
MASTER THESIS

Petr Sedláček

Security of Trapdoor Permutations
under Preimage Leakage

Computer Science Institute of Charles University

Supervisor of the master thesis: Mgr. Pavel Hubáček, Ph.D.
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Petr Sedláček

i

I dedicate this work to my bigger half, again.

ii

Title: Security of Trapdoor Permutations under Preimage Leakage

Author: Petr Sedláček

Department: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Abstract: This thesis explores preimage leakage-resilient trapdoor permutations
(PLR-TDPs) and their applications in proofs of storage replication and incom-
pressible encodings. The thesis consists of three chapters covering the trapdoor
permutations, formal definition of PLR-TDPs, and analysis of security properties
of PLR-TDPs. The first chapter provides an overview of trapdoor permutations
(TDPs), their definitions, and applications in proofs of storage replication. Our
results are presented in the second and third chapters. The second chapter for-
mally defines PLR-TDPs and demonstrates their use by constructing a simple
incompressible encoding in the random oracle model. The third chapter focuses
on the existence of PLR-TDPs. It demonstrates the strong preimage leakage-
resilience of fully random TDPs in an idealized model. We are the first to provide
a partial formal justification for the conjecture of the preimage leakage-resilience
of practical TDPs, such as RSA or Rabin permutations.

Keywords: trapdoor permutations, preimage leakage, proof of storage replication,
incompressible encodings

iii

Contents

Introduction 2

1 Trapdoor permutations and their applications 3
1.1 Preliminaries . 3
1.2 Applications of TDPs . 4

1.2.1 Applications in proof of storage replication 4
1.2.2 Hourglass schemes and replica encodings 6

2 Preimage leakage-resilient trapdoor permutations 8
2.1 Definitions of PLR-TDPs . 8
2.2 Incompressible encodings from PLR-TDPs 9

3 Existence of PLR-TDPs 13
3.1 Preliminaries . 13
3.2 Preimage Leakage-Resilience of Random Trapdoor Permutations . 15

Conclusion 23

Bibliography 24

List of Figures 26

List of Abbreviations 27

1

Introduction
Trapdoor permutations are central for public-key cryptography. In this thesis,
we focus on their less known property, which is security under preimage leakage.
Preimage leakage-resilience is defined by the extension of a standard one-way
security experiment. An adversary tries to invert a “hard to invert” function with
the knowledge of the image and a partial knowledge of the preimage. For example,
let f(x) = y, then the adversary tries to invert f with the knowledge of y and a
partial knowledge of x in a form of some short digest w capturing the preimage
leakage. Note that standard leakage-resilience from cryptographic literature refers
to the leakage of the secret key (see, e.g., [KR19]), whereas our leakage-resilience
refers to the leakage of the preimage of a one-way (trapdoor) permutation.

In the first chapter, we present an overview of trapdoor permutations. We
state their formal definition as well as definitions of related concepts. Preliminaries
are followed by some known applications of trapdoor permutations. In particular,
we focus on applications in proofs of storage replication [DGO19], which are
tightly connected to the preimage leakage-resilience. The last part of the first
chapter focuses on hourglass schemes [vDJO+12] centred around proofs of correct
encryption. These schemes play a principal role in the recent developments in the
field, including the aforementioned proofs of storage replication.

The second chapter focuses on the preimage leakage-resilience property. We
give a formal definition of preimage leakage-resilient trapdoor permutations (PLR-
TDPs), which, as their name suggests, are resilient to a potentially significant
preimage leakage. We show that the property of preimage leakage-resilience is
sufficient for the construction of schemes from the applications mentioned in the
first chapter. We show this by constructing an incompressible encoding scheme as
defined in [MW20] using PLR-TDPs in the random oracle (RO) model. The use
of PLR-TDPs has a significant benefit over the known constructions – it leads to
simple-to-analyze schemes. However, this alone is insufficient for the PLR-TDPs
to be used as an assumption in proofs. It is not clear whether these primitives
exist “in the wild”. This issue is tackled in the last chapter.

The third and last chapter positively answers the question of whether the use
of PLR-TDPs stands on solid foundations. We show that in an idealised model,
a random trapdoor permutation is preimage leakage-resilient. A second interesting
result in this chapter is that for every δ ∈ (0, 1), there exists a set of parameters
such that a fully random trapdoor permutation of sufficient length n is secure
even if δ · n bits of preimage are leaked.

Our contributions
1. We give a formal definition of PLR-TDPs.
2. We show that PLR-TDPs give simple incompressible encodings in the random

oracle model.
3. We show that an ideal random TDP is strongly preimage leakage-resilient.
Specifically, our result from the last item is the first step towards validating the

conjecture of van Dijk et al. in [vDJO+12] about the preimage leakage-resilience
of the RSA permutation (see Section 1.2.2 for further discussion).

2

1. Trapdoor permutations and
their applications
In this chapter, we present a primitive called trapdoor permutations (TDPs). We
start with the necessary terminology and proceed with various applications. We
pay close attention to their application in proof of storage replication [DGO19,
GLW20] and deeply connected incompressible encodings [MW20]. We also describe
hourglass schemes [vDJO+12], which highly influenced all of the other applications.

1.1 Preliminaries
Notation 1.1. By Πn, we denote the set of all permutations on {0, 1}n.

For clarity, we restate definitions of one-way permutations and trapdoor
permutations based on [Gol01].

Definition 1.2 (Trapdoor permutations). Let λ ∈ N be a security parameter. Let
I be an infinite set of indices and let G = (G1, G2) be an index-sampling algorithm,
where G1(1λ) denotes the first half of the output of G(1λ). A collection of
permutations F = {fk : Dk ↦→ Dk}k∈I is a family of trapdoor permutations if there
exists a tuple of probabilistic polynomial-time (PPT) algorithms (G, D, F, F −1)
satisfying the following conditions:

Efficient evaluation: The output distribution of the index-sampling algorithm
G1 on input 1λ is a random variable assigned values in the set I ∩ {0, 1}λ.
The output distribution of the domain-sampling algorithm D on input k ∈ I
is a random variable assigned values in Dk. On input k ∈ I and x ∈ Dk,
algorithm F always outputs fk(x).

One-wayness: For every PPT algorithmA, every polynomial p and all sufficiently
large λ, it holds that

Pr[A(fG1
λ
(Xλ), G1

λ) = Xλ] ≤ 1
p(λ) ,

where G1
λ is a random variable describing the output distribution of the

algorithm G1 on input 1λ and Xλ is a random variable describing the output
of algorithm D on input G1

λ.

Efficient invertibility with a trapdoor: For every (k, td) in the range of G
and every x ∈ Dk, it holds that F −1(td, F (k, x)) = x.

For additional details about Definition 1.2, see [Gol01, p. 52–54, 57].

3

1.2 Applications of TDPs
Public-key encryption (PKE) schemes, such as RSA [RSA78] and Rabin [Rab79],
had a huge impact on the cryptographic research. An important generalization was
made by Andrew C. Yao [Yao82] who created the notion of trapdoor permutations
as a sufficient condition for the construction of PKE schemes. Using TDPs allowed
researches to avoid dependence on a concrete construction – if a new construction
of PKE schemes emerges, their results are applicable without significant changes.

Trapdoor permutations are a versatile primitive for many applications in
theoretical cryptography. With trapdoor permutations, it is possible to create
basic cryptographic constructions, including pseudorandom generators (PRGs)
and pseudorandom functions [KL20]. However, main purpose of TDPs is to use
them as a building block for complex constructions. For example, TDPs can
be utilised for aforementioned public-key cryptography and signatures schemes
[RSA78, Rab79, Pai99, LMRS04], private information retrieval [CKGS98, KO00],
and encoding schemes utilising incompressibility properties [DGO19, GLW20,
MW20]. In the following, we focus on the last mentioned application, namely
replica encodings and incompressible encodings.

1.2.1 Applications in proof of storage replication
An article [DGO19] (Proofs of replicated storage without timing assumptions) by
Ivan Damg̊ard, Chaya Ganesh and Claudio Orlandi was presented at the CRYPTO
2019 conference. The article introduced a novel replica encoding scheme which
utilises a notion of incompressibility to prove that multiple encodings of data are
stored on a remote server. Since then, subsequent research has been carried out by
various groups. Tal Moran and Daniel Wichs published an article Incompressible
Encodings [MW20]. They extracted the incompressibility property of replica
encodings into a separate scheme. They showed that the replica encodings can
be constructed using their incompressible encodings. In the same year, a group
of scientists discovered that the original article [DGO19] had serious flaws in its
security argument. In their article [GLW20], Rachit Garg, George Lu and Brent
Waters established an adjusted replica encoding scheme with proof of security.

In this section, we briefly present a variant of the replica encoding by [GLW20]
and highlight techniques that are used in the proof of security of the scheme.
From now on, by replica encoding scheme, we refer exclusively to the variant by
[GLW20].

The replica encoding utilises a random oracle H, trapdoor permutation F and
ideal cipher T . The encoding process has three main phases that are denoted in
Figure 1.1.

Decoding is similar, with the steps performed inversely to the encoding pro-
cedure. The main difference is that the decoding applies TDP F in the “easy”
direction. Thus the trapdoor is not required for successful decoding.

The main gist of the security game is the following. An adversary A1 has
access to n different replicas (encodings) of a message m, produces a small digest
state and sends it to a second adversary A2. The second adversary has access to
the original message m, the digest state created by the adversary A1, and it also
knows the total number of replicas. Their goal is to recreate as many replicas as

4

Figure 1.1: Encoding process of replica encodings

First phase

• Message is divided into b blocks of the same length.

Second phase

• Every message block is XORed with an output from the random oracle H
queried on a pair (ρ,i), where ρ is a randomly generated string and i is
an index of the particular message block.

Third phase

• For each block, the two following steps are repeated r times:

– The current value of the block is permuted using the ideal cipher T .
– The “hard” direction of the trapdoor permutation F is applied, which

requires the trapdoor.

• After r rounds, the encoding outputs ρ and the final values for each block.

possible using only the information provided to them.
We highlight the fact that in the third phase of the replica encoding scheme,

the trapdoor permutation and the ideal cipher are queried multiple (r) times.
There is an important relation between the number of rounds r and the size of
the digest state produced by the adversary A1 for the adversary A2, which is
discussed in Lemma 1.5.

The following lemma states conditions for the success of adversaries. Im-
portantly, a scheme is parameterized by s ∈ [0, 1], which defines the minimal
amount of compression required from the adversary A1. The greater the s, the
less compression is required from the adversary A1.
Lemma 1.3 ([GLW20]). Let v ∈ N denote the number of the correct guesses of
the adversary A2. Let s ∈ [0, 1] be a parameter, let ℓ be the length of an encoded
message and let |state| denote the size of the digest exchanged between A1 and
A2. Then the adversaries succeed if

|state| < v · s · ℓ

For a scheme to be considered secure (for a fixed parameter s), we require the
probability of success of adversaries in the security game to be negligible in the
security parameter λ.

One of the contributions of [GLW20] is a proof of the following theorem.
Theorem 1.4 ([GLW20]). Let κ ∈ N be the length of the encoding of each message
block and let λ ∈ N be the security parameter. Then the replica encoding scheme
described above is secure for all

s ∈ 1− ω (log λ)
κ

.

5

Their proof is established via a sequence of hybrids that follow two main ideas.
The first is to show that the adversary A2 must query sequentially on at least one
replica. The second focuses on exchanging the original permutation for a different
one. The combination of those two approaches allows the embedding of a TDP
challenge. If the adversary succeeds in breaking the scheme with non-negligible
probability, then it breaks the TDP security with non-negligible probability.

For the sequence of hybrids to be correct, the probabilities of adversaries
winning two consequent hybrids must be polynomially dependent. The proof
contains a sequence of nine games (hybrids) in total, and it is not easy to follow.

We highlight a transition between games 5 and 6, which embeds a requirement
for the number of rounds r with respect to the size of the exchanged digest state.
The relation is described in the following lemma.

Lemma 1.5 ([GLW20, p. 25]). Let ϵ be the probability of the adversary winning
Game 5. Then the probability of the adversary winning Game 6 is greater than or
equal to (︃

ϵ

2

)︃(︄
ϵ2r−1 − 2|state| + 1

ϵ2r−1

)︄
.

For the sequence to be polynomially dependent, it must hold that r is sig-
nificantly greater than |state|. Therefore, the third phase of encoding requires
a considerable number of iterations, which renders the scheme unsuitable for
practical use.

1.2.2 Hourglass schemes and replica encodings
Article [vDJO+12] by Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest,
Emil Stefanov and Nikos Triandopoulos presented protocols called hourglass
schemes that prove the correct encryption of files at rest1 on a server. All of
the protocols focused on replica encodings (and incompressibility encodings) are
greatly influenced by hourglass schemes protocols. In the following, we present
the hourglass schemes and compare them to replica encodings.

The hourglass schemes solve the following problem. A server is supposed
to store files (at rest) encrypted so that the negative impact of accidental data
leakage is minimized. However, there is no obvious way for the client to verify
that the files on the server are encrypted correctly. Suppose that a plaintext file
(data) d should be stored in an encrypted state e. The encryption is performed
on d divided into b blocks di, i.e., d = {di}b

i=1
Enc−−→ e = {ei}b

i=1. The client can
challenge the server to return an i-th encrypted block ei. However, encryption is
(generally) not an expensive operation. Even if the server stores only the plaintext
d, it is easy for them to return the expected ei by encrypting the block di on
the fly. The hourglass schemes add an additional layer of complexity, where the
encrypted e is transformed into g using an hourglass function.

Hourglass function has the following properties. It provides a resource bound
on how fast the function can be computed in one direction, while it is easy to be
computed in the other direction. An example is an inversion of a hash function
H with a relatively short (fixed) output length. It is moderately hard to find

1Files at rest are files that are not used by any program at the given moment.

6

an inverse H−1 of a block ei, H−1(ei) = gi. On the other hand, it is easy to
compute H(gi) = ei. This type of hourglass function provides a time-bound –
the time it takes for an honest server to respond to a challenge is on average
significantly shorter than the time it takes the dishonest server to find an inverse
H−1(ei). A different type of hourglass schemes is of our interest – schemes based
on trapdoor permutations.

Hourglass schemes based on trapdoor permutations do not put bounds on time
but rather on computational complexity. Let F be a trapdoor permutation.

• A file (data) d is encrypted by blocks into e.

• Each block ei is encoded into gi by the client using F −1, which requires
a trapdoor that is known to the client only.

• After the encoding, the trapdoor is destroyed. The g = {gi} and the
description of F are sent to the server.

The use of trapdoor permutation guarantees that for a dishonest server, it is
not feasible to obtain gi from ei. However, for the security of the scheme to be
sound, the following assumption is used: F −1 is near-incompressible, i.e., g cannot
be efficiently compressed below |g| −O(log |g|) bits.

Van Dijk et al. [vDJO+12] conjectured that this property holds for RSA
permutation. They also conjecture that the assumption of near-incompressibility
of F −1 can be completely avoided by applying F −1 multiple times together with
repeated application of a (pseudo)random permutation. The last conjecture was
proven correct by Rachit Garg, George Lu, and Brent Waters in [GLW20]. We
discuss the relation between the number of rounds and the size of the digest in
Section 1.2.1. For more details about the hourglass schemes and related definitions,
see [vDJO+12].

Replica encodings by [DGO19, GLW20] are an adaptation of the presented
hourglass scheme. Replica encodings do not require any encryption per se. Never-
theless, it is required for security purposes that the distribution of bit strings on
which the trapdoor permutation is applied are selected uniformly at random. For
that reason, the plaintext is XORed with an output from a RO instead of common
encryption. No additional incompressibility property is assumed. Therefore, their
security proof requires a considerable number of rounds, i.e., repeated use of
a trapdoor permutation and an ideal cipher.

7

Figure 2.1: Inversion experiment PLR-TDP.InvExpη
A,F(1λ)

k, td ← G(1λ)
x ← D(1λ)
y = Fk(x)
w ← A.Leak(k, x, y)
x′ ← A.Invert(k, w, y)
if x = x′ and w ≤ η(1λ) output 1, otherwise output 0

2. Preimage leakage-resilient
trapdoor permutations
The example in Section 1.2.1 shows that proving the security of an incompressible
scheme in the RO model is not easy. Proofs are often very involved and overly
complicated. That motivates a definition of preimage leakage-resilient trapdoor
permutations (PLR-TDPs). This notion allows proofs to be more straightforward
by shifting the complexity to the construction of PLR-TDPs.

2.1 Definitions of PLR-TDPs
We define the following PLR-TDP inversion experiment.

Definition 2.1 (PLR-TDP Inversion Experiment). For a family of trapdoor per-
mutations F with the corresponding algorithms (G, D, F, F −1), length parameter
η, and an adversary A = (A.Leak, A.Invert), we define the PLR-TDP inversion
experiment in Figure 2.1.

Definition 2.2 (PLR-TDP). A family of trapdoor permutations F is a family of
η-PLR-TDPs if for all PPT adversaries A it holds that

Pr[PLR-TDP.InvExpη
A,F(1λ) = 1] ∈ negl(λ).

For this definition, there exists a trivial compression of any n-bit x to n− log(n)
bits, i.e., η(1λ) = n − log(n). Let x = x1x2x3x4 . . . xn. The adversary A.Leak
outputs w = xlog(n)+1xlog(n)+2 . . . xn, i.e., the digest w is x without the first log(n)
bits. Then, A.Invert gets w as an input and guesses the omitted bits. The
probability of the A.Invert correctly guessing the missing bits is 1/n, which is non-
negligible in n. Note that this trivial attack motivates the near-incompressibility
property of van Dijk et al. dicussed in Section 1.2.2.

8

Figure 2.2: Compression experiment IE.CompExpΦ
AIE,β

m, aux ← AIE.Select(1λ)
c ← Φ.Enc(1λ, m)˜︁w ← AIE.Compress(c, aux)
c′ ← AIE.Expand(˜︁w, aux)
if c = c′ and | ˜︁w| ≤ β(1λ) output 1, otherwise output 0

2.2 Incompressible encodings from PLR-TDPs
In this section, we work with incompressible encodings. First, we recall the notion
of incompressible encodings from [MW20]. Second, we construct an incompressible
encoding scheme using PLR-TDPs in the RO model.

Definition 2.3 ([MW20, p. 11–12]). An (α, β)-incompressible encoding scheme
Φ consists of PPT algorithms Φ = (Φ.Enc, Φ.Dec). We require the following
properties.

Correctness: For all λ ∈ N and all m ∈ {0, 1}∗ we have

Pr[Φ. Dec(Φ. Enc(1λ, m) = m]− 1 ∈ negl(λ).

α-Expansion: For all λ, k ∈ N and all m ∈ {0, 1}k we have

Pr[|Φ. Enc(1λ, m)| ≤ α(λ, k)] = 1.

β-Incompressibility: Compression experiment IE.CompExpΦ
AIE,β(1λ) is defined

in Figure 2.2. For all PPT adversaries AIE we have

Pr[IE.CompExpΦ
AIE,β(1λ) = 1] ∈ negl(λ).

Given a family of PLR-TDPs F and a random oracle H, we construct an
incompressible encoding scheme Ψ = (Ψ.Enc, Ψ.Dec) as defined in Figure 2.3.

Theorem 2.4 (PLR-TDP + RO =⇒ IE). For a family of η-PLR-TDPs, the
encoding scheme Ψ = (Ψ.Enc, Ψ.Dec) described in Figure 2.3 is a β-incompressible
encoding scheme, where β(1λ) = η(1λ)− λ.

Proof. Suppose there exists an adversary AIE such that it breaks the encod-
ing scheme Ψ (compression experiment IE.CompExpΨ

AIE,β outputs 1 with non-
negligible probability). We want to prove that such adversary implies the existence
of an adversary APLR-TDP capable of breaking the PLR-TDP inversion experi-
ment PLR-TDP.InvExpη

APLR-TDP,F from Figure 2.1. We construct the adversary
APLR-TDP = (APLR-TDP.Leak, APLR-TDP.Invert) as follows:

9

Figure 2.3: Incompressible encoding scheme Ψ

Encoding:

Ψ.Enc(1λ, m):

• k, td← G(1λ)

• r ← {0, 1}λ

• x = F −1(td, m⊕H(r))

• c = (k, r, x)

• output c

Decoding:

Ψ.Dec(c)

• c = (k, r, x)

• m′ = Fk(x)⊕H(r)

• output m′

APLR-TDP.Leak(k, x, y):

1. Samples s← {0, 1}λ.

2. Generates r1, r2 using PRG with the randomness s, i.e., (r1, r2) = PRG(s).

3. Calls AIE.Select on input (r1) instead of running it on a truly random string.
Stores its output m and auxiliary information aux.

4. Sets random oracle to output m⊕ y on input r2, i.e., H(r2) = m⊕ y.

5. Calls AIE.Compress on input (c = (k, r2, x), aux).

6. The AIE.Compress outputs a (short) digest ˜︁w.

7. Outputs the digest with the seed for PRG: w = ˜︁w||s.

APLR-TDP.Invert(k, w, y):

1. Interprets w as ˜︁w||s.

2. (r1, r2) = PRG(s).

3. Calls AIE.Select on input r1. Stores its output m and aux.

4. Calls AIE.Expand on input (˜︁w, aux).

5. The AIE.Expand outputs a codeword c′.

6. Interprets c′ as (k′, s′, x′).

7. Outputs x′.

We need to verify that the distributions of variables (inputs) for the AIE

algorithms are indistinguishable between experiments IE.CompExpΦ
AIE,β and

PLR-TDP.InvExpη
APLR-TDP,F . First, we focus on the APLR-TDP.Leak algorithm.

10

• We fix the randomness for the AIE.Select algorithm as r1. As the algorithm
does not take any input except for the security parameter 1λ, it cannot
distinguish between the experiments it takes part in.

• The AIE.Compress algorithm expects on input aux generated by the
AIE.Select and a codeword c = (k, r, x) generated by the Ψ.Enc, where
key k is generated by the G algorithm, r is uniformly random and
x = F −1(td, m⊕H(r)).

– The key k is generated by the same algorithm G.
– The randomness r is replaced by r1, which was created by a PRG. If

the adversary could distinguish between r (which is uniformly random)
and r1, it would contradict the pseudorandomness of the PRG.

– The x the adversary receives on input is equal to F −1(td, y). Thus,
we want to show that the adversary cannot distinguish between y and
y′ := m ⊕ H(r). First, we can replace r with r1 as they are indis-
tinguishable. Second, for any fixed m, the distribution of y′ over
r ← {0, 1}λ is uniformly random. With the knowledge of both m and
r and access to the random oracle H, the y = m ⊕ H(r) must hold
for the y to be indistinguishable from y′. It holds from point 5 of the
APLR-TDP.Leak(k, x, y) algorithm, where r = r1.

– The aux value is generated by the same algorithm AIE.Select.

Second, we have a look at the second algorithm APLR-TDP.Invert.

• For the AIE.Select algorithm, the situation is the same as for the
APLR-TDP.Leak algorithm. Because of the fixed randomness r1, the gen-
erated message m and aux are identical to those generated previously.

• The AIE.Expand algorithm expects on input the aux generated by AIE.Select
and a digest ˜︁w generated by the AIE.Compress.

– From the case ofAPLR-TDP.Leak we know that theAIE.Compress cannot
distinguish between the experiments. Thus neither can AIE.Expand,
as it does not have any additional information that is not available to
the AIE.Compress. Namely, the digest ˜︁w and the aux have the same
distributions in both experiments.

For the IE.CompExpΦ
AIE,β to output 1, two conditions must be met:

1. The digest ˜︁w is short. It must hold that ˜︁w ≤ β(1λ)

2. The codeword c is reconstructed correctly from the digest, i.e., c = c′.

For the PLR-TDP.InvExpη
APLR-TDP,F to output 1, two similar conditions must be

met:

1. The digest w is short. It must hold that w ≤ η(1λ)

2. The x is reconstructed correctly, i.e., x = x′.

11

Figure 2.4: Composability experiment CExpΦ
AIE,k(1λ)

{mi}k
i=1, aux ← AIE.Select(1λ).

For i = 1, . . . , k : ci ← Φ.Enc(mi).
w ← AIE.Compress({ci}k

i=1, aux).
{c′

i}k
i=1 ← AIE.Expand(w, aux).

Let I = {i : ci = c′
i}. If I ≠ ∅ and |w| ≤

∑︂
i∈I

β(1λ) output 1,
otherwise output 0.

The output of the APLR-TDP.Leak is a digest w = ˜︁w||s. If | ˜︁w| ≤ β(1λ), then
|w| ≤ β(1λ) + λ = η(1λ). Also, if c = c′, then it holds that x = x′. Because we
suppose that the adversary AIE successfully breaks the β-incompressible encoding
scheme Ψ with a non-negligible probability p, the adversary APLR-TDP breaks the
underlying PLR-TDP with probability p. That concludes the proof.

The fact that a single file cannot be compressed below β bits, does not imply
that k files cannot be compressed below k · β bits. Moran and Wichs in [MW20]
conjectured that there exist schemes such that even though one file cannot be
compressed below β bits, compressing k files can be done using significantly less
than k · β bits. That motivates the following definition of the composability
property.

Definition 2.5 (Composability). Let k ∈ N. For (α, β)-incompressible encod-
ing scheme Φ, we define the composability experiment CExpΦ

AIE,k(1λ) with PPT
adversary AIE in Figure 2.4.

We say that an incompressible encoding scheme Φ is k-composable if for every
PPT adversary AIE it holds that the probability of composability experiment
CExpΦ

AIE,k(1λ) outputting 1 is negligible, i.e.,

Pr[CExpΦ
AIE,k(1λ) = 1] ∈ negl(λ).

Conjecture 1. We conjecture that our construction of incompressible encoding
can be naturally extended to a composable incompressible encoding scheme.

12

3. Existence of PLR-TDPs
The natural question is whether PLR-TDPs exist under any standard assumptions.
In this chapter, we show that a random trapdoor permutation is a PLR-TDP with
overwhelming probability. To this end, we generalize a result from [GGKT05],
who studied the one-wayness of random (trapdoor) functions and permutations.

3.1 Preliminaries
In the rest of the thesis, we work with the following ideal model of trapdoor
permutations.

Definition 3.1 (Ideal trapdoor permutations). Let n ∈ N. Consider the set
Tn = {τ |τ = (G, F, F −1)} such that the following holds.

• G ∈ Πn is a permutation on {0, 1}n. When queried on a trapdoor string td,
it produces a public key k, i.e., G(td) = k.

• F : {0, 1}n × {0, 1}n → {0, 1}n is a function such that for each k ∈ {0, 1}n,
F (k, ·) is a permutation on {0, 1}n. We denote Fk := F (k, ·).

• F −1 : {0, 1}n × {0, 1}n → {0, 1}n satisfies that F −1(td, y) = x, where
G(td) = k and Fk(x) = y. We denote F −1

k := F −1(td, ·).

We denote such Tn as a family of trapdoor permutations of length n.

In the definition above, G represents a key-generating algorithm, F represents
a collection of keyed permutations, and F −1 represents inversion using the trapdoor
td.

Next, we present a version of PLR-TDPs for circuits. There are two differences
between the new Definition 3.1 and Definitions 2.1 and 2.2 from the previous
chapter. First, AF .Invert is a circuit of a size at most S. Second, we give an
explicit bound ε on the probability of success of the adversary.

Definition 3.2 (S-PLR-TDP Inversion Experiment). Let n ∈ N. For a family
of trapdoor permutations F on {0, 1}n, length parameter η and an adversary
AF = (AF .Leak,AF .Invert), where AF .Invert is a circuit of a size at most S, we
define the inversion experiment S-PLR-TDP.InvExpη

AF ,F as it is in Figure 3.1.

Definition 3.3 ((η, S, ε)-PLR-TDP). A family of trapdoor permutations F is
a family of (η, S, ε)-PLR-TDPs if for all adversaries AF = (AF .Leak, AF .Invert),
where AF .Invert is a circuit of a size at most S, it holds that

Pr[S-PLR-TDP.InvExpη
AF ,F = 1] ≤ ε.

For the sake of reducing the number of parameters, by (η, S)-PLR-TDP we denote
(η, S, 1/S)-PLR-TDP.

Note that (η, S)-PLR-TDP is in particular S-hard one-way function, meaning
that it is hard to invert in the standard sense for circuits of size at most S.
The following lemma establishes that any trapdoor permutation τ ∈ Tn can be
described using at most (2n + 1) log(2n!) bits.

13

Figure 3.1: Inversion experiment S-PLR-TDP.InvExpη
AF ,F

td is uniformly random from {0, 1}n

k = G(td)
y is uniformly random from {0, 1}n

x = F −1
k (y)

w ← AF .Leak(k, x, y)
x′ ← AF .Invert(k, w, y)
if x = x′ and w ≤ η output 1, otherwise output 0

Lemma 3.4. The number of trapdoor permutations τ ∈ Tn is |Tn| = 2n!(2n!)2n.

Proof. The set Tn consists of all tuples (G, F, F −1). The G is a set of all permu-
tations on {0, 1}n. It holds that |{0, 1}n| = 2n thus |G| = 2n!. F is a permutation
in the second parameter for each key k ∈ {0, 1}n. There are 2n possible keys k.
Therefore |F | = (2n!)2n . The oracle F −1 is fully determined by G and F , which
concludes the proof.

Further on, we utilise the following standard inequalities. Proofs can be found
in [MN09, p. 90–95].

Lemma 3.5. For every n ∈ N, n ≥ 1, it holds that

n! ≥ e
(︃

n

e

)︃n

.

Lemma 3.6. For every n, k ∈ N, n ≥ k ≥ 1, it holds that(︄
n

k

)︄
≤
(︃

en

k

)︃k

.

In particular, we rely on the following corollary.

Corollary 3.7. Let a, N ∈ N, N ≥ a ≥ 1. Then the following holds:

a! ≥
(︃

a

e

)︃a

(3.1)

and (︄
N

a

)︄
≤
(︃

eN

a

)︃a

. (3.2)

Proof. From Lemma 3.5, it follows that

a! ≥ e
(︃

a

e

)︃a

≥
(︃

a

e

)︃a

.

The second equation follows directly from Lemma 3.6.

14

3.2 Preimage Leakage-Resilience of Random
Trapdoor Permutations

In this section, we establish our main theorem on the preimage leakage-resilience
of random TDPs.

Theorem 3.8. For a sufficiently large n, a random trapdoor permutation τ ∈ Tn

is a (n/6, 2n/5)-PLR-TDP with probability at least 1− 22n/2.

To prove the theorem, we utilise a number of lemmata. The most important
is Lemma 3.9 which uses the following known fact. Suppose that there exists
an efficient invertor for a given trapdoor permutation. Then a description of
such permutation requires significantly fewer bits compared to the number of bits
necessary to describe an “average” random permutation. Proof of the lemma
utilises ideas from [GGKT05], where a similar claim is stated without the additional
hints {wk,y}. In particular, we show that the incompressibility vs compressibility
relation holds even in the presence of leakage from the preimage. Proof of the
theorem is near the end of this chapter.

Lemma 3.9 (TDP compressibility lemma). Let n ∈ N and let Aτ be a circuit
that makes q queries to a trapdoor permutation τ ∈ Tn, satisfying that

Pr
k,y

[Aτ (wk,y, k, y) = x ∧ Fk(x) = y] ≥ ε,

where {wk,y}k∈{0,1}n, y∈{0,1}n is a sequence of hints, each of size |wk,y| ≤ η. Then
τ can be described using at most

1 + 2n log(2n!) + n + 2 log
(︄

2n

a

)︄
+ log

(︂
(2n − a)!

)︂
+ ηa

bits, where a = ⌈ε2n/(2q + 1)⌉.

Proof. Let N = 2n and let Q(wk,y, k, y) denote the event that Aτ (wk,y, k, y) queries
either G(td) or F −1(td, y′), where y′ is arbitrary and G(td) = k. We say that
“Aτ (wk,y) inverts (k, y)” if Aτ (wk,y, k, y) = x such that Fk(x) = y. There are two
possibilities: either

Pr
k,y

[Aτ (wk,y) inverts (k, y) ∧ Q(wk,y, k, y)] ≥ ε/2 (3.3)

or
Pr
k,y

[Aτ (wk,y) inverts (k, y) ∧ Q(wk,y, k, y)] ≥ ε/2. (3.4)

Consider the first case. From the law of total probability it follows that there
exists ŷ such that Prk[Aτ (wk,ŷ) inverts (k, ŷ) ∧ Q(wk,ŷ, k, ŷ)] ≥ ε/2. We show
that G can be described using a “small” number of bits. Let I be the set of at
least εN/2 points (k, ŷ), on which Aτ (wk,ŷ) inverts (k, ŷ) and Q(wk,ŷ, k, ŷ) occurs.
We define a set K ⊆ I using the following process.

1. Let K be empty.

2. We remove the (lexicographically) first element (k, ŷ) from I and place it
into K.

15

3. Next, we simulate the computation of Aτ (wk,ŷ, k, ŷ). Since Q(wk,ŷ, k, ŷ)
occurs, we know that there is a query i of the form G(td) or F −1(td, y′),
where G(td) = k.

4. We look at all the i− 1 preceding queries.

• For queries of the form G(td′) with answer k′ we remove (k′, ŷ) from I.
• For queries of the form F −1(td′, y′) let G(td′) = k′ and remove (k′, ŷ)

from I.

5. If the set K contains a pairs (k, ŷ), i.e., |K| = a, we stop the process.
Otherwise, we repeat steps 2–5.

It is possible to finish this process because, at each step, we add one element
to K and remove at most q elements from I. Since the original size of I is greater
than εN/2, we can perform at least εN/2q steps before the set I is empty. In other
words, we are able to construct K of size at least ⌈εN/2q⌉ > ⌈εN/(2q + 1)⌉ = a.

Let Kk = {k : (k, ŷ) ∈ K}. We claim that the permutation G is fully specified
given Aτ , ŷ, description of K and L := G−1(Kk), the values of G on {0, 1}n \ L,
the values wk,ŷ for all k ∈ Kk, and the values of F on all points. We show that
it is indeed possible to invert G for any value (k, ŷ). For (k, ŷ) /∈ K the value
G−1(k) = td is explicitly given. For all pairs (k, ŷ) ∈ K, the values of G−1(k) can
be computed sequentially as follows.

Simulate the computation of Aτ (ŵk, k, ŷ). By construction of K, we know that
Aτ (wk,ŷ, k, ŷ) will query either:

1. G on a point td′ /∈ L,

2. G on a point td′ ∈ L for which G(td′) <lex k,

3. G on the point td ∈ L for which G(td) = k

4. F −1 on a point (td′, y′), where G(td′) /∈ Kk,

5. F −1 on a point (td′, y′) satisfying that G(td′) ∈ Kk, G(td′) <lex k,

6. F −1 on the point (td, y′) for which G(td) = k,

7. F on any point.

Thus, we either have enough information to continue the simulation, or we
have queried on the point td for which G(td) = k. For clarity, we describe what
happens in each of these cases. Note that we reconstruct sequentially for elements
(k, ŷ) ∈ K based on their lexicographical order.

1. The value for G(td′) is stored for td′ ∈ {0, 1}n\L. Thus, it can be immediately
computed.

2. The value for G(td′) is not stored for td′ ∈ L. Nevertheless, if it is the
case that G(td′) <lex k, then the value of G(td′) must have been computed
before – during the reconstruction. Therefore, it can be computed using the
knowledge from reconstructing the values of G so far.

16

Figure 3.2: Number of bits required to describe τ in the first case

K log
(︂

N
a

)︂
L log

(︂
N
a

)︂
G on {0, 1}n \ L log

(︂
(N − a)!

)︂
{wk,ŷ}k∈Kk

ηa

ŷ n

F at all points N log(N !)
first case 1

3. We are unable to compute the value G(td) because it was not stored and it
was not previously reconstructed. Thus, we deduce that G(td) = k.

4. Similarly to the first case, the value of td′ is stored. Let us denote G(td′) = k′

We know that F −1(td′, ·) = (Fk′)−1. The function Fk′ is stored for all points
and F −1(td′, ·) is fully determined by Fk′ , thus F −1(td′, y′) can be computed.

5. Similarly to the second case, we do not know G(td′) from stored values but
from the previous reconstruction. We evaluate G(td′) = k′ and determine
F −1(td′, y′) using the knowledge of (Fk′)−1.

6. We are unable to compute the value G(td) because it was not stored and
it was not previously reconstructed. Thus, we deduce that G(td) = k.
Therefore, we can determine F −1(td, ·) using the knowledge of (Fk)−1.

7. The function F is stored for all points. Thus, it is possible to compute it
directly.

Descriptions of K and G−1(Kk) require log
(︂

N
|K|

)︂
= log

(︂
N
a

)︂
bits each. The set

G−1 on {0, 1}n \Kk requires log
(︂
(N −a)!

)︂
bits, storing hints wk,ŷ for each k ∈ Kk

requires |w| · |K| = ηa bits. Full description of the function F requires N log(N !)
bits, t bits are needed to specify ŷ and a single bit is needed to denote that we
are in the first case. For clarity, all descriptions and their sizes are presented in
Figure 3.2. Note that G and F −1 are fully determined by G−1 and F , respectively.
Thus, we can completely specify τ using at most the number of bits claimed.

Next, consider the second case, i.e., when eq. (3.4) holds. From the law of
total probability, it follows that there exists k̂ such that Pry[Aτ (wk̂,y) inverts (k̂, y)
∧ Q(wk̂,y, k̂, y)] ≥ ε/2. Analogously to the first case, we show that F (k̂, ·) can be
described using a “small” number of bits. In this case, we define I as the set of at
least εN/2 points (k̂, y) such that Aτ (wk̂,y) inverts (k̂, y) and event Q(wk̂,y, k̂, y)
does not happen. Next, we define a set Y ⊆ I by the following process.

1. Let Y be empty.

17

2. We remove the (lexicographically) first element (k̂, y) from I and put it into
Y .

3. We simulate the computation of Aτ (wk̂,y, k̂, y).

4. Consider the ℓ ≤ q queries made by A of the form {F (k̂, xi)} with corre-
sponding answers yi.

• If y /∈ {yi}ℓ
i=1, we remove {(k̂, yi)}ℓ

i=1 from I.
• If there exists j such that y = yj , we remove (only) {(k̂, yi)}j−1

i=1 from I.

5. If the size of Y is |Y | = a, we stop the process. Otherwise, we repeat steps
2–5.

Note that it is not possible to have empty I before Y is created. At any iteration of
the process we add one element (k̂, y) to the set Y and remove at most q elements
from I. The original size of I is at least εN/2. Therefore, we can perform at least
εN/2q ≥ ⌈εN/(2q + 1)⌉ = a iterations.

Let X be a set satisfying that F (k̂, X) = Y . Similarly to the first case, the
permutation F (k̂, ·) is fully specified given A, sets X and Y , the values wk̂,y for
y ∈ Y , the values of F (k̂, ·) on {0, 1}n \X, the values of G at all points and the
values of F (k, ·) for all k ̸= k̂.

We show that the information provided is sufficient to reconstruct τ . Functions
G and Fk for k ≠ k̂ are fully specified. Thus, we focus on Fk̂. For all y ∈ {0, 1}n\X,
the values of Fk̂ are explicitly provided. For y ∈ X we simulate Aτ (wk̂,y, k̂, y).
We know that Q(wk̂,y, k̂, y) does not happen, i.e., Aτ (wk̂,y, k̂, y) does not make
queries on G(td)) or F −1(td, y′), where y′ is arbitrary and G(td) = k̂. All (other)
queries on G can be evaluated directly because the G is stored. Similarly, we can
evaluate all allowed queries (td′, y′) on F −1. This is because G(td′) = k ̸= k̂ and
thus, F −1(td′, ·) is fully determined by (Fk)−1, which is stored for all k ̸= k̂. Also,
we can evaluate all queries on Fk for k ̸= k̂. Therefore, we focus on queries on Fk̂.
There are three possible options:

1. Fk̂ is queried on x′ /∈ X,

2. Fk̂ is queried on x′ ∈ X such that Fk̂(x′) <lex y,

3. Fk̂ is queried on x ∈ X such that Fk̂(x) = y.

In the first case, we are able to compute the value directly. In the second case,
the value was gained previously during the reconstruction. The order of the
query ≤lex y is granted by the construction of the set Y and the sequential
approach. In the third case, we are not able to evaluate the query from stored or
previously computed values. Thus, we deduce that Fk̂(x) = y. Therefore, F can
be reconstructed for all possible values. This implies the reconstruction of F −1

for all possible values.
The table in Figure 3.3 presents all descriptions and their required sizes in

bits.

18

Figure 3.3: Number of bits required to describe τ in the second case

X log
(︂

N
a

)︂
Y log

(︂
N
a

)︂
{wk̂,y}(k̂,y)∈Y ηa

k̂ n

G at all points log(N !)
F (k̂, ·) on {0, 1}n \X log

(︂
(N − a)!

)︂
F (k, ·) for k ̸= k̂ (N − 1) log(N !)

second case 1

Adding all sizes together, we get the total maximal number of bits required to
describe the trapdoor permutation τ , which is

1 + N log(N !) + n + 2 log
(︄

N

a

)︄
+ log

(︂
(N − a)!

)︂
+ ηa.

This concludes the proof.

To prove Theorem 3.8, we need to upper bound the number of circuits of
size at most S. For that purpose, we state the following lemmata. Lemma 3.10
comes from [GGKT05, p. 13] and provides a somewhat weaker claim. It gives
an upper bound on the number of circuits of size exactly S. Lemma 3.11 provides
the generalised claim for the circuits of size at most S.

Lemma 3.10 ([GGKT05] a bound on the number of circuits of size S). The
number of circuits of size S having input/output length n and oracle access to
a function f : {0, 1}n → {0, 1}n is at most

22S+(S+1)n(log(Sn+n)+1).

Proof of this lemma is in [GGKT05, p. 13].

Lemma 3.11 (a bound on the number of circuits of size at most S). The number
of circuits of size at most S having input/output length n and oracle access to
a function f : {0, 1}n → {0, 1}n is at most

22S+(S+1)n(log(Sn+n)+1)+log(S).

Proof. We upper-bound the size of all possible circuits of length 1, 2, . . . , S. We
estimate each of those by the number of circuits of length S and sum them

19

together.
S∑︂

i=1
22i+(i+1)n(log(in+n)+1) ≤ S · 22S+(S+1)n(log(Sn+n)+1),

≤ 2log(S) · 22S+(S+1)n(log(Sn+n)+1),

≤ 22S+(S+1)n(log(Sn+n)+1)+log(S).

In the following, we give the proof of Theorem 3.8.

Proof of Theorem 3.8. From the TDP compressibility lemma (Lemma 3.9), we
know that every trapdoor permutation τ that can be “efficiently inverted” can be
expressed using at most κ = 1 + N log(N !) + n + 2 log

(︂
N
a

)︂
+ log

(︂
(N − a)!

)︂
+ ηa

bits. Therefore, there are at most 2κ trapdoor permutations τ ∈ Tn that can be
“efficiently inverted”. We compute the fraction of all such permutations, where the
number of all permutations follows from Lemma 3.4.

2κ

N !(N !)N
=

(N !)N2n+1+ηa(N − a)!
(︂

N
a

)︂2

N !(N !)N
,

=
2n+1+ηa(N − a)!

(︂
N
a

)︂2

N ! ,

=
2n+1+ηa

(︂
N
a

)︂
a! .

We want to show that for a sufficiently large n, the fraction can be bounded by
2−a. From the claim of the theorem, we have ε = 2−n/5. Note that any circuit
of size S = 2n/5 makes at most q = 2n/5 queries. Thus, a = ⌈ε2n/(2q + 1)⌉ =
⌈2−n/52n/(2n/5+1 + 1)⌉ ≥ N3/5/4. We proceed with the computation.

2n+1+ηa
(︂

N
a

)︂
a! ≤

(︄
2n+1

a e2N2η

a2

)︄a

,

≤
(︄

2e2N2η

a2

)︄a

,

≤
(︄

32e2N2η

N
6
5

)︄a

,

≤
(︄

32e22η

N
1
5

)︄a

,

where the first inequality follows from Corollary 3.7, specifically eq. (3.1) and
eq. (3.2).

Consider now that the length of a hint is η = n/6 bits. This implies(︄
32e22η

N
1
5

)︄a

=
(︄

32e2N
1
6

N
1
5

)︄a

=
(︄

32e2

N
1

30

)︄a

=
(︄

32e2

(2n) 1
30

)︄a

.

20

Therefore, for a sufficiently large n, it holds that

2n+1+ηa
(︂

N
a

)︂
a! ≤

(︄
1
2

)︄a

= 2−a ≤ 2− N3/5
4 .

By Lemma 3.11, there are at most 22S+(S+1)n(log(Sn+n)+1)+log(S) = ˜︁O(N1/5)
circuits of size at most S, where the ˜︁O notation supresses polylogarithmic factors.
We apply union bound and show that the probability (over a random choice of
τ ∈ Tn) that there exists a circuit of size at most S = 2n/5, satisfying that the
circuit inverts τ with probability greater than ε, is

˜︁O(N1/5) · 2−a < ˜︁O(N1/5) · 2− N3/5
4 < 2−N1/2

for all sufficiently large N .
Note that we do not care about how the hint w is created. Without loss of

generality, we can assume that the hint provided is the best possible, and the
statement still holds. Consider now the inversion experiment from Definition 3.2.
We have the hints created by AF .Leak and we invert using the circuit AF .Invert.
Suppose the probability of the existence of a successful invertor AF .Invert is
greater than 2−N1/2 , where by “successful” we mean that the probability of
inverting correctly is greater than ε. This contradicts the previous part of the
proof. Thus, the probability of existence of a successful invertor is lower than
2−N1/2 . The theorem follows.

Theorem 3.8 shows that for a particular set of parameters, we can have hints
that are long 1/6 of the length of the trapdoor permutation. The natural question
is if this can be improved. In the following theorem, we show that by adjusting
the size of the circuit S and probability ε, we can have hints of length equal to any
fraction (less than 1) of the length of the trapdoor permutation (for a sufficiently
large n).

Theorem 3.12. Let k ∈ N, k ≥ 5. For a sufficiently large n, a random trapdoor
permutation τ ∈ Tn is (nk−4

k+1 , 2n/k)-PLR-TDP with probability at least 1− 22n/2.

Proof. The proof is very similar to the proof of Theorem 3.8. We need to adjust
the variables:

S = q = 2n/k,

ε = 2−n/k,

η = k − 4
k + 1n,

a = ⌈ε2n/(2q + 1)⌉,
= ⌈2− n

k 2n/(2n
k

+1 + 1)⌉,
≥ N

k−2
k /4.

21

Let k ∈ N, k ≥ 5. We proceed with the computation as in the proof of
Theorem 3.8 with the new values.

2n+1+ηa
(︂

N
a

)︂
a! ≤

(︄
2n+1

a e2N2η

a2

)︄a

,

≤
(︄

2e2N2η

a2

)︄a

,

≤
(︄

32e2N2η

N
2k−4

k

)︄a

,

≤
(︄

32e22η

N
k−4

k

)︄a

.

Consider now that the length of a hint is η = nk−4
k+1 bits. This implies

(︄
32e22η

N
k−4

k

)︄a

=
(︄

32e2N
k−4
k+1

N
k−4

k

)︄a

=
(︄

32e2

N
k−4

k(k+1)

)︄a

=
(︄

32e2

(2n)
k−4

k(k+1)

)︄a

.

Therefore, for a sufficiently large n, it holds that

2n+1+ηa
(︂

N
a

)︂
a! ≤

(︄
1
2

)︄a

= 2−a ≤ 2− N(k−2)/k

4 ≤ 2− N3/5
4 ,

where the last inequality holds for all k ≥ 5.
Note that we have arrived at the same bound

(︃
2− N3/5

4

)︃
as in the proof of

Theorem 3.8. Without loss of generality, we upper-bound the size of the circuit
S ≤ 2n/5. The rest of the proof is identical to the proof of Theorem 3.8.

22

Conclusion
The goal of our thesis is to present preimage leakage-resilient trapdoor permuta-
tions (PLR-TDPs) and their applications for cryptographic purposes with a focus
on proofs of storage replication and incompressible encodings. One of the ques-
tions suggested by our thesis is whether trapdoor permutations, which have this
property, exist under standard assumptions.

We introduce the reader to all necessary definitions of TDPs and highlight
important applications. We use the newly defined PLR-TDPs to construct a simple
incompressible encoding scheme. The advantage of using PLR-TDPs over regular
TDPs is the reduced complexity of the construction and the security analysis. We
also show that fully random TDPs have the preimage leakage-resilience property
in a very strong sense.

In their work, van Dijk et al. conjectured that practical TDPs (namely RSA)
are preimage leakage-resilient with respect to n− Ω(log n) bits of leakage. Our
results show that ideal TDPs are preimage leakage-resilient in a very strong sense
with respect to nk−4

k
bits of leakage. Thus, they support the conjecture that

practical TDPs are preimage leakage-resilient, too. In particular, our results are
the first step towards formally secure and time-efficient schemes in the future.

There are various open problems. For instance, whether the incompressible
encoding scheme defined in Chapter 2 can be extended into a composable incom-
pressible encoding scheme. A major open question is whether practical TDPs,
such as the RSA or Rabin permutations, are preimage leakage-resilient under
standard assumptions.

23

Bibliography
[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.

Private information retrieval. Journal of the ACM (JACM), 45(6):965–
981, 1998.

[DGO19] Ivan Damg̊ard, Chaya Ganesh, and Claudio Orlandi. Proofs of repli-
cated storage without timing assumptions. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume
11692 of Lecture Notes in Computer Science, pages 355–380. Springer,
2019.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan.
Bounds on the efficiency of generic cryptographic constructions. SIAM
journal on Computing, 35(1):217–246, 2005.

[GLW20] Rachit Garg, George Lu, and Brent Waters. New techniques in replica
encodings with client setup. In Rafael Pass and Krzysztof Pietrzak,
editors, Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part
III, volume 12552 of Lecture Notes in Computer Science, pages 550–
583. Springer, 2020.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptog-
raphy. CRC press, 2020.

[KO00] Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor permuta-
tions are sufficient for non-trivial single-server private information
retrieval. In Advances in Cryptology—EUROCRYPT 2000: Interna-
tional Conference on the Theory and Application of Cryptographic
Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19, pages
104–121. Springer, 2000.

[KR19] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient
cryptography. In Oded Goldreich, editor, Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 727–794. ACM, 2019.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.
Sequential aggregate signatures from trapdoor permutations. In Ad-
vances in Cryptology-EUROCRYPT 2004: International Conference
on the Theory and Applications of Cryptographic Techniques, In-
terlaken, Switzerland, May 2-6, 2004. Proceedings 23, pages 74–90.
Springer, 2004.

24

[MN09] Jǐŕı Matoušek and Jaroslav Nešetřil. Kapitoly z diskrétńı matematiky.
Čtvrté, upravené a doplněné vydáńı. Karolinum, Praha, 2009.

[MW20] Tal Moran and Daniel Wichs. Incompressible encodings. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Pro-
ceedings, Part I, volume 12170 of Lecture Notes in Computer Science,
pages 494–523. Springer, 2020.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In International conference on the theory and
applications of cryptographic techniques, pages 223–238. Springer,
1999.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Massachusetts Institute of Technology,
Technical Memo TM-212, 1979.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

[vDJO+12] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest, Emil
Stefanov, and Nikos Triandopoulos. Hourglass schemes: how to prove
that cloud files are encrypted. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 265–280,
2012.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In
23rd Annual Symposium on Foundations of Computer Science (SFCS
1982), pages 80–91. IEEE, 1982.

25

List of Figures

1.1 Encoding process of replica encodings 5
2.1 Inversion experiment PLR-TDP.InvExpη

A,F(1λ) 8

2.2 Compression experiment IE.CompExpΦ
AIE,β 9

2.3 Incompressible encoding scheme Ψ 10
2.4 Composability experiment CExpΦ

AIE,k(1λ) 12

3.1 Inversion experiment S-PLR-TDP.InvExpη
AF ,F 14

3.2 Number of bits required to describe τ in the first case 17
3.3 Number of bits required to describe τ in the second case 19

26

List of Abbreviations
CExp composability experiment
CompExp compression experiment
IE incompressible encoding
PKE public-key encryption
PLR-TDPs preimage leakage-resilient trapdoor permutations
PPT probabilistic polynomial-time
PRG pseudorandom generator
RO random oracle
TDPs trapdoor permutations

27

	Introduction
	Trapdoor permutations and their applications
	Preliminaries
	Applications of TDPs
	Applications in proof of storage replication
	Hourglass schemes and replica encodings

	Preimage leakage-resilient trapdoor permutations
	Definitions of PLR-TDPs
	Incompressible encodings from PLR-TDPs

	Existence of PLR-TDPs
	Preliminaries
	Preimage Leakage-Resilience of Random Trapdoor Permutations

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations

