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Differential equations with eigenvalue in
boundary conditions

Department of Mathematical Analysis

Supervisor of the master thesis: doc. Mgr. Petr Kaplický, Ph.D.
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Department: Department of Mathematical Analysis
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Notation

n Natural number.

N0 Set N ∪ {0}.

z Complex conjugate of a complex number z.

Ω Bounded Lipschitz domain in Rn (by domain we mean open and con-
nected set).

g Functions written in bold represent vector-valued functions g : Ω →
Rn while scalar functions are plain

gi The i-th coordinate of vector-valued function g.

n The outwards unit normal vector to Ω.

A : B The inner product on space of complex matrices. For Aij,Bij ∈ Cn×n

it is defined as A : B = ∑︁n
i,j=1 AijBij.

λn n-dimensional Lebesgue measure.

Hn−1 (n− 1)-dimensional Hausdorff measure.

⟨·, ·⟩H Inner product on a Hilbert space H.

⟨T, x⟩X,Y Linear operator T : X → Y applied to x ∈ X where X, Y are Banach
spaces.

σp(T ) Point spectrum of a linear bounded operator T : X → X where X is
a Banach space.(︂

Ck(Ω)
)︂n

For k ∈ N denotes the space of real vector-valued functions g : Ω → Rn

for which are partial derivatives k-times continuously differentiable on
Ω .

Cn,µ(Ω) Hölder space of real scalar functions which have continuous partial
derivatives up to order n and such that the n-th partial derivatives
are Hölder continuous with exponent µ ∈ R, 0 < µ ≤ 1.

(Lp(Ω))n Lebesgue space of real vector valued measurable functions g : Ω → Rn

over the field of complex numbers where p ∈ [1,∞) (see Definition 1).

(W 1,p(Ω))n Sobolev space of real vector valued measurable functions g : Ω → Rn

over the field of complex numbers where p ∈ [1,∞) (see Definition 2).

Tr Trace operator Tr: (W 1,p(Ω))n → (Lp(∂Ω))n.

(W 1,2
n (Ω))n Space {u ∈ (W 1,p(Ω))n ; Tr(u) · n = 0}.

div u The divergence of a vector-valued function u ∈ (W 1,p(Ω))n. It is
defined as div u = ∑︁n

i=1 ∂iui.(︂
W 1,2

n,div(Ω)
)︂n

Space {u ∈ (W 1,2
n (Ω))n ; div u = 0 in Ω}.
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∇p Gradient of the function p. For a scalar function p ∈ W 1,p(Ω) it is
defined as the matrix (∂1,p, . . . ,∂np).

∇u Gradient of the function u. For u ∈ (W 1,p(Ω))n it is defined as the
matrix ∇u = (∂iuj)n×n.

Du The symmetric part of the gradient of u ∈ (W 1,p(Ω))n. It is defined
as Du = 1/2

(︂
∇u + (∇u)⊤

)︂
.

∆u The Laplace operator of a function (C2(Ω))n. It is vector valued func-
tion defined as (∆u)i = ∑︁n

j=1 ∂
2
j ui where i = 1, . . . , n.
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Introduction
Motivation for this thesis comes from studying problems with dynamic bound-

ary conditions. In our case we are interested in Stokes problem, i.e. for n ∈ N,
Ω ⊂ Rn bounded Lipschitz domain, I ⊂ R non-empty interval, u : Ω × I → Rn,
p : Ω × I → R, f : Ω × I → Rn g : ∂Ω × I → Rn we consider

−∆u + ∇p = f in Ω × I,

div u = 0 in Ω × I,

u · n = 0 on ∂Ω × I,

∂tu − [(Du) n]τ = g on ∂Ω × I

and some initial condition for u. In the formulation n denotes the outwards
unit normal vector and vτ denotes the projection of v to the tanget plane to
Ω, i.e. vτ = v − (v · n) n. We now replace term ∂tu with λu for λ ∈ R and
assume that right-hand sides of the system are zero. We will study this modified
problem. Thus, in this thesis we will be dealing with stationary Stokes problem.
More precisely, let n ∈ N and Ω ⊂ Rn be a bounded Lipschitz domain. For
u : Ω → Rn, p : Ω → R and λ ∈ R we consider the following system of partial
differential equations

−∆u + ∇p = 0 in Ω, (1)
div u = 0 in Ω, (2)
u · n = 0 on ∂Ω, (3)

[(Du) n]τ = λu on ∂Ω. (4)

We will refer to the constant λ in the formulation of the problem (1)-(4) as
an eigenvalue of the problem (1)-(4) if there exists a corresponding non-trivial
weak solution to the problem. Specifically, we will be interested in studying
the asymptotic behaviour of the sequence of eigenvalues (λk)∞

k=1 of the problem
(1)-(4).

Inspiration for approaching this problem comes from a thesis by Sandgren [1]
where they considered Steklov problem on a bounded C2 domain Ω ⊂ Rn, i.e.

−∆u = 0 in Ω, (5)
(∇u) n = µu on ∂Ω (6)

and studied asymptotic behaviour of the eigenvalue sequence (µk)∞
k=1 of the prob-

lem (5)-(6). Firstly, they calculated µk explicitly on simple domains and then
they improved the results to more general domains. Eventually, they managed
to prove that

µk = CStek(Ω, n)k1/(n−1) + o(k1/(n−1)).
Later on, in a paper by von Below and François [2], they used this result to
determine the growth order of (µk)∞

k=1 and to obtain lower and upper bounds for
the leading asymptotic coefficient in the following problem

−∆u = µu in Ω, (7)
(∇u) n = µu on ∂Ω. (8)
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More precisely, they were able to get

cStek(Ω, n) ≤ lim inf
k→∞

µk

k1/(n−1) ≤ lim sup
k→∞

µk

k1/(n−1) ≤ CStek(Ω, n).

for some constants cStek, CStek(Ω, n) ∈ R, cStek, CStek(Ω, n) > 0 depending on di-
mension n and domain Ω.

Our goal in this thesis will be to modify techniques used [1] and [2] for our
problem (1)-(4) in order to obtain similar results about the asymptotic behaviour
of (λk)∞

k=1. Our hypothesis is that the growth order will remain the same even
for this more complex problem, i.e. we expect that

cStokes(Ω, n) ≤ lim inf
k→∞

λk

k1/(n−1) ≤ lim sup
k→∞

λk

k1/(n−1) ≤ CStokes(Ω, n)

for some constants cStokes, CStokes(Ω, n) ∈ R, cStokes, CStokes(Ω, n) > 0 depending on
dimension n and domain Ω.
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1. Preliminaries
In the chapter we introduce the most important definitions and Theorems

that we will use extensively throughout the whole thesis.

Definition 1. (Lebesgue spaces). Let p ∈ R, p ∈ [1,∞], let n, d ∈ N and let Ω
be a measurable set in Rn. We define the Lebesgue space (Lp(Ω))d as a set of all
measurable functions g : Ω → Rd such that ∥g∥(Lp(Ω))d < ∞ where

∥g∥(Lp(Ω))d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︄∫︂

Ω

d∑︂
i=1

|gi(x)|p dλn

)︄1/p

if p ∈ [1,∞),

ess-supx∈Ω max
i∈{1,...,d}

|gi(x)| if p = ∞.

Remark. Formally, Lebesgue space (Lp(Ω))d should be a set of equivalence classes
of functions which are equal λn almost everywhere in Ω in order for the pair(︂
(Lp(Ω))d , ∥·∥(Lp(Ω))d

)︂
to form a linear vector space. However, it is a common

convention to leave out the notion of equivalence classes.

Definition 2. (Sobolev spaces). Let n, d ∈ N and let Ω ⊂ Rn be an open set. Let
k ∈ N and p ∈ R, p ∈ [1,∞]. We define the space of Sobolev functions

(︂
W k,p(Ω)

)︂d

as the set(︂
W k,p(Ω)

)︂d
= {g ∈ (Lp(Ω))d ; ∀α ∈ (N0)d, |α| ≤ k : Dαg ∈ (Lp(Ω))d},

where Dαg denotes the weak derivative of g with respect to α. We define the
functional ∥·∥(W k,p(Ω))d as follows

∥g∥(W k,p(Ω))d =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ ∑︂
|α|≤k

∫︂
Ω

d∑︂
i=1

|Dαgi(x)|p dλn

⎞⎠1/p

if p ∈ [1,∞),

max
|α|≤k

ess-supx∈Ω max
i∈{1,...,d}

|Dαgi(x)| if p = ∞.

Remark. The set
(︂
W k,p(Ω)

)︂d
equipped with the functional ∥·∥(W k,p(Ω))d forms a

normed linear space.

Definition 3. (Ck,µ domains). Let k ∈ N and µ ∈ R, 0 < µ ≤ 1. Let n ∈ N
and let Ω be a bounded domain in Rn. We say that Ω is a Ck,µ domain if there
exist α, β ∈ R, α, β > 0 and M ∈ N systems of Cartesian coordinates and Ck,µ

functions ar for r = 1, . . . ,M such that

• for r-th system we denote x = (xr1 , . . . ,xrn) as (x′
r,xrn) and

∆r = {x′
r ∈ Rn−1; |xri

| < α, i = 1, . . . ,n− 1},

• ar : ∆r → R and if we denote by Tr an orthogonal transformation from r-th
system of Cartesian coordinates to global system of Cartesian coordinates
then for each x ∈ ∂Ω there exists r ∈ {1, . . . ,M} and x′

r ∈ ∆r such that
x = Tr(x′

r,ar(x′
r)),
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• if we define

V +
r = {(x′

r,xrn) ∈ Rn; x′
r ∈ ∆r, ar(x′

r) < xrn < ar(x′
r) + β} ,

V −
r = {(x′

r,xrn) ∈ Rn; x′
r ∈ ∆r, ar(x′

r) − β < xrn < ar(x′
r)} ,

Λr = {(x′
r,xrn) ∈ Rn; x′

r ∈ ∆r, ar(x′
r) = xrn} ,

then Tr(V +
r ) ⊂ Ω, Tr(V −

r ) ⊂ Rn \ Ω and ∪M
r=1Tr(Λr) = ∂Ω.

Theorem 4. (Trace Theorem). Let n ∈ N and let Ω be a bounded Lipschitz
domain in Rn, i.e. Ω ∈ C0,1. Let p ∈ R, p ≥ 1. Then there exists a bounded linear
operator Tr

Tr:
(︂
W 1,p(Ω)

)︂n
→ (Lp(∂Ω))n

such that Tr extends the classical trace operator, i.e.

Tr(u) = u|∂Ω

for all u ∈ (W 1,p(Ω))n ∩
(︂
C(Ω)

)︂n
.

Proof. See [3], Section 6.4.

Theorem 5. (Riesz representation Theorem). Let H be a Hilbert space with inner
product ⟨·, ·⟩H . Let φ ∈ H∗, i.e. φ is a continuous linear functional on H. Then
there exists a unique y ∈ H such that

⟨φ, u⟩H∗,H = ⟨u, y⟩H

for all u ∈ H. Moreover,
∥y∥H = ∥φ∥H∗ .

Proof. See [4], Theorem 5.5, p. 135.

Theorem 6. (Gauss’s Theorem). Let n ∈ N and let Ω be a bounded Lipschitz
domain in Rn. Let u ∈ (W 1,2(Ω))n. Then∫︂

Ω
div u dλn =

∫︂
∂Ω

Tr(u) · n dHn−1.

Proof. See [5], Theorem 1.1., p. 117.

Remark. For bounded Lipschitz domains in Rn the outwards unit normal vector
exists Hn−1 almost everywhere on ∂Ω (see [5], Lemma 4.2., p. 83).
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2. Basic properties and
asymptotics on simple domains

2.1 Formulation of the problem
Let n ∈ N and Ω ⊂ Rn be a bounded Lipschitz domain. For u : Ω → Rn,

p : Ω → R and λ ∈ R we consider

−∆u + ∇p = 0 in Ω, (2.1)
div u = 0 in Ω, (2.2)
u · n = 0 on ∂Ω, (2.3)

[(Du) n]τ = λu on ∂Ω, (2.4)

where n denotes the outwards unit normal vector on ∂Ω and vτ denotes the
projection to the tanget plane, i.e. vτ = v − (v · n) n.

First, we derive a weak formulation of the problem (2.1)-(2.4). Suppose for
now that there exist u ∈ (C∞(Ω))n, p ∈ C∞(Ω) and λ ∈ R such that (2.1)-(2.4)
hold. Assume that mapping φ : Ω → Rn satisfies φ ∈ (C∞(Ω))n, div φ = 0 in Ω
and φ · n = 0 on ∂Ω. Multiplying equation (2.1) by φ and integrating both sides
over Ω we get

−
∫︂

Ω
∆u · φ dλn +

∫︂
Ω

∇p · φ dλn = 0.

Sine div u = 0, we have
∆u = 2 div Du.

Using Green’s formula we get

2
∫︂

Ω
Du : Dφ dλn − 2

∫︂
∂Ω

φ · (Du) n dHn−1 +
∫︂

∂Ω
p (φ · n) dHn−1

−
∫︂

Ω
p div φ dλn = 0.

Using the assumptions on u and φ we obtain∫︂
Ω

Du : Dφ dλn = λ
∫︂

∂Ω
u · φ dHn−1.

This motivates the definition of weak solutions and appropriate function spaces
where we will be looking for solutions.
Notation. Let V denote the space

(︂
W 1,2

n,div(Ω)
)︂n

and let Ṽ denote the space
(W 1,2

n (Ω))n.
Remark. V and Ṽ are Hilbert spaces with the following inner product

⟨u,v⟩V =
∫︂

Ω
Du : Dv dλn +

∫︂
∂Ω

Tr(u) · Tr(v) dHn−1,

where u,v ∈ Ṽ . By ∥·∥V and ∥·∥Ṽ we denote their corresponding norms. Due
to Korn’s inequality (see [6], Proposition 3.13., p.271) and Trace Theorem (see
Theorem 4), these norms are equivalent to the standard ∥·∥(W 1,2(Ω))n norm and
we will use this equivalence throughout the work without mentioning.
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Definition 7. Let λ ∈ R be fixed. We say that u ∈ V is a weak solution to the
problem (2.1)-(2.4) if∫︂

Ω
Du : Dφ dλn = λ

∫︂
∂Ω

Tr(u) · Tr(φ) dHn−1 (2.5)

holds for all φ ∈ V .

Notation. Denote by Λ the set of all λ ∈ R such that there exist a non-trivial
weak solution to the problem (2.1)-(2.4).
Remark. We will only be interested in non-trivial weak solutions hence by setting
φ = u in (2.5) we immediately get that λ ≥ 0. Thus Λ ⊂ [0,∞).

2.1.1 Existence of weak solutions
Now we are going to investigate the question of existence of non-trivial weak

solutions to the problem (2.1)-(2.4). Since Tr(V ) ⊂ Tr ((W 1,2(Ω))n) ⊂ (L2(∂Ω))n

(see Theorem 4), we define a mapping B : V × V → C in the following way

B[u,v] =
∫︂

∂Ω
Tr(u) · Tr(v) dHn−1.

Then B is clearly linear in the first coordinate, conjugate linear in the second
coordinate and there exists C ∈ R, C > 0 such that∫︂

∂Ω
Tr(u) · Tr(v) dHn−1 ≤ ∥Tr(u)∥(L2(∂Ω))n∥Tr(v)∥(L2(∂Ω))n ≤ C∥u∥V ∥v∥V (2.6)

holds for all u,v ∈ V (see Theorem 4). Hence we get

sup{|B[u,v]|; ∥u∥V ≤ 1, ∥v∥V ≤ 1} < ∞.

Using a version of Riesz representation theorem it follows that there exists a
unique T ∈ L(V ) such that

B[u,v] = ⟨T (u),v⟩V

for all u,v ∈ V . Operator T is thus almost a solution operator to the fol-
lowing slightly modified problem. The precise relation to the solution operator
is addressed later in the proof of Lemma 10. For given g : ∂Ω → Rn we seek
v : Ω → Rn and q : Ω → R satisfying

−∆v + ∇q = 0 in Ω, (2.7)
div v = 0 in Ω, (2.8)
v · n = 0 on ∂Ω, (2.9)

[(Dv) n]τ + v = g on ∂Ω, (2.10)

Weak formulation of this problem would have been derived in the same way as
for problem (2.1)-(2.4).

Definition 8. Let g ∈ (L2(∂Ω))n. We say that v ∈ V is a weak solution to the
problem (2.7)-(2.10) if∫︂

Ω
Dv : Dφ dλn +

∫︂
∂Ω

Tr(v) · Tr(φ) dHn−1 =
∫︂

∂Ω
g · Tr(φ) dHn−1 (2.11)

holds for all φ ∈ V .
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Lemma 9. Operator T is self-adjoint.

Proof. Self-adjointness of T follows immediately from definition since

⟨T (u),v⟩V = B[u,v] = B[v,u] = ⟨T (v),u⟩V = ⟨u, T (v)⟩V

holds for all u,v ∈ V .

Lemma 10. Operator T is compact.

Proof. Firstly, it holds that operator Tr

Tr:
(︂
W 1,2(Ω)

)︂n
→
(︂
L2(∂Ω)

)︂n

is compact (see [5], Theorem 6.2., p. 103). Furthermore, like in (2.6), we get that
there exists c ∈ R, c > 0 such that∫︂

∂Ω
g · Tr(φ) dHn−1 ≤ c∥g∥(L2(∂Ω))n∥φ∥V , (2.12)

for all φ ∈ V . Thus, for given g the left-hand side of (2.12) defines a continuous
linear operator on V . Using Riesz representation theorem (see Theorem 5) we
obtain a unique element ṽ ∈ V satisfying

⟨φ, ṽ⟩V =
∫︂

∂Ω
g · Tr(φ) dHn−1,

for all φ ∈ V . Hence by using the properties of inner product, ṽ ∈ V is a unique
solution satisfying (2.11) for all φ ∈ V . Define a mapping ψ : g ↦→ ṽ, where ṽ ∈ V
is the unique solution from above. Then ψ is obviously linear. Furthermore, we
know that (2.11) holds for v = ṽ and by taking φ = ṽ and using (2.12) we get

∥ṽ∥2
V =

∫︂
∂Ω

g · Tr(ṽ) dHn−1 ≤ c∥g∥(L2(∂Ω))n∥ṽ∥V .

Using Young’s inequality we get

c∥g∥(L2(∂Ω))n∥ṽ∥V ≤ c
(︂
C(ε)∥g∥2

(L2(∂Ω))n + ε∥ṽ∥2
V

)︂
where ε ∈ R, ε > 0 is chosen in a way that εc < 1. Altogether this yields

∥ψ(g)∥V ≤ C∥g∥(L2(∂Ω))n

for some C ∈ R, C > 0 which then implies ψ ∈ L((L2(∂Ω))n, V ). Finally, from
construction, it holds that

T = ψ ◦ Tr. (2.13)
Using compactness of Tr, continuity of ψ and (2.13) we indeed obtain that oper-
ator T is compact.
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Lemma 11. Let λ ∈ R, λ > 0 be fixed. A non-trivial function u is a weak solution
to the problem (2.7)-(2.10) with g = λTr(u) if and only if u is an eigenfunction
of T corresponding to eigenvalue 1/λ.

Proof. ” =⇒ ” For all φ ∈ V it holds that

⟨u,φ⟩V = λB[u,φ] = λ ⟨T (u),φ⟩V ,

hence dividing both sides by λ and reorganizing we get⟨︃1
λ

u − T (u),φ
⟩︃

V
= 0.

Setting φ = (1/λ)u − T (u) gives that

T (u) = 1
λ

u.

” ⇐= ” For all φ ∈ V we have

⟨u,φ⟩V = λ
⟨︃1
λ

u,φ
⟩︃

V
= λ ⟨T (u),φ⟩V = λB[u,φ], (2.14)

hence (2.11) holds for all φ ∈ V .

Remark. If a function u is an eigenfunction of T corresponding to eigenvalue 1/λ
then using (2.14) and setting φ = u we get

λ = ⟨u,u⟩V

B[u,u] ≥ 1.

Lemma 12. Let λ ∈ R, λ ∈ (0,1]. Then λ ∈ σp(T ) if and only if 1/λ− 1 ∈ Λ.

Proof. It follows immediately from Lemma 11 since λ ∈ σp(T ) if and only if for
the corresponding eigenfunction u holds the following∫︂

Ω
Du : Dφ dλn =

(︃1
λ

− 1
)︃ ∫︂

∂Ω
Tr(u) · Tr(φ) dHn−1

for all φ ∈ V . The Lemma follows.

Theorem 13. There exist at most countably many λ ∈ R such that there exist a
non-trivial weak solution to the problem (2.1)-(2.4), i.e. set Λ is countable.

Proof. Lemma 9 implies that σ(T ) ⊂ R (see [4], Proposition 6.9., p. 165) and
Lemma 10 implies that spectrum of T is at most countable (see [4], Theorem 6.8.,
p. 164). Lemma 12 completes the proof.
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2.2 Reconstruction of pressure
Natural question that arises is whether we do not lose any information about

the pressure. It is well known that for Stokes problem with Dirichlet boundary
condition it is not the case and we would now like to modify this result to our
problem. The core of the proof lies in the following Theorem and Lemmata.
Notation. For n ∈ N, q ∈ R, q ∈ (1,∞) and Ω ⊂ Rn measurable we denote
L̃

q(Ω) = {g ∈ Lq(Ω);
∫︁

Ω g = 0}.

Theorem 14. Let n ∈ N and let q, q′ ∈ R, 1 < q < ∞ satisfying 1/q + 1/q′ = 1.
Let Ω ⊂ Rn be a bounded Lipschitz domain. Let f ∈ L̃

q(Ω). Then there exists a
solution v ∈ (W 1,q

0 (Ω))n to the following problem

div v = f in Ω,
v = 0 on ∂Ω

(2.15)

such that
∥v∥(W 1,q

0 (Ω))n ≤ C∥f∥Lq(Ω), (2.16)

where constant C ∈ R is independent of f .

Proof. See [7], Theorem III.3.3, p. 179.

Remark. There exists a bounded linear operator Bog: L̃q(Ω) → (W 1,q
0 (Ω))n such

that div (Bog(f)) = f in Ω. We will refer to it as Bogovski operator.

Lemma 15. Let A : Ṽ → L̃
2(Ω) denote an operator defined by A(v) = div v.

Then

R(A∗) = (ker(A))⊥ = {g ∈ Ṽ
∗; ∀v ∈ ker(A) : ⟨g,v⟩Ṽ

∗
,Ṽ = 0 }.

Proof. Operator A is clearly linear and continuous. Firstly, using Gauss’s
theorem (see Theorem 6) we obtain for v ∈ Ṽ that∫︂

Ω
A(v) dλn =

∫︂
Ω

div v dλn =
∫︂

∂Ω
Tr(v) · n dHn−1 = 0,

hence A is indeed a mapping to L̃2(Ω). Due to Closed Range Theorem (see [8],
Theorem II.18) it is enough to prove that the range of A is closed in L̃

2(Ω).
Assume that (fk)∞

k=1 is a sequence in R(A) satisfying fk → f in L̃2(Ω). Owing to
the fact that R(A) ⊂ L̃

2(Ω), we can use Theorem 14 to get vk ∈ (W 1,2
0 (Ω))n ⊂ Ṽ

such that A(vk) = fk and

∥vk∥(W 1,2
0 (Ω))n ≤ C∥fk∥L2(Ω),

for all k ∈ N where constant C ∈ R is independent of fk. Since
(︂
∥fk∥L2(Ω)

)︂∞

k=1
is

bounded, (∥vk∥Ṽ )∞
k=1 is also bounded and since Ṽ is reflexive, we can extract a

subsequence (denoted the same) such that vk ⇀ v in Ṽ and hence div vk ⇀ div v
in L2(Ω). It follows that A(v) = div v = f in Ω which implies f ∈ R(A) and
thus R(A) is indeed closed in L̃

2(Ω).

12



Lemma 16. Suppose that G ∈ Ṽ
∗ is such that

⟨G,φ⟩Ṽ
∗
,Ṽ = 0

for all φ ∈ V . Then there exists exactly one p ∈ L̃
2(Ω) such that

⟨G,φ⟩Ṽ
∗
,Ṽ =

∫︂
Ω
p div φ dλn

holds for all φ ∈ Ṽ .

Proof. The proof is almost identical to the case with zero Dirichlet boundary
condition (see [7], Theorem III.5.3, p. 217) with slight modification proved in
Lemma 15. We will show the proof for readers convenience. It clearly holds that
ker(A) = V . Thus G ∈ (ker(A))⊥ = R(A∗), i.e. there exists z ∈

(︂
L̃

2(Ω)
)︂∗

such
that A∗(z) = G. Using the definition of the adjoint operator we obtain

⟨G,φ⟩Ṽ
∗
,Ṽ = ⟨A∗(z),φ⟩Ṽ

∗
,Ṽ = ⟨z, A(φ)⟩

L̃
2(Ω)∗,L̃

2(Ω) .

Finally, by using Riesz representation theorem (see Theorem 5) we obtain a
uniquely determined p ∈ L̃

2(Ω) satisfying

⟨G,φ⟩Ṽ
∗
,Ṽ = ⟨z, A(φ)⟩

L̃
2(Ω)∗,L̃

2(Ω) =
∫︂

Ω
pA(φ) dλn =

∫︂
Ω
p div φ dλn

for all φ ∈ Ṽ .

We now have all the tools ready to finally prove the reconstruction of pressure
for our problem (2.1)-(2.4) as we show in the following Lemma.

Lemma 17. Let λ ∈ R be fixed and let u ∈ V satisfy (2.5) for all φ ∈ V . Then
there exists exactly one p ∈ L̃

2(Ω) such that∫︂
Ω

∇u : ∇φ dλn − λ
∫︂

∂Ω
Tr(u) · Tr(φ) dHn−1 =

∫︂
Ω
p div φ dλn (2.17)

holds for all φ ∈ Ṽ .

Proof. Define G for φ ∈ Ṽ as follows

⟨G,φ⟩Ṽ
∗
,Ṽ =

∫︂
Ω

∇u : ∇φ dλn − λ
∫︂

∂Ω
Tr(u) · Tr(φ) dHn−1. (2.18)

Like in (2.6), there exists c ∈ R, c > 0 such that∫︂
∂Ω

Tr(u) · Tr(φ) dHn−1 ≤ c∥u∥Ṽ ∥φ∥Ṽ

holds for all u,φ ∈ Ṽ . Using Hölder’s inequality in the first term in (2.18) we
obtain that there exists C ∈ R such that

⟨G,φ⟩Ṽ
∗
,Ṽ ≤ C∥u∥Ṽ ∥φ∥Ṽ

holds for all u,φ ∈ Ṽ , i.e. G ∈ Ṽ
∗. Lemma 16 completes the proof.
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2.3 Auxiliary problem
In order to investigate the asymptotic behaviour of eigenvalues of the original

problem (2.1)-(2.4), we are firstly going to investigate the asymptotic behaviour
of eigenvalues of a different problem on a simple domain on which we are going
to be be able to calculate the asymptotics explicitly. This approach would work
in any dimension but the calculations would get unbearably difficult and that
is why we were not able to generalize it to arbitrary dimension. We will firstly
investigate the two dimensional case.
Remark. Any symbolic calculation that we refer to in the thesis and are not
explicitly shown were performed in the Wolfram Mathematica program and the
corresponding files are added to the thesis externally.

2.3.1 Formulation of the auxiliary problem in two dimen-
sions and its basic properties

Notation. We denote Ω = (0, 1)2 and Γ = ∂Ω. Furthermore, let us denote

Γ1 = {(x1,x2) ∈ R2; x2 = 0, x1 ∈ (0, 1)},
Γ2 = {(x1,x2) ∈ R2; x1 = 0, x2 ∈ (0, 1)},
Γ3 = {(x1,x2) ∈ R2; x1 = 1, x2 ∈ (0, 1)},
Γ4 = {(x1,x2) ∈ R2; x2 = 1, x1 ∈ (0, 1)}.

For u : Ω → R2, p : Ω → R and λ ∈ R we consider a modified version of
problem (2.1)-(2.4) in the following way

−∆u + ∇p = 0 in Ω, (2.19)
div u = 0 in Ω, (2.20)

u = 0 on Γ1, (2.21)
∂u1

∂x2
= λu1 and u2 = 0 on Γ4, (2.22)

u(0,x2) − u(1,x2) = 0 for x2 ∈ [0, 1], (2.23)
∂u

∂x1
(0,x2) − ∂u

∂x1
(1,x2) = 0 for x2 ∈ [0, 1], (2.24)

p(0,x2) − p(1,x2) = 0 for x2 ∈ (0, 1). (2.25)

Thus, we consider periodic boundary conditions in direction x1 on two parallel
sides of the square for u and also for the pressure p. The weak formulation of this
problem would have been derived in the same way as for the problem (2.1)-(2.4)
only the function spaces of solutions and test functions will be different.
Remark. Condition (2.22) corresponds to condition [(∇u) n]τ = λu on Γ4.

Definition 18. We define space V2 as follows

V2 = {u ∈ (W 1,2
div (Ω))2; Tr(u)|Γ1 = 0,

Tr(u)(0,x2) = Tr(u)(1,x2) for x2 ∈ [0, 1],Tr(u)2|Γ4 = 0},
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Remark. Space V2 is again a Hilbert space. Due to the condition Tr(u)|Γ1 = 0
in Definition 18, the fact that H1(Γ1) > 0 and the fact that Ω is connected, it
follows that for u,v ∈ V2 the expression

⟨u,v⟩V2
=
∫︂

Ω
∇u : ∇v dλ2

defines a scalar product on V2 and the corresponding norm ∥·∥V2 is equivalent to
the standard ∥·∥W 1,2 norm.

Definition 19. Let λ ∈ R be fixed. We say that u ∈ V2 is a weak solution to the
problem (2.19)-(2.25) if∫︂

Ω
∇u : ∇φ dλ2 = λ

∫︂
Γ4

Tr(u) · Tr(φ) dH1 (2.26)

holds for all φ ∈ V2.

Remark. We will only be interested in non-trivial weak solutions hence by setting
φ = u we immediately get that λ ≥ 0. Moreover, for λ = 0 we obtain by setting
φ = u that ⟨u,u⟩V2

= 0 and hence the only weak solution is the trivial one.
In order to show that there exist only countably many values of λ ∈ R such

that there exists a non-trivial weak solution to the problem (2.19)-(2.25), we
would again define a mapping B : V2 × V2 → C by

B[u,v] =
∫︂

Γ4
Tr(u) · Tr(v) dH1

and get the existence of a unique operator T2 ∈ L(V2) satisfying

B[u,v] = ⟨T2(u),v⟩V2

for all u,v ∈ V2. The procedure would now be the same, i.e we would show
analogous Lemmata as in Section 2.1 with the only difference being the fact that
due to inner product on V2, we would not need to add additional term to the
boundary condition in the formulation of the problem to show compactness of
T2. Hence the following Theorem holds.

Theorem 20. Operator T2 is compact and self-adjoint. For some fixed λ ∈ R, λ >
0, a non-trivial function u is a weak solution to the problem (2.19)-(2.25) if and
only if u is an eigenfunction of T2 corresponding to eigenvalue 1/λ. There exist
at most countably many λ ∈ R such that there exist a non-trivial weak solution
to the problem (2.19)-(2.25).

2.3.2 Existence of solutions and asymptotic behaviour of
eigenvalues in two dimensions

In order to determine the asymptotic behaviour of λ’s for which there exist
non-trivial weak solutions, we will now compute the solutions to the problem
(2.19)-(2.25) explicitly and afterwards we will show that these solutions are in
fact already all non-trivial weak solutions to this problem. The particular form
of functions in which we will be looking for solutions was inspired by a paper by
Rummler [9].

15



Proposition 21. For any k ∈ 2πN0 there exist λ(k) ∈ R of the form

λ(k) =

⎧⎪⎪⎨⎪⎪⎩
1 if k = 0,
2k
(︂
−1 + e4k − 4e2kk

)︂
1 − 2e2k + e4k − 4e2kk2 if k ∈ 2πN

(2.27)

and functions ai,j, pi for i, j ∈ {1,2} of variable x2 such that functions

uk(x1,x2) =

⎛⎜⎝a1,1(x2) cos(kx1) + a1,2(x2) sin(kx1)

a2,1(x2) cos(kx1) + a2,2(x2) sin(kx1)

⎞⎟⎠
and

pk(x1,x2) = p1(x2) cos(kx1) + p2(x2) sin(kx1)
solve the problem (2.19)-(2.25) in the pointwise sense. Moreover, the multiplicity
of λ(0) is one and the multiplicity of λ(k) for k ∈ 2πN is two.

Proof. Conditions (2.23)-(2.25) are satisfied trivially. First, we are going to deal
with the case k = 0. Then

u0(x1,x2) =

⎛⎜⎝a1,1(x2)

a2,1(x2)

⎞⎟⎠
and

p0(x1,x2) = p1(x2).

Equation (2.20): Rewriting div u0 = 0 we want

a′
2,1(x2) = 0

for all x2 ∈ (0, 1). Thus a2,1(x2) = c2,1 for some c2,1 ∈ R.

Equation (2.21): We want

a1,1(0) = a2,1(0) = 0. (2.28)

This already implies that c2,1 = 0 and thus a2,1(x2) = 0 for all x2 ∈ (0, 1).

Equation (2.19): Rewriting −∆u0 + ∇p0 = 0 we want

a′′
1,1(x2) = 0

for all x2 ∈ (0, 1). Thus a1,1(x2) = d1,1x2 for some d1,1 ∈ R and all x2 ∈ (0, 1) due
to (2.28). Next, we want

p′
1(x2) = 0

for all x2 ∈ (0, 1). Thus p1(x2) = p1 for some p1 ∈ R.
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Equation (2.22): The condition that u2 = 0 on Γ4 is trivial. The second boundary
condition for unknown λ gives

d1,1 = λd1,1.

Since we are only interested in non-trivial solutions, we require d1,1 ̸= 0 and thus
λ = 1. Consequently, the moreover part of the Proposition for λ(0) follows.

Suppose now that k ∈ 2πN. Formally applying divergence to (2.19) and
assuming that (2.20) holds we get that

div(−∆u + ∇p) = − ∆(div u)⏞ ⏟⏟ ⏞
=0

+∆p = ∆p = 0 (2.29)

holds in Ω. Using (2.29) for the special form of pk we obtain that

p′′
1(x2) cos(kx1) + p′′

2(x2) sin(kx1) − k2p1(x2) cos(kx1) − k2p2(x2) sin(kx1) = 0

holds for (x1,x2) ∈ Ω. Rearranging the equation yields

cos(kx1)(p′′
1(x2) − k2p1(x2)) + sin(kx1)(p′′

2(x2) − k2p2(x2)) = 0.

Since this equation should hold for any (x1,x2) ∈ Ω we deduce that for i ∈ {1,2}

p′′
i (x2) − k2pi(x2) = 0

holds for all x2 ∈ (0, 1). Thus we can write pi in the following way

pi(x2) = p1
i e

kx2 + p2
i e

−kx2 ,

where x2 ∈ (0, 1) and p1
i , p

2
i ∈ R for i ∈ {1,2}. Plugging uk and pk into (2.19) we

obtain (similarly as above) for (x1,x2) ∈ Ω the following relations

cos(kx1)(a′′
1,1(x2) − k2a1,1(x2) − kp2(x2))+

sin(kx1)(a′′
1,2(x2) − k2a1,2(x2) + kp1(x2)) = 0

and

cos(kx1)(a′′
2,1(x2) − k2a2,1(x2) − p′

1(x2))+
sin(kx1)(a′′

2,2(x2) − k2a2,2(x2) − p′
2(x2)) = 0.

Thus we again deduce that

a′′
1,1(x2) − k2a1,1(x2) − kp2(x2) = 0,
a′′

1,2(x2) − k2a1,2(x2) + kp1(x2) = 0

and for i ∈ {1,2}
a′′

2,i(x2) − k2a2,i(x2) − p′
i(x2) = 0

holds for all x2 ∈ (0, 1). Solving these equations we get

a1,1(x2) = a1
1,1e

kx2 + a2
1,1e

−kx2 + x2

2
(︂
p1

2e
kx2 − p2

2e
−kx2

)︂
, (2.30)

a1,2(x2) = a1
1,2e

kx2 + a2
1,2e

−kx2 + x2

2
(︂
−p1

1e
kx2 + p2

1e
−kx2

)︂
(2.31)
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and for i ∈ {1,2}

a2,i(x2) = a1
2,ie

kx2 + a2
2,ie

−kx2 + x2

2
(︂
p1

i e
kx2 + p2

i e
−kx2

)︂
, (2.32)

where a1
i,j, a

2
i,j ∈ R for i, j ∈ {1,2}. Functions uk and pk of these forms thus

satisfy (2.19).
Now we are going to determine for which values of λ there exist nonzero co-

efficients such that uk also satisfy (2.20)-(2.22).

Equation (2.21): For all x1 ∈ (0, 1) we want

uk(x1,0) =

⎛⎜⎝a1,1(0) cos(kx1) + a1,2(0) sin(kx1)

a2,1(0) cos(kx1) + a2,2(0) sin(kx1)

⎞⎟⎠ = 0.

Thus we deduce that for i, j ∈ {1,2} we need ai,j(0) = 0. Plugging this into
(2.30)-(2.32) we obtain for i, j ∈ {1,2} that

a2
i,j = −a1

i,j. (2.33)

Equation (2.20): Rewriting div uk = 0 we want
−ka1,1(x2) sin(kx1) + ka1,2(x2) cos(kx1) + a′

2,1(x2) cos(kx1) + a′
2,2(x2) sin(kx1) = 0

for all (x1,x2) ∈ Ω. Rearranging the equation yields
cos(kx1)(a′

2,1(x2) + ka1,2(x2)) + sin(kx1)(a′
2,2(x2) − ka1,1(x2)) = 0.

Thus we deduce that
a′

2,1(x2) + ka1,2(x2) = 0, (2.34)
a′

2,2(x2) − ka1,1(x2) = 0 (2.35)
for all x2 ∈ (0, 1). Using (2.32) and (2.33) we deduce for i ∈ {1,2} that

a′
2,i(x2) = ka1

2,i

(︂
ekx2 + e−kx2

)︂
+ 1

2
(︂
p1

i e
kx2 + p2

i e
−kx2

)︂
+ kx2

2
(︂
p1

i e
kx2 − p2

i e
−kx2

)︂
.

Plugging this into (2.34)-(2.35) we obtain

ka1
2,1

(︂
ekx2 + e−kx2

)︂
+ 1

2
(︂
p1

1e
kx2 + p2

1e
−kx2

)︂
+ ka1

1,2

(︂
ekx2 − e−kx2

)︂
= 0, (2.36)

ka1
2,2

(︂
ekx2 + e−kx2

)︂
+ 1

2
(︂
p1

2e
kx2 + p2

2e
−kx2

)︂
− ka1

1,1

(︂
ekx2 − e−kx2

)︂
= 0 (2.37)

for all x2 ∈ (0, 1). By comparing coefficients for each term ekx2 , e−kx2 in (2.36)-
(2.37) we deduce the following relations

ka1
2,1 + p1

1
2 + ka1

1,2 = 0, (2.38)

ka1
2,1 + p2

1
2 − ka1

1,2 = 0, (2.39)

ka1
2,2 + p1

2
2 − ka1

1,1 = 0, (2.40)

ka1
2,2 + p2

2
2 + ka1

1,1 = 0. (2.41)
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Equation (2.22): The condition that u2 = 0 on Γ4 is treated in the same way
as for equation (2.21) and hence we obtain that a2,i(1) = 0 for i ∈ {1,2}. Using
(2.32) and (2.33) we get

a1
2,i

(︂
ek − e−k

)︂
+ 1

2
(︂
p1

i e
k + p2

i e
−k
)︂

= 0 (2.42)

for i ∈ {1,2}. The second boundary condition for unknown λ gives

a′
1,1(1) cos(kx1) + a′

1,2(1) sin(kx1) = λ (a1,1(1) cos(kx1) + a1,2(1) sin(kx1))

for all x1 ∈ (0, 1). Equivalently

cos(kx1)(a′
1,1(1) − λa1,1(1)) + sin(kx1)(a′

1,2(1) − λa1,2(1)) = 0.

Hence we finally deduce that

a′
1,i(1) − λa1,i(1) = 0

for i ∈ {1,2}. Using (2.30)-(2.31) we get

ka1
1,1

(︂
ek + e−k

)︂
+ 1

2
(︂
p1

2e
k − p2

2e
−k
)︂

+ k

2
(︂
p1

2e
k + p2

2e
−k
)︂

− λa1
1,1

(︂
ek − e−k

)︂
− λ

2
(︂
p1

2e
k − p2

2e
−k
)︂

= 0, (2.43)

ka1
1,2

(︂
ek + e−k

)︂
+ 1

2
(︂
−p1

1e
k + p2

1e
−k
)︂

− k

2
(︂
p1

1e
k + p2

1e
−k
)︂

− λa1
1,2

(︂
ek − e−k

)︂
− λ

2
(︂
−p1

1e
k + p2

1e
−k
)︂

= 0. (2.44)

Thus we end up with 8 equations for 8 unknown coefficients, i.e. equations
(2.38)-(2.44). Let us denote the matrix of the considered problem by Ak. The
corresponding system then can be rewritten like⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0 k k 0

0 1
2 0 0 0 k −k 0

0 0 1
2 0 −k 0 0 k

0 0 0 1
2 k 0 0 k

e2k

2
1
2 0 0 0 e2k − 1 0 0

0 0 e2k

2
1
2 0 0 0 e2k − 1

0 0 b1 b2 b3 0 0 0

−b1 −b2 0 0 0 0 b3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

Ak

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
1

p2
1

p1
2

p2
2

a1
1,1

a1
2,1

a1
1,2

a1
2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (2.45)

where

b1 = e2k

2 (1 + k − λ) , b2 = 1
2 (−1 + k + λ) , b3 = k

(︂
e2k + 1

)︂
− λ

(︂
e2k − 1

)︂
.
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In order for non-trivial solutions to exist, the matrix of this system must be
singular. We thus want

0 = det(Ak) = − 1
16
(︂
2k + λ+ e4k (−2k + λ) − 2e2k

(︂
λ+ 2k2 (λ− 2)

)︂)︂2

from which we obtain

λ(k) =
2k
(︂
−1 + e4k − 4e2kk

)︂
1 − 2e2k + e4k − 4e2kk2 ,

which completes the proof of (2.27) and the first part of the Proposition. Concern-
ing the moreover part of the Proposition for λ(k) where k ∈ 2πN, computations
yield that the kernel of the matrix Ak for λ = λ(k) has dimension two which
completes the whole proof.

Remark. The denominator of λ(k) is nonzero for all k ∈ 2πN. Solving

1 − 2e2k + e4k − 4e2kk2 = e4k − e2k
(︂
2 + 4k2

)︂
+ 1 = 0

gives

e2k = 2 + 4k2 ±
√

16k4 + 16k2

2 = 1 + 2k2 ± 2k
√
k2 + 1.

However, it clearly holds that

1 + 2k2 ± 2k
√
k2 + 1 ≤ 1 + 6k2

for all k ∈ 2πN. It can be proven by induction that

1 + 6k2 < e2k

for all k ∈ 2πN, hence the claim follows.
Corollary 22. Let k ∈ 2πN and denote u1

k,u
2
k the linearly independent solutions

from Proposition 21 corresponding to λ(k). Then the first coordinates of the
solutions on Γ4 can be chosen in such a way that

u1
k(x1,1)1 = c1(k) cos(kx1),

u2
k(x1,1)1 = c2(k) sin(kx1),

for x1 ∈ (0, 1) where c1(k) and c2(k) are some non-zero constants. For k = 0
denote u0 as the solution corresponding to λ(0) and for i ∈ {1,2} denote ui

0 = u0.
Then for x1 ∈ (0, 1) it holds that u0(x1,1)1 = c for some non-zero constant c.

Proof. Proof eventually follows from computing the kernel of the matrix Ak for
λ = λ(k).

Proposition 23. The values

λ(k) =

⎧⎪⎪⎨⎪⎪⎩
1 if k = 0,
2k
(︂
−1 + e4k − 4e2kk

)︂
1 − 2e2k + e4k − 4e2kk2 if k ∈ 2πN

are exactly all the values of λ for which there exist a non-trivial weak solution to
the problem (2.19)-(2.25).
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Remark. Throughout the proof we will use results and notation from Corollary
22.

Proof. One implication is trivial since for these values of λ(k) we calculated
corresponding smooth solutions uk in Proposition 21 and hence they are also
weak solutions.

On the other hand, suppose that there exists λ∗ ∈ R, λ∗ > 0 such that

λ∗ /∈ {λ(k); k ∈ 2πN0}

and a corresponding non-trivial weak solution u∗ ∈ V2. Taking ui
k for i ∈ {1,2}

and k ∈ 2πN0 as a test functions in (2.26) we obtain⟨︂
u∗,ui

k

⟩︂
V2

= λ∗
∫︂

Γ4
Tr(u∗) · Tr(ui

k) dH1. (2.46)

Furthermore, taking u∗ as a test function in (2.26) we obtain for i ∈ {1,2} that

⟨ui
k,u

∗⟩V2
= λ(k)

∫︂
Γ4

Tr(ui
k) · Tr(u∗) dH1 = λ(k)

∫︂
Γ4

Tr(u∗) · Tr(ui
k) dH1. (2.47)

Relations (2.46)-(2.47) imply that for i ∈ {1,2} it holds

0 =
⟨︃ 1
λ∗ u∗,ui

k

⟩︃
V2

−
⟨︄

1
λ(k)u∗,ui

k

⟩︄
V2

=
⟨︂
u∗,ui

k

⟩︂
V2

(︄
1
λ∗ − 1

λ(k)

)︄
,

thus using the assumption on λ∗ we get⟨︂
u∗,ui

k

⟩︂
V2

= 0 (2.48)

for i ∈ {1,2}. Using (2.46) and (2.48) we obtain∫︂
Γ4

Tr(u∗)1Tr(ui
k)1 dH1 = 0

for all k ∈ 2πN0. Thus ∫︂
Γ4

Tr(u∗)1 cos(kx1)dH1 = 0, (2.49)∫︂
Γ4

Tr(u∗)1 sin(kx1)dH1 = 0 (2.50)

for all k ∈ 2πN0. Since the set {cos(kx1), sin(kx1); k ∈ 2πN0} forms an or-
thogonal basis in L2((0, 1)), relations (2.49)-(2.50) imply Tr(u∗)1 = 0 on Γ4 and
hence

Tr(u∗)|Γ4 = 0. (2.51)
Plugging (2.51) into (2.26) we get that∫︂

Ω
∇u∗ : ∇φ dλ2 = ⟨u∗,φ⟩V2

= 0 (2.52)

holds for all φ ∈ V2. By setting φ = u∗ in (2.52) we obtain that u∗ = 0 in Ω
which is a contradiction.
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Remark. Assume for now that λ̃ : [0,∞) → R is defined by λ̃(0) = 1 and

λ̃(x) = 2x (−1 + e4x − 4e2xx)
1 − 2e2x + e4x − 4e2xx2

for x ∈ (0,∞). It can be shown that λ̃′(x) > 0 for x ∈ (0,∞). Using this and
showing e.g. numerically that λ(2π) > λ(0), it follows that λ(k + 1) > λ(k) for
all k ∈ 2πN0.

In order to formally determine the asymptotic growth of λ(k), let us now
arrange λ(k) into a non-decreasing sequence of positive numbers, i.e. we consider
the sequence (λk)∞

k=1 where each eigenvalue λ appears according its multiplicity
and {λk; k ∈ N} = {λ(k); k ∈ 2πN0}.
Definition 24. Let (µk)∞

k=1 and (νk)∞
k=1 be a sequences of real numbers. We say

that
µk ∼ νk

as k → ∞ if
lim

k→∞

µk

νk

= 1.

Proposition 25. The asymptotic growth of the sequence (λk)∞
k=1 is linear and it

holds that
λk ∼ 2πk

as k → ∞.
Notation. For any x ∈ R we denote ⌊x⌋ as the floor function, i.e. ⌊x⌋ gives as
output the greatest integer less than or equal to x.

Proof. Using the notation and results from Propositions 21 we know that
eigenvalue λ(0) = 1 has multiplicity one and λ(k) for k ∈ 2πN has multiplicity
two. Hence the sequence (λk)∞

k=1 has the following form

λk =
⎧⎨⎩1 if k = 1,
λ (2π⌊k/2⌋) if k ≥ 2.

(2.53)

Now the claim follows easily from Proposition 23 and Remark afterwards. Using
(2.27) and (2.53) we obtain for k ∈ N, k ≥ 2 that

λk =
4π⌊k/2⌋

(︂
−1 + e8π⌊k/2⌋ − 8πe4π⌊k/2⌋⌊k/2⌋

)︂
1 − 2e4π⌊k/2⌋ + e8π⌊k/2⌋ − 16π2e4π⌊k/2⌋⌊k/2⌋2 .

For any k ∈ N it holds that k/2 − 1 ≤ ⌊k/2⌋ ≤ k/2 hence

lim
k→∞

⌊k/2⌋
k

= 1
2 .

Using

lim
k→∞

(︄
−1 + e8π⌊k/2⌋ − 8πe4π⌊k/2⌋⌊k/2⌋

1 − 2e4π⌊k/2⌋ + e8π⌊k/2⌋ − 16π2e4π⌊k/2⌋⌊k/2⌋2

)︄
= 1

we indeed get
λk ∼ 2πk

as k → ∞.
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Proposition 26. The sequence (λk)∞
k=1 does not depend on the position of the

rectangle, i.e. if we consider Ω′ = (a1, b1) × (a2, b2) for some ai, bi ∈ R, ai < bi

where i ∈ {1,2}, then the sequence (λk)∞
k=1 for this domain is the same as for

domain Ω′′ = (0, b1 − a1) × (0, b2 − a2). Moreover, let εi ∈ R, εi > 0 for i ∈ {1,2}
and denote Ω = (0, ε1) × (0, ε2) and Sd = (0, ε1). Then there exists c ∈ R, c > 0
independent of the domain such that the sequence (λk)∞

k=1 for Ω satisfies

λk ∼ ck

H1(Sd) (2.54)

as k → ∞.

Proof. The fact that the sequence does not depend on the position of the square
is trivial since one can get solutions on different squares by appropriate affine
translations of variables.

Next, assuming that Ω = (0, ε1)×(0, ε2), we need to suppose that k ∈ 2πN/ε1
in order for (2.23)-(2.25) to hold. We could now go through the computations
from Proposition 21 again and we would eventually end up with the condition
for determinant to equal zero being

λ(k) =
2k
(︂
−1 + e4ε2k − 4e2ε2kε2k

)︂
1 − 2e2ε2k + e4ε2k − 4e2ε2kε2

2k
2 .

Arrange λ(k) again into a non-decreasing sequence (λk)∞
k=1 where each eigenvalue

λ is counted with its multiplicity and {λk; k ∈ N} = {λ(k); k ∈ 2πN0/ε1}. Using
the same calculations as in Proposition 25 yields that indeed

λk ∼ 2πk
ε1

= 2πk
H1(Sd)

as k → ∞.

2.3.3 Formulation of the auxiliary problem in three di-
mensions and its basic properties

Now we are going to deal with the three dimensional case, however, the ap-
proach is going to be the same apart from some changes in determining the
asymptotics so we will omit details and focus on parts that are different.
Notation. We denote Ω = (0, 1)3 and Γ = ∂Ω. Furthermore, let us denote

Γ1 = {(x1,x2,x3) ∈ R3; x3 = 0, x1, x2 ∈ (0, 1)},
Γ2 = {(x1,x2,x3) ∈ R3; x2 = 0, x1, x3 ∈ (0, 1)},
Γ3 = {(x1,x2,x3) ∈ R3; x1 = 1, x2, x3 ∈ (0, 1)},
Γ4 = {(x1,x2,x3) ∈ R3; x2 = 1, x1, x3 ∈ (0, 1)},
Γ5 = {(x1,x2,x3) ∈ R3; x1 = 0, x2, x3 ∈ (0, 1)},
Γ6 = {(x1,x2,x3) ∈ R3; x3 = 1, x1, x2 ∈ (0, 1)}.
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For u : Ω → R3, p : Ω → R and λ ∈ R we now consider the following problem

−∆u + ∇p = 0 in Ω, (2.55)
div u = 0 in Ω, (2.56)

u = 0 on Γ1, (2.57)
∂ui

∂x3
= λui for i ∈ {1,2} and u3 = 0 on Γ6, (2.58)

u(x1,0,x3) − u(x1,1,x3) = 0 for x1, x3 ∈ [0, 1], (2.59)
u(0,x2,x3) − u(1,x2,x3) = 0 for x2, x3 ∈ [0, 1], (2.60)

∂u

∂x1
(0,x2,x3) − ∂u

∂x1
(1,x2,x3) = 0 for x2, x3 ∈ [0, 1], (2.61)

∂u

∂x2
(x1,0,x3) − ∂u

∂x2
(x1,1,x3) = 0 for x1, x3 ∈ [0, 1], (2.62)

p(x1,0,x3) − p(x1,1,x3) = 0 for x1, x3 ∈ (0, 1), (2.63)
p(0,x2,x3) − p(1,x2,x3) = 0 for x2, x3 ∈ (0, 1). (2.64)

Thus, we again consider periodic boundary conditions on four parallel sides of
the cube for u and also for the pressure p.
Definition 27. We define space V3 as follows

V3 = {u ∈ (W 1,2
div (Ω))3; Tr(u)|Γ1 = 0,

Tr(u)(x1,0,x3) = Tr(u)(x1,1,x3) for x1, x3 ∈ [0, 1],
Tr(u)(0,x2,x3) = Tr(u)(1,x2,x3) for x2, x3 ∈ [0, 1],Tr(u3)|Γ6 = 0}.

Remark. As for space V2, space V3 is again a Hilbert space, the expression

⟨u,v⟩V3
=
∫︂

Ω
∇u : ∇v dλ3

defines a scalar product on V3 and the corresponding norm ∥·∥V3 is equivalent to
the standard ∥·∥W 1,2 norm.
Definition 28. Let λ ∈ R be fixed. We say that u ∈ V3 is a weak solution to the
problem (2.55)-(2.64) if∫︂

Ω
∇u : ∇φ dλ3 = λ

∫︂
Γ6

Tr(u) · Tr(φ) dH2 (2.65)

holds for all φ ∈ V3.
Remark. We will only be interested in non-trivial weak solutions hence by setting
φ = u we immediately get that λ ≥ 0. Moreover, for λ = 0 we obtain by setting
φ = u that ⟨u,u⟩V3

= 0 and hence the only weak solution is the trivial one.
We again define a mapping B : V3 × V3 → C by

B[u,v] =
∫︂

Γ6
Tr(u) · Tr(v) dH2

and get the existence of a unique operator T3 ∈ L(V3) satisfying

B[u,v] = ⟨T3(u),v⟩V3

for all u,v ∈ V3. Completely analogous version of Theorem 20 holds also in this
case, however, we will formulate it nevertheless so we can refer to it later on in
this subsection.
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Theorem 29. Operator T3 is compact and self-adjoint. For some fixed λ ∈ R, λ >
0, a non-trivial function u is a weak solution to the problem (2.55)-(2.64) if and
only if u is an eigenfunction of T3 corresponding to eigenvalue 1/λ. There exist
at most countably many λ ∈ R such that there exist a non-trivial weak solution
to the problem (2.55)-(2.64).

2.3.4 Existence of solutions and asymptotic behaviour of
eigenvalues in three dimensions

In order to determine the asymptotic behaviour of λ’s for which there ex-
ist non-trivial weak solutions, we will now (similarly to two dimensional case)
compute the solutions to the problem (2.55)-(2.64) explicitly and afterwards we
will show that these solutions are in fact already all non-trivial solutions to this
problem.

Notation. Denote by N̂
2 the set (2πN0 × 2πN0) \ {(0,0)}.

Proposition 30. For any k1, k2 ∈ 2πN0 there exist λ(k1,k2) ∈ R of the form

λ1(k1,k2) =

(︃
1 + e2

√
k2

1+k2
2

)︃√︂
k2

1 + k2
2

e2
√

k2
1+k2

2 − 1
(2.66)

and

λ2(k1,k2) =
2
(︃

1 − e4
√

k2
1+k2

2 + 4e2
√

k2
1+k2

2
√︂
k2

1 + k2
2

)︃√︂
k2

1 + k2
2

e2
√

k2
1+k2

2 (2 + 4k2
1 + 4k2

2) − e4
√

k2
1+k2

2 − 1
(2.67)

for (k1,k2) ∈ N̂
2 and λ = 1 for k1 = k2 = 0 and functions ai,j, pi for i ∈

{1,2,3}, j ∈ {1,2,3,4} of variable x3 such that functions

uk1,k2(x1,x2,x3) =

⎛⎜⎜⎜⎜⎜⎝
u1

k1,k2,1 + u2
k1,k2,1 + u3

k1,k2,1 + u4
k1,k2,1

u1
k1,k2,2 + u2

k1,k2,2 + u3
k1,k2,2 + u4

k1,k2,2

u1
k1,k2,3 + u2

k1,k2,3 + u3
k1,k2,3 + u4

k1,k2,3

⎞⎟⎟⎟⎟⎟⎠
and

pk1,k2(x1,x2,x3) = p1
k1,k2 + p2

k1,k2 + p3
k1,k2 + p4

k1,k2

solve the problem (2.55)-(2.64) in the pointwise sense. For i ∈ {1,2,3} and j ∈
{1,2,3,4}, functions uj

k1,k2,i and pj
k1,k2 of variables x1,x2,x3 are defined as follows

u1
k1,k2,i(x1,x2,x3) = ai,1(x3) cos(k1x1) cos(k2x2),
u2

k1,k2,i(x1,x2,x3) = ai,2(x3) cos(k1x1) sin(k2x2),
u3

k1,k2,i(x1,x2,x3) = ai,3(x3) sin(k1x1) cos(k2x2),
u4

k1,k2,i(x1,x2,x3) = ai,4(x3) sin(k1x1) sin(k2x2)
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and

p1
k1,k2(x1,x2,x3) = p1(x3) cos(k1x1) cos(k2x2),
p2

k1,k2(x1,x2,x3) = p2(x3) cos(k1x1) sin(k2x2),
p3

k1,k2(x1,x2,x3) = p3(x3) sin(k1x1) cos(k2x2),
p4

k1,k2(x1,x2,x3) = p4(x3) sin(k1x1) sin(k2x2).

Moreover, eigenvalues of form λi(k1,k2) where i ∈ {1,2} and (k1,k2) ∈
(2πN0 × {0}) ∪ ({0} × 2πN0) have multiplicity two and eigenvalues of form
λi(k1,k2) where i ∈ {1,2} and (k1,k2) ∈ 2πN × 2πN have multiplicity four.

Proof. Conditions (2.59)-(2.64) are satisfied trivially. First, we are going to deal
with the case k1 = k2 = 0. Then

u0,0(x1,x2,x3) =

⎛⎜⎜⎜⎜⎜⎝
a1,1(x3)

a2,1(x3)

a3,1(x3)

⎞⎟⎟⎟⎟⎟⎠
and

p0(x1,x2,x3) = p1(x3).

Equation (2.56): Rewriting div u0 = 0 we want

a′
3,1(x3) = 0

for all x3 ∈ (0, 1). Thus a3,1(x3) = c3,1 for some c3,1 ∈ R.

Equation (2.57): We want

a1,1(0) = a2,1(0) = a3,1(0) = 0. (2.68)

This already implies that c3,1 = 0 and thus a3,1(x3) = 0 for all x3 ∈ (0, 1).

Equation (2.55): Rewriting −∆u0,0 + ∇p0 = 0 we want

a′′
1,1(x3) = a′′

2,1(x3) = 0

for all x3 ∈ (0, 1). Thus a1,1(x3) = d1,1x3 and a2,1(x3) = d2,1x3 for some d1,1, d2,1 ∈
R due to (2.68). Next, we want

p′
1(x3) = 0

for all x3 ∈ (0, 1). Thus p1(x3) = p3 for some p3 ∈ R.

Equation (2.58): The condition u3 = 0 on Γ6 is trivial. The second boundary
condition for unknown λ gives

di,1 = λdi,1
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for i ∈ {1,2}. Since we are only interested in non-trivial solutions, we require
di,1 ̸= 0 for at least one i ∈ {1,2} and thus λ = 1. Consequently, the moreover
part of Proposition 30 for k1 = k2 = 0 follows.

Suppose now that k1 ∈ 2πN and k2 ∈ 2πN0 or k1 ∈ 2πN0 and k2 ∈ 2πN.
Identically as in (2.29) we formally get that

∆p = 0 (2.69)

holds in Ω. Using (2.69) for the special form of pk1,k2 we obtain that

∂2pk1,k2

∂x2
3

− (k2
1 + k2

2)pk1,k2 = 0

holds in Ω. Similarly to proof of Proposition 21 we deduce from this that for
i ∈ {1,2,3,4}

p′′
i (x3) − (k2

1 + k2
2)pi(x3) = 0

holds for all x3 ∈ (0, 1). Thus we can write pi in the following way

pi(x3) = p1
i e

√
k2

1+k2
2x3 + p2

i e
−
√

k2
1+k2

2x3 ,

where p1
i , p

2
i ∈ R for i ∈ {1,2,3,4}. Plugging pk1,k2 into (2.55) we obtain the

following relations

cos(k1x1) cos(k2x2)(a′′
1,1(x3) − (k2

1 + k2
2)a1,1 − k1p3(x3))+

cos(k1x1) sin(k2x2)(a′′
1,2(x3) − (k2

1 + k2
2)a1,2 − k1p4(x3))+

sin(k1x1) cos(k2x2)(a′′
1,3(x3) − (k2

1 + k2
2)a1,3 + k1p1(x3))+

sin(k1x1) sin(k2x2)(a′′
1,4(x3) − (k2

1 + k2
2)a1,4 + k1p2(x3)) = 0,

(2.70)

next

cos(k1x1) cos(k2x2)(a′′
2,1(x3) − (k2

1 + k2
2)a2,1 − k2p2(x3))+

cos(k1x1) sin(k2x2)(a′′
2,2(x3) − (k2

1 + k2
2)a2,2 + k2p1(x3))+

sin(k1x1) cos(k2x2)(a′′
2,3(x3) − (k2

1 + k2
2)a2,3 − k2p4(x3))+

sin(k1x1) sin(k2x2)(a′′
2,4(x3) − (k2

1 + k2
2)a2,4 + k2p3(x3)) = 0

(2.71)

and finally

cos(k1x1) cos(k2x2)(a′′
3,1(x3) − (k2

1 + k2
2)a3,1 − p′

1(x3))+
cos(k1x1) sin(k2x2)(a′′

3,2(x3) − (k2
1 + k2

2)a3,2 − p′
2(x3))+

sin(k1x1) cos(k2x2)(a′′
3,3(x3) − (k2

1 + k2
2)a3,3 − p′

3(x3))+
sin(k1x1) sin(k2x2)(a′′

3,4(x3) − (k2
1 + k2

2)a3,4 − p′
4(x3)) = 0.

(2.72)

From (2.70) we deduce that for i ∈ {1,2} and all x3 ∈ (0, 1)

a′′
1,i(x3) − (k2

1 + k2
2)a1,i − k1pi+2(x3) = 0 (2.73)

and for i ∈ {3,4} and all x3 ∈ (0, 1)

a′′
1,i(x3) − (k2

1 + k2
2)a1,i + k1pi−2(x3) = 0. (2.74)
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From (2.71) we deduce that

a′′
2,1(x3) − (k2

1 + k2
2)a2,1 − k2p2(x3) = 0, (2.75)

a′′
2,2(x3) − (k2

1 + k2
2)a2,2 + k2p1(x3) = 0, (2.76)

a′′
2,3(x3) − (k2

1 + k2
2)a2,3 − k2p4(x3) = 0, (2.77)

a′′
2,4(x3) − (k2

1 + k2
2)a2,4 + k2p3(x3) = 0 (2.78)

holds for all x3 ∈ (0, 1). Finally from (2.72) we deduce that for i ∈ {1,2,3,4}

a′′
3,i(x3) − (k2

1 + k2
2)a3,i − p′

i(x3) = 0 (2.79)

holds for all x3 ∈ (0, 1). Solving equations (2.73)-(2.74) we obtain for i ∈ {1,2}

a1,i(x3) = a1
1,ie

√
k2

1+k2
2x3 + a2

1,ie
−
√

k2
1+k2

2x3+
k1x3

2
√︂
k2

1 + k2
2

(︃
p1

i+2e
√

k2
1+k2

2x3 − p2
i+2e

−
√

k2
1+k2

2x3

)︃
, (2.80)

for i ∈ {3,4}

a1,i(x3) = a1
1,ie

√
k2

1+k2
2x3 + a2

1,ie
−
√

k2
1+k2

2x3+
k1x3

2
√︂
k2

1 + k2
2

(︃
−p1

i−2e
√

k2
1+k2

2x3 + p2
i−2e

−
√

k2
1+k2

2x3

)︃
. (2.81)

Next, solving equations (2.75)-(2.78) we obtain

a2,1(x3) = a1
2,1e

√
k2

1+k2
2x3 + a2

2,1e
−
√

k2
1+k2

2x3+
k2x3

2
√︂
k2

1 + k2
2

(︃
p1

2e
√

k2
1+k2

2x3 − p2
2e

−
√

k2
1+k2

2x3

)︃
, (2.82)

a2,2(x3) = a1
2,2e

√
k2

1+k2
2x3 + a2

2,2e
−
√

k2
1+k2

2x3+
k2x3

2
√︂
k2

1 + k2
2

(︃
−p1

1e
√

k2
1+k2

2x3 + p2
1e

−
√

k2
1+k2

2x3

)︃
, (2.83)

a2,3(x3) = a1
2,3e

√
k2

1+k2
2x3 + a2

2,3e
−
√

k2
1+k2

2x3+
k2x3

2
√︂
k2

1 + k2
2

(︃
p1

4e
√

k2
1+k2

2x3 − p2
4e

−
√

k2
1+k2

2x3

)︃
, (2.84)

a2,4(x3) = a1
2,4e

√
k2

1+k2
2x3 + a2

2,4e
−
√

k2
1+k2

2x3+
k2x3

2
√︂
k2

1 + k2
2

(︃
−p1

3e
√

k2
1+k2

2x3 + p2
3e

−
√

k2
1+k2

2x3

)︃
. (2.85)
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Finally, solving equations (2.79) we obtain for i ∈ {1,2,3,4}

a3,i(x3) = a1
3,ie

√
k2

1+k2
2x3 + a2

3,ie
−
√

k2
1+k2

2x3+
x3

2

(︃
p1

i e
√

k2
1+k2

2x3 + p2
i e

−
√

k2
1+k2

2x3

)︃
, (2.86)

where a1
i,j, a

2
i,j ∈ R for i ∈ {1,2,3} and j ∈ {1,2,3,4}. Functions uk1,k2 and pk1,k2

of these forms thus satisfy (2.55). Now we are going to determine for which values
of λ there exist nonzero coefficients such that uk1,k2 also satisfy (2.56)-(2.58).

Equation (2.57): For all x1, x2 ∈ (0, 1) we require

uk1,k2(x1,x2,0) =

⎛⎜⎜⎜⎜⎜⎝
(u1

k1,k2,1 + u2
k1,k2,1 + u3

k1,k2,1 + u4
k1,k2,1)(x1,x2,0)

(u1
k1,k2,2 + u2

k1,k2,2 + u3
k1,k2,2 + u4

k1,k2,2)(x1,x2,0)

(u1
k1,k2,3 + u2

k1,k2,3 + u3
k1,k2,3 + u4

k1,k2,3)(x1,x2,0)

⎞⎟⎟⎟⎟⎟⎠ = 0.

After rewriting these terms using definitions we again deduce that for i ∈ {1,2,3}
and j ∈ {1,2,3,4} we need ai,j(0) = 0. Plugging this into (2.80)-(2.86) we obtain
for i ∈ {1,2,3} and j ∈ {1,2,3,4} that

a2
i,j = −a1

i,j.

Equation (2.56): Rewriting div uk1,k2 = 0 we want

cos(k1x1) cos(k2x2)(k1a1,3(x3) + k2a2,2(x3) + a′
3,1(x3))+

cos(k1x1) sin(k2x2)(k1a1,4(x3) − k2a2,1(x3) + a′
3,2(x3))+

sin(k1x1) cos(k2x2)(−k1a1,1(x3) + k2a2,4(x3) + a′
3,3(x3))+

sin(k1x1) sin(k2x2)(−k1a1,2(x3) − k2a2,3(x3) + a′
3,4(x3)) = 0

(2.87)

for all (x1,x2,x3) ∈ Ω. Thus we deduce

k1a1,3(x3) + k2a2,2(x3) + a′
3,1(x3) = 0, (2.88)

k1a1,4(x3) − k2a2,1(x3) + a′
3,2(x3) = 0, (2.89)

−k1a1,1(x3) + k2a2,4(x3) + a′
3,3(x3) = 0, (2.90)

−k1a1,2(x3) − k2a2,3(x3) + a′
3,4(x3) = 0 (2.91)

for all x3 ∈ (0, 1). For i ∈ {1,2,3,4} it holds that

a′
3,i(x3) =

√︂
k2

1 + k2
2 a3,i(x3)

(︃
e
√

k2
1+k2

2x3 + e−
√

k2
1+k2

2x3

)︃
+

1
2

(︃
p1

i e
√

k2
1+k2

2x3 + p2
i e

−
√

k2
1+k2

2x3

)︃
+

√︂
k2

1 + k2
2 x3

2

(︃
p1

i e
√

k2
1+k2

2x3 − p2
i e

−
√

k2
1+k2

2x3

)︃
.

Plugging this into (2.88)-(2.91) and by comparing coefficients for each term
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e
√

k2
1+k2

2x3 , e−
√

k2
1+k2

2x3 we deduce the following relations

k1a
1
1,3 + k2a

1
2,2 +

√︂
k2

1 + k2
2 a

1
3,1 + p1

1
2 = 0, (2.92)

−k1a
1
1,3 − k2a

1
2,2 +

√︂
k2

1 + k2
2 a

1
3,1 + p2

1
2 = 0, (2.93)

k1a
1
1,4 − k2a

1
2,1 +

√︂
k2

1 + k2
2 a

1
3,2 + p1

2
2 = 0, (2.94)

−k1a
1
1,4 + k2a

1
2,1 +

√︂
k2

1 + k2
2 a

1
3,2 + p2

2
2 = 0, (2.95)

−k1a
1
1,1 + k2a

1
2,4 +

√︂
k2

1 + k2
2 a

1
3,3 + p1

3
2 = 0, (2.96)

k1a
1
1,1 − k2a

1
2,4 +

√︂
k2

1 + k2
2 a

1
3,3 + p2

3
2 = 0, (2.97)

−k1a
1
1,2 − k2a

1
2,3 +

√︂
k2

1 + k2
2 a

1
3,4 + p1

4
2 = 0, (2.98)

k1a
1
1,2 + k2a

1
2,3 +

√︂
k2

1 + k2
2 a

1
3,4 + p2

4
2 = 0. (2.99)

Equation (2.58): The condition that u3 = 0 on Γ6 is treated in the same way as
before and hence we obtain that a3,i(1) = 0 for i ∈ {1,2,3,4}. Using (2.86) we get

a1
3,i

(︃
e
√

k2
1+k2

2 − e−
√

k2
1+k2

2

)︃
+ 1

2

(︃
p1

i e
√

k2
1+k2

2 + p2
i e

−
√

k2
1+k2

2

)︃
= 0

for i ∈ {1,2,3,4}. The second boundary condition gives for i ∈ {1,2}

cos(k1x1) cos(k2x2)(a′
i,1(1) − λai,1(1)) = 0,

cos(k1x1) sin(k2x2)(a′
i,2(1) − λai,2(1)) = 0,

sin(k1x1) cos(k2x2)(a′
i,3(1) − λai,3(1)) = 0,

sin(k1x1) sin(k2x2)(a′
i,4(1) − λai,4(1)) = 0.

(2.100)

Hence we finally deduce that

a′
i,j(1) − λai,j(1) = 0

for i ∈ {1,2} and j ∈ {1,2,3,4}.
Notation. We denote

Ck1,k2,λ =
√︂
k2

1 + k2
2

(︃
e2

√
k2

1+k2
2 + 1

)︃
− λ

(︃
e2

√
k2

1+k2
2 − 1

)︃
.

Using (2.80)-(2.85) we get for j ∈ {1,2}

a1
1,jCk1,k2,λ +

p1
j+2k1e

2
√

k2
1+k2

2

2
√︂
k2

1 + k2
2

(︃
1 +

√︂
k2

1 + k2
2 − λ

)︃
+

p2
j+2k1

2
√︂
k2

1 + k2
2

(︃
−1 +

√︂
k2

1 + k2
2 + λ

)︃
= 0 (2.101)
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and for j ∈ {3,4}

a1
1,jCk1,k2,λ +

p1
j−2k1e

2
√

k2
1+k2

2

2
√︂
k2

1 + k2
2

(︃
−1 −

√︂
k2

1 + k2
2 + λ

)︃
+

p2
j−2k1

2
√︂
k2

1 + k2
2

(︃
1 −

√︂
k2

1 + k2
2 − λ

)︃
= 0. (2.102)

Finally, the last four equations are

a1
2,1Ck1,k2,λ + p1

2k2e
2
√

k2
1+k2

2

2
√︂
k2

1 + k2
2

(︃
1 +

√︂
k2

1 + k2
2 − λ

)︃
+

p2
2k2

2
√︂
k2

1 + k2
2

(︃
−1 +

√︂
k2

1 + k2
2 + λ

)︃
= 0, (2.103)

a1
2,2Ck1,k2,λ + p1

1k2e
2
√

k2
1+k2

2

2
√︂
k2

1 + k2
2

(︃
−1 −

√︂
k2

1 + k2
2 + λ

)︃
+

p2
1k2

2
√︂
k2

1 + k2
2

(︃
1 −

√︂
k2

1 + k2
2 − λ

)︃
= 0, (2.104)

a1
2,3Ck1,k2,λ + p1

4k2e
2
√

k2
1+k2

2

2
√︂
k2

1 + k2
2

(︃
1 +

√︂
k2

1 + k2
2 − λ

)︃
+

p2
4k2

2
√︂
k2

1 + k2
2

(︃
−1 +

√︂
k2

1 + k2
2 + λ

)︃
= 0, (2.105)

a1
2,4Ck1,k2,λ + p1

3k2e
2
√

k2
1+k2

2

2
√︂
k2

1 + k2
2

(︃
−1 −

√︂
k2

1 + k2
2 + λ

)︃
+

p2
3k2

2
√︂
k2

1 + k2
2

(︃
1 −

√︂
k2

1 + k2
2 − λ

)︃
= 0. (2.106)

Thus we end up with 20 equations for 20 unknown coefficients, i.e. equations
(2.92)-(2.106). Let us denote the matrix of the corresponding problem by Ak1,k2 .
In order for non-trivial solutions to exist, the matrix of this system must be sin-
gular. We thus want det(Ak1,k2) = 0. Solving this equations yields two solutions

λ1(k1,k2) =

(︃
1 + e2

√
k2

1+k2
2

)︃√︂
k2

1 + k2
2

e2
√

k2
1+k2

2 − 1
and

λ2(k1,k2) =
2
(︃

1 − e4
√

k2
1+k2

2 + 4e2
√

k2
1+k2

2
√︂
k2

1 + k2
2

)︃√︂
k2

1 + k2
2

e2
√

k2
1+k2

2 (2 + 4k2
1 + 4k2

2) − e4
√

k2
1+k2

2 − 1
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which completes the proof of relations (2.66)-(2.67) and the first part of the Propo-
sition. Concerning the moreover part of the Proposition, computations yield that
for (k1,k2) ∈ (2πN × {0}) ∪ ({0} × 2πN) and λ = λi(k1,k2) for i ∈ {1,2}, the ma-
trix Ak1,k2 has dimension two. Further, for (k1,k2) ∈ 2πN×2πN and λ = λi(k1,k2)
for i ∈ {1,2}, the matrix Ak1,k2 has dimension four which completes the whole
proof.

Proposition 31. The values

λ1(k1,k2) =

(︃
1 + e2

√
k2

1+k2
2

)︃√︂
k2

1 + k2
2

e2
√

k2
1+k2

2 − 1

and

λ2(k1,k2) =
2
(︃

1 − e4
√

k2
1+k2

2 + 4e2
√

k2
1+k2

2
√︂
k2

1 + k2
2

)︃√︂
k2

1 + k2
2

e2
√

k2
1+k2

2 (2 + 4k2
1 + 4k2

2) − e4
√

k2
1+k2

2 − 1

for (k1,k2) ∈ N̂
2 and λ = 1 for k1 = k2 = 0 are exactly all the values of λ for

which there exist non-trivial weak solution to the problem (2.55)-(2.64).

Remark. The idea of the proof is the same as in Proposition 23, however, there
are slight technical changes.

Proof. One implication is trivial since for these values of λ1(k1,k2) and λ2(k1,k2)
we calculated corresponding smooth non-trivial uk1,k2 in Proposition 30 and
hence they are also weak solutions.

On the other hand, suppose that there exists λ∗ ∈ R, λ∗ > 0 such that

λ∗ /∈
(︃

{λi(k1,k2); i ∈ {1,2}, (k1,k2) ∈ N̂
2
} ∪ {1}

)︃
and a corresponding non-trivial weak solutions u∗ ∈ V3. We are going to prove
that Tr(u∗) is orthogonal to a certain orthogonal basisW in L2(Γ6)×L2(Γ6) where
we consider natural scalar product, i.e. for (v1,v2), (w1,w2) ∈ L2(Γ6) ×L2(Γ6) we
consider

⟨(v1,v2), (w1,w2)⟩L2(Γ6)×L2(Γ6) =
∫︂

Γ6
v1w1 dH2 +

∫︂
Γ6
v2w2 dH2.

Denote

zk1,k2,1(x1,x2) = cos(k1x1) cos(k2x2),
zk1,k2,2(x1,x2) = cos(k1x1) sin(k2x2),
zk1,k2,3(x1,x2) = sin(k1x1) cos(k2x2),
zk1,k2,4(x1,x2) = sin(k1x1) sin(k2x2).

Then the set {zk1,k2,1, zk1,k2,2, zk1,k2,3, zk1,k2,4; k1, k2 ∈ 2πN0} forms an orthogonal
basis of L2((0, 1)2). We will consider

W = {(zk1,k2,i,0), (0,zk1,k2,i); i ∈ {1,2,3,4}, k1, k2 ∈ 2πN0}
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which obviously forms an orthogonal basis in L2(Γ6) × L2(Γ6). We will prove
orthogonality of Tr(u∗) to the elements of W only for the case k1, k2 ∈ 2πN since
the other cases would be proved in a similar way. Denote

W ′ = {(zk1,k2,i,0), (0,zk1,k2,i); i ∈ {1,2,3,4}, k1, k2 ∈ 2πN}

Using Proposition 30 we know that λi(k1,k2) for i ∈ {1,2} has multiplicity 4 and
calculations yield that the first two coordinates of the corresponding solutions
u1

k1,k2
,u2

k1,k2
,u3

k1,k2
,u4

k1,k2
on Γ6 can be chosen so that

u1
k1,k2

(x1,x2,1) =

⎛⎜⎜⎜⎜⎜⎝
a1,1(1) cos(k1x1) cos(k2x2)

a2,4(1) sin(k1x1) sin(k2x2)

0

⎞⎟⎟⎟⎟⎟⎠ ,

u2
k1,k2

(x1,x2,1) =

⎛⎜⎜⎜⎜⎜⎝
a1,2(1) cos(k1x1) sin(k2x2)

a2,3(1) sin(k1x1) cos(k2x2)

0

⎞⎟⎟⎟⎟⎟⎠ ,

u3
k1,k2

(x1,x2,1) =

⎛⎜⎜⎜⎜⎜⎝
a1,3(1) sin(k1x1) cos(k2x2)

a2,2(1) cos(k1x1) sin(k2x2)

0

⎞⎟⎟⎟⎟⎟⎠ ,

u4
k1,k2

(x1,x2,1) =

⎛⎜⎜⎜⎜⎜⎝
a1,4(1) sin(k1x1) sin(k2x2)

a2,1(1) cos(k1x1) cos(k2x2)

0

⎞⎟⎟⎟⎟⎟⎠
for x1, x2 ∈ (0, 1) where ai,j are some non-zero constants and ai,j differs depending
on λi(k1,k2), i ∈ {1,2}. From now on we will distinguish uj

k1,k2
for j ∈ {1,2,3,4}

and ap,q(1) for p, q ∈ {1,2,3,4} depending on λi(k1,k2), i ∈ {1,2} by adding λi to
the notation, i.e. uj

k1,k2,λi
and ap,q,λi

(1). For convenience, let us denote u0,0 =
uj

0,0,λi
for i ∈ {1,2} and j ∈ {1,2,3,4}. Completely analogously as in Proposition

23 for two dimensional case, i.e. relations (2.46)-(2.48), we would prove that⟨︂
u∗,uj

k1,k2,λi

⟩︂
V3

= 0 (2.107)

for any i ∈ {1,2} and j ∈ {1,2,3,4}. Next, taking uj
k1,k2,λi

as a test function in
(2.65) and using (2.107) we obtain

0 =
⟨︂
u∗,uj

k1,k2,λi

⟩︂
V3

=
∫︂

Ω
∇u∗ : ∇uj

k1,k2,λi
dλ3

= λi(k1,k2)
∫︂

Γ6
Tr(u∗) · Tr(uj

k1,k2,λi
) dH2

for all k1, k2 ∈ 2πN and hence also

αi

(︃∫︂
Γ6

Tr(u∗)1Tr(uj
k1,k2,λi

)1 dH2 +
∫︂

Γ6
Tr(u∗)2Tr(uj

k1,k2,λi
)2 dH2

)︃
= 0
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for any αi ∈ R, i ∈ {1,2} and j ∈ {1,2,3,4}. From this we deduce that
∫︂

(0,1)2
Tr(u∗)1

(︂
α1u

j
k1,k2,λ1

(x1,x2,1)1 + α2u
j
k1,k2,λ2

(x1,x2,1)1
)︂
d(x1,x2)

+
∫︂

(0,1)2
Tr(u∗)2

(︂
α1u

j
k1,k2,λ1

(x1,x2,1)2 + α2u
j
k1,k2,λ2

(x1,x2,1)2
)︂
d(x1,x2) = 0.

(2.108)

It can be computationally verified that for any j ∈ {1,2,3,4} the matrix⎛⎜⎝ a1,j,λ1(1) a1,j,λ2(1)

a2,5−j,λ1(1) a2,5−j,λ2(1)

⎞⎟⎠
is regular and hence we can choose α1, α2 ∈ R in such a way that (2.108) yields

⟨(Tr(u∗)1,Tr(u∗)2) , (w1,w2)⟩L2(Γ6)×L2(Γ6) = 0 (2.109)

for any (w1,w2) ∈ W ′. Suppose further, that we proved (2.109) for all (w1,w2) ∈
W . This implies that Tr(u∗)1 = Tr(u∗)2 = 0 on Γ6 and hence

Tr(u∗)|Γ6 = 0. (2.110)

Plugging (2.110) into (2.65) we get that∫︂
Ω

∇u∗ : ∇φ dλ3 = ⟨u∗,φ⟩V3
= 0 (2.111)

holds for all φ ∈ V3. By setting φ = u∗ in (2.111) we obtain that u∗ = 0 in Ω
which is a contradiction.

In order to determine the asymptotic growth of the eigenvalue sequence to the
problem (2.55)-(2.64), we consider (λk)∞

k=1 as a non-decreasing sequence of eigen-
values appearing according to their multiplicity such that

{λk; k ∈ N} = {λi(k1,k2); i ∈ {1,2}, (k1,k2) ∈ N̂
2
} ∪ {1}.

Notation. Denote µ1 as a counting measure on P(N) and µ2 as a counting measure
on P(N × N).

Proposition 32. Sequence (λk)∞
k=1 satisfies

λk ∼ 4
√
π√
5
k1/2 (2.112)

as k → ∞.

Proof. For convenience we will assume that mappings λi for i ∈ {1,2} are
defined on N0 × N0 via the composition ψ : N0 × N0 → 2πN0 × 2πN0 where
ψ(k1,k2) = (2πk1, 2πk2) for (k1,k2) in N0 × N0. More precisely, for i ∈ {1,2} and
(k1,k2) in N0 ×N0 we define mappings λ∗

i (k1,k2) = λ(ψ(k1,k2)) and we will further
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refer to λ∗
i as λi. This requires that k1, k2 ∈ N0 instead of k1, k2 ∈ 2πN0. For

(k1,k2) ∈ (N0 × N0) \ {(0,0)} denote

D1(k1,k2) =
2π
(︃

1 + e4π
√

k2
1+k2

2

)︃
e4π

√
k2

1+k2
2 − 1

and

D2(k1,k2) =
4π
(︃

1 − e8π
√

k2
1+k2

2 + 8πe4π
√

k2
1+k2

2
√︂
k2

1 + k2
2

)︃
e4π

√
k2

1+k2
2 (2 + 16π2k2

1 + 16π2k2
2) − e8π

√
k2

1+k2
2 − 1

.

First of all, for i ∈ {1,2} it holds

λi(k1,k2) ∼ di

√︂
k2

1 + k2
2 (2.113)

as ∥(k1,k2)∥2 → ∞ where d1 = 2π and d2 = 4π since

lim
∥(k1,k2)∥2→∞

Di(k1,k2) = di.

The first step to prove this Proposition will be to prove that

µ1 ({k ∈ N; λk ≤ λ}) ∼ 5
16πλ

2 (2.114)

as λ → ∞. Knowing (2.114), we will be able to prove (2.112).
Choose ε ∈ R, ε > 0 small enough so that di − ε > 0 for i ∈ {1,2} and find

appropriate r ∈ R, r > 0 such that for all k1, k2 ∈ N satisfying ∥(k1,k2)∥2 > r it
holds that Di(k1,k2) ∈ B(di, ε) for i ∈ {1,2}. Choose λ ∈ R so that

λ ≥ max{max{λi(k1,k2); i ∈ {1,2}, k1, k2 ∈ N0, ∥(k1,k2)∥2 ≤ r},
max{(di − ε) r; i ∈ {1,2}}}.

Hence for i ∈ {1,2} we have

{(k1,k2) ∈ N0×N0; ∥(k1,k2)∥2 ≤ r} ⊂ {(k1,k2) ∈ N0×N0; λi(k1,k2) ≤ λ} (2.115)

and also

{(k1,k2) ∈ N0×N0; ∥(k1,k2)∥2 ≤ r} ⊂ {(k1,k2) ∈ N0×N0; (di − ε)
√︂
k2

1 + k2
2 ≤ λ}.
(2.116)

Knowing the multiplicity for each eigenvalue of the problem (2.55)-(2.64) (see
Proposition 30) and using the definition of the sequence (λk)∞

k=1 we have

µ1 ({k ∈ N; λk ≤ λ}) = 4
2∑︂

i=1
µ2 ({(k1,k2) ∈ N × N; λi(k1,k2) ≤ λ})

+ 2
2∑︂

i=1
µ2 ({(k1,k2) ∈ (N0 × {0}) ∪ ({0} × N0) ; λi(k1,k2) ≤ λ}) (2.117)

Using (2.115) we get for i ∈ {1,2}

µ2
(︃

{(k1,k2) ∈ N × N; (di + ε)
√︂
k2

1 + k2
2 ≤ λ}

)︃
≤

µ2 ({(k1,k2) ∈ N × N; λi(k1,k2) ≤ λ}) . (2.118)
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Using (2.115) and (2.116) we get for i ∈ {1,2}

µ2 ({(k1,k2) ∈ N0 × N0; λi(k1,k2) ≤ λ}) ≤

µ2
(︃

{(k1,k2) ∈ N0 × N0; (di − ε)
√︂
k2

1 + k2
2 ≤ λ}

)︃
. (2.119)

Let M ⊂ N0 ×N0. We can view the number of pairs satisfying (k1,k2) ∈ M as the
area of the corresponding unit squares [k1 − 1, k1] × [k2 − 1, k2], i.e. ∑︁(k1,k2)∈M 1.
Using this interpretation we obtain for i ∈ {1,2}

µ2
(︃

{(k1,k2) ∈ N × N; (di − ε)
√︂
k2

1 + k2
2 ≤ λ}

)︃
≤ πλ2

4 (di − ε)2 (2.120)

since we can restrict only to a quarter circle. Furthermore, we obtain for i ∈ {1,2}

µ2
(︃

{(k1,k2) ∈ (N0 × {0}) ∪ ({0} × N0) ; (di − ε)
√︂
k2

1 + k2
2 ≤ λ}

)︃
≤ 2λ
di − ε

+ 1.
(2.121)

For the lower estimate of µ1 ({k ∈ N; λk ≤ λ}), it is enough to observe that
for λ ∈ R, λ ≥ 32π and i ∈ {1,2} any point from the set {(x,y) ∈ R+ ×
R+; (di + ε)

√
x2 + y2 ≤ (λ− 16π)} is contained in some unit square correspond-

ing to some pair in the set {(k1,k2) ∈ N × N; (di + ε)
√︂
k2

1 + k2
2 ≤ λ}. This holds

since for the difference of radii of these two corresponding circles we have

λ

di + ε
−
(︄

λ

di + ε
− 16π
di + ε

)︄
= 16π
di + ε

≥ 16π
max{di; i ∈ {1,2}} + ε

.

Using that max{di; i ∈ {1,2}} = d2 = 4π and the assumption that di > ε for
i ∈ {1,2} and thus 2π > ε we obtain

16π
max{di; i ∈ {1,2}} + ε

>
16π
6π > 2.

Using this results we get the following estimate

µ2
(︃

{(k1,k2) ∈ N × N; (di + ε)
√︂
k2

1 + k2
2 ≤ λ}

)︃
≥ π (λ− 16π)2

4 (di + ε)2 . (2.122)

Combining (2.118)-(2.122) and plugging it back to (2.117) we get

(λ− 16π)2
2∑︂

i=1

π

(di + ε)2 ≤ µ1 ({k ∈ N; λk ≤ λ})

≤ λ2
2∑︂

i=1

π

(di − ε)2 +
2∑︂

i=1

4λ
di − ε

+ 2 (2.123)

where for the lower estimate we forgot about the second sum on the right-hand
side of (2.117). Dividing (2.123) by λ2 we get

(λ− 16π)2

λ2

2∑︂
i=1

π

(di + ε)2 ≤ µ1 ({k ∈ N; λk ≤ λ})
λ2

≤
2∑︂

i=1

π

(di − ε)2 +
2∑︂

i=1

4
λ (di − ε) + 2

λ2 .
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Since
lim

λ→∞

(λ− 16π)2

λ2 = 1,

lim
λ→∞

2
λ2 = 0

and for i ∈ {1,2}
lim

λ→∞

4
λ (di − ε) = 0,

we get that for any ε ∈ R, ε > 0 it holds that
2∑︂

i=1

π

(di + ε)2 ≤ lim sup
λ→∞

µ1 ({k ∈ N; λk ≤ λ})
λ2 ≤

2∑︂
i=1

π

(di − ε)2 .

Since the same estimates could have been done also for limes inferior and

lim
ε→0+

(︄ 2∑︂
i=1

π

(di + ε)2 −
2∑︂

i=1

π

(di − ε)2

)︄
= 0

we obtain
lim

λ→∞

µ1 ({k ∈ N; λk ≤ λ})
λ2 =

2∑︂
i=1

π

d2
i

= 5
16π ,

i.e.
µ1 ({k ∈ N; λk ≤ λ}) ∼ 5

16πλ
2

as λ → ∞ hence we indeed proved (2.114).
Finally, we are going to prove (2.112). Let d = 5/(16π). Choose ε ∈ R, ε > 0

such that d− ε > 0. For any λ ∈ R, λ > 0 denote

Pλ = µ1 ({k ∈ N; λk ≤ λ}) .

Using (2.114) there exists λ̃0 ∈ R, λ̃0 > 1 such that for all λ ∈ R, λ > λ̃0 it holds

d− ε <
Pλ

λ2 < d+ ε. (2.124)

We find k0 ∈ N such that (d+ ε) λ̃2
0 < k0. Fix any k ∈ N, k ≥ k0. For λ̃1 ∈ R

defined by

λ̃1 =
√︄

k

d− ε
+ ε

we have that k < (d− ε) λ̃2
1 and λ̃1 > λ̃0. Using (2.124) we get that k < Pλ̃1

and
by the definition of Pλ̃1

this implies that λk < λ̃1. Next, let ε1 ∈ R, ε1 > 0 satisfy
ε1 <

√︂
k0/ (d+ ε). For λ̃2 ∈ R defined by

λ̃2 =
√︄

k

d+ ε
− ε1

we have that k > (d+ ε) λ̃2
2. Since by definition of k0 it holds that

λ̃0 <

√︄
k0

d+ ε
≤
√︄

k

d+ ε
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we can choose ε1 sufficiently small so that we also have λ̃2 > λ̃0. Again, using
(2.124) we get that Pλ̃2

< k and by the definition of Pλ̃2
this implies that λk >

λ̃2. Thus we proved that for any ε ∈ R, ε > 0 there exists sufficiently small
ε1 ∈ R, ε1 > 0 and k0 ∈ N such that for all k ∈ N, k ≥ k0 we have that
λk√
k

∈
(︄

1√
d+ ε

− ε1√
k
,

1√
d− ε

+ ε√
k

)︄
⊂
(︄

1√
d+ ε

− ε,
1√
d− ε

+ ε

)︄
(2.125)

since k ∈ N, k ≥ k0 ≥ 1 and thus 1/
√
k ≤ 1 and ε1 can be chosen so that ε1 < ε.

Sending ε → 0+, relation (2.125) implies that

lim
k→∞

λk√
k

= 1√
d

= 4
√
π√
5

thus we indeed proved (2.112).

Definition 33. Let n ∈ {2,3} and Ω be a domain in Rn. We say that Ω is
a cuboid in R2 if the set Ω can be written as Ω = (a1, b1) × (a2, b2) for some
ai, bi ∈ R, ai < bi where i ∈ {1,2}. We say that Ω is a cuboid in R3 if the set Ω
can be written as Ω = (a1, b1)× (a2, b2)× (a3, b3) for some ai, bi ∈ R, ai < bi where
i ∈ {1,2,3}.
Proposition 34. The sequence (λk)∞

k=1 does not depend on the position of the
cuboid, i.e. if we consider Ω′ = (a1, b1)×(a2, b2)×(a3, b3) for some ai, bi ∈ R, ai <
bi where i ∈ {1,2,3}, then the sequence (λk)∞

k=1 for this domain is the same as for
domain Ω′′ = (0, b1 − a1) × (0, b2 − a2) × (0, b3 − a3). Moreover, let εi ∈ R, εi > 0
for i ∈ {1,2,3} and denote Ω = (0, ε1) × (0, ε2) × (0, ε3) and Sd = (0, ε1) × (0, ε2).
Then there exists c ∈ R, c > 0 independent of the domain such that the sequence
(λk)∞

k=1 for Ω satisfies

λk ∼ ck1/2

H2(Sd) (2.126)

as k → ∞.

Proof. The invariance of position is trivial as in Proposition 26. Next, assuming
that Ω = (0, ε1)×(0, ε2)×(0, ε3), we need to assume that ki ∈ 2πN/εi for i ∈ {1,2}
in order for (2.59)-(2.64) to hold. We could now go through the computations
from Proposition 30 again and we would once again end up with the fact that
asymptotic behaviour does not depend on ε3. Moreover, we could do similar
estimates as in Proposition 32 with the only difference being that we would work
on an ellipse, not circle. Nevertheless, we would obtain that there exists d ∈
R, d > 0 independent of the domain such that

µ1 ({k ∈ N; λk ≤ λ}) ∼ d
(︂
H2(Sd)

)︂2
λ2,

hence it indeed follows that there exists c ∈ R, c > 0 independent of the domain
such that

λk ∼ ck1/2

H2(Sd)
as k → ∞.
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3. Upper estimate of eigenvalues
on general domains

The goal of this Chapter will be to obtain upper estimates of eigenvalues of
the problem (2.1)-(2.4) by using the results we managed to get in Chapter 2.
We will state the following theorem for future references since we will be using it
extensively throughout this Chapter.

Theorem 35. Let A be a linear, self-adjoint and compact operator on a Hilbert
space H with inner product ⟨·, ·⟩H . Denote σp(A) = (λk)N

k=1 where N is either
finite natural number or infinity. Moreover, suppose that eigenvalues of A are
non-negative, they are sorted in a non-increasing order and each eigenvalue appear
according to its multiplicity. For k ∈ N, k ≤ N denote by Hk the set of all k-
dimensional subspaces of H. Then

λk = max
E∈Hk

min
u∈E\{0}

⟨A(u),u⟩H

⟨u,u⟩H

(3.1)

for all admissible k ∈ N.

Proof. See [10], Chapter 28, Theorem 4., p. 318

Suppose that the assumptions of Theorem 35 hold and let k ∈ N, k ≤ N . Suppose
that λk ∈ (0,+∞). Then it is easy to check that (3.1) implies

1
λk

= min
E∈Hk

max
u∈E\{0}

⟨u,u⟩H

⟨A(u),u⟩H

. (3.2)

after the following slight adjustments. For some non-zero ũ ∈ H it may happen
that ⟨A(ũ), ũ⟩H = 0 and the denominator in (3.1) would not be defined. However,
since we suppose that λk ∈ (0,∞) there exists a specific subspace Ek ∈ Hk such
that

min
u∈Ek\{0}

⟨A(u),u⟩H

⟨u,u⟩H

> 0.

This motivates the following definition. If for some k ∈ N, k ≤ N , E ∈ Hk and
some non-zero ũ ∈ E holds that ⟨A(ũ), ũ⟩H = 0 we define

max
u∈E\{0}

⟨u,u⟩H

⟨A(u),u⟩H

= +∞.

With this definition formula (3.2) indeed works. We will use this convention
throughout the rest of the thesis.

3.1 Generalization to cylindrical domain
Firstly, we are going to generalize our results to cylindrical domain in the

following way.
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Definition 36. Let n ∈ {2,3} and Ω be a domain in Rn. We say that Ω is a
cylinder in Rn if the set Ω can be written as Ω = B(x, r)×I where B(x, r) ⊂ Rn−1

is an open ball for some x ∈ Rn−1, r ∈ R, r > 0 and I is some non-empty open
interval I ⊂ R.

Throughout this Section, we will assume that n ∈ {2,3} and that Ω denotes a
cylinder in Rn.
Notation. Denote by Su,Ω the upper disk part of the boundary ∂Ω, by Sl,Ω the
lower disk part of the boundary ∂Ω and denote Sr,Ω = ∂Ω \ (Sl,Ω ∪ Su,Ω). For
cuboid Ω′ ⊂ Rn we introduce the same notation but instead of S we use S ′.
Notation. Let Ω′ ⊂ Rn be a cuboid. In order to emphasize on which set we
consider the space Vn we will write Vn(Ω′) instead of Vn.
For u : Ω → Rn, p : Ω → R and λ ∈ R we consider the following problem

−∆u + ∇p = 0 in Ω, (3.3)
div u = 0 in Ω, (3.4)
u · n = 0 on ∂Ω, (3.5)

u = 0 on ∂Ω \ Su,Ω, (3.6)
[(∇u) n]τ = λu on Su,Ω. (3.7)

The weak formulation of this problem would have been again derived in the same
way as for the problem (2.1)-(2.4) only the function spaces of solutions and test
functions will be different.

Definition 37. We define space Vc(Ω) as follows

Vc(Ω) =
{︂
u ∈

(︂
W 1,2

n,div(Ω)
)︂n

; Tr(u)|∂Ω\Su,Ω = 0
}︂
.

Remark. As for spaces V2 and V3, space Vc(Ω) is again a Hilbert space, the ex-
pression

⟨u,v⟩Vc
=
∫︂

Ω
∇u : ∇v dλn

defines a scalar product on Vc(Ω) and the corresponding norm ∥·∥Vc is equivalent
to the standard ∥·∥W 1,2 norm.

Definition 38. Let λ ∈ R be fixed. We say that u ∈ Vc(Ω) is a weak solution to
the problem (3.3)-(3.7) if∫︂

Ω
∇u : ∇φ dλn = λ

∫︂
Su,Ω

Tr(u) · Tr(φ) dHn−1 (3.8)

holds for all φ ∈ Vc(Ω).

Remark. We will only be interested in non-trivial weak solutions hence by setting
φ = u we immediately get that λ ≥ 0. Moreover, for λ = 0 we obtain by setting
φ = u that ⟨u,u⟩Vc

= 0 and hence the only weak solution is the trivial one.

Remark. We will refer to the constant λ in the formulation of the problem (3.3)-
(3.7) as an eigenvalue of the problem (3.3)-(3.7) if there exists a corresponding
non-trivial weak solution to the problem. This convention will be used also for
other problems.
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We again define a mapping B : Vc(Ω) × Vc(Ω) → C by

B[u,v] =
∫︂

Su,Ω
Tr(u) · Tr(v) dHn−1

and get the existence of a unique operator Tc ∈ L(Vc(Ω)) satisfying

B[u,v] = ⟨Tc(u),v⟩Vc
(3.9)

for all u,v ∈ Vc(Ω). Again, completely analogous version of Theorem 20 holds
also in this case, however, we will formulate it nevertheless for future references.

Theorem 39. Operator Tc is compact and self-adjoint. For some fixed λ ∈ R, λ >
0, a non-trivial function u is a weak solution to the problem (3.3)-(3.7) if and
only if u is an eigenfunction of Tc corresponding to eigenvalue 1/λ. There exist
at most countably many λ ∈ R such that there exist a non-trivial weak solution
to the problem (3.3)-(3.7).

Proposition 40. The set of eigenvalues of the problem (3.3)-(3.7) is countably
infinite.

Proof. From Theorem 39 we know that there exist at most countably many
eigenvalues of the problem (3.3)-(3.7). Suppose for a contradiction that there
are only finitely many eigenvalues of the problem (3.3)-(3.7). Since Tc is com-
pact and self-adjoint operator, we can use Hilbert-Schmidt Theorem (see [4],
Theorem 6.11., p. 167) which gives that there exists an orthonormal basis Wc

of Vc(Ω) consisting of eigenvectors of Tc. Since dim (Vc(Ω)) = ∞, we get that
dim (ker(Tc)) = ∞ by our assumption and compactness of Tc. Let u ∈ ker(Tc).
Using (3.9) for v = u we get that B[u,u] = 0 and hence Tr(u) = 0 on ∂Ω. Thus

ker(Tc) ⊂
(︂
W 1,2

0,div(Ω)
)︂n
.

However, using Theorem 14 it is not hard to construct an infinite sequence (uk)∞
k=1

of linearly independent functions in Vc(Ω) such that

uk ∈ (ker(Tc))⊥

for k ∈ N. This is a contradiction since by our assumptions we have only finitely
many linearly independent functions v satisfying v ∈ (ker(Tc))⊥.

Notation. Let Ω be a cylinder Rn and let Ω1 be a cuboid in Rn. When we refer to
the operators Tn and Tc we always assume that they are defined on corresponding
functions spaces, i.e. Vn(Ω1) for Tn and Vc(Ω) for Tc. Moreover, for m ∈ {n,c}
denote σp(Tm) =

(︂
λ′

k,Tm

)︂∞

k=1
and 1/σp(Tm) = (λk,Tm)∞

k=1 where
(︂
λ′

k,Tm

)︂∞

k=1
is

sorted in a non-increasing order, (λk,Tm)∞
k=1 is sorted in a non-decreasing order

and each eigenvalue in both sequences appear according to its multiplicity.
The following lemma will be crucial in proving the upper estimate for cylin-

drical domain.
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Lemma 41. Let Ω1 ⊂ Ω be an n-dimensional cuboid satisfying Sl,Ω′ ⊂ Sl,Ω,
Su,Ω′ ⊂ Su,Ω and Ω1 ∩ Sr = ∅. Then there exists a linear operator E : Vn(Ω1) →
Vc(Ω) such that E(u)|Ω1 = u. Moreover, there exists C(Ω,Ω1) ∈ R, C(Ω,Ω1) > 0
depending on Ω and Ω1 such that∫︂

Ω\Ω1
|∇E(u)|2 dλn ≤ C(Ω,Ω1)

∫︂
Ω1

|∇u|2 dλn (3.10)

for all u ∈ Vn(Ω1).

Remark. Estimate (3.10) implies that E is also bounded.

Proof. Choose arbitrary cylinders Ωi ⊂ Rn for i ∈ {2,3,4} with the same axis
as Ω that satisfy Ω1 ⊂ Ωi ⊂ Ω, Ωm ̸= Ωm+1 for m ∈ {1,2,3} and Ω4 ̸= Ω. Let
ψ : Ω → R be a cutoff function satisfying ψ ∈ C∞(Ω), ψ ∈ [0, 1] on Ω, ψ = 1
on Ω2 and ψ = 0 on Ω \ Ω3, i.e. it also holds that ∇ψ = 0 on Ω2 ∪

(︂
Ω \ Ω3

)︂
.

Moreover, there exists c ∈ R, c > 0 depending on Ω and Ω1 such that |∇ψ| ≤ c
on Ω. Let u ∈ Vn(Ω1) and denote h ∈ R, h > 0 as the height of the cuboid. Since
u is periodic on the sides of the cuboid, we can extend u periodically to Rn−1 × I
where I is an appropriate interval of length h and then restrict u to Ω. Denote
this periodic extension by E∗(u). Then E∗(u) ∈ (W 1,2(Ω))n. Due to periodicity,
it still holds that divE∗(u) = 0 in Ω. It follows that

div (E∗(u)ψ) = div (E∗(u))⏞ ⏟⏟ ⏞
=0

ψ + E∗(u) · ∇ψ,

in Ω, i.e. div (E∗(u)ψ) = 0 except from the set Ω3 \ Ω2. Furthermore, function
E∗(u)ψ has zero trace on Sr,Ω ∪ Sl,Ω by construction and also (E∗(u)ψ) · n = 0
in the trace sense on Su,Ω since E∗(u) · n = 0 in the trace sense on Su,Ω by
construction. Using this, the definition of ψ and Gauss’s theorem (see Theorem
6) we obtain that∫︂

Ω\Ω1
E∗(u) · ∇ψ dλn =

∫︂
Ω

div (E∗(u)ψ) dλn =
∫︂

∂Ω
(E∗(u)ψ) · n dHn−1 = 0,

hence E∗(u) · ∇ψ ∈ L̃
2(Ω \ Ω1). Using remark after Theorem 14 we obtain a

solution
h = Bog(E∗(u) · ∇ψ),

h ∈ (W 1,2
0 (Ω \ Ω1))n to the following problem

div h = E∗(u) · ∇ψ in Ω \ Ω1,

h = 0 on ∂
(︂
Ω \ Ω1

)︂
such that

∥h∥(W 1,2
0 (Ω\Ω1))n ≤ C∥E∗(u) · ∇ψ∥L2(Ω), (3.11)

for some constant C ∈ R. Moreover, we extend h by zero on Ω1 and we will
further refer to h as this extended function defined on whole Ω. Define E(u) =
E∗(u)ψ − h. Since operator Bog is linear, E is also linear. By construction it
follows that E(u) ∈ (W 1,2(Ω))n, divE(u) = 0 in Ω, Tr (E(u)) = 0 on Sr,Ω ∪ Sl,Ω
and Tr (E(u)) · n = 0 on Su,Ω hence indeed E(u) ∈ Vc(Ω).
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For the moreover part of the Lemma, firstly, for any u ∈ Vn(Ω1) it holds that

|∇E(u)|2 = ∇ (E∗(u)ψ − h) : ∇ (E∗(u)ψ − h) =
(ψ (∇E∗(u)) + (∇ψ)E∗(u) − ∇h) :

(︂
ψ (∇E∗(u)) + (∇ψ)E∗(u) − ∇h

)︂
.

Using linearity, Cauchy-Schwarz inequality and Young’s inequality we eventually
obtain that there exists K ∈ R, K > 0 such that

|∇E(u)|2 ≤ K
(︂
|ψ (∇E∗(u))|2 + |(∇ψ)E∗(u)|2 + |∇h|2

)︂
holds in Ω. Using the assumptions on ψ we get

|∇E(u)|2 ≤ K
(︂
|∇E∗(u)|2 + c2|E∗(u)|2 + |∇h|2

)︂
.

Next, using (3.11) we obtain∫︂
Ω\Ω1

|∇E(u)|2 dλn ≤ K

(︄∫︂
Ω\Ω1

|∇E∗(u)|2 dλn +
∫︂

Ω\Ω1
|E∗(u)|2 dλn

)︄
(3.12)

for a different constant K ∈ R, K > 0 now depending on Ω and Ω1. Since Ω is
bounded and E∗(u) is a periodic extension of u to Ω, it clearly holds that there
exists constant K̃ ∈ R, K̃ > 0 depending on Ω and Ω1 such that∫︂

Ω\Ω1
|∇E∗(u)|2 dλn ≤ K̃

∫︂
Ω1

|∇u|2 dλn. (3.13)

Next, by construction we know that Tr (E∗(u)) |Sl,Ω\(Sl,Ω∩∂Ω1) = 0, hence we can
use Poincaré’s inequality (see [11], Section 5.8.1., Theorem 1 for C1 domains,
however, can be easily extended to Lipschitz domains by using Theorem 6.1., p.
102 from [5]) to get∫︂

Ω\Ω1
|E∗(u)|2 dλn ≤ D

∫︂
Ω\Ω1

|∇E∗(u)|2 dλn (3.14)

for some constant D ∈ R, D > 0 depending on Ω and Ω1 and for the right-
hand side in (3.14) we can now use (3.13). Using (3.13) and (3.14) for the
right-hand side in (3.12) we indeed obtain that there exists constant C(Ω,Ω1) ∈
R, C(Ω,Ω1) > 0 such that (3.10) holds for all u ∈ Vn(Ω1).

Corollary 42. Let k ∈ N, k ≥ 1. A finitely generated subspace Wk =
span{u1,...,uk} of space Vn(Ω1) has dimension k if and only if subspace W ′

k =
span{E(u1),...,E(uk)} of space Vc(Ω) has dimension k.

Proof. Firstly, case k = 1 is trivial. Assume now that k ≥ 2.
” =⇒ ” By construction we know that for any u ∈ Vn(Ω1) it holds that
E(u)|Ω1 = u hence the linear independence of (u1,...,uk) in Vn(Ω1) will be pre-
served for (E(u1),...,E(uk)) in Vc(Ω).

” ⇐= ” Suppose for a contradiction that (E(u1),...,E(uk)) is linearly inde-
pendent in Vc(Ω) and (u1,...,uk) is linearly dependent in Vn(Ω1). Without loss of
generality, assume that uk can be written as a linear combination of (u1,...,uk−1).
By construction we know that if for u,v ∈ Vn(Ω1) holds that u = v in Vn(Ω1)
then E(u) = E(v) in Vc(Ω). Since E is linear, E(uk) can be written as a linear
combination of (E(u1),...,E(uk−1)) which is a contradiction.
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Proposition 43. Let Ω be a cylinder in Rn where n ∈ {2,3}. Let Ω1 be an n-
dimensional cuboid satisfying the same assumptions as in Lemma 41 and suppose
moreover that λn(Ω1) = λn(Ω)/4. Then there exists a constant C(Ω) ∈ R, C(Ω) >
0 depending on Ω such that

λk,Tc ≤ C(Ω)λk,Tn (3.15)

for all k ∈ N.

Remark. The condition λn(Ω1) = λn(Ω)/4 is introduced in order to relate sets Ω1
and Ω so that constants from Lemma 41 and λk,Tn depend only on the set Ω.

Proof. Combining Theorem 35, Theorem 39 and (3.1) we get for k ∈ N and
m ∈ {n,c} that

λ′
k,Tm

= max
D∈(Vm)k

min
u∈D\{0}

⟨Tm(u),u⟩Vm

⟨u,u⟩Vm

.

Using (3.2) it also holds

λk,Tm = min
D∈(Vm)k

max
u∈D\{0}

⟨u,u⟩Vm

⟨Tm(u),u⟩Vm

. (3.16)

Using the embedding of spaces from Lemma 41 and definitions we get

λk,Tc = min
D∈(Vc(Ω))k

max
u∈D\{0}

⟨u,u⟩Vc

⟨Tc(u),u⟩Vc

(L41)
≤ min

D∈(E(Vn(Ω1)))k

max
u∈D\{0}

⟨u,u⟩Vc

⟨Tc(u),u⟩Vc

(C42)= min
D∈(Vn(Ω1))k

max
u∈D\{0}

⟨E(u), E(u)⟩Vc

⟨Tc(E(u)), E(u)⟩Vc

= min
D∈(Vn(Ω1))k

max
u∈D\{0}

∫︁
Ω|∇E(u)|2 dλn∫︁

Su,Ω
|Tr(E(u))|2 dHn−1(︂

S′
u,Ω1

⊂Su,Ω

)︂
≤ min

D∈(Vn(Ω1))k

max
u∈D\{0}

∫︁
Ω|∇E(u)|2 dλn∫︁

S′
u,Ω1

|Tr(u)|2 dHn−1

= min
D∈(Vn(Ω1))k

max
u∈D\{0}

∫︁
Ω1

|∇u|2 dλn +
∫︁

Ω\Ω1
|∇E(u)|2 dλn∫︁

S′
u,Ω1

|Tr(u)|2 dHn−1 . (3.17)

Combining (3.10) and (3.17) we obtain that

λk,Tc ≤ C(Ω) min
D∈(Vn(Ω1))k

max
u∈D\{0}

∫︁
Ω1

|∇u|2 dλn∫︁
S′

u,Ω1
|Tr(u)|2 dHn−1

thus using (3.16) we get

min
D∈(Vn(Ω1))k

max
u∈D\{0}

∫︁
Ω1

|∇u|2 dλn∫︁
S′

u,Ω1
|Tr(u)|2 dHn−1 = min

D∈(Vn(Ω1))k

max
u∈D\{0}

⟨u,u⟩Vn

⟨Tn(u),u⟩Vn

= λk,Tn

hence we indeed obtain
λk,Tc ≤ C(Ω)λk,Tn

for all k ∈ N.
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Remark. If minimum (maximum) somewhere throughout the calculations in
Proposition 43 does not exist we replace it with infimum (supremum), however,
we leave the notation like this since in the formulas for λk,Tc and λk,Tn we know
that minimum and maximum exist by Theorem 35. We will use this convention
throughout the rest of the thesis.

3.2 Generalization to C2 domain
In this Section we are going to prove upper estimate for eigenvalues of the

problem (2.1)-(2.4) for n ∈ {2,3} on any bounded C2 domain in Rn using the
results obtained in Section 3.1. Throughout this Section, we will assume that
n ∈ {2,3} and that Ω denotes a bounded C2 domain in Rn.

Proposition 44. The set Λ of eigenvalues of the problem (2.1)-(2.4) is countably
infinite.

Proof. By Theorem 13 we know that there exist at most countably many
eigenvalues of the problem (2.1)-(2.4). The rest of the proof would be almost
identical to the proof of Proposition 40.

Notation. If we want to emphasize on which set we consider the space V , we will
write V (Ω) instead of V . When we refer to the operator T we always assume that
T is defined on the corresponding function space, i.e. V (Ω). Furthermore, we
denote σp(T ) =

(︂
λ′

k,T

)︂∞

k=1
and 1/σp(T ) − 1 = (λk,T )∞

k=1 where
(︂
λ′

k,T

)︂∞

k=1
is sorted

in a non-increasing order, (λk,T )∞
k=1 is sorted in a non-decreasing order and each

eigenvalue in both sequences appear according to its multiplicity.

Proposition 45. Let k ∈ N and suppose that λk,T > 0. Then

λk,T = min
D∈(V (Ω))k

max
u∈D\{0}

∫︁
Ω Du : Du dλn∫︁

∂Ω Tr(u) · Tr(u) dHn−1 . (3.18)

Proof. Using Theorem 35 we have

λ′
k,T = max

D∈(V (Ω))k

min
u∈D\{0}

⟨T (u),u⟩V

⟨u,u⟩V

and hence
1
λ′

k,T

= min
D∈(V (Ω))k

max
u∈D\{0}

⟨u,u⟩V

⟨T (u),u⟩V

. (3.19)

For any u ∈ V (Ω) we have

⟨u,u⟩V

⟨T (u),u⟩V

=
∫︁

Ω Du : Du dλn∫︁
∂Ω Tr(u) · Tr(u) dHn−1 + 1. (3.20)

Using (3.20) in (3.19) and Lemma 12 we get

1
λ′

k,T

− 1 = λk,T = min
D∈(V (Ω))k

max
u∈D\{0}

∫︁
Ω Du : Du dλn∫︁

∂Ω Tr(u) · Tr(u) dHn−1 .
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The first step towards proving the upper estimate is to reduce the problem to
a different problem on an open subset Ωc of Ω that we will be able to handle. Even
though the construction of the subset Ωc is intuitively clear, it would be quite
long and technically difficult to describe it purely mathematically. Therefore,
we will demonstrate the construction on a picture. Let x ∈ ∂Ω. Since Ω ∈ C2

there exists Γc ⊂ ∂Ω such that x ∈ Γc and Γc is ”small” enough so that we can
construct a ”curved cylinder” Ωc ⊂ Ω with the upper part of the boundary being
Γc (see Picture 3.1). For u : Ωc → Rn, p : Ωc → R and λ ∈ R we now consider

Ω

Ωc

Γc

Figure 3.1: Construction of set Ωc

the following problem

−∆u + ∇p = 0 in Ωc, (3.21)
div u = 0 in Ωc, (3.22)
u · n = 0 on Γc, (3.23)

u = 0 on ∂Ωc \ Γc, (3.24)
[(∇u) n]τ = λu on Γc. (3.25)

Completely analogous theoretical results that we obtained for the previous
auxiliary problems are true also for this setting. We will formulate them without
proofs for future reference.

Definition 46. We define space Vcur(Ωc) as follows

Vcur(Ωc) =
{︂
u ∈

(︂
W 1,2

n,div(Ωc)
)︂n

; Tr(u)|∂Ωc\Γc = 0
}︂
.

Remark. As for spaces V2, V3 and Vc, space Vcur(Ωc) is again a Hilbert space, the
expression

⟨u,v⟩Vcur
=
∫︂

Ωc

∇u : ∇v dλn

defines a scalar product on Vcur(Ωc) and the corresponding norm ∥·∥Vcur is equiv-
alent to the standard ∥·∥W 1,2 norm.
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Definition 47. Let λ ∈ R be fixed. We say that u ∈ Vcur(Ωc) is a weak solution
to the problem (3.21)-(3.25) if∫︂

Ωc

∇u : ∇φ dλn = λ
∫︂

Γc

Tr(u) · Tr(φ) dHn−1 (3.26)

holds for all φ ∈ Vcur(Ωc).

Remark. We will only be interested in non-trivial weak solutions hence by setting
φ = u we immediately get that λ ≥ 0. Moreover, for λ = 0 we obtain by set-
ting φ = u that ⟨u,u⟩Vcur

= 0 and hence the only weak solution is the trivial one.

We again define a mapping B : Vcur(Ωc) × Vcur(Ωc) → C by

B[u,v] =
∫︂

Γc

Tr(u) · Tr(v) dHn−1

and get the existence of a unique operator Tcur ∈ L(Vcur(Ωc)) satisfying

B[u,v] = ⟨Tcur(u),v⟩Vcur

for all u,v ∈ Vcur(Ωc).

Theorem 48. Operator Tcur is compact and self-adjoint. For some fixed λ ∈
R, λ > 0, a non-trivial function u is a weak solution to the problem (3.21)-(3.25)
if and only if u is an eigenfunction of Tcur corresponding to eigenvalue 1/λ. The
set of eigenvalues of the problem (3.21)-(3.25) is countably infinite.

Notation. When we refer to the operator Tcur we always assume that Tcur is
defined on the corresponding function space, i.e. Vcur(Ωc). Furthermore, we
denote σp(Tcur) =

(︂
λ′

k,Tcur

)︂∞

k=1
and 1/σp(Tcur) = (λk,Tcur)

∞
k=1 where

(︂
λ′

k,Tcur

)︂∞

k=1
is

sorted in a non-increasing order, (λk,Tcur)
∞
k=1 is sorted in a non-decreasing order

and each eigenvalue in both sequences appear according to its multiplicity.
The advantage of having the condition that for any u ∈ Vcur(Ωc) it holds

Tr(u)|∂Ωc\Γc = 0 is that we can extend u by zero to the whole set Ω.
Notation. For any u ∈ Vcur(Ωc) we denote by E0(u) the extension of u by zero
to the whole set Ω.
Remark. It clearly holds that for any u ∈ Vcur(Ωc) we have E0(u) ∈ V (Ω).
An analogous version of Corollary 42 holds also for this situation.

Lemma 49. Let k ∈ N, k ≥ 1. A finitely generated subspace Wk =
span{u1,...,uk} of space Vcur(Ωc) has dimension k if and only if subspace W ′

k =
span{E0(u1),...,E0(uk)} of space V (Ω) has dimension k.

This allows us to formulate the first estimate where we will use the results and
notation introduced after Proposition 45.

Proposition 50. Let Ω be a bounded C2 domain in Rn where n ∈ {2,3}. Let
x ∈ ∂Ω and let Ωc be the corresponding constructed set. Then there exists a
constant C ∈ R, C > 0 such that

λk,T ≤ Cλk,Tcur (3.27)

for all k ∈ N.
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Remark. As we shall see later in this Section, we will often need Ωc and Γc to be
chosen ”sufficiently small” so that some estimates or claims hold. Since it would
be inconvenient to always specify that we will rather use a convention that sets
Ωc and Γc are always chosen in such a way that the required estimates and claims
hold. Moreover, we will always choose Γc with the largest possible Hausdorff
measure and then choose the set Ωc with the largest possible Lebesgue measure
so that the mentioned convention holds. This will ensure that λk,Tcur depends
merely on Ω and not Ωc.

Proof. Let k ∈ N. Combining Theorem 35, Theorem 48 and (3.2) we get that

λk,Tcur = min
D∈(Vcur(Ωc))k

max
u∈D\{0}

⟨u,u⟩Vcur

⟨Tcur(u),u⟩Vcur

. (3.28)

Using (3.18), the definition of E0 and the fact that E0(Vcur(Ωc)) ⊂ V (Ω) we
obtain

λk,T = min
D∈(V (Ω))k

max
u∈D\{0}

∫︁
Ω|Du|2 dλn∫︁

∂Ω|Tr(u)|2 dHn−1

≤ min
D∈(V (Ω))k

max
u∈D\{0}

C
∫︁

Ω|∇u|2 dλn∫︁
∂Ω|Tr(u)|2 dHn−1

≤ min
D∈(E0(Vcur(Ωc)))k

max
u∈D\{0}

C
∫︁

Ω|∇u|2 dλn∫︁
∂Ω|Tr(u)|2 dHn−1

(L49)= min
D∈(Vcur(Ωc))k

max
u∈D\{0}

C
∫︁

Ω|∇E0 (u)|2 dλn∫︁
∂Ω|Tr(E0(u))|2 dHn−1

(def. E0)= min
D∈(Vcur(Ωc))k

max
u∈D\{0}

C
∫︁

Ωc
|∇u|2 dλn∫︁

Γc
|Tr(u)|2 dHn−1

= C min
D∈(Vcur(Ωc))k

max
u∈D\{0}

⟨u,u⟩Vcur

⟨Tcur(u),u⟩Vcur

. (3.29)

Combining (3.28) and (3.29) we indeed obtain (3.27) for all k ∈ N.

Proposition 50 tell us that in order to obtain upper estimate for eigenvalues
of the problem (2.1)-(2.4) on Ω it is enough to obtain upper estimate for eigen-
values of the problem (3.21)-(3.25) on Ωc. We will essentially do this by using an
appropriate transformation of variables and then deriving estimates in a suitable
form so that we can use the results from Section 3.1. We will further refer to the
notation introduced earlier in this Section.
Notation. Let A = (aij) be n× n matrix. We denote

Trace(A) =
n∑︂

i=1
ai,i.

Notation. For n ∈ N we denote by en the n-th canonical vector in Rn. Moreover,
for x ∈ Rn we denote x = (x0, xn) where x0 ∈ Rn−1 and xn ∈ R.

Let Ω be fixed. Suppose that y = (y′, yn) ∈ ∂Ω is such that n(y) = en. Let
r ∈ R, r > 0 and suppose that B(y′, r) ⊂ Rn−1. Let a : B(y′, r) → R be such
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that a ∈ C2
(︂
B(y′,r)

)︂
and suppose that Γc = {(y0, yn) ∈ Rn,y0 ∈ B(y′, r); yn =

a(y0)}. Let O be an open bounded subset of Rn such that O ⊂ B(y′, r)×(−∞, 0]
and that function ϕ : O → Rn defined by

ϕ(y0,yn) =

⎛⎜⎝ y0

yn + a(y0)

⎞⎟⎠ (3.30)

satisfies ϕ(O) = Ωc.
Notation. We denote by Σo the set B(y′, r) × {0}.
It follows that ϕ (Σo) = Γc, ϕ (∂O \ Σo) = ∂Ωc \ Γc and the inverse function
ϕ−1 : Ωc → O for (x0,xn) ∈ Ωc has the form

ϕ−1(x0,xn) =

⎛⎜⎝ x0

xn − a(x0)

⎞⎟⎠ .
Furthermore, the following identities hold for y ∈ O

∇ϕ(y) =

⎛⎜⎝Id(n−1)×(n−1) 0(n−1)×1

∇a(y0) 1

⎞⎟⎠ (3.31)

where Id(n−1)×(n−1) stands for a (n − 1) × (n − 1) identity matrix and 0(n−1)×1
stands for a column of (n− 1) zeros. Consequently we obtain

(∇ϕ(y))⊤ =

⎛⎜⎝Id(n−1)×(n−1) (∇a(y0))⊤

01×(n−1) 1

⎞⎟⎠ (3.32)

and

(∇ϕ(y))−1 =

⎛⎜⎝Id(n−1)×(n−1) 0(n−1)×1

−∇a(y0) 1

⎞⎟⎠ . (3.33)

Remark. From (3.31) follows that for any y ∈ O it holds

det (∇ϕ(y)) = 1. (3.34)

Since ϕ is a bijection it follows that ϕ is a diffeomorphism.

Definition 51. For u ∈ (W 1,2(Ωc))n we define a corresponding function v : O →
Rn by

v(y) = (∇ϕ(y))−1 u ◦ ϕ(y) (3.35)
for all y ∈ O. We denote F (u) = v.

The main advantage why we introduce this definition is covered in the following
Lemma.
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Lemma 52. Let u ∈ (W 1,2(Ωc))n. Then the corresponding function v defined by
(3.35) lies in (W 1,2(O))n. For any y ∈ Σo it holds

u ◦ ϕ(y) · n ◦ ϕ(y) = c(y) v(y) · en (3.36)

in the trace sense for some non-zero function c : B(y′, r) → R. For any x ∈ Ωc

and y = ϕ−1(x) it holds

div u(x) = Trace
(︂
∇ϕ(y)∇v(y) (∇ϕ(y))−1

)︂
. (3.37)

Proof. The first property is clear by construction. Concerning (3.36), for any
y ∈ Σo we have

u ◦ ϕ(y) · n ◦ ϕ(y) (3.35)= ∇ϕ(y)v(y) · n ◦ ϕ(y)
= (∇ϕ(y)v(y))⊤ n ◦ ϕ(y) = v(y)⊤ (∇ϕ(y))⊤ n ◦ ϕ(y) (3.38)

in the trace sense. The first (n−1) columns of the matrix ∇ϕ(y) span the tangent
space at point ϕ(y) and thus combining (3.32) and (3.38) we obtain

v(y)⊤ (∇ϕ(y))⊤ n ◦ ϕ(y) = c(y) v(y) · en (3.39)

where c(y) = nn(y) and thus for sufficiently small r function c is non-zero on
B(y′, r). Thus (3.36) follows. Concerning (3.37), we get by using (3.35) that

u(x) = ∇ϕ ◦ ϕ−1(x) v ◦ ϕ−1(x) = (∇ϕ v) ◦ ϕ−1(x).

for all x ∈ Ωc. Thus for j ∈ N, j ≤ n the j-th coordinate is

uj(x) =
n∑︂

i=1
((∂iϕj) vi) ◦ ϕ−1(x)

Hence for all x ∈ Ωc we have

div u(x) =
n∑︂

j=1
∂juj(x) =

n∑︂
j=1

∂j

(︄
n∑︂

i=1
((∂iϕj) vi) ◦ ϕ−1(x)

)︄

=
n∑︂

i,j=1

n∑︂
k=1

∂k ((∂iϕj) vi) ◦ ϕ−1(x) ∂jϕ
−1
k (x)

=
n∑︂

i,j=1

n∑︂
k=1

((∂iϕj) (∂kvi)) ◦ ϕ−1(x) ∂jϕ
−1
k (x) (3.40)

since by using (3.31) we know that for i,j ∈ N, j ≤ n− 1, i ≤ n it holds ∂iϕj = l
where l ∈ {0,1} and thus for k ∈ N, k ≤ n it holds ∂k∂iϕj = 0. Moreover, for
j = n, i ∈ N, i ≤ n and x ∈ Ωc we have

∂n

(︂
((∂iϕn) vi) ◦ ϕ−1

)︂
(x) =

n∑︂
k=1

∂k ((∂iϕn) vi) ◦ ϕ−1(x) ∂nϕ−1
k (x)

=
n−1∑︂
k=1

((∂k∂iϕj) vi) ◦ ϕ−1(x) ∂nϕ−1
k (x)⏞ ⏟⏟ ⏞
=0

+((∂n∂iϕn)⏞ ⏟⏟ ⏞
=0

vi) ◦ ϕ−1(x) ∂nϕ−1
n (x)

+
n∑︂

k=1
((∂iϕn) (∂kvi)) ◦ ϕ−1(x) ∂nϕ−1

k (x)
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since function a depends only on the first (n− 1) variables and thus ∂n∂iϕn = 0.
Formula (3.40) for x ∈ Ωc can be rewritten as

div u(x) =
n∑︂

i,j,k=1
((∂iϕj) (∂kvi)) ◦ ϕ−1(x) ∂jϕ

−1
k (x)

= Trace
(︂
(∇ϕ∇v) ◦ ϕ−1(x) ∇ϕ−1(x)

)︂
= Trace

(︂
∇ϕ∇v (∇ϕ)−1

)︂
◦ ϕ−1(x)

which implies (3.37).

Remark. If ∇ϕ(y) = Idn×n for all y ∈ O, formula (3.37) would reduce to the
form div u(x) = div v(y).
From Lemma 52 we know that for any u ∈ Vcur(Ωc) condition Tr(u)|Γc · n = 0
transforms to condition Tr(F (u))|Σo ·en = 0. By construction it also follows that
condition Tr(u)|∂Ωc\Γc = 0 transforms to condition Tr(F (u))|∂O\Σo = 0 and vice
versa. However, since ∇ϕ ̸= Idn×n, the divergence free condition is thus the only
condition that is not preserved and that is a crucial thing that we have to deal
with.

The first step towards obtaining the desired upper estimate will be contained
in the following Proposition.
Definition 53. We define space V ∗

cur(O) as follows

V ∗
cur(O) = {v ∈

(︂
W 1,2

n (O)
)︂n

; Tr(v)|∂O\Σo = 0,

Trace
(︂
∇ϕ(y)∇v(y) (∇ϕ(y))−1

)︂
= 0}.

Remark. As for all the previous considered spaces, V ∗
cur(O) is again a Hilbert

space, the expression
⟨u,v⟩V ∗

cur
=
∫︂

O
∇u : ∇v dλn

defines a scalar product on V ∗
cur(O) and the corresponding norm ∥·∥V ∗

cur is equiv-
alent to the standard ∥·∥W 1,2 norm.
Corollary 54. Lemma 52 implies that F (Vcur(Ωc)) = V ∗

cur(O). Moreover, F is
a bijection between Vcur(Ωc) and V ∗

cur(O).
Notation. We denote by ϕ0 the mapping ϕ0 : B(y′,r) → Γc defined by ϕ0(y0) =
ϕ(y0,0).
Notation. For y0 ∈ B(y′,r) we denote

vol (∇ϕ0(y0)) =
√︂

det ((∇ϕ0(y0)⊤) ∇ϕ0(y0)).

Remark. Since Ω ∈ C2, we can choose r to be sufficiently small so that for any
y0 ∈ B(y′,r) holds vol (∇ϕ0(y0)) ≥ 1/2.
Proposition 55. Let Ω be a bounded C2 domain in Rn where n ∈ {2,3}. Let
x ∈ ∂Ω be such that n(x) = en and suppose that Ωc and O are the corresponding
constructed sets. Then there exists a constant C(Ω) ∈ R, C(Ω) > 0 depending on
Ω such that

λk,Tcur ≤ C(Ω) min
D∈(V ∗

cur(O))k

max
v∈D\{0}

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 (3.41)

for all k ∈ N.
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Proof. Let k ∈ N. From (3.28) we know that

λk,Tcur = min
D∈(Vcur(Ωc))k

max
u∈D\{0}

∫︁
Ωc

|∇u|2 dλn∫︁
Γc

|Tr(u)|2 dHn−1 .

Firstly, we will estimate from above the numerator in (3.28). Due to the fact that
ϕ is a diffeomorphism and due to relation (3.34) we obtain by using the Change
of Variables Theorem (see, [12], Section 3.3.3, Theorem 2, p. 99) that∫︂

Ωc

|∇u(x)|2 dλn(x) =
∫︂

O
|(∇u) ◦ ϕ(y)|2 dλn(y). (3.42)

From (3.35) follows that

∇u ◦ ϕ(y) = ∇ (∇ϕF (u)) (y) (∇ϕ(y))−1 (3.43)

for any y ∈ O. Using (3.43) in (3.42) and using basic properties of Frobenius
norm yields∫︂

O
|(∇u) ◦ ϕ(y)|2 dλn(y) ≤

∫︂
O

|∇ (∇ϕF (u)) (y)|2|(∇ϕ(y))−1|2 dλn(y). (3.44)

Since each first and each second partial derivative of ϕ is continuous on O we
can estimate them by a constant depending on Ω. Right-hand side of (3.44) can
hence be estimated∫︂

O
|∇ (∇ϕF (u)) (y)|2|(∇ϕ(y))−1|2 dλn(y)

≤ c(Ω)
∫︂

O
|∇F (u)(y)|2 + |F (u)(y)|2 dλn(y). (3.45)

Using Poincaré’s inequality (see [11], Section 5.8.1., Theorem 1 for C1 domains,
however, can be easily extended to Lipschitz domains by using Theorem 6.1., p.
102 from [5]) for the right-hand side in (3.45) we get

c(Ω)
∫︂

O
|∇F (u)(y)|2 + |F (u)(y)|2 dλn(y)

≤ d(Ω)
∫︂

O
|∇F (u)(y)|2 dλn(y) = d(Ω)

∫︂
O

|∇v(y)|2 dλn(y) (3.46)

for some constants c(Ω), d(Ω) ∈ R, c(Ω), d(Ω) > 0 depending on Ω. Now, we
will estimate from below the denominator in (3.28). Using Change of Variables
Theorem (see, [12], Section 3.3.3, Theorem 2, p. 99) we obtain∫︂

Γc

|Tr(u)|2 dHn−1 =
∫︂

Σo

|Tr(u ◦ ϕ)|2 vol (∇ϕ0)⏞ ⏟⏟ ⏞
≥1/2

dHn−1. (3.47)

Using (3.35) for the right-hand side in (3.47) we get∫︂
Σo

|Tr(u ◦ ϕ)|2 dHn−1 =
∫︂

Σo

|∇ϕ Tr(F (u))|2 dHn−1

and it clearly follows that∫︂
Σo

|∇ϕ Tr(F (u))|2 dHn−1 ≥
∫︂

Σo

|Tr(F (u))|2 dHn−1. (3.48)
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Combining (3.44)-(3.48) we obtain

λk,Tcur ≤ C(Ω) min
D∈(Vcur(Ωc))k

max
u∈D\{0}

∫︁
O|∇F (u)|2 dλn∫︁

Σo
|Tr(F (u))|2 dHn−1 . (3.49)

for some constant C(Ω) ∈ R, C(Ω) > 0 depending on Ω. Finally, Corollary 54
yields

min
D∈(Vcur(Ωc))k

max
u∈D\{0}

∫︁
O|∇F (u)(y)|2 dλn(y)∫︁
Σo

|Tr(F (u))|2 dHn−1

= min
D∈(V ∗

cur(O))k

max
v∈D\{0}

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 . (3.50)

Combining relations (3.49) and (3.50) finishes the proof.

With the knowledge of Proposition 55 we can now move on to the second step
towards obtaining the desired upper estimate.

Definition 56. We define spaces Ṽ cur(O) and V ′
cur(O) as follows

Ṽ cur(O) =
{︂
v ∈

(︂
W 1,2

n,div(O)
)︂n

; Tr(v)|∂O\Σo = 0
}︂
,

V ′
cur(O) =

{︂
v ∈

(︂
W 1,2

n (O)
)︂n

; Tr(v)|∂O\Σo = 0
}︂
.

Remark. As for all the previous considered spaces, Ṽ cur(O) is again a Hilbert
space, the expression

⟨u,v⟩Ṽ cur
=
∫︂

O
∇u : ∇v dλn

defines a scalar product on Ṽ cur(O) and the corresponding norm ∥·∥Ṽ cur is equiv-
alent to the standard ∥·∥W 1,2 norm. Analogously for space V ′

cur(O).

As for space Vcur(Ωc), space Ṽ cur(O) is a space of weak solutions to the problem
(3.21)-(3.25) if we replace Ωc with O and Γc with Σo. We could again define
corresponding mapping B and obtain a unique operator T̃ cur ∈ L(Ṽ cur(O)) sat-
isfying

B[u,v] =
⟨︂
T̃ cur(u),v

⟩︂
Ṽ cur

for all u,v ∈ Ṽ cur(O). Completely analogous theoretical results as for Tcur are
true also for this setting. We will formulate them without proofs for future
reference.

Theorem 57. Operator T̃ cur is compact and self-adjoint. For some fixed λ ∈
R, λ > 0, a non-trivial function u is a weak solution to the problem (3.21)-(3.25)
with Ωc replaced by O and Γc replaced by Σo if and only if u is an eigenfunction
of T̃ cur corresponding to eigenvalue 1/λ. The set of eigenvalues of the problem
(3.21)-(3.25) with Ωc = O and Γc = Σo is countably infinite.

Notation. When we refer to the operator T̃ cur we always assume that T̃ cur is de-
fined on the corresponding function space, i.e. Ṽ cur(O). Furthermore, we denote
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σp(T̃ cur) =
(︂
λ′

k,T̃ cur

)︂∞

k=1
and 1/σp(T̃ cur) =

(︂
λk,T̃ cur

)︂∞

k=1
where

(︂
λ′

k,T̃ cur

)︂∞

k=1
is sorted

in a non-increasing order,
(︂
λk,T̃ cur

)︂∞

k=1
is sorted in a non-decreasing order and

each eigenvalue in both sequences appear according to its multiplicity.

Our approach will now be the following. We will prove that there exists
c ∈ R, c > 0 such that for any k ∈ N and any k-dimensional subspace W̃ of
Ṽ cur(O) there exists a k-dimensional subspace W of V ∗

cur(O) such that

max
v∈W

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 ≤ cmax

v∈W̃

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 . (3.51)

In order to do that, we will introduce an operator that is similar to Bogovski
operator mentioned in Remark after Theorem 14. First of all, we will proof
auxiliary Lemmata.
Notation. For y ∈ O we denote by N(y) the matrix satisfying ∇ϕ(y) = Idn×n +
N(y) and by N−(y) the matrix satisfying (∇ϕ(y))− = Idn×n +N−(y).

Lemma 58. Let v ∈ V ′
cur(O). Then

Trace
(︂
∇ϕ(y)∇v(y) (∇ϕ(y))−1

)︂
= div v(y)

+ Trace
(︂
∇v(y)N−(y) +N(y)∇v(y) +N(y)∇v(y)N−(y)

)︂
. (3.52)

for all y ∈ O.

Proof.

Trace
(︂
∇ϕ(y)∇v(y) (∇ϕ(y))−1

)︂
= Trace

(︂
(Idn×n +N(y)) ∇v(y)

(︂
Idn×n +N−(y)

)︂)︂
= Trace (∇v(y))

+ Trace
(︂
∇v(y)N−(y) +N(y)∇v(y) +N(y)∇v(y)N−(y)

)︂
.

Since Trace (∇v(y)) = div v(y), claim follows.

Lemma 59. Let v ∈ V ′
cur(O). Then∫︂

O
Trace

(︂
∇v(y)N−(y) +N(y)∇v(y) +N(y)∇v(y)N−(y)

)︂
dλn = 0. (3.53)

Proof. Firstly, using Gauss’s theorem (see Theorem 6) we get∫︂
O

div v(y) =
∫︂

Σo

Tr(v)(y) · en = 0

since v ∈ V ′
cur(O). From Lemma 58 it follows that it remains to show∫︂

O
Trace

(︂
∇ϕ(y)∇v(y) (∇ϕ(y))−1

)︂
dλn = 0.
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Using Change of Variables Theorem (see, [12], Section 3.3.3, Theorem 2, p. 99)
and Gauss’s theorem we get that∫︂

O
Trace

(︂
∇ϕ(y)∇v(y) (∇ϕ(y))−1

)︂
dλn

=
∫︂

Ωc

Trace
(︂
∇ϕ∇v (∇ϕ)−1

)︂
◦ ϕ−1(x) dλn =

∫︂
Ωc

div
(︂
(∇ϕ v) ◦ ϕ−1(x)

)︂
dλn

=
∫︂

Γc

(∇ϕ v) ◦ ϕ−1(x) · n(x) dHn−1 =
∫︂

Γc

(︂
(∇ϕ v) ◦ ϕ−1(x)

)︂⊤
n(x) dHn−1

=
∫︂

Γc

(︂
v ◦ ϕ−1(x)

)︂⊤ (︂
∇ϕ ◦ ϕ−1(x)

)︂⊤
n(x) dHn−1. (3.54)

Similarly as in (3.39) we obtain∫︂
Γc

(︂
v ◦ ϕ−1(x)

)︂⊤ (︂
∇ϕ ◦ ϕ−1(x)

)︂⊤
n(x) dHn−1 =

∫︂
Γc

c
(︂
v ◦ ϕ−1(x)

)︂⊤
en dHn−1

for some non-zero function c. Since v ∈ V ′
cur(O) it holds (v ◦ ϕ−1(x))⊤

en = 0
for any x ∈ Γc and hence∫︂

Γc

(︂
v ◦ ϕ−1(x)

)︂⊤
en dHn−1 = 0. (3.55)

Combining (3.54) and (3.55) completes the proof.

We will now construct bounded linear operator Bog⊤ : L̃2(O) →
(︂
W 1,2

0 (O)
)︂n

such that

Trace
(︂
∇ϕ(y)∇Bog⊤(f)(y) (∇ϕ(y))−1

)︂
= f in O,

Bog⊤(f) = 0 on ∂O
(3.56)

for any f ∈ L̃
2(O). The crucial thing in (3.56) is that Tr

(︂
Bog⊤(f)

)︂
= 0.

Definition 60. Let f ∈ L̃
2(O) and let Bog denote Bogovski operator. We define

operator Mf : V ′
cur(O) → V ′

cur(O) by

Mf (w) = Bog
(︂
f − Trace

(︂
∇wN− +N∇w +N∇wN−

)︂)︂
(3.57)

for w ∈ V ′
cur(O).

Remark. Operator Mf is well defined by Lemma 59 and Theorem 14.
The operator norm of operator Bog, i.e. ∥Bog∥

L̃
2(O)→(W 1,2

0 (O))n obviously de-
pends on the set O. However, by our construction of sets O, we can estimate
it from above by a constant β depending merely on Ω. Leaving out technical
details, it follows from a Lemma from Galdi (see [7], Lemma III.3.1, p. 162).
Thus

∥Bog∥
L̃

2(O)→(W 1,2
0 (O))n ≤ β(Ω). (3.58)

Definition 61. Let (P, ϱ) be a metric space and f : P → P . We say that f
is a contraction if there exists γ ∈ R, γ ∈ [0, 1) such that for all x, y ∈ P holds
ϱ(f(x),f(y)) ≤ γϱ(x,y).
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Notation. Let A = (a(x)i,j) be n×n matrix where ai,j : Ω → R for some Ω ⊂ Rn.
We denote ∥A∥∞ = sup{|ai,j(x)| ; i,j ∈ N,x ∈ Ω}.

Lemma 62. Set Γc can be chosen in such a way that operator Mf is a contraction.

Remark. Lemma 62 is independent of the choice of f ∈ L̃
2(O).

Proof. Let u,v ∈ V ′
cur(O) and denote w = u − v. Since Bog is linear we get

∥Mf (u) −Mf (v)∥V ′
cur(O)

= ∥Bog
(︂
Trace

(︂
∇wN− +N∇w +N∇wN−

)︂)︂
∥V ′

cur(O)

(3.58)
≤ β(Ω)∥Trace

(︂
∇wN− +N∇w +N∇wN−

)︂
∥L2(O)

≤ β(Ω)C(n) max
{︂
∥N∥∞, ∥N−∥∞, ∥N∥∞∥N−∥∞

}︂
∥∇w∥L2(O) (3.59)

where C(n) ∈ R, C(n) > 0 is some constant depending on n. Let ε ∈ R, ε ∈ (0, 1).
Since Ω ∈ C2, we can choose Γc in such a way that

β(Ω)C(n) max
{︂
∥N∥∞, ∥N−∥∞, ∥N∥∞∥N−∥∞

}︂
< ε. (3.60)

Thus (3.59) and (3.60) give that

∥Mf (u) −Mf (v)∥V ′
cur(O) ≤ ε∥u − v∥V ′

cur(O)

and hence Mf is a contraction.

Remark. Further we will always assume that Γc was chosen in such a way that
(3.60) hold.
Remark. Banach Fixed-Point Theorem (see [13], Theorem 2.1, p.7) ensures that
for each f ∈ L̃

2(O) operator Mf has exactly one fixed point.

Definition 63. For f ∈ L̃
2(O) we define operator Bog⊤ : L̃2(O) →

(︂
W 1,2

0 (O)
)︂n

by
Bog⊤(f) = w (3.61)

where w is fixed point of operator Mf .

Corollary 64. Operator Bog⊤ is linear and bounded. Moreover, it holds

∥Bog⊤∥
L̃

2(O)→(W 1,2
0 (O))n ≤ 2β(Ω). (3.62)

Proof. Let f, g ∈ L̃
2(O). Then there exist corresponding fixed points w1 of

operator Mf and w2 of operator Mg. Denote w = w1 + w2 and h = f + g. Using
(3.57) and linearity of operator Bog we get

w = Bog
(︂
h− Trace

(︂
∇wN− +N∇w +N∇wN−

)︂)︂
.

Thus w is fixed point of operator Mh and hence

Bog⊤(f + g) = Bog⊤(h) = w = w1 + w2 = Bog⊤(f) + Bog⊤(g).
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Scalar multiplication would be proved similarly. Therefore, Bog⊤ is indeed linear.
Furthermore, let f ∈ L̃

2(O) and let w = Bog⊤(f) be corresponding fixed point
of Mf . Using similar estimates as in (3.59) we get

∥w∥(W 1,2
0 (O))n ≤ β(Ω)

(︃
∥f∥

L̃
2(O) + ε∥w∥(W 1,2

0 (O))n

)︃
for some small enough ε ∈ R, ε > 0. Suppose further that ε < 1/(2β(Ω)). Then
we obtain

∥w∥(W 1,2
0 (O))n ≤ β(Ω)

1 − εβ(Ω)∥f∥L2(O).

and thus (3.62) follows.

Remark. Further we will always assume that Γc was chosen in such a way that
(3.60) and (3.62) hold.

Corollary 65. Let f ∈ L̃
2(O). Then relations (3.56) are indeed satisfied for

Bog⊤(f).

Proof. Denote w = Bog⊤(f). The fact that w ∈
(︂
W 1,2

0 (O)
)︂n

follows from the
fact w is fixed point of Mf and from properties of Bogovski operator. Moreover,
we get

div (Mf (w)) = div w = f − Trace
(︂
∇wN− +N∇w +N∇wN−

)︂
.

Using (3.52) we obtain

Trace
(︂
∇ϕ(y)∇Bog⊤(f)(y) (∇ϕ(y))−1

)︂
= f

in O. Hence the claim follows.

Now we are going to use operator Bog⊤ to define another operator that will finally
allow as to prove the desired estimate (3.51).
Lemma 66. Let v ∈ Ṽ cur(O). Denote

L(v) = v − Bog⊤
(︂
Trace

(︂
∇vN− +N∇v +N∇vN−

)︂)︂
.

Then
Tr(L(v)) = Tr(v) (3.63)

on ∂O and
Trace

(︂
∇ϕ∇L(v) (∇ϕ)−1

)︂
= 0 (3.64)

in O.

Proof. Relation for L(v) is well defined by Lemma 59. Relation (3.63) follows
from Corollary 65 and the second condition in (3.56). Relation (3.64) follows from
Corollary 65 and the first condition in (3.56) since we know that v ∈ Ṽ cur(O)
and thus

Trace
(︂
∇ϕ∇v (∇ϕ)−1

)︂
= Trace

(︂
∇vN− +N∇v +N∇vN−

)︂
in O by Lemma 58.
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Definition 67. We define linear operator L : Ṽ cur(O) → V ∗
cur(O) by

L(v) = v − Bog⊤
(︂
Trace

(︂
∇vN− +N∇v +N∇vN−

)︂)︂
(3.65)

for v ∈ Ṽ cur(O).

Remark. Operator L indeed maps to V ∗
cur(O) by Lemma 66 and Definition 53 and

is linear since Bog⊤ is linear.

Lemma 68. Let v ∈ Ṽ cur(O). Then the following estimate hold

∥L(v)∥Ṽ cur(O) ≤ 3∥v∥V ∗
cur(O). (3.66)

Proof. Using (3.62) and similar estimates as in (3.59) and (3.60) and convention
mentioned in Remark after Lemma 62 we indeed obtain

∥L(v)∥Ṽ cur(O)
≤ 3∥v∥V ∗

cur(O).

Lemma 69. Operator L is injective.

Proof. Suppose that u,v ∈ Ṽ cur(O) are such that L(u) = L(v). Denote
w = u − v and denote

h = Trace
(︂
∇wN− +N∇w +N∇wN−

)︂
.

Using (3.65) we obtain

0 = L(u) − L(v) = w − Bog⊤ (h) .

Thus by definition of Bog⊤, w is fixed point of operator Mh. By definition of Mh

we get
w = Mh(w) = Bog(0) = 0.

Hence u = v which completes the proof.

Finally, we prove the desired estimate (3.51).

Lemma 70. Let k ∈ N and let W̃ be a k-dimensional subspace of Ṽ cur(O). Then
there exists a k-dimensional subspace W of V ∗

cur(O) such that

max
v∈W

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 ≤ 3 max

v∈W̃

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 . (3.67)

Proof. We define W = L(W̃ ). Using Lemma 69 we get that W a k-dimensional
subspace of V ∗

cur(O). Using (3.63) and (3.66) we obtain

max
v∈W

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 = max

v∈W̃

∫︁
O|∇L(v)|2 dλn∫︁

Σo
|Tr(L(v))|2 dHn−1

≤ 3 max
v∈W̃

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 .

Thus we indeed proved (3.68).
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Proposition 71. It holds

min
D∈(V ∗

cur(O))k

max
v∈D\{0}

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1 ≤ 3 min

D∈(Ṽ cur(O))
k

max
v∈D\{0}

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1

(3.68)
for all k ∈ N.

Proof. Claim follows directly from Lemma 70.

With knowledge of Proposition 71 we can now move on to the last step towards
obtaining the desired upper estimate. We would now like to once again reduce
this remaining problem in such a way that we could use the results from Section
3.1. For the constructed and appropriate set O we construct a cylindrical subset
Oc in the following way

Oc = O ∩ {(x0,xn) ∈ Rn; xn > γ}

where γ ∈ R,

γ = −3
4 inf{λ1 ({zn ∈ R; (z0, zn) ∈ O}) ; z0 ∈ B(y′, r)}

(see paragraph above (3.30) for B(y′, r)). Thus the only change is in the lower
disk part of the boundary (see Picture 3.2 where the blue line is Sl,Oc).

O

Oc

Σo

Figure 3.2: Construction of set Oc

Notation. For any u ∈ Vc(Oc) (see Definition 37) we denote by E0 the extension
of u by zero to the whole set O.
An analogous version of Lemma 49 holds also for this situation.

Lemma 72. Let k ∈ N, k ≥ 1. A finitely generated subspace Wk =
span{u1,...,uk} of space Vc(Oc) has dimension k if and only if subspace W ′

k =
span{E0(u1),...,E0(uk)} of space Ṽ cur(O) has dimension k.
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Proposition 73. The inequality

λk,T̃ cur ≤ λk,Tc .

holds for all k ∈ N.

Proof. Let k ∈ N. Combining Theorem 35, Theorem 57 and (3.2) we get that

λk,T̃ cur = min
D∈(Ṽ cur(O))

k

max
v∈D\{0}

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1

Using the definition of E0 and the fact that E0(Vc(Oc)) ⊂ Ṽ cur(O) we obtain

λk,T̃ cur ≤ min
D∈(E0(Vc(Oc)))k

max
v∈D\{0}

∫︁
O|∇v|2 dλn∫︁

Σo
|Tr(v)|2 dHn−1

(L72)= min
D∈(Vc(Oc))k

max
v∈D\{0}

∫︁
O|∇E0(v)|2 dλn∫︁

Σo
|Tr(E0(v))|2 dHn−1

(def. E0)= min
D∈(Vc(Oc))k

max
v∈D\{0}

∫︁
Oc

|∇v|2 dλn∫︁
Σo

|Tr(v)|2 dHn−1

= min
D∈(Vc(Oc))k

max
v∈D\{0}

⟨v,v⟩Vc(Oc)

⟨Tc(v),v⟩Vc(Oc)
= λk,Tc (3.69)

and the claim follows.

Thus we are finally able to formulate the general Theorem that we wanted to
prove.

Theorem 74. Let Ω be a bounded C2 domain in Rn where n ∈ {2,3}. Then there
exists a constant C(Ω, n) ∈ R, C(Ω) > 0 depending on Ω and dimension n such
that

λk,T ≤ C(Ω)k1/(n−1) (3.70)
for all k ∈ N.

Proof. Proof consists of applying and combining each particular result that
we proved so far. Step by step by applying Proposition 50, Proposition 55,
Proposition 71, Proposition 73, Proposition 43, Proposition 26 and Proposition
34 we indeed obtain estimate (3.70).

Theorem 75. Let Ω be a bounded C2 domain in Rn where n ∈ {2,3}. Then there
exists a constant C(Ω, n) ∈ R, C(Ω) > 0 depending on Ω and dimension n such
that

lim sup
k→∞

λk,T

k1/(n−1) ≤ C(Ω, n). (3.71)

Proof. Theorem follows immediately from Theorem 74.
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4. Lower estimate of eigenvalues
on general domains

So far we have only discussed the upper estimate of eigenvalues of the problem
(2.1)-(2.4) and the reason was that the lower estimate is a consequence of the work
of Sandgren [1] where (as mentioned in the Introduction) they studied Steklov
problem, i.e. for n ∈ N, Ω ⊂ Rn bounded C2 domain, u : Ω → Rn and µ ∈ R
they considered

−∆u = 0 in Ω, (4.1)
(∇u) n = µu on ∂Ω (4.2)

and determined asymptotic behaviour of the eigenvalue sequence (µk)∞
k=1 of the

problem (4.1)-(4.2). More precisely, they proved that there exists a constant
CStek(Ω, n) ∈ R, CStek(Ω, n) > 0 depending on Ω and dimension n such that

µk = CStek(Ω, n)k1/(n−1) + o(k1/(n−1)). (4.3)

We will now briefly comment on theoretical results regarding problem (4.1)-
(4.2) since it will be very similar to the results obtained for problem (2.1)-(2.4).
If not stated otherwise, we will assume throughout this Section that n ∈ N and
Ω is a bounded C2 domain in Rn

Notation. Let H1(Ω) denote the space (W 1,2(Ω))n.
Remark. H1(Ω) is a Hilbert space with the following inner product

⟨u,v⟩H1(Ω) =
∫︂

Ω
∇u : ∇v dλn +

∫︂
∂Ω

Tr(u) · Tr(v) dHn−1,

where u,v ∈ H1(Ω). By ∥·∥H1(Ω) we denote corresponding norm. Moreover,
∥·∥H1(Ω) is equivalent to the standard ∥·∥(W 1,2(Ω))n .

Definition 76. Let µ ∈ R be fixed. We say that u ∈ H1(Ω) is a weak solution
to the problem (4.1)-(4.2) if∫︂

Ω
∇u : ∇φ dλn = µ

∫︂
∂Ω

Tr(u) · Tr(φ) dHn−1 (4.4)

holds for all φ ∈ H1(Ω).

Remark. We will only be interested in non-trivial weak solutions hence by setting
φ = u in (4.4) we immediately get that µ ≥ 0.
We could now once again define a mapping B : H1(Ω) ×H1(Ω) → C

B[u,v] =
∫︂

∂Ω
Tr(u) · Tr(v) dHn−1.

and obtain a unique operator TStek ∈ L(H1(Ω)) satisfying

B[u,v] = ⟨TStek(u),v⟩H1(Ω)

for all u,v ∈ H1(Ω). Then we would obtain completely analogous results as in
Lemma 12 and Theorem 13. We will summarize that in the following Theorem
without proof.
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Theorem 77. Operator TStek is compact and self-adjoint. For some fixed µ ∈
R, µ > 0, a non-trivial function u is an eigenfunction of TStek corresponding to
eigenvalue µ if and only if u is a weak solution to the problem (4.1)-(4.2) with
1/µ−1 instead of µ. The set of eigenvalues of the problem (4.1)-(4.2) is countably
infinite.

Notation. When we refer to the operator TStek we always assume that TStek is
defined on the corresponding function space, i.e. H1(Ω). Furthermore, we denote
σp(TStek) =

(︂
λ′

k,TStek

)︂∞

k=1
and 1/σp(TStek) − 1 = (λk,TStek)∞

k=1 where
(︂
λ′

k,TStek

)︂∞

k=1
is

sorted in a non-increasing order, (λk,TStek)∞
k=1 is sorted in a non-decreasing order

and each eigenvalue in both sequences is counted with its multiplicity.

Proposition 78. Let k ∈ N and suppose that λk,TStek > 0. Then

λk,TStek = min
D∈(H1(Ω))k

max
u∈D\{0}

∫︁
Ω ∇u : ∇u dλn∫︁

∂Ω Tr(u) · Tr(u) dHn−1 . (4.5)

Proof. Proof is completely analogous to proof of Proposition 45.

We now have all the tools ready to prove the desired lower estimate for eigen-
values of the problem (2.1)-(2.4).

Theorem 79. Let n ∈ N and let Ω be a bounded C2 domain in Rn. Then there
exists constant CStek(Ω, n) ∈ R, CStek(Ω, n) > 0 depending on Ω and dimension n
such that

lim inf
k→∞

λk,T

k1/(n−1) ≥ CStek(Ω, n). (4.6)

Proof. Let k ∈ N. Using Proposition 45 and Korn’s inequality (see [6], Proposi-
tion 3.13., p.271) we obtain

λk,T + 1 = 1
λ′

k,T

= min
D∈(V (Ω))k

max
u∈D\{0}

∫︁
Ω Du : Du dλn +

∫︁
∂Ω Tr(u) · Tr(u) dHn−1∫︁

∂Ω Tr(u) · Tr(u) dHn−1

≥ CKorn min
D∈(V (Ω))k

max
u∈D\{0}

∥u∥2
(W 1,2(Ω))n∫︁

∂Ω|Tr(u)|2 dHn−1

≥ CKorn min
D∈(V (Ω))k

max
u∈D\{0}

∫︁
Ω|∇u|2 dλn∫︁

∂Ω|Tr(u)|2 dHn−1

(V (Ω)⊂H1(Ω))
≥ CKorn min

D∈(H1(Ω))k

max
u∈D\{0}

∫︁
Ω|∇u|2 dλn∫︁

∂Ω|Tr(u)|2 dHn−1 = CKornλk,TStek . (4.7)

Dividing both sides of the inequality (4.7) by k1/(n−1) then taking lim infk→∞ and
finally using (4.3) we indeed obtain inequality (4.6).
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5. Asymptotic behaviour of
eigenvalues on general domains

By combining the results from Chapter 2, Chapter 3 and Chapter 4 we are
able to summarize our results into one Theorem about the asymptotic behaviour
of the eigenvalue sequence of the problem (2.1)-(2.4) and confirm our hypothesis
from the Introduction.

Theorem 80. Let Ω be a bounded C2 domain in Rn where n ∈ {2,3}. Then
there exist constants cStokes, CStokes(Ω, n) ∈ R, cStokes, CStokes(Ω, n) > 0 depending
on domain Ω and dimension n such that

cStokes(Ω, n) ≤ lim inf
k→∞

λk

k1/(n−1) ≤ lim sup
k→∞

λk

k1/(n−1) ≤ CStokes(Ω, n). (5.1)

Proof. Theorem follows from Theorem 75 and Theorem 79.
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Conclusion
Our goal in this thesis was to modify techniques used in [1] and [2] in order

to determine asymptotic behaviour of the eigenvalue sequence of the problem
(2.1)-(2.4) on bounded C2 domains. The lower bound of the asymptotic growth
of the eigenvalue sequence was a consequence of the results from [1] (see Theorem
79), however, the upper bound was, as far as we know, not known. The goal was
achieved, however, due to technical difficulties, only in dimension two and three.
Nevertheless, in these cases, our hypothesis about asymptotic growth turned out
to be true as summarized in Theorem 80.

Firstly, we introduced some theoretical results yielding that the eigenvalue
sequence of the problem (2.1)-(2.4) is corresponding to an eigenvalue sequence of
a certain compact and self-adjoint operator. This is particularly useful since we
have an explicit formula for the k-th eigenvalue of the considered operator (see
Theorem 35).

Next, we introduced auxiliary problems on simple domains for which we were
able to find all non-trivial weak solutions explicitly and consequently we deter-
mined the asymptotic behaviour of the eigenvalue sequences of these problems
precisely.

Finally, by using Theorem 35, we showed that eigenvalues of the problem
(2.1)-(2.4) can be estimated from above by eigenvalues of several different, aux-
iliary problems. Eventually, we were capable of estimating the eigenvalues of
these auxiliary problems by eigenvalues of problems for which we had proved the
precise asymptotic behaviour and thus yielding the main result of this thesis, i.e.
Theorem 80.
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