution is illustrated in Figure 4.2.
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Figure 4.2: Illustrative distribution of application components among the cluster
nodes.

In Figure 4.2, notice that the backend part of the application is not tightly
bound with any node yet and there are three possible scenarios where it could
run: on a separate cpu node, on a cpu node hosting the frontend server or on
the gpu node where TensorFlow models will be served. Running backend on a
separate gpu does not seem to make any sense. In the case that the backend
server runs on the same cpu node as the frontend server does, these two servers
could actually be merged into a single server that corresponds to a frontend server
as used in common terminology. However, if they are not running on the same
cpu node then there is a strict distinction between the frontend server and the
backend server as described below.

Notice that there is a slight discrepancy between the terminology that is used
in this thesis and commonly used terminology when it comes to the distinction
between frontend and backend. The clarification of the terms and their meaning
in the context of this thesis follows:

• The term web UI corresponds to a web user interface, i.e. it is more or less
the same as the commonly used term frontend.

• The term frontend server2 is more or less the same as the commonly used
term backend. This means, that the frontend server is a server that is
responsible for handling requests that are coming from the web UI.

1This decision assumes that there are more cpu nodes than gpu nodes or that demand for
gpu nodes is higher.

2In this thesis also sometimes referred to as just a frontend.
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• The term backend server corresponds to another server that is responsible
for handling requests that are coming from a different source than directly
from web UI (e.g. from the frontend server).

Cluster-specific difficulties

Running the application in the cluster brings some specific difficulties and it is a
goal of this sub-section to briefly describe them and their possible solutions.

Because the cluster is managed by a resource manager, it is neither possible
nor desirable to run any program on a worker node in another way than by
queueing it as a job by using the resource manager (D1). This goes a hand in
hand with another difficulty and that is, the fact that runtime of jobs is limited
(see Section 4.1.1)(D2).

Another difficulty is that only the nodes from the frontend category are acces-
sible from the internet, i.e., it is not possible to directly connect to the container
running as a job on some worker node (D3).

With all these difficulties in mind, it is obvious that the application’s archi-
tecture will need to be adjusted so that it matches these restrictions and this is
the main purpose of the next Section 4.2.

4.2 Architecture revised
As was already mentioned above, hosting the application within the cluster brings
some difficulties which will impact the architecture of the whole application.

To address difficulty D1 both frontend server and backend server will need to
run in containers which will be queued as jobs using the resource manager. This
means, that once resources are ready for running the job, the container will start
running and so will the server inside it. However, queuing these tasks manually
would be rather impractical and this leads to a notion of some kind of master
node or master daemon which will be running on a cpu node (with extra-low
priority so it can be a long-running job) and will be responsible for interacting
with the resource manager in order to queue jobs that will run either frontend
server or backend server containers.

The master daemon could be utilized (or rather exploited) to solve the dif-
ficulty D3 because running it on a node from the frontend category makes it
accessible from the internet. Therefore the master daemon could tunnel or for-
ward all the traffic to the frontend server running in the container. Furthermore,
the master daemon could also help with solving the third difficulty D2 by repeat-
edly checking if the appropriate containers are running and starting them if they
are not. The communication between these components could be done by using
any kind of APIs (gRPC, REST, etc.).

Running the master daemon on a node from the frontend category thus being
outside of the worker nodes managed by the resource manager allows it to run
for (almost) an arbitrary amount of time. The frontend container running on
a cpu worker node can run for up to 7 days (under extra-low priority) which
is more than sufficient (with automatically re-starting it once master daemon
detects that the frontend container stopped running). However, the problem is
with the container hosting the StyleGAN node which needs to run on gpu node,
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preferably under high priority. The reason for high priority is a belief that gpu
nodes are generally highly utilized so running under low priority would cause
frequent job suspends and waiting for resource allocation.

Note: It is important to mention that after dealing with all these issues it was
decided to merge backend server with TensorFlow model serving and run them
on a single node. This is supported by the fact that it turned out that the serving
itself also needs some kind of API and that the originally intended backend did
not offer that much functionally beyond simply calling serving API’s, therefore it
is preferred to trade flexibility for greater simplicity in this case (also because this
application is just a proof of concept). The TensorFlow serving merged with the
backend server will be collectively referred to as just backend server or backend
container. This final architecture is illustrated in Figure 4.3.
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Figure 4.3: The final distribution of application components among the cluster
nodes.

The easiest way of managing the runtime and computations of the backend
server would be to think in terms of tasks—single units of computation—where
each task would run as a single job3 managed by the cluster resource manager
and running the backend server (i.e., having a separate backend server for each
task). This would greatly simplify the overall architecture because it would be
possible to reuse the queue and scheduling mechanism from the resource manager.
However, this simplification comes at a substantial price and there is a major
drawback to this approach—the overhead connected with creating the job, waiting
until it starts running (it takes a few seconds) and then waiting for container
initialization, most notably, waiting until the code within the container loads the
pre-trained StyleGAN model and until the TensorFlow itself gets loaded (GPU
version takes some time to load, because of loading CUDA libraries). Overall,
the overhead takes a vast majority of total runtime, e.g. when the time elapsed
between queuing the job and completing the job was approximately 20 seconds,

3Note the distinction between job and task. Starting with this section, the job will refer to
the job in the context of the cluster resource manager while the task will be a smaller unit of
computation, i.e. single job could possibly perform several tasks.
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the time needed for the prediction/inference itself was only about 1 second and
the rest of the time was the overhead.

Therefore it seems beneficial to propose a different, more effective approach
instead of creating a job for every task. The idea is that some functionality of the
resource manager job queue could be reimplemented directly inside the backend
container. This would allow the backend container to be running as a single
job and multiple tasks would be queued and handled directly within the backend
container in the single job, therefore sharing the total time overhead and reducing
a per task computation time. The problem with this approach is that the jobs
running on gpu nodes should not run for a very long time and shorter jobs are
preferred to long-running jobs as was already described above.

Reusing a single backend container for multiple tasks brings great flexibility
for building priorities and other extra rules on top of the custom task queue in-
side the backend container. For example, it would be useful to somehow decide
a “right” number of concurrently running jobs (i.e. having several backend con-
tainers running) and then distribute the tasks between these jobs/containers so
that the total balance is optimized. Also note, that each backend job will run on
a different node which itself may have several CPUs and sometimes also several
GPUs available so it would be possible to utilize the resources as well as possible.
The idea is to create some task queue inside each backend container together
with a queue of threads and assign the tasks to these threads. For a better intu-
ition, the task could be, for example, “generate 10 images”. However, it should
be emphasized that this is something that is out of the scope of this thesis and
because this application serves only as proof of concept, this feature is not going
to be implemented.

After deciding that there should be a single running backend container (job)
for multiple tasks, it remains to decide when this container should be started.
An extreme approach would be to have a single job running a backend container
on a gpu node and make the master node ensure that there is always at least a
single such running container. Then the tasks would be sent to this container and
processed. The main issue with this simple approach is that it is wasteful to force
the container to be forever running. Instead, it makes more sense to start the
container on-demand. In this case, the demand might arise when the user starts
interacting with a frontend. Therefore the idea could be formulated as “run the
backend container once the user starts interacting with the frontend and then keep
it running until timeout (in order to make it simple) with a possibility to reuse the
same job (running backend container) for future tasks”. This adjustment brings
a performance improvement in a form of reduced resource utilization (because
the nodes are idle until the user starts interacting).

What might seem restricting is the 1-hour limit for high-priority jobs running
on gpu nodes. However, it eventually turns out that the 1-hour limit is not
that big problem, because a typical user interaction with the application will
probably be shorter than 60 minutes. For the cases when the user interaction
lasts longer than 60 minutes, the current runtime of the container should be
monitored carefully and when it gets close to 60 minutes, the container should be
restarted (cancel the job and start a new one) or do some kind of “double-job”
approach by letting the current container running but starting sending all the
tasks to the newly started container. The word phrase “close to the end” means
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that it should be done x seconds before reaching 1 hour where x is such a number
that there never happens a situation that the backend job gets canceled during
a computation. Because the most time-consuming task is fine-tuning which is
limited to ≈ 10 minutes, it makes sense to choose something like x = 11 · 60
seconds.

Another problem that should be solved is how to handle multiple users. Ba-
sically, there are two solutions to this problem, either give each user a single job
with running backend container or try to schedule tasks from multiple users into
a single job with running backend container. The sharing of the running backend
container from the latter approach could eventually bring extra flexibility but only
when assuming that there was some “smart” scheduling mechanism that would
distribute the tasks between multiple running containers because using only a
single backend container is problematic (consider, for example, the fine-tuning
task which could take up to 10 minutes during which other users would not be
able to do anything) and this is certainly something that is out of the scope of this
thesis. Giving each user a separate running backend container brings a benefit
that potentially tasks from several users could run concurrently (although this
number is still limited and if there is a large number of users, some of the users
would be stuck waiting for a running container job being executed, but still, there
would be more parallel ways than with the previous approach where there was
just a single, serial, way).

After considering all the observations from previous paragraphs together with
their implications, it seems like a good compromise to give each user a single
running backend container (within a single job) and then run multiple tasks
(sequentially) for the user within this container.

The summary of the architecture of jobs and tasks is illustrated in Figure 4.4.
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Figure 4.4: Distribution of tasks and jobs among the nodes. The master daemon
is running on a frontend category node and it is responsible for running backend
and frontend container jobs via interaction with the resource manager (which
is directly responsible for their lifetime management). Apart from using the
resource manager, the master daemon also tunnels API communication between
the frontend server and backend server. When a task is created (upon a request
from the frontend server) it is passed to the backend server corresponding to the
user initiating the request. The backend server is running in a container on the
gpu node and the tasks it receives are queued into a task queue. The tasks are
popped from the task queue and assigned to available threads4(one task for a
single thread at a time).

Now, it remains to describe how the user can request some results, how to
deliver the results back to the user, and overall, how will the communication
between components work. Furthermore, the notion of “user” should be clarified.
All of this information will be given in the following sub-sections.

4The current proof of concept version uses only a single thread for this purpose.
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4.2.1 Notion of the user and security concerns
The above paragraphs frequently used a rather vague term of the user. It is vague
because the application actually does not work with users in the right sense—
like user accounts or something similar—because it would only make things more
complicated. Instead, the user is represented by a single session ID which is gen-
erated when the frontend page gets loaded (new session every time it is reloaded).
Note that the term session ID may have a slightly different meaning in the con-
text of this thesis when compared to common terminology. The term user in the
context of this thesis refers either to the user as a person or to this session ID.
The session ID is stored in cookies in an encrypted form.

Both frontend and backend containers also have their own IDs assigned. For
the backend container, the ID is the same as the session ID of the user to which
the backend container is allocated. The frontend ID is generated every time a
new frontend container starts running.

The frontend ID also serves as a kind of “protection”5 from obtaining requests
from outside of the local network, because every request that does something
sensitive (e.g. queue job using resource manager) requires a correct frontend ID
to be passed as arguments/data of the request.

Communication between components

It was decided that all the components will communicate via a network using a
simple REST-like API where each component will have a set of defined endpoints
and it could send requests to endpoints of other components to obtain some
results (as a form of response).

The idea is that the user will request the results (somehow) and then this
request will transmit all the way to the backend container where it is processed,
results are generated by invoking the TensorFlow model and then should be sent
back to the user. The results could be either sent directly to the frontend or
by first sending them into a master daemon and then to the frontend. Even
though the former approach seems more efficient, the latter approach seems more
flexible and therefore it will be preferred. However, there is a problem with this
idea, namely that it is not that easy to send the results back in the response,
because the computation of the results (task) on the backend side (corresponds
to invoking the TensorFlow model for inference/prediction) may take some time
(remember the fine-tuning approach which could take up to 10 minutes) therefore
making it very probable for requests to timeout. One possible approach to tackle
this issue is to return the task ID instead of the results itself and define another
set of endpoints that could be used for querying the state of the given task or
the result of that task if it is available. Another approach could be—instead of
actively querying the backend server for results of the task—to let the backend
server notify the frontend once the task is done which seems like a better fit for
the purposes of this application. Once the backend server notifies the frontend
(with the master daemon in the middle) about task completion, the frontend

5However, it is important to state that this application, by no means does not try to solve
all the security challenges as it is out of the scope of this thesis and this application serves only
as a proof of concept.
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could serve this information to the user. The communication of the components
illustrated on an example of requesting some results is shown in Figure 4.5.
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Figure 4.5: Communication between the components.

As can be seen in Figure 4.5 a user’s interaction with web UI may lead to
sending a request to the master daemon which is then forwarded to the frontend
server. Notice, that once the request arrives at the frontend server it is passed
through the master daemon (steps 3, 4) down to the backend server where the
actual task is created, queued, and eventually executed (steps 5, 6). The ID of
this task is then returned to the user (step 3∗). While the task is running, the
backend server sends notifications about its progress and/or results (step 7).

4.3 Implementation
This section very briefly summarizes some of the implementation details of the
application together with used technologies and a sketchy look at the APIs. Note
that the implementation is a proof-of-concept only and several additions or im-
provements will be necessary to make it into a production-ready state.

4.3.1 Used technologies
All the server parts (frontend server, backend server, and master daemon) are
running the Flask6 web framework which was chosen mainly because it is very
simple for writing a set of API endpoints and it is built for Python which is ideal
due to the fact that the backend server will need to load TensorFlow models
(and all TensorFlow code in this thesis is written in Python). Furthermore, the

6See Flask website [84] for more details about the framework.
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requests library is used for sending requests and the subprocess module is used
for executing OS commands (related to the resource manager).

The web UI part is implemented in Javascript using BootstrapVue7 framework
which was chosen mainly because it provides a lot of functionality and built-in
responsible components (pagination, popovers, progress bar, and so on), making
it quite fast to prototype the UI part of the application without having to use
too many additional dependencies (packages or libraries).

4.3.2 Master daemon
Master daemon node defines a set of endpoints which are intended to be invoked
from frontend server—e.g. start-of-interaction which ensures that the user
gets assigned a running backend container—or from the backend container, e.g.
on-ready that notifies that the backend container is running and ready. It also
defines a “catch-all” endpoint that simply forwards all8 the requests to the fron-
tend server (so that it is accessible from the internet). Master daemon is also
responsible for maintaining a single running instance of the frontend container.

Master daemon also defines endpoints9 that behave as a callback for ob-
taining notifications (events) from the backend container (e.g., on-result and
on-progress which are responsible for handling result and progress notifications
from the current task respectively.). In order to silently forward this information
directly to the web UI, Javascript Event Source10 is used.

As it was already described in sub-section 4.2.1, the user is identified by a ses-
sion ID which changes every time page is reloaded. Remember that each backend
container is paired with the user (via session ID) and that it is started upon the
user interacting with the frontend. Specifically, this would mean that every time
the user reloads the page, a new backend container would be started which is
truly something undesirable. To prevent this behavior, the master daemon tries
to behave “smart” by first looking at the “old” session ID (before assigning the
new one upon page reload) and if it has a backend container paired then this
backend container will be reused for the new session ID (i.e., no new container
will be started).

4.3.3 Job management
Job management is a module that provides job management-related functionality,
e.g. running jobs and some abstraction over tasks (remember that a task is
a single unit of computation while the job is a job used by the cluster resource
manager, i.e. some running container in this case). Tasks API is a wrapper above
resource manager API (in the context of a particular cluster that was used, the
resource manager is SLURM), i.e. it allows to start the backend and to send
tasks to the backend. Each task is paired with a task ID and when some task is
started, its task ID is returned back to the user.

7See BootstrapVue website [85] for more details.
8Unless there exists a more specific endpoint matching the request.
9It would be better to define them in the frontend server but their forwarding would be

quite tricky to implement.
10For more information, see the following website. [86]
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4.3.4 Backend server
The backend server acts as a TensorFlow model serving with performing some
additional duties. It defines a set of endpoints responsible for invoking loaded,
pre-trained models in a particular way to produce results. Because the invocation
and production of the results may take some time, the backend server also posts
“events” to the web UI (via master daemon). The two events are on-result11

and on-progress whose callbacks were already mentioned above. It is worth
mentioning that the payload of the result event contains the names of the result
files (images in this case) and the payload of the progress event is simply a
percentage of the current task’s progress. These files are accessible because they
are located in a mounted folder12 that is accessible from within the whole cluster.
The backend server also notifies the master daemon when it is ready and running
(after loading pre-trained models).

4.3.5 Frontend server
The frontend server is tied with the web UI and provides data for the web UI
to display by defining a set of endpoints which are called from the web UI
(Javascript). An example of requests originating from the web UI which the
frontend server handles are file uploads. It also defines various endpoints which
forward the request further to the master daemon (which then forwards it to the
backend container, e.g. request for image generation).

4.3.6 Web UI
The web UI part is implemented in JavaScript and it uses Fetch API13 to send
requests to the frontend server (via master daemon). It also listens for various
events like on-ready using Event Source and then updates UI based on these
events, for example, the user is only able to generate results when the backend
container is running, otherwise, the button for it is disabled.

WebUI also handles file saving (using FileSaver.js14 library), saving individual
filler images as a zip file (using JsZip15), and generating an image of the whole
lineup (using Canvas).

11The names on-result and on-progress are heavily overloaded because they are used at
various levels, namely: as callback names and as event names (at web UI part, backend part
and frontend part).

12Although it is surely not ideal, it is sufficient as a proof of concept.
13See the following website [87] for more details about Fetch API.
14Visit the following website [88] for more details.
15Visit the project website [89] for more details.
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5. Evaluation
This chapter summarizes the results from all the individual parts of this thesis.
First, the results of the generator are evaluated on a user study presented in
Section 5.1. Second, the Section 5.2 briefly summarizes the results of the two
attribute prediction models. Finally, the results of the encoder together with
the results of the entire architecture—after building the individual components
together—are presented in Section 5.3. Only the results of the final model variants
are presented.

5.1 Generator’s results
For evaluating the quality of images produced by the generator, a user study was
constructed to measure to which extent do the users (or participants in this case)
consider these images as artificial. The participants of the study were asked to
go through several pages of images and select all the photographs they think do
not show a real person. The website with the user study is shown in Figure 5.1.
A more detailed description of the construction of these pages of images follows.

Figure 5.1: Website with the user study. The noise was added intentionally to
the images for the sake of anonymization.
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5.1.1 Evaluation protocol
In this study, there were two databases of images, namely: Dreal and Dfake

consisting of real person images and generated images respectively. The Dreal

database contains a sample of 8000 images taken from the Faces dataset, while
the Dfake contains 100000 images generated by the generator. Note that the Dfake

contains random samples, so there was no additional filtering of the generated
images. Especially, this means that there could be images of rather low quality
as those that are shown in Figure 5.2.

Figure 5.2: Low quality images in the Dfake dataset.

Even though images with such a low quality are present in the dataset, their
frequency is rather low (at most a few hundred out of 100000 images). Further-
more, these low-quality images could be easily filtered out by considering only
images with a discriminator score above some threshold which leads to results
shown in Figure 5.3.

Figure 5.3: High quality images in the Dfake dataset.

Figure 5.3 shows the top 5 images from the generated dataset based on the
discriminator score.

In the user study, each participant has been shown 20 pages (lineups) of
images where each of them was consisting of 16 face images. In each lineup,
one of the images was the seed image (corresponding to a suspect in the real
scenario) and the remaining 15 images were fillers. The fillers were of two types:
generated person fillers taken from Dfake and real person fillers taken from Dreal.
The number of generated fillers was chosen randomly as an integer from interval
nfake = [5, 10]. The rest of fillers (nreal = 15− n) were real persons.

Given the seed image, a sparse matrix containing similarities with both gener-
ated and real images was generated. For both Dreal and Dfake, 500 most similar
images was considered out of which nreal and nfake images was sampled respec-
tively. The reason for sampling these nreal and nfake images instead of just taking
top nreal and nfake is to prevent choosing images showing persons who are too
similar to each other.

The similarity of the two images was measured by cosine similarity between
feature vectors of these images. The feature vectors were outputs of the last
but one layer taken from a pre-trained VGG-Face model. Although this worked
quite well for the images from Dreal, this was quite problematic for the images
taken from the Dfake because the similarity could be small for images of bad
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quality. The aforementioned issue with simple cosine similarity of feature vectors
(will be referred to as sim) has lead to adding two more approaches: simDisc
and simSimDisc. The simDisc approach deals with similarities multiplied by
discriminator score (how much the discriminator thinks that the image is real)
with an intent to take image quality into account. Similarly, the simSimDisc
approach works by using sim · sim · Disc for similarity in order to mitigate
an issue of selecting images that are too uniform (this was an issue of simDisc
approach because very similar images usually had very similar, possibly high,
discriminator scores). The aforementioned effect of choosing images with similar
discriminator scores is illustrated in Figure 5.4. Finally, each of the lineups was
generated in three variants by using all these three similarity approaches, but
only one of them (selected at random) was eventually displayed to the user.

Figure 5.4: Images in the Dfake dataset annotated by their discriminator scores.
Notice, that all these images have very similar discriminator scores and they tend
to depict persons of a very similar appearance, clothes, or image background.
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5.1.2 Evaluation results
In total, 81 respondents participated in the survey and completed at least two
pages of the survey. The participants were annotated by their gender, age group,
education, ethnic group, and a special flag called “ML expert” which symbolizes
whether the given user has some experience with machine learning or not. The
histograms of these categories are shown below in Figures 5.5, 5.6, 5.7, and 5.8.
The results in tables throughout this section were rounded to three decimal places.

Figure 5.5: Gender Figure 5.6: Age groups

Figure 5.7: Education groups Figure 5.8: ML experience

Summary of the results including accuracy, precision, and recall averaged over
all scenarios are shown in Table 5.1.

Users Lineups Images Fake
images

Identified
fake

images

Real
images Accuracy Precision Recall

81 1516 24 256 12 296 4 801 11 960 0.599 0.650 0.389

Table 5.1: Average accuracy, precision, and recall of the user study participants.

From Table 5.1 it can be seen that the accuracy is around 60 %, therefore,
showing that the users were slightly better at detecting fake images than guessing
it on random. Furthermore notice, that the precision is much larger than the recall
(65 % versus 39 %) which means that most of the images users have selected as
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fake were really fake. On the other hand, the low recall shows that a lot of fake
images escaped from participants’ attention.

What is interesting is the fact that there were quite high deviations between
the individual users as can be seen from Table 5.2.

User Images Fake
images

Identified
fake

images

Real
images

Identified
real

images
Accuracy Precision Recall

0 320 161 4 159 117 0.378 0.087 0.025
1 320 167 5 153 126 0.409 0.156 0.030
80 320 171 137 149 136 0.853 0.913 0.801
81 320 172 142 148 113 0.797 0.802 0.826

Table 5.2: Results for two participants with the highest score and two participants
with the lowest score.

Table 5.2 shows results for four respondents sorted by recall from lowest to
highest. First, two rows are respondents with lower accuracy and the last two are
those with the highest. From these results, it seems that the differences between
the users are tremendous. All these four users were males, what is interesting
is that those two with the highest recall were older (age groups 50, 60+ versus
40) and had university education group whereas those with the lowest recall had
high school education group. Nonetheless, the results should not be taken very
seriously because the sample is too small.

The results comparing different similarity approaches during filler selection
are shown in Table 5.3.

Ap-
proach Images Fake

images

Identified
fake

images

Real
images

Identified
real

images
Accuracy Precision Recall

sim 8048 3794 1277 4254 3389 0.580 0.596 0.337
simDisc 8480 4761 2000 3719 3092 0.600 0.761 0.420

sim-
SimDisc 7728 3741 1524 3987 3256 0.619 0.676 0.407

Table 5.3: Results for the individual similarity approaches.

As can be seen from Table 5.3 the sim similarity approach slightly outperforms
the other two approaches in all three measures (accuracy, precision, and recall).

The performance was also compared between early and late performed selec-
tions. For this reason, the 20 lineups per user were indexed by IDs 1, . . . , 20, and
then the results over all the users were taken and grouped by this ID. In other
words, the lineups were indexed by (page) numbers corresponding to the order
in which they were presented to the user. The accuracies for each individual ID
are shown in Figure 5.9.
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Figure 5.9: Accuracies for each lineup ID.

As can be seen from Figure 5.9 the accuracies seem to be changing at random,
suggesting that the users did not learn how to identify fake images during the
experiment, that is, there is no significant difference between early and later
performed selections. Note that the order of lineups was the same for all the
users (e.g. lineup with ID 5 always had the same seed image) therefore it seems
that the difference in the difficulty of the individual lineups completely hidden
any effect of learning in time.

Furthermore, there was no significant difference based on the gender of the
participants. Based on participants’ age, it seems that users below the age of 30
performed slightly better than those aged above 30.

Comparison of results based on whether the user has or has not some ex-
perience with machine learning did not reveal anything special. Although the
users with machine learning experience seem to be performing slightly better,
the difference between these two groups was not significant. However, this could
also be caused by the fact that the number of participants with machine learning
experience was rather low.

Results grouped by education group or ethnicity were not analyzed because
the amount of data was not high enough for drawing any meaningful conclusions.

Finally, the images were inspected in greater detail with an intention to reveal
which images are often correctly identified as fake, which are usually not correctly
identified, and also what are the most significant differences between these two
groups. Interestingly, some of the images were never identified correctly by the
users while other images were almost always identified. Below in Figure, 5.10 are
two plots—left and right—showing images that were least frequently and most
frequently identified—as artificially generated—by the user. The threshold on
how many times each image in the figure was displayed to users (lower bound)
was set to 25. Every image in this figure is annotated by image number, the
number of times the person was identified, and the total number of times the
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person was shown, written in the form nidentified/nshown.

(a) Least frequently identified (b) Most frequently identified

Figure 5.10: Comparison of most frequently and least frequently identified images.

Notice that for the most frequently identified images from the figure above, it
seems that they often show some small defects. For example, the glasses shown in
images 14 and 21 seem very artificial and unrealistic which may be a hint to the
respondents that these images were generated. Some of the persons were having
an overall weird appearance, e.g. 18, 22 (which had some minor deformations,
generally this was rather rare in the dataset). The last defect were asymmetric
eyes where either one eye was looking in a different direction than the other or
the eyes were of a slightly different size/color. Some minor eye defects could be
observed in images 14 and 21. Another defect that was present in some of the
generated images not displayed in Figure 5.10 were weird-looking hair.

The results of the least frequently identified images from left side of Figure
5.10 are rather interesting. What can be seen from these results is that almost
all the images had slightly blue or somehow else colored backgrounds, instead of
pure white or very bright backgrounds which were prevalent in mostly identified
images. The reason that these images were not frequently identified could be the
fact that these background effects were often a case with real, physical passports
or when such documents were scanned thereby successfully confusing the respon-
dents. It also seems that these images were not as sharp or clear as those from
the easily identifiable ones from the right side of Figure 5.10.

To summarize the user study, it seems that the generated images have quite
a good quality because the participants were not much better at detecting the
fake images than if they would only be guessing them. Moreover, the low recall
suggests that if the participants are shown a large enough sample of images then
there will be enough fake images that will not get revealed by the participants.
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Based on the additional feedback from some of the participants, it seems that they
usually mark as fake those images, that are too uniform (e.g. no imperfections),
too similar to each other (because real persons are usually not so similar), or
show a loss of detail in some parts (e.g. loss of detail in hair, a weird look of ears
or some disproportion of the eyes).

5.2 Attribute prediction models’ results
The performance of the attribute prediction models was measured by means of
their recall, precision, and accuracy. Because both FairFace and CelebA models
work in multi-label settings, these metrics were evaluated for each of the labels
separately. The performance of the final CelebA model, evaluated on the devel-
opment dataset is shown in Table 5.4. Note that all the results in this section
were rounded to three decimal places.

Attribute Accuracy Precision Recall

5 o Clock Shadow 0.932 0.623 0.840
Bags Under Eyes 0.843 0.610 0.624

Bald 0.989 0.680 0.851
Bangs 0.956 0.816 0.920

Big Lips 0.725 0.585 0.355
Big Nose 0.826 0.587 0.638

Black Hair 0.898 0.790 0.839
Blond Hair 0.952 0.776 0.907
Brown Hair 0.875 0.635 0.780

Chubby 0.944 0.491 0.699
Double Chin 0.955 0.504 0.660

Goatee 0.965 0.600 0.880
Gray Hair 0.978 0.633 0.812

Male 0.984 0.981 0.977
Mustache 0.964 0.531 0.670

Narrow Eyes 0.864 0.514 0.525
No Beard 0.953 0.986 0.960
Oval Face 0.742 0.567 0.511

Pointy Nose 0.753 0.570 0.539
Receding Hairline 0.928 0.555 0.707

Sideburns 0.972 0.677 0.848
Straight Hair 0.842 0.621 0.633
Wavy Hair 0.859 0.847 0.734

Table 5.4: Accuracies, precisions, and recalls of the individual attributes evalu-
ated on 128× 128 CelebA dataset.

As it was already mentioned in Chapter 3 this model was designed in such
a way that a reasonable recall is achieved. Otherwise, it would be very easy
to achieve very high accuracy with very high precision but an extremely low
recall. This is probably due to the fact that most of the attributes are present
rarely in the data and therefore it is difficult for the model to learn1. To better

1However, this is not true for all the attributes, see e.g. Bald which has quite high recall
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quantify this phenomenon, see Figure 5.11 which shows the number of positive
examples of each of the individual attributes within the whole CelebA dataset.
Another possible problem why some attributes are harder to learn might be the
low resolution of the images (128× 128 pixels) which simply makes it difficult for
some of the attributes to be clearly visible (e.g. Big Lips).

Figure 5.11: Number of positive examples for each of the attributes. Total number
of images is around 200000.

albeit being very rare in the data.
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The FairFace model was evaluated in a similar way as the CelebA model and
the results for the ethnicity attributes can be seen in Table 5.5 while results for
the age attributes are shown in Table 5.6.

Ethnicity group Accuracy Precision Recall

Black 0.960 0.856 0.857
East Asian 0.924 0.706 0.799

Indian 0.931 0.770 0.714
Latino Hispanic 0.867 0.556 0.493
Middle Eastern 0.906 0.562 0.679
Southeast Asian 0.907 0.659 0.588

White 0.900 0.738 0.736

Table 5.5: Accuracies, precisions, and recalls of the individual ethnicity groups
evaluated on 128× 128 FairFace dataset.

Age group Accuracy Precision Recall

0− 2 0.992 0.753 0.814
3− 9 0.952 0.795 0.827

10− 19 0.898 0.531 0.453
20− 29 0.796 0.647 0.712
30− 39 0.786 0.496 0.440
40− 49 0.867 0.461 0.449
50− 59 0.921 0.456 0.447
60− 69 0.964 0.411 0.539

70+ 0.990 0.515 0.424

Table 5.6: Accuracies, precisions, and recalls of the individual age groups evalu-
ated on 128× 128 FairFace dataset.
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To gain a better interpretation of the miss-classifications, Figure 5.12 and
Figure 5.13 show confusion matrices for age and ethnicity respectively, both eval-
uated on the development portion of the FairFace dataset.

Figure 5.12: Age confusion matrix (on the development dataset).

Figure 5.12 shows that miss-classifications happen almost exclusively in neigh-
boring classes. This observation is positive because it means that the model
does not make serious mistakes. Furthermore, these miss-classifications could be
caused by the age groups being too coarse making it especially difficult to classify
at-border cases (e.g. someone aged 30 might be confused with someone aged 29,
etc.). In the same way, as the model makes these little mistakes, people often
also have problems classifying the age of an individual with reasonable precision,
therefore the model’s results seem to be aligned with the way how people perceive
age.
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Figure 5.13: Ethnicity confusion matrix (on the development dataset).

From Figure 5.13, the following observations could be seen:

• Model sometimes miss-classifies White with Middle Eastern and vice versa.

• Model sometimes miss-classifies Southeast Asian with East Asian and vice
versa, but the former misclassification is more frequent than the latter.

• Model sometimes miss-classifies White with Latino Hispanic and vice versa,
the latter more frequently than the former.

It is not that surprising that these miss-classifications happen and similarly to
the age miss-classifications, they are not that serious. For example, differentiating
between East Asian and Southeast Asian is quite a challenging task even for peo-
ple. Similarly differentiating between White and Middle Eastern/Latino Hispanic
is also quite difficult on its own without mentioning that on some photographs
from the dataset the assignment of these classes is rather ambiguous. The impor-
tant observation is, again, that the model does not perform any serious mistakes
by miss-classifying e.g. White with South/East Asian or Black with South/East
Asian, etc. What might seem interesting is that the miss-classification between
East Asian and Southeast Asian is far from being symmetric. One possible reason
for this could be the fact that East Asian is actually more present in the training

88



data2 than Southeast Asian is, therefore the model might tend to classify into
this class more frequently. The distribution of the individual ethnicities is shown
in Figure 5.14 while the distribution of the age groups is shown in Figure 5.15.

Figure 5.14: Distribution of ethnicity
groups.

Figure 5.15: Distribution of age
groups.

As opposed to the ethnicities, the age groups are not very balanced in the
dataset. Nevertheless, the model is still able to perform quite well even on the
very rare groups of 0 − 2 and 70+ maybe because these two classes are in some
sense outliers (they contain very old and very young people who are very different
from anyone else in the dataset).

Finally, both CelebA and FairFace models were used to analyze attribute dis-
tribution on the Faces dataset and also on the dataset consisting of the generated
dataset. For this purpose, a sample of 100 000 generated images was taken and
attributes for each image were predicted.

Once these images were annotated by attributes, the dataset could be queried
for images having a certain attribute. Consult the Figures 5.16, 5.17, 5.18, 5.19,
5.20 and 5.21 for examples.

Figure 5.16: Generated images annotated by 10− 19 age group.

Figure 5.16 shows 5 images of persons whose age was predicted to be in 10−19
image group. These 5 images are the ones with the highest discriminator score
out of all images from the same age group. These results seem reasonable because
all these people could possibly be aged between 10 and 19 years old.

2Similar ratio of these two classes is also present in the development portion of the dataset.
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Figure 5.17: Generated images annotated by 50− 59 age group.

Figure 5.18: Generated images annotated by 70+ age group.

Figures 5.17 and 5.18 show people whose age was predicted to be in the
50− 59 and 70+ age group respectively. For some of these images, the age could
be subjective or controversial, but it truly seems that the people from 70+ group
look older than those who were assigned to the 50− 59 group.

Figure 5.19: Generated images showing females with highest discriminator score.

Figure 5.20: Generated images showing females with slightly lower discriminator
score.

Figures 5.19 and 5.20 show images of women. Notice that the women from
Figure 5.19 look quite boyish (short hair, face). This seems to be caused by the
images having a very good discriminator score combined with the fact that most
of the images with this discriminator score were men. To produce a more diverse
set of women, images with lower discriminator scores should be taken and an
example of such images is shown in Figure 5.20. The women in this second figure
look more feminine than those from Figure 5.19 (long hair, feminine face).

Notice that all the women images from Figures 5.19 and 5.20 had dark hair.
For completeness, the Figure 5.21 shows five images of women with blonde hair.
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Figure 5.21: Generated images showing blonde females.

Histograms showing the overall results for the Faces dataset and generated
dataset are shown in Figures 5.22 and 5.23 respectively.

Figure 5.22: Number of positive examples for each of the attributes. Total number
of images is around 90k. Taking argmax of hair when all hair predictions are
< 0.5. Evaluated on Faces dataset.
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Figure 5.23: Number of positive examples for each of the attributes. Total number
of images is around 100k. Taking argmax of hair when all hair predictions are
< 0.5. Evaluated on a sample of 100000 randomly generated images.

Figures 5.22 and 5.23 suggest that the attributes in the generated dataset
are distributed similarly to the attributes in the Faces dataset. In other words,
this indicates that the generator reproduces or mimics what it was trained on.
Furthermore, this signalizes that the generator might not be able to generate
anything above the limited set of images it has seen. However, at the same
time, it is believed that the generator is at least able to generate combinations
of attributes that were seen in the training data even if they were quite rare,
therefore making it able to generate those rare persons assuming that enough
images are generated. Nevertheless, it should be mentioned that some of the very
rare combinations may actually not be present and the reason they are present
in the heatmap might be because of attribute classification errors. In any case,
the generator’s ability to generate rare cases could be improved by training the
generator on a more diverse dataset as is often the case in practice (consider, e.g.
FFHQ dataset used in StyleGAN).
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5.3 Encoder’s results
The main challenge of the encoder is to allow for a good reconstruction of the
input image. Several such reconstructions are shown in Figure 5.24. The input
images throughout this and the next section were taken from Face Research Lab
London Set (FRLLS) [90] dataset.

Figure 5.24: Examples of input image reconstructions. Example input images
are from FRLLS dataset.

The first row of the 5.24 shows 5 input images img1, . . . , img5, where each of
these images was taken and passed through the encoder E to obtain five latent
vectors wi = E(imgi) ∀i ∈ 1, . . . , 5. Finally, these latent vectors were taken and
passed through generator as img

′
i = G(wi) to produce the final reconstructions

which could be seen in the second row.
Even though all the reconstructions seem to be quite reasonable in terms of

image quality, they can be slightly improved by using the fine-tuning approach
from Section 3.4.4. This means, that for each input image a pre-trained encoder
is taken, fine-tuned to that single image, and then the image reconstruction is
performed. The results could be seen in Figure 5.25.

Figure 5.25: Examples of input image reconstructions with fine-tuning. Example
input images are from FRLLS dataset.

Figure 5.25 compares the reconstructions for encoder with and without fine-
tuning. The first row shows the input images, the second row shows the re-
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constructions with fine-tuning, and finally, the last row shows ordinary (without
fine-tuning) reconstructions. It seems that for all these images (especially images
2 and 4) the fine-tuning approach actually helped with improving the reconstruc-
tion quality. Notice that the hair of the fine-tuned results seems way too smooth,
but in this case, the hair was weird-looking even before using the fine-tuning
approach.

Sometimes it is the case that the input image is quite difficult for the gen-
erator to generate and therefore also difficult to reconstruct. In that case, the
reconstructions can have quite a low quality as illustrated in Figure 5.26.

Figure 5.26: Examples of input image reconstructions with low quality. Example
input images are from FRLLS dataset.

Figure 5.26 illustrates the issue of reconstructing images that are too different
from images from the Faces dataset. To some extent, this issue could be solved
by using the fine-tuning approach which leads to results that are shown in Figure
5.27.

Figure 5.27: Examples of input image reconstructions with low quality with fine-
tuning. Example input images are from FRLLS dataset.

Similarly to the Figure 5.25, Figure 5.27 compares results of reconstructions
with and without fine-tuning, but now on a more difficult samples which are very
different to images from the Faces dataset. Images 0 and 3 are difficult because
they are showing women which are generally more difficult to reconstruct than
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men (mostly because the Faces dataset contains mostly man photographs). Im-
ages 2 and 4 are difficult because the depicted persons are of a different ethnicity
than a majority of the persons in the Faces dataset. Fine-tuning definitely helped
in the reconstruction of images 3 and image 4, and slightly helped in reconstruc-
tions of images 1 and 2. For image 0, there is no apparent difference between
reconstruction with and without fine-tuning.

It should be emphasized that even though the fine-tuning approach was helpful
for some of the above images, it still cannot be considered as a general remedy
for all difficult reconstructions because there are still situations where it does not
help very much (e.g. image 0 from Figure 5.27). This observation implies that it
seems reasonable to have this feature but it should be used with caution and it
should be up to the user to decide if it makes sense for a given situation.

The latent vectors wi, wj could also be used for image interpolations (see
sub-section 1.3.2) between two images imgi, imgj by considering n latent vectors
wi = w

′
1, w

′
2, . . . , w

′
n = wj and taking their image representations. An example

of results for interpolation of two images is shown in Figure 5.28.

Figure 5.28: Examples of interpolation between two input images. Example input
images are from FRLLS dataset.

Figure 5.28 shows an interpolation between two images with n = 10. The
latent vectors were obtained using an encoder without fine-tuning. Because both
persons are bald, the most changing parts are the beard (which is slightly dis-
appearing) together with the face itself. The interpolations work quite well and
they are usually also quite smooth (i.e. no extra intermediate persons). Gener-
ally, it seems that the most limiting factor in interpolations is the reconstructions
of the initial and target images. Interpolations could again be slightly improved
by using the fine-tuning approach as shown in Figure 5.29.

Finally, an example of finding similar images (fillers) to the reconstruction of
the input image (suspect) are shown in Figures 5.30 and 5.32.

Figure 5.30 shows the input image, its reconstruction together with its re-
construction from a vector passed through PCA, and 22 images showing similar
persons (fillers). Similar to all the results above, also these results could be
slightly improved by incorporating the fine-tuning as can be seen in Figure 5.31.
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Figure 5.29: An example of interpolation between two images with fine-tuning.
Example input images are from FRLLS dataset.

Figure 5.30: Examples of persons similar to the seed person. Example input
image is from FRLLS dataset.

Figure 5.31: Examples of persons similar to the seed person with fine-tuning.
Example input image is from FRLLS dataset.
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An example of finding fillers for a more difficult suspect image is shown in
Figure 5.32.

Figure 5.32: Examples of persons similar to the more difficult seed person. Ex-
ample input image is from FRLLS dataset.

In Figure 5.32 the filler images seem to be slightly noisy, and the overall quality
of these images is perceptually worse than the results from Figure 5.30. Using
fine-tuning, in this case, helps to de-noise and smooth the results as illustrated
in Figure 5.33.

Figure 5.33: Examples of persons similar to the more difficult seed person with
fine-tuning. Example input image is from FRLLS dataset.
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5.4 LiGAN showcase
The application whose architecture and design were described Chapter 4 was
eventually implemented and it was named LiGAN3. This section briefly presents
what LiGAN looks like and how does it work, both illustrated on a simple work
case. It is important to mention that this section is not intended to fully replace
user documentation.

For the end-users, LiGAN is simply a website that allows them to generate
police lineups and to perform additional tasks which could help them in generating
a lineup of their needs. At the very start, the user sees only an empty screen,
without any images, as can be seen in Figure 5.34.

Figure 5.34: LiGAN in it’s initial state, before starting working on a lineup.

From the empty screen, the user may proceed in two possible workflows, that
is, either upload a single image of the suspect (Basic) or two images (Interpola-
tions) of the suspect and/or a similar person. Examples of setting inputs to each
of these scenarios are shown in Figure 5.35.

3This name comes from a phrase Lineup Generator where Gen was changed to GAN which
fits both semantically and phonetically.
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(a) Basic scenario input.
(b) Interpolation scenario input.

Figure 5.35: Example input images are from FRLLS dataset.

For now, assume that the user opted for the Basic scenario by uploading a
single image as was illustrated on the left of Figure 5.35. By pressing Generate
results button, the model will generate a single page of results as shown in Figure
5.36.

Figure 5.36: First page of results generated for the given suspect image. Example
input image is from FRLLS dataset.
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As can be seen from Figure 5.36, all the generated images are very similar
to each other. This is caused by the fact that the similarity of the images is
decreasing with an increasing page number. In other words, the first page contains
images that are most similar to the input (and also most similar to each other
due to how the fillers are generated) while the latter pages contain less similar
images. For example, images on the 4th page will be less similar as can be seen
in Figure 5.37.

Figure 5.37: Fourth page of results generated for the given suspect image. Ex-
ample input image is from FRLLS dataset.

When comparing results from the first page (Figure 5.36) with results from
the fourth page (Figure 5.37) it is clearly visible that the latter results are slightly
more diverse than the former.

Once the results are presented, the user could click any of the generated images
to invoke the context menu allowing to do one of the following actions:

• Select the image as interpolation input #1 or #2 – Simply replaces first or
second input image to the interpolation scenario and the user then could
proceed by pressing Generate results as usual.

• More similar to this — Replaces the input image to the basic scenario and
the user then could proceed by pressing Generate results as usual.

• Select — Selects the image as filler.
• Cancel — Closes the context menu.

The context menu is shown in Figure 5.38.
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Figure 5.38: Context menu invokend on one of the generated images. Example
input image is from FRLLS dataset.

Assume that the user searched through the results and selected several images
as fillers. These selected fillers are then displayed in the right part of the screen
as illustrated in Figure 5.39.

Figure 5.39: LiGAN UI when user has already selected some fillers. Example
input image is from FRLLS dataset.
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Figure 5.39 shows a screen where the user has already selected 6 images as
fillers. The user is also able to click on any of the selected fillers to invoke another
context menu which allows removing the image from selected fillers. Furthermore,
it should be mentioned, that every time an image is uploaded it is automatically
added to the resulting lineup (and to the selected fillers) because it is often the
case that it should be present there. However, the user is still able to remove the
image from the selected fillers.

Once the user is satisfied with the filler selection, the final lineup could be
generated by pressing Save lineup. An example of (cropped) generated lineup is
shown in Figure 5.40.

Figure 5.40: Example of a lineup constructed in LiGAN.

The user may also use the interpolations scenario instead of the Basic one,
if that is the case, the page of results shows images for individual steps of the
interpolation. The results for interpolation scenario are shown in Figure 5.41.

Because sometimes the model cannot provide reasonable results, it may help
to use fine-tuning approach to potentially improve the results. The user is allowed
to invoke fine-tuning by pressing Refine results, moreover, there is a slidebar next
to this button which allows the user to set a time limit for fine-tuning (in seconds)
with a value between 60 (default value) and 600 seconds. It should be kept in
mind that the time limit is not perfectly accurate and the user should count with
about 30 seconds interval around the selected time limit4. The results are then
shown on a new page in a standard manner as illustrated in Figure 5.42. Finally,
it should be mentioned that the refining tasks are only available once some results
are generated (either from the Basic or Interpolation scenario).

4This is caused by the way the fine-tuning is performed because some steps can take up to
20-30 seconds without a possibility of being interrupted.
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Figure 5.41: Results for the interpolation scenario. Example input images are
from FRLLS dataset.

Figure 5.42: Refined results. Example input image is from FRLLS dataset.
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Conclusion
The main goal of this thesis was to propose a new variation or adjust an existing
generative model that could be used for generating synthetic images of people’s
faces. Then, the main intention was to use these faces for the assembly of police
lineups. The main goal was fulfilled because the final model—StyleGAN2 trained
on a dataset of missing persons—could be used for the target scenario. Further-
more, there were several sub-goals defined in Section Goals which are re-evaluated
below.

1. The images generated by the model should have a reasonable quality in terms
of resolution—This sub-goal was achieved because the generated images
have a resolution of 128× 128 pixels that should be sufficient for the task,
although there is still a room for an improvement.

2. The generated face images should not be easily distinguishable from images
of real people—This sub-goal was also fulfilled because as can be seen from
user study described in Section 5.1, the users were not substantially better
at identifying fake images than guessing at random. Although there exist
images that are very easily identifiable as fake, it is important that there
are enough difficultly distinguishable images.

3. Generated images should be diverse enough—This sub-goal was fulfilled,
although it should be mentioned that the diversity is at the level of diversity
of the training dataset. Especially, this means that the generator is not able
to generalize beyond the training dataset.

4. The output of the model should be controllable—This sub-goal was fulfilled
thanks to the encoder that was implemented as a part of this thesis.

Beyond the crucial requirements described above, there were two more “soft
requirements” whose evaluation follows:

• The model should be capable of generating images of people with rare facial
features—This extra sub-goal was not fully fulfilled. The problem is with
rare facial features that were not present in the generator’s training dataset
because in that case, the generator is not able to generate them. To some
extent, this problem could be mitigated by the fine-tuning approach from
Section 3.4.4 but the results are rather controversial (i.e. it helps only in
some cases).

• The control over the model’s output should be achieved by allowing seeding
the model with an image—This extra sub-goal was achieved, again, thanks
to the use of the encoder.

To summarize, all the essential goals were fulfilled, although there are still
some possibilities for improving the whole model as will be described in Section
Future work. Apart from these goals, one extra achievement was accomplished—
showing a proof of concept application called LiGAN which incorporates all of
the implemented models and makes them available for easy use by the end-user.
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Future work

As it was already mentioned, although all the goals were fulfilled, there is still
some room for improvements. There are three main areas in which this thesis
and its contribution could be improved and which should be considered for fu-
ture work. These areas are listed below, ordered from most important to least
important.

1. Extending training dataset—The problems with reconstruction of some of
the images that were shown in previous Chapter 5 were mostly related
to the fact that the training dataset was not diverse enough. It would
be interesting to train the generator on a more diverse dataset, including
photographs of persons of multiple ethnicities. The simplest way would be
to take the existing Faces dataset and extend it by the images from different
sources. A possible source of images would be databases of missing persons
from different countries (preferably from countries outside of Europe).

2. Make the LiGAN application production ready—Regarding the LiGAN ap-
plication, there are still some parts that could be done better and more ef-
ficiently as its current form is only a proof of concept. Notably, it would be
beneficial to improve performance and stability for the scenario when mul-
tiple users use the application (e.g. more efficient task scheduling among
the container jobs). Also, it would be reasonable to make the application
more easily deployable and think over deployment outside of the GPU clus-
ter. This also includes cleanup and simplification of some parts of the code
and architecture (e.g. getting rid of volume bindings which are not very
suitable for the production environment). Another important aspect that
should be addressed before the application will be production-ready is se-
curity. The application security should be analyzed and the possible issues
should be resolved. For example, it will be important to introduce some
kind of authentication presumably by introducing user accounts.

3. Train the models on higher resolution—It would be worthy to try to train
all the models on slightly larger resolution, probably on 256 × 256 pixels,
because the Faces dataset is available in this resolution so it would not
be necessary to find a new dataset. The target resolution could be set
even higher assuming that a dataset of high enough resolution is available.
It is possible that using higher resolution would help in producing images
with higher quality and also improving the performance of the facial feature
prediction (some features might be barely observables for low resolution).
However, it should be kept in mind that higher resolution could also have
inversed effect on result quality, simply because some defects could be more
visible when resolution is larger.

106



Bibliography
[1] Travis M. Seale-Carlisle and Laura Mickes. Us line-ups outperform uk

line-ups. Royal Society open science, 3(9):160300–160300, Sep 2016.
27703695[pmid].

[2] Curt A. Carlson, Alyssa R. Jones, Jane E. Whittington, Robert F. Lock-
amyeir, Maria A. Carlson, and Alex R. Wooten. Lineup fairness: propitious
heterogeneity and the diagnostic feature-detection hypothesis. Cognitive re-
search: principles and implications, 4(1):20–20, Jun 2019. 31197501[pmid].

[3] Identification Procedures: Photo Arrays and Line-ups, 06 2017.
https://www.criminaljustice.ny.gov/pio/press_releases/
ID-Procedures-Protocol-Model-Policy-Forms.pdf, last accessed
on 05/14/21.

[4] New York State Photo Identification Guidelines, 04 2011. https:
//www.criminaljustice.ny.gov/ops/training/other/story_content/
external_files/photoarrayguidelines.pdf, last accessed on 05/14/21.

[5] Roy Malpass and Patricia Devine. Eyewitness identification: Lineup in-
structions and the absence of the offender. Journal of Applied Psychology,
66:482–489, 08 1981.

[6] Steven E. Clark and Ryan D. Godfrey. Eyewitness identification evidence
and innocence risk. Psychonomic Bulletin & Review, 16(1):22–42, Feb 2009.

[7] Ryan Fitzgerald, Heather Price, Chris Oriet, and Steve Charman. The effect
of suspect-filler similarity on eyewitness identification decisions: A meta-
analysis. Psychology Public Policy and Law, 19, 05 2013.

[8] R. C. L. Lindsay, Joanna D. Pozzulo, Wendy Craig, Kang Lee, and Samantha
Corber. Simultaneous lineups, sequential lineups, and showups: Eyewitness
identification decisions of adults and children. Law and Human Behavior,
21(4):391–404, Aug 1997.

[9] Jennifer Tunnicliff and Steven Clark. Selecting foils for identification lineups:
Matching suspects or descriptions? Law and human behavior, 24:231–58, 05
2000.

[10] Gary Wells, SM RYDELL, and EP SEELAU. The selection of distractors
for eyewitness lineups. Journal of Applied Psychology, 78:835–844, 10 1993.

[11] Stephen Darling, Tim Valentine, and Amina Memon. Selection of lineup
foils in operational contexts. Applied Cognitive Psychology, 22:159 – 169, 03
2008.

[12] Gary Wells, Margaret Kovera, Amy Douglass, Neil Brewer, Christian Meiss-
ner, and John Wixted. Policy and procedure recommendations for the collec-
tion and preservation of eyewitness identification evidence. Law and Human
Behavior, 44:3–36, 02 2020.

107

https://www.criminaljustice.ny.gov/pio/press_releases/ID-Procedures-Protocol-Model-Policy-Forms.pdf
https://www.criminaljustice.ny.gov/pio/press_releases/ID-Procedures-Protocol-Model-Policy-Forms.pdf
https://www.criminaljustice.ny.gov/ops/training/other/story_content/external_files/photoarrayguidelines.pdf
https://www.criminaljustice.ny.gov/ops/training/other/story_content/external_files/photoarrayguidelines.pdf
https://www.criminaljustice.ny.gov/ops/training/other/story_content/external_files/photoarrayguidelines.pdf


[13] Ladislav Peska and Hana Trojanova. Towards similarity models in police
photo lineup assembling tasks. In Stéphane Marchand-Maillet, Yasin N.
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A. Attachment
The contents of the attachment:

• /src – folder containing the source codes of the models and LiGAN appli-
cation.

• /docs – folder containing the user and API documentations for LiGAN
application (offline version).

• /setup – folder containing files for preparing the environment.

• /README.md – file describing the contents of the attachment in detail. This
file also contains some details about running the LiGAN and training scripts
for the models, together with a more detailed description of hyperparame-
ters.

The following links point to additional resources that were not directly in-
cluded in the attachment:

• Repository with source codes is available at: https://gitlab.mff.cuni.
cz/dokoupipa/ligan

• Archive with model checkpoints and pre-trained models is available at:
http://herkules.ms.mff.cuni.cz/ligan/models.zip

• The dataset that was used for training the StyleGAN2 model is available
at: http://herkules.ms.mff.cuni.cz/ligan/dataset.zip

• The sample of 100 000 images that were generated by the StyleGAN2 model
and that were used during some of the experiments (e.g. the user study)
in this thesis can be found at: http://herkules.ms.mff.cuni.cz/ligan/
generated_sample.zip
Note that this archive also contains a file with attribute annotations pro-
duced by CelebA and FairFace models.

• Training logs (raw and TensorBoard logs) that were captured during train-
ing the final versions of the models are available at: http://herkules.ms.
mff.cuni.cz/ligan/training_logs.zip

• Latent vectors needed for PCA fitting inside of the backend container (saved
as numpy array) are available at: http://herkules.ms.mff.cuni.cz/
ligan/pca_latents.zip

• Models that are needed for running the dataset pipeline are available at:
http://herkules.ms.mff.cuni.cz/ligan/pipeline_models.zip
Note that these are not our models and they were included only for repro-
ducibility.

• Running instance of the LiGAN application is available at:
http://gpulab.ms.mff.cuni.cz:7022/index.html
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• Online version of user documentation is available at:
http://gpulab.ms.mff.cuni.cz:7022/docs

• Online version of master daemon API documentation is available at:
http://gpulab.ms.mff.cuni.cz:7022/master-daemon-api-docs

• Online version of frontend server API documentation is available at:
http://gpulab.ms.mff.cuni.cz:7022/frontend-api-docs

• Online version of backend server API documentation is available at:
http://gpulab.ms.mff.cuni.cz:7022/backend-api-docs
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