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Introduction
Monte Carlo (MC) integration is an essential tool in many fields of science and
engineering [Kalos and Whitlock, 2008]. In the context of image synthesis, light
transport simulation based on MC integration has become a standard approach
to physically based rendering [Veach, 1997; Pharr et al., 2016]. This approach is
conceptually simple, yet it is flexible and allows for photorealistic results. How-
ever, an inherent problem of MC integration is variance, which leads to noise
in rendered images. The noise fades away with increasing render time, but for
complex scenes it may take hours for the rendering to converge to a noise-free im-
age. Therefore, many methods have been proposed to improve the performance
in various situations. In this thesis, we present 3 such methods, each taking a
different approach to decreasing the variance of MC integration in rendering.

Approach 1: A better sampling technique
For the first approach, we need to review the basics of MC integration. Let
F =

∫︁
D f(x) dx be the integral of a function f : D → IR over the domain D, and

let there be a sampling technique for generating random samples from D following
the probability density p such that f(x) ̸= 0 ⇒ p(x) ̸= 0. Then the importance
sampling MC estimator ⟨F ⟩ = f(X)/p(X), where the random variable X is
distributed according to p, is unbiased, i.e., its expected value E[F ] equals F .
The shape of p has a dramatic impact on the estimator’s variance Var[⟨F ⟩]: the
closer p is to being proportional to the integrand f , the lower the variance.

One way of decreasing the variance of MC integration is therefore obvious:
finding a better sampling technique with its probability density as close to being
proportional to the integrand as possible. This way has been explored in many
research works but there is still room for improvement, one such area being direct
illumination calculation. It is an important component of any physically based
renderer with a substantial impact on the overall performance, yet it has received
less attention in research than indirect illumination.

In Chapter 1 we present a novel adaptive solution for unbiased direct illu-
mination sampling, based on online learning of the light selection probability
distributions. We provide a formulation of the learning process as Bayesian re-
gression [Bishop, 2006], based on a new, specifically designed statistical model of
direct illumination. The net result is a set of regularization strategies that pre-
vents overfitting and ensures robustness even in early stages of calculation, when
the observed information is sparse. We make the method scalable by adopting
a light clustering strategy from the Lightcuts method [Walter et al., 2005], and
further reduce variance through the use of control variates [Kalos and Whitlock,
2008]. As a main design feature, the resulting algorithm is virtually free of any
preprocessing, which enables its use for interactive progressive rendering. This
was a hard constraint during the algorithm development as it was driven by
practical needs of the established production renderer Corona [Chaos Czech a.s.,
2023]. The method has been successfully used there to this day, which proves it
to be not only theoretically sound, but useful in practice as well.

The content of Chapter 1 is an extended version of the publication Bayesian

4



online regression for adaptive direct illumination sampling by Vévoda
et al. [2018]. The author shares the first authorship with Ivo Kondapaneni, the
author’s contribution was the initial design of the complete method and all the
implementation work (see List of publications for more details).

Approach 2: A better combination of techniques
Finding a single sampling technique that would be a good match for the entire
integrand is sometimes infeasible. In such a case multiple sampling techniques
can be used, each of which could be a good match to a different feature of the
integrand. This method is called multiple importance sampling (MIS). It was
introduced by Veach and Guibas [1995] and became a key technique for achieving
robustness of MC estimators in computer graphics and other fields. Samples are
drawn from all the techniques and then combined using weighting functions. A set
of weighting functions known as the balance heuristic was suggested as a de facto
universal solution, as no other weights were claimed to yield substantially lower
variance [Veach and Guibas, 1995]. However, a truly optimal set of weighting
functions has not been known.

In Chapter 2 we derive optimal weighting functions for MIS that provably
minimize the variance of an MIS estimator, given a set of sampling techniques.
We show that the resulting variance reduction over the balance heuristic can be
higher than predicted by the variance bounds derived by Veach and Guibas [1995],
who assumed only non-negative weights in their proof. We theoretically analyse
the variance of the optimal MIS weights and show the relation to the variance
of the balance heuristic. Furthermore, we establish a connection between the
new weighting functions and control variates, as previously applied to mixture
sampling. We apply the new optimal weights to integration problems in light
transport and show that they allow for new design considerations when choosing
the appropriate sampling techniques for a given integration problem.

The content of Chapter 2 is an extended version of the publication Optimal
Multiple Importance Sampling by Kondapaneni et al. [2019]. The author
shares the first authorship with Ivo Kondapaneni, the author’s contribution was
the discovery of the limitation of the balance heuristic variance bounds, the design
of applications of the optimal weights including new sampling techniques, and
most of the implementation work.

Approach 3: Pre-computation
In cases when neither a good sampling technique nor their good combination is
enough to produce desired results in reasonable time, the most practical approach
might be to pre-compute the difficult parts. Imagine rendering an outdoor scene
under a clear sky. If both precise control over the illumination as well as high
accuracy of the depicted sky is needed, neither image based lightning nor existing
analytical sky models could be used. A brute force simulation of light transport
in the atmosphere had to be employed, which required not only a large amount
of rendering time but also a specialized knowledge of the composition of the
atmosphere and light propagation in it.
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The situation changed when the Prague Sky Model [Wilkie et al., 2021] was
published, which we review in Chapter 3. Using realistic scatterer distribution
data from atmospheric measurements, Wilkie et al. pre-computed a large set of
reference images of a clear sky for a wide range of parameters. These images were
then compressed via tensor decomposition into a fitted model of sky dome radi-
ance and attenuation. This model considerably improves on the visual realism
of existing analytical clear sky models, as well as of interactive methods that are
based on approximating atmospheric light transport. It also provides features
not found in fitted models so far: radiance patterns for post-sunset conditions,
in-scattered radiance and transmittance values for finite viewing distances, an ob-
server altitude resolved model that includes downward-looking viewing directions,
as well as polarisation information. At the same time, the model remains easy
to use. It has been implemented and used in the Corona renderer demonstrating
its practicality for industry.

An initial version of the Prague Sky Model was published in the doctoral thesis
Atmospheric Rendering by Hošek [2019], the final version was then published
in the paper A Fitted Radiance and Attenuation Model for Realistic
Atmospheres by Wilkie et al. [2021]. The author shares the first authorship
of the paper with Alexander Wilkie, the author’s contribution is described in
Chapter 3 alongside the model.

Since the Prague Sky Model was designed for traditional photorealistic render-
ing, it provides data only for the slightly extended visible range of wavelengths.
In Chapter 3 we also present an extension of the Prague Sky Model that cov-
ers the entire spectral range of terrestrial solar irradiance, which enables a more
specialized usage like accurate simulations of photovoltaic plant yield or ther-
mal properties of buildings. This extension is based on the publication A Wide
Spectral Range Sky Radiance Model by Vévoda et al. [2022] where the
author was the primary investigator.
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1. A better sampling technique
In this chapter, we describe our first approach to decreasing the variance of MC
integration in rendering: finding a better sampling technique with its probability
density as close to being proportional to the integrand as possible.

Traditionally, the indirect illumination component has been held responsible
for the undesirable image noise produced by MC renderers, which is probably why
the direct illumination component has received disproportionately less attention
in research. However, many scenes in digital production feature complex lighting
setups, and practical experience shows that it is often direct illumination that is
responsible for the majority of image noise. Therefore, we tried to find a better
sampling technique for direct illumination estimation.

Specifically, we address the problem of randomly choosing an appropriate light
source for a given scene location, so that variance of the direct illumination esti-
mator is minimized. This could be achieved by choosing lights with probability
proportional to their respective contributions, but these are unknown at the out-
set, they are costly to evaluate and difficult to predict. This is true especially
with regard visibility, since it can be discontinuous and its evaluation involves
expensive ray casting. But ignoring the role visibility plays in the contribution
of lights can have a large impact on the estimator variance as demonstrated in
Figure 1.1. It shows a room lit by two light sources: one that is very strong but
only illuminates a small part of the room (the sun), and one that is much weaker
but covers most of the room (a ceiling light). Therefore, choosing lights propor-
tionally to their unoccluded contribution (i.e., without taking their visibility into
account) will strongly prefer the sun over the ceiling light even in sun’s shadow.
As a result, light sampling in most of the scene will be far from optimal and will
produce strong noise as shown in left part of the figure.

One possible solution would involve constructing the light sampling distribu-
tions in a preprocessing step [Georgiev et al., 2012a]. However, long preprocessing
disqualifies any form of interactive rendering – a crucial feature of any modern
progressive renderer, a feature that we consider a hard constraint in our work
motivated by practical needs of the Corona renderer [Chaos Czech a.s., 2023].
Such preprocessing can be avoided by learning from the observed samples during
rendering, and our work follows this path. This is hardly a new idea in the general
MC context and it has been used for direct illumination sampling [Donikian et al.,
2006]. Unresolved challenges remain, though, such as how to ensure robustness,
especially in the early stages of rendering, when the collected data are sparse.

The above concerns are common to most adaptive MC methods, and we ad-
dress them through a systematic treatment based on Bayesian modelling. We
formulate the learning process as maximum a posteriori (MAP) regression based
on a new statistical model of direct illumination that explicitly models the effect
of visibility. The prior distribution is modelled using estimates of lights’ unoc-
cluded contributions computed at a small cost. The net result of this formulation
are regularization strategies that prevent overfitting and enable meaningful use
of the collected samples even in early stages of rendering. Our regression model
captures spatial variation of illumination, which enables aggregating statistics
over relatively large spatial regions, and, in turn, ensures a fast learning rate.
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Figure 1.1: An equal-time comparison (60 s) of our proposed learning-based direct
illumination sampling method (right column) and a baseline sampling method
without learning (left column) on an image containing just direct illumination
(top row) and both direct and indirect illumination (bottom row). While both
methods start off by sampling lights proportionally to rough estimates of their un-
occluded contribution, our method progressively incorporates information about
their actual contributions, including visibility, dramatically reducing image noise.
As a result, our method renders the direct illumination component 510× faster
and achieves 6.7× speedup when rendering both direct and indirect illumination.

Furthermore, we show that sampling lights proportionately to their expected
contribution can in fact be far from optimal. The reason is the additional variance
due to computing illumination from each individual light source, once it has been
selected. We derive the optimal sampling strategy for such nested estimators and
apply it to the light selection problem.

Finally, to achieve a scalable solution we build upon the light clustering strate-
gies from previous work [Wang and Akerlund, 2009; Walter et al., 2005], and we
further reduce variance by using the gathered statistics to construct a control
variate [Kalos and Whitlock, 2008]. The resulting algorithm is unbiased and vir-
tually free of any preprocessing, which enables its use in an interactive progressive
renderer, while the online learning enables superlinear convergence, especially in
the early stages of rendering. Figure 1.1 shows an example of the algorithm
performance.
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1.1 Previous work
Direct illumination computation Different ways of improving the perfor-
mance of direct illumination computation have been explored. One idea is to
speed up evaluation of a single light contribution, the cost of which is often dom-
inated by determining its visibility. This could be achieved by skipping visibility
tests for lights that contribute weakly [Ward, 1994], clipping polygonal area lights
[Hart et al., 1999], using a visibility oracle based on a photon map [Jensen and
Christensen, 1995] or learning during rendering [Fernandez et al., 2002]. Wald
and Benthin [2003] cull lights based on a path tracing prepass. Random skipping
of visibility tests [Billen et al., 2013] or their caching [Popov et al., 2013] have
been likewise explored.

Reducing the cost of a single light evaluation cannot reduce the linear complex-
ity of direct illumination computation, which becomes a bottleneck when there is
a large number of lights. Paquette et al. [1998] and Walter et al. [2005] propose to
hierarchically cluster lights into a tree and then use adaptively constructed tree
cuts to approximate direct illumination. Both methods scale well but this comes
at the expense of some bias. As a follow-up, methods by Walter et al. [2006] and
Bus et al. [2015] further reduce the number of scene shading points for which
the direct illumination computation is carried out by additionally clustering the
shading points.

We address random light selection in a MC renderer. In this context, Shirley
et al. [1996] pioneered the idea of designing light selection probabilities based
on expected lights’ contributions, though they only used a rather crude classi-
fication into ‘important’ and ‘unimportant’ lights. Wang and Akerlund [2009]
sample lights proportionally to the product of a contribution estimate and sur-
face reflectance. The method handles many lights by clustering, an idea we use in
our work and extend it with online optimization of sampling distributions. Sam-
pling distributions can also be obtained in a preprocess [Georgiev et al., 2012a;
Wu and Chuang, 2013], but this approach disqualifies any form of interactive
rendering. Finally, Donikian et al. [2006] learn a sampling distribution from sam-
ples obtained during the rendering, just as we do. The method combines several
distributions in an ad hoc manner, which limits its robustness and reliability, as
we demonstrate in our results. We show that a theoretically funded Bayesian
treatment of adaptive sampling yields substantial improvements in robustness
and overall efficiency.

Bayesian modelling in rendering Bayesian modelling is a widespread metho-
dology in computer vision and graphics, so we only review works closely related
to MC rendering. Boughida and Boubekeur [2017] use Non-Local Bayes im-
age denoising [Lebrun et al., 2013] in the context of MC simulation as a post-
processing filter. Brouillat et al. [2009] and Marques et al. [2013] pioneered the
use of Bayesian Monte Carlo (BMC) [Rasmussen and Ghahramani, 2002] in light
transport simulation. The BMC methodology models the posterior probability
of an integral given a set of integrand estimates and a prior distribution over
the integral outcome. While theoretically sound, it comes with some important
computational overhead. In contrast, we keep the efficient classic, frequentist MC
approach and apply Bayesian modelling to optimize our sampling distributions.

9



This approach was also taken by Vorba et al. [2014], who employ a maximum a
posteriori (MAP) formulation to regularize training of parametric mixture models
for optimized indirect illumination sampling. Our work uses a MAP formulation
of spatial regression so as to obtain robust direct illumination estimates across
the scene.

Adaptive sampling Literature on adaptive sampling in both general MC [Ka-
los and Whitlock, 2008] and in rendering is wide and we only mention some
more recent work. One impactful theoretical idea has been population Monte
Carlo (PMC) [Cappé et al., 2004], which can, among other, be used to optimize
sampling distributions represented by mixture models [Douc and Guillin, 2007;
Cappé et al., 2008]. Adaptive multiple importance sampling (AMIS) [Cornuet
et al., 2009] extends the adaptation idea to multiple importance sampling [Veach,
1997], whereas adaptive population importance sampling (APIS) [Martino et al.,
2015] attempts to exploit the strong points of PMC or AMIS. PMC has been
applied in rendering [Lai et al., 2007; Fan et al., 2007], but the benefits are not
large. Our work differs from PMC by the lack of any resampling step which would
require storing individual samples.

Path guiding Methods that build models of incoming illumination specific to
one particular scene and use them for importance sampling have become known
as path guiding. These methods perform either density estimation from particles
obtained in a preprocessing step [Jensen, 1995; Hey and Purgathofer, 2002; Budge
et al., 2008; Vorba et al., 2014] or they derive the importance density through
regression modelling [Lafortune and Willems, 1995; Pegoraro et al., 2008; Müller
et al., 2017]. Our method is orthogonal to guiding methods since it addresses
sampling of direct illumination. In fact, it could be incorporated into existing
guiding approaches based on regression, as we discuss in Section 1.7.

1.2 Overview
Direct illumination estimator Our goal is to compute the reflected radiance
L due to direct illumination at a shading point x as seen from a direction ω. It is
defined as an integral over all points y on the surface A of all scene light sources

L(x, ω) =
∫︂

A
F (y→x→ω) dy, (1.1)

where the integrand equals

F (y→x→ω) = Le(y→x)B(y→x→ω)V (y↔x)G(y↔x). (1.2)

Here, Le(y → x) is the radiance emitted from y towards x,
B(y→x→ω) is the BRDF describing the surface reflectance at
x, and V (y↔x) is the binary visibility function returning 1 if y
is visible from x and 0 otherwise. The geometry factor G(y↔x)
equals to cos θy cos θx

d2(y,x) , where cos θy = ny · x−y
d(y,x) , cos θx = nx · y−x

d(y,x)
with ny, nx being the unit surface normal at y and x, respec-
tively, and d(y, x) is the Euclidean distance between x and y.
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A Monte Carlo estimator for the integral (1.1) is given by

⟨L(x, ω)⟩ = F (y→x→ω)
p(y|x, ω) , (1.3)

where p(y|x, ω) denotes the pdf of sampling the light point y from the shading
point x given the viewing direction ω. The better the pdf approximates the inte-
grand, the lower the variance, with the pdf directly proportional to the integrand
yielding zero variance.

Light sampling. We seek a practical approximation to the ideal pdf described
above. We follow a standard approach for generating a light sample y, where
one first selects a light source, and then samples a point on that light [Pharr
et al., 2016]. To ensure good scalability with many lights, we additionally employ
adaptive light clustering: each point x in the scene has an associated set C of
light clusters c. In this setup, sampling the light point y in the estimator (1.3)
breaks down into the following three steps:

1. Select a light cluster c ∈ C with the probability P (c|x),1

2. Select a light l ∈ c with the probability P (l|c) proportional to its flux,
i.e. P (l|c) = Φl/

∑︁
l′∈c Φl′ ,

3. Select a point y ∈ l with the pdf p(y|l, ω) using standard techniques [Shirley
et al., 1996; Pharr et al., 2016; Gamito, 2016].

The resulting pdf p(y|x, ω) is then obtained as P (c|x) P (l|c) p(y|l, ω).

Adaptive cluster sampling. The main contribution of this chapter consists in
a new adaptive method for constructing the cluster sampling distribution P (c|x)
used in Step 1. To this end, we first derive, in Section 1.3, the optimal distribution
for cluster selection in presence of variance due to nested MC estimation, i.e. illu-
mination evaluation within each cluster corresponding to Steps 2 and 3. Second,
we devise a Bayesian methodology to learn such a distribution in a progressive
manner (Section 1.4). For that purpose, we design a statistical MAP regression
model of cluster contribution and visibility. The model is initialized by conser-
vative cluster contribution estimates, which embody our prior knowledge. It is
then updated on the fly during rendering using the calculated (observed) light
contributions.

We do not use learning for sampling the point y on an individual light in
Step 3, since techniques tailored to different kinds of light geometries provide
close-to-optimal solutions [Shirley et al., 1996; Pharr et al., 2016; Gamito, 2016].
Furthermore, we design our cluster sampling distributions to be view independent:
we omit the BRDF factor and we drop the dependency on the view direction ω
in most equations. This is motivated by practical considerations of a production
renderer, where reflectance can be defined by arbitrarily complex shaders, often
given as a black-box. We discuss the above decisions in Section 1.7.

1Probabilities are denoted by the capital P while probability densities are lower-case p.
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Light clustering and scene partitioning. Our light clustering approach is
inspired by Lightcuts [Walter et al., 2005]. Similar to Wang and Akerlund [2009],
we use the clusters for light selection, as opposed to using them directly as illu-
mination estimates. As a result, the clustering affects the estimator variance, not
a systematic image error, and hence it can be rather coarse.

In a preprocessing step, we first hierarchically cluster the lights into a binary
light tree in a similar way to Lightcuts. The light tree is constructed in a bottom-
up manner, starting with each light as one cluster and then repeatedly merging
a pair of clusters with the lowest value of a metric described in Appendix 1.9.1.
This is the only preprocessing step of our method, it is done once for a scene and
its computational cost is negligible (especially in comparison to loading a regular
production scene). Therefore, it does not limit interactive progressive rendering.

During rendering, the light tree serves for finding light clusterings C, repre-
sented as a cut in the light tree. Unlike in the original Lightcuts algorithm, where
lights are clustered for each shading point on-the-fly, we generate and cache light
clusterings for entire scene regions. Such persistent clusterings are necessary to
keep the statistics for updating the cluster sampling distributions. The scene is
therefore divided into disjoint spatial regions, and each region has an associated
light clustering, represented as a light cut. The light cut for a scene region is
created on demand, the first time direct illumination calculation is carried out in
that region. This saves a lot of computations since only a small percentage of all
regions is usually used.

As in Lighcuts, the cut construction starts at the root and repeatedly replaces
the cluster with the highest estimated contribution by its two children, until the
estimated cluster contribution falls below ϵ-fraction of the estimated contribution
of the entire cut (we use ϵ = 0.1 and limit the cut size to 100 in all our results).
Calculation of the cluster contribution estimates is described in Appendix 1.9.1.
In scenes with a moderate light count, the clusters usually correspond to the
individual lights, and our adaptive algorithm then samples the lights themselves.
Figure 1.2 shows an example of the light clustering and scene partitioning.

Baseline scalable method. An algorithm based on the above light clustering,
where cluster sampling probability P (c|x) is proportional to the cluster contri-
bution estimates (Appendix 1.9.1) and is not adapted during calculation, serves
as a baseline for comparisons in Section 1.6. We call it the Scalable method.

1.3 What we learn: Optimal cluster selection
We now discuss the optimal cluster selection probabilities P (c|x) in Step 1 of
our three-step light sampling procedure (Section 1.2). The conventional way to
shape P (c|x) would be to select cluster c proportionally to its true expected
contribution, denoted Lc(x). However, as we show below, this choice would be
optimal only if the cluster contributions could be evaluated with no variance.
This is rarely the case in practice, since the nested MC estimator ⟨Lc(x)⟩ of the
cluster contribution is itself subject to additional variance (due to sampling of
light areas and complex visibility). Intuitively, one would want to sample more
frequently clusters that contribute more variance to the overall result, but the
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Figure 1.2: An example of clusterings of lights in a simple scene for two different
scene regions (bottom row) and the respective cuts in the light tree (upper row).
In the left example, contributions of lights l1 and l2 to region R1 are weak and
similar. Therefore, the descend in the light tree during the construction of cut
C1 stops at cluster c1,2 and c3. As a result, any shading point x1 inside region R1
will sample two clusters: one with lights l1 and l2, and one with light l3. On the
other hand, contributions of lights l1 and l2 to region R2 in the right example are
strong and different. Therefore, the cut construction does not stop until reaching
the bottom of the light tree and any shading point x2 inside region R2 will then
sample the individual lights.

simple selection proportional to the contribution does not do this (Figure 1.3). We
now derive the optimal cluster selection probabilities conforming to this intuition.

We seek optimal cluster sampling probabilities Popt(c|x) minimizing the over-
all variance of estimator (1.3). Given our three-step sampling, we have p(y|x) =
P (c|x)P (l|c)p(y|l), and the variance can be written as:

Var[⟨L(x)⟩] = −L(x)2 +
∑︂
c∈C

1
P (c|x)

∫︂
Ac

(F (y→x))2

P (l|c)p(y|l) dy⏞ ⏟⏟ ⏞
m2,c

. (1.4)

Note that m2,c is the second moment of the nested MC estimator ⟨Lc(x)⟩ =
F (y→x)

P (l|c)p(y|l) of the cluster contribution.
We find Popt(c|x) as a solution to a constrained optimization problem, in which

we minimize the variance (1.4) with respect to the cluster sampling probabilities
P (c|x), subject to ∑︁c∈C P (c|x) = 1. Let us denote wc = P (c|x), c ∈ C, where C
is the set of clusters. We further define w = (wc1 , . . . , wc|C|) and m2,c as in (1.4).

13



c1 c2 c3 c4 c5

C
on

tr
ib

ut
io

n,
 

pr
ob

ab
ili

ty

Figure 1.3: An illustration of optimal sampling probabilities on a synthetic
dataset. The gray bars represent the expected cluster contributions and the
error bars show standard deviation of the nested cluster contribution estimators.
The orange distribution shows the conventional cluster selection probabilities di-
rectly proportional to the cluster contributions, while the blue one correspond to
our provably optimal sampling probabilities promoting sampling of clusters that
contribute more variance.

Next, we set up a lagrangian L(w, λ)

L(w, λ) = −L(x)2 +
(︄∑︂

c∈C

1
wc

m2,c

)︄
+ λ

(︄∑︂
c∈C

wc − 1
)︄

, (1.5)

where λ ∈ R and we seek a solution w, λ of the equation ∇L|w,λ = 0, yielding
the following set of equations:

d

dwc

L(w, λ) = − 1
w2

c

m2,c + λ = 0,

d

dλ
L(w, λ) =

∑︂
c∈C

wc − 1 = 0.
(1.6)

The solution is wc =
√︂

1
λ
m2,c and λ =

(︂∑︁
c∈C

√
m2,c

)︂2
, where λ serves as a normal-

ization factor making the wc sum up to one. In other words, the optimal cluster
sampling probability Popt(c|x) is proportional to the square root of the second mo-
ment m2,c. Given that Var[⟨Lc(x)⟩] = m2,c − L2

c(x), we obtain the final result:

Popt(c|x) ∝
√︂

L2
c(x) + Var[⟨Lc(x)⟩]. (1.7)

Note that Popt(c|x) is not proportional just to Lc(x), but it also takes the
variance of the nested estimator into account, i.e., variance due to sampling of
light areas and complex visibility. This is crucial for the robustness of our method
as it prevents excessive noise by focusing on problematic areas in the cases when
the nested sampling according to the pdf P (l|c)p(y|l) is far from ideal (see Fig-
ure 1.6).

A derivation similar to ours appears in the work by Pantaleoni and Heitz
[2017], but in a different context: seeking an optimal piecewise constant approx-
imation to a given sampling probability density.
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1.4 How we learn: Bayesian online regression
In the previous section we have shown that optimal cluster selection probability
P (c|x), given by (1.7), depends both on the expected cluster contribution Lc(x)
and the variance of the nested cluster contribution estimator Var[⟨Lc(x)⟩]. These
quantities are, however, unknown up front, and have to be approximated.

We have two types of information available for that: a) Unbiased, but noisy
MC direct illumination samples taken during rendering. b) Noise-free, but bi-
ased, estimates of unoccluded cluster contribution (see Appendix 1.9.1). Both
are useful, but insufficient by themselves: The MC samples converge to the ex-
act solution, but are extremely unreliable in early stages of computation. The
contribution estimates are more reliable early on, but they do not get any more
accurate over time and provide no information on visibility or the nested estima-
tor’s variance. A principled approach to exploiting such uncertain information
and fusing different sources of information for adaptive MC sampling is the pri-
mary contribution of this chapter.

Intuitively, we understand the contribution estimates as our prior knowledge
and the MC samples as observations. This view naturally leads to Bayesian mod-
elling. While MC quadrature has traditionally served as a tool for Bayesian infer-
ence [Bishop, 2006], we employ Bayesian inference as a tool for robust adaptive
MC sampling. The general idea of the Bayesian approach is to create a probabil-
ity model describing the likelihood (occurrence probability density) of observed
data, impose some prior probability over parameters of that model and then, in-
fer the posterior probability of the model parameters after seeing the data. From
the posterior, we can determine the quantity of interest. In our case, by mod-
elling the likelihood of the MC samples and constructing the prior distribution
using the contribution estimates, we can find the most probable approximations
to Lc(x) and Var[⟨Lc(x)⟩] given both these sources of information.

1.4.1 Model
We start with a standard statistical learning setup. First, we define our training
data D based on the MC samples observed during rendering. Second, we derive
a model p(D|θ) describing the likelihood of the data given parameters θ. Mean
and variance of this model provide the Lc(x) and Var[⟨Lc(x)⟩] we are looking for.

These statistics depend on the parameters θ that are initially unknown. We
could find them by direct maximization of p(D|θ), i.e., use the maximum likelihood
(ML) estimate. However, ML is prone to overfitting when data is scarce and
provides poor approximations in early stages of rendering as shown in Figure 1.6.
Since robustness is a major concern in adaptive MC, we employ the Bayesian
treatment: Impose prior probability p(θ), and infer the posterior probability
p(θ|D) ∝ p(D|θ)p(θ) after seeing the data. By its maximization we get a robust
maximum a posteriori (MAP) estimate of the parameters.

Data. Each scene region is associated with a set of light clusters (the light
cut). We collect the data and learn the model independently for each region–
cluster pair. Consider one such pair. Sampling of lights in the cluster yields MC
illumination samples, ⟨Lc(x)⟩ = F (y→x)

P (l|c)p(y|l) , where y is a sampled point on light l,
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Figure 1.4: Left: A histogram of direct illumination samples for three region-
cluster pairs. The area of each column corresponds to the overall occurrence
in the dataset. Note that zeros (in red) are frequent due to complex occlusion.
Right: A scatter plot of sample contribution êx vs sample distance d̂ for two
clusters distinguished by colours. Note the inverse-squared-distance falloff. The
green overlay shows our regression model (1.10) for two different distances.

and x is a shading point inside the region. Our goal is to use the MC samples
collected for the region-cluster pair to build a model that accurately predicts
Lc(x) and Var[⟨Lc(x)⟩] over the different positions x in the region.

A major cause of spatial variations of illumination is the cosine term cos θx
changing due to varying surface normal. While this effect would be difficult to
capture by statistical modelling, it is trivial to compute when needed, so we drop
it from our model. We therefore define two quantities

ê = Le(y→x)V (y↔x) cos θy/d2(x, y)
P (l|c) p(y|l) and êx = ê cosθx. (1.8)

The former quantity, ê, represents the MC sample of the cluster contribution,
⟨Lc(x)⟩ = F (y→x)

P (l|c)p(y|l) , with the surface cosine term cos θx dropped. In the latter
quantity, êx, we replace the cosine term by its upper bound over the entire cluster
cosθx. Our region statistics are based on ê, while êx is used at a specific shading
point x to inject surface normal dependency into our model.

After the surface normal, the second important factor in illumination varia-
tion across a region is the inverse-squared falloff with the distance d̂ = d(x, y), as
confirmed by the empirical data (Figure 1.4). To capture this dependency, we ex-
plicitly model the relation between illumination samples and the distance d̂ using
a regression model. Therefore, our training data D consists of tuples (êx,i, d̂i).

Model and its parameters. The next step is to define a statistical regression
model p(D|θ) expressing the data likelihood, i.e., probability of MC samples of
direct illumination. The general form of the likelihood used to model the relation
between d̂ and êx is:

p(D|θ) =
N∏︂
i

p(êx,i|d̂i, θ). (1.9)

where p(êx|d̂, θ) represents a regression model, N is the total number of samples
(for a region-cluster pair), and the model parameters θ are discussed below.
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Our regression model of direct illumination has the following two important
features:

1. Approximation of the inverse-squared-distance falloff.

2. Explicit modelling of occluded contributions.

A motivation for using the first feature was given above, and follows naturally
from the form of the sample contribution êx (1.8). The second feature arises from
the all-or-nothing nature of the visibility function, which is difficult to model
by any common smooth distribution (Figure 1.4). We, therefore, design our
regression model as a mixture of a delta function δ (describing zero, i.e., occluded
contributions) and a Gaussian N with mean and variance decreasing with the
second and fourth power of the distance term (describing non-zero, i.e., visible
contributions):

p(êx|d̂, θ) = δ(êx)po + (1 − po)N
⎛⎝êx

⃓⃓⃓⃓
⃓⃓ k

d̂
2 ,

h

d̂
4

⎞⎠ . (1.10)

See Figure 1.4 for an illustration. The model parameters θ = (po, k, h) are respec-
tively the probability of occlusion, mean visible contribution coming from a cluster
omitting the distance, and the variance of this contribution. As each sample êx,i

shows inverse-squared-distance falloff of its mean, sample’s variance changes as
well, but with 1/d̂

4. The benefit of approximation of the inverse-squared-distance
falloff and explicit visibility modelling is illustrated in Figure 1.6.

Prior distribution To make the inference step tractable, we seek a conjugate
prior, i.e., prior distribution which yields a posterior of the same function type.
The conjugate prior for our model, derived in Appendix 1.9.2, has po distributed
according to the beta distribution B and the pair (k, h) according to the normal-
inverse-gamma distribution N -Γ-1. Our prior distribution for parameters θ is
then:

p(θ) = B(po|N̂ o, N̂ v) N -Γ-1(k, h
⃓⃓⃓

µ0, N̂ , N̂α, β). (1.11)

The various hyperparameters in the above equation can be understood as statis-
tics of hypothetical prior observations before the first actual sample has been
taken. N̂ o and N̂ v denote the number of occluded and visible prior observations,
µ0 is the mean of N̂ prior visible observations and β is the sum of squares of 2N̂α

prior visible observations. Note that these hyperparameters do not necessarily
describe a consistent set of virtual prior observations (i.e., in general N̂ ̸= N̂ v

and 2N̂α ̸= N̂). Intuitively, N̂ o, N̂ v, N̂ and N̂α express the strength of the priors
and larger values will cause slower, but potentially more robust learning.

To obtain the hyperparameter µ0, we use our second source of information,
the unoccluded cluster contribution estimate L̃c(x) (Appendix 1.9.1). To make
the prior more robust to occasional gross errors in these estimates, we blend the
L̃c(x)-proportional distribution with a defensive uniform distribution over the
clusters. Finally, L̃c(x) contains a division by the squared-distance d2(ctr(c), x)
to the cluster center ctr(c). But µ0 is a prior on the parameter k, which gets
divided by the distance in our model (1.10). We counter double division by the
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Figure 1.5: Evolution of the posterior distribution for the parameters po (beta dis-
tribution, left), and k and h (normal-inverse-gamma, right) after seeing 0 (prior),
10 and 100 (synthetic) samples, with hyperparameters set as described in the
main text, and the hyperparameter µ0 set to 1.5. The samples’ true occlusion
probability was 0.15, the visible samples’ true mean and variance was 0.8 and
0.25, respectively, and are marked by the red dot. Note that the N -Γ-1 prior is
zero almost everywhere except near the x-axis, due to β = 1e−6.

distance by pre-multiplying by d2(ctr(c), x). In summary, our informed prior
mean reads

µ0 = 1
2

(︄
L̃c(x) +

∑︁
c′∈C L̃c′(x)

|C|

)︄
d2(ctr(c), x). (1.12)

Good values of the other hyperparameters should strike a good trade-off be-
tween the learning rate and robustness to noisy samples. We found the following
values to work robustly across all our tests: N̂ o = 2, N̂ v = 2, N̂ = 1, N̂α = 1, β =
1e−6. Refer to Section 1.6 for a discussion of this choice.

Figure 1.5 shows how increasing number of observed samples shapes the pos-
terior distribution of parameters θ from this prior distribution towards the true
value of the parameters.

1.4.2 Inference
With both the likelihood and prior defined, we now infer the most probable pa-
rameter values after seeing the data. We maximize the logarithm of the posterior
distribution with respect to the parameters to obtain the MAP point estimate
for θ. That boils down to finding the solution to ∇θ log( p(D|θ)p(θ) ) = 0, which
expands to: ⎛⎝ N∑︂

i

∇θp(êx,i|d̂i, θ)
p(êx,i|d̂i, θ)

⎞⎠+ ∇θp(θ)
p(θ) = 0. (1.13)
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Plugging our model equations (1.10) and (1.11) into (1.13) we get the following
system of equations:

(N̂ o − 1)(1 − po) − po(N̂ v − 1)
po(1 − po)

− No

po

− Nv

1 − po

= 0

s1,x − k(N̂ + Nv) + N̂µ0

h
= 0

−2ks1,x + s2,x − 2N̂αh + 2β + N̂(µ0 − k)2 + Nv(k2 − h) + h

h
= 0.

The solution to this system gives us the MAP estimate of the θ parameters:

po = −1 + N̂ o + No

−2 + N̂ o + N̂ v + N
, (1.14)

k = s1,x + N̂µ0

N̂ + Nv

, (1.15)

h =
−2N̂µ0s1,x − s2

1,x + (s2,x + 2β)(N̂ + Nv) + N̂Nvµ2
0

(2N̂α + Nv − 1)(N̂ + Nv)
(1.16)

where s1 = ∑︁Nv
i d̂

2
i êi, s1,x = s1cosθx and s2 = ∑︁Nv

i d̂
4
i ê

2
i , s2,x = s2cosθ2

x represent
statistics over visible samples, No and Nv are the number of occluded and visible
samples, and N = No + Nv is the overall number of samples (for the considered
region-cluster pair).

With these parameters, the expectation and variance of our model in (1.10),
approximating Lc(x) and Var[⟨Lc(x)⟩], respectively, are:

Lc(x) ≈ (1 − po)k/d̂
2
, (1.17)

Var[⟨Lc(x)⟩] ≈ (1 − po)(pok
2 + h)/d̂

4
. (1.18)

We set d̂ = d(ctr(c), x) to approximate the not yet known distance for x, where
ctr(c) denotes the cluster center.

1.4.3 Summary
Let us now summarize the steps involved in direct illumination computation at
a shading point x. We take the cut C stored in region R containing x and for
each of its clusters c we compute the unoccluded contribution estimates L̃c(x)
and cosθx (Appendix 1.9.1), and we set d̂ = d(ctr(c), x). We cull clusters with
L̃c(x) = 0, i.e., which have provably zero contribution to x, from any further
processing.

For the remaining clusters, we compute µ0 using (1.12), retrieve the region-
cluster statistics s1, s2, No, Nv, and compute the MAP parameters (po, k, h) using
(1.14), (1.15) and (1.16). Finally, we get the sampling probability P ∗(c|x) by
plugging (1.17) and (1.18) into (1.7):

P ∗(c|x) ∝ 1
d̂

2

√︂
(1 − po)2k2 + (1 − po)(pok2 + h). (1.19)
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Using these probabilities we select a cluster c∗, then we select a light l∗ ∈ c∗

with probability P (l∗|c∗) = Φl∗/
∑︁

l′∈c∗ Φl′ and finally, sample a point y∗ ∈ Al∗

using the standard techniques [Shirley et al., 1996; Pharr et al., 2016; Gamito,
2016]. Contribution of this sample is then used to update statistics s1, s2, No, Nv

stored for the cluster c∗ in the region R.

1.5 Control variates
Inspired by the successes of control variates documented in previous work [Owen
and Zhou, 2000; Clarberg and Akenine-Möller, 2008; Pegoraro et al., 2008; Rous-
selle et al., 2016], we exploit our accumulated statistics as a control variate for
further variance reduction.

0

integrand

difference

CV

The idea of control variates is to subtract a function
– a control variate (CV) – with a known expected value
from the integrand, to estimate the integral of the differ-
ence using MC, and then add the expected value of the
CV. Intuitively, the closer the CV is to the integrand, the
smaller the difference is and so is the variance of the MC
estimation. See Section 2.5.1 in the next chapter for more
formal introduction into control variates.

We keep the nested MC estimator ⟨Lc(x)⟩ of cluster contribution as before
(i.e. Steps 2 and 3 in Section 1.2), and apply the CV to the MC estimator of the
sum over clusters:

⟨L(x)⟩CV = ⟨Lc(x)⟩ − H(c, x)
P (c|x) +

∑︂
c′∈C

H(c′, x). (1.20)

The better the control variate H(c, x) approximates the true cluster contribution
Lc(x), the more the variance is reduced. Since this is precisely the purpose of
our Bayesian model (see (1.17)), it would seem natural to also use it directly as
the CV. However, while we strongly prefer overestimation to underestimation for
the sampling distribution, this is not the case for the CV. We, therefore, omit the
conservative prior in its definition, and the CV reads

H(c, x) = 1
N

s1,x

d2(ctr(c), x) . (1.21)

Despite the CV acting as a mere empirical improvement over the theory presented
so far, it yields noticeable variance reduction at a negligible cost (Figure 1.6).

1.6 Results
Implementation We implemented our method in the path tracer of the Corona
renderer and deployed it among users. Our path tracer combines light sampling
and BRDF importance sampling using MIS [Veach, 1997] alleviating the fact that
our sampling distributions do not take BRDF into account (as we discussed in
Section 1.2). When used in this setting, the direct illumination samples êi, which
we use for training, are pre-multiplied by MIS weights. This heuristic approach
works well in practice (see Figure 1.13), and a more principled analysis is left for
future work.
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Test setup We show results of our tests on three different scenes: Living room,
City and Door (see Figure 1.1 and 1.10). Living room is a typical scene in the
architectural visualization featuring a living room lit by the sun and a few area
lights on the ceiling. In contrast, the City scene shows a street at night and
contains more than 5000 light sources. Finally, Door is a rather simple scene
featuring complex shadowing.

In addition to these three main scenes, we use two another scenes for specific
comparisons: Wedge and Hall (see Figure 1.9 and 1.13). Wedge is a simple
synthetic scene illuminated by three area lights and an environment map. Hall
features complex glossy materials illuminated by the sun, an environment map
and tens of area lights of various sizes.

Exact light counts along with other statistics are summarized in Table 1.1.
All scenes were rendered at the resolution 1080×720 on a single machine with
the Intel Core i7-5820K CPU (6 cores, 12 threads) and 32 GB of RAM.

Method components We first demonstrate the effect of the individual com-
ponents of our method in the City scene in Figure 1.6. We start by sampling
proportionally to an estimate of each light’s unoccluded contribution (a). At
every shading point, this method estimates the contribution of all scene lights
(using L̃c(x) from Appendix 1.9.1), and uses these estimates to construct the
sampling distribution. This procedure becomes prohibitively expensive for the
many lights as in this scene.

By subdividing the scene into regions and sampling proportionally to the
unoccluded contribution of light clusters in the associated cuts, we obtain the

RMSE 0.0124
(a) Proportional

RMSE 0.0057
(b) Scalable

RMSE 0.0096
(c) ML (overfitting)

RMSE 0.0045
(d) MAP for mean

RMSE 0.0030, 3.6x speedup
(h) g + control variate (Ours)

RMSE 0.0031
(g) f + visibility model

RMSE 0.0035
(f) e + regression

RMSE 0.0037
(e) d + MAP for varianceReference

Figure 1.6: An equal-time comparison (60 s) of different components of our di-
rect illumination sampling method in a scene with more than 5000 lights and high
occlusion. We compare sampling proportional to (a) unoccluded light contribu-
tion computed separately for each shading point and light, (b) unoccluded light
cluster contribution incorporating our scalable solution, (c) maximum likelihood
(ML) estimate of the mean cluster contribution (dark artefacts are a consequence
of overfitting), (d) maximum a posteriori (MAP) estimate of the mean cluster
contribution. The remaining variants gradually add the following components:
(e) MAP estimate for variance, (f) regression to model the distance falloff, (g)
explicit modelling of occluded samples, (h) control variate. The last result corre-
sponds to our final solution. The numbers below the method names denote the
RMSE to a reference solution. The speedup is with respect to (b).
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Scalable method (b) which scales much better with the number of lights but still
neglects visibility.

Learning light sampling probabilities using a simple maximum likelihood (ML)
estimate, i.e., the mean of MC samples, (c) can easily lead to bias: If the first ob-
served sample is occluded (zero), the cluster will not receive any further samples,
yielding dark artefacts highlighted by the red arrows in the figure.

Such artefacts can be avoided by using a MAP estimate of the mean (d).
However, as we show in Section 1.3, optimal cluster sampling distribution should
take into account the variance of sampling inside each cluster. Indeed, adding
a MAP estimate for this nested estimator’s variance significantly reduces noise
(e). Incorporating regression modelling of the distance falloff (f) eliminates noise
most noticeable near region boundaries. Finally, explicit modelling of occluded
samples and the use of control variates further reduces noise. This is the complete
method we use in all our further tests, and we denote it Ours. Version (b), denoted
Scalable, serves as a baseline for the comparisons. In this scene, Ours is 3.6×
faster than Scalable.

Robustness and DI-only performance We now demonstrate superior ro-
bustness of our method over the work by Donikian et al. [2006] (details of our
reimplementation are given in Appendix 1.9.3). While Donikian et al.’s method
also relies on learning, it is based on heuristics that eventually fail to deliver a ro-
bust solution. The method gathers statistics in image space and cannot be easily
integrated in a global illumination solution. For this reason, we compare on direct
illumination (DI), and take this opportunity to provide a DI-only comparison to
the Scalable method, see Figure 1.7.

ScalableReference
(0.0347)

Donikian et al. Ours
(0.0119) (0.0114, 9.3x)

Door

ScalableReference
(0.0014)

Donikian et al. Ours
(0.000074) (0.000062, 510x)

Living room

DoorLiving room

Figure 1.7: Equal-time comparison (60 s) of our method against Scalable and
Donikian et al.’s methods in a direct illumination setting. See the main text for
details.
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The sun in the Living room scene is significantly stronger than other lights.
Since the Scalable method has no notion of visibility, it prefers sampling the
sun while undersampling the other lights, even in sun’s shadow. Our method
quickly learns the sun occlusion and avoids the excessive noise of Scalable. It
converges more evenly and more than 500× faster. Donikian et al.’s method also
shows improvement over Scalable but struggles with sampling a ceiling area light
covered by a shade letting only a small portion of the light through. The method
overfits and introduces spiky noise.

The Door scene aims at testing robustness with complex shadow and light
patterns. While Scalable struggles in shadows as before, Donikian et al.’s method
learns light occlusion quickly and it may even outperform our method in uniformly
lit areas. However, this aggressive adaptation comes at the cost of overfitting,
which is then manifested as spiky noise and artefacts around shadow boundaries.
Notice the square holes in the penumbra of the plant in the first inset and at
intersections of the net of shadows in the second one. Our method robustly
handles all these situations while being more than 9× faster than Scalable.

We compared Scalable and our method in the City scene (Figure 1.6) but we
had to omit Donikian et al.’s because of its vague description of dealing with many
lights (we lack information of how to accumulate block statistics coming from
possibly very distant shading points and thus having different light clusterings).
RMSE evolution plots in Figure 1.8 show that in the City scene our method
maintains a stable speedup over Scalable, while in the other two we can observe
a higher empirical convergence rate.

We want to underline that our improvement over Donikian et al. lies mainly
in the robustness, not the speed. In fact, their method can outperform ours in
uniformly lit areas, but introduces unacceptable artefacts at shadow boundaries
(Figure 1.7 and 1.9). This lack of robustness is an inherent property of their
static strategy to prevent overfitting (weighting distributions based on the iter-
ation step) and cannot be avoided by any parameter tweaking. Addressing this
deficiency is the very purpose of our Bayesian approach.

R
M

S
E

Ours Scalable

time [min]

Door

101 101 101

City Living room

10-1 10-110-1

10-1 10-1 10-2

10-3 10-3 10-5

Figure 1.8: RMSE evolution (10 min) for the direct illumination only. Our
method is compared against the Scalable method. The plots start at 10 seconds
to ensure all pixels were sampled at least once.
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Figure 1.9: An equal-time time comparison (10 s) of our method against Donikian
et al.’s method in a direct illumination setting. The large area light on the right
that illuminates the scene only through a narrow gap presents a difficult situation
for the Donikian et al.’s method. Many of its samples are blocked, which increases
the danger of overfitting, manifested as block artefacts along shadow boundaries
where the algorithm incorrectly decided to stop sampling the light.

Discussion of other competing work. The method of Wang and Akerlund
[2009] is similar to the Scalable method. Unlike Wang and Akerlund, Scalable
omits the BRDF from light sampling distribution, but that does not introduce
any disadvantage on diffuse surfaces. Furthermore, Scalable achieves some per-
formance gain by caching of light cuts for scene regions. As a result, comparison
against the Scalable baseline can serve as a fairly good approximation to a com-
parison against Wang and Akerlund.

We do not compare against methods that involve substantial preprocess-
ing [Georgiev et al., 2012a; Wu and Chuang, 2013] since these methods address
a different use case than ours. In a typical commercial rendering workflow a vast
majority of renders are in fact short tests, not the final images. In this context, a
preprocessing step is an obstacle that would prevent the method from being used
in the pipeline that our users rely on in their daily work.

Global illumination integration When integrated in a global illumination
(GI) solution, the relative performance improvement of our method naturally
depends on the variance contribution due to the direct and indirect components.
While our DI method yields an almost noise-free GI result in all three scenes, in
the City and Door scenes (Figure 1.10) roughly half of the speedup of the DI-
only solution is retained (speedup 3.6× from Figure 1.6 and 9.3× from Figure 1.7
decreases to 2.0× and 4.3× respectively). On the other hand, our 510× speedup
in the DI-only comparison in the Living room scene (Figure 1.7) reduces to 6.7× in
GI (Figure 1.1). This indicates that variance contribution of the direct component
in this scene is small in comparison to the total illumination.
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Door

ScalableReference
(0.0198)

Ours
(0.0140, 2.0x)

City

ScalableReference
(0.0425)

Ours
(0.0206, 4.3x)

Figure 1.10: Equal-time time comparison (60 s) of our method against Scalable
in a global illumination setting. See the main text for more details.

Grid resolution Our spatial regression model makes the performance of our
algorithm rather insensitive to the division of scene into regions. As shown in Fig-
ure 1.11, a trade-off exists between the model accuracy (the smaller the regions,
the more accurate the models) and the learning rate (the larger the regions the
more samples are available) in the City scene (though the dependence is weak)
while almost no difference is visible in the other scenes. For this reason, all our
results use a fixed-resolution uniform grid with cubical regions with 64 regions
along the shortest scene dimension.
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Grid res. 256 Grid res. 16

time [min]
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City Living room
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x10-3
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10-1
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Figure 1.11: RMSE evolution (10 min) for different grid resolutions. With a finer
resolution our model might learn more slowly but achieve better accuracy (and
thus lower RMSE). Nonetheless, the differences are very small.
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Light
count

Non-empty
regions

Average
cut size

Memory
(MB)

Over-
head

City 5022 39666 (4.1%) 33 101 7.2%
Door 5 24526 (1.1%) 5 97 3.6%
Living room 5 57304 (2.3%) 5 113 7.9%
Hall 78 31304 (6.6%) 39 78 9.8%
Wedge 4 10871 (0.4%) 4 101 9.0%

Table 1.1: Statistics gathered after 120 s of rendering of our test scenes with global
illumination. The number in parentheses is the percentage of total region count
(scene dependent). The average cut size (i.e., number of clusters per region) is
taken over non-empty regions only. Total memory consumed by the regions and
clusters is reported. The overhead expresses relative decrease of pixel samples
per second with respect to Scalable.

Memory consumption and overhead At our grid resolution, memory con-
sumed by the stored light cuts and model statistics is moderate, as we show
in Table 1.1. These numbers are for a GI setting and less memory is consumed
when computing only DI. An empty scene region occupies 40 B of memory. Ev-
ery cluster inside a region consumes additional 48 B in order to store: 2× 64-bit
double for statistics s1, s2; 2× 32-bit integer for statistics No, Nv; 64-bit pointer
to cluster tree node; 32-bit integer for flags; 3× 32-bit float for RGB channels of
s1 for the control variate.

Regarding computation overhead, the number of pixel samples per second
decreased in our method in comparison to Scalable by no more than 10% in
all our test scenes (see Table 1.1). The learning compensates for this by better
sampling, which yields a much improved overall result.

Unbiasedness Although we use past samples to update sampling distributions,
we do not modify sample values based on the past observations and our method
is therefore unbiased. In Figure 1.12 we empirically demonstrate a steady con-
vergence of our method to the result of the (non-adaptive) Scalable method.

R
M
S
E

time [min] 120

3.5

Exposure value = 2010
1

x10-1

Figure 1.12: Steady convergence of our method (RMSE plot, left) to reference
solution in the Living room scene suggests that our adaptive method accumulates
no bias. A 220× amplified colour-coded difference image (right), taken at the end
of the measurement, shows that any remaining differences are due to a random
noise (red=positive and green=negative difference).
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MIS combination We tested our method both with and without MIS combi-
nation with BRDF sampling. While there is almost no difference in the Living
room, City and Door scenes, in scenes with large area lights and glossy materials,
the MIS combination proves beneficial as shown in the Hall scene in Figure 1.13.
Even in this scene containing complex illumination and glossy materials, our
method performs well even though our light sampling distribution neither takes
the BRDF into account, nor addresses sampling of individual lights.

OursScalable
(0.0753)

Ours MIS Scalable MIS
(0.0550, 1.2x) (0.0609)

Hall

(0.0820)

Figure 1.13: An equal-time time comparison (60 s) of our method against Scalable
with and without MIS in a global illumination setting.
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Figure 1.14: Plots of RMSE (after 10 s) with respect to different values of the
hyperparameters in a direct illumination setting.

Hyperparameters Our default choice of the hyperparameter values yields an
uninformed prior distribution over the model parameters, and works robustly
across all our tests. In particular, we use N̂ o = 2, N̂ v = 2, N̂ = 1, N̂α = 1, β =
1e−6. We tried to individually vary each of these values but we did not see
any significant change in the resulting image quality (see Figure 1.14). Only the
setting N̂ v = 1 or N̂ = 0 causes a sudden increase of image noise, since our
method with these values essentially degenerates into the maximum likelihood
solution.

Prior accuracy To better understand the importance of the prior of our model
and its accuracy, we tested our method with a less precise prior. In particular,
we replaced the upper bound cosθx on the surface cosine in the L̃c(x) estimate
(1.23) with a trivial bound of 1. This modification had only a minor effect in
most of the scenes except in the City scene, where the trivial bound noticeably
increased the image noise (see Figure 1.15). This observation is in line with our
expectation that the prior is important but our method is not too sensitive to its
exact value as it quickly learns the actual light contributions.

Clustering In Figure 1.16, we analyse the effect of light clustering on the per-
formance of our method, in particular the effect of ϵ, the fraction of the estimated
contribution of the entire cut, used as a threshold for stopping the cut refinement.
With higher values the cuts are smaller and faster to compute, the maximum
value of 1 would cluster all lights into a single cluster. With lower values the cuts
are more accurate, the minimum value of 0 either clusters each light in its own
cluster (less than 100 lights) or into a maximum cut of 100 clusters (more than
100 lights).
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Trivial boundReference
(0.0036)

Upper bound
(0.0030, 1.44x)

Figure 1.15: An equal-time time comparison (60 s) of using a trivial bound on
the surface cosine for the model prior against using the upper bound cosθx in a
direct illumination setting.
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Figure 1.16: Plots of RMSE (after 60 s) with respect to the clustering precision
ϵ in a direct illumination setting. The dashed line denotes ϵ = 0.1, the value we
used in all our tests.

As expected, the clustering has an important impact on the performance in
the City scene, which contains more than 5000 lights (the optimum values yields
more than 20× speedup in comparison with the least suitable value). On the
other hand, the clustering has much smaller effect in the Hall scene with less
than 100 lights (the speedup is only 1.3×). We used ϵ = 0.1 in all our tests,
which is optimal in the City scene and close to optimal in the Hall scene.

1.7 Limitations and future work
Multiple Importance Sampling (MIS) We have discussed in Section 1.6
the heuristic nature of the integration of our method with MIS. While our ap-
proach works well in practice and successfully handles large area light sources
and complex materials (Figure 1.13), a more in-depth analysis could yield fur-
ther improvements.

BRDF Our method does not consider the BRDF factor in learning the sampling
distributions. This makes the learning more tractable (a less detailed function to
learn) and practical in a production setting (the BRDF can be a black box). But
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it limits the adaptability of the sampling. Though this has not been an issue in
practice thanks to the MIS combination with BRDF sampling, incorporating the
BRDF in the learning process could still be beneficial.

Scene subdivision Another interesting point is the trade-off between model
accuracy and learning rate due to the scene division. The graphs in Figure 1.11
suggest such a trade-off exists, although the differences are small. However, the
graphs show aggregate statistics over the entire scene, which can obscure the
fact that adaptive scene subdivision could still have an important positive local
impact.

Hyperparameters While we discussed different hyperparameter values in Sec-
tion 1.6, we see a more rigorous approach for hyperparameter selection as yet
another area of research. Our default choice yields an uninformed prior distribu-
tion over the parameters, which fits all scenes, but it might deliver suboptimal
performance. Full Bayesian treatment (i.e., marginalizing the hyperparameters
out) could yield further performance gains.

Sampling of individual lights Our method focuses on light selection and
leaves sampling of the final point on the light unaddressed. This is motivated
by the fact that the light selection is usually responsible for most of the variance
in direct illumination. But this may not always be the case, especially when the
individual lights are large (e.g., environment maps). This is partially alleviated
by the integration with MIS (Figure 1.13) but there is certainly some potential
for improvement.

Overhead Probably the thorniest practical issue, shared with the Scalable
method, is the overhead associated with constructing the sampling distribution
at each shading point. This is amortized in our implementation by a relatively
large splitting factor (16 samples taken from one distribution) but it could be an
issue in a simple path tracer without splitting.

Relation to path guiding As mentioned in Section 1.1, path guiding and our
method share the idea of sampling according to a priori unknown illumination
estimates. But while path guiding usually focuses on indirect illumination, we
address specifically light source selection for direct illumination computation. In
fact, our work is a component that could be integrated into a path guiding solu-
tion. We believe that any path guiding algorithm working in a forward manner
from camera toward light could benefit from incorporating our approach and even
implementation should be relatively straightforward as most of the algorithms al-
ready use some space partitioning schemes.

1.8 Conclusion
In this chapter, we presented our approach to decreasing the variance of MC inte-
gration in rendering by finding a better sampling technique. We focused on direct
illumination calculation and proposed an unbiased adaptive direct illumination
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algorithm with online learning of a light sampling distribution. The distribution
is continually improved to better match the integrand based on the contribution
of the direct illumination samples taken during rendering, including the visibility
factor. As in any other adaptive MC sampling scheme, issues associated with lim-
ited reliability of the available information threaten the robustness of the resulting
algorithm. As the main contribution of this chapter, we propose a Bayesian treat-
ment of the learning process based on a statistical model developed specifically
for the direct illumination sampling process. This treatment results in a robust
and efficient algorithm, which has been successfully used in the Corona renderer
to this day. We hope that the presented methodology will find its use in other
adaptive MC schemes both in image synthesis and other application domains.

1.9 Appendix

1.9.1 Contribution estimates and clustering metric
Our scalable method differs from Lightcuts mainly in the way the cluster contri-
bution estimates are calculated and in the clustering metric used when building
the light tree. We use two kinds of estimates. First, L̃c(x) denotes an estimate of
the contribution of cluster c to a particular shading point x. It is used as a prior
distribution in our Bayesian learning model. Second, since we construct one cut
per entire scene region, the cut construction needs an estimate L̃c(R) valid for all
points in the respective region R.

Cluster-to-point estimate. We first discuss the point estimate L̃c(x). Unlike
Lightcuts, we do not desire an upper bound, since it often drastically overesti-
mates the actual contribution. Instead, we use less conservative estimates, so that
our prior better matches actual contributions. We seek to estimate the radiance
due to direct illumination from cluster c:

Lc(x) =
∫︂

Ac

Le(y→x)V (y↔x) cos θy cos θx

d2(y, x) dy. (1.22)

As in Lightcuts we use the same trivial bound for visibility V = 1, upper bound
cosθx on the cosine at surface and upper bound cosθc on the cosine at the light
cluster. cosθx is computed as the maximum cosine between the surface normal at
x and the direction from x to any point inside the cluster’s bounding box. cosθc

is computed as the maximum cosine between any normal in the cluster’s normal
cone and the direction from any point inside the cluster’s bounding box to x. See
Figure 1.17 for an illustration and the Lightcuts publication [Walter et al., 2005]
for computation details.

Unlike Lightcuts, we use cosθc only if the cluster center is further than 1.5
times the cluster diameter. For nearby clusters this bound would become too
conservative and yield poor priors, so we average it with the cosine at the cluster
center ctr(c), i.e., the cosine between the direction x − ctr(c) and the axis of the
cluster’s normal cone. We denote the resulting cosine estimate as cosθ′

c. For the
distance factor, we use a distance to the cluster center d(ctr(c), x). And finally
for each light l ∈ c we conservatively estimate radiance Le it can emit to x and
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Figure 1.17: Left: An example of upper bound cosθx on the cosine at surface and
upper bound cosθc on the cosine at a cluster. Red cones represent the cluster’s
normal cone, i.e., the bounding cone of all light normals in the cluster. Right:
The creation of the parent cluster c1,2 from children c1 and c2. The bounding
cone of the contained normals encompasses both child bounding cones.

denote it Le,l. For instance, for cosine lights with emission defined as I0(cos θy)α

this estimate can be obtained as I0(cosθ′
c)α. Together we have:

L̃c(x) = cosθ′
ccosθx

d2(ctr(c), x)
∑︂
l∈c

|Al|Le,l. (1.23)

See Section 1.6 for a discussion of importance of L̃c(x) accuracy.

Cluster-to-region estimate. On the other hand, the region-wide estimate
L̃c(R) is more conservative so as to produce better cuts (it is less prone to a
premature stop of the cut construction because of underestimating parent clus-
ters). We construct it as an upper bound of L̃c(x) over all points in region R by
bounding its individual factors. A trivial bound is used for the cosine at surface
since the surface normal in the region may be arbitrary. To bound the cluster
cosine with respect to the entire region, we enlarge the cluster bounding box by
the region box [Walter et al., 2006] and denote this bound as cosθR

c . The distance
between the cluster center and the region is bounded from below and denoted
as d(ctr(c), R). Finally, emitted radiance is bounded using maximum radiance
a cluster light can contribute to any point in the region (similarly as in L̃c(x)
but using the region-wide bound on the cluster cosine, i.e., I0(cosθR

c )α for cosine
lights). We denote it L

R
e,l. Together we have:

L̃c(R) = cosθR
c

d2(ctr(c), R)
∑︂
l∈c

|Al|L
R
e,l. (1.24)

Clustering metric. The light tree is constructed in a bottom-up manner, start-
ing with each light as one cluster and then repeatedly merging a pair of clusters
with the lowest value of the metric dtree which expresses similarity of two clusters.
For any two disjoint light clusters c1, c2 it is defined as

dtree(c1, c2) = (Φc1 + Φc2)(A2 + B2(1 − cos C)2) (1.25)

where A is the length of the diagonal in the bounding box of the two clusters and
C is the half-angle of the bounding cone of their normals. The relative weight of
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the spatial and directional similarity is controlled by B which is set to length of
the diagonal in the scene bounding box. See Figure 1.17 for an illustration. Φc

is an approximation of the flux of the cluster c computed as

Φc =
∑︂
l∈c

Φl, Φl =
∫︂

Al

max
ω

Le(y→ω) dy (1.26)

where l is a light inside cluster c, Al is its surface and maxω Le(y→ω) is its
maximum radiance emitted from the point y to any direction ω on a sphere (e.g.,
Φl = |Al|I0 for cosine lights).

1.9.2 Conjugate priors for our model
Setting p(θ) = p(po)p(k, h) in the relation p(θ|D) ∝ p(D|θ)p(θ), the posterior
p(θ|D) will be proportional to:

p(po)p(k, h)
(︄

No∏︂
i

δ(êx,i)po

)︄⎛⎝Nv∏︂
i

(1 − po)N
⎛⎝êx,i

⃓⃓⃓⃓
⃓⃓ k

d̂
2
i

,
h

d̂
4
i

⎞⎠⎞⎠ . (1.27)

Beta prior To get the posterior distribution of po, we need to divide the above
expression (1.27) by the marginal distribution p(D, k, h) which we get by inte-
grating out po from (1.27). By doing so we get the posterior in the form:

p(po|D, k, h) = K p(po) (1 − po)NvpNo
o , (1.28)

where K is some normalization factor depending only on the data D and our
choice of the prior p(po). We see that (1 − po)NvpNo

o is of the same form as the
beta distribution. Therefore by setting p(po) = B(po|N̂ o, N̂ v) we are now able to
evaluate K from (1.28) and we get the posterior distribution

p(po|D, k, h) = B(po|N̂ o + No, N̂ v + Nv). (1.29)

We see that the beta distribution is indeed a conjugate prior of our model from
(1.10).

Normal-inverse-gamma prior To find a conjugate prior for the k and h pa-
rameters, we proceed similarly as before with po. We get the posterior distribution
of the form:

p(k, h|D, po) = K d̂
2
i p(k, h)

Nv∏︂
i

N
(︃

êx,id̂
2
i |k, h

)︃
, (1.30)

where we used the relation N (êx,i|k/d̂
2
i , h/d̂

4
i ) = d̂

2
i N (êx,id̂

2
i |k, h) and K is again

some normalization constant. The normal-inverse-gamma N -Γ-1 distribution is a
conjugate prior for such a case [Bishop, 2006]. Therefore it is a conjugate prior
for our model (1.10).
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1.9.3 Our implementation of Donikian et al. [2006]
Donikian et al. [2006] divide the image into blocks and process them one by one.
For each block, they first fix one shading point for each pixel and then process the
block pixels in iterations until convergence. In each iteration, they sample direct
illumination at the shading points a fixed number of times (1.5× the light count),
and subsequently update light contribution estimates at the block and pixel levels,
respectively. The next iteration then uses a sampling distribution which mixes
distributions at the block and pixel levels with the uniform distribution. The
mixing weights are oblivious to the observed samples and depend solely on the
iteration count. They change during the first 10 iterations only and remain fixed
after that. This process is repeated until a convergence criterion is met for all
pixels in the block; then a new block is started.

To make this method more compatible with ours, we made it progressive by
computing all blocks at once. Furthermore, we find a new shading point for
every pixel sample. One iteration then corresponds to taking one sample from all
image pixels. The rendering time in our tests is set long enough for this method
to complete enough iterations to learn (i.e., at least 10). Finally, we set our
method in these tests to sample direct illumination at each shading point the
same number of times (i.e., 1.5× the light count instead of the default 16×).
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2. A better combination of
techniques
In the previous chapter, we focused on finding a single sampling technique that
would be a good match for the entire integrand. In this chapter, we investigate
a different approach to decreasing the variance of MC integration: combining
multiple sampling techniques, each of which could be a good match to a different
feature of the integrand. In particular, we focus on multiple importance sampling
(MIS), a robust way of combining sampling techniques proposed by Veach and
Guibas [1995].

In the context of light transport simulation, MIS has served as a cornerstone
for robust bidirectional path sampling [Veach and Guibas, 1995; Georgiev et al.,
2012b; Hachisuka et al., 2012; Křivánek et al., 2014; Popov et al., 2015], Markov
chain Monte Carlo light transport [Hachisuka et al., 2014; Šik et al., 2016; Gruson
et al., 2016], adaptive path sampling (path guiding) [Vorba et al., 2014; Herholz
et al., 2016; Müller et al., 2017], or in isolated integration problems such as direct
illumination estimation [Veach and Guibas, 1995; Georgiev et al., 2012a]. Recall
that we used MIS in the previous chapter in Section 1.6 to improve robustness
of our direct illumination algorithm in the presence of glossy surfaces and large
area light sources.

The key to the efficiency of MIS are the weighting functions used to combine
samples from different sampling techniques. A set of weighting functions known
as the balance heuristic has been suggested as a de facto universal solution, as
no other weights can yield substantially lower variance [Veach and Guibas, 1995]
(we show that this claim does not generally hold). Since the balance heuristic
variance bounds can be fairly loose, alternative weights have been proposed to
address shortcomings in some specific cases. The power, cutoff, or maximum
heuristics can reduce variance for low-variance problems, but this comes at the
expense of an overall variance increase [Veach and Guibas, 1995]. The α-max
heuristic incorporates prior assumptions to avoid assigning too high weights to
poorly performing sampling techniques [Georgiev et al., 2012a]. However, the
performance of different weighting heuristics is problem-specific and the existing
work fails to provide a clear answer as to which weighting functions to use in
which situation.

Our work focuses on weighting functions for MIS. We derive a set of weighting
functions that provably minimize the variance of the MIS estimator for a given
set of sampling techniques and a fixed number of samples. The resulting optimal
weights may be negative, and this additional flexibility enables substantial vari-
ance reduction over the existing weighting heuristics. In fact, we show that the
optimal weights can result in variance lower than the balance heuristic bounds
derived by Veach and Guibas [1995], as non-negativity of the weights was a silent
assumption made in their derivation.

We provide further theoretical insights into the new optimal weights: we es-
tablish a connection between MIS with our optimal weights and another common
variance reduction scheme – control variates. Specifically, we show the equiv-
alence of the optimal weights to control variates applied to mixture sampling
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[Owen and Zhou, 2000]. Moreover, we relate the variance of the optimal weights
and the balance heuristic. The derivation of the optimal MIS weights and their
analysis comprise the main theoretical contribution of this chapter.

The practical contribution of this chapter consists in proof-of-concept appli-
cations of the optimal weighting scheme in light transport, specifically in direct
illumination calculation. Figure 2.1 demonstrates this application on a combina-
tion of two sampling techniques for light selection in a scene illuminated by two
light sources. The first technique – Trained – was trained from samples to select
lights based on their unoccluded contribution. It performs very well on surfaces
illuminated by both lights or where one of the lights cannot contribute because

Uniform technique (U)Trained technique (T)

T+U via
Power heuristic

MSE: 17.4 

T+U via
Optimal weights
MSE: 1.82 (9.6x)

+ = vs

Figure 2.1: An equal-sample comparison (20 samples per technique per pixel)
of direct illumination estimated by two sampling techniques for light selection
Trained and Uniform and their MIS combination with the Power heuristic and
our Optimal weights. All MSE values are ×10−10. See the main text for more
information.
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of its orientation (green smileys) but fails in shadows (red smileys) where it pro-
duces excessive noise. Therefore, it cannot be used alone and has to be combined
with a second, defensive technique. An example of such a technique is Uniform
which selects lights with equal probabilities. It does not perform particularly
well anywhere in the scene (yellow smileys) but it also does not fail. By using
MIS to combine these two techniques, the fail cases of the Trained technique are
avoided (i.e., no more red smileys). However, when the traditional MIS weights
are used (e.g., the power heuristic), the areas where Trained originally excelled
are also affected and the performance there is decreased (i.e., no more fully green
smileys). By using the proposed optimal weights, not only the good performance
of the Trained technique is fully retained, but even the places where none of
the two techniques performed well are improved (i.e., green smileys everywhere).
This is enabled by the optimal weights being allowed to take negative values and
Figure 2.2 shows that they are indeed negative in this scene. Altogether, the
optimal weights lead to an overall 9.6 times lower error per sample taken than
the power heuristic in this scene.

Apart from the variance reduction afforded by using the optimal weights in
an existing sampling setup, we show that the optimal weights allow for an addi-
tional flexibility in designing the sampling techniques themselves. More specifi-
cally, variance properties of the optimal weights directly motivate new sampling
techniques that – while performing poorly with balance and power heuristics –
provide a substantial speedup with our optimal weights.

Trained technique (T)Trained technique (T) Uniform technique (U)

Power heuristic Optimal weights

Uniform technique (U)

-1 0 1

Figure 2.2: False colour images showing per-pixel average MIS weight values for
each of the two techniques from Figure 2.1 as determined by the two weighting
strategies. Note that the value range of the optimal weights in the two right
images is clamped to [−1, 1] for easier comparison (therefore, the two images do
not sum up to 1).
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2.1 Previous work
MIS in light transport Multiple importance sampling (MIS) [Veach and
Guibas, 1995] offers a flexible way to combine a set of MC integral estimators, so
as to achieve reasonable performance in a wide range of scenarios – a property
referred to as robustness. It has been one of the keys behind the success of physi-
cally based light transport in VFX and computer animation [Keller et al., 2015].
MIS is typically used to combine a set of sampling techniques, each of which
matches different features of the integrand, but none of which is a particularly
good match across the entire domain. A prime example is direct illumination
estimation [Veach and Guibas, 1995], where MIS is used to mix BRDF and light
sampling techniques. Likewise, bidirectional path tracing [Veach and Guibas,
1995] and algorithms built upon it [Georgiev et al., 2012b; Hachisuka et al.,
2012; Křivánek et al., 2014; Popov et al., 2015] rely on MIS to combine different
techniques to sample entire light transport paths. In Markov chain Monte Carlo
methods, MIS has been used to combine contributions from different chains [Kele-
men et al., 2002; Šik et al., 2016] and to mix different target functions [Gruson
et al., 2016].

Another important use case for MIS is defensive sampling: an adaptively
trained sampling distribution is combined with a defensive strategy to ensure
robustness to overfitting. In path guiding, adaptively constructed guiding dis-
tributions are typically mixed with BRDF sampling [Vorba et al., 2014; Herholz
et al., 2016; Müller et al., 2017]. Similarly, in adaptive direct illumination sam-
pling, MIS is used to combine learned light selection distributions with other,
more defensive strategies, like in the work of Georgiev et al. [2012a], our work in
the previous chapter or in the example in Figure 2.1.

MIS estimator design MIS represents a wide family of estimators parametri-
zed by the combined sampling techniques, number of samples taken from each
technique, and the weighting functions used to combine the samples. The choice
of sampling techniques is application-dependent and we are not aware of any
work addressing the sampling technique design specifically in the context of MIS.
Another degree of freedom is the sample allocation. While Veach [1997] argues
that “no strategy is much better than that of simply setting all [sample counts]
equal”, the fixed sample allocation has its shortcomings. For instance, if one
technique is particularly good, samples from other techniques only serve to in-
cur overhead and increase variance. To determine the sample allocation among
BSDF, light, and photon map-based sampling, Pajot et al. [2011] introduce the
notion of “representativity” – a measure of how well each technique samples a
given integrand. Similarly, Lu et al. [2013] optimize sample allocation among
BSDF and environment-map sampling by approximately minimizing the MIS es-
timator variance in terms of the sample counts. Havran and Sbert [2014] and
Sbert et al. [2016] show that the optimal sample allocation must equalize the sec-
ond moment of the weighted estimates corresponding to the individual sampling
techniques. Sbert and Havran [2017] use the above result to design an approx-
imate sample allocation solution and Sbert et al. [2018] introduce new balance
heuristic estimators better than the balance heuristic with equal sample count per
technique. Finally, Cappé et al. [2008] apply population Monte Carlo to optimize
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sampling from mixture densities.

Alternative weighting heuristics In our work, we assume the sample counts
to be given and we focus on designing the optimal MIS weighting functions – a
problem setup shared with several previous works. In the context of many-light
sampling, Georgiev et al. [2012a] point out that the balance, power, and maximum
heuristics perform poorly, and they introduce the α-max heuristic with the aim
to achieve better stratification among the sampling techniques. Popov et al.
[2015] introduce a new weighting heuristic accounting for correlations between
paths in bidirectional path tracing obtained by minimizing an upper bound of
the variance of a correlated MIS estimator. Elvira et al. [2015, 2016] propose
clustering of sampling techniques to cut the overhead introduced by evaluating
the balance heuristic when the number of sampling techniques is high. While
these works design new weighting heuristic for some specific cases, our goal is
more ambitious: the provably optimal MIS weighting functions (for a given set
of sampling techniques and fixed sample allocation).

Control variates and mixture sampling We show in Section 2.5 that our
optimal weights are equivalent to optimal control variates (CV) [Lavenberg et al.,
1982; Rubinstein and Marcus, 1985; Venkatraman and Wilson, 1986]. These were
also studied by Owen and Zhou [2000], who realize CV by a mixture of sampling
densities, and approximate the optimal CV coefficients through multiple linear
regression over a set of observed estimates. We discuss the relation to their work
in more detail in Section 2.6 and in Appendix 2.10.4. Fan et al. [2006] then applied
Owen and Zhou’s approach in rendering, and we compare to their approach in
Section 2.7.5. In the follow-up work [He and Owen, 2014], the authors jointly
optimize the CV coefficients and the sample allocation. They show that the MIS
estimator variance is jointly convex in the above quantities and these can be
found by convex optimization.

2.2 Multiple importance sampling
In this section, we review multiple importance sampling (MIS), as first described
by Veach and Guibas [1995]. But let us first repeat the notation we use for the
basics of MC integration.

Monte Carlo integration Let F =
∫︁

D f(x) dx be the integral of a function f :
D → IR over the domain D, and let there be a sampling technique for generating
random samples from D following the probability density p such that f(x) ̸= 0 ⇒
p(x) ̸= 0. Then the importance sampling estimator ⟨F ⟩ = f(X)/p(X), where the
random variable X is distributed according to p, is unbiased, i.e., its expected
value E[F ] equals to F . The shape of p has a dramatic impact on the estimator’s
variance Var[⟨F ⟩]: the closer p is to being proportional to the integrand f , the
lower the variance.

Multiple importance sampling The idea of MIS is to improve the robust-
ness of MC integration by incorporating N sampling techniques with probability
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densities pi, i = 1, . . . , N , each of which could be a good match to a different
feature of the integrand. An MIS estimator of the integral F is then defined as:

⟨F ⟩∗ =
N∑︂
i

ni∑︂
j=1

wi(Xij)f(Xij)
nipi(Xij)

, (2.1)

where Xij ∈ D is a random variable representing the j-th sample out of ni samples
generated by the i-th sampling technique, and wi(x) are weighting functions. All
Xij are independent. To keep the MIS estimator (2.1) unbiased, the weighting
functions must satisfy:

f(x) ̸= 0 ⇒ ∑︁N
i=1 wi(x) = 1, (2.2)

pi(x) = 0 ⇒ wi(x) = 0, (2.3)

i.e., they must sum up to 1 whenever f(x) is nonzero, and each weight wi(x) must
be zero whenever pi(x) is zero. A particular set of weighting functions is referred
to as a combination strategy.

The above formulation of MIS, where a pre-determined number of samples
are taken from each sampling technique, is known as the multi-sample model. On
the other hand, the one-sample model

⟨F ⟩∗1 = wi(Xi)f(Xi)
cipi(Xi)

, (2.4)

is evaluated by first selecting one sampling technique pi at random with proba-
bility ci, and then generating a sample Xi from it.

Balance and power heuristics All combination strategies yield unbiased es-
timators, but they can differ in their variance. The two most commonly used
combination strategies are the balance and power heuristics, sharing the common
form

wp

i (x) = [nipi(x)]β∑︁N
k=1[nkpk(x)]β

. (2.5)

For the balance heuristic, we have β = 1. Veach and Guibas [1995] showed that no
other combination strategy can have significantly lower variance than the balance
heuristic; we revisit this near-optimality claim below. The power heuristic, for
β > 1, is a strategy better suited for low-variance problems, i.e., those where
one pi closely matches the integrand [Veach and Guibas, 1995, Sec. 4.1]. We set
β = 2, the choice that Veach and Guibas considered the best.

The same authors have additionally proposed the cutoff and maximum heuris-
tics, but these are used less frequently in practice and we do not consider them
here further (they throw away samples, are more complex to evaluate and usually
inferior to the power heuristic).

2.3 Revisiting balance and power heuristics
In this section, we first illustrate sub-optimal performance of the balance and
power heuristics, we then revisit the balance heuristic variance bounds, and show
that allowing for negative weights may yield far lower variance than predicted by
the bounds.
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Var: 0.158 (baseline)
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Figure 2.3: (a) The integrand f along with three sampling techniques p1, p2, and
p3. (b)–(f) The weighting functions associated with the balance, power, and best-
technique heuristic, respectively. (e) Optimal weights (unconstrained sign). The
two rows differ by the sampling technique p2. See Appendix 2.10.6 for additional
results for the cutoff and maximum heuristics (slightly worse than the balance
heuristic) and a Mathematica notebook used to produce this figure.

2.3.1 Motivation
The balance and power heuristics enable combining sampling techniques in a
robust way, so that the presence of a bad technique does not ruin the combined
estimator’s performance. But the robustness comes at the expense of decreased
overall efficiency; the MIS combination can be far from optimal and sometimes
significantly better results may be achieved by ignoring all samples but the ones
taken from the single best technique.

Let us illustrate this observation on a simple 1D example shown in Figure 2.3.
Column a) depicts an integration problem where the integral of a function f is
estimated via MIS. Three sampling techniques, p1, p2, and p3, are used, and one
sample is taken from each. The two rows differ solely in the sampling technique p2:
while p2 closely matches f in the first row, in the second row it is fairly different.
Columns b) and c) plot, respectively, the balance and the power heuristic weights.
We additionally define the best-technique heuristic, depicted in column d), as the
combination strategy assigning unit weight to the single technique yielding the
lowest variance and zero to the others. We can now compare the variance of the
balance, power, and best-technique heuristics.

While in the second row the variance of all the three strategies is similar,
there is a significant difference in the first row. The power heuristic achieves
somewhat lower variance (∼0.123) than the balance heuristic (∼0.158), as this
case is an instance of the low-variance problem due to p2 being a good match
to the integrand. Nonetheless, the best-technique heuristic has by far the lowest
variance (∼0.0442), almost 3x lower than the power heuristic. This is an inherent
problem of the balance and power heuristics; they are not optimal and sometimes
much worse than using the best technique alone.

2.3.2 Balance heuristic variance bounds: Are they valid?
The balance heuristic is widely used for its robustness and because it is provably
good: Veach [1997] has shown that a) for the multi-sample model, no other
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combination strategy can improve the variance beyond certain bounds, and b)
it is optimal for the one-sample model. While the optimality proof for the one-
sample model is valid in general, the proof of the variance bounds for the multi-
sample model assumes non-negative weights – and this assumption results in an
entire class of combination strategies being omitted.

We now revisit the proof for the multi-sample model and point out that al-
lowing negative weights (affine combinations rather than convex) can improve
the variance beyond the bounds derived by Veach. To simplify the notation, we
denote the inner product of two functions a and b defined over the domain D as
⟨a, b⟩ =

∫︁
D a(x)b(x) dx.

According to Veach, the variance of a multi-sample MIS estimator utilizing
the balance heuristic is no larger than the variance of any other MIS estimator
plus some fraction of F 2, more precisely:

Var[⟨F ⟩b] − Var[⟨F ⟩∗] ≤
(︄

1
mini ni

− 1∑︁N
i=1 ni

)︄
F 2. (2.6)

In the proof [Veach, 1997, p. 288], the variance of an MIS estimator

Var[⟨F ⟩∗] =
N∑︂
i

∫︂
D

wi(x)2f(x)2

nipi(x) dx⏞ ⏟⏟ ⏞
first term

−
N∑︂
i

1
ni

⟨wi, f⟩2

⏞ ⏟⏟ ⏞
second term

(2.7)

was inspected. While the balance heuristic was the result of the minimization
of the first term (giving the optimum for the one-sample model), the variance
bound (1/mini ni − 1/

∑︁N

i=1 ni)F 2 was established as the difference of the upper and
the lower bound of the second term in (2.7). The lower bound derivation did not
rely on any specific assumption, but in the upper bound derivation:

N∑︂
i

1
ni

⟨wi, f⟩2 ≤ 1
mini ni

N∑︂
i

⟨wi, f⟩2

⋆
≤ 1

mini ni

(︄
N∑︂
i

⟨wi, f⟩
)︄2

= 1
mini ni

F 2,

(2.8)

the second inequality ⋆ holds only if
⟨wi, f⟩ ≥ 0, (2.9)

that is, in the context of rendering where the integrand is non-negative, only
when wi(x) ≥ 0.1 For ⟨wi, f⟩ < 0 the upper bound on the variance of the balance
heuristic can in fact be larger than what Veach’s result suggests. See Figure 2.4
for an illustration.

To the best of our knowledge, this fact has not been previously recognized;
the weighting functions are usually designed to be non-negative everywhere and
for such the bounds are valid.

In what follows, we show that the non-negativity assumption is not necessary
for an MIS estimator to remain unbiased. In fact, there are many cases where a
combination strategy with ⟨wi, f⟩ < 0 produces an MIS estimator with variance
lower than predicted by the bounds, and it can be significantly better than any
other combination strategy considered by Veach [1997].

1To be precise, the condition is slightly weaker, because a weighting function wi negative in
a part of the domain may still yield ⟨wi, f⟩ ≥ 0.
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Figure 2.4: The upper bound on the variance of the balance heuristic given by
Veach [1997] is valid only with respect to the best possible non-negative weights.
For weights with unconstrained sign the difference in the variance can be much
larger. Note that this figure is for an illustration purpose only. See Section 2.3.3
for an actual example breaking the bound.

2.3.3 Weights with unconstrained sign: An example
Suppose we define weights allowing negative values for our integration problems
from Section 2.3.1. One example of such weights is shown in Figure 2.3e), along
with the variance of the resulting estimators. They yield estimators with far
lower variance than estimators utilizing any of the three heuristics discussed in
Section 2.3.1.

For the integration problem in the second row, the MIS estimator using these
weights has variance even lower than dictated by the variance bounds for the
balance heuristic: the balance heuristic variance is ∼1.3 and the bounds are
∼0.5, meaning that any other MIS estimator ⟨F ⟩∗ with only positive weights
should have variance above 0.8 (according to (2.6)). But the MIS estimator with
the negative weights has variance ∼0.3, which is well below this threshold.

In the next section, we derive weighting functions that provably minimize the
variance of the MIS estimator, should there be no constraint on the weights’ sign.
In fact, the weights used in Figure 2.3e) resulted from that derivation.

2.4 Optimal MIS weights
We now derive optimal weights for MIS by directly minimizing the variance
Var[⟨F ⟩∗] of the combined estimator (2.1), without imposing any restrictions other
than those necessary to obtain an unbiased estimator. More formally:
Problem 1. Given the MIS estimator (2.1), minimize the functional
V [w1, . . . , wN ] = Var[⟨F ⟩∗] in terms of weights wi, while maintaining the con-
straints ∑︁N

i=1 wi(x) = 1 and pi(x) = 0 ⇒ wi(x) = 0, and keeping the number of
samples ni and probability densities pi fixed.
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To describe the solution let us first define some terms:

Definition 1. Let f : D → IR be a function to integrate, pi(x), i = 1, . . . , N be a
set of probability densities on D, and let ni denote the number of samples taken
from pi. We define the technique matrix A = (aik) as a symmetric N ×N matrix
with elements given by

aik =
⟨︂
pi, pk/(∑︁N

j=1 njpj)
⟩︂

, (2.10)

and the contribution vector b = (b1, . . . , bN)⊺ as a column vector of length N
composed of

bi =
⟨︂
f, pi/(∑︁N

j=1 njpj)
⟩︂

. (2.11)

The technique matrix is independent of the integrand f and it is composed
of the inner products between all the probability densities normalised by the
factor (∑︁N

i=1 nipi)−1. Elements of the contribution vector represent contributions
to the final F =

∫︁
D f(x) dx, because the dot product (n1, . . . , nN) · b equals to

the integral F .
The solution to Problem 1 can now be summarized as follows:

Theorem 1. Let the column vector α = (α1, . . . , αN)⊺ satisfy the system of
linear equations

Aα = b, (2.12)

where A and b are the technique matrix and the contribution vector, respec-
tively. Then the weighting functions

wo

i (x) = αi
pi(x)
f(x) + nipi(x)∑︁N

j=1 njpj(x)

(︄
1 −

∑︁N
j=1 αjpj(x)

f(x)

)︄
(2.13)

minimize the functional V [w1, . . . , wN ].

An MIS estimator using the weights wo
i (x) will be denoted ⟨F ⟩o. The proof of

Theorem 1, given below, employs the calculus of variations (Appendix 2.10.1) to
directly minimize the variance functional. It does not rely on any other assump-
tions than those necessary to ensure unbiasedness, and therefore the solution
is indeed optimal in the MIS estimator family, i.e., no other MIS combination
strategy can result in a lower variance.2

Please note that the weights in (2.13) satisfy the constraints ∑︁N
i=1 wi(x) = 1

and pi(x) = 0 ⇒ wi(x) = 0 for any value of α. Therefore, any value of α produces
an unbiased estimator and the difference from the true α only introduces extra
variance. For α = 0, (2.13) becomes the balance heuristic.

Also note that due to the negative term in (2.13), the weights can be negative;
the example in Figure 2.3e) shows that this indeed happens in practice.

2Applies to combination strategies in the MIS framework (2.1) as defined by Veach and
Guibas [1995]. Other ways of combining samples, e.g., non-linear ones, may still perform
better, but these do not belong to the MIS family.
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2.4.1 Proof of Theorem 1
We prove Theorem 1 by construction. To do that, we seek weighting functions
wi, i = 1, . . . , N that minimize the variance functional V [w1, . . . , wN ], given by
(2.7), constrained by ∑︁N

i=1 wi(x) = 1 and pi(x) = 0 ⇒ wi(x) = 0. To simplify the
derivation, we leave out the latter constraint, and verify it at the end. Dropping
the function arguments, the solution is given by the minimum of the Lagrangian

L = V [w1, . . . , wN ] −
∫︂

D
λ
(︂∑︁N

i=1wi − 1
)︂

dx, (2.14)

in terms of the weights wi and the Lagrange multiplier λ : D → IR. To find the
minimum, we set all the partial functional derivatives ∂L/∂wi and ∂L/∂λ to zero.
Using the relation (2.32), we find ∂L/∂wi as

∂

∂ε

⃓⃓⃓⃓
ε=0

L(. . . , wi + εδi, . . .) =
⃓⃓⃓⃓
ε=0

⎡⎣ 2
ni

∫︂
D

(wi + εδi)f 2δi

pi

dx−

2
ni

∫︂
D

(wi + εδi)f dx
∫︂

D
δif dx −

∫︂
D

λδi dx

⎤⎦
=
∫︂

D

(︃ 2wif
2

pini

− 2f

ni

∫︂
D

wif dx − λ⏞ ⏟⏟ ⏞
∂L/∂wi

)︃
δi dx. (2.15)

We proceed in a similar way to find ∂L/∂λ. This gives us a set of equations for wi

and λ:
wi − pi

f

∫︂
D

wif dx = ni

2 λ
pi

f 2 ,
∑︁N

i=1 wi = 1 (2.16)

The equation on the left can be rewritten as

wi = αi
pi

f
+ ni

2 λ
pi

f 2 , with αi =
∫︂

D
wif dx. (2.17)

Plugging the above equation for wi into the constraint ∑︁N
i=1 wi = 1, (i.e., ∂L/∂λ =

0), we can solve for the multiplier λ:

λ = 2 f 2 − f
∑︁N

i αipi∑︁N
i nipi

. (2.18)

The final form of the optimal weights wo
i (x), given by (2.13), is now obtained by

plugging (2.18) back into (2.17), left.
Our next step is to find the αi, i = 1, . . . , N . Plugging the optimal weights

(2.13) into (2.17), right, we obtain a set of equations for αj∫︂
D

nipi

f −∑︁N
j=1 αjpj∑︁N

k=1 nkpk

dx = 0, i = 1 . . . N, (2.19)

which can be rearranged into
N∑︂

j=1
αj

∫︂
D

pipj∑︁N
k=1 nkpk

dx =
∫︂

D

pif∑︁N
k=1 nkpk

dx. (2.20)

This can be written in a matrix form as Aα = b, where A and b are the tech-
nique matrix and contribution vector from Definition 1 and α = (α1, . . . , αN)⊺.

From (2.17) we can see that whenever pi(x) = 0, we get wi(x) = 0, which
validates our second constraint. This completes the proof.
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2.4.2 Solution existence and uniqueness
Here we discuss the existence and uniqueness of the optimal weights from The-
orem 1, and show that there are infinitely many values of α yielding the same
optimal weights.

Existence and uniqueness The optimal weights exist whenever the linear
system (2.12) is consistent. To prove the consistency, we would need to show
that if two rows i, j of A are the same, then also bi = bj, which we have not yet
been able to do.

Nonetheless, it holds that whenever one sampling strategy is a convex combi-
nation of other strategies, i.e., pi = ∑︁

j ̸=i cjpj, then the i-th row of A becomes the
same linear combination of the other rows, and bi = ∑︁

j ̸=i cjbj. In such cases the
linear system becomes singular (but remains consistent) and there are infinitely
many solutions for α, each yielding possibly different MIS weights, but produc-
ing an MIS estimator with the same variance. This is because α ∈ {u + v|Au =
b ∧ v ∈ Null(A)}, and (2.42) is the same for all such α. If the linear system is
non-singular, the α vector and the resulting weights are unique.

Full solution for α Adding a term sn, where s ∈ IR and n = (n1, . . . , nN)⊺, to
α produces the same weights, despite the modified vector α not being a solution
to the system (2.12). This is because the offset sn cancels out when the modified
α is plugged into the weights (2.13). Therefore all ˜︁α = A−1b+sn yield the same
optimal weights and we refer to ˜︁α as to the full solution for α.

2.5 Optimal weights as control variates
In this section, we show that the optimal weights from Theorem 1 can be in-
terpreted as control variates [Glasserman, 2003]. Based on that we provide some
intuition on the integration problems for which the optimal weights will yield the
highest variance reduction.

2.5.1 Background: Control variates
Consider an MC estimator ⟨F ⟩ for the integral F =

∫︁
f(x)dx. Take a set of

K other estimators ⟨Gi⟩ with expected values Gi, i = 1, . . . , K, called control
variates. Rewriting the original estimator ⟨F ⟩ as

⟨F ⟩CV = ⟨F ⟩ +∑︁K
i=1 γi(Gi − ⟨Gi⟩)

= ∑︁K
i=1 γiGi + ⟨F ⟩ −∑︁K

i=1 γi⟨Gi⟩
(2.21)

can reduce variance when some of the ⟨Gi⟩ are correlated with ⟨F ⟩ and γ =
(γ1, . . . , γK)⊺ is chosen appropriately. Variance is minimized for γ solving the
system Σγ = σ, where Σ = (σik) is a K × K covariance matrix, and σ =
(σ1, . . . , σK)⊺ is a covariance vector, with their elements defined as

σik = Cov[⟨Gi⟩, ⟨Gk⟩], σi = Cov[⟨Gi⟩, ⟨F ⟩]. (2.22)
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This is a well-known form [Lavenberg et al., 1982; Rubinstein and Marcus, 1985;
Venkatraman and Wilson, 1986]. In the case of a single control variate (K = 1),
variance is minimized for γ1 = Cov[⟨G1⟩, ⟨F ⟩]/Var[⟨G1⟩]. For γ1 = 1, ⟨F ⟩ =
f(X)/p(X), and ⟨G⟩ = g(X)/p(X) the estimator ⟨F ⟩CV can be rewritten as
f(X)
p(X) − g(X)

p(X) + G, which is the form we used in the previous chapter in Section 1.5.

2.5.2 Optimal weights as control variates
Let us plug the optimal weights from (2.13) into the multi-sample MIS estimator
in (2.1). Denoting M =∑︁N

i ni, ci = ni/M , and pc(x) =∑︁N
i cipi(x), we obtain the

optimal MIS estimator ⟨F ⟩o in the form

⟨F ⟩o =
N∑︂

k=1
αk + 1

M

N∑︂
i

ni∑︂
j=1

⎛⎝ f(Xij)
pc(Xij)

−
∑︁N

k=1 αkpk(Xij)
pc(Xij)

⎞⎠. (2.23)

The above form can be interpreted as the control variate estimator (2.21)
utilizing either one or N control variates. Here, for the purpose of further analysis,
we interpret it as the former: Using g(x) = ∑︁N

k=1 αkpk(x), the above form is
equivalent to (2.21) with K = 1, where

⟨F ⟩ = 1
M

N∑︂
i

ni∑︂
j=1

f(Xij)
pc(Xij)

, ⟨G1⟩ = 1
M

N∑︂
i

ni∑︂
j=1

g(Xij)
pc(Xij)

, (2.24)

the expected value G1 =
∫︁ ∑︁N

k=1 αkpk(x) dx = ∑︁N
k=1 αk, and the parameter γ1 = 1.

The estimator ⟨F ⟩ above is a multi-sample MIS estimator of F utilizing the
balance heuristic, further denoted ⟨F ⟩b. Similarly, the ⟨G1⟩ estimator above is an
MIS estimator of

∫︁
D g(x) dx, and we denote it ⟨G⟩b.

In other words, the optimal weights are equivalent to the balance heuristic
combined with a control variate of the form ∑︁N

k=1 αkpk(x). And since (2.13)
are valid MIS weights for any value of α (as we discussed in Section 2.4), any
combination of the balance heuristic with some mixture of sampling pdfs as a
control variate is equivalent to some MIS weights.

2.5.3 Variance considerations
The α vector from Theorem 1 yields an optimal control variate of the general
form (2.23), minimizing its variance.3 The variance is then equal to the variance of
the balance heuristic MIS estimator of

∫︁
D f(x)−g(x) dx, and as such it depends on

the magnitude of f −g as well as its proportionality to pc. Intuitively, the “closer”
the function g is in its shape to the integrand f , the higher the variance reduction
due to the optimal weights compared to the balance heuristic. Moreover, the
variance of ⟨F ⟩o becomes zero for f = g, that is, whenever the integrand f can
be written as a linear combination of the sampling pdfs pk.

In Figure 2.5 we plot the difference f −g for the two integration problems from
Section 2.3.1, where g is computed using the vector α for the respective optimal
weights. The overall amplitude of the difference is smaller for the first example

3If it was not the optimum, then other weights better than wo
i (x) would exist, which is a

contradiction.
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(a) first row (b) second row
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Var: 0.0176, (9x ↓ ) Var: 0.307, (4.3x ↓ )

Figure 2.5: Illustration of the difference f − g for the first (a) and second (b)
row of the integration problem from Figure 2.3a along with the variance of MIS
using the optimal weights, and the variance reduction with respect to MIS using
the balance heuristic. Note, that the flatter the difference the higher the variance
reduction.

and larger for the second, which is in line with the higher variance reduction for
the former case. We build on these observations in Section 2.7.4 to design new
sampling techniques specifically aiming at variance reduction with the optimal
weights.

Relation to the balance heuristic The optimal estimator ⟨F ⟩o is given by the
sum ∑︁N

k=1 αk (no variance) plus the difference of two correlated MIS estimators
⟨F ⟩b and ⟨G⟩b, given by (2.24). The variance of ⟨F ⟩o is therefore equal to the
variance of that difference, i.e., Var[⟨F ⟩o] = Var[⟨F ⟩b − ⟨G⟩b]. In Appendix 2.10.2
we prove that

Var[⟨F ⟩o] = Var[⟨F ⟩b] − Var[⟨G⟩b]. (2.25)

First, this result confirms the expected: the optimal estimator variance is less
than or equal to the balance heuristic variance. More importantly, it shows that
the balance heuristic is optimal whenever Var[⟨G⟩b] = 0. This occurs when α
is collinear with the vector n = (n1, . . . , nN)⊺, that is, when the elements of the
vector α are proportional to the number of samples from the individual sampling
techniques. This result can be used to detect the achievable variance improvement
over the balance heuristic.

Covariance vector and matrices Interpreting (2.23) as a form utilizing N
control variates

⟨Gk⟩ = 1
M

N∑︂
i

ni∑︂
j=1

pk(Xij)
pc(Xij)

, k = 1, . . . , N, (2.26)

with expected values Gk = 1, we can verify that α indeed represents the optimal
parameters γ. The technique matrix A and contribution vector b in Theorem 1
are related to their covariance counterparts (defined by (2.22)) by

Σ = (I − AN)A, σ = (I − AN)b, (2.27)
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where N is a diagonal N ×N matrix with the sample count ni along the diagonal.
The above relation emerges if we obtain the covariances σik and σi in a similar
way we obtained the covariance (2.38) in Appendix 2.10.2. It follows that the full
solution for alphas from Section 2.4.2 solves the system Σγ = σ.

2.6 Optimal weights in practice
An MIS estimator with the optimal weights (2.13) cannot be evaluated directly
since the inner products forming the technique matrix A and contribution vec-
tor b from Definition 1 generally do not have a closed-form solution. Our imple-
mentation therefore follows three steps: 1) estimation of the technique matrix A
and contribution vector b; 2) estimation of the vector α using the estimated A
and b; and 3) realization of an approximate optimal estimator ⟨F ⟩o using the
estimated α. We now elaborate on the individual steps.

2.6.1 Estimating technique matrix and contribution vec-
tor

The elements of the technique matrix A and the contribution vector b are given
by the integrals (2.10) and (2.11), respectively. We estimate these integrals using
MIS with the balance heuristic, and denote the result ⟨A⟩ and ⟨b⟩.4 In the matrix
form, the estimators ⟨A⟩ and ⟨b⟩ can be expressed as follows:

⟨A⟩ =
N∑︂
i

ni∑︂
j=1

WijW⊺
ij, ⟨b⟩ =

N∑︂
i

ni∑︂
j=1

f(Xij) Sij Wij, (2.28)

where Sij =
(︂∑︁N

k=1 nkpk(Xij)
)︂−1

and Wij is the column vector of all sampling
techniques evaluated at Xij and scaled by Sij,

Wij = Sij (p1(Xij), . . . , pN(Xij))⊺ . (2.29)

Recall from (2.1) that Xij denotes the j-th sample from pi.

2.6.2 Estimating the vector alpha
The vector α is given by the linear system (2.12). We estimate ⟨α⟩ by least
squares minimization, because the estimated system ⟨A⟩⟨α⟩ = ⟨b⟩ may be (close
to) singular, especially when the estimates ⟨A⟩ and ⟨b⟩ are based on just a
few samples. While the ⟨A⟩ and ⟨b⟩ estimates are unbiased, the estimate ⟨α⟩
is generally biased, because the matrix inversion involved in solving the linear
system does not preserve expectation, i.e. (E[⟨A⟩] = A) ⇏ (E[⟨A⟩−1] = A−1).
Nonetheless, as we explained in Section 2.4, the resulting MIS estimator will
be unbiased for any value of α and the difference between the true α and its
particular estimate ⟨α⟩ only introduces extra variance in the final estimator ⟨F ⟩o.
The extra variance diminishes thanks to the ⟨α⟩ estimate being consistent; this
follows from ⟨A⟩−1 approaching A−1 with the increasing sample count in the ⟨A⟩
estimate.

4The power heuristic is less appropriate, as the integrals (2.10) and (2.11) are not low-
variance, i.e., no sampling strategy is a particularly good match for any of the integrands.
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2.6.3 Approximate optimal estimator
We have various options to approximate the optimal estimator ⟨F ⟩o. For instance,
we could estimate ⟨α⟩ from an initial batch of samples, hold it fixed, and use it
to evaluate the optimal weights (2.13) for all subsequent samples. This approach
would be suboptimal, however, as the estimated alphas would not evolve over
time.

Progressive estimator The computation is performed in iterations. In each
iteration, we first draw ni samples from each sampling technique pi, i = 1, . . . , N .
We then compute ⟨α⟩ based on the ⟨A⟩ and ⟨b⟩ estimates from the previous
iterations. We plug it in formula (2.23) of the MIS estimator ⟨F ⟩o to compute
the integral estimate from the current samples and accumulate it. Note that
for the first iteration we set ⟨α⟩ to zero which is equivalent to evaluating an
MIS estimator with the balance heuristic. Finally, we update ⟨A⟩ and ⟨b⟩ using
the current samples according to (2.28) and proceed to the next iteration. This
procedure yields an unbiased MIS estimator, the efficiency of which improves
over time as the estimates ⟨α⟩ converge to the true value. Since recomputing
⟨α⟩ every iteration may be time-consuming, we also allow for performing the
recomputation only after every U updates to ⟨A⟩ and ⟨b⟩. We will call U the
update step. See Algorithm 1 in Figure 2.6 for a pseudocode.

An important note: Despite the division by the integrand f(x) in the optimal
weights (2.13), the MIS estimator ⟨F ⟩o in the form (2.23) exists even for f(x) = 0.
In contrast to previous MIS weighting heuristics, samples X with f(X) = 0
must not be discarded, because they generally have a non-zero contribution to the
estimator.

ALGORITHM 1: Progressive
1 ⟨A⟩ ← 0N×N ; ⟨b⟩ ← 0N×1;
2 ⟨α⟩ ← 0N×1; result← 0;
3 for iteration← 0 to maxIterations− 1 do
4 for i← 1 to N do
5 {Xij}

ni
j=1 ← draw ni samples from

technique pi;
6 end
7 if (iteration ≥ 1) and (iteration

mod U) = 0 then
8 ⟨α⟩ ← solve linear system ⟨A⟩⟨α⟩ = ⟨b⟩;
9 end

10 estimate← evaluate ⟨F ⟩o using ⟨α⟩; // (2.23)
11 result← result + estimate;
12 ⟨A⟩ ← ⟨A⟩+

∑︁N

i

∑︁ni

j=1
Wij W⊺

ij
; // (2.28)

13 ⟨b⟩ ← ⟨b⟩ +
∑︁N

i

∑︁ni

j=1
f(Xij ) Sij Wij ;

// (2.28)
14 end
15

16 return result/maxIterations

ALGORITHM 2: Direct
1 ⟨A⟩ ← 0N×N ; ⟨b⟩ ← 0N×1;
2 ⟨α⟩ ← 0N×1;
3 for iteration← 0 to maxIterations− 1 do
4 for i← 1 to N do
5 {Xij}

ni
j=1 ← draw ni samples from

technique pi;
6 end
7 if (iteration ≥ 1) and (iteration

mod U) = 0 then
8 foo;
9 end

10
11

12 ⟨A⟩ ← ⟨A⟩+
∑︁N

i

∑︁ni

j=1
Wij W⊺

ij
; // (2.28)

13 ⟨b⟩ ← ⟨b⟩ +
∑︁N

i

∑︁ni

j=1
f(Xij ) Sij Wij ;

// (2.28)
14 end
15 ⟨α⟩ ← solve linear system ⟨A⟩⟨α⟩ = ⟨b⟩;
16 return

∑︁N

i
⟨αi⟩

Figure 2.6: A pseudocode for two estimators with the approximated optimal MIS
weights: the Progressive and Direct estimators (see Section 2.6.3). Differences
are highlighted in red.
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Direct estimator By definition (2.17), each αi is equal to the integral of f
weighted by the optimal weight wo

i :

αi =
∫︂

D
f(x)wo

i (x) dx. (2.30)

Because the weighting functions sum up to one for all x ∈ D, we can express the
integral of f as ∫︂

D
f(x) dx =

∫︂
D

f(x)
(︂∑︁N

i=1 wo
i (x)

)︂
dx = ∑︁N

i=1 αi. (2.31)

We can therefore obtain an estimator ⟨F ⟩ by summing the elements of ⟨α⟩. Such
a Direct estimator will be biased, but consistent as follows from biasedness and
consistency of ⟨α⟩, discussed in Section 2.6.2.

The Direct estimator is simpler and more efficient than the Progressive one: in
each iteration, it only updates the ⟨A⟩ and ⟨b⟩ estimates, and the linear system is
solved for ⟨α⟩ only once after all iterations have been processed. See Algorithm 2
in Figure 2.6.

Progressive,
correlated

Progressive,
uncorrelated

Direct,
correlated

Direct,
uncorrelated

2 8 16 32 50 2 4 8 16 32 50
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0.1

2 4 8 16 32 50 2 4 8 16 32 50
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Bias

(a) MSE (b) Bias
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Figure 2.7: (a) MSE of the Progressive and Direct estimators versus the overall
number of iterations plotted on the log-log scale, when used to estimate the first
(top row) and second (bottom row) integration problem from Figure 2.3a. The
black line represents the analytically computed variance of MIS estimator with
the optimal weights divided by N iterations. (b) Bias of the Direct estimator
on the log-log scale. The black line corresponds to 1/N , where N is a number
of iterations on the horizontal axis. For both (a) and (b) cases we show the
correlated and uncorrelated estimator variants.
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2.6.4 Empirical tests
Figure 2.7 illustrates the behaviour of the Progressive and Direct estimators,
described above, on the example integration problem from Section 2.3.1 (depicted
in Figure 2.3a). The MSE of different estimators as a function of the number of
iterations is shown in Figure 2.7a. The uncorrelated version uses two independent
sets of samples to estimate the technique matrix ⟨A⟩ and the contribution vector
⟨b⟩, respectively. The correlated version uses a single sample set for both.

In the correlated case (solid lines), both Progressive (cyan) and Direct (orange)
estimators have similar performance, almost as good as the reference optimal
estimator with a known α vector (solid black). Interestingly, the behaviour in the
uncorrelated case (dashed lines) is vastly different, as both estimators perform
much worse than in the correlated case. We hypothesize that the correlation
between ⟨A⟩ and ⟨b⟩ is the key to a good performance of both estimators, though
a full understanding of this effect remains for future work.

The Direct estimator is biased. In Figure 2.7b, we can observe that both
the correlated and uncorrelated versions are consistent, with the bias diminishing
roughly at a O(N−1) rate with the total number of iterations.5 Similarly to the
MSE, the bias is much lower in the correlated case. As discussed above, the
Progressive estimator is unbiased, which we have verified experimentally.

2.6.5 Discussion of related work
Interestingly, the optimal estimator (2.23) has the same form as the control variate
estimator analysed by Owen and Zhou [2000]. They start off by postulating this
form, using the mixture of sampling pdfs as a control variate, and then they
estimate the optimal mixing parameters α for this stated estimator form. We,
on the other hand, show that both the form and the parameters of this estimator
naturally emerge by direct minimization of the MIS estimator’s variance, and
that it provides the optimal solution in the MIS family.

All MIS weights

Looking for optimal weights
(our work)

Balance heuristic + CV

Looking for optimal al
(Owen & Zhou [2000])

Owen and Zhou estimate α using linear regression on observed samples. For
that they have to solve a (singular) linear system, but they also propose solving
an equivalent (regular) truncated system, obtained by skipping some regressors.
Though derived in a different way, their proposed α estimator (denoted as β̂ in
their Section 3), even in its truncated form, is in fact equivalent to our ⟨α⟩, pro-
vided that the components of our technique matrix A and the contribution vector
b are estimated with the balance heuristic as described in Section 2.6.1. Hence,
their approach can be seen as one particular way of approximating the optimal

5Bias is computed as the average absolute error of 1000 independent estimator realizations,
each obtained using the number of samples on the horizontal axis.
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solution given by Theorem 1. Our result is more general as it is amenable to al-
ternative strategies to approximate the optimal A, b, and α. See Appendix 2.10.4
for details.

2.7 Applications and results
In this section we apply the optimal weights to light transport, specifically to di-
rect illumination estimation. We show that they perform particularly well when
used for defensive sampling. Furthermore, we introduce new sampling techniques
that further increase the efficiency when mixed by the optimal weights. Finally,
we provide additional results including a comparison of the performance of the
Progressive and Direct estimators or a comparison to an adaptation of the ap-
proach by Owen and Zhou [2000].

2.7.1 Implementation
Our applications are implemented in PBRT [Pharr et al., 2016], and a link to
the implementation source code is provided in Appendix 2.10.6. All scenes were
rendered on a machine with an Intel Core i7-5820K CPU (6 cores, 12 threads)
and 64 GB of RAM.

We implement the Progressive and Direct estimators as described in Sec-
tion 2.6. Calculation proceeds pixel-by-pixel, in each pixel the respective algo-
rithm from Figure 2.6 is called and its output is stored in the pixel. We take
one sample per technique per iteration, i.e., ni = 1, i = 1, . . . , N, N = 2 and set
maxIterations to the target number of samples per technique per pixel. For an
equal-time comparison we set maxIterations individually for each estimator so
they all render for roughly the same time.

2.7.2 Results structure
In Section 2.7.3 and Section 2.7.4 we compare our Direct estimator to the power
heuristic combination for two different applications. In Section 2.7.5 we compare
the Direct and Progressive approaches, and the adaptation of the approach by
Owen and Zhou [2000]. Appendix 2.10.6 then provides a link to a complete set
of results including the Direct estimator, multiple versions of the Progressive es-
timator, and both the balance and power heuristic for all our test scenes.

2.7.3 Application I: Defensive sampling
One application where the optimal MIS weights have a particularly strong im-
pact is defensive sampling. It is typically employed by adaptive approaches that
construct sampling distributions based on previous samples [Herholz et al., 2016;
Georgiev et al., 2012a]. The trained sampling technique is then mixed with one
or more defensive techniques (e.g., uniform) to prevent bias and artefacts due to
noise from the previous samples. Ideally, the trained technique has low variance
across the majority of the domain, which is likely to trigger the low-variance prob-
lem discussed by Veach and Guibas [1995]. However, the power, maximum, and
cutoff heuristics, proposed to address this case, still underperform (as pointed out
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by Georgiev et al. [2012a]). While the heuristics improve robustness, they also
increase variance where the trained technique works well.

Our optimal MIS weights are particularly effective at solving this issue: the
optimal combination of multiple sampling techniques can never be worse than a
single technique on its own.6 Therefore, no ad hoc solutions are required and
combinations with any number of defensive techniques is straightforward. We
demonstrate this on a synthetic example as well as on a practical problem of
light selection in direct illumination computation.

Synthetic example Our simple example in the first row in Figure 2.3 shows
a combination of the almost ideal technique p2 with defensive techniques p1 and
p3. We can see that while the balance and power heuristic combinations produce
more variance than the p2 technique alone, with the optimal weights the variance
is actually decreased.

Light selection As we discussed in the previous chapter, MC estimation of
direct illumination often contributes a significant amount of noise to the image.
Recall that direct illumination is computed as an integral FDI =

∫︁
A LeBV G dy (we

omitted arguments for brevity), where Le is the emitted radiance, B the BRDF,
V the visibility, G the geometry factor, and the domain A is the set of all emissive
surfaces. A standard approach to design a direct illumination estimator is to first
randomly select one light source according to a light selection distribution and
then sample a point on the selected light. A good light selection technique would
select a light proportionally to its actual contribution to the integral (and the
nested estimator variance as we proved in the previous chapter). Unfortunately,
this quantity cannot be computed analytically, especially because of the possibly
complex visibility factor V .

In the previous chapter, we utilized the Bayesian regression to learn the ac-
tual light contribution from previous samples. We were able to robustly learn this
quantity including the visibility but we omitted the BRDF factor B. This was
motivated by practical considerations of a production renderer, where the BRDF
can be defined by arbitrarily complex shaders, often given as a black-box. Instead,
we combined our light selection technique with BRDF sampling using MIS. While
this ensured good performance of our method even in the presence of glossy mate-
rials and large area light sources, the combination using the power heuristic could
be suboptimal on diffuse surfaces. Applying the optimal weights instead might
be therefore beneficial and further improve the method. However, our approach
to estimating the optimal weights described in Section 2.6 do not allow proba-
bility densities of the used sampling techniques to change over time (i.e., to be
learned online during rendering) as this would change the estimated linear system
⟨A⟩⟨α⟩ = ⟨b⟩. Therefore, application of the optimal weights in adaptive methods
with online learning is not straightforward and we leave it for future work.

Instead, we demonstrate the optimal weights on an offline adaptive light se-
lection technique implemented in PBRT [Pharr et al., 2016]. It divides the scene
using a regular grid, estimates the unoccluded contribution of all lights in each
of its cells using a dedicated set of samples, and then uses these estimates as the

6Using a single technique on its own is identical to a weighting strategy assigning unit weight
to that technique and zero to all other techniques.
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light selection probabilities. This technique is called Spatial within PBRT, we
will call it Trained to emphasize its adaptive nature. It is close to optimal on un-
occluded surfaces but causes significant noise in shadows and must be combined
with a defensive Uniform light selection technique.

One example is given in Figure 2.1 in the Staircase I scene. We discussed it in
the chapter introduction and will provide a further insight in Section 2.7.4. An-
other example is presented in Figure 2.8 which shows the results in the Staircase
II scene lit by several small area light sources. The Trained technique performs
well on unoccluded surfaces but produces more noise than the Uniform technique
in shadows. Intuitively, we would like to combine both techniques in the shadows
and use the Trained technique alone on the unoccluded surfaces. However, the
false colour insets show that the power heuristic gives the uniform technique a
positive weight everywhere, improving the performance in the shadows, and de-
grading the quality on the unoccluded surfaces. On the other hand, the optimal
weights are zero or even negative on the unoccluded surfaces. As a result, the
optimal weights maintain the good properties of both techniques everywhere and
thus achieve 2.7× lower mean-squared error per sample than the power heuristic
(and 3.2× lower than the balance heuristic, as shown by the results linked in
Appendix 2.10.6).

Application I: Defensive sampling
Techniques: Trained + Uniform

Application II: New technique
Techniques: Trained + NoMax

Individual techniques

Staircase II
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Power heuristic
MSE 10.1 (baseline)

Optimal weights
MSE 3.76 (2.7x)

Power heuristic
MSE 8.02 (1.3x)

Optimal weights
MSE 1.02 (9.9x)

Trained
MSE 8.99 (1.1x)

(App. I & II)

Uniform
MSE 748 (0.01x)

(App. I)

NoMax
(biased)
(App. II)

Combination Combination

Reference

Figure 2.8: Equal-sample comparison (20 samples per technique per pixel) of
different combination strategies for a trained light selection technique (Trained)
and defensive techniques (Uniform, NoMax). In contrast to the power heuristic,
the optimal MIS weights (via the Direct estimator) are never worse than any of the
techniques alone. The false colour insets correspond to average weights per pixel
for the three techniques. The MSE improvement in parentheses is with respect
to the power heuristic combination of the Trained and Uniform techniques. All
MSE values are ×10−4.
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Figure 2.9: (a) Schematics illustrating the optimal combination of techniques
Trained and NoMax for the light selection application, which can well approxi-
mate the integrand at both points A and B. (b) Schematics for the light sam-
pling application illustrating the optimal combination of techniques Spherical,
Uniform area, and Parallel. At point B, where the surface is not parallel to the
light, the optimal combination Spherical + Uniform area approximates the in-
tegrand much worse, while the optimal combination Spherical + Parallel is still
good. The displayed quantities are in the solid angle measure, their derivations
can be found in Appendix 2.10.3.

2.7.4 Application II: Design of new sampling techniques
As discussed in Section 2.5, the optimal weights form a control variate as a linear
combination of the sampling pdfs, i.e., as ∑︁N

i αipi. We have shown that the
closer the control variate approximates the integrand, the lower the variance.
Introducing a new, properly designed technique (even a biased one!) can vastly
expand the space of possibilities for the optimal weights to form a control variate
closer to an integrand, and therefore can greatly improve the performance.

We first revisit the light selection problem for direct illumination computation
from Section 2.7.3 and introduce a new technique that substantially lowers the
variance. Then, we show new techniques that improve sampling of a single light.

New technique for light selection The Trained light selection technique
from Section 2.7.3 neglects visibility. In shadows, the technique’s pdf does not
match the integrand well, and variance goes up.

We illustrate that in Figure 2.9a. For point A, the Trained technique (green)
is a good fit to the integrand (gray), and performs well. For point B, however, the
actual integrand has no contribution from the closest light due to occlusion, and
there is a mismatch between the pdf of the Trained technique and the integrand
itself.

To solve the issue at point B, we construct a new technique with a pdf that
matches the integrand well specifically for that case. Then we leave it up to the
optimal weights for a particular image pixel to decide which of the two cases
has occurred (A or B), and to form the optimal control variate from pdfs of
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both techniques. It is easy to construct such a technique from the pdf of the
Trained technique: it is the same except it samples the strongest light with a
zero probability. We call this technique NoMax (orange in Figure 2.9a).

We demonstrate that in the Staircase II scene (Figure 2.8). We see that us-
ing the NoMax technique alone causes a significant bias. But when optimally
weighted with the Trained technique, it is much better than any other result in
Figure 2.8. Note that the power heuristic is unable to create such a combination:
it improves in shadows, but increases variance in the rest of the scene in com-
parison to Trained as well as to the power heuristic combination of Trained and
Uniform. That gives the optimal weights 9.9× lower MSE per sample. Moreover,
the optimal combination of the Trained and NoMax techniques improves 3.7×
over the optimal combination of Trained and Uniform.

One special case, when the combination of the Trained technique and the
Uniform technique works particularly well is when we have exactly two lights in
the scene. We illustrate that on Staircase I scene in Figure 2.1. In that case
a linear combination of the Trained and Uniform techniques can approximate
virtually any distribution, which results in 9.6× lower MSE per sample than the
power heuristic.

New techniques for light area sampling While light selection contributes
most direct illumination variance in scenes with many small lights, careful sam-
pling of the point on the light source becomes important in the presence of larger
light sources. Figure 2.9b shows a schematic of a scene where a Lambertian area
light source illuminates a point on a diffuse surface. The figure plots the sam-
pling densities of various techniques over the part of the hemisphere that receives
illumination, as well as the integrand itself (in black), which in this case becomes
LeG, where Le is the emitted radiance and G the geometry term. A typical
technique is the uniform sampling of the light surface, we denote it Uniform area
(Figure 2.9b, orange), but it is not a good approximation to the integrand as it
neglects G. A better idea is to uniformly sample the light projection onto the
unit sphere around the illuminated point [Arvo, 1995], and we call this technique
Spherical (Figure 2.9b, green). It takes into account the geometric factor (except
for the surface cosine) so it is closer to the integrand. But a linear combination of
the Uniform area and Spherical techniques (shown in red), found by the optimal
weights, performs even better. That is, as long as the light is parallel to the
illuminated surface.

If the light is not parallel, the shape of the Uniform area technique deforms
(see the point B in Figure 2.9b) and the optimal combination no longer matches
the integrand. We now replace the Uniform area technique with a new one:
uniform sampling of the light projection onto a plane parallel to the surface,
denoted Parallel (Figure 2.9b, blue). Its pdf is similar to that of Uniform area,
but does not depend on the light orientation. Therefore, the good match of the
optimal combination is retained even at the point B.

We demonstrate these techniques in the Dining room scene (Figure 2.10) lit
by one large area light from above. All images were rendered using the same
total number of samples per pixel to see if any new technique can justify using
an MIS combination instead of the Spherical technique alone. As expected, the
Spherical technique alone generally performs better than the Uniform area and
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Application II: New technique
Techniques: Spherical + Uniform area

Application II: New technique
Techniques: Spherical + Parallel
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MSE 9.96 (0.27x)

Time 8.6 s
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Optimal weights
MSE 1.29 (2.1x)
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Spherical
MSE 2.73 (baseline)
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MSE 18.8 (0.15x)

Time 12.1 s

Parallel
MSE 26.0 (0.1x)

Time 12.5 s

Combination Combination
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Dinning room

Figure 2.10: Equal-sample comparison (40 per pixel in total) of combinations
of standard light sampling techniques (Uniform area, Spherical) and a new one
(Parallel) motivated by properties of the optimal MIS weights. The combination
with the new technique using the optimal weights performs best. The MSE
improvement in parentheses is with respect to 40 samples from the Spherical
technique alone. All MSE values are ×10−4. The false colour insets show weights
of the Uniform area and Parallel techniques.

Parallel techniques. Therefore, their combination using the power heuristic will
always be worse than relying only on the samples from Spherical. However, when
they are combined using the optimal weights the result is much better. While
the combination with Uniform area decreases variance mainly on the table, the
combination with Parallel further improves the result also on surfaces not parallel
to the light (e.g., the wall) and provides 2.1× lower MSE than the Spherical tech-
nique alone. Note the negative value of the optimal weights of the Uniform area
and Parallel techniques in the improved regions.

Let us underline that the methods introduced in Section 2.7.4 are not meant
to be ready for production use. They serve as a proof of concept showing that
this approach to construction of sampling techniques has an interesting potential.

2.7.5 Additional results
Optimal weights for BRDF and light techniques. We investigated the
behaviour of the optimal weights for an MIS combination of the light area and
BRDF sampling techniques. For that we rendered the classic Veach’s scene [Veach
and Guibas, 1995]. Following Veach, we estimate illumination from individual
lights separately, combining light area and BRDF sampling, and we add the
contributions together. We combine the samples using the optimal weights and
compare the result with the balance and power heuristics in Figure 2.11. In this
setting, the power heuristic appears to be close to the optimum, but the optimal
weights still slightly improve the result.
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Reference Balance (5.1) Power (4.9) Optimal (4.8)Method (MSE)

Figure 2.11: Equal-sample comparison of the optimal MIS weights with the bal-
ance and power heuristics in the classic light vs. BSDF sampling scenario in the
Veach’s scene. The MSE values (in parentheses, are ×10−4) are computed after
10 samples per light per technique per pixel.

Overhead We have so far focused on equal-sample comparisons to clearly show
the effect of the combination strategies unaffected by the implementation. For the
sake of completeness, equal-time comparisons are linked in Appendix 2.10.6 and
summarized in Table 2.1. The overhead of the Direct estimator (caused mainly by
the ⟨A⟩, ⟨b⟩ updates) is at most 10%, making the equal-sample MSE improvement
close to the equal-time speedup. Note that when comparing to the Spherical
technique in the Dining room scene the overhead is negative; sampling the perfect
spherical projection is considerably more expensive than the other techniques.

Regarding memory overhead, we need to store estimates for the technique ma-
trix for each pixel and estimates for the contribution vector for each pixel and
colour channel, which in our cases meant storing 22 + 3 · 2 = 10 floats per pixel.
When rendering the image by blocks, one pixel in a block at a time, the memory
overhead is practically negligible.

Staircase I
Techniques: Train + Uni

Baseline: Power Train + Uni

Staircase II
Techniques: Train + M

Baseline: Power Train + Uni / Train + M

Equal-time
speedup

Equal-sample
improvement Overhead Equal-time

speedup
Equal-sample
improvement Overhead

Direct 8.89 9.56 6.20% 8.86 / 7.53 9.90 / 7.83 9.93% / 2.54%
Progressive U = 1 3.01 4.37 33.02% 5.25 / 4.46 6.68 / 5.29 35.32% / 26.23%
Progressive U = 2 2.76 3.42 19.32% 4.81 / 4.09 5.35 / 4.23 24.07% / 15.73%
Progressive U = 4 2.03 2.33 12.44% 3.82 / 3.25 3.90 / 3.09 17.64% / 9.73%

Veach
Techniques: BSDF + Light

Baseline: Power BSDF + Light

Dining room
Techniques: Par + Sp

Baseline: Sp / Power Par + Sp
Equal-time

speedup
Equal-sample
improvement Overhead Equal-time

speedup
Equal-sample
improvement Overhead

Direct 1.02 1.02 5.02% 3.40 / 9.99 2.12 / 10.05 -30.53% / 5.94%
Progressive U = 1 0.77 1.03 38.24% 1.87 / 5.48 1.27 / 6.00 -12.17% / 33.92%
Progressive U = 2 0.86 1.04 20.88% 1.87 / 4.92 1.03 / 4.88 -20.43% / 21.33%
Progressive U = 4 0.94 1.03 14.71% 1.50 / 4.40 0.74 / 3.50 -26.09% / 12.70%

Legend: Train = Trained, Uni = Uniform, M = NoMax, Par = Parallel, and Sp = Spherical

Table 2.1: Performance statistics of the Direct and Progressive estimators, the
latter with different values of the update step U (Section 2.6.3). Speedup and
equal-sample improvement are ratios of the mean-squared error. The overhead is
the relative increase of the rendering time with the same total number of samples.
The baseline for these values is the power heuristic combination, except for the
Dining room which also compares to using the spherical projection sampling
alone. Corresponding images are linked in Appendix 2.10.6.
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Figure 2.12: The insets along with MSE plots for the Staircase II scene rendered
with an increasing number of samples with the Direct and Progressive estimators
and the method of Fan et al. with either the Uniform (solid) or the Trained
(dashed) technique skipped. See Section 2.7.5 for details.

Direct vs. Progressive estimators All our results shown in Section 2.7.3
and Section 2.7.4 were obtained by the Direct estimator. Its bias and variance
with respect to the Progressive estimator could be a concern. We link both
their equal-time and equal-sample comparisons in Appendix 2.10.6 with a sum-
mary in Table 2.1. In agreement with our synthetic tests from Section 2.6, the
equal-sample MSE improvement of the Progressive estimator is always smaller
(about 30%-40%), except for the Veach’s scene, where both estimators perform
equally. In Figure 2.12, we show insets and MSE plots of the renderings using
an increasing number of samples per technique (from 2 to 64) in the Staircase II
scene. The Progressive estimator (blue) is unbiased but gains a spiky noise in the
initial iterations, from which it takes long to recover. The Direct estimator (yel-
low) is biased only for a low number of samples (<16) and practically unbiased
afterwards, which is also in line with our synthetic tests.

As expected, the overhead of the Progressive estimator is higher than the
Direct one because of the repeated solving of the linear system. As the update
step U increases (Section 2.6.3), the overhead decreases from almost 40% for
U = 1 to 15% for U = 4. But since the equal-sample MSE improvement also
decreases, the equal-time speedup is actually worse as well. The best compromise
seems to be using U = 2, yielding up to 5× speedup in our scenes.

Comparison to Fan et al. In Figure 2.12 we compare our approach to Fan
et al. [2006], who adopted the approach by Owen and Zhou for rendering. They
estimate α by solving a truncated system obtained by skipping regressors corre-
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sponding to a particular sampling technique from the data matrix. For a partic-
ular skipped technique their method is the same as our biased Direct estimator,
except for two differences: First, they do not perform the estimation per pixel but
by averaging per point estimates computed from fixed-sized batches, which makes
their method not consistent. Second, they introduce a regularization strategy
which can decrease variance at the cost of increased bias. For clarity, we provide
pseudocode of our adaptation of their method in Appendix 2.10.5.

We set the batch size in their method to 8 samples (the same total number of
samples as 4 iterations of our method) and rendered the Staircase II scene with
an increasing number of batches. The green lines in the plot show their method
when skipping the Uniform (solid) and Trained (dashed) technique, respectively.
When the Uniform technique is skipped, their method behaves similarly to ours,
and their regularization slightly reduces the noise in some parts of the image.
When the Trained technique is skipped, the substantial bias of their method due
to the computation in batches is further amplified by their regularization ap-
proach, resulting in a visibly darker image. As the performance of their method
depends on a skipped technique, it might be difficult to predict the optimal tech-
nique for skipping for a given integration problem. Without the regularization,
their method produces identical results to our Direct estimator for any technique
skipped, but only for the first batch (with increasing number of batches the bias
in their method does not diminish).

2.8 Limitations and future work
Overhead While we believe that a derivation of optimal MIS weights is an
important theoretical result, their application in practice is more complicated
than for the traditional balance or power heuristics. Estimation and solution
of the linear system results in computational overhead that grows super-linearly
with the number of combined techniques. While the overhead in our tests was
modest, especially for the Direct estimator, this could become an issue as the
number of sampling techniques increases.

Applications Our rendering applications provide a proof of concept, but are
far from being production-ready and leave space for further investigation. An
obvious next step would be to integrate the optimal weights into a full global
illumination solution. One interesting direction is the optimal combination of
sampling techniques in bidirectional path tracing and derived methods [Veach
and Guibas, 1995; Georgiev et al., 2012b; Hachisuka et al., 2012], though han-
dling the relatively high number of available sampling techniques could be chal-
lenging. Another class of algorithms that could greatly benefit from the optimal
MIS weights is path guiding [Vorba et al., 2014; Herholz et al., 2016; Müller et al.,
2017], where the necessity for defensive sampling limits the achievable improve-
ments. However, since our approach to estimating the optimal weights do not
allow the used sampling techniques to change over time, application to these al-
gorithms will not be straightforward and the estimation will have to be adjusted
(e.g., by interleaving updates of sampling distributions and the linear system).
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New techniques We showed that the optimal weights motivate the design of
new sampling techniques. We presented two new techniques which yield more
efficient estimators when combined using the optimal weights but these were just
the most obvious simple examples. We believe there is much more to explore in
this direction.

The MIS framework A serious limitation of the MIS framework itself is its
somewhat wasteful approach: samples are first taken but the contribution of many
of them may be weighted almost to zero. Our optimal weights do not address
this issue. More work is needed on optimizing the sample counts for different
techniques (and whether or not some techniques should be included in the mix
at all), while maintaining the estimator’s robustness.

2.9 Conclusion
In this chapter, we focused on decreasing the variance of MC integration in render-
ing by improving the combination of sampling techniques. We presented optimal
weighting functions for the multi-sample model of multiple importance sampling.
In deriving the optimal weights, we pointed out, for the first time, an unnecessary
assumption on the non-negativity of weighting functions underpinning the previ-
ous claims concerning variance bounds for the balance heuristic. We showed that
this assumption effectively prohibited exploration of an entire class of efficient
combination strategies, amongst them the optimal one.

We showed the connection of the optimal weights to control variates, which
yields interesting observations on the relation of variance of the optimal weights
and balance heuristic. In particular, the optimal weights are a good choice for
defensive sampling, where the balance heuristic is particularly inefficient. Our
proof of concept applications in direct illumination estimation showed that new
sampling strategies motivated by the variance properties of the optimal weights
yield further benefits. We believe that our work opens up new directions for
improving efficiency of combined estimators.

2.10 Appendix

2.10.1 Calculus of variations
Our derivation of the optimal weights relies on the calculus of variations [Aubert
and Kornprobst, 2006], the basic elements of which we now informally review. It
is typically used to find extrema of a functional – a mapping from some space
of functions Ω onto real numbers. In our case, the functional of interest – the
variance – conforms to a general form F(h) =

∫︁
F̂ (h(x)) dx, where h ∈ Ω is a

function (in our case the weights) and F̂ is some operation on h.
A basic tool used to locate extrema of a functional F is its functional derivative

∂F
∂h

, i.e., the rate of change of F with infinitesimally small perturbations of the
function h. Similar to classic calculus, the extrema are given by the function(s)
h for which the functional derivative equals to zero, i.e., ∂F/∂h(x) = 0.
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Calculation of the functional derivative can be transformed to classic differ-
entiation from ‘ordinary’ calculus using the relation⟨︄

∂F
∂h

, δ

⟩︄
= d

dε

⃓⃓⃓⃓
ε=0

F(h + εδ), (2.32)

where δ ∈ Ω is a variation (a function), while ε ∈ IR is a number. To obtain the
functional derivative, we 1) replace any occurrence of h in the functional by h+εδ,
2) take derivative with respect to ε, 3) set ε = 0. This yields an expression that
is, by the relation (2.32), equal to the inner product of the variation δ and the
functional derivative ∂F/∂h that we seek to find, i.e., to the integral

∫︁
D

∂F
∂h

δ dx.
The last step is therefore to extract the part of the expression corresponding to
the functional derivative.

As in classic calculus, Lagrange multipliers can be used to handle constraints.
To find extrema of F satisfying a constraint g(h(x))=0, we formulate a constraint
functional G(h) =

∫︁
λ(x)g(h(x)) dx, where λ ∈ Ω is the Lagrange multiplier. We

then locate extrema of the Lagrangian L(h, λ) = F(h) − G(h, λ) both in terms
of h and λ.

2.10.2 Proof of the relationship (2.25)
The variance of the optimal estimator (2.23) can be expanded as

Var[⟨F ⟩o] = Var[⟨F ⟩b] + Var[⟨G⟩b] − 2Cov[⟨F ⟩b, ⟨G⟩b]. (2.33)

We now express the variance Var[⟨G⟩b] and covariance Cov[⟨F ⟩b, ⟨G⟩b] from (2.33)
in terms of the technique matrix, contribution vector and α. Using the shorthand
notation q = (∑︁N

i nipi)−1 and dropping the function arguments, we obtain

Var[⟨G⟩b] =
∫︂

D
q
(︃ N∑︂

i

αipi

)︃2
dx −

N∑︂
i

ni

(︃ ∫︂
D
q pi

N∑︂
j=1

αjpj dx
)︃2

, (2.34)

Because the elements of A are given by aik = ⟨pi, pk q⟩, we can rewrite the first
term in (2.34) as: ∑︁N

i=1
∑︁N

k=1 αiaikαk = α⊺Aα. (2.35)

The second term in (2.34) can be transformed in a similar fashion:
N∑︂

j=1
nj

(︂∑︁N
i=1 αiaij

)︂ (︂∑︁N
k=1 ajkαk

)︂
= α⊺ANAα, (2.36)

with N being a diagonal N × N matrix with the sample count ni along the
diagonal. Putting together (2.35), (2.36), and factoring out α, we obtain

Var[⟨G⟩b] = α⊺ (A − ANA) α. (2.37)

Now, we express the covariance Cov[⟨F ⟩b, ⟨G⟩b]. Denoting ⟨F ⟩b
ij and ⟨G⟩b

ij the
parts of the MIS estimators for i-th technique and j-th independent sample, the
covariance becomes

Cov[⟨F ⟩b, ⟨G⟩b] =
N∑︂
i

niCov[⟨F ⟩b

i1, ⟨G⟩b

i1]. (2.38)
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That is because ⟨F ⟩b
ij and ⟨G⟩b

kl are independent whenever i ̸= k and j ̸= l, and
thus their covariance is zero. Again, using q = (∑︁N

i nipi)−1, the relation (2.38)
can be further expanded

N∑︂
i

niCov[⟨F ⟩b

i1, ⟨G⟩b

i1] =
∫︂

D
q f

∑︁N
i=1 αipi dx −

−
N∑︂
i

ni

(︃∫︂
D

q pif dx
)︃(︃∫︂

D
q pi

∑︁N
j=1 αjpj dx

)︃
.

(2.39)

The first term in (2.39) equals to b⊺α where b is the contribution vector. The
second term could be expanded as:

N∑︂
i

nibi

(︂∑︁N
k=1 aikαk

)︂
= b⊺NAα. (2.40)

Subtracting (2.40) from b⊺α yields the desired relation for the covariance:

Cov[⟨F ⟩b, ⟨G⟩b] = b⊺(I − NA)α. (2.41)

Finally, expanding (2.33) using the relationships (2.37) and (2.41), we obtain:

Var[⟨R⟩b] = Var[⟨F ⟩b] + α⊺ (A − ANA) α − 2b⊺(I − NA)α. (2.42)

By using b⊺ = α⊺A and simplifying, we obtain the desired relationship (2.25).

2.10.3 Light sampling techniques formulas
In Section 2.7.4 and Figure 2.9b we discuss different light sampling techniques.
Here we provide a derivation of the quantities illustrated in Figure 2.9b. If ex-
pressed in the solid angle measure, the integrand and probability density functions
of the techniques read:

f(θ) = Le cos θ ∝ cos θ

pSpherical(θ) = 1
|ASpherical|

∝ 1

pUniformArea(θ) = 1
|AUniformArea|

d(θ)2

cos l(θ)

= 1
|AUniformArea|

d2
⊥

cos3 l(θ) ∝ 1
cos3 l(θ)

pParallel(θ) = 1
|AParallel|

d(θ)2

cos l(θ) = 1
|AParallel|

d2
⊥

cos3 l(θ)

∝ 1
cos3 l(θ) = 1

cos3 θ

(2.43)

The quantities used in the formulas are shown in Figure 2.13. As discussed in
Section 2.7.4, linear combination of the Uniform area and Spherical techniques
is a good approximation for the integrand as long as the lit surface is parallel
to the light source. For that case it holds cos−3 θ = cos−3 l(θ), but that relation
breaks for points on differently oriented surfaces, and the linear combination
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of the Uniform area and Spherical techniques on such surfaces can no longer
approximate the integrand well.

The above problem does not occur with the Parallel technique, which first
projects the light onto a plane parallel to the shaded surface, and then sam-
ples that projection. Therefore, a linear combination of its sampling density
(∝ cos−3 θ) with the Spherical technique (∝ 1) better approximates f irrespec-
tive of the light orientation.

θ

AUniformArea

l(θ)

d⊥

d(θ)

l

Uniform area

θ

AParallel

l(θ)

d⊥=1

d(θ)

l

Parallel

θ

ASpherical

l

Spherical

1

Figure 2.13: Illustration of the quantities used in formulas in Appendix 2.10.3. A
denotes surface area of the sampled light/projection, θ angle at the surface, l(θ)
angle at the light/projection, d(θ) distance between the point on the surface and
on the light/projection, d⊥ perpendicular distance of the light/projection.

2.10.4 Relationship to Owen and Zhou
Approximating α in (2.23) can be viewed as a regression problem, as Owen and
Zhou [2000] did. To explain their approach, we denote parts of (2.23) using the
following notation

fij = f(Xij)/pc(Xij), dijk = pk(Xij)/pc(Xij), (2.44)

where pc(x) =∑︁N
k=1 nkpk(x)/M and M =∑︁N

k=1 nk. Let us uniquely map an in-
dex pair (i, j), i = 1, . . . , N, j = 1, . . . , ni to an index l = 1, . . . , M and denote
quantities from (2.44) as fl and dlk in the following text. Owen and Zhou ap-
proximate the optimal coefficients α by multiple linear regression of observations
fl on regressors dlk along with an intercept term ⟨α0⟩, i.e.,

⟨α0⟩ +∑︁N
k=1⟨αk⟩dlk ≈ fl, l = 1, . . . , M. (2.45)

In matrix form,

Dh ≈ f , (2.46)

where each row corresponds to (2.45) for a particular index l. Therefore D is a
matrix M ×(N +1) with the first column composed of ones and the (k+1) column
being (d1k, . . . , dMk)⊺, f is a column vector (f1, . . . , fM)⊺, and h is a column vector
of length N + 1 representing the terms ⟨α0⟩ and ⟨αk⟩, k = 1, . . . , N . Note that
the above regression problem can be composed from several MIS sample batches
by concatenating the corresponding matrices and vectors.

To solve the regression problem (2.46), Owen and Zhou minimize ∥Dh − f∥2
2

in terms of h, which leads to the normal equation for h

D⊺Dh = D⊺f . (2.47)
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The above equation is singular, because the first column of ones in D is a linear
combination of the others, i.e., ∑︁N

k=1 nkdlk/M = 1, l = 1, . . . , M . Let h0 be a
solution of (2.47), and v = (−M, n1, . . . , nN)⊺ ∈ Null(D⊺D). Then each h ∈
{h0 + sv|s ∈ IR} solves (2.47). Because the sum of elements of v equals 0, it
holds for all h that the sum of their elements equals the same number, and we
show in the next paragraph that it must be an estimate of the integral F . We
also show that an alpha estimator extracted from any h estimates some ˜︁α, which
belongs to the full solution for alphas (see Section 2.4.2).

We can find a solution to (2.47) by SVD applied directly (preferred by Owen
and Zhou), but we can also solve a truncated system D̂

⊺
D̂ĥ = D̂

⊺
f , where D̂

is obtained by dropping one column from D. That yields a truncated solution
vector ĥ, and it is equivalent to finding a solution h which has the element
corresponding to the skipped column equal to zero. Therefore, summing up the
elements of such a truncated vector gives the same estimate of F . Dropping the
first column from D related to ⟨α0⟩ makes the truncated system even the same
(up to a scaling factor) as our system estimated by the balance heuristic (2.28)
described in Section 2.6.1, because then

D̂
⊺
D̂ = M2⟨A⟩, and D̂

⊺
f = M2⟨b⟩. (2.48)

The truncated vector ĥ solving such a system is then equal to the ⟨α⟩ esti-
mate described in Section 2.6.2, and there exists an h0, with the first compo-
nent equal to zero, corresponding to such a truncated vector. Therefore, using
n = (n1, . . . , nN)⊺, an alpha estimate represented by h = h0 + sv, s ∈ IR equals
to ⟨α⟩ + sn, which is an estimate of ˜︁α = α + sn from the full solution for alphas.
It follows that the sum of elements of any such h must be equal to the sum of
elements of ⟨α⟩ and therefore it is an estimator of F . In other words, the solu-
tions given by Owen and Zhou’s approach are equivalent to the solution of the
system from Theorem 1 as long as the system parts A and b are estimated by
the balance heuristic. Our result is more general, and it suggests the existence of
some alternative strategies how to approximate A, b, and α.

2.10.5 Pseudocode of Fan et al.
Figure 2.14 presents pseudocode of our adaptation of the method by Fan et al.
[2006] who modified Owen and Zhou’s approach by using regularization and ap-
plied it in rendering (see the previous section for details of Owen and Zhou’s
method). The computation is performed in batches. In each batch, ni sam-
ples are drawn from each of the N sampling techniques pi, i = 1, . . . , N (we
use N = 2, n1 = n2 = 4, each batch therefore consists of M = 8 samples, the
same total number of samples as 4 iterations of our Direct estimator). For each
sample one row of the data matrix D and vector f is computed according to
(2.44). After all samples in one batch are processed, one column of D, cor-
responding to ⟨αk⟩, k = 1, . . . , N , is dropped. Then the regularized truncated
system (D̂⊺

D̂ + λI)ĥ = D̂
⊺
f is solved, where I is the identity matrix and λ is the

weight of the regularization (we use λ = 1 as suggested by Fan et al.). Finally,
the sum of the elements of the solution ĥ is added to the final result and the
algorithm proceeds to the next batch.
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Note that in practice this algorithm can be implemented to directly com-
pute D̂

⊺
D̂ and D̂

⊺
f instead of first computing D̂ and f and then multiplying

by D̂
⊺. Such an implementation has the same computational complexity but

smaller memory requirements. Fan et al. do not mention this optimization but
our implementation of this algorithm applies it. This optimized implementation
is included in the provided source code.

ALGORITHM 3: Fan et al.
1 M ←

∑︁N

i
ni; // batch size

2 result← 0;
3 for batch← 1 to maxBatches do
4 D← 0M×(N+1); f ← 0M×1; l← 0;
5 for i← 1 to N do
6 for j ← 1 to ni do
7 Xij ← draw j-th sample from technique pi;
8 l← l + 1;
9 Dl0 ← 1; // intercept term

10 for k ← 1 to N do
11 Dlk ← dijk; // (2.44)
12 end
13 fl ← fij ; // (2.44)
14 end
15 end
16 D̂← drop one column of D;
17 ĥ← solve regularized linear system (D̂⊺D̂ + λI)ĥ = D̂⊺f ;
18 result← result +

∑︁N

i
ĥi

19 end
20 return result/maxBatches

Figure 2.14: A pseudocode of the method of Fan et al.

2.10.6 Additional materials
We provide additional results for the presented scenes7 online at

https://cgg.mff.cuni.cz/˜jaroslav/papers/2019-optimal-mis

These include full-size images and rendering statistics for both equal-time and
equal-sample comparisons of different combination strategies and sampling tech-
niques described in this chapter.

Furthermore, the same web page offers downloading a ZIP archive containing
2 folders: figure2 and implementation.

The first folder, figure2, contains a Mathematica notebook used for produc-
ing Figure 2.15, i.e., an extended version of Figure 2.3 with additional results for
the cutoff and maximum heuristics. Running the notebook requires the Mathe-
matica software (version 11.0 or newer)8 with the MaTex package (version 1.7.4
or newer)9. Label positions in the produced image were tweaked manually.

The second folder, implementation, contains our source code of the optimal
MIS weights. We implemented the optimal MIS weights as a new integrator called
optmis in pbrt-v310. It computes direct illumination only, and it has several pa-
rameters (described in implementation/Params.html) for specifying light selec-
tion/light sampling techniques, combination strategies, switching to the method
of Fan et al. [2006], etc.

7Based on scenes created by Benedikt Bitterli (available at https://benedikt-bitterli.
me/resources/).

8https://www.wolfram.com/mathematica/
9https://library.wolfram.com/infocenter/MathSource/9355/

10https://www.pbrt.org/
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(unconstrained sign)

Figure 2.15: An extended version of Figure 2.3 with cutoff (d) and maximum (e)
heuristic weights included. (a) depicts an integration problem where the integral
of a function f is estimated via MIS. Three sampling techniques, p1, p2, and p3,
are used, and one sample is taken from each. The two rows differ solely in the
sampling technique p2: while p2 closely matches f in the first row, in the second
row it is fairly different. (b)–(e) plot, respectively, the balance, power, cutoff,
and maximum heuristic weights as defined by Veach [1997]. (f) and (g) depict,
respectively, the best-technique heuristic and the optimal weights as defined in
this chapter.
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3. Pre-computation
In this thesis, we focus on improving the performance of MC rendering. In the
previous two chapters, we did so by decreasing the variance of the MC estimators,
either by finding a single better sampling technique (Chapter 1) or by finding
a better combination of multiple techniques (Chapter 2). In this chapter, we
present a rather different approach. Sometimes it is more practical to pre-compute
difficult parts of light transport, thus excluding their high computational cost
from rendering completely. This is especially useful, if the pre-computation can
be done once and then used repeatedly in different settings, scenes or even in
different renderers. A particularly good example is rendering of the sky.

For high quality renderings of outdoor scenes, one needs realistic models of sky
dome radiance, atmospheric scattering, and optionally also cloudscapes. It has
been known for a considerable time how to compute these, via brute force path
tracing of realistic atmospheric and cloud models. However, the computational
cost of this is still infeasible for routine production use, and will remain so for
the foreseeable future – in particular for interactive use cases. Three families of
techniques have established themselves to cover for this performance deficiency
of full atmospheric path tracing:

1. HDR sky dome captures are intrinsically realistic, and can include clouds:
typical usage is as an HDR environment map. But they lack matching atmo-
spheric scattering information, are static, and cannot easily be manipulated
to, e.g., modify solar elevation or atmospheric parameters.

2. Approximative sky models such as [Hillaire, 2020] provide excellent results
for interactive settings. But all techniques in this category are based on ap-
proximating light transport in the atmosphere and typically neglect higher
order scattering events.

3. Fitted analytical models of sky dome radiance that are based on brute force
simulations of atmospheric light transport have proven popular for use in
offline rendering. Due to being based on physical simulations, such models
can, at least in theory, deliver visual fidelity on par with HDR captures:
but with the added ability to modify sky appearance and solar position.

In spite of the impressive performance of current interactive techniques, they
cannot be used if high degrees of accuracy are required, due to their use of
simplified light transport, and due to performing computations in a colour space
instead of using spectral rendering. For several application areas, such as movie
VFX, or predictive rendering applications like training of autonomous vehicle
sensor software, one needs more realistic models: and especially for the latter,
reliable spectral data for a wide range of configurations is also needed. As brute
force approaches are too slow, fitted models will remain in use: but improvements
in this area are needed, as existing techniques are all lacking a number of crucial
features.

Current fitted models usually provide sky radiance data only for a ground-
based observer and if they do support higher observer altitudes, they are missing
matching finite distance in-scattered radiance and transmittance models. All
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these components are necessary for realistic rendering of distant geometry, e.g.,
in views looking down on an aircraft in flight or mountains receding into the
distance. Without them, a slow full atmospheric simulation has to be carried
out. Furthermore, existing models neglect sky polarisation which is important
for accurate rendering of specular objects in outdoor scenes, a feature needed for
example for autonomous vehicle sensor training.

3.1 Prague Sky Model
In this chapter, we review the Prague Sky Model [Wilkie et al., 2021] which
advances the state of the art of the fitted models. It is an integrated model of
clear sky radiance and attenuation which follows the general approach of previous
fitted models by first running brute force simulations, and then fitting a model to
the obtained data. However, it improves on practically every component of this
process. Its main benefits are:

• The use of reference data from atmospheric science to define realistic vertical
scatterer distribution profiles: these profiles are then used in a polarisation-
aware path tracer to generate a large database of polarised reference images.

• Fully spherical reference images, which are generated for a range of observer
altitudes up to 15 km: this is a considerable improvement over current
hemispherical models that are only defined for ground-based observers.

• Verification of these reference images against the output of dedicated at-
mospheric simulation software.

• A new tensor decomposition approach to compress the reference image
dataset. With it, artefact-free interpolated sky dome images can be recon-
structed from a coefficient set that is a fraction of the size of the reference
images themselves.

• Solar elevations down to −4.2◦ are included in the model, as the new com-
pression technique is powerful enough to deal with the changing sky dome
radiance patterns after sunset.

• A matching model for atmospheric transmittance is provided for describing
attenuation in the atmosphere. Also allows computation of finite distance
in-scattered radiance.

• And finally, there is also a matching model for sky dome polarisation.

While rich in features, the Prague Sky Model remains easy to use and can be
integrated in any path tracer. It has been implemented in the Corona renderer
[Chaos Czech a.s., 2023] and successfully used there to this day. A few examples
of its output for different settings and scenes are shown in Figure 3.1. They
do not demonstrate just the clear sky colours but also the haze covering more
distant objects requiring the knowledge of finite distance in-scattered radiance
and transmittance. Thanks to all of this difficult atmospheric light transport
being pre-computed once and then supplied by the Prague Sky Model, these
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examples were rendered in a fraction of time needed for full atmospheric path
tracing (in minutes instead of days).

The author was not the primary investigator of the Prague Sky Model, its
initial version was published in a doctoral thesis by Hošek [2019]. However, the
author then introduced several improvements to the model and collaborated on
publishing its final version [Wilkie et al., 2021] while sharing the first authorship
with Alexander Wilkie. In this chapter, the author will review this final version
while clearly stating what his contribution is. Some parts of this chapter content
(Appendix 3.12.3 and several figures) were taken with minimum modifications
from the final version publication, but also appeared in the Lukáš Hošek’s doctoral
thesis. These parts are clearly marked, they do not contain any contribution of
the author but are necessary for completeness of this chapter.

The description of the Prague Sky Model will also serve as a background for
introducing the author’s very own extension of the model spectral range into the
short-wavelength infrared (SWIR) region [Vévoda et al., 2022].

Figure 3.1: Top row: A mountain landscape rendered from 4.8 km altitude
using the Prague Sky Model with finite-distance in-scattered radiance and trans-
mittance. Left: 2° solar elevation, 30 km visibility. Right: 15° solar elevation,
60 km visibility. Bottom row: A cityscape rendered in a late afternoon set-
ting, and post sunset. All rendered using the Prague Sky Model in the Corona
renderer.

3.1.1 SWIR extension
The Prague Sky Model has, same as all extant pre-computed models, one impor-
tant limitation – it was designed with the visible spectral range, and a human
observer, in mind. While the visible range is sufficient for many practical use
cases of the model, there are applications that require considerably wider range
of wavelengths. In particular, for photovoltaic plant yield simulation and ther-
mal analysis of buildings, the model lacks a significant part of the solar irradiance
spectrum: specifically, the short-wavelength infrared (SWIR) region up to around
2500 nm is missing. With the importance of renewable energy sources rapidly in-
creasing, and the thermal performance of buildings also becoming more and more
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important, accurate design tools for these applications are urgently needed. Even
though these application areas developed their own ad hoc prediction toolchains
over the years (some of which we discuss in Section 3.2), the trend is now to
move towards the kind of MC rendering technology that was originally developed
for “normal” computer graphics. The reason being that only MC rendering can
handle predictions for arbitrarily complex input geometries, non-trivial surface
materials, transparency and translucency (for e.g. complex photovoltaic module
coverings), and similar advanced appearance features. Therefore, we derived a
suitably extended form of the Prague Sky Model as an initial reference model for
these communities.

The extended model is only hemispherical, i.e. limited to the ground level
observer altitude, as this is the main use case for photovoltaic simulation and
building analysis. It retains all the other components of the Prague Sky Model,
such as the transmittance term and polarisation patterns. The main difference
is a considerably extended spectral range (280 nm to 2480 nm, see Figure 3.2 for
illustration), and the corresponding adaptations that were necessary in the brute
force pre-computation step and the fitting. Outside the visible range, several
additional factors needed to be included in the simulation, which we discuss
throughout this chapter. We also provide an implementation that servers not only
for easy evaluation of the extended model in a renderer, but also for interactive
visual exploration of the dataset. The implementation is flexible and can be used
for evaluation of the original Prague Sky Model as well.

Prague Sky Model

Our extension

Visible Near-IRNear-UV
280 nm 2480 nm

Figure 3.2: Our extension of the Prague Sky Model adds another 44 wavelength
channels in the near-UV and near-IR range on top of its original 11 channels
in the visible range. Altogether, our extension covers wavelengths from 280 nm
to 2480 nm using 55 regularly spaced bins. The displayed monochrome images
correspond to 280, 1200, 1600, 2000 and 2480 nm bins; the colour image is a
composition of 11 bins from 320 – 760 nm range. They all show up-facing fish-eye
views of the sky for solar elevation 3° and visibility 20.0 km

3.2 Previous work
As already outlined in the introduction, work on sky dome radiance and atmo-
spheric transmittance falls into four broad categories within computer graphics:

1. Capture and measurement of real skies

2. Interactive approximations to atmospheric scattering
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3. Fitted analytical models

4. Brute force simulations of light transport in the atmosphere

For fitted analytical models and brute force simulations there exists a considerable
body of work within the atmospheric research community, for which we provide
a summary in Table 3.1, and we refer the reader to the comprehensive overview
and evaluation of fitted analytical models and brute force solvers by Bruneton
[2016]. In the remainder of this section we provide more details about selected
work from each category.

sun below
horizon

arbitrary
observer
altitude

spectral polarisation approach
b (brute force)
f (fitted model)

Nishita93 + + - - b
Nishita96 + + - - b
Preetham - - - - f
Haber + - - - b
Bruneton + + + - b
Elek + + + - b
Hošek - - + - f
libradtran + + + + b
Prague Sky Model + + + + f

Table 3.1: A comparison of several clear sky models and their features.

3.2.1 Capture and measurement
Captures of sky dome radiance are commonly used in production environments.
There are collections of stock HDR sky images, the film industry have been re-
lighting their scenes using on-set captured sky dome images for years. However,
as mentioned in the introduction, these captures lack flexibility and matching
associated atmospheric data (in-scattering, transmittance, polarisation). Neither
they can be used for creation or at least verification of fitted sky dome models
as they are rarely taken in a calibrated manner and cannot therefore serve for
rendering in absolute units. For the wider spectral range of our SWIR extension,
there are hardly any captured datasets at all.

The work of Kider et al. [2014] containing systematic measurements of sky
dome radiance is a very helpful exception. It can be used to directly illuminate
scenes as well as to verify sky models and it provides data for both the visible and
SWIR spectral range. The only shortcoming of this work is the lack of the exact
atmospheric parameters at the time of capture. Since there are many degrees
of freedom in how a clear atmosphere can be structured, verification against the
dataset of Kider et al. [2014] requires assuming a particular atmosphere model
and experimental search for its parameters yielding the best match. However, as
the comparison in Figure 3.52 shows, the U.S. Standard Atmosphere, which is
used as basis of the Prague Sky Model, is a reasonable fit for the measurements.
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3.2.2 Interactive approximations
Interactive approximations like the work of Hillaire [2020] provide excellent results
for interactive settings but are problematic for our purpose due to the potentially
unbounded error they introduce. Also, these methods usually operate in a colour
space and there is no data on how to make them perform reasonably well in the
infrared spectral region.

3.2.3 Fitted analytical models
There are several models with widespread industrial use that attempt to fit para-
metric functions to patterns observed in brute force sky dome radiance simula-
tions [Perez et al., 1993; Preetham et al., 1999; Hošek and Wilkie, 2012, 2013].
They are useful for fast, high-quality scene modelling and rendering, but they
typically provide realistic results only for a limited parameter range. Moreover,
the applicability of these models is narrowed down because they all were designed
with only a ground-based observer in mind. The work of Hošek and Wilkie [2012,
2013] also lacks a dedicated atmospheric transmittance model that matches the
sky dome radiance. The Prague Sky Model adds all these features, albeit at the
cost of requiring pre-computation for the required range of parameters, and result-
ing in a model which has larger memory requirements than previous techniques.
Figure 3.3 illustrates the conceptual difference of these models to a full solution
like the Prague Sky Model provides, while Figure 3.4 shows the consequences of
omitting individual components.

Regarding the SWIR extension, to our knowledge, no fitted model that covers
the spectral range needed for full photovoltaic assessments exists.

A

B

observer
altitude

   transmittance

in-scattered radiance
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Figure 3.3: Capabilities of fitted sky radiance models. Existing models (such
as the one by Hošek and Wilkie [2012]) correspond to case A: they are quite
simple, and only provide information for paths that directly go to space without
hitting any objects, and with the observer at ground level. They also do not pro-
vide a model for transmittance over finite viewing distances. But for non-trivial
renderings, one additionally needs to cover case B: with an observer viewpoint
that is not necessarily on the ground, with in-scattered radiance information for
finite viewing distances when objects are hit, and with matching transmittance
information. The Prague Sky Model provides all this.
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Figure 3.4: Consequences of omitting some of the pre-computation components
identified in Figure 3.3. Top: a full brute force rendering of a synthetic test scene
(the Columns scene described in Section 3.9.1), observer altitude 8 km above
ground, close to sunset. Bottom left: the model by Hošek and Wilkie [2012].
It neither has a concept of observer viewpoints above ground level (so downward
looking rays need to extrapolate, and solar radiance stays the same at all alti-
tudes), nor provides an expression for in-scattered radiance or transmittance for
finite distances. Bottom right: the Prague Sky Model with in-scattered radi-
ance and transmittance for finite viewing distances switched off: as one can see,
this component is absolutely crucial for outdoor scene realism.

Transmittance

Transmittance models have been included in some works [Preetham et al., 1999],
however these typically rely on simplifications such as exponential distributions
of aerosols. Other approaches for transmittance operate, and require features, in
image space so cannot be easily applied to multiple bounces of lighting [Hansard,
2019]. The Prague Sky Model provides a specialised transmittance parametrisa-
tion and fit, is accurate to the underlying atmospheric configuration, and can be
used when computing indirect lighting as well.

Polarisation

An approximate analytical fit of sky dome polarisation was proposed by Wilkie
et al. [2004]. However, for lack of reference data their model was based entirely
on indirect reasoning (as per their own admission in the paper), which led to
rather sub-optimal results as showed by Wang et al. [2016]. Therefore, Wang
et al. designed a new analytical model of sky dome polarisation. It is accurate
and efficient to evaluate, but no matching radiance or transmittance data were
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provided. As a consequence, it is of limited applicability to rendering of complete
skies with all aspects of sky dome radiance, i.e., in-scattered radiance, transmit-
tance, and polarisation. By contrast, these are all covered by the Prague Sky
Model in one integrated solution.

3.2.4 Brute force simulations
Brute force simulations tend to yield great results in terms of visual quality but
are usually not nearly fast enough for production use. This category includes, e.g.,
the work of Nishita et al. [1993, 1996], Haber et al. [2005], Bruneton and Neyret
[2008] or Guimera et al. [2018]. Most of them actually contain a pre-computation
step that reduces the complexity of the models’ evaluation at the time of ren-
dering, albeit for the set of parameters (observer altitude, sun elevation) fixed
at the pre-computation step. Real-time methods, such as O’Neil [2005] com-
pute approximations to atmospheric lighting; these typically trade effects such as
multiple scattering for fast computation.

Significantly more powerful general simulation packages such as libradtran
[Emde et al., 2016] has been developed by the atmospheric research community.
These can serve as a valuable source of reference solutions for graphics research,
such as those shown in the work of Wang et al. [2016]. However, for the reasons
we discuss in Section 3.6.1, and notwithstanding all its excellent capabilities,
libradtran is not well suited for general rendering tasks, and would not have
been a good solution for the very specific problem of obtaining reference images
for the Prague Sky Model.

3.2.5 Wide spectral range
Besides libradtran, a few more infrared-capable models was developed. For
example, the SMARTS spectral irradiance model [Gueymard, 2019] provides high-
resolution spectral irradiance output for potentially sloped surfaces at ground
level, and for a variety of clear-sky scenarios. Over 25+ years of usage, it has
been extensively validated, and is widely used in many simulation fields.

The remote sensing community has developed a number of wide-band hyper-
spectral reference solvers, such as DART [Grau et al., 2009]. Several other soft-
ware packages of roughly the same type exist (e.g. 6S [Vermote et al., 1997]):
common to all of them is that hyper-spectral predictions for scene appearance
when viewed from orbit are provided, to aid with the interpretation of real data
acquired during satellite passes. In the case of DART, satisfactory performance is
achieved via careful trade-offs between discretisation and other approximations.
For the purposes it is intended for, the accuracy it reliably delivers is perfectly
sufficient and has become a standard tool for such applications. However, for
simulation of photovoltaic plant yield viewed from the ground, all these solvers
suffer from the fact that they are custom-made for the specific purpose of “seeing
things from orbit” and altering them to provide such functionality would mean a
partial or complete rewrite.

Common to all these models is that they are very sophisticated, highly ac-
curate and extensively verified but that they would be hard to integrate into
modern MC rendering software. This was not their original purpose, so this fact
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in no way is to be held against them. But, as already stated in the introduction,
light transport simulation technology is generally moving in the direction of MC
rendering, due to its significantly higher predictive capabilities for complex scenes
and materials.

3.3 Physics background
In this section, we briefly review physics aspects of atmospheric rendering. First,
we describe light transport in the atmosphere using the radiative transfer equa-
tion. Then, we name the typical atmosphere components and explain what light
transport processes they contribute to. Finally, we give a short introduction into
light polarisation.

3.3.1 Radiative transfer equation
A complete description of light transport in participating media, such as in at-
mospheres, is given by the radiative transfer equation [Subrahmanyan, 1960], for
which an exhaustive introduction is given by Pharr et al. [2016]. Here we describe
a version of the radiative transfer equation specific for atmospheric rendering.

There are two main processes of light transport in the atmosphere: absorp-
tion, when light collides with an atmosphere particle and is converted to another
form of energy (e.g., heat), and scattering, when light collides with an atmosphere
particle and is scattered into a different direction. While absorption only reduces
radiance along a ray, scattering causes both radiance decrease, when light trav-
elling along the ray is scattered away (out-scattering), as well as increase, when
light travelling away is scattered into the path of the current ray (in-scattering).

Intuitively, the radiative transfer equation expresses radiance arriving along a
ray as: radiance entering at the beginning of the ray (attenuated by absorption
and out-scattering along the entire ray) plus all radiance that gets in-scattered
into the ray anywhere along its path (attenuated by absorption and out-scattering
along the remaining part of the ray).

Formally, radiance Lo(λ, ω → x) of a wavelength λ arriving along a ray from
a direction ω to a point x is computed as

Lo(λ, ω →x) = Tr(λ, y→x)Le(λ, y→ω)

+
∫︂ y

x
Tr(λ, y′ →x)Li(λ, y′ →ω) dy′, (3.1)
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where:
• y is a point at the beginning of the ray, either on a solid surface nearest to

x, or in infinity, if the ray does not hit any surface. Note that the latter
case is equivalent to point y located at the atmosphere boundary, since we
do not consider any light interactions in outer space.

•
∫︁ y

x is an integral over all points on a line segment connecting x and y.

• Tr(λ, y → x) is the transmittance. It is a value between 0 and 1 and
expresses the fraction of radiance of wavelength λ that is transmitted from y
to x. The transmittance is 1 in a vacuum but lesser than 1 in the atmosphere
because of radiance lost due to absorption and out-scattering. It can be
computed as

Tr(λ, y→x) = e−
∫︁ y

x σt(λ,y′) dy′ , (3.2)
where σt(λ, y′) is the extinction coefficient [m−1]. It is the probability den-
sity that light of the wavelength λ is absorbed or scattered at the point y′

per unit distance travelled in the atmosphere. For a clear sky, the extinction
coefficient depends only on λ and the altitude of y′ and can be computed
as a product of the wavelength-dependent extinction cross section [m2] and
the altitude-dependent particle concentration [m−3]. Similarly, absorption
coefficient σa and scattering coefficient σs can be defined as the probability
densities of just absorption or scattering and can be computed using the re-
spective absorption and scattering cross sections. It holds that σt = σa +σs.

• Le(λ, y → ω) is radiance of the wavelength λ emitted or reflected from the
point y in the direction ω. We define it as

Le(λ, y→ω) =

⎧⎪⎪⎨⎪⎪⎩
0 . . . for rays coming from outer space,
LSun(λ) . . . for rays coming from the Sun,
Lr(λ, y→ω) . . . for rays coming from a solid surface,

where LSun is the extraterrestrial solar radiance and Lr is radiance reflected
from the surface. For Lambertian surfaces Lr satisfies

Lr(λ, y→ω) = α(λ, y)
π

∫︂
H2

Lo(λ, ω′ →y) ny · ω′ dω′, (3.3)

where
∫︁

H2 denotes the hemispherical integral and ny is the surface normal
at y. α(λ, y) is the surface albedo for the wavelength λ at y. It is a value
between 0 and 1 and expresses the ratio between the reflected and incoming
radiance.

• Li(λ, y′ → ω) is radiance of the wavelength λ in-scattered at the point y′

into the direction ω. Intuitively, it is all the radiance coming from anywhere
in the scene scattered into ω, attenuated by the probability of scattering
and the probability of changing its direction into ω. It is defined as

Li(λ, y′ →ω) = σs(λ, y′)
∫︂

S2
ρ(λ, ω′ →y′ →ω)Lo(λ, ω′ →y′) dω′, (3.4)

where
∫︁

S2 denotes the spherical integral and ρ(λ, ω′ → y′ → ω) is the phase
function, which defines the probability density of scattering radiance of the
wavelength λ arriving from direction ω′ at the point y′ into the direction ω.
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3.3.2 Typical atmosphere composition
Now we mention atmosphere particles that are typically responsible for the ab-
sorption and scattering described above. In physical simulations, the atmosphere
is considered to consist of gas molecules, aerosols and clouds, where clouds can
be further divided into water clouds and ice clouds [Emde et al., 2016]. Since the
Prague Sky Model only deals with clear skies, we do not discuss clouds further.
Also, two main scattering mechanisms prevail in the atmosphere: Rayleigh and
Mie scattering. Other types of mechanisms, e.g., scattering by non-spherical par-
ticles such as ice crystals, are not present in all atmospheric configurations, and
are not taken into account in the Prague Sky Model.

Gas molecules

The two main constituents of air, N2 and O2, form roughly 78.1% and 20.9% of air,
respectively, up to the altitude of about 90 km, where the overall air concentration
is already negligible. These molecules are responsible for Rayleigh scattering and
are the main cause of the blue colour of the sky.

Rayleigh scattering describes the interaction of light with particles smaller
then the light wavelength. Closed-form expressions for calculating its cross section
and phase function are available [Bodhaine et al., 1999].

Besides scattering, O2 is also responsible for a small absorption band around
760 nm. Even further into the infrared region, there are absorption bands caused
by CO2 and water vapour H2O. See Figure 3.5 for an illustration.
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Figure 3.5: A comparison of the extraterrestrial solar spectrum and the solar
spectrum at ground level. Note the absorption bands caused by molecules of
CO2, H2O, O2 and O3.
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On the other side of the spectrum, around 250 nm, strong absorption is caused
by ozone O3, which has long been assumed to be important for sky appearance
at dusk [Hulburt, 1953]. Although the direct correspondence between twilight
sky colour and ozone concentrations has been recently called into question [Lee
et al., 2011], if skies with low solar elevations are to be rendered correctly, the
inclusion of O3 is a necessity, as shown in Figure 3.6. So far, it has mostly been
omitted in computer graphics sky models [Nishita et al., 1993; Preetham et al.,
1999], and even though two models already include it [Haber et al., 2005; Kutz,
2013], no widely used fitted model features the effect yet.

No ozone Reduced ozone Full ozone

30
°

-3
°

Figure 3.6: A demonstration of the impact of ozone on sky dome appearance.
From left to right: Up-facing fish-eye views of the sky with no ozone, with
a reduced ozone profile typical for ozone hole conditions, and a healthy mid-
latitude ozone layer. Top row: Solar elevation 30◦. Bottom: Solar elevation
−3◦. While there is no visible change for the high solar elevation, the increasing
ozone concentration causes a dramatic change in hue and radiance for the low
elevation. For this figure, the atmosphere was simulated with gas molecules only
(i.e., without aerosols). Note: this figure taken from the paper of Wilkie et al.
[2021] also appeared in the doctoral thesis of Hošek [2019] (on page 54).

Aerosols

The second major constituent of the atmosphere are aerosols. An aerosol property
database for these particles called OPAC (Optical Properties of Aerosols and
Clouds) is available [Hess et al., 1998]: it contains several basic aerosol types
that are typically present in an atmosphere, e.g., water-soluble (WASO), water-
insoluble (INSO) and black carbon (SOOT). These particles are responsible for
absorption and since they are larger, they are also responsible for the second type
of scattering – Mie.
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Mie scattering describes the interaction of light with scatterers that are larger
than the light wavelength. As the scattering favours forward directions, it pro-
duces characteristic coronas around light sources in foggy environments. In the
atmosphere, the aerosol particles have various size distributions [Hess et al.,
1998], which influences the cross sections and phase functions. Therefore, un-
like Rayleigh scattering, simple closed-form formulas are not available for Mie
scattering, and it has to be approximated [van de Hulst, 1957] or pre-computed
from the size distributions and tabulated separately for each wavelength [Emde
et al., 2016]. Mie phase function is often approximated by Henyey-Greenstein
[Henyey and Greenstein, 1941] or Cornette-Shanks [Cornette and Shanks, 1992]
phase functions.

3.3.3 Polarisation
Light emitted from the Sun is unpolarised. Only after scattering on atmosphere
particles it becomes polarised. Both Rayleigh and Mie scattering are polarising
light-matter interactions: but for sky dome scenes, the macroscopically resulting
polarisation is often rather weak in the case of Mie scattering.

Mueller calculus [Mueller, 1948] describes polarising and attenuating proper-
ties of one such interaction using a 4 × 4 Mueller matrix and the full state of
light between the interactions using a Stokes vector. A Stokes vector is a four-
component vector (I, Q, U, V ), where I is the light radiance, Q is the amount
of linear horizontal polarisation, U is the amount of linear diagonal polarisation,
and V is the amount of circular polarisation. For example, (I, 0, 0, 0) denotes un-
polarised light, (I, 1, 0, 0) horizontally polarised light, and (I, −1, 0, 0) vertically
polarised light.

A Stokes vector is always associated with a reference frame given by the vector
of light propagation and two other perpendicular vectors: one for the horizontal
direction and one for the vertical direction. A Mueller matrix is associated with
two such reference frames: an input one corresponding to the incoming light di-
rection and an output one corresponding to the outgoing light direction. When
light undergoes an interaction (e.g., scattering on an atmosphere particle), the
Stokes vector representing the light is multiplied by the Mueller matrix repre-
senting the interaction, but only after the vector is rotated so its reference frame
matches the input reference frame of the matrix. Effects of multiple interactions
can be concatenated together by multiplying their Mueller matrices. However,
this involves costly rotation of the matrices so the output and input frames of
matrices of each two consecutive interactions match.

In general, the sky is polarised tangential to a circle centered around the sun
and maximum polarisation is found at 90◦ from it. Therefore, the sky is polarised
mostly horizontally when the sun is close to the zenith, and mostly vertically when
the sun is close to the horizon, as illustrated in Figure 3.7. On very clear days,
the degree of polarisation can reach up to 70%, but usually multiple scattering
tends to reduce polarisation.
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Horizontal polarisation Vertical polarisation

Figure 3.7: Two side-facing fish-eye views of the sky demonstrating different
polarisation. Left: Mostly horizontally polarised sky when the sun is close to
the zenith. Right: Mostly vertically polarised sky when the sun is close to the
horizon.

3.4 Model parameters
Knowing the physics background of light transport in the atmosphere, we can
now start describing the Prague Sky Model and its SWIR extension. We begin
with specifying their input parameters.

Spectral range

The Prague Sky Model covers wavelengths in the range from 320 nm to 760 nm,
i.e., slightly wider visible range. In contrast, our SWIR extension covers wave-
lengths in the range from 280 nm to 2480 nm (see Figure 3.2 for a visual compar-
ison of the two ranges). It extends the range a bit on the ultraviolet side of the
spectrum, as there is some residual solar radiation as well (see Figure 3.5), but
mostly it adds wavelengths from the short-wavelength infrared (SWIR) range.
The exact terminology of what constitutes SWIR varies by application area:
the boundary between SWIR and medium-wavelength infrared is usually placed
somewhere in the region between 3000 nm and 4000 nm. As we are focused on
solar radiation, which at ground level practically goes to zero beyond 2500 nm, we
limit the range of our model to near that value: explicitly covering the entirety
of SWIR was not our goal, especially as there are no really official definitions for
these region boundaries anyway. As Figure 3.8 shows, a model that explicitly
only targets photovoltaic simulations could probably have stopped even earlier
(around 2000 nm): but we wanted to cover the entire solar irradiance spectrum,
and even though it does not have a lot of energy beyond 2000 nm, this might still
matter for thermal irradiance analysis.
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Figure 3.8: Spectral response curves for several solar cell types, with typical
ground level solar radiation shown in grey. Note that several types absorb sig-
nificant amounts of radiation way beyond the visible range: any predictions of
photovoltaic plant yield based only on visible wavelengths would be considerably
in error. Image courtesy of Chris Guyemard, used by permission.

Ground albedo

The effect of surface properties of any local scene geometry on the sky appearance
is negligible. What matters is the overall reflectance of large areas on the Earth
surface, i.e., if any significant portion of the incoming light is reflected back into
the atmosphere. To account for this, the Prague Sky Model assumes the Earth
surface to be Lambertian so the ratio between the reflected and incoming light
is given by the surface albedo (see (3.3)). The average surface albedo of the
ground in the geographic region where the model is used is then one of the model
parameters. The SWIR extension uses this ground albedo as well, but thanks to
the wider spectral range the ground albedo can specify reflection also for infrared
wavelengths.

Observer altitude

One of the benefits of the Prague Sky Model is not being limited to ground-based
observers like most of the current models. It is parametrized by the observer
altitude which extends from ground level up to 15 km – altitude high enough to
allow rendering of airliners in flight. The SWIR extension has a different appli-
cation though. It is meant for photovoltaic plant yield simulation and thermal
analysis of buildings which is usually not needed above ground level. Therefore,
the spectrally extended model is only hemispherical. However, this is just an
optimization to reduce the model size and the time required for the brute force
simulation and adding higher altitudes would be straightforward.

Solar elevation

Solar elevation is the elevation of the sun above ground level, i.e., the angle be-
tween a plane tangent to the Earth at the point on the ground directly below
the observer and the direction from that point to the Sun. It defines the vertical
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position of the sun in the sky independently on the current observer altitude (hor-
izontal position can be changed trivially just by rotating the sky around zenith).
The Prague Sky Model accepts values from −4.2◦ to 90◦: 90◦

means the sun is in the zenith, 0◦ means the center of the sun
is exactly on the horizon when viewed from the ground, and
−4.2◦ was set so the sun is completely below horizon even when
viewed from the maximum observer altitude 15 km. The SWIR
extension keeps this parameter unchanged.

Visibility

In order to control the haziness of outdoor scenes, existing sky dome models
feature a user-controllable parameter called turbidity. This is a relative measure of
the fraction of additional scattering due to aerosols as opposed to molecules only
[Preetham et al., 1999], i.e., how much more the atmosphere scatters compared
to an ideally clean molecular atmosphere:

T = τm + τh

τm
, (3.5)

where τm is the optical thickness of molecules only and τh is the optical thickness
of aerosols only. This value is typically reported at 550 nm and measured towards
the zenith. As we will see in the next section, such vertical measurements are
not a good correlate of haziness when using realistic scatterer profiles: they only
correlate well when using exponential scatterer profiles.

As the Prague Sky Model is using realistic scatterer profiles with a large
amount of aerosols close to the ground (described in the next section), the model
is parametrised via horizontal viewing distance at ground level – visibility for
short. It is defined by the Koschmieder’s formula [Horvath, 1971] as

V = − ln(0.02)
σt(550, 0) , (3.6)

where σt(550, 0) is the extinction coefficient at 550 nm and ground level. It tells
the maximum distance at which an object is still recognizable against the sky
on the horizon, so it is also a more intuitive parameter for end users then the
turbidity. Visibility in both the Prague Sky Model and its SWIR extension ranges
from 20 km to 131.8 km (the range is given by the available atmospheric data).
This would correspond to turbidities from 3.8 to 1.4.

3.5 Model atmosphere
Aim of this section is to give an overview of what atmosphere-related data are used
by the Prague Sky Model and its SWIR extension and how they were obtained.
Appendix 3.12.1 then presents all these data explicitly in the form of plots.

We start outside the atmosphere by describing the only light source considered
by the models – the Sun. Its angular diameter in the sky ranges from 0.5242◦ to
0.5422◦, the models use the mean value 0.5334◦. The emission is defined by the
extraterrestrial solar radiance [Wehrli, 1985] shown in Figure 3.9.
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Figure 3.9: Extraterrestrial solar radiance used used by the Prague Sky Model
and its SWIR extension.

Now we can continue with the Earth and its atmosphere. The Earth is mod-
elled as a perfect sphere with 6378 km in radius, the atmosphere is assumed to be
120 km thick [Anderson et al., 1986]. To describe the atmosphere composition,
we need to list all particles considered by the models together with their prop-
erties required by the radiative transfer equation (3.1): absorption cross sections
and particle concentrations for absorbing particles, and scattering cross sections,
phase functions and particle concentrations for scattering particles.

3.5.1 Gas molecules
Scattering molecules

As discussed in Section 3.3.2, most of air is formed by N2 and O2 molecules which
cause Rayleigh scattering. The Prague Sky Model and its SWIR extension in-
clude both types of molecules, the scattering cross section and phase function are
computed using the closed-form expressions from Bodhaine et al. [1999], the par-
ticle concentration comes from the U.S. Standard Atmosphere [Anderson et al.,
1986] (obtained via libradtran [Emde et al., 2016]).

Absorbing molecules

The Prague Sky Model includes absorption from O3, the SWIR extension takes
into account also three additional types of molecules: CO2, water vapour H2O,
and O2. These were omitted from the Prague Sky Model since their effect for
wavelengths shorter than 760 nm is negligible. However, they are responsible
for significant absorption bands in the SWIR part of the spectrum, as shown
in Figure 3.5. The absorption cross section of O3 comes from Gorshelev et al.
[2014], the rest from the HITRAN database [Gordon et al., 2022]. All particle
concentrations come from the U.S. Standard Atmosphere [Anderson et al., 1986]
(obtained via libradtran [Emde et al., 2016]).
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3.5.2 Aerosols
Both the Prague Sky Model and its SWIR extension contain the three main types
of aerosols mentioned in Section 3.3.2: water-soluble (WASO), water-insoluble
(INSO) and black carbon (SOOT). These aerosols are responsible for both ab-
sorption and Mie scattering, all their necessary properties (cross sections, phase
functions, particle concentrations) were computed from the tabulated data pro-
vided by OPAC [Hess et al., 1998] and libradtran [Emde et al., 2016].

WASO phase function

For simplicity, instead of full Mie scattering both the Prague Sky Model and
its SWIR extension use a phase function based on the closed-form Henyey-
Greenstein (HG) approximation [Henyey and Greenstein, 1941]. The HG function
is parametrized by the asymmetry parameter g, which is also provided by OPAC,
but with limited accuracy. Therefore, a separate wavelength-dependent g was
numerically fitted to better match the phase function tabulated in OPAC. Fig-
ure 3.10 shows an example of the fitting results.

INSO phase function

The models use the HG function for INSO as well. However, for the strongly
forward scattering INSO particles, the numerical fit of g resulted in values close
to 1, which caused firefly artefacts during brute force rendering, and a narrow
and hard to fit high energy region around the solar disc. For both these reasons,
the models resorted to using the less accurate asymmetry parameter provided by
OPAC, which is slightly lower, and which slightly blurs the circumsolar region.
Figure 3.11 shows an example of quality of the fit using the OPAC asymmetry
parameter, its impact on validity of the results is discussed in Appendix 3.12.2.

SOOT phase function

The Prague Sky Model approximates the Mie phase function for the SOOT parti-
cles using the HG function and fitted g similarly to WASO. While this approxima-
tion is sufficient in the original wavelength range, it starts to deviate significantly
from the true Mie phase function for longer wavelengths. Therefore, the SWIR
extension uses the Cornette-Shanks phase function [Cornette and Shanks, 1992]
which is a much better match in this range, as shown in Figure 3.12.
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Figure 3.10: A result of approximating the Mie phase function tabulated in OPAC
for the WASO aerosol by a fitted Henyey-Greenstein phase function. Black dashed
line corresponds to the tabulated Mie function, blue line to the HG function
obtained by fitting its asymmetry parameter g so the two functions match.
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Figure 3.11: A result of approximating the Mie phase function tabulated in OPAC
for the INSO aerosol by a fitted Henyey-Greenstein phase function. Black dashed
line corresponds to the tabulated Mie function, blue line to the HG function with
asymmetry parameter g provided by OPAC.
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Figure 3.12: A comparison of Henyey-Greenstein (blue) and Cornette-Shanks
(red) phase functions with the true Mie phase function (black dashed) provided
for the SOOT aerosol by OPAC. While Cornette-Shanks matches the true phase
function well, Henyey-Greenstein deviates significantly for longer wavelengths.

Particle concentration

There are several vertical profiles of the aerosol concentrations provided by OPAC
for various environments, the Prague Sky Model and its SWIR extension use
three: continental clean, average and polluted. These standard profiles are based
on real measurements, but simplified insofar as in OPAC these are modelled
by two exponentials with a sharp transition at the inversion layer at 2 km. For
atmospheric research purposes, the discontinuities in the OPAC data likely do not
matter: but as Figure 3.13 shows, they are clearly visible for observer altitudes
near the transition.

In order to obtain practically useful scatterer profiles, the models had to
slightly modify the OPAC profiles by smoothing the inversion layer transition.
They did so by fitting a sigmoid function to the flat regions of the original profiles
at 2 km and 12 km.

The three profiles, clean, average and polluted, correspond to three visibilities
(as defined in Section 3.4): 27.6 km, 59.4 km and 131.8 km, respectively. To
provide more than just three visibilities and stay as close to the real atmosphere as
possible at the same time, the models had to interpolate between the three profiles
and even extrapolate. Since differences between the three profiles for a single
aerosol are defined in OPAC solely by the ground level particle concentration
(i.e., the “left” exponential in the top left image in Figure 3.13 is kept fixed
and the “right” exponential is scaled so as to start at one the three ground level
particle concentrations), interpolating between the three profiles can be done by
interpolating between the three ground level particle concentrations with respect
to the visibility.
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Figure 3.13: A brute force comparison of the original OPAC atmosphere and the
smoothed version used by the Prague Sky Model and its SWIR extension. Top:
The OPAC and smoothed vertical particle concentration profiles for the INSO
aerosols. Bottom: Reference renderings corresponding to the vertical profiles
above, for observer altitude 2 km in a synthetic test scene (the Columns scene
described in Section 3.9.1). The sharp horizontal line seen in the left image is not
the horizon, but the top of the denser scatterer region.

The interpolation curves shown in Figure 3.14 in the top left image were
computed in three steps:

1. A ground level extinction coefficient σaero
t (V ) corresponding to absorption

and scattering by all the three aerosol types is computed for a desired
visibility V by using (3.6) and subtracting the known visibility-independent
extinction coefficient of the gas molecules.

2. Ratios r(V, A) of how much each aerosol type A contributes to σaero
t (V ) are

computed using a spline interpolation from the ratios r(27.6, A), r(59.4, A),
r(131.8, A) know from the three available profiles (the interpolation is easy
as shown in Figure 3.14 in the top right image).

3. Ground level concentrations c(V, A) are then obtained by dividing the ex-
tinction coefficient σaero

t (V )r(V, A) by the respective sums of the known
absorption and scattering cross sections.

This way realistic vertical profiles of the aerosol concentrations can be computed
for any visibility while keeping the standard profiles where available. An example
for the INSO aerosol is shown in Figure 3.14 in the bottom image, profiles for the
other aerosols can be found in Appendix 3.12.1.
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Figure 3.14: Interpolation of vertical concentration profiles of the aerosols. Top
left: Curves interpolating between three ground level aerosol concentrations cor-
responding to the three known concentration profiles – clean, average and pol-
luted. Top right: Curves interpolating between ratios of three ground level
extinction coefficients corresponding to the three known concentration profiles.
The curves are easily obtained by spline interpolation and defines the curves in
the left image. Bottom: An example of resulting interpolated (and extrapolated)
concentration profiles for the INSO aerosols.

3.5.3 Author’s contribution
Apart from all the changes necessary for the SWIR extension (computing all data
for the SWIR region, including the additional absorbing molecules, changing the
SOOT phase function), the author was also responsible for the smoothing and
interpolation of the OPAC aerosol concentration profiles in the Prague Sky Model.
The initial version published by Hošek [2019] used an empirically derived ad hoc
function to define synthetic concentration profiles. Thanks to the author’s work,
more realistic profiles based on real measurements could be used.

3.6 Brute force simulation
The Prague Sky Model is a fitted model and as such it follows the general ap-
proach of first running brute force simulations, and then fitting a model to the
obtained data. The goal of brute force atmospheric light transport is to generate
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authoritative images of complex, realistic simulated atmospheres. In this sec-
tion, we give a technical overview of the path tracer used to run the brute force
simulations, as well as of the resulting reference dataset.

3.6.1 Atmospheric path tracer
Generating reference datasets to fit the Prague Sky Model and its SWIR extension
requires an unbiased brute force renderer which is capable of computing large
amounts of spectral images for chosen atmospheric configurations. These input
images for the fitting need to contain polarisation information, and the used
rendering algorithm should be flexible enough that it can exclude directly viewed
ground hits – only in-scattered radiance that originates from atmospheric events
needs to be fitted. In addition to these requirements, the brute force renderer
has to be able to load scene geometry, to run direct brute force computations for
non-trivial scenes for validation.

With regard to accuracy of radiative transfer computations in the atmosphere,
the libradtran software package [Emde et al., 2016] is the yardstick to measure
against. However, while libradtran is an excellent tool for reference compu-
tations, it would not have been well suited to compute the large sets of images
needed for fitting the two models. Part of the efficiency of libradtran comes
from the fact that it always runs only for a single wavelength, and a single query
direction: this makes limited bi-directional tracing (and therefore faster conver-
gence) considerably easier. However, the models need entire reference images
that contain fairly broad spectral regions: and repeatedly running libradtran
for multiple query directions and wavelengths is not very efficient. Also, it is not
clear if it is possible in libradtran to only compute in-scattered energy from at-
mospheric events, and omit specific ground hits: so their Monte Carlo estimator
would likely have to be significantly modified.

atmo sim

Instead, a dedicated brute force simulator called atmo sim was implemented based
on the ART framework [Wilkie, 2018]. ART provides infrastructure for storing,
analysing and manipulating spectral images that contain polarisation informa-
tion, and it includes the command line tool polvis which was used for the polar-
isation visualisations in Figure 3.19 and 3.35. atmo sim is an uni-directional path
tracer which uses next event estimation and multiple importance sampling [Veach,
1997], and is optimised to deal with scattering events in an atmosphere around an
idealised Lambertian planet. Via Null Scattering [Miller et al., 2019] in combina-
tion with Hero wavelength sampling [Wilkie et al., 2014], it achieves a rendering
performance which is sufficient for the generation of reference datasets, even for
below sunset scenarios.

Since atmo sim is a polarisation path tracer, a rare structural feature dis-
cussed by Wilkie and Weidlich [2012] was implemented in it for performance
reasons: when working with polarised light, attenuations from light-matter in-
teractions that occur along a path should not be concatenated together. As
discussed in Section 3.3.3, attenuations in a polarisation renderer are represented
as 4 × 4 Mueller matrices. When two such attenuations are concatenated, one of
them has to be rotated to the reference frame of the other: this adds significant
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overhead compared to just rotating the simpler Stokes vector of a light sample.
Which means that a polarisation-capable path tracer is actually faster if it avoids
attenuation concatenation entirely: instead, it retains them separately for the
entire path, and individually multiplies each of them with a light sample on its
way to the image plane.

A simplified version of atmo sim was used for rendering reference data for
transmittance. Instead of full path tracing only ratio tracking was used to com-
pute transmittance at a set of non-uniformly distributed points in the atmosphere
illustrated in Figure 3.15. Since transmittance features are related to the 1D dis-
tribution of atmospheric constituents which is always aligned with the normal of
the planet, for transmittance fitting it is enough to parametrise the atmosphere
by altitude from ground level alt and distance along the planet surface d. This
parametrisation is then non-uniformly sampled in the region of the atmosphere
which covers the maximum visible distances from the camera to produce the set
of points shown in the figure.

alt

d

Figure 3.15: An illustration of the 2D atmospheric parametrisation showing the
non-uniformly distributed set of points (pink dots) where transmittance is calcu-
lated for the model. Note: this figure taken from the paper of Wilkie et al. [2021]
also appeared in the doctoral thesis of Hošek [2019] (on page 98).

The SWIR extension

For the SWIR extension we had to modify both atmo sim and ART to support
the much wider spectral range. This included, e.g., extending all data types used
for storing input spectral atmospheric data, implementing the Cornette-Shanks
phase function, and extending the output image format. More importantly, we
had to also modify the way the path tracer samples wavelengths and stores results.
For the Prague Sky Model, atmo sim rendered 11-channel images, i.e., it splatted
MC samples into 11 wavelength bins of 40 nm width, in the range from 320 nm to
760 nm. In order to cover the wavelength range up to 2500 nm, we added 43 more
such channels from 760 nm to 2480 nm. We also added one more such channel on
the ultraviolet side of the spectrum, as there is some residual solar radiation as
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well: so our extended model covers wavelengths from 280 nm to 2480 nm using
55 regularly spaced bins. This is not a very high spectral resolution, at least not
by the standards of atmospheric science: but as atmo sim splats MC samples into
the spectral bins via a tent kernel, spectral aliasing is kept low, and the overall
energy of the result spectra is maintained.

As expected, rendering 55-channel images of the more absorbing atmosphere
significantly lowered the path tracer performance (in some case it was up to 20×
slower). To at least partially alleviate this slowdown, we increased the original
number of 4 simultaneously traced Hero wavelength samples to 16. Please note
that the worse performance of the SWIR-capable atmo sim only affects the brute
force pre-computation step. Also, a sizeable part of this slowdown is intrinsic to
the problem at hand (far higher atmospheric absorption in certain wavelength
bands outside the visible range), so that the lower rendering speeds for a SWIR
solution are actually a good argument to use a pre-computed model like ours in
the first place.

Validation

In Appendix 3.12.2, atmo sim simulations are validated against measurements
provided by Kider et al. [2014], results obtained with libradtran, and also
against empirical observations. The validations show that atmo sim simulation
provides results which are highly physically plausible and suitable for generating
the reference datasets.

3.6.2 Reference datasets
The datasets used to fit the Prague Sky Model and its SWIR extension con-
sist of renderings which systematically cover the parameter space described in
Section 3.4. Rendered values for the parameters can be found in Table 3.2.

Value selection

The ground albedo parameter range is covered uniformly by four samples. Ob-
server altitude and solar elevation samples were initially distributed exponentially
to sample the ranges more densely near the ground and horizon, respectively.
These initial distributions were then iteratively refined by running test render-
ings and analysing how fast sky dome features change between each two samples.
As a result, the observer altitude parameter is additionally sampled at the edge
of the inversion layer at 2 km and solar elevation is uniformly densely sampled
below the horizon.

Each visibility is associated with corresponding aerosol concentration profiles,
as explained in Section 3.5.2. Three visibilities are given by the measured data
available in OPAC: 27.6 km, 59.4 km and 131.8 km. By their extrapolation and
interpolation (also described in Section 3.5.2) three more visibilities were ob-
tained: 20.0 km, 40.0 km and 90.0 km. Without more measured data any further
extrapolation was deemed ad hoc (e.g., visibility 131.8 km already corresponds
to zero ground level concentration of the SOOT aerosol so it is not clear how to
extrapolate further).
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Rendered values

Ground
albedo 0.00, 0.33, 0.66, 1.00

Observer
altitude
(metres)

Prague Sky Model: 0.00, 1.87, 15.00, 50.62, 120.00, 234.38,
405.00, 643.12, 960.00, 1366.90, 1875.00, 2000.00, 2495.60, 3240.00,
4119.40, 5145.00, 6328.10, 7680.00, 9211.90, 10935.00, 12861.00,
15000.00
SWIR extension: 0.00

Solar
elevation
(degrees)

-4.20, -4.00, -3.50, -3.00, -2.50, -2.00, -1.50, -1.00, -0.50, 0.00, 1.00,
2.85, 5.23, 8.05, 11.25, 14.79, 18.64, 22.77, 27.17, 31.82, 36.71,
41.83, 47.16, 52.71, 58.46, 64.40, 70.53, 76.84, 83.34, 90.00

Visibility
(kilometres) 20.0, 27.6, 40.0, 59.4, 90.0, 131.8

Wavelength
bins
(nanometres)

Prague Sky Model: 320 – 760 by 40
SWIR extension: 280 – 2480 by 40

Table 3.2: Parameter values used for rendering the reference datasets used for
fitting the Prague Sky Model and its SWIR extension. If no model is stated for
a parameter, the same values were used for both. Note the uneven sampling of
observer altitude and solar elevation that ensures more samples are taken in areas
of the parameter space where large changes in sky dome features occur.

The Prague Sky Model uses the same 11 wavelength bins of 40 nm width as
Hošek and Wilkie [2012], the SWIR extension adds 44 more as discussed above.
Experiments with wider bins led to noticeable colour shifts, narrower bins yielded
no tangible benefits. If nanometer-level spectral accuracy were desired, one would
need to resort to direct computations via libradtran, or a similar specialised
tool: pre-computing a sky dome model to such a fine-grained spectral resolution
would require prohibitive amounts of storage space.

Image format

In order to provide in-scattered radiance data even for observer positions above
ground level, the Prague Sky Model has to fit a fully spherical function instead
of a hemispherical one common to previous work. Using one up-facing and one
down-facing fish-eye view of the sky as the input to the fitting algorithm would
lead to discontinuities at the horizon. Therefore, side-facing fish-eye views are
used instead. Moreover, since the in-scattered radiance data are symmetrical
left and right of the sun position for the idealised planet used by the model,
only a single side-facing view is needed as long as it looks exactly 90° away from
the sun set position. Figure 3.16 shows an example of these side-facing views
for one particular ground albedo, solar elevation and visibility, and increasing
observer altitudes. One such side-facing fish-eye view has to be generated for every
parameter value combination and each of the four Stokes vector components.

For the transmittance fit, one more image has to be rendered for each com-
bination of observer altitude, visibility and wavelength (transmittance depends
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neither on ground albedo nor solar elevation). This image is not a fish-eye view
of the sky, instead it stores transmittance for the 2D distribution of points in the
atmosphere illustrated in Figure 3.15. Figure 3.17 shows three such images.
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Figure 3.16: An example of side-facing fish-eye views of the sky used in fitting the
model. They show in-scattered radiance and polarisation for ground albedo 0.33,
solar elevation 8.05◦, visibility 20 km, and observer altitudes (from left to right) 0,
120, 960, 3240 and 15 000 m. Since ground reflections are intentionally omitted,
the bottom half of the images starts completely black at ground level and then
changes with increasing observer altitude due to increasing amount of in-scattered
radiance. Radiance shown in the top row corresponds to the first Stokes vector
component, polarisation shown in the bottom row corresponds to the second
Stokes vector component (after the alignment illustrated in Figure 3.19).
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Figure 3.17: Three examples of the reference transmittance images rendered for
observer altitudes 0, 2, 15 km, and visibility 59.4 km. The images store transmit-
tance for the 2D distribution of points defined in Section 3.6.1, the image height
corresponds to altitude of the points alt (in range 0 – 15 km), the image width
corresponds to distance of the points along the Earth’s surface d (in range 0 –
distance of the furthest visible point). For this figure, the images were created by
combining all visible wavelength channels into a single sRGB image, the brown
tint corresponds to the more prominent scattering of blue light in the atmosphere.
Note how transmittance decreases with increasing distance (horizontally from left
to right) and with increasing difference in altitude of the points from the rendered
observer altitude (vertically away from it). The sudden change of shape for points
at 2 km corresponds to the end of the inversion layer.
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Dataset rendering and statistics

For the Prague Sky Model, 690 960 side-facing fish-eye images (4 ground albedos
× 22 observer altitudes × 30 solar elevations × 6 visibilities × 11 wavelengths × 4
Stokes vector components) and 1 452 transmittance images (22 observer altitudes
× 6 visibilities × 11 wavelengths) had to be rendered (in resolution 512 × 512
and 202 × 172, respectively). This was achieved by running atmo sim in 3960
render jobs on a scientific supercomputing cluster (TACC at The University of
Texas at Austin), each of which gave fish-eye images for 4 ground albedos × 11
wavelengths × 4 Stokes components, and in additional 132 jobs, each of which
gave transmittance images for 11 wavelengths. In order to obtain a low level of
noise in the images, 200 thousand samples per pixel were used for fish-eye images
with post-sunset solar elevations, and 100 thousand samples per pixel for the
remainder. As a result, one render job took up to 600 core hours and rendering
the entire dataset required about 1.5 million core hours. The resulting dataset
size is 530 GB in uncompressed form, 200 GB when ZIP compressed.

We took similar approach when rendering the dataset for the SWIR extension.
This time only 158 730 images were rendered (i.e., more than 4 × less) but more
samples per pixel were needed because of strong absorption is certain wavelength
bands outside the visible range. Therefore, rendering the entire dataset required
about 800 thousand core hours (i.e., only 2 × less). The resulting dataset size is
122 GB in uncompressed form, 46 GB when ZIP compressed.

3.6.3 Author’s contribution
Apart from all the changes in atmo sim and ART necessary for the SWIR exten-
sion, the author was also responsible for the optimizations of atmo sim during
development of the Prague Sky Model. The author implemented the next event
estimation and multiple importance sampling (only phase function sampling was
used before), Null Scattering and Hero wavelength sampling (only single wave-
length tracing was used before), and the reversed attenuation computation which
avoids the rotation of Mueller matrices. All these optimizations greatly reduced
noise in rendered images and were essential for feasibility of rendering the ref-
erence datasets. The author was also responsible for optimizing the selection of
parameter values for rendering as well as for executing the whole rendering for
both models and assembling the reference datasets.

3.7 Creation of the fitted model
In the following sections we discuss the fitted components of the Prague Sky
Model and its SWIR extension: in-scattered radiance, transmittance, and polar-
isation.

3.7.1 In-scattered radiance
As the inner workings of the in-scattered radiance fitting are rather complex
and not the author’s contribution, their detailed explanation is given in Ap-
pendix 3.12.3, and only the main characteristics are presented here.
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Figure 3.18: Radiance patterns in the post sunset sky for visibility 59.4 km. From
left to right: Solar elevations 0° to −4°. Top row: Images tone mapped
individually for similar overall brightness. They reveal the shadow of the Earth
rising opposite the setting sun and then becoming less and less distinct as it
grows into night. Bottom row: The same images all tone mapped using the
same exposure as solar elevation 0° to show the actual decrease of brightness.
Note that up-facing fish-eye views are used in this figure, as these give a better
view of the complete radiance pattern. For the actual model fitting, side-facing
fish-eye views were used, as discussed in the text.

Because of the large number of appearance features that are present on a
fully spherical sky dome, especially if post-sunset scenarios are included (see
Figure 3.18 for examples of these), an entirely new fitting approach was developed
that is distinct from previous techniques. In the Prague Sky Model and its
SWIR extension, the radiance patterns of the sky are obtained as a sum of outer
products of single variable functions. The functions themselves are free-form,
tabulated and were obtained by Canonical Polyadic Decomposition (CPD) [Kolda
and Bader, 2009], a process very similar to SVD low rank approximation. This
approach can be thought of as a specialised compression scheme, however it is also
essentially a decomposition of the radiance patterns into an optimal orthogonal
set of “features”.

CPD performance critically depends on using a suitable input parametrisa-
tion that allows the separation to take place cleanly. A suitable scheme described
in Appendix 3.12.3 is based on the solar angle plus the shadow and zenith an-
gles, which makes the gradient of the solar glow and the shadow/horizon lines
aligned with both axes of the fish-eye input images that are re-projected to this
tensor space. There, they are expressed as an outer product of two vectors using
the CPD decomposition, and the two vectors are stored for later retrieval and
reconstruction.

Subtle changes to sky dome appearance both with changing observer altitude
and with the sun going beneath the horizon actually require further refinements
to this basic idea, like the high altitude correction and the image pre-emphasis
to improve horizon interpolation and decomposition of post-sunset images which
are described in Appendix 3.12.3. It has to be noted that while the basic idea of
using CPD to handle a dataset like the one used by the models is conceptually
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simple, the approach would not have yielded a useful result without these further
refinements.

A crucial aspect of the new fitting approach is also the interpolation, i.e., how
images are reconstructed from the tabulated functions for parameter combina-
tions that were not in the reference dataset. Naive reversing of the fitting process
for the nearest available combinations and then interpolating between them in
image space would lead to substantial artefacts (e.g., two half-visible suns or
horizons in a single image). Instead, the nearest combinations are first recon-
structed in the tensor space and then projected into image space using the target
parameters. This way artefact-free images are obtained for any combination of
parameters from the entire parameter space of the model.

3.7.2 Transmittance
Similarly to using CPD for in-scattered radiance fitting, Singular Value Decom-
position (SVD) is used for transmittance fitting. Again, to keep features as axis-
aligned as possible, a suitable parametrisation is used: in this case the (alt, d)
parametrisation described in Section 3.6.1. Since the reference transmittance
dataset was already rendered in this parametrisation, no projecting is necessary
and SVD can be directly used to produce a low rank approximation of these
pre-computed data. The only preprocessing step before the fitting is a non-linear
transformation of the data via a square root to boost small transmittance values,
which allows using a lower rank approximation than if untransformed data were
used. The SVD then produces a sorted list of singular vectors and values UΣV ∗

for each observer altitude a. Only the first R = 12 bases Ua(R) are kept, with
associated coefficients Ca(R) = Σa(R)V ∗

a (R).
During reconstruction, the transmittance Tr(λ, y→x) between two points in

the atmosphere x and y at a given wavelength λ is computed from the reduced
rank approximation. First, two observer altitudes a1 and a2 nearest to x are
located and their stored bases Ua1(R) and Ua2(R) and coefficients Ca1(R) and
Ca2(R) are retrieved. Then y is projected into the 2D parametrisation, leading
to alty and dy. The inner products between the bases evaluated at alty and dy
and the coefficients are then computed for both observer altitudes a1 and a2:

Trai
(λ, y→x) = ⟨Uai

(R)(alty, dy)|Cai
(R)⟩2 (3.7)

This value is interpolated between the two altitudes resulting in the required
transmittance value Tr(λ, y→x).

3.7.3 Finite distance in-scattered radiance
Thanks to the fittings described in the previous two sections, the Prague Sky
Model and its SWIR extension allow calculating in-scattered radiance for infinite
paths and transmittance for finite paths. This section shows, how these quantities
can be used for computing in-scattered radiance for finite paths.

When expressed using notation introduced with the radiative transfer equa-
tion (3.1) in Section 3.3, for any observer location x and a direction ω of a ray
incoming from infinity, the models provide total in-scattered radiance along this
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infinite ray L∞(λ, ω → x) and transmittance Tr(λ, y → x) for any position y on
the ray. L∞(λ, ω →x) is given by

L∞(ω →x) =
∫︂ ∞

x
Tr(y′ →x)Li dy′

=
∫︂ y

x
Tr(y′ →x)Li dy′ +

∫︂ ∞

y
Tr(y′ →x)Li dy′

=
∫︂ y

x
Tr(y′ →x)Li dy′ + Tr(y→x)

∫︂ ∞

y
Tr(y′ →y)Li dy′

= Lfin(y→x) + Tr(y→x)L∞(ω →y). (3.8)
For clarity, we dropped wavelength and Li arguments and also emphasized a
change of transmittance arguments in the second integral between the second
and third equation by the red colour. Lfin(λ, y→x) in (3.8) is the wanted finite
in-scattered radiance between x and y and can be therefore computed as

Lfin(λ, y→x) = L∞(λ, ω →x) − Tr(λ, y→x)L∞(λ, ω →y). (3.9)

This formula also works for all components of polarised radiance in a Stokes
vector.

For practical use, it has to be noted that (3.9) only holds when the two
L∞ values used in it are both highly numerically accurate. However, in the
fitted models, for any two distinct query locations, there can sometimes be small
radiance discrepancies compared to the ground truth. In rendered images, these
deviations will manifest themselves as horizontal stripe artefacts for finite viewing
distances, usually for observer altitudes near the ground, and at viewing angles
near the horizon.

To solve these stability issues, one has to consider the effect the fitting has on
sky dome radiance patterns near the horizon. As shown in Figure 3.28, the most
visible change compared to the original brute force images is that the models
slightly blurs the horizon region. What is not immediately obvious is that it
does so within a small and not entirely predictable blur range. For directly
observed radiance, these small variations in blur are imperceptible: but for the
above mentioned viewing geometries, (3.9) still suffers numerical stability issues
because of it.

As there is no way to get rid of the existing variable blur near the horizon
region, a workable alternative is to always actively bring all such lookups to a
consistent minimum level of blurriness. (3.9) becomes stable if the data does not
exhibit small random variations due to the fitting: and this can easily be achieved
by not taking a single sample in the exact path direction, but the average of a
few directions slightly above and below ω instead.
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Use in a path tracer With L∞(λ, ω →x), Lfin(λ, y→x) and Tr(λ, y→x), the
models provide everything a path tracer needs to evaluate the radiative transfer
equation (3.1). For a ray leaving a scene into the sky, radiance of the ray satisfies:

Lo(λ, ω →x) = L∞(λ, ω →x). (3.10)
For a ray leaving a scene into the sun:

Lo(λ, ω →x) = L∞(λ, ω →x) + Tr(λ, y→x)LSun(λ) (3.11)

for y located on the ray at the atmosphere boundary. And for a ray hitting a
geometry at y:

Lo(λ, ω →x) = Lfin(λ, y→x) + Tr(λ, y→x)Lr(λ, y→ω), (3.12)

where the path tracer follows reflection at y to obtain Lr(λ, y→ω).

3.7.4 Polarisation
A polarisation fit could be obtained by fitting the three additional Stokes vec-
tor components using the same approach as for in-scattered radiance. However,
several optimizations were made.

First, sky dome polarisation is almost entirely linear, the fourth component
was therefore omitted. Second, using a suitable rotation of pixel reference frames
illustrated in Figure 3.19, the third component became very weak and was omitted
as well. This idea of the reference frame re-alignment was already used by Wilkie
et al. [2004] but without any solid evidence that this was actually permissible.
During rendering of the reference dataset for the Prague Sky Model it was verified
that the remaining signal in the third component has no perceptible effect for any
parameter combination (even in scenes that otherwise exhibit visual differences
due to sky dome polarisation). The polarisation information encoded in the
modified second component has to be rotated back before use, but otherwise it is
a good approximation of the dominant polarisation features in the sky. Finally,
since the polarisation patterns are much simpler than the radiance patters, the
rank of CPD was reduced (to n = 5 instead of n = 9) as well as the sizes of the
individual function tables.

3.7.5 Complete fitted datasets
Each of the approximately 350 thousand images (only 2 Stokes vector component
had to fitted) for the Prague Sky Model and 80 thousand for the SWIR extension
was fitted separately, which took about 1 core hour per fit and was carried out
on the same supercomputing cluster as rendering of the reference dataset. The
output of the fitting is a set of coefficients for each of the fitted image (about 400
coefficients per image), we call it a fitted dataset.

The size of a complete fitted dataset for the Prague Sky Model is 375 MB
per visibility: 242 MB radiance data + 6 MB transmittance data + 127 MB po-
larisation data, i.e., 2.25 GB in total. Reduced variants of the dataset can be
created easily, e.g., non-polarising version (1.5 GB) or even ground level only ver-
sion (103 MB). The total size of a complete fitted dataset for the SWIR extension
is 550 MB.
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Figure 3.19: This figure illustrates sun-aligned polarization reference frames
which allow omitting the third Stokes vector component when describing lin-
ear sky dome polarisation. While the third component after the alignment is not
zero, it is negligible as it is caused only by multiple polarising scattering events,
which are rare. Note that in this figure the concept is demonstrated with up-
facing fish-eye views, as these give a view of the complete polarisation pattern.
For the actual model fitting, side-facing fish-eye views were used, as discussed
in the text: the re-orientation works the same in either case. Standard refer-
ence frames are shown in green, individually aligned ones in blue. The reference
frames are right-hand coordinate systems, as the light is coming from the im-
age plane towards the observer. The colour scheme used in the “Standard false
colour” images is a linear polarisation orientation plot provided by polvis (see
Section 3.6.1). Note: this figure taken from the paper of Wilkie et al. [2021] also
appeared in the doctoral thesis of Hošek [2019] (on page 71).

When compared to sizes of the brute force rendered reference datasets that
entered the fitting (530 GB for the Prague Sky Model and 122 GB for the SWIR
extension), the compression ratio of the fitting process is more than 220, which
is about 100× better than what ZIP compression achieved on these data.

3.7.6 Modifications for the SWIR extension
Since reference images corresponding to different wavelength bins are fitted in-
dependently, modifying the fitting to work with the extended spectral range was
straightforward. The only issue we encountered were artefacts caused by higher
levels of noise in the reference images. As we discuss in Section 3.9.4, some
wavelengths are more difficult to render because less light is transported in these
spectral bands. As a result, there is more noise in the corresponding images,
which makes the fitting less stable. To avoid undesirable artefacts, we had to
increase the strength of the filtering step that is applied before the fitting in
these cases. Figure 3.20 shows an example in which this modification successfully
removed artefacts from the resulting fit.

Wavelength compression

Using 5× more wavelength channels than the Prague Sky Model does not come
for free. Besides slowing down the generation of the reference dataset and its
fitting, it also means a 5× larger final dataset that constitutes the model. This
dataset has to be stored on disk and then loaded into computer memory before
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Figure 3.20: An example of a successfully removed noise from a fitted image
thanks to our slightly increased filtering in the fitting preprocessing step. Left: A
reference side-facing fish-eye image rendered for visibility 59.4 km, solar elevation
0◦, ground albedo 0.5 and wavelength channel 2400 – 2440 nm. Middle: A fit
obtained with the original code of the Prague Sky Model. Right: A fit after
increasing the filtering.

use. Therefore, we also investigated the possibility of compressing the dataset by
omitting some of the 55 channels we computed.

We tested a simple greedy algorithm for selecting unnecessary channels. We
kept the first 12 channels (280 – 760 nm) fixed and then tried leaving out im-
mediately following channels as long as the maximum relative error caused by
replacing them by interpolated values does not exceed a fixed threshold. Once
that happens, the last tested wavelength is kept and the omitting starts from
the next one. Figure 3.21 shows dataset size reduction we can achieve with this
algorithm for different error thresholds. So if a particular application does not
require maximum accuracy and can allow e.g. 15% error, it can save almost 22%
of the dataset size.

To ensure maximum quality and flexibility at the same time, we supply the
complete dataset with all channels (in Section 3.8.1), together with a list of
channels that can be omitted for various error thresholds (in Appendix 3.12.5).

Figure 3.21: A size reduction of the fitted SWIR dataset that is achievable by
replacing some of the 55 channels with interpolated values while keeping the
introduced error under a selected threshold.
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3.7.7 Author’s contribution
Apart from the changes in the fitting necessary for the SWIR extension described
above, the author was also responsible for tweaking and optimizing the fitting
of the Prague Sky Model. From the most important modifications we name
two. First, the author improved the projection of images into the tensor space.
Originally, this projection was computed in a forward manner, where pixels from a
reference fish-eye image were transformed into a tensor image. This led to uneven
coverage of the tensor space and produced artefacts on the horizon causing it
to look “wavy”. The author was able to replace the forward transform by re-
projection, i.e., reverse look-up of positions in the fish-eye image for every pixel
of the tensor image by implementing a specialized solver for the corresponding
system of multivariate quadratic equations. As shown in Figure 3.22, this removed
the artefacts completely and thus significantly improved quality of the results
provided by the Prague Sky Model.
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Figure 3.22: An example of fitting artefacts in a close-up view of the horizon
produced by the Prague Sky Model for observer altitude 15 km and solar elevation
−4◦. Top: A “wavy” horizon produced by a previous version of the fitting using a
forward projection of reference images into the tensor space. Bottom: A smooth
horizon produced by the current version of the fitting using the re-projection
described in the text.

Second, the author implemented an additional compression for the fitted radi-
ance datasets using the half-precision floating-point number format. It required
adjusting the CPD decomposition during the radiance fitting to produce only
non-negative coefficients and their careful scaling, strong artefacts shown in Fig-
ure 3.23 were produced otherwise. This reduced size of the fitted radiance datasets
to half (sizes listed in Section 3.7.5 are already after this reduction).

The author was also responsible for executing the whole fitting for both models
and assembling the fitted datasets.
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Naive half compression Fixed half compression

Figure 3.23: An example of compression artefacts in a side-facing fish-eye view of
the sky produced by the Prague Sky Model for observer altitude 1.87 m and solar
elevation 2.85◦. Left: Reconstruction artefacts caused by a direct conversion of
fitted coefficients of the image from single-precision to half-precision floating-point
numbers. Right: An artefact-free image achieved by a more careful compression
method described in the text.

3.8 Implementation
The final model (either the Prague Sky Model or SWIR extension) shipped to a
user consists of two parts: the fitted dataset and a reconstruction code that takes
care of retrieving radiance, transmittance and polarisation from the fitted dataset
and their interpolation for any combination of values within the parameter ranges
described in Section 3.4. There are currently several versions of both the fitted
dataset and reconstruction code available.

3.8.1 Fitted datasets
There are four fitted dataset versions: complete, ground level, SWIR and XYZ.
The first three datasets can be downloaded from the project GitHub page1 under
the Apache-2.0 license, the XYZ version is proprietary to the Corona renderer
and is not publicly available.

Complete (2.25 GB)

A complete dataset containing all features and parameter ranges of the Prague
Sky Model including the fully spherical radiance, polarisation and transmittance
fits. Limited to the visible spectral range.

1https://github.com/PetrVevoda/pragueskymodel
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Ground level (103 MB)

A dataset limited to ground level radiance and transmittance only, created from
the complete one by dropping polarisation and all observer altitudes except for the
zero one. As discussed below, incorporating the complete model into an existing
path tracer requires some modifications of the target system. On the other hand,
this version can be used as a drop-in replacement of whatever hemispherical sky
dome model was already present in the path tracer.

SWIR (550 MB)

A dataset of the SWIR extension. Provides the much wider spectral range but is
limited to the zero observer altitude only. All other features of the Prague Sky
Model are retained, including the polarisation and transmittance fits.

XYZ (226 MB)

While all the three previous versions are spectral and provide at least 11 wave-
length channels, this version provides only 3 channels corresponding to the CIE
XYZ colour space. It also lacks the polarisation fit, the remaining features are
the same as in the complete version. Therefore, the dataset size is much smaller
and the model can be more easily used in non-spectral renderers. In fact, this
dataset was created specifically for the Corona renderer which operates in an
RGB colour space. It was obtained in a similar way as the complete dataset but
with an additional step of converting all spectral images in the reference dataset
to XYZ prior to the fitting. Note that non-spectral renderers can use the spectral
dataset versions as well, the conversion to XYZ is merely an optimization to save
reconstruction time and reduce the dataset size.

3.8.2 Reconstruction code
There are three versions of the reconstruction code: ART implementation, Corona
implementation and Standalone implementation.

ART implementation

When integrating the Prague Sky Model in an actual path tracing software for
testing purposes, two main obstacles were faced. First, evaluation of a pre-
computed sky dome model which features a full spherical radiance fit that changes
with observer altitude requires more than just a drop-in replacement of whatever
sky dome model is already present in a given path tracer: making full use of the
altitude-dependent capabilities of the model requires modifications to the light
source sampling code of the target system. To our knowledge, all existing render-
ers assume hemispherical models that do not change with altitude when dealing
with analytical sky dome radiance. Second, in order to fully test the Prague Sky
Model, which is spectral and polarisation capable, the target rendering system
also needed to be spectral and polarisation capable.

The spectral requirements narrowed the field down considerably. At the time
of developing the Prague Sky Model there were only two fully spectral and po-
larisation capable renderers available: Mitsuba 2 [Nimier-David et al., 2019] and
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ART [Wilkie, 2018]. Since the model already used atmo sim, ART was selected
and the reconstruction code was added there. This ART implementation of the
Prague Sky Model has then become available as Open Source in the 2.1.1 release
of that system.

With its added capabilities such as fully spherical radiance patterns, trans-
mittance and in-scattering for finite distances, the rendering performance of the
Prague Sky Model is not easily comparable to previous models like Preetham
or Hošek. When the in-scattering computations for finite distances are used, a
renderer using the model of course runs slower than with, e.g., pure Hošek sky
dome look-ups, and no volumetric computations. But if the model is used to only
provide sky dome radiance, it yields results that are qualitatively similar to, but
still more realistic than, the Hošek model: see Figure 3.4 for an example of this.
And if both the Hošek model and the Prague Sky Model are used in exactly the
same render they run at practically the same speed. For instance, we tested both
in Figure 3.35 and 3.36, and render times were, e.g., 228 vs. 208 seconds (Hošek
was slightly faster), and 124 vs. 126 seconds (slight advantage to the Prague Sky
Model), respectively. And that was with the more complex, altitude-dependent
light source evaluation code running for the Prague Sky Model: so the actual raw
model queries are definitely faster than Hošek.

Please note that this ART implementation is an unoptimized proof-of-concept
C code and is capable of loading only the complete and ground level fitted
datasets. Nevertheless, it was used for generating all results of the Prague Sky
Model in this chapter except for Figure 3.1, 3.2, 3.33, 3.34 and 3.39.

Corona implementation

In 2021 an implementation of the Prague Sky Model was released in version 7 of
the Corona renderer and it has been successfully used there to this day. It is a
highly optimized implementation designed to work with the XYZ fitted dataset.
While Corona is neither spectral nor polarisation capable, it allows rendering of
virtually any scenes as opposed to the rather limited range of scenes supported
by ART. It was used to render Figure 3.1, 3.33 and 3.34.

Standalone implementation

Since the ART implementation is a rather sub-optimal research code that might
be difficult to use and the code of the Corona implementation is not publicly
available, we decided to create a clean and optimised C++ 17 implementation
that would be sufficiently documented, easy to use and available to everyone.
The resulting implementation does not support rendering of arbitrary scenes but
it is tiny (only 3 MB large) and standalone (does not require any other rendering
or modelling software). It consists of 3 parts: model library, example renderer,
and front end.

The library is formed by just two files and everything one needs to use the sky
model is in this code. It works with the SWIR dataset as well as with the complete
and ground level datasets released for the Prague Sky Model. In comparison with
the original implementation, our code significantly lowers memory consumption.
Instead of loading the entire dataset into memory and completely unpacking it
there, we perform part of the unpacking on demand and provide an option to load
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only a part of the dataset needed for rendering a selected configuration. This way
we can reduce memory use up to 24 times.

To illustrate how to use the library, we implemented a simple example ren-
derer. It shows how to query the library to render a fish-eye image of the sky. On
AMD Ryzen 9 3900X 12-core processor one 1000x1000 pixels large image with
all 55 channels takes around 600 ms to render which allows use in interactive
applications. This part was used for rendering Figure 3.2 and 3.39.

Finally, for immediate model testing and dataset exploration, we accompany
the example renderer with front end with both command-line and graphical user
interfaces (GUI). Using the GUI (shown in Figure 3.24) users can easily load
datasets, interactively change rendered configurations, and save rendered images.

Our implementation was tested on Windows and Linux and is available for
download under the Apache-2.0 licence at the project GitHub page2.

Figure 3.24: A screenshot of the GUI provided by our implementation.

3.8.3 Author’s contribution
The author was responsible for creation of all the four fitted dataset versions and
the Corona and Standalone implementations.

3.9 Results
After describing all the steps leading to creation of the Prague Sky Model and its
SWIR extension we can now proceed with demonstrating their results. We start
with the Prague Sky Model and evaluate its fitting accuracy, demonstrate some

2https://github.com/PetrVevoda/pragueskymodel
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of its features and compare it with other sky models. Finally, we present results
of the SWIR extension.

3.9.1 Fitting accuracy
To assess the accuracy of the Prague Sky Model fitting, i.e., how well the final
model corresponds to brute force reference renderings, both visual comparisons
as well as numerical error analysis were carried out.

Visual comparisons

Figure 3.25 shows a comparison of the fitted radiance and polarisation against
brute force renderings for a configuration present in the reference dataset. They
match closely, the only issue is the slight blur of the horizon and of the negative
polarisation values (the black “wings”).

Reference Prague Sky Model
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Figure 3.25: An example of how the results of the brute force renderer (left
column) and the fitting (right column) match, for radiance (top row) and for the
sun-aligned (cf. Figure 3.19) first polarisation component (bottom row). Side-
facing fish-eye views, observer altitude 2495 m, solar elevation 18.64°, visibility
59.4 km.
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To verify finite distance in-scattered radiance and transmittance as well, a
special test scene shown in Figure 3.26 was modelled. Its massive extent makes
the effects of finite distance in-scattered radiance and transmittance strong and
easy to assess. We refer to this scene as to the Columns scene.

15 km

Columns scene Close-up

10 km

Figure 3.26: An example of the Columns scene used in many of our tests. It
contains a planet with a 10 × 10 km red grid texture, with 15 km high columns
with stripes every 1 km. The close-up of one of the column bases shows an
Airbus A380 airliner placed next to it for scale. This intends to give a sense of
the massive extent of this scene: as it shows a somewhat sterile “atmospheric
debugging” set-up, it is easy to under-estimate how large everything seen in it is.

First, the Columns scene is used in Figure 3.27 to test the quality of the
transmittance fit. The figure shows that the transmittance fit closely matches
the brute force reference, i.e., the model provides correct transmittance for a
wide range of distances present in the scene.

Second, in Figure 3.28 the Columns scene is used to compare the complete
model against brute force rendering for different solar elevations. It shows that
even finite distance in-scattered radiance is matched well. Note that the reference

Reference Prague Sky Model

Figure 3.27: Visualisations of the transmittance component for 8 km observer
altitude in the Columns scene. The left image is a reference rendering obtained
by brute force path tracing, the right is the result obtained by the fitted model.
Note: this figure taken from the paper of Wilkie et al. [2021] also appeared in the
doctoral thesis of Hošek [2019] (on page 100).
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Figure 3.28: A comparison of reference brute force path tracing results from
atmo sim (left) to renderings using the Prague Sky Model (right) at solar ele-
vations −1°, 2° and 20° (from top to bottom) in the Columns scene. Observer
altitude is 8 km, visibility 59.4 km, the sun is behind the camera.

dataset did not contain solar elevations 2° and 20°, which shows that the Prague
Sky Model is capable of interpolations that match the references. Similar to
Figure 3.25, the only apparent difference can be seen at the horizon, where the
model is more blurred, which is mainly caused by the limited resolution of the fit.
However, this blurring mainly affects extreme viewing distances over perfectly
flat terrain, and should not lead to artefacts in normal scenes.

One property of a full path tracing solution that is not accounted for in the
Prague Sky Model are volumetric shadows. As can be seen in Figure 3.29, these
are missing from the image produced by the model. However, a good approxi-
mation for these shadows could comparatively easily be computed by simple ray
marching, which would still be a lot cheaper than a full path tracing solution.
Note that the rendering times in this scene were 10+ hours for the not fully
converged reference, but only 4.5 minutes for the model-based rendering.
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Reference Prague Sky Model

Figure 3.29: The Columns scene rendered for observer altitude 8 km, visibility
59.4 km, with the camera looking towards the sun, which is at 16° elevation,
and outside the frame. For this viewing geometry the limitations of just using
a pre-computed sky dome radiance model become noticeable. Left: A brute
force reference rendering done with atmo sim. Right: The same scene rendered
purely by evaluation of the model. Besides the horizon blur note the absence of
volumetric shadows in the ground haze layer (pointed at by the black arrows).

Error analysis

One in eight of all images (every other ground albedo, observer altitude, solar
elevation, but all wavelengths and visibilities) were selected for quality control
of the obtained fit. This was done via a comparison between the brute force
rendered references and renderings that use the fit. This included a manual check
for artefacts, but also a systematic SNR analysis. For all images, the minimum
SNR was 14.35, the maximum 34.15, and the mean 28.52. The lowest SNR values
were obtained for low solar elevations and high observer altitudes, where there
is a narrow bright orange wedge on one side of the horizon: in this setting, the
added horizon blur causes the most damage. This can be seen in Figure 3.30
which shows one tone-mapped sample of the automatically and systematically
generated comparison EXR images which were manually viewed to check for
artefacts.

An analysis of the end-to-end error incurred by the whole process from a brute
force rendering to a rendering using the model was carried out. It concluded that
the following components affect the end result:

• Noise in the brute force rendered reference images: this has some effect, but
is limited.

• The direct error incurred by the fitting process: this is the main source of
error.

• Error incurred by the dataset compression: these are just the inaccuracies
caused by the conversion from double-precision floating-point numbers to
half-precision. This introduces some error but the net effect of it is still
negligible.

• Noise in the renderings using the fit: this proved to be negligible as well.
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Figure 3.30: A sample of the kind of comparison image which were systematically
generated to evaluate the radiance model fit, this one is for visibility 59.4 km.
Observer altitudes 0, 1875, 15 000 m (from left to right), solar elevations −4°, −2°,
2.85°, 41.83°, 90° (from top to bottom). Note that the lowest SNR is produced
for the high observer altitude and low solar elevation in the upper right corner as
discussed in the text.

A systematic analysis of the error incurred by the interpolation between data
points which were provided during the fit was also performed. That is, e.g.,
how far the radiance patterns diverge from the true solution for solar elevations
between the ones that were used for the fitting. For a small subset (6) of observer
altitudes in the middle of each solar elevation interval, 3 images were compared:
brute force rendered (B), fitted (F) from B, and interpolated (I) from fits at
interval borders. A ratio RMSE(B, I) / RMSE(B, F) is then 1 at interval borders
while in the middle of the intervals it expresses how the fitting error increases
because of the interpolation. The maximum of the ratio was 1.52, which was
deemed to be acceptable.

In Appendix 3.12.4 plots of the fitting error with respect to each model pa-
rameter can be found together with bounds on the interpolation error.

Similar error analysis was done also for the transmittance fit. Maximum
absolute error over the transmittance dataset was 0.014. Figure 3.31 shows a
sample of reference transmittance images with corresponding fitting results and
differences.
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Figure 3.31: A sample of the kind of comparison image which were systemat-
ically generated to evaluate the transmittance model fit, this one for observer
altitude 2495 m and visibility 59.4 km. Shows false colour reference images with
corresponding fitting results and differences for 11 wavelength bins.

3.9.2 Model features
This section demonstrates some of the features of the Prague Sky Model.

Visibility

Results shown in the previous section were all for visibility 59.4 km. Figure 3.32
shows an example of 4 other visibilities out of the entire visibility range from
20 km to 131.8 km provided by the Prague Sky Model.

Post-sunset conditions

One of the benefits of the Prague Sky Model is its support of post-sunset solar
elevations. One such example is shown in Figure 3.1, two more are provided in
Figure 3.33.

Finite distance in-scattered radiance

Figure 3.34 proves the importance of finite distance in-scattered radiance and
transmittance provided by the model. The figure compares the mountain land-
scape scenes from Figure 3.1 with and without these components and clearly
shows they are absolutely crucial for outdoor scene realism.

Performance

The main idea behind fitted sky models is to provide similar quality to brute force
rendering at a fraction of time. Figure 3.28 showed that the Prague Sky Model is
capable of producing results closely matching brute force rendering. And in deed,
it does so in a fraction of time. For the Columns scene shown in the figure at a
resolution of 1500 × 1000, the statistics are as follows: up to 85k spp and 5000
core hours (= 9 days on 24 core CPU) were used for the reference renders, with
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Figure 3.32: An example of 4 different visibilities provided by the Prague Sky
Model in the Columns scene. Observer altitudes 2, 1000, 4000 and 15 000 m (from
top to bottom), solar elevation 16°. Note how the inversion layer becomes more
and more transparent for higher visibility ranges.

Figure 3.33: Two examples of post-sunset conditions rendered using the Prague
Sky Model in the Corona renderer.
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Figure 3.34: The two mountain landscape images from Figure 3.1 with in-
scattered radiance and transmittance for finite viewing distances removed to show
their importance. Rendered using the Prague Sky Model in the Corona renderer.

the post-sunset case being the most difficult one. By comparison, the renders
that used the fitted model used 100 spp and 2 core hours each (= 5 minutes on
24 core CPU).

Polarisation

To show that sky polarisation has a visible impact on renderings and its inclusion
in the Prague Sky Model was therefore beneficial, 2 examples are provided. First,
Figure 3.35 shows how polarisation affects reflection of the sky in building facades
and inter-reflections. Since ART has limited modelling capabilities and cannot
use mainstream scene description formats, and also for an equal comparison with
the work of Wilkie et al. [2004], the original scene file for one of their test scenes
was obtained from the authors for this figure.
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Figure 3.35: The specular architecture scene from Wilkie et al. [2004], re-created
using ART [Wilkie, 2018]. Qualitatively similar behaviour as seen in the 2004
publication can be observed. Image rendered with a polarising (top left) and a
non-polarising version of the Prague Sky Model (top right). The difference image
(bottom left) shows that skylight polarisation not only affects the reflection of
the sky in the building facades, but also the inter-reflections of the buildings. The
image on the bottom right shows the degree of polarisation as scaled overlay for
550 nm, provided by polvis (see Section 3.6.1).

Second, the combination of polarisation with finite distance in-scattered radi-
ance and transmittance allows the Prague Sky Model to simulate removing haze
using a polarisation filter. With a properly oriented linear polarisation filter a
part of the in-scattered light in a daytime outdoor scene can be removed as shown
in Figure 3.36.
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Figure 3.36: Aerial perspective removal with a linear polarisation filter. Left: A
distant view of a building, seen through a 50% neutral filter. Right: The same
scene seen through a 90° filter. Even though the haze removal effect obtainable
by a polariser is rather subtle, there is a visible slight blue tint in the left image
that is not present in the right one.

3.9.3 Comparison to other sky models
As the use of exponential scatterer distributions is a common feature of many
other models, the first comparison of the Prague Sky Model is made against an
exponential. In Figure 3.37, renderings using the modelled atmosphere based on
OPAC profiles (defined in Section 3.5.2) are placed next to three examples of
exponential scatterer distributions. The first exponential profile (second column)
is constructed to match the OPAC-based profile below the inversion layer. As such
it results in much hazier atmosphere. On the other hand, the second profile (third
column) matching the model above the inversion layer makes the atmosphere
much clearer as the inversion layer is completely missing there. Finally, the
third exponential profile (fourth column) is designed to give the same ground
level visibility and vertical turbidity as the modelled atmosphere. These results
show similarities at lower altitudes, however the exponentials diverge as altitude
increases due to the realistic non-exponential scatterer distribution used by the
Prague Sky Model.

To verify this observation a direct comparison to two existing sky models
that are based on exponential scatterer distributions is provided: the model by
Hillaire [2020] and the one by Bruneton [2016]. For this, the source code provided
by Hillaire was used which implements both his and Bruneton’s model. Its input
parameters were set so as the used extinction coefficients were the same as in
the Prague Sky Model, and the used exponential aerosol profile resulted in the
same ground level visibility and vertical turbidity. As expected, both models then
provide output very close to renders of the similarly constructed exponential pro-
file presented in Figure 3.37 (the rightmost column). Therefore, in Figure 3.38 a
good match between all three models at 2 m can be observed. But with increasing
observer altitude, differences between the OPAC-based atmosphere and the two
exponential ones start to manifest themselves.

For completeness, Figure 3.4 shows a sample comparison against the model by
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Hošek and Wilkie [2012] although comparing models with so different feature sets
is difficult. Even with in-scattered radiance and transmittance for finite viewing
distances switched off, the result provided by Prague Sky Model is still more
realistic.
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Figure 3.37: A comparison of the OPAC-based atmosphere scatterer profile of
the Prague Sky Model versus three examples of purely exponential ones in the
Columns scene for solar elevation 16°. The key difference is that no clear sense
of observer altitude can manifest itself with an exponential fall-off: in a real clear
atmosphere, there is a distinct hazier layer in the first 1–3 km from the ground,
with significantly clearer air above it. A purely exponential model is therefore
unable to provide realistic views from mountaintops or aircraft, where this feature
plays an important role in overall scene appearance.
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Figure 3.38: A comparison of the Prague Sky Model with two other related works
by Hillaire [2020] and Bruneton [2016] in a modified Columns scene (since the used
Hillaire’s implementation didn’t allow easy creation of the columns geometry).
Observer altitudes 2, 1000, 2000 and 4000 m (from top to bottom), solar elevation
16°, visibility 59.4 km.

3.9.4 The SWIR extension
Our extended model provides sky radiance, transmittance, and polarisation for
zero observer altitude and 55 regularly spaced wavelength channels from 280 nm
to 2480 nm. The remaining model parameters, i.e. ground albedo, solar elevation,
and visibility, are the same as in the Prague Sky Model. A sample of this output
is shown in Figure 3.39. For example, the first channel (280 – 320 nm) shows
that although the transmittance is low due to a strong ozone absorption, the
sky radiance is relatively high compared to the other channels because of the
high extraterrestrial solar radiance there. On the other hand, low solar radiance
makes the sky radiance in the last channel (2440 - 2480 nm) very low even though
the transmittance is high. And when the decreasing solar radiance meets with
the low transmittance due to the water absorption in channel 1360 – 1400 nm,
the resulting sky radiance is almost zero. Another set of channels and model
parameters is shown in Figure 3.2.
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Figure 3.39: An example of outputs provided by our model: sky radiance, trans-
mittance and polarisation for six wavelength bins. All images show up-facing
fish-eye view of the sky with the same configuration of ground albedo 0.5, solar
elevation 45° and visibility 59.4 km. The second column was obtained by com-
bining corresponding channels into an sRGB image. Each row was tone-mapped
independently, but all images in one row share the same exposure, except for the
second column.

Fitting error

Similarly to the Prague Sky Model, we also analysed the amount of error in-
troduced by the fitting. Here we discuss errors with respect to the wavelength
channels since the behaviour with respect to ground albedo, solar elevation and
visibility stays the same as in the Prague Sky Model. Figure 3.40 shows a box
plot of the normalised mean absolute errors between the fits and reference im-
ages grouped by the wavelength channels. For most channels, the median of the
errors stays under 10%, the total average error is 6%. However, there are three
cases where the error is significantly larger: in the near-UV channel 280 – 320 nm,
between 1360 and 1400 nm, and between 1840 and 1960 nm. All three cases corre-
spond to strong absorption bands caused by ozone and water vapour, which make
atmosphere simulation by the path tracer more difficult. More traced paths end
up being absorbed, and by the time other channels have already converged, the
noise level in these three bands remains high. As a result, the error between the
smooth fit and noisy reference image increases. However, as the grey overlay in
the figure shows, these regions carry very low energy, making them essentially
irrelevant. Similarly, all channels above 2000 nm exhibit larger errors then the
channels in the visible range but the unnormalised mean absolute error is practi-
cally zero there. Figure 3.41 gives an example of a configuration with the average
error.
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Figure 3.40: A box plot of the mean absolute error between fits and their cor-
responding reference images, normalised by the average value of each channel,
shown for all channels in our model. The red line is the median, the blue box
goes from the first to the third quartile, and the whiskers are the minimum and
maximum values. The increased error around 280, 1360 and 1840 nm is due to
noise in the reference images caused by strong absorption in these bands. The
grey shape in the background shows the normalised average pixel value in each
channel.

Figure 3.41: An example of configuration with the average fitting error. It shows
side-facing fish-eye views corresponding to ground albedo 0, solar elevation 18.64°,
visibility 59.4 km and wavelength channel 1320 – 1360 nm, the normalised mean
absolute error is 0.059. The error is barely noticeable in the difference image and
completely invisible in the fit. The lower halves are black and were omitted.

3.10 Limitations and future work
There are several areas in which the Prague Sky Model could be improved in the
future:

1. Most importantly, the model can easily be made to use genuine scattering
profile data for high haziness situations instead of extrapolating from OPAC
– if such data is found in atmospheric science literature. A key issue here
seems to be purely meteorological, in the sense that there is potentially a
large number of different fog and haze configurations that can cause low
ground level visibility: and merely having a single “view distance” param-
eter is not enough to differentiate between these.
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2. Special provisions can be made to accommodate the sharp circumsolar fea-
tures that appear if “real” INSO lobes were to be used, instead of the
smoothed OPAC ones.

3. Feature sharpness in the horizon area could be increased by fine-tuning the
radiance fitting step.

4. More subtle polarisation patterns could be represented if full Mie scattering
was used in the brute force simulator: however, this would substantially
increase the size of the polarisation fitting, as the optimisation discussed in
Section 3.7.4 could no longer be used.

5. Finally, similarly to the SWIR extension of the spectral range, adding even
higher observer altitudes or even lower solar elevations might be useful for
some applications. Such extensions should be more straightforward than in
the case of the spectral range, although it would still increase the dataset
size and in case of low solar elevations also slowed down the pre-computation
step.

Besides improvements, interesting topics for future research can be found also
in novel applications of the Prague Sky Model. For example using the model not
only for illuminating a scene but also for importance sampling of the sky.

The SWIR extension

In terms of practical usability of our extended model, the biggest limitation is the
size of the final dataset. The hemispherical version presented in this chapter, with
its extended set of wavelength channels, requires 550 MB of disk space and twice
as much computer memory when loaded for use. Using the same compression
technology, a full altitude-resolved model with the same extended channels would
consume 12.1 GB of disk space and 24.2 GB of computer memory. However, it
has to be noted that use cases for altitude-resolved SWIR sky models seem to
be scarce. We proposed a method for omitting unnecessary channels, which
can reduce the dataset size if some additional error can be tolerated in a given
application. But for any additional extensions of the model a more efficient
compression method will have to be found.

Another limitation for further development of the model is the resource-
intensive reference dataset generation. This means rendering a large number
of images to a low level of noise, which requires a lot of time and computational
resources. Recall, that rendering of our hemispherical extended dataset consumed
more than 800 thousand core-hours and was done in the course of one week on a
scientific supercomputing cluster. The rendering step of the pre-computation runs
significantly slower than in the Prague Sky Model because of the additional wave-
lengths. There is strong absorption in some of the new wavelength bands, which
makes rendering in these bands considerably more noisy. However, the slowdown
affects the pre-computation step only and rendering a single wavelength channel
using our model takes the same amount of time as with the Prague Sky Model.
Nevertheless, improving rendering in the difficult channels by, e.g., improving the
next event estimation [Hanika et al., 2022] or utilizing some kind of path guiding
[Herholz and Dittebrandt, 2022] would be beneficial.
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3.11 Conclusion
In this chapter, two fitted sky models were described: the Prague Sky Model
and its SWIR extension. The Prague Sky Model is a comprehensive and realistic
pre-computed sky dome model for rendering outdoor environments under clear
skies. It improves the state of the art in several ways:

1. The model is based on OPAC standard atmospheric constituent data, so the
molecular and aerosol distributions represent realistic viewing conditions.

2. The novel in-scattered radiance model provides a full spherical fitting, and is
available for observer altitudes up to 15 km altitude. This allows viewpoints
above ground level, and downward looking renders. The new in-scattering
model can also be evaluated for finite viewing distances.

3. The model extends to solar elevations past sunset, and provides post-sunset
features such as proper twilight blue (due to ozone absorption in the high
atmosphere), and the shadow of the Earth rising opposite the setting sun.

4. The model provides a matching transmittance function that is view depen-
dent, and also changes with observer altitude.

5. Finally, the model includes also a fitted function for the linear polarisation
patterns found in clear skies.

As these components are all derived from the same ground truth dataset, they are
consistent, and can be seamlessly used together. To our knowledge, features 1 to
3 are true novelties, and are not available in any existing pre-computed models of
sky dome radiance. Feature 4 is only available for the model by Preetham et al.
[1999], but not in any later models. Feature 5 was attempted by Wilkie et al.
[2004] and Wang et al. [2016], but the Prague Sky Model is the first to provide
polarisation information which matches all other components.

While the author was not the primary investigator of the Prague Sky Model,
he collaborated on its development and contributed to basically all of its parts:
atmosphere composition specification, reference dataset rendering, fitting, and
implementation. The author then continued as the primary investigator in further
development of the model, in particular he introduced its SWIR extension.

The SWIR extension provides sky radiance, transmittance and polarisation for
a much wider spectral range than such models offered before. It covers practically
the entire range of solar irradiance at ground level, which makes the extended
model useful for predictive simulations of photovoltaic plant yield and thermal
building assessments. The author also created a new implementation common
to both the Prague Sky Model and SWIR extension making the models more
accessible.

While the previous two chapters focused on improving the performance of MC
rendering by decreasing the variance of the MC estimators, the Prague Sky Model
and SWIR extension present a rather different approach. By pre-computing dif-
ficult parts of light transport in the sky, they exclude high computational cost
of these parts from rendering completely. Moreover, the pre-computation is done
only once and using high quality brute force renderings, therefore any renderer
can now achieve realistic sky dome appearance without any atmospheric simula-
tion overhead.
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3.12 Appendix

3.12.1 Atmospheric data plots
This section provides plots of all data describing the atmosphere modelled by the
Prague Sky Model and its SWIR extension. See Section 3.5 for discussion of their
source and usage.
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Figure 3.42: Scattering cross section, Rayleigh phase function and vertical particle
concentration profile of air (N2 + O2).
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Figure 3.43: Absorption cross sections of CO2, H2O, O2, and O3.
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Figure 3.44: Vertical particle concentration profiles of CO2, H2O, O2, and O3.
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Figure 3.45: Absorption and scattering cross sections of the WASO, INSO and
SOOT aerosols.
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Figure 3.46: The fitted asymmetry parameter and the corresponding Henyey-
Greenstein phase function of the WASO aerosols.
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Figure 3.47: The fitted asymmetry parameter and the corresponding Henyey-
Greenstein phase function of the INSO aerosols.
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Figure 3.48: The fitted asymmetry parameter and the corresponding Henyey-
Greenstein phase function of the SOOT aerosols used in the Prague Sky Model.
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Figure 3.49: The fitted asymmetry parameter and the corresponding Cornette-
Shanks phase function of the SOOT aerosols used in the SWIR extension.
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Figure 3.50: Vertical particle concentration profiles of the WASO, INSO and
SOOT aerosols for different visibilities.

3.12.2 Validation
In order to verify that the atmosphere composition used by the Prague Sky Model
and its SWIR extension is physically plausible and that the used brute force
renderer atmo sim works correctly, its output was validated against three different
sources: data measured by Kider et al. [2014], images rendered in libradtran
[Emde et al., 2016], and Alexander Wilkie’s own empirical observations.
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Validation against Kider

Kider et al. [2014] provide a systematically collected dataset which includes spec-
tral sky dome radiance measurements taken in the course of several days for 81
sample positions in the sky. Figure 3.51 compares this measurements for one
particular date and time (27. 05. 2013, 09:30) with results simulated by atmo sim.
Since the measurements do not contain exact atmospheric parameters at the time
of capture, input parameters for atmo sim were obtained experimentally: ground
albedo 0, observer altitude 0 m, solar elevation 41.08◦ and visibility 59.4 km (which
corresponds to OPAC continental average aerosol composition) provided a very
good match to the measurements. The figure also proves importance of the ab-
sorbers added by the SWIR extension (described in Section 3.5.1).

Figure 3.52 shows a different comparison of the same data. Instead of com-
paring the measurements with the simulation with respect to wavelengths, a com-
parison in the image space is shown. The slightly higher error in the immediate
circumsolar region is caused by using the INSO asymmetry parameter specified
by OPAC instead of a precise fit, as discussed in Section 3.5.2. Nevertheless, the
simulation matches the measurements closely (compare with similar error plots in
the work of Kider et al. [2014]) which proves it to be highly physically plausible.
Note that the error of the SWIR extension is necessarily higher since errors from
more wavelengths are included.
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Figure 3.51: A comparison of the modelled atmosphere to real sky dome measure-
ments by Kider et al. [2014]. Blue: Radiance spectrum from the Kider dataset
for 27. 05. 2013, 09:30, averaged over all provided sample points. Red: Radiance
spectrum rendered by atmo sim for a similar atmospheric configuration, averaged
over the same sample points. Black dashed: Radiance spectrum rendered by
atmo sim but for an atmosphere without the CO2, H2O, O2 absorbers added by
the SWIR extension. Note how the additional absorbers yield much better match
to the real data at wavelengths marked by the black arrows.
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Figure 3.52: A comparison of the modelled atmosphere to real sky dome measure-
ments by Kider et al. [2014]. (a) A tone-mapped up-facing fish-eye photo from the
Kider HDR dataset for 27. 05. 2013, 09:30. (b) A tone-mapped render obtained
with atmo sim for ground albedo 0, observer altitude 0 m, solar elevation 41.08◦

and visibility 59.4 km. (c) Relative error plot between the spectral data corre-
sponding to (a) and (b), limited to the spectral range of the Prague Sky Model.
(d) Same as (c) but includes the entire spectral range of the SWIR extension.
Note that the plots use the same colour scheme and scale as Kider et al. and are
therefore comparable with similar plots in their work.

Validation against libradtran

This section provides a validation of the results computed by atmo sim against
those obtained by libradtran, a scientific software package for radiative trans-
fer calculations within an atmosphere [Emde et al., 2016]. For the comparisons,
libradtran’s Monte Carlo radiative transfer solver MYSTIC [Mayer, 2009] is
used, which traces photons at given wavelengths through the atmosphere. MYS-
TIC is run individually for every single pixel at selected wavelengths 420 nm,
540 nm and 620 nm, which roughly corresponds to blue, green and red, respec-
tively. To get comparable outputs from atmo sim, spectral images with 10 nm
wide wavelength bands are rendered and corresponding single-wavelength data
are extracted using the tonemap tool from the ART toolchain. The comparison
images show radiances captured by a panoramic 180° × 180° camera with 90°
towards the zenith (top half) and 90° towards the ground (bottom half).

Atmosphere without aerosols The first validation was done for a simple
atmosphere without any aerosols (i.e., containing only molecules described in
Section 3.5.1), the result is shown in Figure 3.53. The validation was performed
with a diffuse ground albedo 0.2 for two different observer altitudes (0 km and
10 km) and solar elevations (5° and 45°). The chosen altitudes correspond to
viewing the sky from the ground (0 km) and from a commercial airplane (with
typical flight altitudes around 10 km). The elevation of 5° was chosen to validate
the O3 absorption, as it is most noticeable at low sun elevations. The differ-
ence images are computed by dividing the radiances simulated by atmo sim by
the radiances from MYSTIC, which shows which areas are brighter and darker,
respectively.

The average difference at solar elevation 45° is 1.0025 with an average signal
correlation of 0.99978. The error is uniformly distributed over the images with
no apparent patterns.
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At 5°, the average difference is 1.0002 but with a higher variance than at 45°.
The average signal correlation is 0.99960. Notice that atmo sim is darker at
higher wavelengths, which is most likely due to a slightly different O3 absorption
curve, as this does not happen when O3 is removed from the atmosphere.
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Figure 3.53: Atmospheres without any aerosols at 0 km and 10 km altitudes (top,
bottom) with solar elevations 5° and 45° (left, right). Notice that the radiances
simulated by atmo sim are comparable to libradtran without any noticeable
error patterns. With increasing wavelengths, the modelled atmosphere produces
slightly darker images, which only happens with an O3 layer and is most likely due
to a different absorption cross section. The error lines at horizons are discussed
in the text. Notation and scale: The top two rows of every comparison show
radiances with a colour scale in W · sr−1 · m−2 per wavelengths 420 nm, 540 nm
and 620 nm separately in the three columns. The difference images are acquired
by dividing atmo sim radiances by libradtran radiances per pixel. The colour
scale is normalised to show brighter and darker areas with an equivalent weight.
The median, average and maximum absolute errors are computed directly from
the per-pixel divided radiances. The signal correlation coefficients are computed
from the radiances flattened to a 1D array.
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Finally, notice that in some comparisons there is a 1 pixel horizontal stripe
of large differences between atmo sim and MYSTIC. The stripe is always located
at the planet edge, i.e., at the horizon for altitudes of 0 km, or slightly below the
horizon for 10 km. These artefacts are most likely caused by sub-pixel sampling
and jittering in atmo sim, when for a pixel on the planet edge, some of the photon
paths hit the planet and some do not. On the other hand, in the script that
evaluates MYSTIC, the radiance is always simulated in the middle of a pixel,
hence it is always either above or below the planet edge with no jittering and
randomness.

Atmosphere with aerosols The second validation was done for a complete
atmosphere including the aerosols, Figure 3.54 shows the result. As discussed in
Section 3.5.2, atmo sim uses analytical Henyey-Greenstein and Cornette-Shanks
phase functions instead of precisely sampled Mie phase functions provided by
libradtran. The fitted asymmetry parameter g for the WASO and SOOT leads
to very close matches to the sampled Mie lobes, while a more “blurry” asymmetry
parameter provided by OPAC is used for the INSO particles. The effect of this
simplification is that the circumsolar region has a considerably less peaky distri-
bution of energy right next to the solar disc. This, in turn, makes the resulting
function easier to fit, and atmo sim rendering converges faster. However, it is
worth noting that the more blurry asymmetry parameter is not per se unrealis-
tic – it just deviates from what the U.S. Standard Atmosphere datasets should
contain, in that the more blurry parameter corresponds to different particles be-
ing present, instead of the actual INSO ones. The remainder of the atmosphere
remains exactly as specified. Validations against MYSTIC were again performed
in the same way as in the previous case with no aerosols.

As expected, due to the INSO phase function simplification discussed in the
previous paragraph, the largest differences can be seen in the immediate circum-
solar region, which is especially noticeable at 0 km and 45°. The inner parts of
the solar glow are darker in atmo sim, and the outer parts are lighter. The real
INSO particles are very strongly forward-scattering, but it was better to avoid
using such an extreme phase function in atmo sim. So the more blurry estimate
provided by OPAC – possibly because they also had, at some point, a reason to
avoid the very narrow real INSO lobes – came in very handy for this purpose.

To verify that all the observable differences are indeed due to the INSO
scattering implementation in atmo sim, another experiment was run with only
INSO aerosols present, where libradtran was forced to use the same Henyey-
Greenstein phase function with the same asymmetry parameter as in atmo sim.
As can be seen in Figure 3.55, this completely eliminates all the noticeable dif-
ferences and results in a perfect match across all the wavelengths. Hence, the
noticeable differences between atmo sim and libradtran are caused by using
aerosol phase functions that are only approximated by the Henyey-Greenstein
formula, and by using the blurry asymmetry parameter for the INSO particles.

Conclusion To summarize, it can be seen that the radiances simulated by
atmo sim which was used for generating the reference datasets are good matches
to results obtained with a well-established research-grade atmospheric library
libradtran and its Monte Carlo radiative transfer solver MYSTIC. Atmospheres
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without any aerosols yield almost exactly the same results, which means that
Rayleigh scattering and absorption are simulated correctly. The addition of
aerosols yields differences caused by the analytical Henyey-Greenstein phase func-
tion approximation, which is especially noticeable around the sun as its light
spreads more. However, even then, the outer solar glow is only less than 2 times
as bright than in libradtran, which can be considered to be a perfectly valid
approximation.
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Figure 3.54: Similar to Figure 3.53, but this time with an atmosphere containing
also the INSO, WASO and SOOT aerosols from OPAC (corresponding to visibility
59.4 km, i.e., using the continental average particle concentration). Notice that
the colour scales are the same as in Figure 3.55 and 3.53, which allows one to
see that errors appeared because of differently modelled aerosol phase functions,
which we discuss in the text. The errors are more pronounced around the solar
disk due to the used INSO phase function being less forward scattering. Notation
and scale: See caption of Figure 3.53, where the image notations and scales are
explained.
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libradtran with its tabulated phase function libradtran with the HG phase function

Figure 3.55: A comparison of the Henyey-Greenstein (HG) phase function used
in atmo sim against a tabulated phase function used in libradtran, at 0 km
altitude with 45° solar elevation. The atmosphere contains only molecules and
INSO aerosols. Left: atmo sim uses HG phase function (see text for details),
libradtran uses their tabulated phase function. Notice that the scattering in
atmo sim is less forward, so the sun energy is blurred in a wider area, which
makes the inner part darker and outer part brighter. Right: Both use the same
HG phase function, the difference disappears. Notation and scale: See caption of
Figure 3.53, where the image notations and scales are explained.

Empirical validation

As discussed in Section 3.5.2, the modelled atmosphere uses scatterer particle
concentration profiles provided by OPAC which exhibit a distinct lower haze
layer. Here, anecdotal real-life imagery of what a similar configuration looks from
higher observer altitudes is provided. Figure 3.56 shows photographs taken on a
fairly typical clear autumn day in Central Europe during high pressure weather
and comparable render produced by atmo sim. In this region, the presence of a
marked, hazy inversion layer that can be seen in these images is typical for not
just autumn days, but generally high pressure scenarios where the atmospheric
layering is so stable that no cloud-forming convection can start. On such days,
clear, cloud-free skies can be expected from dawn to dusk: in other words, exactly
the conditions that a clear sky model attempts to represent. The only change
during such a day is usually a gradual rise of the inversion layer during the course
of the day, and a more or less pronounced increase in turbidity: both are due
to residual convection within the inversion layer. Even though the atmospheric
conditions captured in the photos are different then those modelled by the Prague
Sky Model, the simulated result still provides a good match.
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(a) (b) (c)

(d) (e) (f)

Figure 3.56: A low inversion layer on a clear autumn day in Central Europe.
Photos (a), (b), (c) were taken seconds apart from on board of a glider that was
flying at about 1000 m above ground level, photo (d) was taken approximately
30 minutes after the in-flight images (all photos courtesy of Alexander Wilkie).
The in-flight images show a distinct inversion layer transition and exceptionally
clear viewing conditions above it: the mountaintops in image (c) are between
100 km and 150 km away. Note that the haze layer with its tops at around 500 m
above ground level was homogeneous across the entire region: the strong forward
scattering coming from the solar direction, and the comparative transparency
in the antisolar direction, moved with the aircraft viewpoint - the haze was not
actually denser in the direction of the sun. On the other hand, no atmospheric
layering is visible from the ground in image (d): the inversion layer does not
produce any noticeable brighter stripe along the horizon. However, noticeable
ground haze for horizontal viewing directions can be observed: the trees and
buildings at the edge of the airfield are less than 2 km away. Images (e), (f)
show simulations in atmo sim for 2 m and 2 km observer altitudes in the Columns
scene, respectively. Note that the photos capture an example of a fairly sharp
inversion layer transition at a lower altitude than the OPAC atmospheres used in
the model. Therefore, images (e), (f) do not attempt to precisely match photos
(d), (c), respectively, they rather demonstrate similar features.

3.12.3 Fitting in-scattered radiance
This section describes the entire process of fitting the radiance component of
the Prague Sky Model in detail. The content of this section, both text and
figures, is taken with minimum modifications from the paper of Wilkie et al.
[2021] (Section 1 in the Supplemental document), majority of it also appeared
in the doctoral thesis by Hošek [2019] (on pages 58 – 68). This section does not
contain any contribution of the author, it is not necessary for a general overview
of the Prague Sky Model, but it is crucial for understanding the fitting process
and its reproducibility.
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Choice of mathematical approach

We first extensively experimented with techniques similar to that of the Perez
et al. [1993] model and its descendants. The approach of these models is to
assume the sky dome radiance patterns to consist of separable features – e.g., a
gradient between the zenith and the horizon plus a radial bright patch around
the Sun. In these models, radiance is calculated as a function of ray direction
(given as a pair of angles, a “solar” and a “zenith” angle) and a small number
of configuration factors: numbers that control the strength of each individual
feature, and which are found by means of non-linear optimisation. This approach
works as long as the number of features is kept low: but that obviously limits the
range of radiance patterns the model can reliably reproduce.

For our purposes, we need an expression that works for a full sphere instead
of just the upper hemisphere: in particular, it has to be able to handle the
discontinuity which is present at the horizon in most radiance configurations. It
also has to have terms that approximate the features of the sky well, including
two phenomena specific to twilight skies: post sunset, the Earth casts a shadow
onto the atmosphere, which produces a wedge of darker colour at the horizon.
Above it, there is a second wedge of brighter pinkish back-scattered light (called
“Belt of Venus” or “anti-twilight arch”): Figure 3.18 shows how these features
develop as the sun goes beneath the horizon.

Theoretically, a suitable mix of features could be devised by educated guess
and trial and error. However, even if we managed to find such features, the fitting
process becomes slower with each new parameter in a non-linear fashion, plus
more memory consuming and prone to getting stuck in local minima. Extensive
experimentation showed the old feature-based approach is simply not suitable for
radiance fitting on the full sphere any more: there are too many features in fully
spherical radiance patterns which cannot be cleanly separated. This even applies
to models which attempted to separate just the polarisation patterns: Kreuter
and Blumthaler [2013] also only managed to work with the upper hemisphere.

This is why we opted for an entirely new approach: we obtain the radiance
pattern of the sky as a sum of outer products of single variable functions. The
functions themselves are free-form, tabulated and were obtained by Canonical
Polyadic Decomposition (CPD) [Kolda and Bader, 2009], a process very similar
to SVD low rank approximation. This approach can be thought of as a specialised
compression scheme, however it is also essentially a decomposition of the radiance
pattern into an optimal orthogonal set of “features”.

The methods that we describe in the next sections all rely on tensor and matrix
decompositions. An alternative choice could have been to use neural networks,
similar to [Satilmis et al., 2016; Hold-Geoffroy et al., 2019; Zhang et al., 2019].
However, while learning approaches do have merits, reliability of reconstruction
is not one of them. Additionally, they tend to incur a higher runtime overhead
than our model.

Input parametrisation

It is desirable to choose a parametrisation in which the features are as axis-aligned
as possible, as that makes the input matrix easy to decompose into separable
matrices by CPD / SVD. For a given solar elevation η, the natural parametrisation
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of a sky dome model is the view direction, represented as a unit vector v. For
better separability we transform it into a set of angles (see Figure 3.57).

Figure 3.57: The angles used in the model.

The first one is the solar angle γ. The solar angle is the angle formed by the
view direction and the direction towards the center of the solar disc. This makes
the gradient of the solar glow roughly parallel to the first axis – roughly because
the solar glow does not actually form a perfect circle around the sun, but tends
to extend further to the sides and downward.

We also need the model to describe Earth’s shadow. So when fitting images
of post-sunset skies, we chose the shadow angle σ to be second input angle / axis.
This angle is formed by the view ray and a shadow point – an imaginary point
lying at 90◦ away from the center of the solar disc in the direction of the zenith.
The shadow line is perpendicular to the solar angle gradient and parallel to the
shadow angle gradient, which makes it aligned with both axes.

For regular daytime skies, no shadow is visible, and using the shadow angle
as an input parameter provides no benefit since its axis is not parallel or per-
pendicular to any feature visible on the sky. We instead use the zenith angle θ
as the second parameter for these configurations. This is the angle formed by
the view direction and the direction towards the zenith. This makes the horizon
perpendicular to the axis defined by the horizon angle.

The model switches between these two modes at solar elevation 0◦, when the
zenith point aligns exactly with the shadow point, which makes the transition
seamless. To present this approach in a unified manner, we introduce an angle α,
which we for lack of a better name call simply the zenith/shadow angle, which is
equivalent to the zenith angle for solar elevations greater than 0◦ and equivalent
to the shadow angle otherwise. Note that this makes the horizon not aligned
with any axis in post-sunset skies, which makes fitting of the horizon tricky. The
image emphasis process described later was developed to make horizon fitting
more accurate in these conditions.

High altitude angle correction

Our model consists of a finite number of fitted sky dome configurations, and
intermediate states have to be interpolated in a way that generates plausible sky
dome appearance. It is a key feature of the CPD / SVD separation that this is
actually possible - at least for some sky dome features.

A case that works is the circumsolar glow: there, taking the fitted data for
a specific solar elevation (e.g., η = 20◦), and using it to generate a different

135



elevation (e.g., η = 30◦) yields usable results: the v → (γ, α) re-projection
process warps the image correctly, and the solar glow gets moved to the right
place.

This unfortunately does not work for the horizon, as that changes in a manner
that is too complex for simple re-projection to handle. It only appears as a line at
θ = 90◦ for altitude = 0: and as can be seen in Figure 3.16, it moves downwards
for higher observer altitudes, and turns into a curve. If we had data for just two
observer altitudes, e.g., 100 m, and 100 km, interpolation between these states
would contain two blended horizons, instead of a single one.

We fix this issue via the way the θ and σ angles (and thereby also α) are
calculated. If the view direction v is tangent to the Earth’s surface, its θ will
always be 90◦, regardless of altitude.

The un-corrected way of calculating the angles is as follows: the directions
towards the solar, zenith and shadow points are given as unit vectors s, z and
u. Assuming that the z-axis points upwards, z = (0, 0, 1), the angles can be
calculated as follows:

γ = cos−1(v · s)
θ = cos−1(v · z)
σ = cos−1(v · u)

(3.13)

With an observer altitude above ground, the tangent from the camera origin
towards the horizon is not perpendicular to the zenith direction z. To correct
that, we project the point of tangency pt onto the line from Earth’s center to the
observer to obtain the virtual ray origin, po (see Figure 3.58). We denote v′ the
direction from po to pt. The direction v′ can be expressed in terms of the original
direction v, camera altitude alt and Earth radius r as:

v′ = normalize(v − corr) (3.14)

with the correction vector corr being defined as:

corr = (0, 0,
c

t
)

c = r + alt − r2

r + alt

t =
√︂

(r + alt)2 − r2

(3.15)

This correction to the view direction is applied in the model for the purpose of
calculating the zenith and shadow angles.

The core function

The function which evaluates the in-scattered radiance is a function of two pa-
rameters γ, α. The function is internally represented as an outer product of two
single parameter functions:

F(γ, α) =
n∑︂

i=1
F(i)

solar(γ) ⊗ F(i)
zenith/shadow(α) (3.16)

The functions Fsolar and Fzenith/shadow are tabulated and provided as part of the
model. The tabulated functions are obtained by re-projecting the fish-eye image
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into the (γ, α) space, essentially producing a 2D look-up table of F(γ, α), and
then decomposing the look-up table into outer vector products using CPD. The
process is described in detail later in this section.

t

pt

c
alt

p0r

center of
the Earth

camera position

Figure 3.58: The horizon correction geometry. r - Earth radius, alt - camera
altitude, c - correction length, t - tangent length, pt - point of tangency, po -
virtual ray origin.

Improved horizon fitting with image emphasis

Recall that in order to make the decomposition perform properly, the angle α was
defined so that the horizon is a horizontal line in the re-projected image. This
only holds for daytime solar elevations: post sunset the horizon is not axis-aligned
any more, so the composition performs poorly in those cases. To deal with this,
we remove the sharp horizon from the images prior to transforming them into
(γ, α) space, and only then perform the fitting which then works satisfactorily
on a blurred horizon that is not axis aligned. This process, which we call pre-
emphasis, is reverted when using the model: the de-emphasis we perform then
returns the sharp horizon transition to its place. We can accurately do this, as
the location of the horizon is analytically known.

The pre-emphasis process works as follows: We denote Iorig the original input
image and Iorig(x) its value at pixel position x. The input image Iorig is cut
into two parts very close to the horizon line (we chose a value of 30′ above the
horizon). The top/above horizon part is left intact. The bottom / below horizon
part is deleted and infilled using the standard regionfill algorithm of Matlab
version 2019b, which smoothly interpolates inward. This essentially removes the
sharp horizon transition and leaves the bottom part of the image a completely
featureless smooth gradient with brightness equivalent to that of the sky dome
area just above the horizon. We denote this newly infilled image as Iinfill. We also
note a single value κ denoting the ratio of the average brightness of the original
below-horizon area relative to the brightness of the newly infilled area.

By linearly interpolating between Iorig and Iinfill, we create a guide image
Iguide. The control value for the interpolation is a function of κ and the pixel
position. When κ is high, meaning that the below-horizon part of the image was
already bright enough in the original, we mostly leave the original intact, except
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for the very bottom part near the nadir, which we always replace by the infill,
because it’s generally always noisy. Formally:

Iguide(x) = lerp (Iorig(x), Iinfill(x), Vc(x))

Vc(x) = sat
(︄

sat
(︄

θ(x) − π/2
π/2

)︄
+ sat

(︃
κ − 0.5
−0.2

)︃)︄ (3.17)

where:

• Vc is the control value of the linear interpolation.

• sat is the saturate function that clamps the value to [0, 1].

• θ(x) is the zenith angle value at pixel location x.

The control value Vc consists of two terms: the first one makes sure that the
original image is always gradually replaced by the infilled image, starting at
θ = 90◦ (at the horizon) and progressing towards θ = 180◦ (the nadir). The
second term makes sure that if the bottom part of the original image was too
dark, it is replaced completely, the effect being gradually applied depending on
κ, starting at κ = 0.5 and finishing at full strength at κ = 0.3.

Having the guide image ready, we calculate a pixel-wise ratio between the
guide and the original image:

Iratio(x) = Iorig(x)
Iguide(x) (3.18)

The ratio image is then used to define the de-emphasis, a function of zenith
angle θ:

E(z) = mean
x; θ(x)=z

Iratio(x) (3.19)

The function E(z) is tabulated and becomes part of the model data. Next, the
pre-emphasized image is calculated by applying the inverse of the de-emphasis
function:

Ipreemph(x) = Iorig(x)
E(θ(x)) (3.20)

This pre-emphasized image is then used as an input for CPD.

The fitting process

We now have all the components required to perform the fitting. To recapitulate
the whole fitting process:

1. We start with Iorig. This is the reference rendering of the sky dome produced
by the path tracer.

2. Pre-emphasis is performed on Iorig, yielding a pre-emphasized image Ipreemph

and a de-emphasis function E.

3. Ipreemph is re-projected into (γ, α) space, essentially producing a 2D look-up
table of F(γ, α).
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4. The re-projected image is partially infilled and filtered. More on that later
in this section.

5. A CPD decomposition is performed, yielding pairs of one-dimensional tab-
ulated functions F(i)

solar and F(i)
zenith/shadow.

The final products of the fitting are:

• The de-emphasis function E

• The tabulated functions F(i)
solar and F(i)

zenith/shadow.

These constitute all the data required to render the sky dome using the analytical
model.

We have chosen the dimensions of the (γ, α) re-projected image to be 361×361
(i.e., 0.5◦/pixel since the valid values of γ and α are 0◦ - 180◦). This image is
computed by transforming each pair of γ, α values into the reference rendering
followed by bilinear filtering to avoid artefacts. This re-projected image is then
decomposed into an outer vector product using the CPD low rank approximation
algorithm. Note that in theory, we could extend this process by unwrapping the
input into a three or even higher dimensional look-up table, e.g., parametrised
by (γ, θ, σ). CPD is a tensor decomposition algorithm and would deal with the
resulting tensor natively. The problem of this approach is that the valid combi-
nations of angles form a 2D manifold inside this 3D space – in other words the
tensor is mostly undefined, which makes the decomposition unstable.

Even in 2D, the issue of undefined values requires us to infill parts the re-
projected image. Not all combinations of angles are valid, e.g., in a sky where the
sun is at the horizon there is no direction that would correspond to both γ and α
being 0. The valid combinations form a parallelogram, see Figure 3.59. The CPD
algorithm deals natively with undefined values, however there is no guarantee
what the undefined part is going to look like in the resulting approximation.
When discussing the high altitude angle correction, we claimed that data from
one sky dome configuration can be re-used, e.g., for other solar elevations if it is
suitably re-projected. This is true, but a potential issue arises due to the changing
shape of the parallelogram of valid combinations: upon re-projection, we might
attempt to read from an undefined part of the (γ, α) image.

To fix this, the re-projected image has to be partially infilled. The valid
area of the tensor is dilated, and the missing data is again filled using Matlab’s
regionfill algorithm. The amount of dilation is the minimal amount required
to cover the intermediate values between the provided fittings (see Table 3.2).

After infilling, the tensor also has to be filtered, as CPD decomposition not
only retains noise present in the input, but moves it to (γ, α) space: so instead
of grain-like Monte Carlo noise, there are ringing artefacts. To be usable, the
final fitting has to be completely devoid of any such artefacts: even the slightest
unevenness is very apparent in renderings, especially as they are usually dissim-
ilar across spectral channels, and show up as rainbow effects. So the reference
renderings are filtered (using the wdenoise wavelet noise reduction algorithm
found in Matlab version 2019b), and after the image is re-projected to a tensor
and infilled, it is again filtered, this time using a gaussian blur with the standard
deviation 1 both in the solar and zenith/shadow axis (recall that the resolution
of the tensor is 0.5◦ per pixel).
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Figure 3.59: Left: A single spectral channel of the input fish-eye image in false
colour. Solar elevation 8◦, observer altitude 15 m, so the image is almost com-
pletely zero below the horizon line. Middle: The same image transformed to
(γ, α) space: the valid combinations of γ and α form a parallelogram. The below-
horizon part of the image is amplified by the pre-emphasis process. Right: The
(γ, α) remapping of a different sky dome, solar elevation 55◦: this illustrates the
changing shape of the parallelogram of valid values.

Regarding the decomposition itself, we have chosen to use decomposition rank
n = 9, i.e. the decomposition produces nine sets of vectors. In all images we have
tested, n = 9 produces a decomposition that explains > 99.5 % of the variance
in the tensor.

The tensor decomposition produces vectors of length 361 (0.5◦ increments).
These do not have to be distributed in their entirety in the final model: they es-
sentially represent tabulated functions, and the samples do not have to be placed
uniformly. We have chosen to sample Fsolar densely at lower angles (areas di-
rectly surrounding the sun) and sparsely around the anti-solar point, giving us
satisfactory results at 275 samples. Similarly, Fzenith/shadow is sampled sparsely
around the zenith and nadir and densely around the horizon, giving us 205 sam-
ples. The same approach has been used for the de-emphasis function, which is
sampled more densely around the horizon, giving us 118 samples.

The evaluation process

The complete radiance function is evaluated as follows: for a given viewing di-
rection the angles γ, α and θ are computed first. Then the 9 pairs of tabulated
functions F(i)

solar(γ), F(i)
zenith/shadow(α) are looked up and combined according to

(3.16). Finally, the result is multiplied by looked-up value of the de-emphasis
function E(θ).
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3.12.4 Error plots
This section provides box plots of the normalised mean absolute errors with re-
spect to every parameter of the Prague Sky Model. In these plots, the red line
is the median, the blue box goes from the first to the third quartile, and the
whiskers are the minimum and maximum values. The labelled values represent
parameter values for which reference images were computed in the brute force
rendered dataset, and the errors shown there are between the fit and those im-
ages. In between the labelled values, the interpolation error had to be estimated,
as intermediate reference images were generally not available. The estimate is the
difference between the two neighbouring fits: while this is a loose bound on the
true interpolation error, it can best be interpreted as ”how wrong could one get
if one did not interpolate at all”, and not as the actual interpolation error. If this
difference-based estimate was low, it would mean there is no point in using the
non-trivial image interpolation scheme proposed in this chapter, because normal
pixel-wise interpolation would already work well. This, in turn, means that the
sometimes quite large interpolation error seen there is not automatically a bad
thing: if it were too low, the proposed interpolation scheme would be pointless.
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Figure 3.60: A box plot of the normalised mean absolute errors for ground albedos
covered by the Prague Sky Model.
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Figure 3.61: A box plot of the normalised mean absolute errors for observer
altitudes covered by the Prague Sky Model.
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Figure 3.62: A box plot of the normalised mean absolute errors for solar elevations
covered by the Prague Sky Model. Note how the error on the labelled values
increases with decreasing solar elevation due to the higher noise levels in these
images.
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Figure 3.63: A box plot of the normalised mean absolute errors for visibilities
covered by the Prague Sky Model.
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Figure 3.64: A box plot of the normalised mean absolute errors for wavelengths
covered by the Prague Sky Model.
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3.12.5 Wavelength compression

Error Wavelength channels to omit

2.5% 49, 50

5.0% 48, 50, 52

7.5% 15, 34, 35, 48, 49, 50, 51, 53

10.0% 15, 19, 34, 35, 48, 49, 50, 51, 53

12.5% 15, 19, 33, 35, 37, 47, 49, 50, 51, 53

15.0% 14, 16, 19, 33, 35, 37, 47, 48, 49, 50, 52, 53

17.5% 14, 16, 19, 21, 33, 34, 35, 36, 47, 48, 49, 50, 51, 53

20.0% 14, 16, 19, 21, 24, 25, 33, 34, 35, 36, 47, 48, 49, 50, 51, 53

22.5% 14, 15, 19, 20, 24, 25, 31, 33, 34, 35, 36, 47, 48, 49, 50, 51, 53, 54

25.0% 14, 15, 18, 20, 24, 25, 31, 33, 34, 35, 36, 38, 47, 48, 49, 50, 51, 52, 54

27.5% 14, 15, 18, 20, 24, 25, 31, 33, 34, 35, 36, 38, 47, 48, 49, 50, 51, 52, 54

30.0% 13, 14, 15, 18, 20, 24, 25, 31, 33, 34, 35, 36, 38, 47, 48, 49, 50, 51, 52, 54

Table 3.3: A list of wavelength channels that can be omitted for various error
thresholds from the SWIR extension in order to decrease the fitted dataset size.
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Conclusion
Given the importance of Monte Carlo (MC) integration not only to image syn-
thesis but also to many other scientific fields, a vast body of research exists that
focuses on mitigating effects of its inherent problem – variance. Out of the many
possible approaches to variance reduction, this thesis presented three, each sig-
nificantly different from the others to demonstrate variability of this problematic.
The result are three advanced methods increasing efficiency of MC integration in
rendering.

First, we used the standard approach of importance sampling, i.e., finding a
sampling technique as close to being proportional to the integrand as possible.
Motivated by practical needs of a production path tracer, we focused on direct
illumination calculation, its speed and robustness. We proposed an adaptive so-
lution for direct illumination sampling based on a novel statistical model of direct
illumination and learning its parameters from previous samples using Bayesian
regression. The method is unbiased, scalable, virtually free of any preprocessing,
and robust even in early stages of calculation.

In the second approach, we addressed the situation when finding a single
sampling technique that would be a good match for the entire integrand is infea-
sible and a combination of multiple techniques has to be used. We investigated
the commonly used multiple importance sampling (MIS) framework and found a
room for improvement in its weighting functions. We derived optimal weighting
functions that provably minimize the variance of MIS estimators and perform
even better than predicted by existing variance bounds. The new weights also
open the way for novel design considerations for selecting appropriate sampling
techniques in integration problems and we proposed several examples of those.

Finally, the third approach considered types of light transport that are difficult
to simulate using any sampling techniques but can be separated from the rest
and pre-computed. We focused on rendering of the sky as an ideal example
and reviewed the Prague Sky Model, a feature-rich clear sky model created by
fitting a large set of pre-computed reference images of the sky. It advances the
state of the art of sky models in almost every aspect and allows any renderer to
achieve realistic sky appearance without any atmospheric simulation overhead.
We described our contribution to development of this method and presented
our own extension covering the full spectral range of terrestrial solar irradiance,
enabling usage of such pre-computed models for purposes other than renderings
intended to mimic the perception of human observers, such as thermal analysis,
and photovoltaic plant yield simulations.

We believe that the three presented methods significantly improve rendering
efficiency and quality, and contribute valuable insights to the field of MC inte-
gration in image synthesis. We would also like to emphasize that the methods
are not purely theoretical. In fact, the first and third method were both inte-
grated in the Corona renderer and have been successfully used there to this day
demonstrating also their practical utility.
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Bouatouch, and Jaroslav Křivánek. A spatial target function for metropolis
photon tracing. ACM Transactions on Graphics, 36(4), 2016.

Christian A. Gueymard. The SMARTS spectral irradiance model after 25 years:
New developments and validation of reference spectra. Solar Energy, 187:233–
253, 2019.

David Guimera, Diego Gutierrez, and Adrián Jarabo. A Physically-Based Spatio-
Temporal Sky Model. In Spanish Computer Graphics Conference, 2018.

Jörg Haber, Marcus Magnor, and Hans-Peter Seidel. Physically-based simulation
of twilight phenomena. ACM Transactions on Graphics, 24:1353–1373, 2005.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A path space
extension for robust light transport simulation. ACM Transactions on Graph-
ics, 31(6):191:1–191:10, 2012.

148



Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. Multi-
plexed metropolis light transport. ACM Transactions on Graphics, 33(4):
100:1–100:10, 2014.

Johannes Hanika, Andrea Weidlich, and Marc Droske. Once-more scattered next
event estimation for volume rendering. Computer Graphics Forum, 41(4), 2022.

Miles Hansard. Fast synthesis of atmospheric image effects. In European Confer-
ence on Visual Media Production, 2019.
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Lukáš Hošek and Alexander Wilkie. An analytic model for full spectral sky-dome
radiance. ACM Transactions on Graphics, 31(4):95, 2012.
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List of abbreviations
BRDF bidirectional reflectance distribution function
CPD canonical polyadic decomposition
CV control variate
DI direct illumination
GI global illumination
HG Henyey-Greenstein
INSO water-insoluble particles
MAP maximum a posteriori
MC Monte Carlo
MIS multiple importance sampling
ML maximum likelihood
MSE mean squared error
OPAC optical properties of aerosols and clouds (name of a database)
PDF probability density function
RMSE root mean squared error
SOOT black carbon particles
SNR signal-to-noise ratio
SVD singular value decomposition
SWIR short-wavelength infrared
WASO water-soluble particles
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