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List of physical quantities
Used physical quantities and their units using the international system of units:

• [kg] . . . mass,

• [m] . . . length,

• [s] . . . time,

• [−] . . . dimensionless.

However, physical quantities concerning porous media are often expressed in
[cm/day] units, which we will be using later.

active porous volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ϑ [-]
effective hydraulic conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ka [m s−1]
exchange term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Γ [s−1]
fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ρ [kg m−3]
fracture weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .wf [−]
geodetic head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . z [m]
hydraulic head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ψ [m]
inverse of air entry value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α [m−1]
matrix weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .wm [−]
maximum water content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .θs [−]
pore size distribution parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m,n [−]
pressure head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ψ [m]
residual water content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .θr [−]
saturated hydraulic conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ks [m s−1]
sink term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S [s−1]
specific storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ss [m−1]
transfer coeficient for water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .αw [m−1 s−1]
unsaturated hydraulic conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K [m s−1]
volumetrix flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .q [m s−1]
volumetric water content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ [−]
water retention capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C [m−1]
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Introduction
Mathematical modeling of flow in porous media is an important field in hydro-
geology, mining industry or simulations of diffusion of toxic substances for envi-
ronmental protection. One can imagine a water soaking through a dam, which is
composed of different materials, such as clay or gravel. Although porous media
often show a variety of heterogeneiteis such as cracks or fissures, we will consider
a porous medium as a continuum with given physical properties. This process
can be described by the Richards equation (see Chapter 1)

∂ϑ(Ψ − z)
∂t

− ∇ · (K(Ψ − z)∇Ψ) + S

ρwater
= 0,

where the unknown scalar function Ψ is called the hydraulic head. Moreover,
function K is the hydraulic conductivity, ϑ is the active porous volume, z is the
geodetic head and S is the sink term.

However, treating porous media as homogeneous does not often correspond
to the reality, especially if the porous medium contains different materials. Thus,
we will assume that porous medium can be described by two different porous
media, see Figure 1.

Figure 1: Example of a porous medium at the microscopic level.

In this work, we deal with such a flow in porous media that can be described
by the dual permeability model [1]. It means the porous medium can be separated
into two distinct pore systems, one associated with a macropore network (fracture
pore system f ) and the other with a less permeable pore system such as rock
matrix blocks (matrix pore system m). As the description above indicates, this
problem can be described by a pair of coupled equations

∂ϑf (Ψf − z)
∂t

− ∇ · (Kf (Ψf − z)∇Ψf ) = −Sf − Γw
wf
,

∂ϑm(Ψm − z)
∂t

− ∇ · (Km(Ψm − z)∇Ψm) = −Sm + Γw
1 − wf

.

(1)

The solution of (1) is a pair of functions (Ψf ,Ψm) = (Ψf (x, t),Ψm(x, t))
representing the hydraulic head Ψf of the fracture pore system and the hydraulic
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head Ψm of the matrix pore system. The other functions in (1) will be described
later.

Richards equation (1) is a degenerate parabolic equation, because the function
ϑ and the matrix K are nonlinear and can degenerate, i.e., for some porous media
it holds

lim
ψ→−∞

ϑ(ψ) = 0, lim
ψ→0

ϑ′(ψ) = ∞, lim
ψ→−∞

||K(ψ)|| = 0,

where ψ = Ψ − z.
Following [2], we discretize problem (1) by the space-time discontinuous Galer-

kin method, which provides high accuracy with respect to space and time and
is suitable for the mesh adaptation. We present the governing equation and de-
rive the Richards equation with the dual-permeability model. We also formulate
the dual-permeability model in a weak sense and subsequently we present the
discretization with respect to the space and to the time. This leads to the sys-
tem of nonlinear algebraic equations for each time level, therefore a linearization
process is required. To complete our solution strategy, we will briefly mention
stopping criteria for solving the linearized systems and mesh adaptation. All the
computations are performed using the ADGFEM [3] framework. Finally, seve-
ral numerical experiments are presented. First, we verify the method on a thin
rectangular domain. Afterwards, we perform a single ring experiment, which is
commonly used for estimating hydraulic properties of soil. This experiment will
be also performed with the mesh adaptation.
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1. Governing equation
In this chapter, we derive the dual-permeability Richards equation. We will
assume that the domain Ω is a porous medium with flowing water, consisting
of soil aggregates or rocks and of fracture pore network. Sections 1.1 - 1.4 will
cover the derivation of the Richards equation, and in Section 1.5 we introduce
the dual-permeability model.

1.1 Mass conservation law
We phenomenologically postulate the law of conservation of mass. Let t ∈ (0, T )
and Ω ⊂ R2 be an open domain. Consider a volume V ⊂ Ω arbitrary but fixed
in time t. We define a mass of fluid in volume V as q and its density as ρ.
Further, we define a volumetrix flux q, which is a vector field describing the way
the quantity q flows and represents the rate of volume flow through a unit area.

The total mass q of a fluid in V is defined by the integral

q = q(t) =
∫︂
V
ρ(x, t) dV,

and it can change in time if fluid flows through the surface (inside or outside).
This rate that q is flowing can be expressed by the volumetrix flux in integral
form ∫︂

∂V
ρfluid q(x, t) · n(x, t) dS,

where n is outward unit normal.
Because of properties of porous medium, we will also consider a sink term

S representing the sink (typically plant root water extraction) of q as it is also
contributing to the total quantity of fluid in V . We can express the total mass
contributed by the sink term S as∫︂

V
S(x, t) dV.

Finally, the integral form of the law of conservation of mass reads

∂

∂t

∫︂
V
ρ(x, t) dV +

∫︂
∂V
ρfluid q · n dS +

∫︂
V
S dV = 0.

Suppose q is continuously differentiable on a neighborhood of V . Then using the
divergence theorem and the fact that V is independent of t we get∫︂

V

∂ρ

∂t
+ ∇ · (ρfluid q) + S dV = 0 ∀V ⊂ Ω

resulting in continuity equation

∂ρ

∂t
+ ∇ · (ρfluid q) + S = 0 in Ω × (0, T ). (1.1)
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1.2 Volumetric water content
We will consider a volumetric water content θ. At the point x ∈ Ω and in
time t ∈ (0, T ) the function θ(x, t) represents a relative volume of fluid in an
infinitesimally small porous domain. Hence θ is defined as

θ = Vfluid
Vtotal

,

where Vfluid is the infinitesimal volume of water and Vtotal = Vfluid +Vair +Vsoil is
the sum of infinitesimal volumes of fluid, air and soil. Thus, we can express rhe
density ρ as

ρ(x, t) = ρwater θ(x, t).

Considering a compressible porous medium, then the relative volume of fluid
contributes to the following relation:

ϑ(x, t) := θ(x, t) + Ss
θs

∫︂ ψ

−∞
θ(s) ds, (1.2)

where we define the active porous volume ϑ(ψ) and Ss > 0 is the storativity.
Then for the compressible medium, we correct the density ρ as

ρ(x, t) = ρwater ϑ(x, t). (1.3)

We can deduce that volumetric water content θ depends on the pressure head
ψ as ψ(x, t) corresponds to the height of a liquid column at point x. Thus, we
can write θ = θ(ψ). This relation is represented by the water retention curve,
which is a continuous function satisfying

lim
ψ→−∞

θ(ψ) = θr and θ(ψ) = θs for ψ ≥ 0,

where θr is the residual water content (limiting water content for inducing un-
saturated flow) and θs is the saturated water content (state of maximal water
saturation).

Further, we will use the proposed van Genuchten model [4] for the water
retention curve θ(ψ):

θ(ψ) =
⎧⎨⎩θr + θs−θr

(1+(−αψ)n)m for ψ ≤ 0,
θs for ψ ≥ 0,

(1.4)

where m and n are the measure of the pore-size distribution and α is related to
the inverse of the air entry suction.

1.3 Darcy-Buckingham’s law
Darcy-Buckingham’s law describes the macroscopic flow of a fluid through an un-
saturated porous medium and it represents the relations between the volumetric
flux q and the hydraulic head Ψ. It states [5]

q = −K(θ) ∇Ψ,
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where K(θ) is the unsaturated hydraulic conductivity.
The hydraulic head Ψ consists of the pressure head ψ and the geodetic head

z. The geodetic head at a point x = (x, z) has the value z. Then

Ψ(x, t) = ψ(x, t) + z.

The hydraulic conductivity K is defined as

K(ψ) = Kr(ψ)Ks,

where Ks is the saturated hydraulic conductivity and Kr is the relative hydraulic
conductivity, which is a reduction of the saturated hydraulic conductivity, so
Kr ∈ (0, 1]. If the porous medium is isotropic, we can write Ks as

Ks = KsI,

where I is the identity matrix.
Since there is a relation for θ(ψ), we can also consider a relation for the

function Kr(ψ). This constitutive relation is expressed by the Mualem function
[6]. Combined with the van Genuchten function for the retention curve (1.4) the
formula reads

Kr(ψ) =
⎧⎨⎩

(1−(−αψ)nm(1+(−αψ)n)−m)2

(1+(−αψ)n)m/2 for ψ ≤ 0,
1 for ψ ≥ 0,

(1.5)

where parameters α,m and n were already explained in (1.4).
Thus, in terms of Ψ, Darcy-Buckingham’s law reads

q = −K(Ψ − z)∇Ψ. (1.6)

1.4 Richards equation
Moreover, we introduce the derivative of the water retention curve, which is called
the water retention capacity C(ψ) and it is defined as

C(ψ) := dθ(ψ)
dψ =

⎧⎨⎩
(θs−θr)mnα(−αψ)n−1

(1+(−αψ)n)m+1 for ψ ≤ 0,
0 for ψ ≥ 0.

Remark 1. Note, that the integral ∫︂ ψ

−∞
θ(s) ds

in (1.2) is infinite in general. It is mathematically correct to write the integral as∫︂ ψ

−c
θ(s) ds,

where c is sufficiently large, but it is common to write it as c = ∞, because
Richards equation uses only the derivative of this term. We can write

d
dψ

∫︂ ψ

−∞
θ(s) ds = d

dψ

∫︂ ψ∗

−∞
θ(s) ds+ d

dψ

∫︂ ψ

ψ∗
θ(s) ds

= 0 + θ(ψ)
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Thus, we can write the derivative of the active porous volume ϑ

dϑ
dψ = C(ψ) + Ss

θs
θ(ψ).

In terms of Ψ, we denote

γ(Ψ − z) := C(Ψ − z) + Ss
θs
θ(Ψ − z), (1.7)

and because ∂Ψ
∂t

= ∂ψ
∂t

, we can write

∂ϑ

∂t
= dϑ

dψ
∂ψ

∂t
= γ(Ψ − z) ∂Ψ

∂t
. (1.8)

Returning to the derived continuity equation (1.1), substituting (1.3), (1.6)
and using (1.8) yields Richards equation

γ(Ψ − z) ∂Ψ
∂t

− ∇ · (K(Ψ − z)∇Ψ) + S

ρwater
= 0, (1.9)

where Ψ is the unknown function, the function γ and the matrix K are known
from the relations (1.7), (1.5) and S is the sink term.

1.5 Dual-permeability model
We follow continuous mixture theory, namely the assumption of the equipre-
sence of all components. In our dual-permeability approach, at each point, we
will assume that the medium can be separated into two distinct pore systems
(fracture and matrix domain), both of which are treated as homogeneous media
with separated hydraulic and solute transport properties. The dual-permeability
medium is considered to be a superposition of these two systems over the same
volume [1].

Moreover, we assume that these two separate porous media can be described
by the equations derived above. Hence, we denote equation (1.9) with the sub-
script f for the fracture medium and with the subscript m for the matrix medium.
However, these equations do not form the coupled system covering our medium,
since they are independent, even though there is also some exchange of the physi-
cal quantities between them.

Hence, we denote Γw as the term representing the exchange between the frac-
ture and the matrix pore system, which is weighted by the volume fraction of
the corresponding components. We consider wf as the fracture weight, i.e., the
volume of the fracture pore system relative to the total pore system, defined as

wf = volume of fracture medium
volume of whole medium .

Further, we assume that the volume additivity constraint (quasi-incompressibility)
holds, i.e., wm + wf = 1, where wm is the matrix weight, as the components
of porous media are solid and their volumes do not penetrate each other on the
microscale level.
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Using the mentioned first-order coupling term, we can write the fully coupled
dual-permeability model as

γf (Ψf − z) ∂Ψf

∂t
− ∇ · (Kf (Ψf − z)∇Ψf ) = − Sf

ρwater
− Γw
wf
,

γm(Ψm − z) ∂Ψm

∂t
− ∇ · (Km(Ψm − z)∇Ψm) = − Sm

ρwater
+ Γw
wm

.

(1.10)

For further derivations and computations, we will omit the sink terms Sf and
Sm, because they have negligible influence on our computations.

Exchange term Γw
The interactions between the fracture and the matrix pore systems are governed
by non-linear processes. Trying to capture these microscopic processes while
preserving a relatively simple formula was the objective of [7]. The coupling term
Γw can be modeled by the first-order exchange term. This assumes the water
transfer is proportional to the difference between the pressure heads of the two
pore systems and is defined as

Γw = αw(ψf − ψm) = αw(Ψm − Ψf )

for any depth z, where αw is the first-order transfer coefficient for the water.
The exchange term Γw is space and time dependent. If Γw > 0, the water

transfer is directed from the fracture system into the matrix system.
We will assume the first-order transfer coefficient for water has the form [7]

αw = β

a2γwKa,

where Ka is the effective hydraulic conductivity, β is the dimensionless parameter
depending on geometry of the aggregates, a represents the distance from the
center of a matrix block to the fracture boundary and γw is the dimensionless
empirical scaling factor.

The representation of the effective hydraulic conductivity was studied in [7].
There were compared several proposals how to set Ka and we will use

Ka = 1
2

(︃
Kf (ψf ) + Km(ψm)

)︃
.

This choice considers both pressure heads for the matrix and for the fracture, thus
it can be advantageous during simulation of the water transfer in both directions.

Finally, we can clearly see these two equations are linked, so we can write
(1.10) as

γf (Ψf − z) ∂Ψf

∂t
− ∇ · (Kf (Ψf − z)∇Ψf ) = − Sf

ρwater
− Γw(Ψf ,Ψm)

wf
,

γm(Ψm − z) ∂Ψm

∂t
− ∇ · (Km(Ψm − z)∇Ψm) = − Sm

ρwater
+ Γw(Ψf ,Ψm)

wm
.

(1.11)
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2. Problem formulation
In Section 2.1, we formulate the problem for the closed system of equations. The
concept of the weak formulation for the system (1.10) is presented in Section 2.2.

2.1 System of scalar nonlinear parabolic equa-
tions

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN ,
∂ΩD∩∂ΩN = ∅, corresponding to the Dirichlet and the Neumann boundary part.
Let us define time-space cylinder Q := (0, T ) × Ω and a part of its boundary as
Σ := (0, T ) × ∂Ω. Moreover, we split the boundary Σ = ΣD ∪ ΣN .

Let us formulate our problem: Find functions

Ψf : Q → R,
Ψm : Q → R,

sufficiently smooth, such that following holds:

γf (Ψf − z) ∂Ψf

∂t
− ∇ · (Kf (Ψf − z)∇Ψf ) = −Γw(Ψf ,Ψm)

wf
in Q,

γm(Ψm − z) ∂Ψm

∂t
− ∇ · (Km(Ψm − z)∇Ψm) = Γw(Ψf ,Ψm)

1 − wf
in Q,

(2.1)

with the Dirichlet boundary conditions

Ψf = ΨDf
on ΣD,

Ψm = ΨDm on ΣD,
(2.2)

with the Neumann boundary conditions

(Kf (Ψf − z)∇Ψf ) · n = ΨNf
on ΣN ,

(Km(Ψm − z)∇Ψm) · n = ΨNm on ΣN ,
(2.3)

and with the initial conditions

Ψf (x, t = 0) = Ψf0 in Ω,
Ψm(x, t = 0) = Ψm0 in Ω,

(2.4)

where ΨDf
,ΨDm ,ΨNm ,ΨNf

,Ψm0 ,Ψf0 are given functions and n is the outer unit
normal to ΣN . We remind that the exchange term Γw is dependent on Ψf and
Ψm, i.e., Γw = Γw(Ψf ,Ψm).

From now on, we will omit the arguments of Kf ,Km, γf , γm and Γw, if the
context is clear.
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2.2 Weak formulation
Let us now introduce the weak solution of the above problem. To do this, we
need to specify assumptions on the Dirichlet boundary conditions as follows:

ΨDf
= trace of some Ψ∗ ∈ C([0, T ];H1(Ω)) ∩ L∞(Q) on ΣD,

ΨDm = trace of some Ψ∗∗ ∈ C([0, T ];H1(Ω)) ∩ L∞(Q) on ΣD,
(2.5)

The Neumann boundary conditions as

ΨNf
∈ C([0, T ];L2(∂ΩN)),

ΨNm ∈ C([0, T ];L2(∂ΩN)),

and the initial conditions as

Ψm0 ∈ L2(Ω),
Ψf0 ∈ L2(Ω).

Finally, let us define spaces

VD := {v ∈ H1(Ω) : v|∂ΩD
= 0}, V := C([0, T ];VD).

Let φf , φm ∈ VD be arbitrary. We multiply equations (2.1) by φf , φm, respec-
tively, and integrate over Ω to get∫︂

Ω
γf
∂Ψf

∂t
φf dx −

∫︂
Ω

∇ · (Kf∇Ψf )φf dx =
∫︂

Ω
−Γw
wf

φf dx,∫︂
Ω
γm

∂Ψm

∂t
φm dx −

∫︂
Ω

∇ · (Km∇Ψm)φm dx =
∫︂

Ω

Γw
wm

φm dx.

Using the Green’s theorem and the conditions (2.3), we obtain∫︂
Ω

∇ · (Kf∇Ψf )φf dx =
∫︂

ΣN

ΨNf
φf dS −

∫︂
Ω
(Kf∇Ψf ) · ∇φf dx

and ∫︂
Ω

∇ · (Km∇Ψm)φm dx =
∫︂

ΣN

ΨNm φm dS −
∫︂

Ω
(Km∇Ψm) · ∇φm dx.

Let us define the following forms:

(u, v) =
∫︂

Ω
uv dx, u, v ∈ L2(Ω),

af (u, v) =
∫︂

Ω
(Kf (u− z)∇u) · ∇v dx, u, v ∈ H1(Ω),

am(u, v) =
∫︂

Ω
(Km(u− z)∇u) · ∇v dx, u, v ∈ H1(Ω),

(u, v)N =
∫︂
∂ΩN

uv dS, u, v ∈ L2(∂ΩN).

Using the introduced notation, we can finally state the weak formulation of
the problem (1.10).

11



Definition 1. Pair of functions Ψf , Ψm is called a weak solution of problem 2.1,
if it satisfies following conditions:

Ψf − Ψ∗ ∈ L2(0, T ;VD), Ψf ∈ L∞(Q),
Ψm − Ψ∗∗ ∈ L2(0, T ;VD), Ψm ∈ L∞(Q),

where Ψ∗ and Ψ∗∗ are from (2.5),(︃
γf
∂Ψf (t)
∂t

, φf

)︃
+ af (Ψf (t), φf ) +

(︃Γw(Ψf (t),Ψm(t))
wf

, φf

)︃
= (ΨNf

(t), φf )N ,(︃
γm

∂Ψm(t)
∂t

, φm

)︃
+ am(Ψm(t), φm) −

(︃Γw(Ψf (t),Ψm(t))
wm

, φm

)︃
= (ΨNm(t), φm)N

for all φf , φm ∈ VD, and

Ψf (x, t = 0) = Ψf0 in Ω,
Ψm(x, t = 0) = Ψm0 in Ω.

The existence and uniqueness of the weak solution for the Richards equation
was studied in [8] and [9]. However, for the non-linear Richards equation, as is
our case, the question of the existence and uniqueness is open. We will assume
that the weak solution exists and further we will not be concerned about it.

12



3. Numerical solution of
Richards equation
In this chapter we present an approach to solve the Richards equation. Follo-
wing [10], we approximate both spatial and temporal derivatives by the discon-
tinuous Galerkin method (DGM). Section 3.1 introduces the notation and de-
fines the key terms for DGM. Section 3.2 focuses on space discretization. The
methodology of fully space-time discretization is presented in Section 3.3, where
we also define the space-time discontinuous Galerkin approximate solution of the
Richards equation. The solution yields the system of nonlinear algebraic equa-
tions, whose linearization is treated in Section 3.4. We present a Newton-like
method for solving the mentioned system. Finally, we will discuss the stopping
criteria for the solvers in Section 3.5 and lastly we mention a mesh adaptation in
Section 3.6.

3.1 Assumptions, definitions and notations
Partition of the domain

Let h > 0 be a positive parameter and Ω be a closure of the domain Ω. We define
the partition Th of Ω as a finite number of closed triangles K with mutually
disjoint interiors, such that

Ω =
⋃︂

K∈Th

K.

We call Th a triangulation of the domain Ω. Further, we denote

• ∂K the boundary of a triangle K ∈ Th,

• hk the diameter of K,

• h = maxK∈Th
hK ,

• ρK the radius of the largest circle inscribed into K,

• Γ the face of K,

• hΓ the quantity representing the length of the face Γ.

The quantity hΓ can be defined in many ways. We will use

hΓ =

⎧⎪⎨⎪⎩
1
2

(︃
hKL

Γ
+ hKR

Γ

)︃
for Γ ∈ F I

h ,

hKL
Γ

for Γ ∈ FB
h .

(3.1)

By |K| we denote the area of K and by |Γ| we denote the length of Γ.
Let K1, K2 ∈ Th ⊂ R2. Elements K1 and K2 are called neighbours, if their

intersection K1 ∩K2 has positive 1-dimensional measure.
Let Fh denotes the system of all faces of all elements K in Th. We define the

following sets:

13



• set of all boundary faces FB
h = {Γ ∈ Fh : Γ ⊂ ∂Ω},

• set of all Dirichlet boundary faces FD
h = {Γ ∈ Fh : Γ ⊂ ∂ΩD},

• set of all Neumann boundary faces FN
h = {Γ ∈ Fh : Γ ⊂ ∂ΩN},

• set of all inner faces F I
h = Fh \ FB

h .
For each Γ ∈ Fh, we define a unit normal vector nΓ. If Γ ∈ FB

h , then nΓ is
the outer normal. The orientation of nΓ, Γ ∈ F I

h , is arbitrary, but fixed.

Assumptions on meshes

Let us consider the system of triangulations {Th}h∈(0,h), h > 0, of the domain Ω.
Then, we assume that

• the system {Th}h∈(0,h) is shape-regular, i.e.,

∃CR > 0 : hK
ρK

≤ CR ∀K ∈ Th ∀h ∈ (0, h),

where CR is a positive constant,

• the equivalence condition holds, i.e., for each quantity hΓ

∃CT , CG > 0 : CThK ≤ hΓ ≤ CGhK ∀K ∈ Th, ∀ Γ ∈ Fh,Γ ⊂ ∂K,

where CT , CG are constants independent of h,K and Γ.

Spaces for DGM

To introduce the discontinuous Galerkin method, we need to define the space,
where the approximate solution will be sought. For the triangulation Th and any
k ∈ N, we define the broken Sobolev space

Hk(Ω, Th) = {v ∈ L2(Ω); v|K ∈ Hk(K) ∀K ∈ Th}.

This space consists of functions, which are generally discontinuous on inner faces
of elements K ∈ Th. We further define the norms

||v||Hk(Ω,Th) =
(︃ ∑︂
K∈Th

||v||Hk(K)2

)︃1/2
for v ∈ Hk(Ω, Th),

|v|Hk(Ω,Th) =
(︃ ∑︂
K∈Th

|v|Hk(K)2

)︃1/2
for v ∈ Hk(Ω, Th).

Let Γ ∈ F I
h and K(L)

Γ , K(R)
Γ be two neighbouring elements that share this face

Γ, such that Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We define the trace, the mean values and

the jumps for v ∈ Hk(Ω, Th) as

v
(L)
Γ = the trace of v|

K
(L)
Γ

on Γ,

v
(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

⟨v⟩Γ = 1
2

(︃
v

(L)
Γ + v

(R)
Γ

)︃
representing the mean value of the traces of v on Γ,

[v]Γ = v
(L)
Γ − v

(R)
Γ representing the jump of v on Γ.
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For the boundary faces Γ ∈ FB
h , Γ ⊂ ∂K

(L)
Γ ∪ ∂Ω, we define

v
(L)
Γ = the trace of v|

K
(L)
Γ

on Γ,

⟨v⟩Γ = [v]Γ = v
(L)
Γ ,

for v ∈ Hk(Ω, Th)
Finally, for the triangulation Th of Ω, let p ≥ 0, p ∈ N, and let us define the

space of discontinuous piecewise polynomial functions

Shp = {v ∈ L2(Ω); v|K ∈ Pp(K) ∀K ∈ Th},

where Pp(K) denotes the space of all polynomials of degree ≤ p on K. It holds
that Shp ⊂ Hk(Ω, Th) for k ≤ 1.

3.2 Space semi-discretization
Let us introduce the space discontinuous Galerkin discretization of the problem
(2.1). For simplicity, we will derive the discretization with one equation using
the index α, α ∈ {f,m}, denoting the equation for the fracture and the matrix
equations, respectively. Finally, we formulate the space semi-discrete solution in
the vector form. We denote Γf = −Γw/wf and Γm = Γw/wm.

Let us assume that

Ψ =
⎛⎝Ψf

Ψm

⎞⎠ ∈ L2(0, T ;H2(Ω))2,
Ψ(t)
∂t

∈ (L2(0, T ;H1(Ω)))2, (3.2)

is the solution of (2.1) and let φ = (φf , φm)T ∈ (H2(Ω, Th))2. We multiply (2.1)
by φ, integrate over K ∈ Th, use the Green’s theorem and summing up over all
elements K ∈ Th. We obtain

∑︂
K∈Th

∫︂
K
γα
∂Ψα(t)
∂t

φα dx +
∑︂
K∈Th

∫︂
K

(Kα∇Ψα(t)) · ∇φα dx

−
∑︂
K∈Th

∫︂
∂K

(Kα∇Ψα(t)) · nK φα dS =
∑︂
K∈Th

∫︂
K

Γα(t)φα dx.
(3.3)

Since φα is in H2(K), the derivatives have the trace on ∂K and therefore the
surface integrals are well defined. Let us now rewrite the surface integrals in the
following way:∑︂

K∈Th

∫︂
∂K

(Kα∇Ψα(t)) · nK φα dS

=
∑︂

Γ∈FD
h

∫︂
Γ
(Kα∇Ψα(t)) · nΓ φα dS +

∑︂
Γ∈FN

h

∫︂
Γ
(Kα∇Ψα(t)) · nΓ φα dS

+
∑︂

Γ∈FI
h

∫︂
Γ

(︂
(Kα∇Ψα(t))(L)

Γ (φα)(L)
Γ − (Kα∇Ψα(t))(R)

Γ (φα)(R)
Γ

)︂
· nΓ dS.

Note that if nΓ is the outer unit normal to K(L)
Γ , then nΓ is the inner unit normal

to K(R)
Γ and therefore −nΓ is the outer unit normal to K(R)

Γ .
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Since Ψα ∈ L2(0, T ;H2(Ω)), Ψα and its derivatives are continuous over the
inner faces, we can write

[Kα∇Ψα(t)]Γ = 0 ⇔ (Kα∇Ψα(t))(L)
Γ = (Kα∇Ψα(t))(R)

Γ ∀ Γ ∈ F I
h ,

⟨Kα∇Ψα(t)⟩Γ = (Kα∇Ψα(t))(L)
Γ = (Kα∇Ψα(t))(R)

Γ ∀ Γ ∈ F I
h .

Thus, we can express the surface integrand over the inner faces as(︂
(Kα∇Ψα(t))(L)

Γ (φα)(L)
Γ − (Kα∇Ψα(t))(R)

Γ (φα)(R)
Γ

)︂
· nΓ = ⟨Kα∇Ψα(t)⟩Γ · nΓ [φα]Γ.

The integrand over the Dirichlet boundary faces can be rewritten as

(Kα∇Ψα(t)) · nΓ φα = ⟨Kα∇Ψα(t)⟩Γ · nΓ [φα]Γ,

since for the boundary faces Γ holds

(Kα∇Ψα(t)) = ⟨Kα∇Ψα(t)⟩Γ

and

φα = [φα]Γ.

Altogether, substituing the Neumann boundary condition, we can rewrite the
surface integral as∑︂

K∈Th

∫︂
∂K

(Kα∇Ψα(t)) · nK φα dS

=
∫︂

ΣN

ΨNα(t)φα dS +
∑︂

Γ∈FID
h

∫︂
Γ
⟨Kα∇Ψα(t)⟩Γ · nΓ [φα]Γ dS.

(3.4)

Using (3.4), we can rewrite the identity (3.3) as∫︂
Ω
γα
∂Ψα(t)
∂t

φα dx +
∑︂
K∈Th

∫︂
K

(Kα∇Ψα(t)) · ∇φα dx

−
∑︂

Γ∈FID
h

∫︂
Γ
⟨Kα∇Ψα(t)⟩Γ · nΓ [φα]Γ dS =

∫︂
ΣN

ΨNα(t)φα dS +
∫︂

Ω
Γα(t)φα dx.

(3.5)

To ensure the existence of the approximate solution, we must include addi-
tional terms in our formulation (3.5). We define the interior and the boundary
penalty bilinear form

Jσh (u, v) =
∑︂

Γ∈FI
h

∫︂
Γ
σ[u]Γ[v]Γ dS +

∑︂
Γ∈FD

h

∫︂
Γ
σuv dS

=
∑︂

Γ∈FID
h

∫︂
Γ
σ[u]Γ[v]Γ dS, u, v ∈ H2(Ω, Th),

where σ > 0 is the penalty weight. We will consider the penalty weight in the
form

σ : ∪Γ∈FID
h

→ R,

σ|Γ = σΓ = CW
hΓ

, Γ ∈ F ID
h ,
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where CW is the penalization constant and hΓ is defined in (3.1). Further, we
define the boundary linear form as

JσD(v) =
∑︂

Γ∈FD
h

∫︂
Γ
σΨDαv dS, v ∈ H2(Ω, Th),

where ΨDα is the Dirichlet boundary condition defined in (2.2). Note that if
Ψα ∈ L2(0, T ;H2(Ω)) is the solution of (3.5), then

Jσh (Ψα, v) = JσD(v) ∀ v ∈ H2(Ω, Th). (3.6)

We impose the continuity of the approximate solution on the interior faces by
adding the interior and the boundary penalty into our formulation.

Moreover, we will use the −1, 1 or 0-multiple of the identity
∑︂

Γ∈FID
h

∫︂
Γ
⟨Kα(Ψα − z)∇v⟩Γ · nΓ [Ψα]Γ dS =

∑︂
Γ∈FD

h

∫︂
Γ

Kα(Ψα − z)∇v · nΓ ΨDα dS,

∀ v ∈ H2(Ω, Th),

to add to the right-hand side of (3.5). This leads to the definition of the following
forms: For u, v, f, g ∈ H2(Ω, Th), we define the forms

aα,h(u, v, f, g) =
∑︂
K∈Th

∫︂
K

(Kα(u− z)∇u) · ∇v dx

−
∑︂

Γ∈FID
h

∫︂
Γ

(︃
⟨Kα(u− z)∇u⟩Γ · nΓ [v]Γ + Θ⟨Kα(u− z)∇v⟩Γ · nΓ [u]Γ

)︃
dS

+ Θ
∑︂

Γ∈FD
h

∫︂
Γ

Kα(u− z)∇v · nΓ ΨDα dS

−
∫︂

Ω
Γw(f, g) v dx −

∫︂
ΣN

ΨNα v dS,

(3.7)

where Θ ∈ {−1, 0, 1}, α ∈ {f,m}.
Therefore, we can write (3.3) as(︃

γα(Ψα(t) − z) ∂Ψα(t)
∂t

, φα

)︃
+ aα,h(Ψα(t), φα,Ψf (t),Ψm(t)) = 0 (3.8)

for φα in H2(Ω, Th), α ∈ {f,m}.
Adding the penalty terms from (3.6) to the equality (3.8) yields the definition

of the discontinuous Galerkin weak formulation. As we advised, we formulate
it in the vector form. For U = (Uf , Um)T ∈ (H2(Ω, Th))2 we define the vector
variant of the form aα,h and of the boundary penalty terms as follows:

ah(U ,φ, Uf , Um) =
⎛⎝ af,h(Uf , φf , Uf , Um)
am,h(Um, φm, Uf , Um)

⎞⎠,
Jσ
h (U ,φ) =

⎛⎝ Jσh (Uf , φf )
Jσh (Um, φm)

⎞⎠, Jσ
D(φ) =

⎛⎝JσD(φf )
JσD(φm)

⎞⎠.
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Definition 2. Function U = (Uf , Um)T : Q2 → R2 is called a discontinuous
Galerkin semidiscrete approximate solution of the problem (2.1), if it satisfies

U ∈ (C1([0, T ];Shp))2

and one of the following identities(︃
γ(U(t) − z) ∂U(t)

∂t
,φ

)︃
+ ah(U (t),φ, Uf (t), Um(t))

+ Jσ
h (U(t),φ) − Jσ

D(φ) = 0 ∀ φ ∈ (Shp)2,
(3.9)

with ⎛⎝ (Uf,0, φf )
(Um,0, φm)

⎞⎠ =
⎛⎝ (Ψf0 , φf )

(Ψm0 , φm)

⎞⎠ ∀ (φf , φm)T ∈ (Shp)2,

holds for Θ ∈ {−1, 0, 1}, where Ψf0 ,Ψm0 are defined in (2.4) and
(︃

γ(U(t) − z) ∂U(t)
∂t

,φ
)︃

=
⎛⎝ (︂

γf (Uf − z)∂Uf (t)
∂t

, φf
)︂(︂

γm(Um − z)∂Um(t)
∂t

, φm
)︂⎞⎠

The definition 2 introduces the three variants of the discretization of the di-
ffusion terms: Θ = −1, 0, 1 stands for non-symmetric, incomplete and symmetric
variant, respectively.

3.3 Space-time discretization
The previous section covered only the discontinuous Galerkin discretization with
respect to the space. In this section, we introduce the fully space-time disconti-
nuous Galerkin discretization of the problem (2.1). We employ the same notation
as was introduced in the previous section, we only add a subscript k for the time
discretization.

Let r > 0 be an integer and T > 0 the end time. We construct the partition
0 = t0 < . . . < tr = T of the time interval [0, T ] and denote the subintervals

Ik = (tk−1, tk), Ik = [tk−1, tk], k = 1, . . . , r,

and

τk = tk − tk−1, τ = max
k=1,...,r

τk.

Then

[0, T ] = ∪r
k=1Ik, Ik ∩ In = ∅ for k ̸= n, k, n = 1, . . . , r.

Thus, Th,k denotes a triangulation on the time level Ik. For every time interval
Ik, k = 1, . . . , r, the space partition Th,k of Ω is different in general.

Further, we introduce the following notation: Let φ be a function defined in
∪r
k=1Ik and let us assume that one-sided limits

lim
t→t±

k

φ(t)
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exist. We define

φ±
k := φ(t±k ) = lim

t→t±
k

φ(t) (3.10)

and the jump with respect to the time on the time level Ik

{φ}k = φ+
k − φ−

k .

We consider a varying polynomial degree with respect to the space, i.e., for
each triangle K ∈ Th,k we denote a positive number pK as a polynomial degree
on K. Then we define the finite-dimensional space

Sh,p,k = {φ ∈ L2(Ω);φ|K ∈ P pK (K) ∀K ∈ Th,k}.

Moreover, we consider a fixed polynomial degree q ∈ N in time and we define the
space of the functions piecewise polynomial in space and time

Sp,qh,τ = {φ ∈ L2(Q); φ(x, t)|Ik
=

q∑︂
i=0

ti φk,i(x),

φk,i ∈ Sh,p,k, i = 0, . . . , q, k = 1, . . . , r}.

Remark 2. If φ ∈ Sp,qh,τ , then φ|K×Ik
is a polynomial with degree ≤ pK with respect

to the space and with degree ≤ q with respect to the time. This means

φ|K×Ik
∈ P pK (K) × P q(Ik) ⇐⇒ φ|K×Ik

(x, t) =
i+j≤pK∑︂
i,j=0

q∑︂
k=0

αijkx
i
1x

j
2t
k,

αijk ∈ R, x = (x1, x2) ∈ K, t ∈ Ik.

We consider again the exact solution

Ψ =
(︃Ψf

Ψm

)︃
∈ L2(0, T ;H2(Ω))2,

Ψ(t)
∂t

∈ (L2(0, T ;H1(Ω)))2,

of the problem (2.1) and the test function φ = (φf , φm)T ∈ (Sp,qh,τ )2. It also holds
that Ψ ∈ C([0, T ];H1(Ω))2. Let k ∈ {1, . . . , r} be arbitrary (but fixed) and
denote Ψ′

α = ∂Ψα/∂t, α ∈ {f,m}. We multiply equation (2.1) by φα ∈ Sp,qh,τ ,
integrate over K × Ik and sum up over all elements K ∈ Th,k. Then∫︂

Ik

(γαΨ′
α, φα) dt−

∫︂
Ik

∫︂
K

∇ · (Kα∇Ψα)φα dx⏞ ⏟⏟ ⏞
(∗)

dt =
∫︂
Ik

(Γα, φα) dt.

We dealt with term (∗) in the previous chapter, so it remains to handle the term
with the time derivation. For better manipulation, we write ∂ϑα(Ψα−z)

∂t
instead of

γαΨ′
α. We use the integration by parts with respect to the time for the term with

the time derivation as follows:∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
, φα

)︃
dt = −

∫︂
Ik

(ϑα(Ψα − z), φ′
α) dt

+ (ϑα(Ψ−
α,k − z−

k ), φ−
α,k) − (ϑα(Ψ+

α,k−1 − z+
k−1), φ+

α,k−1),
(3.11)
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and since Ψα and z are continuous in time, we have (cf. (3.10))

ϑα(Ψ+
α,k−1 − z+

k−1) = ϑα(Ψ−
α,k−1 − z−

k−1)

and thus

(ϑα(Ψ+
α,k−1 − z+

k−1), φ+
α,k−1) = (ϑα(Ψ−

α,k−1 − z−
k−1), φ+

α,k−1). (3.12)

Once again using integration by parts and applying the identity (3.12), we obtain∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
, φα

)︃
dt =

∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
, φα

)︃
dt

+ (ϑα(Ψ+
α,k−1 − z+

k−1), φ+
α,k−1) − (ϑα(Ψ−

α,k−1 − z−
k−1), φ+

α,k−1)

=
∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
, φα

)︃
dt+ ({ϑα(Ψα − z)}k−1, φ

+
α,k−1).

(3.13)

Thus the exact solution Ψ = (Ψf ,Ψm) satisfies the identity∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
, φα

)︃
+ aα,h,k(Ψα, φα,Ψf ,Ψm) + Jσh,k(Ψα, φα)

− JσD,k(φα) dt+ ({ϑα(Ψα − z}k−1, φ
+
α,k−1) = 0 ∀φα ∈ Sp,qh,τ

(3.14)

with Ψα(0−) = Ψα0 , α ∈ {f,m}.
Remark 3. Forms aα,h,k, Jσh,k and JD,k in (3.14) are defined in the same manner
as in the previous section. The difference is only in the range of the sum: here,
we are summing over K ∈ Th,k and Γ ∈ Fh,k.

This process leading to equation (3.14) is the standard way to define a space-
time discontinuous Galerkin approximation of the problem (2.1). However, treat-
ing the first term in (3.14) in a way(︃

∂ϑα(Ψα − z)
∂t

, φα

)︃
=

(︃
γα(Ψα − z)∂Ψα

∂t
, φα

)︃
(3.15)

leads to some inaccuracy in the water content balance, due to the low regularity
of ϑα, particularly ϑ′

α(0) is discontinuous. Therefore, we will present a different
approach of defining the approximate solution.

Substituting the identity (3.12) into (3.11) leads to∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
,φα

)︃
dt = −

∫︂
Ik

(ϑα(Ψα − z), φ′
α) dt

+ (ϑα(Ψ−
α,k − z−

k ), φ−
α,k) − (ϑα(Ψ−

α,k−1 − z−
k−1), φ+

α,k−1),

where φ′
α = ∂φα/∂t.

Finally, we can define the form Aα,h,k : Sp,qh,τ × Sp,qh,τ × Sp,qh,τ × Sp,qh,τ → R as

Aα,h,k(u, v, f, g) =
∫︂
Ik

−(ϑα(u− z), v′) + aα,h,k(u, v, f, g)

+ Jσh,k(u, v) − JσD,k(v) dt
+ (ϑα(u−

k − z−
k ), v−

k ) − (ϑα(u−
k−1 − z−

k−1), v+
k−1)

(3.16)

for u, v, f, g ∈ Sp,qh,τ . The last term in the equation (3.16) establishes a connection
between the approximations of the two consecutive time layers.

We can now proceed to the definition of the approximate solution.
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Definition 3. Function U = (Uf , Um)T : Q2 → R2 is called a space-time discon-
tinuous Galerkin approximate solution of the problem (2.1), if U ∈ (Sp,qh,τ )2 and
U satisfies the following identity

Ah,k(U ,φ) = 0 ∀ φ ∈ (Sp,qh,τ )2, k = 1, . . . , r, (3.17)
with (U−

f0 , U
−
m0)T = (Ψf0 ,Ψm0)T given by the initial condition 2.4, where the form

Ah,k : (Sp,qh,τ )2 × (Sp,qh,τ )2 → R2 is defined as

Ah,k(U ,φ) =
⎛⎝ Af,h,k(Uf , φf , Uf , Um)
Am,h,k(Um, φm, Uf , Um)

⎞⎠.
Notice, that the space (Sp,qh,τ )2, where the approximate solution is sought, is

independent of the boundary conditions and that the components Uf , Um are
connected through the exchange term Γw.

The existence and the uniqueness of the approximate solution for single Ri-
chards equation has been proved for the linear case in [10]. However, the existence
and the uniqueness for the general nonlinear Richards equation with a dual-
permeability model is open.

3.4 Solution strategy
The definition of the approximate solution in (3.17) is equivalent to the system
of nonlinear algebraic equations for each time level k = 1, . . . , r. According to
Remark 2, each system in (3.17) consist of 2Nk equations, where the number
Nk = (q + 1) ∑︁

K∈Th,k
(pK + 1)(pK + 2)/2 (if Ω ⊂ R2), where pK is a polynomial

approximation degree in space and q is a polynomial approximation degree in
time. We call the number 2Nk the degree of freedom of the mesh Th,k.

We will follow the linearization technique presented in [2]. We define the space
of piecewise polynomial functions on one time layer k

Sp,qh,τ,k := {φ : Ω × Ik → R, φ|K×Ik
∈ P pK (K) × P q(Ik), K ∈ Th,k}.

Let Ψ = (Ψf ,Ψm)T ∈ (Sp,qh,τ )2 be the approximate solution of (3.17) and denote
its restriction to the space Sp,qh,τ,k, Ψk := Ψ|Ω×Ik

. Further, we define a basis Bh,k

of the space Sp,qh,τ,k as Bh,k := {φi(x, t)}Nk
i=1, where Nk is the dimension of Sp,qh,τ,k.

Let the basis Bh,k be L2 orthogonal and constructed as a composition of local
bases for each K × Ik, K ∈ Th,k, Ik ∈ [0, T ], i.e., each K × Ik has a corresponding
basis function φK×Ik

such that supp φK×Ik
⊂ K × Ik. Then we can express

Ψk(x, t) =
⎛⎝Ψk

f (x, t)
Ψk
m(x, t)

⎞⎠ =
⎛⎝∑︁Nk

j=1 ξ
k,j
f φj(x, t)∑︁Nk

j=1 ξ
k,j
m φj(x, t)

⎞⎠,
where ξk,jf , ξk,jm ∈ R, j = 1, . . . , Nk, are the basis coefficients for the fracture
component Ψk

f and the matrix component Ψk
m, respectively. Let us note, that we

want to express both components with respect to the basis Bh,k. Therefore, the
basis of space (Sp,qh,τ,k)2, where the approximate solution on time level k is sought
can be defined as

(Bh,k)2 :=
⎧⎨⎩

⎛⎝φi
0

⎞⎠,
⎛⎝ 0
φi

⎞⎠⎫⎬⎭
Nk

i=1

= {φi}2Nk
i=1 . (3.18)
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From Definition 3 we have

Ah,k(Ψk,φi) = 0, , i = 1, . . . , 2Nk,

for

φi = (φi, 0)T , i = 1, . . . , Nk, φi = (0, φNk−i)T i = Nk + 1, . . . , 2Nk,

k = 1, . . . , r.

In order to reformulate the system (3.17), we define the vector valued function
Fh,k : R2Nk → R2Nk as

Fh,k(ξk) := {Ah,k(Ψk,φi)}2Nk
i=1 , k = 1, . . . , r,

where ξk = (ξk,1f , . . . , ξk,Nk
f , ξk,1m , . . . , ξk,Nk

m ) and the scalars ξk,jf , ξk,jm , j = 1, . . . , Nk,
are the coordinates of the approximate solution Ψk

f , Ψk
m, respectively, with respect

to the basis Bh,k.
Note, that from the definition of the form Aα,h,k (3.16), we see that the func-

tion Fh,k also depends on Ψk−1. Thus, the system of nonlinear algebraic equation
(3.17) can be represented as:

Find ξk ∈ R2Nk : Fh,k(ξk) = 0, k = 1, . . . , r. (3.19)

Therefore, problem (3.19) is a root finding problem and we can use the famous
Newton method to solve it. However, the Newton method for a vector valued
function requires computing the Jacobian matrix

Jh,k(ξ) := dFh,k(ξ)
dξ

,

which is usually a difficult task. Therefore, we will present a different approach:
a linearization of the form Aα,h,k and then approximating the Jacobian matrix.

The system (3.19) is strongly nonlinear, therefore we need to perform a li-
nearization of the form Aα,h,k. First, we need to deal with the time derivative
term. For α ∈ {f,m}, we express this term as derived in (3.13) and (3.15),

∫︂
Ik

(︃
∂ϑα(Ψα − z)

∂t
, φα

)︃
dt

=
∫︂
Ik

(︃
γα(Ψα − z)∂Ψα

∂t
, φα

)︃
dt+ ({ϑα(Ψα − z)}k−1, φ

+
α,k−1)

≈
∫︂
Ik

(︃
γα(Ψα − z)∂Ψα

∂t
, φα

)︃
dt+ (γα(Ψα − z){Ψα}k−1, φ

+
α,k−1),

(3.20)

where the term {ϑα(Ψα − z)}k−1 is approximated as

{ϑα(Ψα − z)}k−1 = ϑα(Ψα − z)|+k−1 − ϑα(Ψα − z)|−k−1 =
∫︂ (Ψα−z)|+

k−1

(Ψα−z)|−
k−1

ϑ′
α(s) ds

≈ γα((Ψα − z)|+k−1) (Ψα|+k−1 − Ψα|−k−1)
= γα((Ψα − z)|+k−1) {Ψα}k−1.
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We introduce the linearization of forms Aα,h,k, α ∈ {f,m}, k = 1, . . . , r. Let
us define the forms

aLf,h,k(Ψf ,Ψm, φ,Ψf ,Ψm) =
∑︂

K∈Th,k

∫︂
K

(Kf (Ψf − z)∇Ψf ) · ∇φ dx

−
∑︂

Γ∈FID
h,k

∫︂
Γ

(︃
⟨Kf (Ψf − z)∇Ψf⟩Γ · nΓ [φ]Γ + Θ⟨Kf (Ψf − z)∇φ⟩Γ · nΓ [Ψf ]Γ

)︃
dS

−
∫︂

Ω
Γw(Ψf ,Ψm,Ψf ,Ψm) v dx,

aLm,h,k(Ψm,Ψf , φ,Ψf ,Ψm) =
∑︂

K∈Th,k

∫︂
K

(Km(Ψm − z)∇Ψm) · ∇φ dx

−
∑︂

Γ∈FID
h,k

∫︂
Γ

(︃
⟨Km(Ψm − z)∇Ψm⟩Γ · nΓ [φ]Γ + Θ⟨Km(Ψm − z)∇φ⟩Γ · nΓ [Ψm]Γ

)︃
dS

−
∫︂

Ω
Γw(Ψf ,Ψm,Ψf ,Ψm) v dx,

and

dLα,h,k(φ,Ψα) = −Θ
∑︂

Γ∈FD
h,k

∫︂
Γ

Kα(Ψα − z)∇φ · nΓ ΨDα dS +
∫︂

ΣN

ΨNα φ dS.

Recall the form of the exchange term to clarify its arguments:

Γw(Ψf ,Ψm,Ψf ,Ψm) = aw(Ψf ,Ψm) (Ψm − Ψf ).

Due to (3.7) and Remark 3, we have

af,h,k(Ψf , φ,Ψf ,Ψm) = aLf,h,k(Ψf ,Ψm, φ,Ψf ,Ψm) − dLf,h,k(φ,Ψf )
am,h,k(Ψm, φ,Ψf ,Ψm) = aLm,h,k(Ψm,Ψf , φ,Ψf ,Ψm) − dLm,h,k(φ,Ψm)

∀ Ψm,Ψf , φ ∈ Sp,qh,τ .

Using (3.20), we define

ALf,h,k(Ψf ,Ψm, φ,Ψf ,Ψm) =
∫︂
Ik

(︃
γf (Ψf − z)∂Ψf

∂t
, φ

)︃
+ Jσh (Ψf , φ),

+ aLf,h,k(Ψf ,Ψm, φ,Ψf ,Ψm) dt
+ (γf (Ψf − z)|+k−1Ψ+

f,k−1, φ
+
k−1),

(3.21)

ALm,h,k(Ψm,Ψf , φ,Ψf ,Ψm) =
∫︂
Ik

(︃
γm(Ψm − z)∂Ψm

∂t
, φ

)︃
+ Jσh (Ψm, φ)

+ aLm,h,k(Ψm,Ψf , φ,Ψf ,Ψm) dt
+ (γm(Ψm − z)|+k−1Ψ+

m,k−1, φ
+
k−1),

(3.22)

and the residual terms as

DL
α,h,k(φ,Ψα) =

∫︂
Ik

dLα,h,k(φ,Ψα) + JσD(φ) dt+ (γα(Ψα − z)|+k−1Ψ−
α,k−1, φ

+
k−1)

(3.23)
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for Ψf ,Ψm, φ,Ψf ,Ψm ∈ Sp,qh,τ , α ∈ {f,m}. Finally, we define

AL
h,k(Ψ,φ,Ψ) =

⎛⎝ ALf,h,k(Ψf ,Ψm, φf ,Ψf ,Ψm)
ALm,h,k(Ψm,Ψf , φm,Ψf ,Ψm)

⎞⎠ (3.24)

and

DL
h,k(φ,Ψ) =

⎛⎝ DL
f,h,k(Ψf , φf )

DL
m,h,k(Ψm, φm),

⎞⎠ (3.25)

where φ = (φf , φm), Ψ = (Ψf ,Ψm).
The forms ALα,h,k and DL

α,h,k are consistent with the form Aα,h,k, i.e.,

Af,h,k(Ψf , φ,Ψf ,Ψm) ≈ ALf,h,k(Ψf ,Ψm, φ,Ψf ,Ψm) −Df,h,k(φ,Ψf )
Am,h,k(Ψm, φ,Ψf ,Ψm) ≈ ALm,h,k(Ψm,Ψf , φ,Ψf ,Ψm) −Dm,h,k(φ,Ψm)

Ψf ,Ψm, φ ∈ Sp,qh,τ .

(3.26)

Let Ψ and Ψ be the restrictions to the space (Sp,qh,τ,k)2. Using the linearized
forms (3.24) and (3.25), we can define the so–called 2Nk × 2Nk flux matrix Ch,k:

{AL
h,k(Ψ,φi,Ψ)}2Nk

i=1 =
⎧⎨⎩AL

h,k

⎛⎝ Nk∑︂
j=1

ξf,jφj +
2Nk∑︂

j=Nk+1
ξm,jφj,φi,Ψ

⎞⎠⎫⎬⎭
2Nk

i=1

=
{︂
AL
h,k(φj,φi,Ψ)

}︂2Nk

i,j=1
ξ =: Ch,k(ξ) ξ

and the vector qh

qh(ξ) := {Dh,k(φi,Ψ)}2Nk
i=1 ,

where φi, i = 1, . . . , 2Nk, are the basis functions from (3.18) and ξ, ξ ∈ R2Nk are
the coefficients of Ψ,Ψ with respect to the basis (Bh,k)2, respectively.

Finally, by virtue of (3.26), we obtain the approximation

Fh,k(ξk) ≈ Ch,k(ξk) ξk − qh(ξk), k = 1, . . . , r. (3.27)

If we fix the arguments of Ch,k and qh perform the differentiation of (3.27) with
respect to ξk, we arrive at

Jh,k(ξk) ≈ Ch,k(ξk).

Notice that matrix Ch,k and the Jacobian matrix Jh,k are sparse and have block
structure. Therefore, we can approximate the Jacobian matrix Jh,k(ξk) by the
flux matrix Ch,k(ξk).
Remark 4. Even though we defined the forms (3.21) and (3.22) using the integra-
tion by parts leading to (3.15), it did not cause any of the mentioned problems,
since Ch,k is only an approximation of the Jacobi matrix Jh,k.

In the end of this section, we will briefly describe a technique for solving
(3.19). We will use a Newton-like method described in [11], which is characte-
rized by the fact that the Jacobian Jh,k is replaced by some approximation. We
will also employ a damping parameter λl, which helps with the convergence, if
the initial guess ξ0

k is far from the solution. This method will generate a se-
quence {ξlk}l=0,1,..., approximating an actual numerical solution ξk. The stopping
criterion is discussed in the next section.
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Algorithm 1. Damped Newton-like algorithm [2]

1. Let ξ0
k ∈ R2Nk be given.

2. Until a stopping criterion is not satisfied, compute:

• Find dl ∈ R2Nk such that

Ch,k(ξlk)dl = −Fh,k(ξlk), (3.28)

• update

ξl+1
k = ξlk + λldl,

where λl ∈ (0, 1] is a damping parameter such that the monitoring
function δl := ||Fh,k(ξl+1

k )||/||Fh,k(ξlk)|| is less than 1.

At the start of each step, we set λl = 1 and multiply it by q = 0.75 until the
monitoring function δl < 1. Thus, multiple evaluation of Fh,k can occur in each
iteration. The linear system (3.28) is solved by the GMRES method with block
ILU(0) preconditioner, see [12] for the details.

3.5 Stopping criteria
It remains to deal with the stopping criterion mentioned in Algorithm 1. We
want to avoid stopping the algorithm too early, since the accuracy of the solution
can suffer. On the other hand, we do not want stopping criterion too strict, since
its computational efficiency can get too low. The solution strategy presented in
the previous chapter raises the following sources of errors:

• space discretization,

• time discretization,

• violation of (3.19) by the algebraic solver.

We will use the same technique for balancing these types of errors as presented
in [2] and [13].

To introduce error estimators, we will briefly summarise exact, space-time and
approximate solutions:

• exact solution Ψ ∈ L2(0, T ;H2(Ω))2 satisfying (2.1),

• space-time discontinuous Galerkin discrete solution Ψhτ ∈ Sp,qh,τ satisfying
(3.17) exactly without algebraic errors,

• approximate solution Ψhτ ∈ Sp,qh,τ of (3.17) given by the Algorithm 1.

We outline the idea of the error measure in the dual norm. Let V be a linear
vector space equipped with a norm || · ||V and Vh a finite dimensional subspace
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of V . Let a(·, ·) : V ×V → R be a form linear with respect to its second argument
and u ∈ V , uh ∈ Vh be an exact and approximate solution of

a(u, φ) = 0 ∀φ ∈ V, a(uh, φh) = 0 ∀φh ∈ Vh,

respectively. Then the error measure in the dual norm on the space V is given
by

E(uh) = ||Auh − Au||V ′ = sup
φ∈V,φ̸=0

a(uh, φ) − a(u, φ)
||φ||V

= sup
φ∈V,φ ̸=0

a(uh, φ)
||φ||V

,

(3.29)

where ⟨Au, φ⟩ = a(u, φ), u, φ ∈ V and ⟨·, ·⟩ denotes the duality between V and
V ′ [13].

Practically, only Ψhτ is available, therefore based on (3.29), we introduce
an algebraic estimator ηkA, a space-algebraic estimator ηkSA and a time-algebraic
estimator ηkTA

ηkA(Ψhτ ) = max
φh∈Sp,q

h,τ,k
,φh ̸=0

Ah,k(Ψhτ ,φh)
||φh||X

,

ηkSA(Ψhτ ) = max
φh∈Sp+1,q

h,τ,k
,φh ̸=0

Ah,k(Ψhτ ,φh)
||φh||X

,

ηkTA(Ψhτ ) = max
φh∈Sp,q+1

h,τ,k
,φh ̸=0

Ah,k(Ψhτ ,φh)
||φh||X

.

(3.30)

The space Sp+1,q
h,τ,k consists of piecewise polynomial functions over K × Ik of the

degree ≤ p + 1 with respect to x ∈ K and the degree ≤ q with respect to t ∈ Ik
and vice versa for the space Sp,q+1

h,τ,k . Obviously, these spaces are bigger than Sp,qh,τ,k.
The norm || · ||X is defined as

||φh||X =
(︃ ∫︂

Ik

∑︂
K∈Th,k

(︂
||φh||2K + ||∇φh||2K + ||∂tφh||2K

)︂
dt

)︃2
.

The quantity ηkA measures the violation of (3.17) by an inexactly computed
approximation Ψhτ given by Algorithm 1. The quantity ηkSA (ηkTA respectively)
assumes that the approximate solution is formally exact in space (time respec-
tively) and measures the violation of the consistency identity (3.26).

The error estimates defined in (3.30) set the stopping criterion in Algorithm 1
in a following way:

• At each time level, repeat step 2. of Algorithm 1 until

ηkA ≤ cA η
k
SA, k = 1, . . . , r, (3.31)

• at each time level, we require

ηkTA ≤ cT η
k
SA, k = 1, . . . , r. (3.32)
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Figure 3.1: Example of the convergence of error estimators ηkA (algebraic), ηkSA
(space-algebraic) and ηkTA (time-algebraic) for two time intervals Ik, k = 64 and
k = 65.

We put cA = 0.01 and cT = 0.5 for the experiment in Section 4.1. If the
nonlinear algebraic solver in Algorithm 1 does not reach condition (3.31) in pre-
scribed 30 iterations, it will refuse the time step, reduce it by factor 4 and repeat
the computation. This is shown in Figure 3.1 on time level 64, where two sets
of lines are depicted. If the condition (3.32) is violated, the step is refused and
recomputed with smaller time step. In case of the second experiment in 4.2, we
put cA = 0.1 with the maximal number of iterations as 60 for each time level and
we set cT = 0.2.

Even though this technique is more of a heuristic, the evaluation of the pre-
sented estimators is fast and easy to implement.

3.6 Mesh adaptation
In this section, we briefly introduce the idea of anisotropic mesh adaptation,
which we are using in our single ring experiment described in Section 4.2. More
details about the anisotropic mesh adaptation are in [14], [15] and [13].

This technique is based on the control of the interpolation error of a piece-
wise polynomial interpolation of the exact solution on the triangular grid [15].
The mesh can be refined locally, which leads to faster computations and smaller
memory requirements, unlike the global mesh refinement. Although this method
is not based on a posteriori error estimation, which is a commonly used technique
for the mesh refinement, it provides high efficiency [14].

Let Πh,p,k be an L2(Ω) projection onto Sh,p,k and let ω > 0 be a given tolerance.
The problem is: Find a sequence of meshes Th,k, k = 1, . . . , r and the polynomial
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approximations degrees pK ∈ N such that

• ||Ψ(tk) − Πh,p,kΨ(tk)||L∞(Ω) ≤ ω,

• dim(Sh,p,k) is minimal,

where Ψ is the exact solution and Πh,p,kΨ denotes its projection into the space
Sh,p,k. Obviously, the exact solution Ψ is not known, but can be reconstructed
from the approximate solution by a higher order reconstruction using the least-
square technique, for example as in [16].

Taking into account the stopping criteria from Section 3.5 and the briefly
introduced anisotropic mesh adaptation with the Algorithm 1, we can summarize
the steps in the following algorithm:
Algorithm 2. Anisotropic space-time discontinuous Galerkin method [2]

1. Let ω > 0, mesh Th,1 and time step τ1 be given.

2. Put t = 0.

3. For k = 1, . . . , r:

(a) Solve (3.17) using Algorithm 1 for one time step until (3.31) is reached.
Let Ψhτ is the output of Algorithm 1 and set Ψk

hτ := Ψhτ |Ik
.

(b) If (3.32) is not fulfilled, decrease τk and repeat step (a).

(c) Reconstruct Ψk from the solution Ψk
hτ (t−k ) from Algorithm 1 and verify

||Ψk(tk) − Πh,p,kΨk(tk)||L∞(Ω) ≤ ω. (3.33)

(d) If (3.33) is violated, create a new mesh Th,k and the corresponding
polynomials degree pK and repeat step (a).

(e) Put t := t+ τk. If t ≥ T , then stop.
(f) Set Th,k+1 := Th,k, τk+1 = τk and go to the next time step.

28



4. Numerical results
In this chapter, we present several numerical experiments to illustrate the pro-
posed model, whose discretization leads to the system of non-linear equations
(3.17) for each time step, which is solved iteratively by the technique from Sec-
tion 3.4. In first Section 4.1, we verify our model with 1D benchmark problem.
Moreover, in Section 4.2, we show and discuss results concerning the single ring
experiment, see [17] and [18]. We use the ADGFEM [3] framework for computing
all numerical experiments on machine equipped with Intel Q8300 CPU.

4.1 One-dimensional problem verification
We solve the problem (2.1) in a thin rectangular domain Ω, with 40 cm depth
and with 0.1 cm width, see Figure 4.1. The mesh consists of 100 elements with
finer triangulation close to the surface and the polynomial degrees p = 3 and
q = 1. We use the fixed polynomial degree with respect to the space and the
time, respectively. The final time is set as T = 0.1 day (= 144 min).
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(a) Mesh on domain Ω.
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(b) Detailed mesh at the surface.

Figure 4.1: Mesh used for 1D verification (different scaling in coordinates).

The parameters describing the hydraulic properties in the van Genuchten
function and in the Mualem function are stated in Table 4.2, where m = 1 − 1/n.
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Further, we prescribe the fracture weight wf = 0.05 and thus the matrix weight
is wm = 0.95.

θr θs α [cm−1] n Ks [cm day−1] Ss [cm−1]
Fracture f 0.0 0.5 0.1 2.0 2000.0 10−7

Matrix m 0.10526 0.5 0.005 1.5 1.0526 10−7

Table 4.1: Hydraulic parameters used in the experiment.

We prescribe the initial conditions (2.4) as Ψf0 = Ψm0 = −1000 cm. The
boundary conditions are shown in Figure 4.2. The Dirichlet boundary conditions
on Γ1 are given as ΨDf

= ΨDm = −1000 cm for the both porous media. We
prescribe the Neumann boundary conditions on Γ2 and Γ3 as a no flow boundary
for the both porous media. However, on Γ4, we prescribe a flow for the fracture
medium, since we allowed the water infiltration only to the fracture medium. We
can write the Neumann boundary conditions as follows:

ΨNf
= 0 cm day−1 on Γ2 ∪ Γ3,

ΨNm = 0 cm day−1 on Γ2 ∪ Γ3,

ΨNf
= −50 cm day−1 on Γ4,

ΨNm = 0 cm day−1 on Γ4.

Γ1

Γ3Γ2

Γ4

Ω

Neumann	boundary
Dirichlet	boundary

Figure 4.2: Boundary conditions.

Even though the symmetric variant (Θ = 1) of the discontinuous Galerkin
method have better theoretical results, we will use the nonsymmetric variant
(Θ = −1), because we can set smaller penalty weight and primarily we save
computational time, because the resulting linear algebraic systems are easier to
solve. We impose the penalty weight σ = 50.
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Figure 4.3: Water inflitration with no exchange between the porous media -
fracture component (Γw = 0).
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Figure 4.4: Water inflitration with no exchange between the porous media -
matrix component (Γw = 0).
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The water was allowed to infiltrate only the fracture pore system, thus the
water content in the matrix pore system is dependent on the exchange term Γw.
We remind the form of the exchange term

Γw = αw(ψf − ψm), αw = β

a2γwKa.

Indeed, if we set Γw = 0 (no exchange of the water between the porous
media), we see in Figure 4.4 unchanged hydraulic head for the matrix component.
Figure 4.3 shows hydraulic head of the fracture component with no water flow
to the matrix porous medium. We observe non-physical oscillations. This is
due to steep gradient of the prescribed flow and we also used a relatively coarse
mesh because of the computational complexity. However, the oscillations are
not growing up (they are ”stable”), which is a typical favorable property of the
discontinuous Galerkin method. It is possible to reduce them using finer adaptive
grids or a stabilization.

We set the parameters as follows: β = 3.0, γw = 0.4, a = 1 cm. Moreover, we
redefine the exchange term as

Γδw := δ ΓW ,

because it is not clear, how it is used in [1]. We experiment with values δ = 0.01
and δ = 0.0001 in order to reduce the influence of the fracture pore system to the
matrix pore system.

Figures 4.5 and 4.6 show the progress of hydraulic head on different time levels.
In both pictures, the oscillations manifest in the fracture component. Notice that
the function corresponding to the matrix component is monotonic. As the water
infiltrates through the exchange term, the water flow is progressive and thus there
is reason for oscillations. The obtained results are comparable with the results
from [1].
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Figure 4.5: Comparison of the hydraulic head with exchange term Γ0.01
w .
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4.2 Single ring experiment
A single ring experiment is used for the measuring the rate of water which infil-
trated into a porous medium. This experiment consists of insertion of the ring
into the soil and adding water inside the ring. In our case, the water is supplied
at a constant rate, representing the Dirichlet boundary condition, see Figure 4.8.

We solve the problem (2.1) in the rectangular domain Ω. The mesh for the
initial time step is depicted in Figure 4.7. We use the varying polynomial degree
in space, set as p = 2 for the first iteration, and the fixed polynomial degree in
time q = 1. The final time is set as T = 2 s.
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	0.8

	1

	0 	0.2 	0.4 	0.6 	0.8 	1 	1.2

[m
]
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Figure 4.7: Mesh used for single ring experiment.

The parameters describing the hydraulic properties in the van Genuchten
function and in the Mualem function are stated in Table 4.2, where m = 1 − 1/n.
Further, we prescribe the fracture weight wf = 0.05 and thus the matrix weight
is wm = 0.95.

θr θs α [m−1] n Ks [m s−1] Ss [m−1]
Fracture f 0.0 0.5 0.1 2.0 0.048 10−3

Matrix m 0.10526 0.5 0.005 1.5 0.00002 10−3

Table 4.2: Hydraulic parameters used in the experiment.

We prescribe the initial conditions (2.4) as Ψf0 = Ψm0 = −2 m. The boundary
conditions are shown in Figure 4.8. We prescribe the Dirichlet and the Neumann
boundary conditions in the following way:

ΨDf
= 1.05 m s−1 on ΣD = Γ5,

ΨDm = 1.05 m s−1 on ΣD = Γ5,

ΨNf
= 0 m s−1 on ΣN ,

ΨNm = 0 m s−1 on ΣN .
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Ω

Neumann	boundary
Dirichlet	boundary

Figure 4.8: Boundary conditions.

We also use the nonsymmetric variant (Θ = −1) for the same reason as
mentioned before. We set the penalty weight as σ = 100.

Figures 4.11 and 4.12 demonstrate the single ring experiment. In this case,
we use an adaptive algorithm described in Section 3.6. Figure 4.11 shows the
fracture component Ψf on the left and the corresponding adapted mesh on the
right. Figure 4.12 shows the matrix component on the right instead. We see that
the water infiltration is much slower within the matrix component. We also do
not see any oscillations that were observed in 4.1.

We introduce a quantity

F (t) =
∫︂ t

0

∫︂
Γ5
wf (Kf (Ψf (x, t′) − z)∇Ψf (x, t′)) · n

+ (1 − wf ) (Km(Ψm(x, t′) − z)∇Ψm(x, t′)) · n dS dt′,

which represents the actual water flux through the boundary Γ5 accumulated
up to the time t. Figure 4.9 shows that the total flux accumulates primarily at
the beginning, for both cases – with the adaptation and without the adaptation.
Although the results were the same in the first quarter of the simulation, the
computational time of the adaptive computation is much smaller than the com-
putation on fixed mesh, see in Figure 4.10. We can observe that in the case of
the adaptive algorithm, the time step in the second half of the computation was
relatively large and thus the computation finished quickly.

Finally, we also present the development of the mesh adaptation and the
comparison of the computational time. Figure 4.13 and 4.14 shows that the mesh
was adapted only at the beginning of the simulation. This can be justified by the
fact that after the water was fully saturated in the domain delimited by Γ7 and
Γ8, there were no obstacles, so the time step could be larger. The larger step in
the second half of the simulation is also seen in Figure 4.10. Almost all of the
computational time was used for the first quarter of the physical time. Figures
4.15 and 4.16 confirm the overall computational time and demonstrate the benefit
of the anisotropic mesh adaptation.
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Figure 4.11: Hydraulic head – fracture component and adapted mesh.
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Figure 4.12: Hydraulic head – fracture and matrix comparison.
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Conclusion
This work deals with the numerical solution of the Richards equation with the
dual-permeability model. This concept assumes that the porous media can be
separated into two distinct porous media, one with coarse structure (matrix) and
the other with finer structure (fracture). We used the space-time discontinuous
Galerkin method for the numerical solution.

We derive the Richards equation and afterwards we present the dual-permeabi-
lity model. The key term in this model is the exchange term, which represents the
water exchange between the fracture and the matrix pore systems. The solution
of the Richards equation with the dual permeability model is the hydraulic head,
which is a vector whose first component represents the fracture pore system and
the second component represents the matrix pore system.

The bulk of this work consists of the derivation of the approximate solution
using the space-time discontinuous Galerkin method for the dual-permeability
model and a technique for obtaining the actual solution. First, we focus on
the space discretization and we present the standard tools for the discontinu-
ous Galerkin method. Afterwards, we derive the fully space-time discontinuous
Galerkin discretization and we define the discontinuous Galerkin approximate so-
lution of the Richards equation with the dual-permeability model. The solution
yields a system of nonlinear algebraic equations. To solve this nonlinear system,
we perform linearization and we use a Newton-like method, which consists of
replacing the Jacobian of the system by its approximation.

Finally, two numerical experiments are presented. First, we justify our model
with a 1D benchmark problem. Even though oscillations manifest in the presented
results, the result is still acceptable, since the oscillations are not growing up.
The oscillations can be reduced using a finer mesh. The second experiment is the
famous single ring infiltration, which is used for the measurement of the rate of
water infiltrating into a porous medium. We observe that in the fracture pore
system the water infiltration is much faster, which corresponds to the reality. We
also experiment with anisotropic mesh adaptation and we compare the overall
computational time. The results were the same for the both cases as expected,
but with the anisotropic mesh adaption, there is a significant reduction in the
computational time.
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